Science.gov

Sample records for a2 mimetic u46619

  1. Cultured human vascular smooth muscle cells with functional thromboxane A2 receptors: measurement of U46619-induced /sup 45/calcium efflux

    SciTech Connect

    Dorn, G.W. II; Sens, D.; Chaikhouni, A.; Mais, D.; Halushka, P.V.

    1987-06-01

    Thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) are potent vasoconstrictors whose contractile effects are mediated by increases in cellular calcium. Stable analogues of these compounds have shown calcium ionophore activity at high concentrations. To determine if effects of TXA2/PGH2 analogues on /sup 45/Ca/sup 2 +/ fluxes are receptor mediated, the effects of the stable TXA2/PGH2 mimetic U46619 and the TXA2/PGH2 receptor antagonist I-PTA-OH on /sup 45/Ca/+ fluxes in cultured human vascular smooth muscle cells were studied. The smooth muscle cells were cultured from human saphenous vein explants, and they retained the morphologic and immunologic characteristics of vascular smooth muscle cells. U46619 stimulated /sup 45/Ca/sup 2 +/ efflux in a dose-dependent manner with an EC50 of 398 +/- 26 nM (n = 4). The maximal /sup 45/Ca/sup 2 +/ efflux in response to U46619 (5 microM) was significantly greater (p = 0.006) than the /sup 45/Ca/sup 2 +/ efflux induced by KCl (40 mM). I-PTA-OH inhibited the U46619-induced /sup 45/Ca/sup 2 +/ efflux but had no effect on KCl-induced /sup 45/Ca/sup 2 +/ efflux. These results suggest that the effects of U46619 in increasing vascular smooth muscle cell calcium efflux are receptor mediated. Furthermore, vascular smooth muscle cells with functional TXA2/PGH2 receptors were cultured from human saphenous veins and provide a potentially useful in vitro system for the further study of TXA2/PGH2 receptor-mediated phenomena in human vascular tissue.

  2. Restoration of blood pressure by centrally injected U-46619, a thromboxane A(2) analog, in hemorrhaged hypotensive rats: investigation of different brain areas.

    PubMed

    Yalcin, Murat; Savci, Vahide

    2004-04-01

    In the present study, we investigated the cardiovascular effects of centrally injected U-46619, a thromboxane A(2) (TXA(2)) analog, and the central and peripheral mechanisms of these effects in hemorrhagic shock conditions. Hemorrhage was performed by withdrawing a total volume of 2.1 ml of blood/100 g body weight over a period of 10 min. Injections were made into the lateral cerebral ventricle (LCV), nucleus tractus solitarius (NTS), rostral ventrolateral medulla (RVLM) and paraventricular nucleus of hypothalamus (PVN). U-46619 (0.1, 1 and 2 microg) increased blood pressure and reversed hypotension in hemorrhagic shock. The pressor effect was dose- and time-dependent in all investigated brain areas. Heart rate changes were not significantly different in all groups. Pretreatment of rats with an injection of SQ-29548 (4 or 8 microg), a TXA(2) receptor antagonist, into the LCV, NTS, RVLM and PVN completely blocked the pressor effect of U-46619 (1 microg) injected into respective brain areas. Hemorrhage itself increased plasma adrenaline, noradrenaline, vasopressIN levels and renin activity. U-46619 (1 microg) injected into the LCV, PVN, RVLM and NTS produced additional increases in these hormone levels and in renin activity. Intravenous pretreatments of rats with prazosin (0.5 mg/kg), an alpha(1)-adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Me-Tyr(2),Arg(8)]- vasopressin (10 microg/kg), a vasopressin V(1)-receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, in hemorrhaged rats partially blocked the pressor response to U-46619 (1 microg) injected into the LCV, PVN, RVLM and NTS. Results show that centrally administered U-46619, a TXA(2) analog, increases blood pressure and reverses hypotension in hemorrhagic shock. Activation of central TXA(2) receptors mediates the pressor effect of the drug. Furthermore, the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin

  3. Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves

    SciTech Connect

    Trachte, G.J.

    1986-05-01

    The effect of the synthetic thromboxane/prostaglandin (PG) H2 agonist U46619 on the electrically stimulated rabbit isolated vas deferens was examined to test for thromboxane influences on adrenergic nerves. U46619 effects on force generation, (/sup 3/H) norepinephrine release and norepinephrine-induced contractions were assessed to determine the mechanism of action. U46619 maximally enhanced adrenergic force generation 135 +/- 24% at a concentration of 100 nM. U46619 potentiated maximal contractile effects of exogenously administered norepinephrine 16 +/- 4% and augmented (/sup 3/H)norepinephrine release from electrically stimulated preparations 142 +/- 44%. A competitive thromboxane/PGH2 receptor antagonist, SQ29548, significantly shifted the concentration-response curve for U46619 to the right in a concentration-dependent manner and blocked U46619-induced tritium release. Thus, U46619 appears to potentiate neurotransmitter release by interacting with thromboxane/PGH2 receptors. Because SQ29548 did not prevent the potentiation of norepinephrine contractions by U46619, the postjunctional effect may be independent of thromboxane/PGH2 receptors. We interpret these results to be indicative of both pre- and postjunctional sites of action of U46619. The physiological importance of these thromboxane effects is unknown currently.

  4. Reactivity of rat abdominal aorta to U46619 following whole-body gamma irradiation

    SciTech Connect

    Warfield, M.E.; Schneidkraut, M.J.; Cunard, C.M.; Ramwell, P.W.; Kot, P.A.

    1989-03-01

    Rats exposed to 20 Gy whole-body irradiation demonstrated a depressed aortic responsiveness to the thromboxane mimic, U46619, 48 h postirradiation. The mechanism for this observed response was investigated. Shielding the abdominal aorta attenuated this altered vascular reactivity. Since this suggests that radiation exposure induces local changes in the aorta, vascular smooth muscle function was assessed with cumulative concentrations of KCl. Radiation-induced smooth muscle damage was insufficient to account for the decreased reactivity to U46619. Next, calcium availability for vascular smooth muscle function was evaluated and found not to be responsible for the radiation-induced depression in aortic responsiveness. Finally, the role that cyclooxygenase products play in the depressed contractile response was investigated. Indomethacin treatment prior to and for 48 h after irradiation attenuated the altered vascular reactivity to U46619. These data suggest that a radiation-induced increase in cyclooxygenase products may play a role in the decreased aortic reactivity to the thromboxane mimic.

  5. EP 171: a high affinity thromboxane A2-mimetic, the actions of which are slowly reversed by receptor blockade.

    PubMed Central

    Jones, R. L.; Wilson, N. H.; Lawrence, R. A.

    1989-01-01

    1. Replacement of the four-carbon omega-terminus in 9,11-endoxy-10a-homo prostaglandin H2 with a p-fluorophenoxy group produces a compound (EP 171) with very high agonist potency at TP-receptors. 2. On six isolated smooth muscle preparations EP 171 was 33-167 times more potent as a TP-receptor agonist than U-46619 (11,9-epoxymethano PGH2); EC50 values ranged from 45 to 138 pM. The actions of EP 171 were difficult to study because of their slow onset and offset. For example, on the guinea-pig trachea the time required for 50% reversal of EP 171-induced contractions during washout was about 3 h. 3. On the pig pulmonary artery, a more rapidly responding preparation, it was possible to show that the TP-receptor antagonist EP 092 blocked the contractile actions of EP 171 and U-46619 to similar extents: pA2 = 8.09 and 8.15 respectively. 4. EP 171 was also a very potent activator of human blood platelets, being about 90 times more potent than U-46619. Both shape change (0.1 nM) and aggregation (1 nM) were slow in onset, a profile not previously observed for a thromboxane A2-mimetic. 5. When potencies at TP-, EP1-(guinea-pig fundus) and FP-(dog iris sphincter) receptors were compared, EP 171 showed a higher specificity as a TP-receptor agonist than either STA2 or U-46619. These studies also showed that contrary to earlier reports, the guinea-pig fundus does contain TP-receptors mediating muscle contraction. However, the maximal response due to activation of TP-receptors was only about 35% of the PGE2 maximum. 6. Established responses to EP 171 were slowly reversed following addition of a high concentration of a TP-receptor antagonist (EP 092, GR 32191 or BM 13177). Faster reversals of three less potent 16-p-halophenoxy prostanoids and U-46619 were obtained. Half-times for offset (and onset) of agonist action appeared to correlate with potency rather than with lipophilicity. 7. Competition between the agonists and a radio iodinated PTA2 derivative ([125I]-PTA-OH) for

  6. Time-dependent inhibition by glyceryl trinitrate of platelet aggregation caused by U46619 (a thromboxane/endoperoxide receptor agonist).

    PubMed

    Kampf, G; Ritter, J M

    1994-07-01

    Glyceryl trinitrate is a weak inhibitor of platelet aggregation in vitro. Its effect on platelet aggregation in response to U46619 (a thromboxane/endoperoxide receptor agonist) was studied turbidometrically in platelet-rich plasma from healthy volunteers. The object was to determine whether inhibition was influenced by a period of preincubation between preparation of platelet-rich plasma and addition of glyceryl trinitrate. Incubation was performed at 37 degrees C and 22 degrees C. Samples were removed at intervals and transferred to an aggregometer cuvette at 37 degrees C. Glyceryl trinitrate (100 microM) or an equal volume of distilled water was added 5 min before U46619 (2 microM), and aggregation recorded as change in light transmission. Inhibition by glyceryl trinitrate was markedly time and temperature dependent, with a progressive increase in inhibitory potency between 120 and 300 min preincubation at 37 degrees C but not at 22 degrees C. The explanation of this is unknown but the effect was not influenced by lipopolysaccharide or by cycloheximide, so it does not appear to be due to exposure to endotoxin or to enzyme induction in vitro. PMID:7946941

  7. Binding of thromboxane A2/prostaglandin H2 agonists to human platelets.

    PubMed Central

    Halushka, P. V.; Kochel, P. J.; Mais, D. E.

    1987-01-01

    The competition of [125I]-9, 11 dimethylmethano-11, 12 methano-16-(3-iodo-4-hydroxyphenyl)-13, 14-dihydro-13-aza 15 alpha beta-omega-tetranor-thromboxane A2 ([125I]-PTA-OH), a thromboxane A2/prostaglandin H2 receptor antagonist, with a series of thromboxane A2/prostaglandin H2 (TXA2/PGH2) mimetics for binding to the putative TXA2/PGH2 receptor in washed human platelets was studied. The rank order potency for the series of mimetics to compete with [125I]-PTA-OH for binding was compared with their rank order potency for induction of platelet aggregation. The rank order potency for the mimetics to compete with [125I]-PTA-OH for binding was ONO-11113 greater than SQ-26655 greater than U44069 greater than U46619 = 9, 11-azo PGH2 greater than MB28767. This rank order potency was highly correlated with their rank order potency for inducing platelet aggregation (r = 0.992). Changes in the intra or extracellular concentrations of Na+ did not have a significant effect on the competition between U46619 and [125I]-PTA-OH for binding to the putative receptor. In summary, it appears that these TXA2/PGH2 mimetics activate human platelets through the putative TXA2/PGH2 receptor. PMID:3594077

  8. Inhibition of Thromboxane A2-Induced Arrhythmias and Intracellular Calcium Changes in Cardiac Myocytes by Blockade of the Inositol Trisphosphate Pathway

    PubMed Central

    Kosloski, L. M.; Gilbert, W. J. R.; Touchberry, C. D.; Moore, D. S.; Kelly, J. K.; Brotto, M.; Orr, J. A.

    2009-01-01

    We have recently reported that left atrial injections of the thromboxane A2 (TXA2) mimetic, (5Z)-7-[(1R,4S,5S,6R)-6-[(1E,3S)-3-hydroxy-1-octenyl]-2 -oxabicyclo[2.2.1]hept-5-yl]-5-heptenoic acid (U46619), induced ventricular arrhythmias in the anesthetized rabbit. Data from this study led us to hypothesize that TXA2 may be inducing direct actions on the myocardium to induce these arrhythmias. The aim of this study was to further elucidate the mechanism responsible for these arrhythmias. We report that TXA2R is expressed at both the gene and protein levels in atrial and ventricular samples of adult rabbits. In addition, TXA2R mRNA was identified in single, isolated ventricular cardiac myocytes. Furthermore, treatment of isolated cardiac myocytes with U46619 increased intracellular calcium in a dose-dependent manner and these increases were blocked by the specific TXA2R antagonist, 7-(3-((2-((phenylamino)carbonyl)hydrazino)methyl)-7-oxabicyclo(2.2.1)hept-2-yl)-5-heptenoic acid (SQ29548). Pretreatment of myocytes with an inhibitor of inositol trisphosphate (IP3) formation, gentamicin, or with an inhibitor of IP3 receptors, 2-aminoethoxydiphenylborate (2-APB), blocked the increase in intracellular calcium. In vivo pretreatment of anesthetized rabbits with either gentamicin or 2-APB subsequently inhibited the formation of ventricular arrhythmias elicited by U46619. These data support the hypothesis that TXA2 can induce arrhythmias via a direct action on cardiac myocytes. Furthermore, these arrhythmogenic actions were blocked by inhibitors of the IP3 pathway. In summary, this study provides novel evidence for direct TXA2-induced cardiac arrhythmias and provides a rationale for IP3 as a potential target for the treatment of TXA2-mediated arrhythmias. PMID:19741149

  9. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes

    PubMed Central

    Jeong, In Seok; Cho, Hwa Jin; Cho, Jeong Gwan; Kim, Sang Hyung; Na, Kook Joo

    2016-01-01

    Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium. PMID:27482267

  10. Characterization of a thromboxane A2/prostaglandin H2 receptor in guinea pig lung membranes using a radioiodinated thromboxane mimetic

    SciTech Connect

    Saussy, D.L. Jr.; Mais, D.E.; Dube, G.P.; Magee, D.E.; Brune, K.A.; Kurtz, W.L.; Williams, C.M. )

    1991-01-01

    Thromboxane A2 (TXA2) and prostaglandin H2 (PGH2) are potent constrictors of airway smooth muscle and may mediate some of the pulmonary effects of leukotrienes. To date, the TXA2/PGH2 receptor in lung has not been well characterized. In this report, we describe the evaluation of the TXA2/PGH2 receptor in guinea pig lung membranes using the new radiolabeled TXA2 mimetic (1S(1 alpha,2 beta(5Z),3 alpha(1E,3S*),4 alpha))-7-(3-(3-hydroxy-4-(4'- iodophenoxy)-1-butenyl)-7-oxabicyclo-(2.2.1)heptan-2-yl)-5-h eptenoic acid (IBOP). IBOP elicited a dose-dependent contraction of guinea pig lung parenchymal strips (EC50 = 3.03 +/- 0.97 nM, three experiments), which was blocked by the TXA2/PGH2 antagonists SQ29548 (pKB = 7.44 +/- 0.2, three experiments), BM13505 (pKB = 6.29 +/- 0.26, three experiments), and I-PTA-OH (pKB = 5.82 +/- 0.36, three experiments). In radioligand binding studies, the binding of (125I)IBOP to guinea pig lung membranes prepared from perfused lungs was saturable, displaceable, and dependent upon protein concentration. Binding was optimal at pH 6.5 and was enhanced by the addition of mono- and divalent cations. The standard assay buffer was 25 mM 3-(N-morpholino)propanesulfonic acid, pH 6.5, 100 mM NaCl, 5 mM MgCl2. Binding was inhibited by pretreatment with dithiothreitol, N-ethylmaleimide, or beta-mercaptoethanol. Binding was unaffected by the addition of guanine nucleotide analogs at concentrations up to 300 microM. Analysis of the time course of binding of (125)IBOP at 30 degrees yielded k-1 = 0.0447 min-1, k1 = 2.49 x 10(8) M-1 min-1, and Kd = k-1/k1 = 180 pM. Computer analysis of equilibrium binding studies using nonlinear methods (LUNDON-1) revealed a single class of noninteracting binding sites with a Kd of 86.9 +/- 11.9 pM and a Bmax of 81.8 +/- 7.7 fmol/mg of protein (three experiments).

  11. Mimetic Attractors

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Myrzakulov, Kairat; Momeni, Davood; Myrzakulov, Ratbay

    2016-05-01

    In this paper,we investigate the mathematical modeling for the cosmological attractors propagated in mimetic gravity upon which an interacting dark energy-dark matter is supposed to be existed. The average value of the interaction of these percentages, namely Γ i say, may be used to investigate generally the modeling of an attractor; the actual value could only be determined by data in any particular case. We have seen, for example, that it was led to investigate the subject of initially invariant submanifolds.

  12. Cosmology with Mimetic Matter

    SciTech Connect

    Chamseddine, Ali H.; Mukhanov, Viatcheslav; Vikman, Alexander E-mail: viatcheslav.Mukhanov@lmu.de

    2014-06-01

    We consider minimal extensions of the recently proposed Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field we can mimic nearly any gravitational properties of the normal matter. In particular, the mimetic matter can provide us with inflaton, quintessence and even can lead to a bouncing nonsingular universe. We also investigate the behaviour of cosmological perturbations due to a mimetic matter. We demonstrate that simple mimetic inflation can produce red-tilted scalar perturbations which are largely enhanced over gravity waves.

  13. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    SciTech Connect

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. )

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  14. Regulation of the Tumor Suppressor FOXO3 by the Thromboxane-A2 Receptors in Urothelial Cancer

    PubMed Central

    Sobolesky, Philip M.; Halushka, Perry V.; Garrett-Mayer, Elizabeth; Smith, Michael T.; Moussa, Omar

    2014-01-01

    The transcription factor FOXO3 is a well-established tumor suppressor whose activity, stability, and localization are regulated by phosphorylation and acetylation. Previous data by our laboratory demonstrated amplified thromboxane-A2 signaling was associated with poor prognoses in bladder cancer patients and overexpression of the thromboxane-A2 isoform-β receptor (TPβ), but not TPα, induced malignant transformation of immortalized bladder cells in vivo. Here, we describe a mechanism of TP mediated modulation of FOXO3 activity and localization by phosphorylation and deacetylation in a bladder cancer cell model. In vitro gain and loss of function studies performed in non-transformed cell lines, UROsta and SV-HUC, revealed knockdown of FOXO3 expression by shRNA increased cell migration and invasion, while exogenously overexpressing TPβ raised basal phosphorylated (p)FOXO3-S294 levels. Conversely, overexpression of ERK-resistant, mutant FOXO3 reduced increases in UMUC3 cell migration and invasion, including that mediated by TP agonist (U46619). Additionally, stimulation of UMUC3 cells with U46619 increased pFOXO3-S294 expression, which could be attenuated by treatment with a TP antagonist (PTXA2) or ERK inhibitor (U0126). Initially U46619 caused nuclear accumulation of pFOXO3-S294; however, prolonged stimulation increased FOXO3 cytoplasmic localization. U46619 stimulation decreased overall FOXO3 transcriptional activity, but was associated with increased expression of its pro-survival target, manganese superoxide dismutase. The data also shows that TP stimulation increased the expression of the histone deacetylase, SIRT1, and corresponded with decreased acetylated-FOXO3. Collectively, the data suggest a role for TP signaling in the regulation of FOXO3 activity, mediated in part through phosphorylation and deacetylation. PMID:25202904

  15. Unimodular-mimetic cosmology

    NASA Astrophysics Data System (ADS)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.

  16. Androgen regulation of thromboxane A2/prostaglandin H2 receptor expression in human erythroleukemia cells.

    PubMed

    Matsuda, K; Mathur, R S; Duzic, E; Halushka, P V

    1993-12-01

    Thromboxane A2 (TxA2), a platelet aggregator and vasoconstrictor, has been implicated as a potential mediator of cardiovascular diseases. Abuse of androgenic steroids has been associated with thrombotic cardiovascular diseases. Human erythroleukemia (HEL) cells, a megakaryocyte-like cell line, express functional TxA2/prostaglandin H2 (PGH2) receptors with characteristics similar to those seen in platelets. This study characterized testosterone regulation of HEL cell TxA2/PGH2 receptors. TxA2/PGH2 receptor affinity (Kd) and density (Bmax) were determined via equilibrium binding experiments using the radiolabeled TxA2 mimetic (1S-[1 alpha,2 beta(5Z),3 alpha(1E,3R*),4 alpha])-7-(3-[3-hydroxy-4-(4'- iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]heptan-2-yl)-5-he ptenoic acid (125I-labeled BOP). Testosterone (200 nM) but not estradiol increased Bmax from 108 +/- 9 fmol/mg protein to 157 +/- 9 fmol/mg protein (n = 7 experiments; P < 0.01) without any significant change in Kd. Testosterone had no significant effect on alpha 2-adrenergic receptor density. The maximum increase in intracellular free calcium induced by the TxA2 agonists I-BOP or U-46619 was significantly (P < 0.005) greater in testosterone-treated cells compared with controls. Hydroxyflutamide (1 microM), an androgen-receptor antagonist, completely blocked the effect of testosterone (P < 0.01). Dihydrotestosterone, the active metabolite of testosterone, also increased Bmax in a concentration-dependent manner and was more potent than testosterone. The effect of testosterone to increase Bmax was significantly (P < 0.01) inhibited by coincubation with cycloheximide (0.1 microgram/ml) or actinomycin D (10 ng/ml). These results indicate that androgenic steroids regulate the expression of functional TxA2/PGH2 receptors in HEL cells. These findings may have relevance to cardiovascular disease. PMID:8279549

  17. Mimetic finite difference method

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  18. Flavonoids inhibit the platelet TxA2 signalling pathway and antagonize TxA2 receptors (TP) in platelets and smooth muscle cells

    PubMed Central

    Guerrero, José A; Navarro-Nuñez, Leyre; Lozano, María L; Martínez, Constantino; Vicente, Vicente; Gibbins, Jonathan M; Rivera, José

    2007-01-01

    What is already known about this subject Flavonoids are largely recognized as potential inhibitors of platelet function, through nonspecific mechanisms such as antioxidant activity and/or inhibition of several enzymes and signalling proteins. In addition, we, and few others, have shown that certain antiaggregant flavonoids may behave as specific TXA2 receptor (TP) ligands in platelets. Whether flavonoids interact with TP isoforms in other cell types is not known, and direct evidence that flavonoid–TP interaction inhibits signalling downstream TP has not been shown. What this study adds This study first demonstrates that certain flavonoids behave as ligands for both TP isoforms, not only in platelets, but also in human myometrium and in TP-transfected HEK 293T cells. Differences in the effect of certain flavonoids in platelet signalling, induced by either U46619 or thrombin, suggest that abrogation of downstream TP signalling is related to their specific blockage of the TP, rather than to a nonspecific effect on tyrosine kinases or other signalling proteins. Aims Flavonoids may affect platelet function by several mechanisms, including antagonism of TxA2 receptors (TP). These TP are present in many tissues and modulate different signalling cascades. We explored whether flavonoids affect platelet TP signalling, and if they bind to TP expressed in other cell types. Methods Platelets were treated with flavonoids, or other selected inhibitors, and then stimulated with U46619. Similar assays were performed in aspirinized platelets activated with thrombin. Effects on calcium release were analysed by fluorometry and changes in whole protein tyrosine phosphorylation and activation of ERK 1/2 by Western blot analysis. The binding of flavonoids to TP in platelets, human myometrium and TPα- and TPβ-transfected HEK 293T cells was explored using binding assays and the TP antagonist 3H-SQ29548. Results Apigenin, genistein, luteolin and quercetin impaired U46619-induced calcium

  19. Fc-fusion mimetics.

    PubMed

    Khalili, H; Khaw, P T; Brocchini, S

    2016-06-24

    The Fc-fusion mimetic RpR 2[combining low line] was prepared by disulfide bridging conjugation using PEG in the place of the Fc. RpR 2[combining low line] displayed higher affinity for VEGF than aflibercept. This is caused primarily by a slower dissociation rate, which can prolong a drug at its site of action. RpRs have considerable potential for development as stable, organ specific therapeutics. PMID:27127811

  20. Prostanoid-induced contraction of human bronchial smooth muscle is mediated by TP-receptors.

    PubMed Central

    Coleman, R. A.; Sheldrick, R. L.

    1989-01-01

    1. A range of naturally-occurring prostaglandins sulprostone, 16,16-dimethyl prostaglandin E2 (DME2) and the thromboxane A2 (TXA2)-mimetic, 11 alpha,9 alpha-epoxymethano prostaglandin H2 (U-46619) have been tested for contractile agonist activity on human isolated bronchial smooth muscle. 2. Prostaglandin D2 (PGD2), PGF2 alpha, 9 alpha,11 beta-PGF2 (11 beta-PGF2) and U-46619 all caused concentration-related contractions. U46619 was at least 300 fold more potent than the other prostanoids with a mean EC50 of 12 nM. Sulprostone caused contraction only at the highest concentration tested (30 microM). PGE2 and PGI2 caused relaxations at low concentrations, and only caused contractile responses at high concentrations (greater than or equal to 10 microM). In contrast, DME2 caused small contractions at low concentrations but relaxation at the highest concentration tested (30 microM). 3. The rank order of contractile agonist potency was: U-46619 much greater than 11 beta-PGF2 congruent to PGF2 alpha greater than PGD2 greater than PGE2 greater than PGI2 congruent to sulprostone congruent to DME2. 4. The TP-receptor blocking drug, AH23848 (1 microM) antagonized the contractile effects of U-46619, PGD2, PGF2 alpha and 11 beta-PGF2, but had no effect against contractions to carbachol. In a single experiment, a pA2 of 8.3 (slope = 1.2) was obtained for AH23848 against U-46619. 5. In most preparations, administration of AH23848 (1 microM) to human bronchus resulted in small, transient contractile responses. 6. The results obtained with both the agonists and the antagonist, AH23848 are therefore consistent with prostanoid-induced contractions of human bronchial smooth muscle being mediated by TP-receptors. PMID:2720298

  1. The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling

    PubMed Central

    Pan, Hao; Lin, Qiu-Ru; Huang, Mei-Yun; Cai, Ji-Ye; Ouyang, Dong-Yun; He, Xian-Hui

    2015-01-01

    Previously we reported that valproic acid (VPA) acts in synergy with GOS to enhance cell death in human DU145 cells. However, the underlying mechanism remains elusive. In this study, we observed that such synergistic cytotoxicity of GOS and VPA could be extended to human A375, HeLa, and PC-3 cancer cells. GOS and VPA co-treatment induced robust apoptosis as evidenced by caspase-8/-9/-3 activation, PARP cleavage, and nuclear fragmentation. GOS and VPA also markedly decreased cyclin A2 protein expression. Owing to the reduction of cyclin A2, Akt signaling was suppressed, leading to dephosphorylation of FOXO3a. Consequently, FOXO3a was activated and the expression of its target genes, including pro-apoptotic FasL and Bim, was upregulated. Supporting this, FOXO3a knockdown attenuated FasL and Bim upregulation and apoptosis induction in GOS+VPA-treated cells. Furthermore, blocking proteasome activity by MG132 prevented the downregulation of cyclin A2, dephosphorylation of Akt and FOXO3a, and induction of apoptosis in cells co-treated with GOS and VPA. In mouse model, GOS and VPA combination significantly inhibited the growth of A375 melanoma xenografts. Our findings indicate that GOS and VPA co-treatment induces apoptosis in human cancer cells by suppressing the cyclin-A2/Akt/FOXO3a pathway. PMID:26517515

  2. Cylindrical solutions in mimetic gravity

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay; Raza, Muhammad

    2016-06-01

    This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant.

  3. Wall stretch and thromboxane A2 activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation.

    PubMed

    Kim, Hae Jin; Yoo, Hae Young; Jang, Ji Hyun; Lin, Hai Yue; Seo, Eun Yeong; Zhang, Yin Hua; Kim, Sung Joon

    2016-04-01

    Pulmonary arteries (PAs) have high compliance, buffering the wide ranges of blood flow. Here, we addressed a hypothesis that PA smooth muscle cells (PASMCs) express nitric oxide synthases (NOS) that might be activated by mechanical stress and vasoactive agonists. In the myograph study of endothelium-denuded rat PAs, NOS inhibition (L-NAME) induced strong contraction (96 % of 80 mM KCl-induced contraction (80K)) in the presence of 5 nM U46619 (thromboxane A2 (TXA2) analogue) with relatively high basal stretch (2.94 mN, S(+)). With lower basal stretch (0.98 mN, S(-)), however, L-NAME application following U46619 (TXA2/L-NAME) induced weak contraction (27 % of 80K). Inhibitors of nNOS and iNOS had no such effect in S(+) PAs. In endothelium-denuded S(+) mesenteric and renal arteries, TXA2/L-NAME-induced contraction was only 18 and 21 % of 80K, respectively. Expression of endothelial-type NOS (eNOS) in rat PASMCs was confirmed by RT-PCR and immunohistochemistry. Even in S(-) PAs, pretreatment with H2O2 (0.1-10 μM) effectively increased the sensitivity to TXA2/L-NAME (105 % of 80K). Vice versa, NADPH oxidase inhibitors, reactive oxygen species scavengers, or an Akt inhibitor (SC-66) suppressed TXA2/L-NAME-induced contraction in S(+) PAs. In a human PASMC line, immunoblot analysis showed the following: (1) eNOS expression, (2) Ser(1177) phosphorylation by U46619 and H2O2, and (3) Akt activation (Ser(473) phosphorylation) by U46619. In the cell-attached patch clamp study, H2O2 facilitated membrane stretch-activated cation channels in rat PASMCs. Taken together, the muscular eNOS in PAs can be activated by TXA2 and mechanical stress via H2O2 and Akt-mediated signaling, which may counterbalance the contractile signals from TXA2 and mechanical stimuli. PMID:26729266

  4. Novel thromboxane A2 analog-induced IUGR mouse model.

    PubMed

    Fung, C; Brown, A; Cox, J; Callaway, C; McKnight, R; Lane, R

    2011-10-01

    Rodents, particularly rats, are used in the majority of intrauterine growth restriction (IUGR) research. An important tool that is lacking in this field is the ability to impose IUGR on transgenic mice. We therefore developed a novel mouse model of chronic IUGR using U-46619, a thromboxane A2 (TXA2) analog, infusion. TXA2 overproduction is prevalent in human pregnancies complicated by cigarette smoking, diabetes mellitus and preeclampsia. In this model, U-46619 micro-osmotic pump infusion in the last week of C57BL/6J mouse gestation caused maternal hypertension. IUGR pups weighed 15% less, had lighter brain, lung, liver and kidney weights, but had similar nose-to-anus lengths compared with sham pups at birth. Metabolically, IUGR pups showed increased essential branched-chain amino acids. They were normoglycemic yet hypoinsulinemic. They showed decreased hepatic mRNA levels of total insulin-like growth factor-1 and its variants, but increased level of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha. IUGR offspring were growth restricted from birth (P1) through postnatal day 21 (P21). IUGR males caught up with sham males in weight by P28, whereas IUGR females caught up with sham females by P77. IUGR males surpassed sham males in weight by P238. In summary, we have a non-brain sparing IUGR mouse model that has a relative ease of surgical IUGR induction and exhibits features similar to the chronic IUGR offspring of humans and other animal models. As transgenic technology predominates in mice, this model now permits the imposition of IUGR on transgenic mice to interrogate mechanisms of fetal origins of adult disease. PMID:25141265

  5. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  6. ApoA-I mimetics.

    PubMed

    Stoekenbroek, R M; Stroes, E S; Hovingh, G K

    2015-01-01

    A wealth of evidence indicates that plasma levels of high-density lipoprotein cholesterol (HDL-C) are inversely related to the risk of cardiovascular disease (CVD). Consequently, HDL-C has been considered a target for therapy in order to reduce the residual CVD burden that remains significant, even after application of current state-of-the-art medical interventions. In recent years, however, a number of clinical trials of therapeutic strategies that increase HDL-C levels failed to show the anticipated beneficial effect on CVD outcomes. As a result, attention has begun to shift toward strategies to improve HDL functionality, rather than levels of HDL-C per se. ApoA-I, the major protein component of HDL, is considered to play an important role in many of the antiatherogenic functions of HDL, most notably reverse cholesterol transport (RCT), and several therapies have been developed to mimic apoA-I function, including administration of apoA-I, mutated variants of apoA-I, and apoA-I mimetic peptides. Based on the potential anti-inflammatory effects, apoA-I mimetics hold promise not only as anti-atherosclerotic therapy but also in other therapeutic areas. PMID:25523005

  7. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis.

    PubMed

    Mumford, Andrew D; Dawood, Ban B; Daly, Martina E; Murden, Sherina L; Williams, Michael D; Protty, Majd B; Spalton, Jennifer C; Wheatley, Mark; Mundell, Stuart J; Watson, Steve P

    2010-01-14

    We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A(2) receptor (TxA(2)R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA(2)R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA(2)R, U46619 did not increase cytosolic free Ca(2+) concentration, indicating loss of receptor function. The TxA(2)R antagonist [(3)H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA(2)R. This is the second naturally occurring TxA(2)R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA(2)R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA(2)R function in vivo. PMID:19828703

  8. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis

    PubMed Central

    Mumford, Andrew D.; Dawood, Ban B.; Daly, Martina E.; Murden, Sherina L.; Williams, Michael D.; Protty, Majd B.; Spalton, Jennifer C.; Wheatley, Mark; Mundell, Stuart J.; Watson, Steve P.

    2015-01-01

    We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A2 receptor (TxA2R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA2R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA2R, U46619 did not increase cytosolic free Ca2+ concentration, indicating loss of receptor function. The TxA2R antagonist [3H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA2R. This is the second naturally occurring TxA2R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA2R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA2R function in vivo. PMID:19828703

  9. Unimodular mimetic F(R) inflation

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-07-01

    We propose the unimodular-mimetic F(R) gravity theory, to resolve cosmological constant problem and dark matter problem in a unified geometric manner. We demonstrate that such a theory naturally admits accelerating universe evolution. Furthermore, we construct unimodular-mimetic F(R) inflationary cosmological scenarios compatible with the Planck and BICEP2/Keck-Array observational data. We also address the graceful exit issue, which is guaranteed by the existence of unstable de Sitter vacua.

  10. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  11. Thromboxane A2 Regulates CXCL1 and CXCL8 Chemokine Expression in the Nasal Mucosa–Derived Fibroblasts of Chronic Rhinosinusitis Patients

    PubMed Central

    Tsai, Yih-Jeng; Hao, Sheng-Po; Chen, Chih-Li; Wu, Wen-Bin

    2016-01-01

    Background Chronic rhinosinusitis without nasal polyps (CRSsNP) is a common chronic disease and the etiology remains unclear. Thromboxane A2 (TXA2) participates in platelet aggregation and tissue inflammation. In this study, the CXCL1/8 chemokine and TXA2-TP receptor expression in the CRSsNP mucosa was investigated. Experimental Approach Immunohistochemistry, chemokine release assay by ELISA, RT-PCR, Real-time PCR, Western blotting, pharmacological and siRNA knockdown analysis were applied in the CRSsNP tissue specimen and cultured nasal mucosa-derived fibroblasts. Results The immunohistochemistry results indicated that CXCL1 and CXCL8 were highly expressed in the CRSsNP mucosa compared with the controls; however, the TP receptors were expressed in both mucosa. Therefore, U46619 and IBOP, a TXA2 analog and TP agonist, were used to explore the role of TP activation in CXCL1/8 expression; both of these induced CXCL1/8 mRNA and protein expression in CRSsNP mucosa-derived fibroblasts. U46619 phosphorylated PI-3K, cyclic AMP (cAMP)/PKA, PKC, and cAMP response element (CREB). Activation of cAMP/PKA, PKC, and CREB was the major pathway for cxcl1/8 gene transcription. Pharmacological and siRNA knockdown analyses revealed that activation of cAMP/PKA and PKCμ/PKD pathways were required for CREB phosphorylation and PKA/C crosstalked with the PI-3K pathway. Conclusion and Implications Our study provides the first evidence for abundant TP receptor and CXCL1/8 expression in human CRSsNP mucosa and for TXA2 stimulation inducing CXCL1/8 expression in nasal fibroblasts primarily through TP receptor, cAMP/PKA, PKCμ/PKD, and CREB-related pathways. PMID:27351369

  12. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis.

    PubMed

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-02-26

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy. PMID:26724804

  13. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    PubMed

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed. PMID:25264572

  14. Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus.

    PubMed

    Francischetti, I M; Ribeiro, J M; Champagne, D; Andersen, J

    2000-04-28

    Rhodnius prolixus aggregation inhibitor 1 (RPAI-1), a 19-kDa protein isolated from the salivary gland of R. prolixus, was purified by strong cation exchange and reverse-phase high performance liquid chromatographies. Based on 49 amino-terminal amino acid sequences of RPAI-1, primers were produced to generate probes to screen an R. prolixus salivary gland cDNA library. A phage containing the full-length clone of RPAI-1 codes for a mature protein of 155 amino acids. RPAI-1 shows sequence homology to triabin and pallidipin, lipocalins from Triatoma pallidipennis. The cDNA sequence was cloned in Pet17B Escherichia coli expression vector, producing an active peptide. RPAI-1 inhibits human platelet-rich plasma aggregation triggered by low concentrations of ADP, collagen, arachidonic acid, thromboxane A(2) mimetics (U46619), and very low doses of thrombin and convulxin. Here we show that ADP is the target of RPAI-1 since (i) RPAI-1 inhibits ADP-dependent large aggregation formation and secretion triggered by U46619, without affecting Ca(2+) increase and shape change; (ii) ADP restored the inhibition of U46619-induced platelet aggregation by RPAI-1, (iii) PGE(1)-induced increase of cAMP (which is antagonized by U46619 in an ADP-dependent manner) was restored by RPAI-1, (iv) RPAI-1 inhibits low concentrations of ADP-mediated responses of indomethacin-treated platelets, and (v) RPAI-1 binds to ADP, as assessed by large zone chromatography. RPAI-1 affects neither integrin alpha(2)beta(1)- nor glycoprotein VI-mediated platelet responses. We conclude that RPAI-1 is the first lipocalin described that inhibits platelet aggregation by a novel mechanism, binding to ADP. PMID:10777556

  15. Ac2-26 Mimetic Peptide of Annexin A1 Inhibits Local and Systemic Inflammatory Processes Induced by Bothrops moojeni Venom and the Lys-49 Phospholipase A2 in a Rat Model

    PubMed Central

    Carlos, Carla Patrícia; Ullah, Anwar; Arni, Raghuvir Krishnaswamy; Gil, Cristiane Damas; Oliani, Sonia Maria

    2015-01-01

    Annexin A1 (AnxA1) is an endogenous glucocorticoid regulated protein that modulates anti-inflammatory process and its therapeutic potential has recently been recognized in a range of systemic inflammatory disorders. The effect of the N-terminal peptide Ac2-26 of AnxA1 on the toxic activities of Bothrops moojeni crude venom (CV) and its myotoxin II (MjTX-II) were evaluated using a peritonitis rat model. Peritonitis was induced by the intraperitoneal injection of either CV or MjTX-II, a Lys-49 phospholipase A2. Fifteen minutes after the injection, the rats were treated with either Ac2-26 or PBS. Four hours later, the CV and MjTX-II-induced peritonitis were characterized by neutrophilia (in the peritoneal exudate, blood and mesentery) and increased number of mesenteric degranulated mast cells and macrophages. At 24 hours post-injection, the local inflammatory response was attenuated in the CV-induced peritonitis while the MjTX-II group exhibited neutrophilia (peritoneal exudates and blood). Ac2-26 treatment prevented the influx of neutrophils in MjTX-II–induced peritonitis and diminished the proportion of mesenteric degranulated mast cells and macrophages in CV-induced peritonitis. Additionally, CV and MjTX-II promoted increased levels of IL-1β and IL-6 in the peritoneal exudates which were significantly reduced after Ac2-26 treatment. At 4 and 24 hours, the endogenous expression of AnxA1 was upregulated in the mesenteric neutrophils (CV and MjTX-II groups) and mast cells (CV group). In the kidneys, CV and MjTX-II administrations were associated with an increased number of macrophages and morphological alterations in the juxtamedullary nephrons in proximal and distal tubules. Ac2-26 promoted significant recovery of the juxtamedullary structures, decreased the number of macrophages and diminished the AnxA1 in epithelial cells from distal tubules and renal capsules. Our results show that Ac2-26 treatment significantly attenuates local and systemic inflammatory

  16. Metal complexes as "protein surface mimetics".

    PubMed

    Hewitt, Sarah H; Wilson, Andrew J

    2016-07-28

    A key challenge in chemical biology is to identify small molecule regulators for every single protein. However, protein surfaces are notoriously difficult to recognise with synthetic molecules, often having large flat surfaces that are poorly matched to traditional small molecules. In the surface mimetic approach, a supramolecular scaffold is used to project recognition groups in such a manner as to make multivalent non-covalent contacts over a large area of protein surface. Metal based supramolecular scaffolds offer unique advantages over conventional organic molecules for protein binding, including greater stereochemical and geometrical diversity conferred through the metal centre and the potential for direct assessment of binding properties and even visualisation in cells without recourse to further functionalisation. This feature article will highlight the current state of the art in protein surface recognition using metal complexes as surface mimetics. PMID:27353704

  17. Non-local F(R)-mimetic gravity

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo

    2016-06-01

    In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.

  18. NEC violation in mimetic cosmology revisited

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    2016-09-01

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.

  19. Cosmological perturbations in a mimetic matter model

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jiro; Odintsov, Sergei D.; Sushkov, Sergey V.

    2015-03-01

    We investigate the cosmological evolution of a mimetic matter model with arbitrary scalar potential. The cosmological reconstruction—which is the method for constructing a model for an arbitrary evolution of the scale factor—is explicitly performed for different choices of potential. The cases where the mimetic matter model shows the evolution as cold dark matter (CDM), the w CDM model, dark matter and dark energy with a dynamical O m (z ) [where O m (z )≡[(H (z )/H0)2-1 ]/[(1 +z )3-1 ] ], and phantom dark energy with a phantom-nonphantom crossing are presented in detail. The cosmological perturbations for such evolutions are studied in the mimetic matter model. For instance, the evolution behavior of the matter density contrast (which is different than the usual one, i.e., δ ¨+2 H δ ˙-κ2ρ δ /2 =0 ) is investigated. The possibility of a peculiar evolution of δ in the model under consideration is shown. Special attention is paid to the behavior of the matter density contrast near the future singularity, where the decay of perturbations may occur much earlier than the singularity.

  20. Effect of mimetic CDK9 inhibitors on HIV-1 activated transcription

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Jaworski, Elizabeth; Sampey, Gavin; Klase, Zachary; Chen, Hao; Zeng, Chen; Kovalskyy, Dmytro; el Kouni, Mahmoud H.; Lepene, Benjamin; Patanarut, Alexis; Nekhai, Sergei; Price, David H.; Kashanchi, Fatah

    2013-01-01

    Potent antiretroviral therapy (ART) has transformed HIV-1 infection into a chronic manageable disease; however drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study we utilized a combination of structure based analysis of Cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket which showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell based biological assays. Using these methods we obtained the first generation mimetic drugs and tested these compounds on HIV-1 LTR activated transcription. Using biological assays followed by similar in silico analysis to find a 2nd generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the 2nd generation mimetic against various viral isolates, and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2-/-γc-/- with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis. PMID:23247501

  1. Roles of thromboxanes in gastrointestinal physiopathology.

    PubMed

    Bennett, T A

    1983-01-01

    Prostaglandin (PG) precursors can be converted into many related substances with diverse biological activities. Products formed from arachidonate include thromboxane A2, which is a potent platelet aggregator and vasoconstrictor. Mucosa and muscle from human stomach, ileum and colon yield substantial amounts of this substance, and thromboxane A2 is also formed in the alimentary tract of other species. Injection of arachidonic acid or a stable thromboxane A2-mimetic (U-46619) into the arterial blood supplying dog stomach causes mucosal ischaemia. The ensuing necrosis that occurs with arachidonic acid when the mucosa is bathed with HCl and taurocholic acid can be prevented by a thromboxane synthetase inhibitor. Isolated gastrointestinal muscle contracts to low amounts of the thromboxane A2-mimetic U-46619, some human tissues being sensitive to less than 1pg/ml. These findings constitute a rational basis for examining thromboxane synthetase inhibitors in peptic ulceration and smooth muscle spasm. Unlike cyclo-oxygenase inhibitors, thromboxane synthetase inhibitors spare, or even increase, the formation of prostanoids with actions opposite to those of thromboxane A2. PMID:6686219

  2. Disformal transformations, veiled General Relativity and Mimetic Gravity

    SciTech Connect

    Deruelle, Nathalie; Rua, Josephine E-mail: rua@cbpf.br

    2014-09-01

    In this Note we show that Einstein's equations for gravity are generically invariant under ''disformations''. We also show that the particular subclass when this is not true yields the equations of motion of ''Mimetic Gravity''. Finally we give the ''mimetic'' generalization of the Schwarzschild solution.

  3. A cosmological solution to mimetic dark matter

    NASA Astrophysics Data System (ADS)

    Saadi, Hassan

    2016-01-01

    In this paper, a cosmological solution to Mimetic Dark Matter (MDM) for an exponential potential is provided. Then a solution for the 0-i perturbed Einstein differential equation of MDM is obtained based on an exponential potential that satisfies inflation for some initial conditions. Another general potential is suggested that incorporates inflation too. Then quantum perturbations are included. The constants in the model can be tuned to be in agreement with the fluctuation amplitude of the cosmic microwave background (CMB) radiation. Finally, the spectral index is calculated for the suggested potentials. Moreover, MDM is shown to be a viable model to produce dark matter, inflation, and CMB's fluctuation.

  4. Collagen Mimetic Peptides: Progress Towards Functional Applications

    PubMed Central

    Yu, S. Michael; Li, Yang; Kim, Daniel

    2015-01-01

    Traditionally, collagen mimetic peptides (CMPs) have been used for elucidating the structure of the collagen triple helix and the factors responsible for its stabilization. The wealth of fundamental knowledge on collagen structure and cell-extracellular matrix (ECM) interactions accumulated over the past decades has led to a recent burst of research exploring the potential of CMPs to recreate the higher order assembly and biological function of natural collagens for biomedical applications. Although a large portion of such research is still at an early stage, the collagen triple helix has become a promising structural motif for engineering self-assembled, hierarchical constructs similar to natural tissue scaffolds which are expected to exhibit unique or enhanced biological activities. This paper reviews recent progress in the field of collagen mimetic peptides that bears both direct and indirect implications to engineering collagen-like materials for potential biomedical use. Various CMPs and collagen-like proteins that mimic either structural or functional characteristics of natural collagens are discussed with particular emphasis on providing helpful information to bioengineers and biomaterials scientists interested in collagen engineering. PMID:26316880

  5. Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties.

    PubMed

    Avci, Fikri Y; Karst, Nathalie A; Linhardt, Robert J

    2003-01-01

    Heparin and low molecular weight heparins are major clinical anticoagulants and the drugs of choice for the treatment of deep venous thrombosis. The discovery of an antithrombin binding domain in heparin focused interest on understanding the mechanism of heparin's antithrombotic/ anticoagulant activity. Various heparin-mimetic oligosaccharides have been prepared in an effort to replace polydisperse heparin and low molecular weight heparins with a structurally-defined anticoagulant. The goal of attaining a heparin-mimetic with no unwanted side-effects has also provided motivation for these efforts. This article reviews structure-activity relationship (SAR) of structurally-defined heparin-mimetic oligosaccharides. PMID:14529394

  6. Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance.

    PubMed

    Pietrocola, Federico; Pol, Jonathan; Vacchelli, Erika; Rao, Shuan; Enot, David P; Baracco, Elisa E; Levesque, Sarah; Castoldi, Francesca; Jacquelot, Nicolas; Yamazaki, Takahiro; Senovilla, Laura; Marino, Guillermo; Aranda, Fernando; Durand, Sylvère; Sica, Valentina; Chery, Alexis; Lachkar, Sylvie; Sigl, Verena; Bloy, Norma; Buque, Aitziber; Falzoni, Simonetta; Ryffel, Bernhard; Apetoh, Lionel; Di Virgilio, Francesco; Madeo, Frank; Maiuri, Maria Chiara; Zitvogel, Laurence; Levine, Beth; Penninger, Josef M; Kroemer, Guido

    2016-07-11

    Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemotherapy in vivo. This effect was only observed for autophagy-competent tumors, depended on the presence of T lymphocytes, and was accompanied by the depletion of regulatory T cells from the tumor bed. PMID:27411589

  7. A spectral mimetic least-squares method

    DOE PAGESBeta

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  8. A spectral mimetic least-squares method

    SciTech Connect

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are also satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.

  9. Nuclear receptors and AMPK: can exercise mimetics cure diabetes?

    PubMed

    Wall, Christopher E; Yu, Ruth T; Atkins, Anne R; Downes, Michael; Evans, Ronald M

    2016-07-01

    Endurance exercise can lead to systemic improvements in insulin sensitivity and metabolic homeostasis, and is an effective approach to combat metabolic diseases. Pharmacological compounds that recapitulate the beneficial effects of exercise, also known as 'exercise mimetics', have the potential to improve disease symptoms of metabolic syndrome. These drugs, which can increase energy expenditure, suppress hepatic gluconeogenesis, and induce insulin sensitization, have accordingly been highly scrutinized for their utility in treating metabolic diseases including diabetes. Nevertheless, the identity of an efficacious exercise mimetic still remains elusive. In this review, we highlight several nuclear receptors and cofactors that are putative molecular targets for exercise mimetics, and review recent studies that provide advancements in our mechanistic understanding of how exercise mimetics exert their beneficial effects. We also discuss evidence from clinical trials using these compounds in human subjects to evaluate their efficacy in treating diabetes. PMID:27106806

  10. Exposure to stimulatory CpG oligonucleotides during gestation induces maternal hypertension and excess vasoconstriction in pregnant rats.

    PubMed

    Goulopoulou, Styliani; Wenceslau, Camilla F; McCarthy, Cameron G; Matsumoto, Takayuki; Webb, R Clinton

    2016-04-15

    Bacterial infections increase risk for pregnancy complications, such as preeclampsia and preterm birth. Unmethylated CpG DNA sequences are present in bacterial DNA and have immunostimulatory effects. Maternal exposure to CpG DNA induces fetal demise and craniofacial malformations; however, the effects of CpG DNA on maternal cardiovascular health have not been examined. We tested the hypothesis that exposure to synthetic CpG oligonucleotides (ODNs) during gestation would increase blood pressure and cause vascular dysfunction in pregnant rats. Pregnant and nonpregnant female rats were treated with CpG ODN (ODN 2395) or saline (Veh) starting on gestationalday 14or corresponding day for the nonpregnant groups. Exposure to CpG ODN increased systolic blood pressure in pregnant (Veh: 121 ± 2 mmHg vs. ODN 2395: 134 ± 2 mmHg,P< 0.05) but not in nonpregnant rats (Veh: 111 ± 2 mmHg vs. ODN 2395: 108 ± 5 mmHg,P> 0.05). Mesenteric resistance arteries from pregnant CpG ODN-treated rats had increased contractile responses to U46619 [thromboxane A2(TxA2) mimetic] compared with arteries from vehicle-treated rats [Emax(%KCl), Veh: 87 ± 4 vs. ODN 2395: 104 ± 4,P< 0.05]. Nitric oxide synthase (NOS) inhibition increased contractile responses to U46619, and CpG ODN treatment abolished this effect in arteries from pregnant ODN 2395-treated rats. CpG ODN potentiated the involvement of cyclooxygenase (COX) to U46619-induced contractions. In conclusion, exposure to CpG ODN during gestation induces maternal hypertension, augments resistance artery contraction, increases the involvement of COX-dependent mechanisms and reduces the contribution of NOS-dependent mechanisms to TxA2-induced contractions in mesenteric resistance arteries. PMID:26873968

  11. Converting One-Face α-Helix Mimetics into Amphiphilic α-Helix Mimetics as Potent Inhibitors of Protein-Protein Interactions.

    PubMed

    Lee, Ji Hoon; Oh, Misook; Kim, Hyun Soo; Lee, Huisun; Im, Wonpil; Lim, Hyun-Suk

    2016-01-11

    Many biologically active α-helical peptides adopt amphiphilic helical structures that contain hydrophobic residues on one side and hydrophilic residues on the other side. Therefore, α-helix mimetics capable of mimicking such amphiphilic helical peptides should possess higher binding affinity and specificity to target proteins. Here we describe an efficient method for generating amphiphilic α-helix mimetics. One-face α-helix mimetics having hydrophobic side chains on one side was readily converted into amphiphilic α-helix mimetics by introducing appropriate charged residues on the opposite side. We also demonstrate that such two-face amphiphilic α-helix mimetics indeed show remarkably improved binding affinity to a target protein, compared to one-face hydrophobic α-helix mimetics. We believe that generating a large combinatorial library of these amphiphilic α-helix mimetics can be valuable for rapid discovery of highly potent and specific modulators of protein-protein interactions. PMID:26651509

  12. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications. PMID:25841348

  13. Dispersal of mimetic seeds of three species of Ormosia (Leguminosae)

    USGS Publications Warehouse

    Foster, M.S.; DeLay, L.S.

    1998-01-01

    Seeds with 'imitation arils' appear wholly or partially covered by pulp or aril but actually carry no fleshy material. The mimetic seed hypothesis to explain this phenomenon proposes a parasitic relationship in which birds are deceived into dispersing seeds that resemble bird-dispersed fruits, without receiving a nutrient reward. The hard-seed for grit hypothesis proposes a mutualistic relationship in which large, terrestrial birds swallow the exceptionally hard 'mimetic' seeds as grit for grinding the softer seeds on which they feed. They defecate, dispersing the seeds, and abrade the seed surface, enhancing germination. Any fruit mimicry is incidental. Fruiting trees of Ormosia spp. (Leguminosae: Papilionoideae) were observed to ascertain mechanisms of seed dispersal and the role of seemingly mimetic characteristics of the seeds in that dispersal. Seed predation and seed germination were also examined. Ormosia isthamensis and O. macrocalyx (but not O. bopiensis) deceived arboreally-foraging frugivorous birds into taking their mimetic seeds, although rates of seed dispersal were low. These results are consistent with the mimetic seed hypothesis. On the other hand, the rates of disappearance of seeds from the ground under the Ormosia trees, hardness of the seeds, and enhancement of germination with the abrasion of the seed coat are all consistent with the hard-seed for grit hypothesis.

  14. A glycosaminoglycan mimetic peptide nanofiber gel as an osteoinductive scaffold.

    PubMed

    Tansik, Gulistan; Kilic, Erden; Beter, Mustafa; Demiralp, Bahtiyar; Kiziltas Sendur, Gullu; Can, Nuray; Ozkan, Huseyin; Ergul, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-08-16

    Biomineralization of the extracellular matrix (ECM) plays a crucial role in bone formation. Functional and structural biomimetic native bone ECM components can therefore be used to change the fate of stem cells and induce bone regeneration and mineralization. Glycosaminoglycan (GAG) mimetic peptide nanofibers can interact with several growth factors. These nanostructures are capable of enhancing the osteogenic activity and mineral deposition of osteoblastic cells, which is indicative of their potential application in bone tissue regeneration. In this study, we investigated the potential of GAG-mimetic peptide nanofibers to promote the osteogenic differentiation of rat mesenchymal stem cells (rMSCs) in vitro and enhance the bone regeneration and biomineralization process in vivo in a rabbit tibial bone defect model. Alkaline phosphatase (ALP) activity and Alizarin red staining results suggested that osteogenic differentiation is enhanced when rMSCs are cultured on GAG-mimetic peptide nanofibers. Moreover, osteogenic marker genes were shown to be upregulated in the presence of the peptide nanofiber system. Histological and micro-computed tomography (Micro-CT) observations of regenerated bone defects in rabbit tibia bone also suggested that the injection of a GAG-mimetic nanofiber gel supports cortical bone deposition by enhancing the secretion of an inorganic mineral matrix. The volume of the repaired cortical bone was higher in GAG-PA gel injected animals. The overall results indicate that GAG-mimetic peptide nanofibers can be utilized effectively as a new bioactive platform for bone regeneration. PMID:27447002

  15. Thromboxane A{sub 2} increases endothelial permeability through upregulation of interleukin-8

    SciTech Connect

    Kim, Su-Ryun; Bae, Soo-Kyung; Park, Hyun-Joo; Kim, Mi-Kyoung; Kim, Koanhoi; Park, Shi-Young; Jang, Hye-Ock; Yun, Il; Kim, Yung-Jin; Yoo, Mi-Ae; Bae, Moon-Kyoung

    2010-07-02

    Thromboxane A{sub 2} (TXA{sub 2}), a major prostanoid formed from prostaglandin H{sub 2} by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA{sub 2} mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-{kappa}B (NF-{kappa}B). U46619 induced the activation of NF-{kappa}B through I{kappa}B kinase (IKK) activation, I{kappa}B phosphorylation and NF-{kappa}B nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-{kappa}B activation in endothelial cells.

  16. Binding of an ( sup 125 I) labelled thromboxane A2/prostaglandin H2 receptor agonist to baboon platelets

    SciTech Connect

    Dorn, G.W. II; De Jesus, A. )

    1989-12-01

    To characterize the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor on baboon platelets the binding of (125I)BOP was studied. (125I)BOP bound to washed baboon platelets in a saturable manner. Scatchard analysis of binding isotherms revealed a Kd of 1.12 +/- 0.08 nM and a binding capacity of 54 +/- 5 fmoles/10(8) platelets (326 sites/platelet). Several TXA2/PGH2 agonists and antagonists displaced (125I)BOP from its baboon platelet binding site with a rank order of potency similar to human platelets: I-BOP greater than SQ29548 greater than U46619 = I-PTA-OH greater than PTA-OH. I-BOP aggregated washed baboon platelets with an EC50 of 10 +/- 4 nM. The results indicate that (125I)BOP binds to the TXA2/PGH2 receptor on baboon platelets and that this receptor is similar to its human counterpart.

  17. Influences of Membrane Mimetic Environments on Membrane Protein Structures

    PubMed Central

    Zhou, Huan-Xiang; Cross, Timothy A.

    2013-01-01

    The number of membrane protein structures in the Protein Data Bank is becoming significant and growing. Here, the transmembrane domain structures of the helical membrane proteins are evaluated to assess the influences of the membrane mimetic environments. Toward this goal, many of the biophysical properties of membranes are discussed and contrasted with those of the membrane mimetics commonly used for structure determination. Although the mimetic environments can perturb the protein structures to an extent that potentially gives rise to misinterpretation of functional mechanisms, there are also many structures that have a native-like appearance. From this assessment, an initial set of guidelines is proposed for distinguishing native-like from nonnative-like membrane protein structures. With experimental techniques for validation and computational methods for refinement and quality assessment and enhancement, there are good prospects for achieving native-like structures for these very important proteins. PMID:23451886

  18. The Life of the Mimetic Starfish, 2000-2012.

    PubMed

    Brown, Richard

    2015-01-01

    This article is written from the perspective of the artist, programmer, and exhibitor of the Mimetic Starfish, a gestural responsive ALife artwork first created for the Millennium Dome in 2000 and recently exhibited at the Emoção Art.ficial in Brazil in 2012. The author concludes with the suggestion that despite the advances in technology and the ubiquitous presence of touch and gestural interfaces, it is the underlying aesthetic and socially engaging qualities of the Mimetic Starfish that ensure its currency, presence, relevance, and continuing exhibition. PMID:26280068

  19. Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

    SciTech Connect

    Eltze, M.; Boer, R.; Sanders, K.H.; Boss, H.; Ulrich, W.R.; Flockerzi, D. )

    1990-01-01

    The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-({sup 3}H)isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity.

  20. Effect of removing the endothelium on the vascular responses induced by leukotrienes C4 and D4 in guinea-pig isolated heart.

    PubMed

    McLeod, J D; Piper, P J

    1992-02-25

    The coronary vascular endothelium of the guinea-pig isolated perfused heart was removed by treatment with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent. After CHAPS treatment of the heart the vasoconstrictor responses of leukotriene (LT) C4, LTD4 and angiotensin II (AII) were significantly attenuated whereas the vascular actions of U46619, a thromboxane (Tx) A2 mimetic, and endothelin-1 (ET-1) were unaltered. The endothelium-dependent vasoconstrictor response of LTC4 and LTD4 could not be attributed to the release of TxA2, platelet-activating factor or AII since indomethacin, WEB 2086 and captopril had no effect on LT actions. However, in the presence of cromakalim, a potassium channel activator, the vasoconstrictor effects induced by LTC4, LTD4 and AII were significantly attenuated to a greater extent than the responses of U46619 and ET-1. The results suggest that in the coronary vasculature of the guinea-pig isolated heart the vasoconstrictor responses of LTC4, LTD4 and AII are endothelium-dependent and may involve a cromakalim-sensitive mechanism. PMID:1555641

  1. Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling.

    PubMed

    Fediuk, Jena; Sikarwar, Anurag S; Nolette, Nora; Dakshinamurti, Shyamala

    2014-12-01

    In hypoxic pulmonary arterial (PA) myocytes, challenge with thromboxane mimetic U46619 induces marked actin polymerization and contraction, phenotypic features of persistent pulmonary hypertension of the newborn (PPHN). Rho GTPases regulate the actin cytoskeleton. We previously reported that U46619-induced actin polymerization in hypoxic PA myocytes occurs independently of the RhoA pathway and hypothesized involvement of the Cdc42 pathway. PA myocytes grown in normoxia or hypoxia for 72 h were stimulated with U46619, then analyzed for Rac/Cdc42 activation by affinity precipitation, phosphatidylinositide-3-kinase (PI3K) activity by phospho-Akt, phospho-p21-activated kinase (PAK) by immunoblot, and association of Cdc42 with neuronal Wiskott Aldrich Syndrome protein (N-WASp) by immunoprecipitation. The effect of Rac or PAK inhibition on filamentous actin was quantified by laser-scanning cytometry and by cytoskeletal fractionation; effects of actin-modifying agents were measured by isometric myography. Basal Cdc42 activity increased in hypoxia, whereas Rac activity decreased. U46619 challenge increased Cdc42 and Rac activity in hypoxic cells, independently of PI3K. Hypoxia increased phospho-PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia but increased after U46619 exposure. Hypoxia doubled filamentous-to-globular ratios of α- and γ-actin isoforms. Jasplakinolide stabilized γ-filaments, increasing force; cytochalasin D depolymerized all actin isoforms, decreasing force. Rac and PAK inhibition decreased filamentous actin in tissues although without decrease in force. Rho inhibition decreased myosin phosphorylation and force. Hypoxia induces actin polymerization in PA myocytes, particularly increasing filamentous α- and γ-actin, contributing to U46619-induced contraction. Hypoxic PA myocytes challenged with a thromboxane mimetic polymerize actin via the Cdc42 pathway, reflecting increased Cdc42 association with N-WASp. Mechanisms

  2. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion

    PubMed Central

    Vogel, Paul A.; Kopple, Tayler E.; Arendshorst, William J.

    2013-01-01

    The present renal hemodynamic study tested the hypothesis that CD38 and superoxide anion (O2·−) participate in the vasoconstriction produced by activation of thromboxane prostanoid (TP) receptors in the mouse kidney. CD38 is the major mammalian ADP-ribosyl cyclase contributing to vasomotor tone through the generation of cADP-ribose, a second messenger that activates ryanodine receptors to release Ca2+ from the sarcoplasmic reticulum in vascular smooth muscle cells. We evaluated whether the stable thromboxane mimetic U-46619 causes less pronounced renal vasoconstriction in CD38-deficient mice and the involvement of O2·− in U-46619-induced renal vasoconstriction. Our results indicate that U-46619 activation of TP receptors causes renal vasoconstriction in part by activating cADP-ribose signaling in renal resistance arterioles. Based on maximal renal blood flow and renal vascular resistance responses to bolus injections of U-46619, CD38 contributes 30–40% of the TP receptor-induced vasoconstriction. We also found that the antioxidant SOD mimetic tempol attenuated the magnitude of vasoconstriction by U-46619 in both groups of mice, suggesting mediation by O2·−. The degree of tempol blockage of U-46619-induced renal vasoconstriction was greater in wild-type mice, attenuating renal vasoconstriction by 40% compared with 30% in CD38-null mice. In other experiments, U-46619 rapidly stimulated O2·− production (dihydroethidium fluorescence) in isolated mouse afferent arterioles, an effect abolished by tempol. These observations provide the first in vivo demonstration of CD38 and O2·− involvement in the vasoconstrictor effects of TP receptor activation in the kidney and in vitro evidence for TP receptor stimulation of O2·− production by the afferent arteriole. PMID:23884143

  3. The Co-Occurrence of Quotatives with Mimetic Performances.

    ERIC Educational Resources Information Center

    Buchstaller, Isabelle

    2003-01-01

    This paper discusses mimesis, the direct representation and total imitation of an event. It studies the co-occurrence of quotative verbs with mimetic enactment based on two corpora of U.S. American English, both available through the University of Pennsylvania Data Consortium. The Switchboard Corpus has 542 speakers ranging in age from 20-60 years…

  4. Therapeutic Applications of Incretin Mimetics for Metabolic Diseases: Preclinical Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exenatide (exendin-4) is an incretin mimetic peptide that shares several glucoregulatory actions with the endogenous incretin GLP-1. In addition to its actions on glucose control, exenatide produces effects to reduce food intake and body weight in all species studied. GLP-1 and exenatide have also b...

  5. Mimetics of Hormetic Agents: Stress-Resistance Triggers

    PubMed Central

    Sonneborn, Joan Smith

    2010-01-01

    Mimetics of hormetic agents offer a novel approach to adjust dose to minimize the risk of toxic response, and maximize the benefit of induction of at least partial physiological conditioning. Nature selected and preserved those organisms and triggers that promote tolerance to stress. The induced tolerance can serve to resist that challenge and can repair previous age, disease, and trauma damage as well to provide a more youthful response to other stresses. The associated physiological conditioning may include youthful restoration of DNA repair, resistance to oxidizing pollutants, protein structure and function repair, improved immunity, tissue remodeling, adjustments in central and peripheral nervous systems, and altered metabolism. By elucidating common pathways activated by hormetic agent’s mimetics, new strategies for intervention in aging, disease, and trauma emerge. Intervention potential in cancer, diabetes, age-related diseases, infectious diseases, cardiovascular diseases, and Alzheimer’s disease are possible. Some hormetic mimetics exist in pathways in primitive organisms and are active or latent in humans. Peptides, oligonucleotides, and hormones are among the mimetics that activate latent resistance to radiation, physical endurance, strength, and immunity to physiological condition tolerance to stress. Co-activators may be required for expression of the desired physiological conditioning health and rejuvenation benefits. PMID:20221297

  6. Dark energy oscillations in mimetic F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-08-01

    In this paper we address the problem of dark energy oscillations in the context of mimetic F (R ) gravity with potential. The issue of dark energy oscillations can be a problem in some models of ordinary F (R ) gravity, and a remedy that can make the oscillations milder is to introduce additional modifications in the functional form of the F (R ) gravity. As we demonstrate, the power-law modifications are not necessary in the mimetic F (R ) case, and by appropriately choosing the mimetic potential and the Lagrange multiplier, it is possible to make the oscillations almost vanish at the end of the matter domination era and during the late-time acceleration era. We examine the behavior of the dark energy equation of state parameter and of the total effective equation of state parameter as functions of the redshift, and we compare the resulting picture with the ordinary F (R ) gravity case. As we also show that the present day values of the dark energy equation of state parameter and of the total effective equation of state parameter are in better agreement with the observational data, in comparison to the ordinary F (R ) gravity case. Finally, we study the evolution of the growth factor as a function of the redshift for all the mimetic models we use.

  7. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.

    PubMed

    Zhao, Jing; Liang, Fei; Kong, Lingheng; Zheng, Lina; Fan, Tao

    2015-01-01

    A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects. PMID:26230052

  8. Redox regulation of Smac mimetic-induced cell death.

    PubMed

    Fulda, Simone

    2015-01-01

    Cell death and survival programs are controlled by the cellular redox state, which is typically dysregulated during oncogenesis. A recent study reports that the inhibition of antioxidant defenses resulting from glutathione depletion can prime acute lymphoblastic leukemia cells for death induced by Smac mimetics. PMID:27308489

  9. Multi-Facial, Non-Peptidic α-Helix Mimetics

    PubMed Central

    Lanning, Maryanna E.; Fletcher, Steven

    2015-01-01

    α-Helices often recognize their target proteins at protein–protein interfaces through more than one recognition face. This review describes the state-of-the-art in the design of non-peptidic α-helix mimetics that reproduce functionality from multiple faces of an α-helix. PMID:26404384

  10. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  11. Designing a small molecule erythropoietin mimetic.

    PubMed

    Guarnieri, Frank

    2015-01-01

    Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year drug and as the first biologic created with recombinant technology it launched the biotech industry. For many years intense research was focused on creating a small molecule orally available EPO mimetic. The Robert Wood Johnson (RWJ) group seemed to definitively establish that only large peptides with a minimum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand binding and activation from mutagenesis experiments, were probably not really that important. My fundamental hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor meet, (c) small molecules can be created that have high potency for this site that will be competitive with EPO and thus can displace the protein-protein interaction, (d) small symmetric molecules will stabilize the symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of

  12. Acetylcholine output and foetal vascular resistance of human perfused placental cotyleda.

    PubMed Central

    Boura, A. L.; Gude, N. M.; King, R. G.; Walters, W. A.

    1986-01-01

    The foetal villous vessels of single cotyleda of human placentae have been perfused with a constant flow of Krebs solution, recording inflow pressure and passing the venous perfusate in cascade over guinea-pig ileum and rat stomach strip preparations in vitro. Each cotyledon released for at least 4 h a substance that was probably acetylcholine. The perfusate caused contractions of both preparations which were inhibited by atropine or hyoscine and potentiated by physostigmine. Contractile activity was destroyed after incubation at 37 degrees C of perfusate with acetylcholinesterase but not with acetylcholinesterase plus physostigmine. When the perfusion temperature was lowered to 34 degrees C or below, acetylcholine output was reduced, the extent depending on the fall in temperature. No change in resistance of the villous vessels occurred during the changes in temperature or in the presence at 37 degrees C of atropine, hyoscine, hexamethonium, (+)-tubocurarine, hemicholinium-3 or bretylium. Submaximal vasoconstrictor responses of the villous vessels to the thromboxane A2-mimetic U46619 were not affected by reduction of the perfusion temperature to 30 degrees C, which lowered acetylcholine-like output by approximately 70%. Responses to U46619, at 37 degrees C, were unchanged during the presence of atropine or hyoscine. Acetylcholine is released into the foetal circulation of the human placenta but no evidence could be obtained that it affects villous vascular smooth muscle tone or vasoconstrictor responses. PMID:3730696

  13. Expression of the PlA2 allele of glycoprotein IIIa and its impact on platelet function

    PubMed Central

    Ferro, Albert; Warner, Timothy D

    2015-01-01

    Background The platelet fibrinogen receptor represents the final common pathway of platelet activation, and is formed from two glycoprotein (GP) subunits (GPIIb/IIIa). Carriage of the mutant PlA2 allele of GPIIIa has been shown to confer an increased risk of cardiovascular events, but published studies have disagreed as to the mechanism for this association. Objectives To assess whether carriage of the PlA2 allele conforms to Mendelian patterns of expression and to identify whether carriage of the mutant allele modulates platelet function. Methods Expression of the PlA2 allele was assessed in both healthy subjects (n = 25) and patients with known coronary artery disease (n = 90) through the development and validation of a liquid chromatography, tandem mass spectrometry (LC-MS/MS) assay. Platelet function was assessed in the patient cohort in response to multiple agonists, and these data were analysed in the context of the proteomic data. Results Expression of the wild-type PlA1 allele and mutant PlA2 alleles was readily quantifiable and conformed to Mendelian patterns in both healthy and patient cohorts. Patients who were homozygous for the mutant PlA2 allele had an increased aggregatory response to adenosine diphosphate, collagen, adrenaline, ristocetin, thrombin receptor-activating peptide 6 and U46619, when assessed using agonist-concentration response curves. Conclusions These findings support the hypothesis that carriage of the mutant PlA2 allele mediates an increased risk of cardiovascular events through the modulation of platelet reactivity. PMID:26858830

  14. Caloric restriction and exercise "mimetics'': Ready for prime time?

    PubMed

    Handschin, Christoph

    2016-01-01

    Exercise and diet are powerful interventions to prevent and ameliorate various pathologies. The development of pharmacological agents that confer exercise- or caloric restriction-like phenotypic effects is thus an appealing therapeutic strategy in diseases or even when used as life-style and longevity drugs. Such so-called exercise or caloric restriction "mimetics" have so far mostly been described in pre-clinical, experimental settings with limited translation into humans. Interestingly, many of these compounds activate related signaling pathways, most often postulated to act on the common downstream effector peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle. In this review, resveratrol and other exercise- and caloric restriction "mimetics" are discussed with a special focus on feasibility, chances and limitations of using such compounds in patients as well as in healthy individuals. PMID:26658171

  15. Bradykinin antagonists modified with dipeptide mimetic beta-turn inducers.

    PubMed

    Alcaro, Maria C; Vinci, Valerio; D'Ursi, Anna M; Scrima, Mario; Chelli, Mario; Giuliani, Sandro; Meini, Stefania; Di Giacomo, Marcello; Colombo, Lino; Papini, Anna Maria

    2006-05-01

    Bradykinin (BK) is involved in a wide variety of pathophysiological processes. Potent BK peptide antagonists can be developed introducing constrained unnatural amino acids, necessary to force the secondary structure of the molecule. In this paper, we report a structure-activity relationship study of two peptide analogues of the potent B2 antagonist HOE 140 by replacing the D-Tic-Oic dipeptide with conformationally constrained dipeptide mimetic beta-turn inducers. PMID:16504505

  16. Exosome mimetics: a novel class of drug delivery systems

    PubMed Central

    Kooijmans, Sander AA; Vader, Pieter; van Dommelen, Susan M; van Solinge, Wouter W; Schiffelers, Raymond M

    2012-01-01

    The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics. PMID:22619510

  17. Prostaglandin D(2) induces contraction via thromboxane A(2) receptor in rat liver myofibroblasts.

    PubMed

    Maruyama, Tomoharu; Murata, Takahisa; Ayabe, Shinya; Hori, Masatoshi; Ozaki, Hiroshi

    2008-09-01

    Increased intrahepatic resistance is one of the major characteristics of cirrhotic liver, in which extravascular cells including liver myofibroblasts (MFs) abnormally contract. Although several studies provided evidence that various prostaglandins (PG) are involved in liver cirrhosis, the role of PGD(2) remains unknown. In this study, we investigated the effect of PGD(2) on the contractile properties of liver MFs. Cultured rat liver MFs were used at passages 4-7. A collagen gel contraction assay was used for the evaluation of the MFs contraction. mRNA expression was assessed by semi-quantitative RT-PCR. Intracellular Ca(2+) concentrations ([Ca(2+)](i)) were measured by monitoring the fluorescence intensity of fura-2. PGD(2) (1-10 microM) induced liver MF contraction in a dose-dependent manner with [Ca(2+)](i) elevation. Pretreatment with 300 nM LaCl(3), a nonselective Ca(2+) channel blocker abolished the 10 microM PGD(2)-induced MFs contraction. RT-PCR revealed that three distinct PGD(2) responsive receptors, prostanoid DP receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and thromboxane A(2) receptor (prostanoid TP receptor), were expressed in liver MFs. While prostanoid DP receptor agonist and CRTH2 agonist didn't induce contraction, 0.01-1 microM U46619 (11alpha, 9alpha-epoxymethano-PGH(2), prostanoid TP receptor agonist) caused robust contraction with [Ca(2+)](i) elevation. Furthermore, pretreatment with prostanoid TP receptor antagonists ramatroban (1 microM) or SQ29548 ([1S-[1alpha, 2alpha(Z), 3alpha, 4alpha

  18. Functional evidence for oxygen-sensitive voltage-gated potassium channels in human placental vasculature.

    PubMed

    Kiernan, M F; Barrie, A; Szkolar, J; Mills, T A; Wareing, M

    2010-06-01

    Hypoxic fetoplacental vasoconstriction (HFPV), involving voltage-gated potassium (K(V)) channels, has been suggested in human placenta; the identity of these channels remains unclear. Using wire myography, chorionic plate blood vessels were exposed to isoform-specific K(V) channel blockers. Dose-response curves (thromboxane mimetic U46619; 0.1-2000 nM) pre- and post-addition of K(V) channel modulator were analysed. Arterial U46619-induced contraction increased with margatoxin and stromatoxin-1, whilst only correolide increased U46619-induced contraction in veins (P < 0.05 two-way ANOVA). Basal tone was unaffected in arteries or veins. These data implicate K(V)1.2 and/or K(V)2.1 and K(V)1.5 in the control of agonist-induced contraction of human placental arteries and veins respectively. PMID:20451247

  19. Short Peptide Type I Interferon Mimetics: Therapeutics for Experimental Allergic Encephalomyelitis, Melanoma, and Viral Infections

    PubMed Central

    Ahmed, Chulbul M.

    2014-01-01

    The classical canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors, which limits the model in terms of specific gene activation, associated epigenetic events, and IFN mimetic development. Accordingly, we have developed a noncanonical model of IFN signaling and report the development of short type I IFN peptide mimetic peptides based on the model. The mimetics, human IFNα1(152–189), human IFNβ(150–187), and ovine IFNτ(156–195) are derived from the C-terminus of the parent IFNs and function intracellularly based on the noncanonical model. Vaccinia virus produces a decoy IFN receptor (B18R) that inhibits type I IFN, but the IFN mimetics bypass B18R for effective antiviral activity. By contrast, both parent IFNs and mimetics inhibited vesicular stomatitis virus. The mimetics also possessed anti-tumor activity against murine melanoma B16 tumor cells in culture and in mice, including synergizing with suppressor of cytokine signaling 1 antagonist. Finally, the mimetics were potent therapeutics against experimental allergic encephalomyelitis, a mouse model of multiple sclerosis. The mimetics lack toxic side effects of the parent IFNs and, thus, are a potent therapeutic replacement of IFNs as therapeutics. PMID:24811478

  20. Regulation of cancer stem-like cell differentiation by Smac mimetics

    PubMed Central

    Fulda, Simone

    2014-01-01

    Small-molecule antagonists of inhibitor of apoptosis (IAP) proteins such as Smac mimetics are considered promising cancer therapeutics through the engagement of cell death pathways. Recent evidence suggests that Smac mimetics perform additional nonapoptotic functions by initiating differentiation in cancer stem-like cells, opening new perspectives for their future clinical application. PMID:27308334

  1. Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies

    PubMed Central

    Hoyal Cuthill, Jennifer; Charleston, Michael

    2012-01-01

    The unpalatable and warning-patterned butterflies Heliconius erato and Heliconius melpomene provide the best studied example of mutualistic Müllerian mimicry, thought–but rarely demonstrated–to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of H. erato and H. melpomene, and this was initially hailed as one of the most striking known cases of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of H. erato and H. melpomene, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of H. erato and H. melpomene. Cophylogenetic historical reconstructions support repeated codivergence of mimetic populations, from the base of the sampled radiations. Pairwise distance correlation tests, based on our coalescent analyses plus recently published AFLP and wing colour pattern gene data, also suggest that the phylogenies of H. erato and H. melpomene show significant topological congruence. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of H. erato and H. melpomene occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. Our results suggest that differences in within-species genetic divergence are the result of a greater overall effective population size for H. erato relative to H. melpomene and do not imply incongruence in the timing of their phylogenetic radiations. Repeated codivergence between M

  2. Recombinant Elastin-Mimetic Biomaterials: Emerging Applications in Medicine

    PubMed Central

    Kim, Wookhyun; Chaikof, Elliot L.

    2010-01-01

    Biomaterials derived from protein-based block copolymers are increasingly investigated for potential application in medicine. In particular, recombinant elastin block copolymers provide significant opportunities to modulate material microstructure and can be processed in various forms, including particles, films, gels, and fiber networks. As a consequence, biological and mechanical responses of elastin-based biomaterials are tunable through precise control of block size and amino acid sequence. In this review, the synthesis of a set of elastin-mimetic triblock copolymers and their diverse processing methods for generating material platforms currently applied in medicine will be discussed. PMID:20441783

  3. Mimetic discretization of two-dimensional magnetic diffusion equations

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Reynolds, James; Nelson, Eric

    2013-08-01

    In case of non-constant resistivity, cylindrical coordinates, and highly distorted polygonal meshes, a consistent discretization of the magnetic diffusion equations requires new discretization tools based on a discrete vector and tensor calculus. We developed a new discretization method using the mimetic finite difference framework. It is second-order accurate on arbitrary polygonal meshes and a consistent calculation of the Joule heating is intrinsic within it. The second-order convergence rates in L2 and L1 norms were verified with numerical experiments.

  4. The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus

    NASA Astrophysics Data System (ADS)

    Kelley, Laura A.; Healy, Susan D.

    2011-06-01

    Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.

  5. Road to Exercise Mimetics: Targeting Nuclear Receptors in Skeletal Muscle

    PubMed Central

    Fan, Weiwei; Atkins, Annette R; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.

    2014-01-01

    Skeletal muscle comprises the largest organ in the human body and is the major site for energy expenditure. It exhibits remarkable plasticity in response to physiological stimuli such as exercise. Physical exercise remodels skeletal muscle and enhances its capability to burn calories, which has been shown to be beneficial for many clinical conditions including metabolic syndrome and cancer. Nuclear receptors (NRs) comprise a class of transcription factors found only in metazoans that regulate major biological processes such as reproduction, development, and metabolism. Recent studies have demonstrated crucial roles for NRs and their co-regulators in regulating skeletal muscle energy metabolism and exercise-induced muscle remodeling. While nothing can fully replace exercise, development of exercise mimetics that enhance or even substitute for the beneficial effects of physical exercise would be of great benefit. The unique property of NRs that allows modulation by endogenous or synthetic ligands makes them bona fide therapeutic targets. In this review, we present an overview of the current understanding of NRs and their co-regulators in skeletal muscle oxidative metabolism and summarize recent progress in the development of exercise mimetics that target NRs and their co-regulators. PMID:24280961

  6. Mimetic butterflies support Wallace's model of sexual dimorphism.

    PubMed

    Kunte, Krushnamegh

    2008-07-22

    Theoretical and empirical observations generally support Darwin's view that sexual dimorphism evolves due to sexual selection on, and deviation in, exaggerated male traits. Wallace presented a radical alternative, which is largely untested, that sexual dimorphism results from naturally selected deviation in protective female coloration. This leads to the prediction that deviation in female rather than male phenotype causes sexual dimorphism. Here I test Wallace's model of sexual dimorphism by tracing the evolutionary history of Batesian mimicry-an example of naturally selected protective coloration-on a molecular phylogeny of Papilio butterflies. I show that sexual dimorphism in Papilio is significantly correlated with both female-limited Batesian mimicry, where females are mimetic and males are non-mimetic, and with the deviation of female wing colour patterns from the ancestral patterns conserved in males. Thus, Wallace's model largely explains sexual dimorphism in Papilio. This finding, along with indirect support from recent studies on birds and lizards, suggests that Wallace's model may be more widely useful in explaining sexual dimorphism. These results also highlight the contribution of naturally selected female traits in driving phenotypic divergence between species, instead of merely facilitating the divergence in male sexual traits as described by Darwin's model. PMID:18426753

  7. Small-molecule SMAC mimetics as new cancer therapeutics.

    PubMed

    Bai, Longchuan; Smith, David C; Wang, Shaomeng

    2014-10-01

    Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments. PMID:24841289

  8. Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies.

    PubMed

    Condon, Stephen M; Mitsuuchi, Yasuhiro; Deng, Yijun; LaPorte, Matthew G; Rippin, Susan R; Haimowitz, Thomas; Alexander, Matthew D; Kumar, Pavan Tirunahari; Hendi, Mukta S; Lee, Yu-Hua; Benetatos, Christopher A; Yu, Guangyao; Kapoor, Gurpreet Singh; Neiman, Eric; Seipel, Martin E; Burns, Jennifer M; Graham, Martin A; McKinlay, Mark A; Li, Xiaochun; Wang, Jiawei; Shi, Yigong; Feltham, Rebecca; Bettjeman, Bodhi; Cumming, Mathew H; Vince, James E; Khan, Nufail; Silke, John; Day, Catherine L; Chunduru, Srinivas K

    2014-05-01

    Birinapant (1) is a second-generation bivalent antagonist of IAP proteins that is currently undergoing clinical development for the treatment of cancer. Using a range of assays that evaluated cIAP1 stability and oligomeric state, we demonstrated that 1 stabilized the cIAP1-BUCR (BIR3-UBA-CARD-RING) dimer and promoted autoubiquitylation of cIAP1 in vitro. Smac-mimetic 1-induced loss of cIAPs correlated with inhibition of TNF-mediated NF-κB activation, caspase activation, and tumor cell killing. Many first-generation Smac-mimetics such as compound A (2) were poorly tolerated. Notably, animals that lack functional cIAP1, cIAP2, and XIAP are not viable, and 2 mimicked features of triple IAP knockout cells in vitro. The improved tolerability of 1 was associated with (i) decreased potency against cIAP2 and affinity for XIAP BIR3 and (ii) decreased ability to inhibit XIAP-dependent signaling pathways. The P2' position of 1 was critical to this differential activity, and this improved tolerability has allowed 1 to proceed into clinical studies. PMID:24684347

  9. A multilevel multiscale mimetic method for an anisotropic infiltration problem

    SciTech Connect

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2009-01-01

    Modeling of multiphase flow and transport in highly heterogeneous porous media must capture a broad range of coupled spatial and temporal scales. Recently, a hierarchical approach dubbed the Multilevel Multiscale Mimetic (M3) method, was developed to simulate two-phase flow in porous media. The M{sup 3} method is locally mass conserving at all levels in its hierarchy, it supports unstructured polygonal grids and full tensor permeabilities, and it can achieve large coarsening factors. In this work we consider infiltration of water into a two-dimensional layered medium. The grid is aligned with the layers but not the coordinate axes. We demonstrate that with an efficient temporal updating strategy for the coarsening parameters, fine-scale accuracy of prominent features in the flow is maintained by the M{sup 3} method.

  10. Small peptides as potent mimetics of the protein hormone erythropoietin.

    PubMed

    Wrighton, N C; Farrell, F X; Chang, R; Kashyap, A K; Barbone, F P; Mulcahy, L S; Johnson, D L; Barrett, R W; Jolliffe, L K; Dower, W J

    1996-07-26

    Random phage display peptide libraries and affinity selective methods were used to isolate small peptides that bind to and activate the receptor for the cytokine erythropoietin (EPO). In a panel of in vitro biological assays, the peptides act as full agonists and they can also stimulate erythropoiesis in mice. These agonists are represented by a 14- amino acid disulfide-bonded, cyclic peptide with the minimum consensus sequence YXCXXGPXTWXCXP, where X represents positions allowing occupation by several amino acids. The amino acid sequences of these peptides are not found in the primary sequence of EPO. The signaling pathways activated by these peptides appear to be identical to those induced by the natural ligand. This discovery may form the basis for the design of small molecule mimetics of EPO. PMID:8662529

  11. Towards protein-based viral mimetics for cancer therapies.

    PubMed

    Unzueta, Ugutz; Céspedes, María Virtudes; Vázquez, Esther; Ferrer-Miralles, Neus; Mangues, Ramón; Villaverde, Antonio

    2015-05-01

    High resistance and recurrence rates, together with elevated drug clearance, compel the use of maximum-tolerated drug doses in cancer therapy, resulting in high-grade toxicities and limited clinical applicability. Promoting active drug accumulation in tumor tissues would minimize such issues and improve therapeutic outcomes. A new class of therapeutic drugs suitable for the task has emerged based on the concept of virus-mimetic nanocarriers, or 'artificial viruses'. Among the spectrum of materials under exploration in nanocarrier research, proteins offer unparalleled structural and functional versatility for designing virus-like molecular vehicles. By exhibiting 'smart' functions and biomimetic traits, protein-based nanocarriers will be a step ahead of the conventional drug-protein conjugates already in the clinic in ensuring efficient delivery of passenger antitumor drugs. PMID:25805413

  12. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    NASA Astrophysics Data System (ADS)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  13. No-mimetic furoxans: arylsulphonylfuroxans and related compounds.

    PubMed

    Ferioli, R; Fazzini, A; Folco, G C; Fruttero, R; Calvino, R; Gasco, A; Bongrani, S; Civelli, M

    1993-01-01

    A new class of methylfuroxans and methylfurazans arylthio, arylsulphinyl and arylsulphonyl substituted, characterized by vasodilating and antiaggregatory properties, is described. Vasodilating activity, tested on rabbit aortic rings percontracted with 1 microM noradrenaline, is enhanced by N-oxidation of the furazan ring and is maximized by increase of the sulphur atom oxidation level. Compounds 4-methyl-3-(p-methoxyphenylsulphonyl) furoxan 6c, 3-phenyl-4-phenylsulphonylfuroxan 10, 4-phenyl-3-phenylsulphonylfuroxan 11 and 3,4-bis(phenyl-sulphonyl)furoxan 12 (EC50 values ranging between 0.055-1.07 microM), seem to be promising since they show the highest potency as well as maximal efficacy, causing complete reversal of noradrenaline induced contraction. The structure-activity relationship, observed in the platelet aggregation test, is substantially similar to that reported for the vasodilating activity, in line with the general profile of these drugs as putative NO-mimetic derivatives. PMID:8108310

  14. Ancient homology underlies adaptive mimetic diversity across butterflies.

    PubMed

    Gallant, Jason R; Imhoff, Vance E; Martin, Arnaud; Savage, Wesley K; Chamberlain, Nicola L; Pote, Ben L; Peterson, Chelsea; Smith, Gabriella E; Evans, Benjamin; Reed, Robert D; Kronforst, Marcus R; Mullen, Sean P

    2014-01-01

    Convergent evolution provides a rare, natural experiment with which to test the predictability of adaptation at the molecular level. Little is known about the molecular basis of convergence over macro-evolutionary timescales. Here we use a combination of positional cloning, population genomic resequencing, association mapping and developmental data to demonstrate that positionally orthologous nucleotide variants in the upstream region of the same gene, WntA, are responsible for parallel mimetic variation in two butterfly lineages that diverged >65 million years ago. Furthermore, characterization of spatial patterns of WntA expression during development suggests that alternative regulatory mechanisms underlie wing pattern variation in each system. Taken together, our results reveal a strikingly predictable molecular basis for phenotypic convergence over deep evolutionary time. PMID:25198507

  15. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    SciTech Connect

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D.

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  16. A non-linear constrained optimization technique for the mimetic finite difference method

    SciTech Connect

    Manzini, Gianmarco; Svyatskiy, Daniil; Bertolazzi, Enrico; Frego, Marco

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  17. Signal transduction mechanism of a peptide mimetic of interferon-gamma.

    PubMed

    Subramaniam, Prem S; Flowers, Lawrence O; Haider, S Mohammed I; Johnson, Howard M

    2004-05-11

    The C-terminus of interferon-gamma (IFNgamma) contains a nuclear localization sequence (NLS) required for the activation and nuclear translocation of the transcription factor STAT1alpha and induction of IFNgamma-activated genes. On the basis of this and other studies, we developed a peptide mimetic of IFNgamma that possesses the IFNgamma functions of antiviral activity and upregulation of MHC class II molecules. The mimetic also shares with IFNgamma the ability to induce the activation and nuclear translocation of STAT1alpha and the IFNgamma receptor (IFNGR)-1 subunit. The mimetic, IFNgamma(95-132), is a peptide that consists of the C-terminal residues 95-132 of murine IFNgamma and contains a required alpha-helical domain and the NLS of IFNgamma. In this study, we determined the mechanism of the intracellular action of the mimetic at the level of signal transduction. We show that the mimetic mediates the nuclear transport of IFNGR-1 through its interaction with IFNGR-1 cytoplasmic region 253-287 via both the helical region and the NLS of IFNgamma(95-132). Alanine substitutions of the NLS of the mimetic showed that the NLS was required for nuclear translocation and that the nuclear transport properties of the mimetic correlated with its ability to bind IFNGR-1. These data also show that the NLS of IFNgamma(95-132) can interact simultaneously with IFNGR-1 and the nuclear import machinery. We found that in in vitro nuclear transport assays tyrosine-phosphorylated STAT1alpha failed to undergo nuclear translocation in the presence of nuclear import factors, but was transported to nucleus in the presence of IFNgamma(95-132) and JAK2-phosphorylated IFNGR-1, to which STAT1alpha binds, as a complex of IFNgamma(95-132)/IFNGR-1/STAT1alpha. Thus, the mimetic, which possesses IFNgamma function, is directly involved as a chaperone in the nuclear transport of STAT1alpha and shares this mechanism of action with that previously described for IFNgamma. The mimetic, like IFNgamma, is

  18. A Novel Peptide Thrombopoietin Mimetic Designing and Optimization Using Computational Approach

    PubMed Central

    Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh

    2016-01-01

    Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of −938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of −798.4 kcal/mol and TMP dimer with docking score of −811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency.

  19. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems

    SciTech Connect

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  20. Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-α-dependent manner

    PubMed Central

    Probst, BL; Liu, L; Ramesh, V; Li, L; Sun, H; Minna, JD; Wang, L

    2011-01-01

    Second mitochondria-derived activator of caspase (Smac) is a mitochondrial protein released into the cytosol during apoptosis. Smac mimetics have recently been touted as a novel therapeutic to induce apoptosis in cancer cells. The ability of Smac mimetics to induce apoptosis in vitro has been shown to be dependent upon both XIAP neutralization and cancer cell autocrine tumor necrosis factor-α (TNF-α) production. In this study we provide new evidence for the utility of Smac mimetics in combination with conventional chemotherapy agents to exacerbate caspase activation and induce cancer cell death. Furthermore, we find that the combination effect is because of a multifaceted mechanism involving both inhibition of cell proliferation by the chemotherapy agents and an enhanced autocrine TNF-α feedback loop by the Smac mimetic/chemotherapy agent combination. Surprisingly, although genotoxic agents typically induce apoptosis through the mitochondrial intrinsic pathway, we show that this synergism is mediated through a TNF-α/RIP1-dependent pathway, leading to activation of the extrinsic apoptotic pathway. Finally, we report that autocrine TNF-α contributes to Smac mimetic-induced tumor regression as a single agent or in combination with chemotherapeutics in xenograft mouse models. Collectively, we provide mechanistic and applicable data to support translational studies in the use of a Smac mimetic/chemotherapy antineoplasm modality. PMID:20431601

  1. Mimetic Divergence and the Speciation Continuum in the Mimic Poison Frog Ranitomeya imitator.

    PubMed

    Twomey, Evan; Vestergaard, Jacob S; Venegas, Pablo J; Summers, Kyle

    2016-02-01

    While divergent ecological adaptation can drive speciation, understanding the factors that facilitate or constrain this process remains a major goal in speciation research. Here, we study two mimetic transition zones in the poison frog Ranitomeya imitator, a species that has undergone a Müllerian mimetic radiation to establish four morphs in Peru. We find that mimetic morphs are strongly phenotypically differentiated, producing geographic clines with varying widths. However, distinct morphs show little neutral genetic divergence, and landscape genetic analyses implicate isolation by distance as the primary determinant of among-population genetic differentiation. Mate choice experiments suggest random mating at the transition zones, although certain allopatric populations show a preference for their own morph. We present evidence that this preference may be mediated by color pattern specifically. These results contrast with an earlier study of a third transition zone, in which a mimetic shift was associated with reproductive isolation. Overall, our results suggest that the three known mimetic transition zones in R. imitator reflect a speciation continuum, which we have characterized at the geographic, phenotypic, behavioral, and genetic levels. We discuss possible explanations for variable progress toward speciation, suggesting that multifarious selection on both mimetic color pattern and body size may be responsible for generating reproductive isolation. PMID:26807748

  2. Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment.

    PubMed

    Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-04-11

    Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment. PMID:26840042

  3. Cerebral Response to Peripheral Challenge with a Viral Mimetic.

    PubMed

    Konat, Gregory

    2016-02-01

    It has been well established that peripheral inflammation resulting from microbial infections profoundly alters brain function. This review focuses on experimental systems that model cerebral effects of peripheral viral challenge. The most common models employ the induction of the acute phase response via intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). The ensuing transient surge of blood-borne inflammatory mediators induces a "mirror" inflammatory response in the brain characterized by the upregulated expression of a plethora of genes encoding cytokines, chemokines and other inflammatory/stress proteins. These inflammatory mediators modify the activity of neuronal networks leading to a constellation of behavioral traits collectively categorized as the sickness behavior. Sickness behavior is an important protective response of the host that has evolved to enhance survival and limit the spread of infections within a population. However, a growing body of clinical data indicates that the activation of inflammatory pathways in the brain may constitute a serious comorbidity factor for neuropathological conditions. Such comorbidity has been demonstrated using the PIC paradigm in experimental models of Alzheimer's disease, prion disease and seizures. Also, prenatal or perinatal PIC challenge has been shown to disrupt normal cerebral development of the offspring resulting in phenotypes consistent with neuropsychiatric disorders, such as schizophrenia and autism. Remarkably, recent studies indicate that mild peripheral PIC challenge may be neuroprotective in stroke. Altogether, the PIC challenge paradigm represents a unique heuristic model to elucidate the immune-to-brain communication pathways and to explore preventive strategies for neuropathological disorders. PMID:26526143

  4. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness

    SciTech Connect

    Moeller, Benjamin J.; Batinic-Haberle, Ines; Spasojevic, Ivan; Rabbani, Zahid N.; Anscher, Mitchell S.; Vujaskovic, Zeljko; Dewhirst, Mark W. D.V.M. . E-mail: dewhirst@radonc.duke.edu

    2005-10-01

    Purpose: To determine the effect of the superoxide dismutase mimetic Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP{sup 5+}) on tumor radioresponsiveness. Methods and Materials: Various rodent tumor (4T1, R3230, B16) and endothelial (SVEC) cell lines were exposed to MnTE-2-PyP{sup 5+} and assayed for viability and radiosensitivity in vitro. Next, tumors were treated with radiation and MnTE-2-PyP{sup 5+} in vivo, and the effects on tumor growth and vascularity were monitored. Results: In vitro, MnTE-2-PyP{sup 5+} was not significantly cytotoxic. However, at concentrations as low as 2 {mu}mol/L it caused 100% inhibition of secretion by tumor cells of cytokines protective of irradiated endothelial cells. In vivo, combined treatment with radiation and MnTE-2-PyP{sup 5+} achieved synergistic tumor devascularization, reducing vascular density by 78.7% within 72 h of radiotherapy (p < 0.05 vs. radiation or drug alone). Co-treatment of tumors also resulted in synergistic antitumor effects, extending tumor growth delay by 9 days (p < 0.01). Conclusions: These studies support the conclusion that MnTE-2-PyP{sup 5+}, which has been shown to protect normal tissues from radiation injury, can also improve tumor control through augmenting radiation-induced damage to the tumor vasculature.

  5. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    NASA Astrophysics Data System (ADS)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  6. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    PubMed Central

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-01-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes. PMID:26555958

  7. Bio-mimetic optical sensor for structural deflection measurement

    NASA Astrophysics Data System (ADS)

    Frost, Susan A.; Wright, Cameron H. G.; Streeter, Robert W.; Khan, Md. A.; Barrett, Steven F.

    2014-03-01

    Reducing the environmental impact of aviation is a primary goal of NASA aeronautics research. One approach to achieve this goal is to build lighter weight aircraft, which presents complex challenges due to a corresponding increase in structural flexibility. Wing flexibility can adversely affect aircraft performance from the perspective of aerodynamic efficiency and safety. Knowledge of the wing position during flight can aid active control methods designed to mitigate problems due to increased wing flexibility. Current approaches to measuring wing deflection, including strain measurement devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have limitations for their practical application to flexible aircraft control. Hence, it was proposed to use a bio-mimetic optical sensor based on the fly-eye to track wing deflection in real-time. The fly-eye sensor has several advantages over conventional sensors used for this application, including light weight, low power requirements, fast computation, and a small form factor. This paper reports on the fly-eye sensor development and its application to real-time wing deflection measurement.

  8. Membrane mimetic surface functionalization of nanoparticles: Methods and applications

    PubMed Central

    Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long

    2013-01-01

    Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632

  9. Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites.

    PubMed

    Zhu, Baolei; Noack, Manuel; Merindol, Remi; Barner-Kowollik, Christopher; Walther, Andreas

    2016-08-10

    Nature provides design paradigms for adaptive, self-healing, and synergistic high-performance structural materials. Nacre's brick-and-mortar architecture is renowned for combining stiffness, toughness, strength, and lightweightness. Although elaborate approaches exist to mimic its static structure and performance, and to incorporate functionalities for the engineering world, there is a profound gap in addressing adaptable mechanical properties, particularly using remote, quick, and spatiotemporal triggers. Here, we demonstrate a generic approach to control the mechanical properties of nacre-inspired nanocomposites by designing a photothermal energy cascade using colloidal graphene as light-harvesting unit and coupling it to molecularly designed, thermoreversible, supramolecular bonds in the nanoconfined soft phase of polymer/nanoclay nacre-mimetics. The light intensity leads to adaptive steady-states balancing energy uptake and dissipation. It programs the mechanical properties and switches the materials from high stiffness/strength to higher toughness within seconds under spatiotemporal control. We envisage possibilities beyond mechanical materials, for example, light-controlled (re)shaping or actuation in highly reinforced nanocomposites. PMID:27455047

  10. Wing patterning gene redefines the mimetic history of Heliconius butterflies

    PubMed Central

    Hines, Heather M.; Counterman, Brian A.; Papa, Riccardo; Albuquerque de Moura, Priscila; Cardoso, Marcio Z.; Linares, Mauricio; Mallet, James; Reed, Robert D.; Jiggins, Chris D.; Kronforst, Marcus R.; McMillan, W. Owen

    2011-01-01

    The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80–250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns. PMID:22084094

  11. A Genetic Linkage Map of the Mimetic Butterfly Heliconius melpomene

    PubMed Central

    Jiggins, Chris D.; Mavarez, Jesus; Beltrán, Margarita; McMillan, W. Owen; Johnston, J. Spencer; Bermingham, Eldredge

    2005-01-01

    Heliconius melpomene is a mimetic butterfly that exhibits great geographic variation in color pattern. We present here a genetic linkage map based on analysis of genetic markers in 73 individuals from a single F2 family, offspring of a cross between H. m. cythera from western Ecuador and H. m. melpomene from French Guiana. A novel “three-step method” is described for the analysis of dominant markers in an F2 cross, using outbred parental strains and taking advantage of the lack of crossing over in female Lepidoptera. This method is likely to prove useful for future mapping studies in outbred species with crossing over restricted to one sex, such as the Lepidoptera and Drosophila. The resulting linkage map has 21 linkage groups corresponding to the 21 chromosomes of H. melpomene and includes 219 AFLP markers, 23 microsatellites, 19 single-copy nuclear genes, and the color pattern switch genes Yb and Sb. The marker density is high, averaging >1/7 cM. The total map length is 1616 cM and the average chromosome length is 77 cM. The genome size of H. melpomene was estimated to be 292 Mb, giving a relationship of physical-to-map distance of 180 kb/cM. This map forms the basis for future comparative linkage analysis of color pattern evolution in Heliconius. PMID:15489522

  12. Synthesis of glycosaminoglycan mimetics through sulfation of polyphenols.

    PubMed

    Al-Horani, Rami A; Karuturi, Rajesh; Verespy, Stephen; Desai, Umesh R

    2015-01-01

    In nearly all cases of biological activity of sulfated GAGs, the sulfate group(s) are critical for interacting with target proteins. A growing paradigm is that appropriate small, sulfated, nonsaccharide GAG mimetics can be designed to either mimic or interfere with the biological functions of natural GAG sequences resulting in the discovery of either antagonist or agonist agents. A number of times these sulfated NSGMs can be computationally designed based on the parent GAG-protein interaction. The small sulfated NSGMs may possess considerable aromatic character so as to engineer hydrophobic, hydrogen-bonding, Coulombic or cation-pi forces in their interactions with target protein(s) resulting in higher specificity of action relative to parent GAGs. The sulfated NSGMs can be easily synthesized in one step from appropriate natural polyphenols through chemical sulfation under microwave-based conditions. We describe step-by-step procedures to perform microwave-based sulfation of several small polyphenol scaffolds so as to prepare homogenous NSGMs containing one to more than 10 sulfate groups per molecule in high yields. PMID:25325944

  13. HDL therapy for cardiovascular diseases: the road to HDL mimetics.

    PubMed

    White, C Roger; Datta, Geeta; Zhang, Zhenghao; Gupta, Himanshu; Garber, David W; Mishra, Vinod K; Palgunachari, Mayakonda N; Handattu, Shaila P; Chaddha, Manjula; Anantharamaiah, G M

    2008-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are currently the drug of choice for the clinical management of elevated low-density lipoprotein (LDL) cholesterol. Although statin treatment provides an overall improvement in outcomes, clinical trial data reveal a significant number of cardiac events despite reaching targeted LDL levels. A low serum high-density lipoprotein (HDL) cholesterol level is an independent predictor of cardiovascular risk. Accordingly, there has been interest in determining whether HDL elevation, in addition to LDL lowering, further reduces risk in patients with coronary artery disease. Several commonly prescribed lipid-lowering therapies modestly raise HDL, but their use may be limited by the development of adverse reactions. Emerging data suggest that HDL quality and function may also be significantly reduced by atherosclerosis and other inflammatory diseases. The goal of this review is to discuss the current status of HDL therapeutics, with emphasis on a novel class of agent, the apolipoprotein A-I mimetic peptides, which improve the functional properties of HDL cholesterol. PMID:18706282

  14. Carbohydrate-Mimetic Peptides for Pan Anti-Tumor Responses

    PubMed Central

    Kieber-Emmons, Thomas; Saha, Somdutta; Pashov, Anastas; Monzavi-Karbassi, Behjatolah; Murali, Ramachandran

    2014-01-01

    Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate–peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells. PMID:25071769

  15. PKC activation sensitizes basal-like breast cancer cell lines to Smac mimetics

    PubMed Central

    Cornmark, L; Holmgren, C; Masoumi, K; Larsson, C

    2016-01-01

    There is a need for novel strategies to initiate cancer cell death. One approach is the use of Smac mimetics, which antagonize inhibitor of apoptosis proteins (IAPs). Recent studies have shown that combinations of Smac mimetics such as LBW242 or LCL161 in combination with chemotherapeutic agents increase cancer cell death. Here we show that the protein kinase C (PKC) activator TPA together with the Smac mimetic LBW242 induces cell death in two basal breast cancer cell lines (MDA-MB-468 and BT-549) that are resistant to Smac mimetic as single agent. Ten other LBW242-insensitive cancer cell lines were not influenced by the TPA+LBW242 combination. The TPA+LBW242 effect was suppressed by the PKC inhibitor GF109203X, indicating dependence on PKC enzymatic activity. The PKC effect was mediated via increased synthesis and release of TNFα, which can induce death in the presence of Smac mimetics. The cell death, coinciding with caspase-3 cleavage, was suppressed by caspase inhibition and preceded by the association of RIP1 with caspase-8, as seen in complex II formation. Smac mimetics, but not TPA, induced the non-canonical NF-κB pathway in both MDA-MB-231 and MDA-MB-468 cells. Blocking the canonical NF-κB pathway suppressed TPA induction of TNFα in MDA-MB-468 cells whereas isolated downregulation of either the canonical or non-canonical pathways did not abolish the Smac mimetic induction of the NF-κB driven genes TNFα and BIRC3 in MDA-MB-231 cells although the absolute levels were suppressed. A combined downregulation of the canonical and non-canonical pathways further suppressed TNFα levels and inhibited Smac mimetic-mediated cell death. Our data suggest that in certain basal breast cancer cell lines co-treatment of TPA with a Smac mimetic induces cell death highlighting the potential of using these pathways as molecular targets for basal-like breast cancers. PMID:27551497

  16. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios.

    PubMed

    Das, Paramita; Malho, Jani-Markus; Rahimi, Khosrow; Schacher, Felix H; Wang, Baochun; Demco, Dan Eugen; Walther, Andreas

    2015-01-01

    Nacre-mimetics hold great promise as mechanical high-performance and functional materials. Here we demonstrate large progress of mechanical and functional properties of self-assembled polymer/nanoclay nacre-mimetics by using synthetic nanoclays with aspect ratios covering three orders in magnitude (25-3,500). We establish comprehensive relationships among structure formation, nanostructuration, deformation mechanisms and mechanical properties as a function of nanoclay aspect ratio, and by tuning the viscoelastic properties of the soft phase via hydration. Highly ordered, large-scale nacre-mimetics are obtained even for low aspect ratio nanoplatelets and show pronounced inelastic deformation with very high toughness, while those formed by ultralarge nanoplatelets exhibit superb stiffness and strength, previously only reachable for highly crosslinked materials. Regarding functionalities, we report formerly impossible glass-like transparency, and excellent gas barrier considerably exceeding earlier nacre-mimetics based on natural nanoclay. Our study enables rational design of future high-performance nacre-mimetic materials and opens avenues for ecofriendly, transparent, self-standing and strong advanced barrier materials. PMID:25601360

  17. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Malho, Jani-Markus; Rahimi, Khosrow; Schacher, Felix H.; Wang, Baochun; Demco, Dan Eugen; Walther, Andreas

    2015-01-01

    Nacre-mimetics hold great promise as mechanical high-performance and functional materials. Here we demonstrate large progress of mechanical and functional properties of self-assembled polymer/nanoclay nacre-mimetics by using synthetic nanoclays with aspect ratios covering three orders in magnitude (25-3,500). We establish comprehensive relationships among structure formation, nanostructuration, deformation mechanisms and mechanical properties as a function of nanoclay aspect ratio, and by tuning the viscoelastic properties of the soft phase via hydration. Highly ordered, large-scale nacre-mimetics are obtained even for low aspect ratio nanoplatelets and show pronounced inelastic deformation with very high toughness, while those formed by ultralarge nanoplatelets exhibit superb stiffness and strength, previously only reachable for highly crosslinked materials. Regarding functionalities, we report formerly impossible glass-like transparency, and excellent gas barrier considerably exceeding earlier nacre-mimetics based on natural nanoclay. Our study enables rational design of future high-performance nacre-mimetic materials and opens avenues for ecofriendly, transparent, self-standing and strong advanced barrier materials.

  18. Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-06-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering, in addition, a potential for the mimetic field. An appropriate choice of such a potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which are traversable wormholes. Finally, we analytically reconstruct potentials, which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild space-time. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

  19. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGESBeta

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  20. An overview on antidiabetic medicinal plants having insulin mimetic property.

    PubMed

    Patel, D K; Prasad, S K; Kumar, R; Hemalatha, S

    2012-04-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles. PMID:23569923

  1. Moving a Carbohydrate Mimetic Peptide into the clinic

    PubMed Central

    Makhoul, Issam; Hutchins, Laura; Emanuel, Peter D; Pennisi, Angela; Siegel, Eric; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Kieber-Emmons, Thomas

    2014-01-01

    Tumor-Associated Carbohydrate Antigens (TACAs) are broad-spectrum targets for immunotherapy. Immunization with Carbohydrate Mimetic Peptides (CMPs) is a strategy to induce broad-spectrum TACA-reactive antibodies hypothesized to interfere with cellular pathways involved in tumor cell survival. A Phase I study was conducted with a first-in-man CMP referred to as P10s, conjugated to the Pan T cell carrier PADRE, along with MONTANIDE™ ISA 51 VG as adjuvant over a course of 5 immunizations. While designed as a safety and tolerability study, the potential for therapeutic impact was observed in a subject with metastatic lesions as evaluated before and after vaccine treatment. The subject received Vinorelbine and Trastuzumab (VT) for two months prior to study eligibility. PET scans showed partial response in the lungs and complete resolution of a previously enlarged subpectoral lymph node. Immunization with P10s vaccine resulted in responses to P10s, with serum and plasma antibodies reactive with and cytotoxic to human breast cancer cells in vitro, including the Trastuzumab-resistant HCC1954 cell line. However, the patient developed cystic masses in the brain parenchyma with no apparent evidence of metastases. The subject was switched to Docetaxel, Pertuzumab and Trastuzumab a year later, and her last PET scan showed a complete response in the lungs and lymph nodes. Incubation of cancer cells with a combination of vaccine-induced serum and docetaxel suggests that the induced antibodies sensitize tumor cells for more efficient killing upon administration of docetaxel. The data suggest that P10s-PADRE induces anti-tumor antibody response that in combination with chemotherapy can affect metastatic lesions in breast cancer patients. PMID:25483513

  2. An overview on antidiabetic medicinal plants having insulin mimetic property

    PubMed Central

    Patel, DK; Prasad, SK; Kumar, R; Hemalatha, S

    2012-01-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles. PMID:23569923

  3. Characterization of Phospho-(Tyrosine)-Mimetic Calmodulin Mutants

    PubMed Central

    Stateva, Silviya R.; Salas, Valentina; Benaim, Gustavo; Menéndez, Margarita; Solís, Dolores; Villalobo, Antonio

    2015-01-01

    Calmodulin (CaM) phosphorylated at different serine/threonine and tyrosine residues is known to exert differential regulatory effects on a variety of CaM-binding enzymes as compared to non-phosphorylated CaM. In this report we describe the preparation and characterization of a series of phospho-(Y)-mimetic CaM mutants in which either one or the two tyrosine residues present in CaM (Y99 and Y138) were substituted to aspartic acid or glutamic acid. It was expected that the negative charge of the respective carboxyl group of these amino acids mimics the negative charge of phosphate and reproduce the effects that distinct phospho-(Y)-CaM species may have on target proteins. We describe some physicochemical properties of these CaM mutants as compared to wild type CaM, after their expression in Escherichia coli and purification to homogeneity, including: i) changes in their electrophoretic mobility in the absence and presence of Ca2+; ii) ultraviolet (UV) light absorption spectra, far- and near-UV circular dichroism data; iii) thermal stability in the absence and presence of Ca2+; and iv) Tb3+-emitted fluorescence upon tyrosine excitation. We also describe some biochemical properties of these CaM mutants, such as their differential phosphorylation by the tyrosine kinase c-Src, and their action as compared to wild type CaM, on the activity of two CaM-dependent enzymes: cyclic nucleotide phosphodiesterase 1 (PDE1) and endothelial nitric oxide synthase (eNOS) assayed in vitro. PMID:25830911

  4. Hierachical assembly of collagen mimetic peptides into biofunctional materials

    NASA Astrophysics Data System (ADS)

    Gleaton, Jeremy W.

    Collagen is a remarkably strong and prevalent protein distributed throughout nature and as such, collagen is an ideal material for a variety of medical applications. Research efforts for the development of synthetic collagen biomaterials is an area of rapid growth. Here we present two methods for the assembly of collagen mimetic peptides (CMPs). The initial approach prompts assembly of CMPs which contain modifications for metal ion-triggered assembly. Hierarchical assembly into triple helices, followed by formation of disks via hydrophobic interactions has been demonstrated. Metal-ion mediated assembly of these disks, using iron (II)-bipyrdine interactions, has been shown to form micron-sized cages. The nature of the final structures that form depends on the number of bipyridine moieties incorporated into the CMP. These hollow spheres encapsulate a range of molecular weight fluorescently labeled dextrans. Furthermore, they demonstrate a time dependent release of contents under a variety of thermal conditions. The second approach assembles CMPs via the copper-catalyzed alkyne-azide cycloaddition (CuAAC) and the strain-promoted alkyne-azide cycloaddition (SPAAC) reactions. CMPs that incorporate the unnatural amino acids L-propargylglycine and L-azidolysine form triple helices and demonstrate higher order assembly when reacted via CuAAC. Reaction of the alkyne/azide modified CMPs under CuAAC conditions was found to produce an crosslinked 3-dimensional network. Moreover, we demonstrate that polymers, such as, PEG, can be reacted with alkyne and azide CMP triple helices via CuAAC and SPAAC. This designed covalent CMP chemistry allows for high flexibility in integrating various chemical cues, such as cell growth and differentiation within the higher order structures.

  5. Preclinical Pharmacokinetic Analysis of NOV-002, a Glutathione Disulfide Mimetic

    PubMed Central

    Uys, Joachim D.; Manevich, Yefim; DeVane, Lindsay C.; He, Lin; Garret, Tracy E.; Pazoles, Christopher J.; Tew, Kenneth D.; Townsend, Danyelle M.

    2010-01-01

    Summary NOV-002 is a glutathione disulfide (GSSG) mimetic that is in Phase III clinical trials for the treatment of advanced non-small cell lung cancer and other oncology indications. GSSG is reduced by glutathione reductase (GR) to form glutathione (GSH), thereby maintaining redox homeostasis. The purpose of the study was to report the pharmacokinetic properties of NOV-002 and evaluate the effect that NOV-002 elicits in redox homeostasis. The pharmacokinetic analysis and tissue distribution of NOV-002 and GSH was evaluated in mice following a dose of 250 mg/kg, i.p. The redox potential and total protein thiol status was calculated. Here we show that NOV-002 is a substrate for GR and that GSH is a primary metabolite. Nonlinear pharmacokinetic modeling predicted that the estimated absorption and elimination rate constants correspond to a half-life of ~13 mins with an AUC of 1.18 μg.h/ml, a Cmax of 2.16 μg/ml and a volume of distribution of 42.61 L/kg. In addition, measurement of the redox potential and total protein thiol status indicated the generation of a transient oxidative signal in the plasma compartment after administration of NOV-002. These results indicate that NOV-002 exerts kinetic and dynamic effects in mice consistent with the GSSG component as the active pharmacological constituent of the drug. A longer-lasting decrease in total plasma free thiol content was also seen, suggesting that the oxidative effect of the GSSG from NOV-002 was impacting redox homeostasis. PMID:20359856

  6. Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic.

    PubMed

    Uys, J D; Manevich, Y; Devane, L C; He, L; Garret, T E; Pazoles, C J; Tew, K D; Townsend, D M

    2010-09-01

    NOV-002 is a glutathione disulfide (GSSG) mimetic that is the subject of clinical investigation in oncology indications. GSSG is reduced by glutathione reductase (GR) to form glutathione (GSH), thereby maintaining redox homeostasis. The purpose of the study was to report the pharmacokinetic properties of NOV-002 and evaluate the effect that NOV-002 elicits in redox homeostasis. The pharmacokinetic analysis and tissue distribution of NOV-002 and GSH was evaluated in mice following a dose of 250 mg/kg, i.p. The redox potential and total protein thiol status was calculated. Here we show that NOV-002 is a substrate for GR and that GSH is a primary metabolite. Non-linear pharmacokinetic modeling predicted that the estimated absorption and elimination rate constants correspond to a half-life of approximately 13 min with an AUC of 1.18 μgh/mL, a C(max) of 2.16 μg/ml and a volume of distribution of 42.61 L/kg. In addition, measurement of the redox potential and total protein thiol status indicated the generation of a transient oxidative signal in the plasma compartment after administration of NOV-002. These results indicate that NOV-002 exerts kinetic and dynamic effects in mice consistent with the GSSG component as the active pharmacological constituent of the drug. A longer-lasting decrease in total plasma free thiol content was also seen, suggesting that the oxidative effect of the GSSG from NOV-002 was impacting redox homeostasis. PMID:20359856

  7. Exercise-mimetic AICAR transiently benefits brain function

    PubMed Central

    Guerrieri, Davide; van Praag, Henriette

    2015-01-01

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function. PMID:26286955

  8. A note on Schwarzschild-de Sitter black holes in mimetic F(R) gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-05-01

    In this paper, we investigate the conditions under which a Schwarzschild-de Sitter black hole spacetime is a solution of the mimetic F(R) gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic F(R) gravity is a slight modification of the ordinary F(R) gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary F(R) gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner-Nordström anti-de Sitter black hole.

  9. BAX-BAK1-independent LC3B lipidation by BH3 mimetics is unrelated to BH3 mimetic activity and has only minimal effects on autophagic flux.

    PubMed

    Reljic, Boris; Conos, Stephanie; Lee, Erinna F; Garnier, Jean-Marc; Dong, Li; Lessene, Guillaume; Fairlie, W Douglas; Vaux, David L; Lindqvist, Lisa M

    2016-07-01

    Inhibition of prosurvival BCL2 family members can induce autophagy, but the mechanism is controversial. We have provided genetic evidence that BCL2 family members block autophagy by inhibiting BAX and BAK1, but others have proposed they instead inhibit BECN1. Here we confirm that small molecule BH3 mimetics can induce BAX- and BAK1-independent MAP1LC3B/LC3B lipidation, but this only occurred at concentrations far greater than required to induce apoptosis and dissociate canonical BH3 domain-containing proteins that bind more tightly than BECN1. Because high concentrations of a less-active enantiomer of ABT-263 also induced BAX- and BAK1-independent LC3B lipidation, induction of this marker of autophagy appears to be an off-target effect. Indeed, robust autophagic flux was not induced by BH3 mimetic compounds in the absence of BAX and BAK1. Therefore at concentrations that are on target and achievable in vivo, BH3 mimetics only induce autophagy in a BAX- and BAK1-dependent manner. PMID:27172402

  10. Inhibition of Rotavirus Infectivity by a Neoglycolipid Receptor Mimetic

    PubMed Central

    Bergner, Daniel W.; Kuhlenschmidt, Theresa B.; Hanafin, William P.; Firkins, Lawrence D.; Kuhlenschmidt, Mark S.

    2011-01-01

    -scale production capabilities make SLPE a promising candidate for further exploration as a possible prophylactic or therapeutic nutriceutical for combating rotavirus disease in animals. Most importantly, the results presented here provide proof of concept that the nutriceutical approach of providing natural or synthetic dietary receptor mimetics for protection against gastrointestinal virus infectious disease in all species is plausible. PMID:22254094

  11. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-05-01

    In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mimetic $F(R)$ gravity case, for the Reissner-Nordstr\\"om-anti de Sitter black hole metric, at first order of the perturbed variables. Interestingly enough, the resulting equations are identical to the ones corresponding to the ordinary $F(R)$ gravity Reissner-Nordstr\\"om-anti de Sitter black hole, at least at first order. We attribute this feature to the particular form of the Reissner-Nordstr\\"om-anti de Sitter metric, and we speculate for which cases there could be differences between the mimetic and non-mimetic case. Since the perturbation equations are the same for the two cases, it is possible to have black hole instabilities in the mimetic $F(R)$ gravity case too, which can be interpreted as anti-evaporation of the black hole.

  12. Comparative Allometric Growth of the Mimetic Ephippid Reef Fishes Chaetodipterus faber and Platax orbicularis.

    PubMed

    Barros, Breno; Sakai, Yoichi; Pereira, Pedro H C; Gasset, Eric; Buchet, Vincent; Maamaatuaiahutapu, Moana; Ready, Jonathan S; Oliveira, Yrlan; Giarrizzo, Tommaso; Vallinoto, Marcelo

    2015-01-01

    Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes. PMID:26630347

  13. Solving Navier-Stokes' equation using Castillo-Grone's mimetic difference operators on GPUs

    NASA Astrophysics Data System (ADS)

    Abouali, Mohammad; Castillo, Jose

    2012-11-01

    This paper discusses the performance and the accuracy of Castillo-Grone's (CG) mimetic difference operator in solving the Navier-Stokes' equation in order to simulate oceanic and atmospheric flows. The implementation is further adapted to harness the power of the many computing cores available on the Graphics Processing Units (GPUs) and the speedup is discussed.

  14. Comparative Allometric Growth of the Mimetic Ephippid Reef Fishes Chaetodipterus faber and Platax orbicularis

    PubMed Central

    Barros, Breno; Sakai, Yoichi; Pereira, Pedro H. C.; Gasset, Eric; Buchet, Vincent; Maamaatuaiahutapu, Moana; Ready, Jonathan S.; Oliveira, Yrlan; Giarrizzo, Tommaso; Vallinoto, Marcelo

    2015-01-01

    Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes. PMID:26630347

  15. Student-Driven Design of Peptide Mimetics: Microwave-Assisted Synthesis of Peptoid Oligomers

    ERIC Educational Resources Information Center

    Pohl, Nicola L. B.; Kirshenbaum, Kent; Yoo, Barney; Schulz, Nathan; Zea, Corbin J.; Streff, Jennifer M.; Schwarz, Kimberly L.

    2011-01-01

    An experiment for the undergraduate organic laboratory is described in which peptide mimetic oligomers called "peptoids" are built stepwise on a solid-phase resin. Students employ two modern strategies to facilitate rapid multistep syntheses: solid-phase techniques to obviate the need for intermediate purifications and microwave irradiation to…

  16. A Case of Mimetic Isomorphism: A Short-Cut to Increasing Loyalty to Academia

    ERIC Educational Resources Information Center

    Orkodashvili, Mariam

    2008-01-01

    The paper discusses the process of shortening career path to leadership positions in academia that could serve as an example of mimetic isomorphism, where university tries to apply business-like quick result-oriented strategies. This strategy incentivizes young faculty to stay in universities and keep loyalty to academia. This process could also…

  17. The relationship between mimetic imperfection and phenotypic variation in insect colour patterns.

    PubMed Central

    Holloway, Graham; Gilbert, Francis; Brandt, Amoret

    2002-01-01

    Many hoverflies (Syrphidae) mimic wasps or bees through colour or behavioural adaptations. The relationship between phenotypic variation in colour pattern and mimetic perfection (as determined by pigeons) was investigated in three species of Müllerian mimics (Vespula spp.) and 10 Batesian hoverfly mimics, plus two non-mimetic species of flies. Four predictions were tested: (i) Batesian mimics might be imperfect because they are in the process of evolving towards perfection, hence there should be a positive relationship between variation and imperfection; (ii) some Batesian mimics are imperfect because they do not have the appropriate genetic variation to improve and have evolved to be as good as possible, hence there should be no differences between species, all displaying a low level of variation; (iii) very common hoverflies should show the highest levels of variation because they outnumber their models, resulting in high predation and a breakdown in the mimetic relationship; and (iv) social wasps (Vespula) have such a powerful defence that anything resembling a wasp, both Müllerian and perfect Batesian mimics, would be avoided, resulting in relaxed selection and high variance. Poor mimics may still evolve to resemble wasps as well as possible and display lower levels of variation. The data only provided support for the fourth prediction. The Müllerian mimics, one of the most perfect Batesian mimics, and the non-mimetic flies displayed much higher levels of variation than the other species of Batesian mimics. PMID:11886630

  18. A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans.

    PubMed

    Calvert, Shaun; Tacutu, Robi; Sharifi, Samim; Teixeira, Rute; Ghosh, Pratul; de Magalhães, João Pedro

    2016-04-01

    Caloric restriction (CR), a reduction in calorie intake without malnutrition, retards aging in several animal models from worms to mammals. Developing CR mimetics, compounds that reproduce the longevity benefits of CR without its side effects, is of widespread interest. Here, we employed the Connectivity Map to identify drugs with overlapping gene expression profiles with CR. Eleven statistically significant compounds were predicted as CR mimetics using this bioinformatics approach. We then tested rapamycin, allantoin, trichostatin A, LY-294002 and geldanamycin in Caenorhabditis elegans. An increase in lifespan and healthspan was observed for all drugs except geldanamycin when fed to wild-type worms, but no lifespan effects were observed in eat-2 mutant worms, a genetic model of CR, suggesting that life-extending effects may be acting via CR-related mechanisms. We also treated daf-16 worms with rapamycin, allantoin or trichostatin A, and a lifespan extension was observed, suggesting that these drugs act via DAF-16-independent mechanisms, as would be expected from CR mimetics. Supporting this idea, an analysis of predictive targets of the drugs extending lifespan indicates various genes within CR and longevity networks. We also assessed the transcriptional profile of worms treated with either rapamycin or allantoin and found that both drugs use several specific pathways that do not overlap, indicating different modes of action for each compound. The current work validates the capabilities of this bioinformatic drug repositioning method in the context of longevity and reveals new putative CR mimetics that warrant further studies. PMID:26676933

  19. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    PubMed

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might

  20. Fibronectin- and Collagen-Mimetic Ligands Regulate BMSC Chondrogenesis in 3D Hydrogels

    PubMed Central

    Connelly, J.T.; Petrie, T.A.; García, A.J.; Levenston, M.E.

    2016-01-01

    Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM)-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D) hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to 10 Type III repeats (FnIII7-10) and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs) were cultured within the 3D hydrogels.. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecanmRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli. PMID:21932193

  1. A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms.

    PubMed

    Modery-Pawlowski, Christa L; Master, Alyssa M; Pan, Victor; Howard, Gregory P; Sen Gupta, Anirban

    2013-03-11

    There is compelling evidence that, beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly overexpressed on the MDA-MB-231 cells, and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected, and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies. PMID:23360320

  2. A Platelet-Mimetic Paradigm for Metastasis-Targeted Nanomedicine Platforms

    PubMed Central

    Modery-Pawlowski, Christa L.; Master, Alyssa M.; Pan, Victor; Howard, Gregory; Gupta, Anirban Sen

    2013-01-01

    There is compelling evidence that beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly over-expressed on the MDA-MB-231 cells and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies. PMID:23360320

  3. Tunable elastin-mimetic multiblock hybrid copolymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Grieshaber, Sarah Elizabeth

    Elastin-mimetic hybrid polymers (EMHPs) have been developed to capture the multiblock molecular architecture of tropoelastin, allowing tunability in chemical, structural, biological, and mechanical properties. Multiblock EMHPs containing flexible synthetic segments were first synthesized via step growth polymerization of diazido-poly(ethylene glycol) (PEG) and alkyne-terminated AKA3KA (K = lysine, A = alanine) (AK2) peptide employing copper (I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC, or orthogonal click chemistry). Covalent crosslinking of the EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residues in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 +/- 0.018 MPa when hydrated. xEMHPs exhibited minimal cytotoxicity to primary porcine vocal fold fibroblasts. The modular nature of the synthesis allowed facile adjustment of the peptide sequence to modulate the structural and the biological properties of EMHPs. Thus, EMHPs containing integrin-binding peptides were constructed using di-azido-PEG and an alkyne-terminated AK2 peptide with a terminal, integrin-binding GRGDSP domain via the step growth click coupling reaction. Hydrogels formed by covalent crosslinking of the RGD-containing EMHPs had a compressive modulus of 1.06 +/- 0.1MPa when hydrated. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h, and to spread and develop F-actin filaments 24 h post seeding. NHDF proliferation was only observed on hydrogels containing RGD domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. The tunability of the EMHP system was further investigated by development of self-assembling, pH-responsive multiblock polymers composed of alternating domains of poly(acrylic acid) (PAA) and a peptide derived from the hydrophobic domains of elastin with the sequence (VPGVG)2 (VG2). The

  4. Exposure and characterization of the action of noradrenaline at dopamine receptors mediating endothelium-independent relaxation of rat isolated small mesenteric arteries.

    PubMed Central

    Van der Graaf, P. H.; Saxena, P. R.; Shankley, N. P.; Black, J. W.

    1995-01-01

    1. Previously, we reported that noradrenaline (NA), in addition to its alpha 1-adrenoceptor-mediated contractile effect, may relax the rat small mesenteric artery (SMA) in order to account for steep Schild plots obtained with compounds classified as alpha 1-adrenoceptor antagonists. In this study, a relaxant action of NA has been exposed in the rat isolated, endothelium-denuded SMA precontracted by the thromboxane A2-mimetic, U46619. 2. NA, but not the selective alpha 2-adrenoceptor agonist, UK14304, produced concentration-dependent contraction of the SMA (pEC50 = 5.7 +/- 0.1). After precontraction with 0.1 microM U46619, 10 nM-30 microM NA produced a further contraction (pEC50 = 6.1 +/- 0.2), while higher concentrations of NA produced small, but significant, relaxant responses. 3. In the presence of 1 microM prazosin, 0.1-30 microM NA produced concentration dependent relaxation (pIC50 = 5.9 +/- 0.1) after precontraction with 0.1 microM U46619. The NA relaxation concentration-effect curve was completely inhibited by 1 microM of the beta 1/beta 2-adrenoceptor antagonist, timolol. However, when the concentration of prazosin was increased by 10 fold (10 microM), NA once again produced concentration-dependent relaxation (pIC50 = 4.5 +/- 0.2). This relaxation concentration-effect curve was not blocked by a 10 fold higher concentration of timolol (10 microM), nor by the presence of idazoxan (10 microM), cyanopindolol (10 microM), NG-nitro-L-arginine methyl ester (L-NAME, 100 microM), indomethacin (10 microM) or sulpiride (1 microM). However, haloperidol (10 microM) and (+/-)-SCH-23390 (10 nM) produced significant inhibition of the relaxation, suggesting the involvement of dopamine D1 receptors. 4. Dopamine also produced concentration-dependent relaxation following U46619 precontraction (pIC50 = 5.4 +/- 0.1) which was significantly inhibited by haloperidol and (+)-SCH-23390. Pretreatment with 10 microM phenoxybenzamine for 60 min produced a significant inhibition of the

  5. Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose.

    PubMed

    Wang, Qingqing; Zhang, Lingling; Shang, Changshuai; Zhang, Zhiquan; Dong, Shaojun

    2016-04-01

    We demonstrate that nickel-palladium hollow nanoparticles (NiPd hNPs) exhibit triple-enzyme mimetic activity: oxidase-like activity, peroxidase-like activity and catalase-like activity. As peroxidase mimetics, the catalytic activity of NiPd hNPs was investigated in detail. On this basis, a simple glucose biosensor with a wide linear range and low detection limit was developed. PMID:27009927

  6. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems. Performance report, April 1, 1989--August 31, 1991

    SciTech Connect

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  7. What kind of signals do mimetic tiger moths send? A phylogenetic test of wasp mimicry systems (Lepidoptera: Arctiidae: Euchromiini).

    PubMed Central

    Simmons, Rebecca B; Weller, Susan J

    2002-01-01

    Mimicry has been examined in field and laboratory studies of butterflies and its evolutionary dynamics have been explored in computer simulations. Phylogenetic studies examining the evolution of mimicry, however, are rare. Here, the phylogeny of wasp-mimicking tiger moths, the Sphecosoma group, was used to test evolutionary predictions of computer simulations of conventional Müllerian mimicry and quasi-Batesian mimicry dynamics. We examined whether mimetic traits evolved individually, or as suites of characters, using concentrated change tests. The phylogeny of these moth mimics revealed that individual mimetic characters were conserved, as are the three mimetic wasp forms: yellow Polybia, black Polybia and Parachartergus mimetic types. This finding was consistent with a 'supergene' control of linked loci and the Nicholson two-step model of mimicry evolution. We also used a modified permutation-tail probability approach to examine the rate of mimetic-type evolution. The observed topology, hypothetical Müllerian and Batesian scenarios, and 1000 random trees were compared using Kishino-Hasegawa tests. The observed phylogeny was more consistent with the predicted Müllerian distribution of mimetic traits than with that of a quasi-Batesian scenario. We suggest that the range of discriminatory abilities of the predator community plays a key role in shaping mimicry dynamics. PMID:12028753

  8. Biphasic effects of direct, but not indirect, GABA mimetics and antagonists on haloperidol-induced catalepsy.

    PubMed

    Worms, P; Lloyd, K G

    1980-03-01

    At very low doses the GABA agonists SL 76002 and muscimol diminish haloperidol-induced catalepsy. At somewhat higher doses these compounds potentiate catalepsy. Biphasic effects on DA-receptor mediated functions have previously been noted with bicuculline and picrotoxinin. In contrast, manipulation of GABA levels by enzyme inhibition induced only a monophasic effect on dopamine-mediated behaviour. The potentiation of GABA levels by enzyme inhibition induced only a monophasic effect on dopamine-mediated behaviour. The potentiation of haloperidol-induced catalepsy by GABA mimetics is also observed with dipropylacetate, delta-aminovaleric acid and gamma-acetylenic GABA. This GABA-mimetic potentiation of catakepsy was blocked by the coadministration of bicuculline. These results confirm and extend the hypothesis that GABA-neurons influence DA neuron function. Furthermore they suggest that more than one group of GABA receptors influence directly and/or indirectly DA neuronal function, with different resultant effects. PMID:7189827

  9. Hemoglobin-mimetic oxygen adsorbent prepared via self-assembly of cysteinyl bolaamphiphiles.

    PubMed

    Lee, Chaemyeong; Kim, Min-Chul; Lee, Sang-Yup

    2016-06-01

    In this study, a novel cysteinyl bolaamphiphilic molecule was synthesized and its self-assembled planar suprastructure was applied as a biomimetic matrix to create a hemoglobin-mimetic oxygen adsorbent that exploits the ability of cysteine thiols to bind hemin. Self-assembly of the cysteinyl bolaamphiphilic molecule exposed cysteine thiols on its surface in the presence of β-mercaptoethanol, known to reduce disulfide bonds, without which, helically coiled structures were generated. The self-assembled planar structure was used as a soft matrix to create a hemoglobin-mimetic oxygen adsorbent. The surface-exposed cysteine thiols were used to attach hemin, producing a hemin-bound, planar structure mimicking hemoglobin. This hemoglobin mimic strongly adsorbed oxygen and remained stable up to 50°C. The cysteinyl bolaamphiphile self-assembled structure provided a biomimetic platform that allowed for the association of biological substances in a manner similar to natural proteins. PMID:26970824

  10. Peptide mimetics of the thrombin-bound structure of fibrinopeptide A.

    PubMed Central

    Nakanishi, H; Chrusciel, R A; Shen, R; Bertenshaw, S; Johnson, M E; Rydel, T J; Tulinsky, A; Kahn, M

    1992-01-01

    Recent work has suggested that the thrombin-bound conformation of fibrinopeptide A exhibits a strand-turn-strand motif, with a beta-turn centered at residues Glu-11 and Gly-12. Our molecular modeling analysis indicates that the published fibrinopeptide conformation cannot bind reasonably to thrombin but that reorientation of two residues by alignment with bovine pancreatic trypsin inhibitor provides a good fit within the deep thrombin cleft and satisfies all of the experimental nuclear Overhauser effect data. Based on this analysis, we have successfully designed and synthesized hybrid peptide mimetic substrates and inhibitors that mimic the proposed beta-turn structure. The results indicate that the turn conformation is an important aspect of thrombin specificity and that our turn mimetic design successfully mimics the thrombin-bound conformation of fibrinopeptide. Images PMID:1542664

  11. The aerodynamic costs of warning signals in palatable mimetic butterflies and their distasteful models.

    PubMed Central

    Srygley, Robert B.

    2004-01-01

    Bates hypothesized that some butterfly species that are palatable gain protection from predation by appearing similar to distasteful butterflies. When undisturbed, distasteful butterflies fly slowly and in a straight line, and palatable Batesian mimics also adopt this nonchalant behaviour. When seized by predators, distasteful butterflies are defended by toxic or nauseous chemicals. Lacking chemical defences, Batesian mimics depend on flight to escape attacks. Here, I demonstrate that flight in warning-coloured mimetic butterflies and their distasteful models is more costly than in closely related non-mimetic butterflies. The increased cost is the result of differences in both wing shape and kinematics. Batesian mimics and their models slow the angular velocity of their wings to enhance the colour signal but at an aerodynamic cost. Moreover, the design for flight in Batesian mimics has an additional energetic cost over that of its models. The added cost may cause Batesian mimics to be rare, explaining a general pattern that Bates first observed. PMID:15156916

  12. Recognition of Smac-mimetic compounds by the BIR domain of cIAP1

    PubMed Central

    Cossu, Federica; Malvezzi, Francesca; Canevari, Giulia; Mastrangelo, Eloise; Lecis, Daniele; Delia, Domenico; Seneci, Pierfausto; Scolastico, Carlo; Bolognesi, Martino; Milani, Mario

    2010-01-01

    Inhibitor of apoptosis proteins (IAPs) are negative regulators of apoptosis. As IAPs are overexpressed in many tumors, where they confer chemoresistance, small molecules inactivating IAPs have been proposed as anticancer agents. Accordingly, a number of IAP-binding pro-apoptotic compounds that mimic the sequence corresponding to the N-terminal tetrapeptide of Smac/DIABLO, the natural endogenous IAPs inhibitor, have been developed. Here, we report the crystal structures of the BIR3 domain of cIAP1 in complex with Smac037, a Smac-mimetic known to bind potently to the XIAP-BIR3 domain and to induce degradation of cIAP1, and in complex with the novel Smac-mimetic compound Smac066. Thermal stability and fluorescence polarization assays show the stabilizing effect and the high affinity of both Smac037 and Smac066 for cIAP1- and cIAP2-BIR3 domains. PMID:20954235

  13. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    SciTech Connect

    Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.; Christon, Mark A.

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  14. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells.

    PubMed

    Shah, Manisha H; Liu, Guei-Sheung; Thompson, Erik W; Dusting, Gregory J; Peshavariya, Hitesh M

    2015-04-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy. PMID:25794772

  15. Mimetic F(R) inflation confronted with Planck and BICEP2/Keck Array data

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-05-01

    In this paper we demonstrate that in the context of mimetic F(R) gravity with Lagrange multiplier, it is possible to realize cosmologies which are compatible with the recent BICEP2/Keck Array data. We provide some characteristic examples for which the predicted scalar to tensor ratio can be quite smaller in comparison to the upper limit imposed by the BICEP2/Keck Array observations.

  16. The Role of BH3-Mimetic Drugs in the Treatment of Pediatric Hepatoblastoma

    PubMed Central

    Lieber, Justus; Armeanu-Ebinger, Sorin; Fuchs, Jörg

    2015-01-01

    Pediatric hepatoblastoma (HB) is commonly treated by neoadjuvant chemotherapy and surgical tumor resection according to international multicenter trial protocols. Complete tumor resection is essential and survival rates up to 95% have now been achieved in those tumors classified as standard-risk HB. Drug resistance and occurrence of metastases remain the major challenges in the treatment of HB, especially in high-risk tumors. These conditions urgently require the development of alternative therapeutic strategies. One of those alternatives is the modulation of apoptosis in HB cells. HBs regularly overexpress anti-apoptotic proteins of the Bcl-family in comparison to healthy liver tissue. This fact may contribute to the development of chemoresistance of HB cells. Synthetic small inhibitory molecules with BH3-mimetic effects, such as ABT-737 and obatoclax, enhance the susceptibility of tumor cells to different cytotoxic drugs and thereby affect initiator proteins of the apoptosis cascade via the intrinsic pathway. Besides additive effects on HB cell viability when used in combination with cytotoxic drugs, BH3-mimetics also play a role in preventing metastasation by reducing adhesion and inhibiting cell migration abilities. Presumably, including additive BH3-mimetic drugs into existing therapeutic regimens in HB patients might allow dose reduction of established cytotoxic drugs and thereby associated immanent side effects, while maintaining the antitumor activity. Furthermore, reduction of tumor growth and inhibition of tumor cell dissemination may facilitate complete surgical tumor resection, which is mandatory in this tumor type resulting in improved survival rates in high-risk HB. Currently, there are phase I and phase II clinical trials in several cancer entities using this potential target. This paper reviews the available literature regarding the use of BH3-mimetic drugs as single agents or in combination with chemotherapy in various malignancies and focuses on

  17. A2B adenosine receptors mediate relaxation of the pig intravesical ureter: adenosine modulation of non adrenergic non cholinergic excitatory neurotransmission

    PubMed Central

    Hernández, Medardo; Barahona, María Victoria; Bustamante, Salvador; García-Sacristán, Albino; Orensanz, Luis M

    1999-01-01

    The present study was designed to characterize the adenosine receptors involved in the relaxation of the pig intravesical ureter, and to investigate the action of adenosine on the non adrenergic non cholinergic (NANC) excitatory ureteral neurotransmission. In U46619 (10−7  M)-contracted strips treated with the adenosine uptake inhibitor, nitrobenzylthioinosine (NBTI, 10−6  M), adenosine and related analogues induced relaxations with the following potency order: 5′-N-ethylcarboxamidoadenosine (NECA)=5′-(N-cyclopropyl)-carboxamidoadenosine (CPCA)=2-chloroadenosine (2-CA)>adenosine>cyclopentyladenosine (CPA)=N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide (IB-MECA)=2-[p-(carboxyethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680). Epithelium removal or incubation with indomethacin (3×10−6  M) and L-NG-nitroarginine (L-NOARG, 3×10−5  M), inhibitors of prostanoids and nitric oxide (NO) synthase, respectively, failed to modify the relaxations to adenosine. 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10−8 M) and 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 3×10−8  M and 10−7  M), A1 and A2A receptor selective antagonists, respectively, did not modify the relaxations to adenosine or NECA. 8-phenyltheophylline (8-PT, 10−5  M) and DPCPX (10−6  M), which block A1/A2-receptors, reduced such relaxations. In strips treated with guanethidine (10−5  M), atropine (10−7  M), L-NOARG (3×10−5  M) and indomethacin (3×10−6  M), both electrical field stimulation (EFS, 5 Hz) and exogenous ATP (10−4  M) induced contractions of preparations. 8-PT (10−5  M) increased both contractions. DPCPX (10−8  M), NECA (10−4  M), CPCA, (10−4  M) and 2-CA (10−4  M) did not alter the contractions to EFS. The present results suggest that adenosine relaxes the pig intravesical ureter, independently of prostanoids

  18. Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation

    PubMed Central

    2014-01-01

    Background Polytypism in aposematic species is unlikely according to theory, but commonly seen in nature. Ranitomeya imitator is a poison frog species exhibiting polytypic mimicry of three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis) across four allopatric populations (a "mimetic radiation"). In order to investigate chemical defenses in this system, a key prediction of Müllerian mimicry, we analyzed the alkaloids of both models and mimics from four allopatric populations. Results In this study we demonstrate distinct differences in alkaloid profiles between co-mimetic species within allopatric populations. We further demonstrate that R. imitator has a greater number of distinct alkaloid types than the model species and more total alkaloids in all but one population. Conclusions Given that R. imitator is the more abundant species in these populations, R. imitator is likely driving the majority of predator-learned avoidance in these complexes. The success of Ranitomeya imitator as a putative advergent mimic may be a direct result of differences in alkaloid sequestration. Furthermore, we propose that automimicry within co-mimetic species is an important avenue of research. PMID:24707851

  19. Combining Basal Insulin Analogs with Glucagon-Like Peptide-1 Mimetics

    PubMed Central

    2011-01-01

    Abstract Basal insulin analogs are recognized as an effective method of achieving and maintaining glycemic control for patients with type 2 diabetes. However, the progressive nature of the disease means that some individuals may require additional ways to maintain their glycemic goals. Intensification in these circumstances has traditionally been achieved by the addition of short-acting insulin to cover postprandial glucose excursions that are not targeted by basal insulin. However, intensive insulin regimens are associated with a higher risk of hypoglycemia and weight gain, which can contribute to a greater burden on patients. The combination of basal insulin with a glucagon-like peptide-1 (GLP-1) mimetic is a potentially attractive solution to this problem for some patients with type 2 diabetes. GLP-1 mimetics target postprandial glucose and should complement the activity of basal insulins; they are also associated with a relatively low risk of associated hypoglycemia and moderate, but significant, weight loss. Although the combination has not been approved by regulatory authorities, preliminary evidence from mostly small-scale studies suggests that basal insulins in combination with GLP-1 mimetics do provide improvements in A1c and postprandial glucose with concomitant weight loss and no marked increase in the risk of hypoglycemia. These results are promising, but further studies are required, including comparisons with basal–bolus therapy, before the complex value of this association can be fully appreciated. PMID:21711120

  20. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review.

    PubMed

    White, C Roger; Garber, David W; Anantharamaiah, G M

    2014-10-01

    Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials. PMID:25157031

  1. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review

    PubMed Central

    White, C. Roger; Garber, David W.; Anantharamaiah, G. M.

    2014-01-01

    Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials. PMID:25157031

  2. Modified Gauss-Bonnet gravity with the Lagrange multiplier constraint as mimetic theory

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Odintsov, Sergei D.; Oikonomou, V. K.

    2015-09-01

    In this paper we propose and extensively study mimetic f({G}) modified gravity models, with various scenarios of cosmological evolution, with or without extra matter fluids. The easiest formulation is based on the use of the Lagrange multiplier constraint. In certain versions of this theory, it is possible to realize accelerated expansion of the Universe or even unified evolution, which includes inflation with dark energy, and at the same time in the same theoretical framework, dark matter is described by the theory. This is achieved by the re-parametrization of the metric tensor, which introduces a new degree of freedom in the cosmological equations and leads to the appearance of the mimetic ‘dark matter’ component. In the context of the mimetic f({G}) theory, we also provide some quite general reconstruction schemes, which enable us to find which f({G}) gravity generates a specific cosmological evolution. In addition, we also provide the general reconstruction technique for the Lagrange multiplier f({G}) gravity. All our results are accompanied by illustrative examples, with special emphasis on bouncing cosmologies.

  3. SOD mimetic activity and antiproliferative properties of a novel tetra nuclear copper (II) complex.

    PubMed

    Weintraub, Sagiv; Moskovitz, Yoni; Fleker, Ohad; Levy, Ariel R; Meir, Aviv; Ruthstein, Sharon; Benisvy, Laurent; Gruzman, Arie

    2015-12-01

    The search for novel anticancer therapeutic agents is an urgent and important issue in medicinal chemistry. Here, we report on the biological activity of the copper-based bioinorganic complex Cu4 (2,4-di-tert-butyl-6-(1H-imidazo- [1, 10] phenanthrolin-2-yl)phenol)4]·10 CH3CN (2), which was tested in rat L6 myotubes, mouse NSC-34 motor neurone-like cells, and HepG-2 human liver carcinoma. Upon 96 h incubation, 2 exhibited a significant cytotoxic effect on all three types of cells via activation of two cell death mechanisms (apoptosis and necrosis). Complex 2 exhibited better potency and efficacy than the canonical cytotoxic drug cisplatin. Moreover, during shorter incubations, complex 2 demonstrated a significant SOD mimetic activity, and it was more effective and more potent than the well-known SOD mimetic TEMPOL. In addition, complex 2 was able to interact with DNA and, cleave DNA in the presence of sodium ascorbate. This study shows the potential of using polynuclear redox active compounds for developing novel anticancer drugs through SOD-mimetic redox pathways. PMID:26547749

  4. Manipulation of health span and function by dietary caloric restriction mimetics.

    PubMed

    Roth, George S; Ingram, Donald K

    2016-01-01

    After nearly a century of rigorous investigation and testing, dietary caloric restriction (CR) remains the most robust and reproducible method for slowing aging and maintaining health, function, and vitality. This intervention has been applied to species across the evolutionary spectrum, but for a number of reasons, practical applicability to humans has been questioned. To overcome these issues, we initiated the field of CR mimetics in 1998 and have observed its development into a full-fledged antiaging industry. Basically, strategies that enable individuals to obtain the biological benefits of CR without reducing actual food intake can be considered CR mimetics, whether functional, pharmaceutical, nutraceutical, or other. Some of the best known candidates include resveratrol and related agents, the antidiabetic drug metformin, and rapamycin and other mTOR regulators. While the mechanisms of action vary, these and essentially all CR mimetic candidates work through at least some of the same pathways as actual CR. While the entire field continues to evolve rapidly, the current status will be reviewed here, with particular focus on recent developments, the most practical relevance and applicability for potential consumers, and new strategies for the future. PMID:26214681

  5. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development.

    PubMed

    Bower, Rebekah L; Hay, Debbie L

    2016-06-01

    Amylin is an important, but poorly understood, 37 amino acid glucoregulatory hormone with great potential to target metabolic diseases. A working example that the amylin system is one worth developing is the FDA-approved drug used in insulin-requiring diabetic patients, pramlintide. However, certain characteristics of pramlintide pharmacokinetics and formulation leave considerable room for further development of amylin-mimetic compounds. Given that amylin-mimetic drug design and development is an active area of research, surprisingly little is known about the structure/function relationships of amylin. This is largely due to the unfavourable aggregative and solubility properties of the native peptide sequence, which are further complicated by the composition of amylin receptors. These are complexes of the calcitonin receptor with receptor activity-modifying proteins. This review explores what is known of the structure-function relationships of amylin and provides insights that can be drawn from the closely related peptide, CGRP. We also describe how this information is aiding the development of more potent and stable amylin mimetics, including peptide hybrids. PMID:27061187

  6. Identification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (TIRF) microscopy

    PubMed Central

    Lanzerstorfer, Peter; Stadlbauer, Verena; Chtcheglova, Lilia A; Haselgrübler, Renate; Borgmann, Daniela; Wruss, Jürgen; Hinterdorfer, Peter; Schröder, Klaus; Winkler, Stephan M; Höglinger, Otmar; Weghuber, Julian

    2014-01-01

    Background and Purpose Insulin stimulates the transport of glucose in target tissues by triggering the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Resistance to insulin, the major abnormality in type 2 diabetes, results in a decreased GLUT4 translocation efficiency. Thus, special attention is being paid to search for compounds that are able to enhance this translocation process in the absence of insulin. Experimental Approach Total internal reflection fluorescence (TIRF) microscopy was applied to quantify GLUT4 translocation in highly insulin-sensitive CHO-K1 cells expressing a GLUT4-myc-GFP fusion protein. Key Results Using our approach, we demonstrated GLUT4 translocation modulatory properties of selected substances and identified novel potential insulin mimetics. An increase in the TIRF signal was found to correlate with an elevated glucose uptake. Variations in the expression level of the human insulin receptor (hInsR) showed that the insulin mimetics identified stimulate GLUT4 translocation by a mechanism that is independent of the presence of the hInsR. Conclusions and Implications Taken together, the results indicate that TIRF microscopy is an excellent tool for the quantification of GLUT4 translocation and for identifying insulin mimetic drugs. PMID:25039620

  7. USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics.

    PubMed

    Lee, E-W; Seong, D; Seo, J; Jeong, M; Lee, H-K; Song, J

    2015-09-01

    Given their crucial role in apoptosis suppression, inhibitor of apoptosis proteins (IAPs) have recently become attractive targets for cancer therapy. Here, we report that cellular IAP2 (cIAP2) is specifically stabilized in several cancer cell lines, leading to resistance to Smac mimetics, such as BV6 and birinapant. In particular, our results showed that cIAP2 depletion, but not cIAP1 depletion, sensitized cancer cells to Smac mimetic-induced apoptosis. Ubiquitin-specific protease 11 (USP11) is a deubiquitylase that directly stabilizes cIAP2. USP11 overexpression is frequently found in colorectal cancer and melanoma and is correlated with poor survival. In our study, cancer cell lines expressing high levels of USP11 exhibited strong resistance to Smac mimetic-induced cIAP2 degradation. Furthermore, USP11 downregulation sensitized these cells to apoptosis induced by TRAIL and BV6 and suppressed tumor growth in a xenograft model. Finally, the TNFα/JNK pathway induced USP11 expression and maintained cIAP2 stability, suggesting an alternative TNFα-dependent cell survival pathway. Collectively, our data suggest that USP11-stabilized cIAP2 may serve as a barrier against IAP-targeted clinical approaches. PMID:25613375

  8. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. PMID:26011425

  9. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes

  10. Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines

    PubMed Central

    Koss, Brian; Ryan, Jeremy; Budhraja, Amit; Szarama, Katherine; Yang, Xue; Bathina, Madhavi; Cardone, Michael H.; Nikolovska-Coleska, Zaneta; Letai, Anthony; Opferman, Joseph T.

    2016-01-01

    One of the hallmarks of cancer is a resistance to the induction of programmed cell death that is mediated by selection of cells with elevated expression of anti-apoptotic members of the BCL-2 family. To counter this resistance, new therapeutic agents known as BH3-mimetic small molecules are in development with the goal of antagonizing the function of anti-apoptotic molecules and promoting the induction of apoptosis. To facilitate the testing and modeling of BH3-mimetic agents, we have developed a powerful system for evaluation and screening of agents both in culture and in immune competent animal models by engineering mouse leukemic cells and re-programming them to be dependent on exogenously expressed human anti-apoptotic BCL-2 family members. Here we demonstrate that this panel of cell lines can determine the specificity of BH3-mimetics to individual anti-apoptotic BCL-2 family members (BCL-2, BCL-XL, BCL-W, BFL-1, and MCL-1), demonstrate whether cell death is due to the induction of apoptosis (BAX and BAK-dependent), and faithfully assess the efficacy of BH3-mimetic small molecules in pre-clinical mouse models. These cells represent a robust and valuable pre-clinical screening tool for validating the efficacy, selectivity, and on-target action of BH3-mimetic agents. PMID:26862853

  11. Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines.

    PubMed

    Koss, Brian; Ryan, Jeremy; Budhraja, Amit; Szarama, Katherine; Yang, Xue; Bathina, Madhavi; Cardone, Michael H; Nikolovska-Coleska, Zaneta; Letai, Anthony; Opferman, Joseph T

    2016-03-01

    One of the hallmarks of cancer is a resistance to the induction of programmed cell death that is mediated by selection of cells with elevated expression of anti-apoptotic members of the BCL-2 family. To counter this resistance, new therapeutic agents known as BH3-mimetic small molecules are in development with the goal of antagonizing the function of anti-apoptotic molecules and promoting the induction of apoptosis. To facilitate the testing and modeling of BH3-mimetic agents, we have developed a powerful system for evaluation and screening of agents both in culture and in immune competent animal models by engineering mouse leukemic cells and re-programming them to be dependent on exogenously expressed human anti-apoptotic BCL-2 family members. Here we demonstrate that this panel of cell lines can determine the specificity of BH3-mimetics to individual anti-apoptotic BCL-2 family members (BCL-2, BCL-XL, BCL-W, BFL-1, and MCL-1), demonstrate whether cell death is due to the induction of apoptosis (BAX and BAK-dependent), and faithfully assess the efficacy of BH3-mimetic small molecules in pre-clinical mouse models. These cells represent a robust and valuable pre-clinical screening tool for validating the efficacy, selectivity, and on-target action of BH3-mimetic agents. PMID:26862853

  12. Potent Bivalent Smac Mimetics: Effect of the Linker on Binding to Inhibitor of Apoptosis Proteins (IAPs) and Anticancer Activity

    PubMed Central

    Sun, Haiying; Liu, Liu; Lu, Jianfeng; Bai, Longchuan; Li, Xiaoqin; Nikolovska-Coleska, Zaneta; McEachern, Donna; Yang, Chao-Yie; Qiu, Su; Yi, Han; Sun, Duxin; Wang, Shaomeng

    2011-01-01

    We have synthesized and evaluated a series of non-peptidic, bivalent Smac mimetics as antagonists of the inhibitor of apoptosis proteins and new anticancer agents. All these bivalent Smac mimetics bind to full-length XIAP with low nanomolar affinities and function as ultra-potent antagonists of XIAP. While these Smac mimetics bind to cIAP1/2 with similar low nanomolar affinities, their potencies to induce degradation of cIAP1/2 proteins in cells differ by more than 100-fold. The most potent bivalent Smac mimetics inhibit cell growth with IC50 values from 1–3 nM in the MDA-MB-231 breast cancer cell line and are 100-times more potent than the least potent compounds. Determination of intracellular concentrations for several representative compounds showed that the linkers in these bivalent Smac mimetics significantly affect their intracellular concentrations, hence the overall cellular activity. Compound 27 completely inhibits tumor growth in the MDA-MB-231 xenografts, while causing no signs of toxicity in the animals. PMID:21462933

  13. Mimetic Relation as Matching-to-Sample Observing Response and the Emergence of Speaker Relations in Children with and without Hearing Impairments

    ERIC Educational Resources Information Center

    Elias, Nassim Chamel; Goyos, Celso

    2013-01-01

    This study investigated the effect of matching-to-sample and mimetic-relations teaching on the emergence of signed tact and textual repertoire through a multiple-baseline design, across three groups of three words in children with and without hearing impairments and with no reading repertoire. Following mimetic-relations teaching and the…

  14. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan.

    PubMed

    Gillespie, Zoe E; Pickering, Joshua; Eskiw, Christopher H

    2016-01-01

    Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth. PMID:27588026

  15. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal and polyhedral meshes (u)

    SciTech Connect

    Lipnikov, Konstantin; Shashkov, Mikhail

    2011-01-11

    We construct a new mimetic tensor artificial viscosity on general polygonal and polyhedral meshes. The tensor artificial viscosity is based on a mimetic discretization of coordinate invariant operators, divergence of a tensor and gradient of a vector. The focus of this paper is on the symmetric form, div ({mu},{var_epsilon}(u)), of the tensor artificial viscosity where {var_epsilon}(u) is the symmetrized gradient of u and {mu}, is a tensor. The mimetic discretizations of this operator is derived for the case of a full tensor coefficient {mu}, that may reflect a shock direction. We demonstrate performance of the new viscosity for the Noh implosion, Sedov explosion and Saltzman piston problems in both Cartesian and axisymmetric coordinate systems.

  16. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan

    PubMed Central

    Gillespie, Zoe E.; Pickering, Joshua; Eskiw, Christopher H.

    2016-01-01

    Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth. PMID:27588026

  17. Differential role of RIP1 in Smac mimetic-mediated chemosensitization of neuroblastoma cells

    PubMed Central

    Czaplinski, Sebastian; Abhari, Behnaz Ahangarian; Torkov, Alica; SeggewiΔ, Dominik; Hugle, Manuela; Fulda, Simone

    2015-01-01

    We explored the potential of Smac mimetics, which antagonize Inhibitor of Apoptosis (IAP) proteins, for chemosensitization of neuroblastoma (NB). Here, we report that Smac mimetics, e.g. BV6, prime NB cells for chemotherapeutics including the topoisomerase II inhibitor doxorubicin (DOX) and vinca alkaloids such as Vincristine (VCR), Vinblastine (VBL) and Vinorelbine (VNR). Additionally, BV6 acts in concert with DOX or VCR to suppress long-term clonogenic growth. While BV6 causes rapid downregulation of cellular IAP (cIAP)1 protein and nuclear factor-kappaB (NF-κB) activation, DOX/BV6- or VCR/BV6-induced apoptosis occurs independently of NF-κB or TNFα signaling, since overexpression of dominant-negative IκBα superrepressor or the Tumor Necrosis Factor (TNF)α-blocking antibody Enbrel fail to block cell death. Mechanistic studies reveal that Receptor-interacting protein (RIP)1 is required for DOX/BV6-, but not for VCR/BV6-induced apoptosis, since transient or stable knockdown of RIP1 or the pharmacological RIP1 inhibitor necrostatin-1 significantly reduce apoptosis. By comparison, VCR/BV6-mediated apoptosis critically depends on the mitochondrial pathway. VCR/BV6 cotreatment causes phosphorylation of BCL-2 during mitotic arrest, enhanced activation of BAX and BAK and loss of mitochondrial membrane potential (MMP). Additionally, overexpression of BCL-2 profoundly suppresses VCR/BV6-induced apoptosis. Thus, BV6 sensitizes NB cells to chemotherapy-induced apoptosis via distinct initial signaling mechanisms depending on the chemotherapeutic drug. These findings provide novel mechanistic insights into Smac mimetic-mediated chemosensitization of NB. PMID:26575016

  18. Differential role of RIP1 in Smac mimetic-mediated chemosensitization of neuroblastoma cells.

    PubMed

    Czaplinski, Sebastian; Abhari, Behnaz Ahangarian; Torkov, Alica; Seggewiß, Dominik; Hugle, Manuela; Fulda, Simone

    2015-12-01

    We explored the potential of Smac mimetics, which antagonize Inhibitor of Apoptosis (IAP) proteins, for chemosensitization of neuroblastoma (NB). Here, we report that Smac mimetics, e.g. BV6, prime NB cells for chemotherapeutics including the topoisomerase II inhibitor doxorubicin (DOX) and vinca alkaloids such as Vincristine (VCR), Vinblastine (VBL) and Vinorelbine (VNR). Additionally, BV6 acts in concert with DOX or VCR to suppress long-term clonogenic growth. While BV6 causes rapid downregulation of cellular IAP (cIAP)1 protein and nuclear factor-kappaB (NF-κB) activation, DOX/BV6- or VCR/BV6-induced apoptosis occurs independently of NF-κB or TNFα signaling, since overexpression of dominant-negative IκBα superrepressor or the Tumor Necrosis Factor (TNF)α-blocking antibody Enbrel fail to block cell death. Mechanistic studies reveal that Receptor-interacting protein (RIP)1 is required for DOX/BV6-, but not for VCR/BV6-induced apoptosis, since transient or stable knockdown of RIP1 or the pharmacological RIP1 inhibitor necrostatin-1 significantly reduce apoptosis. By comparison, VCR/BV6-mediated apoptosis critically depends on the mitochondrial pathway. VCR/BV6 cotreatment causes phosphorylation of BCL-2 during mitotic arrest, enhanced activation of BAX and BAK and loss of mitochondrial membrane potential (MMP). Additionally, overexpression of BCL-2 profoundly suppresses VCR/BV6-induced apoptosis. Thus, BV6 sensitizes NB cells to chemotherapy-induced apoptosis via distinct initial signaling mechanisms depending on the chemotherapeutic drug. These findings provide novel mechanistic insights into Smac mimetic-mediated chemosensitization of NB. PMID:26575016

  19. Accelerating cosmologies and the phase structure of F (R ) gravity with Lagrange multiplier constraints: A mimetic approach

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-01-01

    We study mimetic F (R ) gravity with a potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen F (R ) gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well-known bouncing cosmologies. The attribute of our method is that the F (R ) gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some F (R ) gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic F (R ) gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein-frame counterpart theory of the Jordan-frame mimetic F (R ) gravity, and we discuss the general properties of the theory and exemplify our analysis by studying a quite interesting (from a phenomenological point of view) model with two scalar fields. We also calculate the observational indices of the two-scalar-field model, by using the two-scalar-field formalism. Furthermore, we extensively study the dynamical system that corresponds to the mimetic F (R ) gravity, by finding the fixed points and studying their stability. Finally, we modify our reconstruction method to function in the inverse way and thus yield which F (R ) gravity can realize a specific cosmological evolution, given the mimetic potential and the Lagrange multiplier.

  20. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes

    PubMed Central

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S.; Taube, Ran

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential. PMID:26629902

  1. Characterization of Potent SMAC Mimetics that Sensitize Cancer Cells to TNF Family-Induced Apoptosis.

    PubMed

    Welsh, Kate; Milutinovic, Snezana; Ardecky, Robert J; Gonzalez-Lopez, Marcos; Ganji, Santhi Reddy; Teriete, Peter; Finlay, Darren; Riedl, Stefan; Matsuzawa, Shu-Ichi; Pinilla, Clemencia; Houghten, Richard; Vuori, Kristiina; Reed, John C; Cosford, Nicholas D P

    2016-01-01

    Members of the Inhibitor of APoptosis (IAP) protein family suppress apoptosis within tumor cells, particularly in the context of immune cell-mediated killing by the tumor necrosis factor (TNF) superfamily cytokines. Most IAPs are opposed endogenously by the second mitochondrial activator of caspases (SMAC), which binds to selected baculovirus IAP repeat (BIR) domains of IAPs to displace interacting proteins. The development of SMAC mimetics as novel anticancer drugs has gained impetus, with several agents now in human clinical trials. To further understand the cellular mechanisms of SMAC mimetics, we focused on IAP family members cIAP1 and cIAP2, which are recruited to TNF receptor complexes where they support cell survival through NF-κB activation while suppressing apoptosis by preventing caspase activation. We established fluorescence polarization (FP) assays for the BIR2 and BIR3 domains of human cIAP1 and cIAP2 using fluorochrome-conjugated SMAC peptides as ligands. A library of SMAC mimetics was profiled using the FP assays to provide a unique structure activity relationship (SAR) analysis compared to previous assessments of binding to XIAP. Potent compounds displayed mean inhibitory binding constants (Ki) of 9 to 27 nM against the BIR3 domains of cIAP1 and cIAP2, respectively. Selected compounds were then characterized using cytotoxicity assays in which a cytokine-resistant human tumor cell line was sensitized to either TNF or lymphotoxin-α (LT-α). Cytotoxicity correlated closely with cIAP1 and cIAP2 BIR3 binding activity with the most potent compounds able to reduce cell viability by 50%. Further testing demonstrated that active compounds also inhibit RIP1 binding to BIR3 of cIAP1 and cIAP2 in vitro and reduce steady-state cIAP1 protein levels in cells. Altogether, these data inform the SAR for our SMAC mimetics with respect to cIAP1 and cIAP2, suggesting that these IAP family members play an important role in tumor cell resistance to cytotoxicity

  2. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    SciTech Connect

    Manzini, Gianmarco

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  3. Chroman-4-one and chromone based somatostatin β-turn mimetics.

    PubMed

    Fridén-Saxin, Maria; Seifert, Tina; Malo, Marcus; da Silva Andersson, Krystle; Pemberton, Nils; Dyrager, Christine; Friberg, Annika; Dahlén, Kristian; Wallén, Erik A A; Grøtli, Morten; Luthman, Kristina

    2016-05-23

    A scaffold approach has been used to develop somatostatin β-turn mimetics based on chroman-4-one and chromone ring systems. Such derivatives could adopt conformations resembling type II or type II' β-turns. Side chain equivalents of the crucial Trp8 and Lys9 in somatostatin were introduced in the 2- and 8-positions of the scaffolds using efficient reactions. Interestingly, this proof-of-concept study shows that 4 and 9 have Ki-values in the low μM range when evaluated for their affinity for the sst2 and sst4 receptors. PMID:26974375

  4. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    SciTech Connect

    Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo

    2013-12-15

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  5. From Complex Natural Products to Simple Synthetic Mimetics by Computational De Novo Design.

    PubMed

    Friedrich, Lukas; Rodrigues, Tiago; Neuhaus, Claudia S; Schneider, Petra; Schneider, Gisbert

    2016-06-01

    We present the computational de novo design of synthetically accessible chemical entities that mimic the complex sesquiterpene natural product (-)-Englerin A. We synthesized lead-like probes from commercially available building blocks and profiled them for activity against a computationally predicted panel of macromolecular targets. Both the design template (-)-Englerin A and its low-molecular weight mimetics presented nanomolar binding affinities and antagonized the transient receptor potential calcium channel TRPM8 in a cell-based assay, without showing target promiscuity or frequent-hitter properties. This proof-of-concept study outlines an expeditious solution to obtaining natural-product-inspired chemical matter with desirable properties. PMID:27111835

  6. Novel thrombin inhibitors incorporating non-basic partially saturated heterobicyclic P1-arginine mimetics.

    PubMed

    Peterlin-Masic, Lucija; Mlinsek, Gregor; Solmajer, Tomaz; Trampus-Bakija, Alenka; Stegnar, Mojca; Kikelj, Danijel

    2003-03-10

    The design, synthesis and biological activity of non-covalent thrombin inhibitors incorporating 4,5,6,7-tetrahydroindazole, 2-methyl-4,5,6,7-tetrahydroindazole, 4,5,6,7-tetrahydroisoindole, 5,6,7,8-tetrahydroquinazoline and 5,6,7,8-tetrahydroquinazolin-2-amine as novel, partially saturated, heterobicyclic P(1)-arginine side-chain mimetics is described. The binding mode of the most potent candidate in the series co-crystallized with human alpha-thrombin, which exhibited an in vitro K(i) of 140nM and more that 478-fold selectivity against trypsin, is discussed. PMID:12617892

  7. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    PubMed Central

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  8. The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair.

    PubMed

    Saini, Vedangana; Lutz, David; Kataria, Hardeep; Kaur, Gurcharan; Schachner, Melitta; Loers, Gabriele

    2016-01-01

    Polysialic acid (PSA) is a large negatively charged glycan mainly attached to the neural cell adhesion molecule (NCAM). Several studies have shown that it is important for correct formation of brain circuitries during development and for synaptic plasticity, learning and memory in the adult. PSA also plays a major role in nervous system regeneration following injury. As a next step for clinical translation of PSA based therapeutics, we have previously identified the small organic compounds 5-nonyloxytryptamine and vinorelbine as PSA mimetics. Activity of 5-nonyloxytryptamine and vinorelbine had been confirmed in assays with neural cells from the central and peripheral nervous system in vitro and shown to be independent of their function as serotonin receptor 5-HT1B/1D agonist or cytostatic drug, respectively. As we show here in an in vivo paradigm for spinal cord injury in mice, 5-nonyloxytryptamine and vinorelbine enhance regain of motor functions, axonal regrowth, motor neuron survival and remyelination. These data indicate that 5-nonyloxytryptamine and vinorelbine may be re-tasked from their current usage as a 5-HT1B/1D agonist or cytostatic drug to act as mimetics for PSA to stimulate regeneration after injury in the mammalian nervous system. PMID:27324620

  9. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer.

    PubMed

    Lunavat, Taral R; Jang, Su Chul; Nilsson, Lisa; Park, Hyun Taek; Repiska, Gabriela; Lässer, Cecilia; Nilsson, Jonas A; Gho, Yong Song; Lötvall, Jan

    2016-09-01

    To develop RNA-based therapeutics, it is crucial to create delivery vectors that transport the RNA molecule into the cell cytoplasm. Naturally released exosomes vesicles (also called "Extracellular Vesicles") have been proposed as possible RNAi carriers, but their yield is relatively small in any cell culture system. We have previously generated exosome-mimetic nanovesicles (NV) by serial extrusions of cells through nano-sized filters, which results in 100-times higher yield of extracellular vesicles. We here test 1) whether NV can be loaded with siRNA exogenously and endogenously, 2) whether the siRNA-loaded NV are taken up by recipient cells, and 3) whether the siRNA can induce functional knock-down responses in recipient cells. A siRNA against GFP was first loaded into NV by electroporation, or a c-Myc shRNA was expressed inside of the cells. The NV were efficiently loaded with siRNA with both techniques, were taken up by recipient cells, which resulted in attenuation of target gene expression. In conclusion, our study suggests that exosome-mimetic nanovesicles can be a platform for RNAi delivery to cell cytoplasm. PMID:27344366

  10. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose.

    PubMed

    Zhang, Weimin; Ma, Diao; Du, Jianxiu

    2014-03-01

    Prussian blue nanoparticles (PB NPs) exhibits an intrinsic peroxidase-like catalytic activity towards the hydrogen peroxide (H2O2)-mediated oxidation of classical peroxidase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt to produce a colored product. The catalysis follows Michaelis-Menen kinetics and shows strong affinity for H2O2. Using PB NPs as a peroxidase mimetics, a colorimetric method was developed for the detection of 0.05-50.0 μM H2O2, with a detection limit of 0.031 μM. When the catalytic reaction of PB NPs was coupled with the reaction of glucose oxidation catalyzed by glucose oxidase, a sensitive and selective colorimetric method for the detection of glucose was realized. The limit of detection for glucose was determined to be as low as 0.03 μM and the linear range was from 0.1 μM to 50.0 μM. The method was successfully applied to the determination of glucose in human serum. Compared with other nanomaterials-based peroxidase mimetics, PB NPs provides 10-100 times higher sensitivity toward the detection of H2O2 and glucose. The detection platform developed showed great potential applications in varieties of physiological importance substances when merged with appropriate H2O2-producing oxidases. PMID:24468383

  11. The BCL-2 protein family, BH3-mimetics and cancer therapy

    PubMed Central

    Delbridge, A R D; Strasser, A

    2015-01-01

    Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The ‘BCL-2-regulated' or ‘intrinsic' apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics, ‘BH3-mimetics', has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2 family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds. PMID:25952548

  12. Prophylactic treatment with the BH3 mimetic ABT-737 impedes Myc-driven lymphomagenesis in mice.

    PubMed

    Kelly, P N; Grabow, S; Delbridge, A R D; Adams, J M; Strasser, A

    2013-01-01

    As many oncogenic changes, such as Myc overexpression, promote apoptosis, the survival of emerging neoplastic clones may often initially depend upon endogenous levels of particular pro-survival members of the Bcl-2 protein family. Pertinently, we recently showed that in lymphoma-prone Eμ-myc transgenic mice, which overexpress Myc in all B-lymphoid cells, endogenous Bcl-x(L) is critical for the survival, as well as the expansion of preneoplastic B-lymphoid cells and the development of malignant disease. This discovery raised the possibility that pharmacological blockade of Bcl-x(L) might impede Myc-driven lymphoma development. Indeed, we report here that treatment of preleukaemic Eμ-myc transgenic mice with the Bcl-2 homology (BH)3 mimetic drug ABT-737, which inhibits Bcl-x(L), as well as Bcl-2 and Bcl-w, augmented apoptosis of preneoplastic B-lymphoid cells, reduced their numbers and greatly prolonged lymphoma-free survival. These findings reveal that BH3 mimetic drugs may provide a prophylactic strategy to prevent the development of certain tumours, particularly those driven by deregulated Myc expression. Moreover, such treatment may help in the management of patients with hereditary cancer syndromes and perhaps also in the prevention of tumour relapses. PMID:22814621

  13. Stick-slip friction of gecko-mimetic flaps on smooth and rough surfaces.

    PubMed

    Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L; Israelachvili, Jacob N

    2015-03-01

    The discovery and understanding of gecko 'frictional-adhesion' adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick-slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick-slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick-slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. PMID:25589569

  14. Acute Sensitivity of Ph-like Acute Lymphoblastic Leukemia to the SMAC-Mimetic Birinapant.

    PubMed

    Richmond, Jennifer; Robbins, Alissa; Evans, Kathryn; Beck, Dominik; Kurmasheva, Raushan T; Billups, Catherine A; Carol, Hernan; Heatley, Sue; Sutton, Rosemary; Marshall, Glenn M; White, Deborah; Pimanda, John; Houghton, Peter J; Smith, Malcolm A; Lock, Richard B

    2016-08-01

    Ph-like acute lymphoblastic leukemia (ALL) is a genetically defined high-risk ALL subtype with a generally poor prognosis. In this study, we evaluated the efficacy of birinapant, a small-molecule mimetic of the apoptotic regulator SMAC, against a diverse set of ALL subtypes. Birinapant exhibited potent and selective cytotoxicity against B-cell precursor ALL (BCP-ALL) cells that were cultured ex vivo or in vivo as patient-derived tumor xenografts (PDX). Cytotoxicity was consistently most acute in Ph-like BCP-ALL. Unbiased gene expression analysis of BCP-ALL PDX specimens identified a 68-gene signature associated with birinapant sensitivity, including an enrichment for genes involved in inflammatory response, hematopoiesis, and cell death pathways. All Ph-like PDXs analyzed clustered within this 68-gene classifier. Mechanistically, birinapant sensitivity was associated with expression of TNF receptor TNFR1 and was abrogated by interfering with the TNFα/TNFR1 interaction. In combination therapy, birinapant enhanced the in vivo efficacy of an induction-type regimen of vincristine, dexamethasone, and L-asparaginase against Ph-like ALL xenografts, offering a preclinical rationale to further evaluate this SMAC mimetic for BCP-ALL treatment. Cancer Res; 76(15); 4579-91. ©2016 AACR. PMID:27302164

  15. Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection.

    PubMed

    Zoppe, Justin O; Ruottinen, Ville; Ruotsalainen, Janne; Rönkkö, Seppo; Johansson, Leena-Sisko; Hinkkanen, Ari; Järvinen, Kristiina; Seppälä, Jukka

    2014-04-14

    We present two facile approaches for introducing multivalent displays of tyrosine sulfate mimetic ligands on the surface of cellulose nanocrystals (CNCs) for application as viral inhibitors. We tested the efficacy of cellulose nanocrystals, prepared either from cotton fibers or Whatman filter paper, to inhibit alphavirus infectivity in Vero (B) cells. Cellulose nanocrystals were produced by sulfuric acid hydrolysis leading to nanocrystal surfaces decorated with anionic sulfate groups. When the fluorescent marker expressing Semliki Forest virus vector, VA7-EGFP, was incubated with CNCs, strong inhibition of virus infectivity was achieved, up to 100 and 88% for cotton and Whatman CNCs, respectively. When surface sulfate groups of CNCs were exchanged for tyrosine sulfate mimetic groups (i.e. phenyl sulfonates), improved viral inhibition was attained. Our observations suggest that the conjugation of target-specific functionalities to CNC surfaces provides a means to control their antiviral activity. Multivalent CNCs did not cause observable in vitro cytotoxicity to Vero (B) cells or human corneal epithelial (HCE-T) cells, even within the 100% virus-inhibitory concentrations. Based on the similar chemistry of known polyanionic inhibitors, our results suggest the potential application of CNCs as inhibitors of other viruses, such as human immunodeficiency virus (HIV) and herpes simplex viruses. PMID:24628489

  16. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    SciTech Connect

    Lipnikov, K; Berirao, L

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  17. Covalent binding and anchoring of cytochrome c to mitochondrial mimetic membranes promoted by cholesterol carboxyaldehyde.

    PubMed

    Genaro-Mattos, Thiago C; Appolinário, Patricia P; Mugnol, Katia C U; Bloch, Carlos; Nantes, Iseli L; Di Mascio, Paolo; Miyamoto, Sayuri

    2013-10-21

    Mitochondrial cholesterol has been reported to be increased under specific pathological conditions associated with enhanced oxidative stress parameters. In this scenario, cholesterol oxidation would be increased, leading to the production of reactive aldehydes, including cholesterol carboxyaldehyde (ChAld). By using SDS micelles as a mitochondrial mimetic model, we have demonstrated that ChAld covalently modifies cytochrome c (cytc), a protein known to participate in electron transport and apoptosis signaling. This mimetic model induces changes in cytc structure in the same way as mitochondrial membranes do. Tryptic digestion of the cytc-ChAld adduct followed by MALDI-TOF/TOF analyses revealed that modifications occur at Lys residues (K22) localized at cytc site L, a site involved in protein-protein and protein-membrane interactions. Interestingly, ChAld ligation prevented cytc detachment from liposomes even under high ionic strength conditions. Overall, it can be concluded that ChAld ligation to Lys residues at site L creates a hydrophobic tail at cytc, which promotes cytc anchoring to the membrane. Although not investigated in detail in this study, cytc adduction to cholesterol derived aldehydes could have implications in cytc release from mitochondria under apoptotic stimuli. PMID:24059586

  18. Evidence for a Müllerian mimetic radiation in Asian pitvipers.

    PubMed

    Sanders, K L; Malhotra, A; Thorpe, R S

    2006-05-01

    Müllerian mimicry, in which toxic species gain mutual protection from shared warning signals, is poorly understood in vertebrates, reflecting a paucity of examples. Indirect evidence for mimicry is found if monophyletic species or clades show parallel geographic variation in warning patterns. Here, we evaluate a hypothesis of Müllerian mimicry for the pitvipers in Southeast Asia using a phylogeny derived from DNA sequences from four combined mitochondrial regions. Mantel matrix correlation tests show that conspicuous red colour pattern elements are significantly associated with sympatric and parapatric populations in four genera. To our knowledge, this represents the first evidence of a Müllerian mimetic radiation in vipers. The putative mimetic patterns are rarely found in females. This appears paradoxical in light of the Müllerian prediction of monomorphism, but may be explained by divergent selection pressures on the sexes, which have different behaviours. We suggest that biased predation on active males causes selection for protective warning coloration, whereas crypsis is favoured in relatively sedentary females. PMID:16600892

  19. Accuracy analysis of mimetic finite volume operators on geodesic grids and a consistent alternative

    NASA Astrophysics Data System (ADS)

    Peixoto, Pedro S.

    2016-04-01

    Many newly developed climate, weather and ocean global models are based on quasi-uniform spherical polygonal grids, aiming for high resolution and better scalability. Thuburn et al. (2009) and Ringler et al. (2010) developed a C staggered finite volume/difference method for arbitrary polygonal spherical grids suitable for these next generation dynamical cores. This method has many desirable mimetic properties and became popular, being adopted in some recent models, in spite of being known to possess low order of accuracy. In this work, we show that, for the nonlinear shallow water equations on non-uniform grids, the method has potentially 3 main sources of inconsistencies (local truncation errors not converging to zero as the grid is refined): (i) the divergence term of the continuity equation, (ii) the perpendicular velocity and (iii) the kinetic energy terms of the vector invariant form of the momentum equations. Although some of these inconsistencies have not impacted the convergence on some standard shallow water test cases up until now, they may constitute a potential problem for high resolution 3D models. Based on our analysis, we propose modifications for the method that will make it first order accurate in the maximum norm. It preserves many of the mimetic properties, albeit having non-steady geostrophic modes on the f-sphere. Experimental results show that the resulting model is a more accurate alternative to the existing formulations and should provide means of having a consistent, computationally cheap and scalable atmospheric or ocean model on C staggered Voronoi grids.

  20. The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair

    PubMed Central

    Saini, Vedangana; Lutz, David; Kataria, Hardeep; Kaur, Gurcharan; Schachner, Melitta; Loers, Gabriele

    2016-01-01

    Polysialic acid (PSA) is a large negatively charged glycan mainly attached to the neural cell adhesion molecule (NCAM). Several studies have shown that it is important for correct formation of brain circuitries during development and for synaptic plasticity, learning and memory in the adult. PSA also plays a major role in nervous system regeneration following injury. As a next step for clinical translation of PSA based therapeutics, we have previously identified the small organic compounds 5-nonyloxytryptamine and vinorelbine as PSA mimetics. Activity of 5-nonyloxytryptamine and vinorelbine had been confirmed in assays with neural cells from the central and peripheral nervous system in vitro and shown to be independent of their function as serotonin receptor 5-HT1B/1D agonist or cytostatic drug, respectively. As we show here in an in vivo paradigm for spinal cord injury in mice, 5-nonyloxytryptamine and vinorelbine enhance regain of motor functions, axonal regrowth, motor neuron survival and remyelination. These data indicate that 5-nonyloxytryptamine and vinorelbine may be re-tasked from their current usage as a 5-HT1B/1D agonist or cytostatic drug to act as mimetics for PSA to stimulate regeneration after injury in the mammalian nervous system. PMID:27324620

  1. Modeling anisotropic flow and heat transport by using mimetic finite differences

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Büsing, Henrik

    2016-08-01

    Modeling anisotropic flow in porous or fractured rock often assumes that the permeability tensor is diagonal, which means that its principle directions are always aligned with the coordinate axes. However, the permeability of a heterogeneous anisotropic medium usually is a full tensor. For overcoming this shortcoming, we use the mimetic finite difference method (mFD) for discretizing the flow equation in a hydrothermal reservoir simulation code, SHEMAT-Suite, which couples this equation with the heat transport equation. We verify SHEMAT-Suite-mFD against analytical solutions of pumping tests, using both diagonal and full permeability tensors. We compare results from three benchmarks for testing the capability of SHEMAT-Suite-mFD to handle anisotropic flow in porous and fractured media. The benchmarks include coupled flow and heat transport problems, three-dimensional problems and flow through a fractured porous medium with full equivalent permeability tensor. It shows firstly that the mimetic finite difference method can model anisotropic flow both in porous and in fractured media accurately and its results are better than those obtained by the multi-point flux approximation method in highly anisotropic models, secondly that the asymmetric permeability tensor can be included and leads to improved results compared the symmetric permeability tensor in the equivalent fracture models, and thirdly that the method can be easily implemented in existing finite volume or finite difference codes, which has been demonstrated successfully for SHEMAT-Suite.

  2. A simple contact mapping algorithm for identifying potential peptide mimetics in protein–protein interaction partners

    PubMed Central

    Krall, Alex; Brunn, Jonathan; Kankanala, Spandana; Peters, Michael H

    2014-01-01

    A simple, static contact mapping algorithm has been developed as a first step at identifying potential peptide biomimetics from protein interaction partner structure files. This rapid and simple mapping algorithm, “OpenContact” provides screened or parsed protein interaction files based on specified criteria for interatomic separation distances and interatomic potential interactions. The algorithm, which uses all-atom Amber03 force field models, was blindly tested on several unrelated cases from the literature where potential peptide mimetics have been experimentally developed to varying degrees of success. In all cases, the screening algorithm efficiently predicted proposed or potential peptide biomimetics, or close variations thereof, and provided complete atom-atom interaction data necessary for further detailed analysis and drug development. In addition, we used the static parsing/mapping method to develop a peptide mimetic to the cancer protein target, epidermal growth factor receptor. In this case, secondary, loop structure for the peptide was indicated from the intra-protein mapping, and the peptide was subsequently synthesized and shown to exhibit successful binding to the target protein. The case studies, which all involved experimental peptide drug advancement, illustrate many of the challenges associated with the development of peptide biomimetics, in general. Proteins 2014; 82:2253–2262. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:24756879

  3. Stick–slip friction of gecko-mimetic flaps on smooth and rough surfaces

    PubMed Central

    Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L.; Israelachvili, Jacob N.

    2015-01-01

    The discovery and understanding of gecko ‘frictional-adhesion’ adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick–slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick–slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick–slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. PMID:25589569

  4. The action of mimetic peptides on connexins protects fibroblasts from the negative effects of ischemia reperfusion

    PubMed Central

    Glass, Beverley J.; Hu, Rebecca G.; Phillips, Anthony R. J.; Becker, David L.

    2015-01-01

    ABSTRACT Connexins have been proposed as a target for therapeutic treatment of a variety of conditions. The main approaches have been by antisense or small peptides specific against connexins. Some of these peptides enhance communication while others interfere with connexin binding partners or bind to the intracellular and extracellular loops of connexins. Here, we explored the mechanism of action of a connexin mimetic peptide by evaluating its effect on gap junction channels, connexin protein levels and hemichannel activity in fibroblast cells under normal conditions and following ischemia reperfusion injury which elevates Cx43 levels, increases hemichannel activity and causes cell death. Our results showed that the effects of the mimetic peptide were concentration-dependent. High concentrations (100-300 μM) significantly reduced Cx43 protein levels and GJIC within 2 h, while these effects did not appear until 6 h when using lower concentrations (10-30 μM). Cell death can be reduced when hemichannel opening and GJIC were minimised. PMID:26471768

  5. L-Eye to Me: The Combined Role of Need for Cognition and Facial Trustworthiness in Mimetic Desires

    ERIC Educational Resources Information Center

    Treinen, Evelyne; Corneille, Olivier; Luypaert, Gaylord

    2012-01-01

    Recent studies showed that stimuli are evaluated more favourably when they are perceived to capture others' attention, an effect coined "mimetic desire". The aim of the present research was to examine the combined role of Need for Cognition and target's facial trustworthiness in this effect. Participants saw movie excerpts of trustworthy and…

  6. Cyclic thrombospondin-1 mimetics: grafting of a thrombospondin sequence into circular disulfide-rich frameworks to inhibit endothelial cell migration

    PubMed Central

    Chan, Lai Yue; Craik, David J.; Daly, Norelle L.

    2015-01-01

    Tumour formation is dependent on nutrient and oxygen supply from adjacent blood vessels. Angiogenesis inhibitors can play a vital role in controlling blood vessel formation and consequently tumour progression by inhibiting endothelial cell proliferation, sprouting and migration. The primary aim of the present study was to design cyclic thrombospondin-1 (TSP-1) mimetics using disulfide-rich frameworks for anti-angiogenesis therapies and to determine whether these peptides have better potency than the linear parent peptide. A short anti-angiogenic heptapeptide fragment from TSP-1 (GVITRIR) was incorporated into two cyclic disulfide-rich frameworks, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II) and SFTI-1 (sunflower trypsin inhibitor-1). The cyclic peptides were chemically synthesized and folded in oxidation buffers, before being tested in a series of in vitro evaluations. Incorporation of the bioactive heptapeptide fragment into the cyclic frameworks resulted in peptides that inhibited microvascular endothelial cell migration, and had no toxicity against normal primary human endothelial cells or cancer cells. Importantly, all of the designed cyclic TSP-1 mimetics were far more stable than the linear heptapeptide in human serum. The present study has demonstrated a novel approach to stabilize the active region of TSP-1. The anti-angiogenic activity of the native TSP-1 active fragment was maintained in the new TSP-1 mimetics and the results provide a new chemical approach for the design of TSP-1 mimetics. PMID:26464514

  7. Cyclic thrombospondin-1 mimetics: grafting of a thrombospondin sequence into circular disulfide-rich frameworks to inhibit endothelial cell migration.

    PubMed

    Chan, Lai Yue; Craik, David J; Daly, Norelle L

    2015-01-01

    Tumour formation is dependent on nutrient and oxygen supply from adjacent blood vessels. Angiogenesis inhibitors can play a vital role in controlling blood vessel formation and consequently tumour progression by inhibiting endothelial cell proliferation, sprouting and migration. The primary aim of the present study was to design cyclic thrombospondin-1 (TSP-1) mimetics using disulfide-rich frameworks for anti-angiogenesis therapies and to determine whether these peptides have better potency than the linear parent peptide. A short anti-angiogenic heptapeptide fragment from TSP-1 (GVITRIR) was incorporated into two cyclic disulfide-rich frameworks, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II) and SFTI-1 (sunflower trypsin inhibitor-1). The cyclic peptides were chemically synthesized and folded in oxidation buffers, before being tested in a series of in vitro evaluations. Incorporation of the bioactive heptapeptide fragment into the cyclic frameworks resulted in peptides that inhibited microvascular endothelial cell migration, and had no toxicity against normal primary human endothelial cells or cancer cells. Importantly, all of the designed cyclic TSP-1 mimetics were far more stable than the linear heptapeptide in human serum. The present study has demonstrated a novel approach to stabilize the active region of TSP-1. The anti-angiogenic activity of the native TSP-1 active fragment was maintained in the new TSP-1 mimetics and the results provide a new chemical approach for the design of TSP-1 mimetics. PMID:26464514

  8. Theoretical studies on the interactions of XIAP-BIR3 domain with bicyclic and tricyclic core monovalent Smac mimetics.

    PubMed

    Ling, Baoping; Dong, Lihua; Zhang, Rui; Wang, Zhiguo; Liu, Yongjun; Liu, Chengbu

    2010-11-01

    X-linked IAP can bind caspase-9 and inhibit its activity. Mitochondrial protein Smac/DIABLO can also interact with XIAP and relieve the inhibition on caspase-9 to induce apoptosis. A series of artificial Smac mimetics have been used to mimic the Smac N-terminal tetrapeptide AVPI to bind to XIAP-BIR3, but these structural diverse mimetics exhibited distinct binding affinities. To get an insight into the binding nature and optimize the structures, molecular docking and dynamics simulations were used to study the binding of XIAP-BIR3 with three groups of Smac mimetics. The docking results reveal that these Smac mimetics anchored on the surface groove of XIAP-BIR3 and superimposed well with AVPI. The modifications on the seven-membered ring of bicyclic core segment do not strengthen the binding affinity, while a benzyl introduced to the five-membered ring is favorable to the binding. Molecular dynamics simulations on three typical systems show that these complexes are very stable. Hydrogen bonds between the bicyclic core segment and Thr308 play critical roles in maintaining the stability of complex. The binding free energies calculated by MM_PBSA method are consistent with the experimental results. PMID:20980180

  9. Intrinsic and chemo-sensitizing activity of SMAC-mimetics on high-risk childhood acute lymphoblastic leukemia

    PubMed Central

    Schirmer, M; Trentin, L; Queudeville, M; Seyfried, F; Demir, S; Tausch, E; Stilgenbauer, S; Eckhoff, S M; Meyer, L H; Debatin, K-M

    2016-01-01

    SMAC-mimetics represent a targeted therapy approach to overcome apoptosis resistance in many tumors. Here, we investigated the efficacy of the SMAC-mimetic BV6 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In ALL cell lines, intrinsic apoptosis sensitivity was associated with rapid cIAP degradation, NF-κB activation, TNF-α secretion and induction of an autocrine TNF-α-dependent cell death loop. This pattern of responsiveness was also observed upon ex vivo analysis of 40 primograft BCP-ALL samples. Treatment with BV6 induced cell death in the majority of ALL primografts including leukemias with high-risk and poor-prognosis features. Inhibition of cell death by the TNF receptor fusion protein etanercept demonstrated that BV6 activity is dependent on TNF-α. In a preclinical NOD/SCID/huALL model of high-risk ALL, marked anti-leukemia effectivity and significantly prolonged survival were observed upon BV6 treatment. Interestingly, also in vivo, intrinsic SMAC-mimetic activity was mediated by TNF-α. Importantly, BV6 increased the effectivity of conventional induction therapy including vincristine, dexamethasone and asparaginase leading to prolonged remission induction. These data suggest SMAC-mimetics as an important addendum to efficient therapy of pediatric BCP-ALL. PMID:26775704

  10. Iron oxide superparamagnetic nanoparticles conjugated with a conformationally blocked α-Tn antigen mimetic for macrophage activation

    NASA Astrophysics Data System (ADS)

    Manuelli, Massimo; Fallarini, Silvia; Lombardi, Grazia; Sangregorio, Claudio; Nativi, Cristina; Richichi, Barbara

    2014-06-01

    Among new therapies to fight tumors, immunotherapy is still one of the most promising and intriguing. Thanks to the ongoing structural elucidation of several tumor antigens and the development of innovative antigen carriers, immunotherapy is in constant evolution and it is largely used either alone or in synergy with chemotherapy/radiotherapy. With the aim to develop fully synthetic immunostimulants we have recently developed a mimetic of the α-Tn mucin antigen, a relevant tumor antigen. The 4C1 blocked mimetic 1, unique example of an α-Tn mimetic antigen, was functionalized with an ω-phosphonate linker and used to decorate iron oxide superparamagnetic nanoparticles (MNPs), employed as multivalent carriers. MNPs, largely exploited for supporting and carrying biomolecules, like antibodies, drugs or antigens, consent to combine in the same nanometric system the main features of an inorganic magnetic core with a bioactive organic coating. The superparamagnetic glyconanoparticles obtained, named GMNPs, are indeed biocompatible and immunoactive, and they preserve suitable characteristics for use as heat mediators in the magnetic fluid hyperthermia (MFH) treatment of tumors. All together these properties make GMNPs attracting devices for innovative tumor treatment.Among new therapies to fight tumors, immunotherapy is still one of the most promising and intriguing. Thanks to the ongoing structural elucidation of several tumor antigens and the development of innovative antigen carriers, immunotherapy is in constant evolution and it is largely used either alone or in synergy with chemotherapy/radiotherapy. With the aim to develop fully synthetic immunostimulants we have recently developed a mimetic of the α-Tn mucin antigen, a relevant tumor antigen. The 4C1 blocked mimetic 1, unique example of an α-Tn mimetic antigen, was functionalized with an ω-phosphonate linker and used to decorate iron oxide superparamagnetic nanoparticles (MNPs), employed as multivalent

  11. Effect of aerosolized milrinone during drug-induced pulmonary hypertension in lambs.

    PubMed

    Gelvez, Javier; Fakioglu, Harun; Olarte, Jose L; Soliz, Amed; Totapally, Balagangadhar R; Torbati, Dan

    2004-07-01

    We tested whether aerosolized milrinone in lambs selectively reduces drug-induced acute pulmonary hypertension without reducing the mean systemic blood pressure (MSBP). Seven, 2-3-week-old lambs were anesthetized (50 mg/kg ketamine), paralyzed (0.1 mg/kg vecuronium bromide) and mechanically ventilated. A femoral artery, pulmonary artery, and jugular vein were catheterized for continuous monitoring of MSBP, mean pulmonary artery pressure, periodic gas-exchange analyses, and determination of cardiac output by thermodilution technique. An Airlife Misty nebulizer was used in a dry state to establish a stable baseline of an inspired fraction of oxygen (FiO(2)) at 0.21. Acute pulmonary hypertension with hypoxemia was then induced by increasing the mean pulmonary artery pressure up to 30-35% of the MSBP using 2-6 microg/kg/min of Thromboxane A(2) mimetic (U-46619), intravenously. The lambs were then subjected to 15 min of saline nebulization without milrinone followed by 30 min saline nebulization with a relatively high concentration of milrinone (10 mg/ml, total dose of 40 mg). Aerosolized milrinone had no effect on systemic or pulmonary artery pressure during combined acute pulmonary hypertension and hypoxemia. We speculate that our nebulization procedures failed to deliver sufficient amount of milrinone for producing a detectable hemodynamic effect. PMID:15082033

  12. Effect of bronchoconstrictive aerosols on pulmonary gas trapping in the A/J mouse.

    PubMed

    Yiamouyiannis, C A; Stengel, P W; Cockerham, S L; Silbaugh, S A

    1995-10-01

    We exposed A/J mice to several challenge aerosols and measured gas trapped within excised lungs by quantitating their buoyancy in saline (Archimedes' principle). The temporal stability of the excised lung gas volume (ELGV) measurement was also examined. ELGV increased in a dose proportional manner with increasing concentrations of methacholine and reached a maximum of 338 +/- 33% above vehicle-exposed controls. The A/J mice were 100 times more responsive to aerosol methacholine compared to hyporesponsive C3H/HeJ mice. Aerosol challenges of U-46619, a thromboxane A2 mimetic, and serotonin resulted in a 40% and 135% increase in ELGV's versus their controls, respectively. ELGV's were not increased after aerosols of leukotriene C4, histamine, substance P, N-formyl-methionyl-leucyl-phenyl-alanine and platelet activating factor. Both normal (filtered air-exposed) and hyperinflated (methacholine-exposed) excised lungs lost about 10% of their initial volume by 30 min and 40-65% of initial volume by 4 h. Occlusion of the trachea in either group did not affect the total gas lost, suggesting that majority of the gas loss was via transpleural diffusion. We conclude that determination of ELGV in mice, when performed soon after challenge testing, is a simple, rapid and reliable estimate of airway obstruction. PMID:8610213

  13. Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics.

    PubMed

    Lalaoui, Najoua; Hänggi, Kay; Brumatti, Gabriela; Chau, Diep; Nguyen, Nhu-Y N; Vasilikos, Lazaros; Spilgies, Lisanne M; Heckmann, Denise A; Ma, Chunyan; Ghisi, Margherita; Salmon, Jessica M; Matthews, Geoffrey M; de Valle, Elisha; Moujalled, Donia M; Menon, Manoj B; Spall, Sukhdeep Kaur; Glaser, Stefan P; Richmond, Jennifer; Lock, Richard B; Condon, Stephen M; Gugasyan, Raffi; Gaestel, Matthias; Guthridge, Mark; Johnstone, Ricky W; Munoz, Lenka; Wei, Andrew; Ekert, Paul G; Vaux, David L; Wong, W Wei-Lynn; Silke, John

    2016-02-01

    Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant. PMID:26859455

  14. Elastin-Mimetic Protein Polymers Capable of Physical and Chemical Crosslinking

    PubMed Central

    Sallach, Rory E.; Cui, Wanxing; Wen, Jing; Martinez, Adam; Conticello, Vincent P.; Chaikof, Elliot L.

    2008-01-01

    We report the synthesis of a new class of recombinant elastin-mimetic triblock copolymer capable of both physical and chemical crosslinking. These investigations were motivated by a desire to capture features unique to both physical and chemical crosslinking schemes so as to exert optimal control over a wide range of potential properties afforded by protein-based mutiblock materials. We postulated that by chemically locking a multiblock protein assembly in place, functional responses that are linked to specific domain structures and morphologies may be preserved over a broader range of loading conditions that would otherwise disrupt microphase structure solely stabilized by physical crosslinking. Specifically, elastic modulus was enhanced and creep strain reduced through the addition of chemical crosslinking sites. Additionally, we have demonstrated excellent in vivo biocompatibility of glutaraldehyde treated multiblock systems. PMID:18954902

  15. Virus-mimetic nanovesicles as a versatile antigen-delivery system

    PubMed Central

    Zhang, Pengfei; Chen, Yixin; Zeng, Yun; Shen, Chenguang; Li, Rui; Guo, Zhide; Li, Shaowei; Zheng, Qingbing; Chu, Chengchao; Wang, Zhantong; Zheng, Zizheng; Tian, Rui; Ge, Shengxiang; Zhang, Xianzhong; Xia, Ning-Shao; Liu, Gang; Chen, Xiaoyuan

    2015-01-01

    It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses. PMID:26504197

  16. Mucoadhesion and mucosa-mimetic materials--A mini-review.

    PubMed

    Cook, Michael T; Khutoryanskiy, Vitaliy V

    2015-11-30

    Mucoadhesion describes an attractive interaction between dosage form and mucosal membrane. The evaluation of mucoadhesive excipients often requires the use of ex vivo mucosal tissues taken from laboratory animals. These can be difficult to source, highly heterogeneous, and require the use of animal products. Thus, from both a user-convenience and ethical point-of-view, it is desirable to produce a synthetic alternative to these tissues-a mucosa-mimetic material. In this mini-review, the use of alternative materials to test the performance of mucoadhesives is reviewed and discussed. There is a surprising prevalence of the use of mucosa-mimics in the literature, which hitherto has not been compiled and compared. PMID:26440734

  17. A comparative investigation of mussel-mimetic sealants for fetal membrane repair.

    PubMed

    Perrini, Michela; Barrett, Devin; Ochsenbein-Koelble, Nicole; Zimmermann, Roland; Messersmith, Phillip; Ehrbar, Martin

    2016-05-01

    Towards the prevention of iatrogenic preterm premature rupture of the fetal membrane, two mussel-mimetic tissue adhesives (cT and cPEG) have been compared and qualified as possible sealants for membrane repair. Monotonic and cyclic inflation tests of repaired fetal membranes were carried out in order to investigate the performance of the glues under quasi-static, fast, and repeated loading. Finite element simulations of repaired and inflated synthetic membranes allowed to compare cT and cPEG under large deformations. Both adhesives seal the membrane well, resisting pressures higher than the intra-uterine baseline. Only under repeated mechanical load, as well as under fast and acute deformation of the membrane, the sealing performance has deteriorated. Even though cT loses adhesion to the deformed membrane, it is able to withstand high deformations and pressures without rupturing, while cPEG breaks. PMID:26255212

  18. Sialic Acid Mimetics to Target the Sialic Acid-Siglec Axis.

    PubMed

    Büll, Christian; Heise, Torben; Adema, Gosse J; Boltje, Thomas J

    2016-06-01

    Sialic acid sugars are vital regulators of the immune system through binding to immunosuppressive sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on immune cells. Aberrant sialic acid-Siglec interactions are associated with an increasing number of pathologies including infection, autoimmunity, and cancer. Therefore, the sialic acid-Siglec axis is an emerging target to prevent or affect the course of several diseases. Chemical modifications of the natural sialic acid ligands have led to sialic acid mimetics (SAMs) with improved binding affinity and selectivity towards Siglecs. Recent progress in glycobiotechnology allows the presentation of these SAMs on nanoparticles, polymers, and living cells via bioorthogonal synthesis. These developments now enable the detailed study of the sialic acid-Siglec axis including its therapeutic potential as an immune modulator. PMID:27085506

  19. [Concentric changes in the visual field associated with GABA-mimetic antiepileptic agents].

    PubMed

    Nordmann, J P; Baulac, M; Van Egroo, C

    1999-05-01

    Bilateral visual field constriction has been recently reported in patients treated with vigabatrin. It has been considered that vigabatrin, a GABA agonist antiepileptic drug, was specifically responsible for this visual field defect. We present four observations sharing the same characteristics of chronic tunnel vision. Three patients had had vigabatrin but the fourth one received other antiepileptic drugs, progabide, an agonist of post-synaptic GABA receptors, and phenobarbital which interferes with GABA-A receptors. It is thus possible to hypothesize a retinal toxicity triggered by chronically increased GABA transmission. If this is confirmed, an accurate incidence of symptomatic and asymptomatic visual field constriction with GABA-mimetic drugs should be established, as well as the patients' profiles which are more at risk. Patients currently under this type of treatment should be checked by both manual and automatic perimetry every six months to one year. PMID:10365327

  20. Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells.

    PubMed

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Aisner, Yonatan; Niv, Masha Y; Benhar, Moran; Atlas, Daphne

    2013-04-01

    The thioredoxin reductase/thioredoxin system (TrxR/Trx1) plays a major role in protecting cells from oxidative stress. Disruption of the TrxR-Trx1 system keeps Trx1 in the oxidized state leading to cell death through activation of the ASK1-Trx1 apoptotic pathway. The potential mechanism and ability of tri- and tetra-oligopeptides derived from the canonical -CxxC- motif of the Trx1-active site to mimic and enhance Trx1 cellular activity was examined. The Trx mimetics peptides (TXM) protected insulinoma INS 832/13 cells from oxidative stress induced by selectively inhibiting TrxR with auranofin (AuF). TXM reversed the AuF-effects preventing apoptosis, and increasing cell-viability. The TXM peptides were effective in inhibiting AuF-induced MAPK, JNK and p38(MAPK) phosphorylation, in correlation with preventing caspase-3 cleavage and thereby PARP-1 dissociation. The ability to form a disulfide-bridge-like conformation was estimated from molecular dynamics simulations. The TXM peptides restored insulin secretion and displayed Trx1 denitrosylase activity. Their potency was 10-100-fold higher than redox reagents like NAC, AD4, or ascorbic acid. Unable to reverse ERK1/2 phosphorylation, TXM-CB3 (NAc-Cys-Pro-Cys amide) appeared to function in part, through inhibiting ASK1-Trx dissociation. These highly effective anti-apoptotic effects of Trx1 mimetic peptides exhibited in INS 832/13 cells could become valuable in treating adverse oxidative-stress related disorders such as diabetes. PMID:23327993

  1. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked.

    PubMed

    Hannes, Sabine; Abhari, Behnaz Ahangarian; Fulda, Simone

    2016-09-28

    Evasion of apoptosis represents a key mechanism of treatment resistance of pancreatic cancer (PC) and contributes to the poor prognosis of this cancer type. Here, we report that induction of necroptosis is an alternative strategy to trigger programmed cell death in apoptosis-resistant PC cells. We show that the second mitochondrial activator of caspases (Smac) mimetic BV6 that antagonizes inhibitor of apoptosis (IAP) proteins induces necroptosis in PC cells in which apoptosis is blocked by the caspase inhibitor zVAD.fmk. Intriguingly, BV6 switches autocrine/paracrine production of tumor necrosis factor (TNF)α by PC cells into a death signal and also acts in concert with exogenously supplied TNFα to trigger necroptosis, when caspase activation is simultaneously blocked. BV6 stimulates TNFα production and formation of the receptor-interacting protein (RIP)1/RIP3-containing necrosome complex in PC cells. Knockdown of TNF receptor 1 (TNFR1) protects PC cells from BV6- or BV6/TNFα-mediated cell death, demonstrating that TNFα autocrine/paracrine signaling by PC cells contributes to BV6-induced necroptosis. Importantly, genetic silencing of receptor interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain-like protein (MLKL) significantly rescues PC cells from BV6- or BV6/TNFα-induced cell death. Similarly, pharmacological inhibition of RIP1, RIP3 or MLKL significantly reduces BV6- or BV6/TNFα-stimulated cell death. By demonstrating that Smac mimetics can bypass resistance to apoptosis by triggering necroptosis as an alternative form of programmed cell death, our findings have important implications for the design of new treatment concepts for PC. PMID:27267809

  2. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    PubMed

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-01-01

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors. PMID:27409598

  3. Inhibition of Salmonella enterica Biofilm Formation Using Small-Molecule Adenosine Mimetics

    PubMed Central

    Koopman, Jacob A.; Marshall, Joanna M.; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J.

    2014-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens. PMID:25313216

  4. Sodium chromate demonstrates some insulin-mimetic properties in the fruit fly Drosophila melanogaster.

    PubMed

    Perkhulyn, Natalia V; Rovenko, Bohdana M; Zvarych, Tetyana V; Lushchak, Oleh V; Storey, Janet M; Storey, Kenneth B; Lushchak, Volodymyr I

    2015-01-01

    The effects of food supplementation with sodium chromate at concentrations of 1-500 μM on development of Drosophila melanogaster larvae and food intake, carbohydrate and lipid pools in adult fruit flies were investigated. Food supplementation with hexavalent chromium (Na2CrO4) at high concentrations delayed larval development and decreased the percentage of larvae that pupated which indicated a relatively low toxicity. The supplement decreased glucose levels in fly hemolymph, but at concentrations of 5-25 μM increased fly carbohydrate reserves: hemolymph trehalose and whole body trehalose and glycogen. The data on parameters of carbohydrate metabolism show that chromate possesses some insulin-mimetic properties. The changes in metabolism of carbohydrates under chromate exposure were also accompanied by an increase in total lipid levels and in the portion of triacylglycerides among all lipids. Chromate addition to fly food did not affect male or female body mass, but reduced food consumption by females at all concentrations used, whereas in males only 500 μM chromate decreased food consumption. The data show that: (1) Cr(6+) has many of the same effects as Cr(3+) suggesting that it might be just as effective to treat diabetic states, likely as a result of intracellular reduction of Cr(6+) ions, and (2) the Drosophila model can be used to develop new approaches to investigate the molecular mechanisms of chromium as an insulin-mimetic. Although it is usually believed that hexavalent chromium possesses higher toxicity than the trivalent ion, due to its easier penetration into the cell, application of hexavalent chromium may substantially decrease the chromium doses needed to get the desired effects. PMID:25220772

  5. The characterization of decellularized human skeletal muscle as a blueprint for mimetic scaffolds.

    PubMed

    Wilson, Klaire; Terlouw, Abby; Roberts, Kevin; Wolchok, Jeffrey C

    2016-08-01

    The use of decellularized skeletal muscle (DSM) as a cell substrate and scaffold for the repair of volumetric muscle loss injuries has shown therapeutic promise. The performance of DSM materials motivated our interest in exploring the chemical and physical properties of this promising material. We suggest that these properties could serve as a blueprint for the development of next generation engineered materials with DSM mimetic properties. In this study, whole human lower limb rectus femoris (n = 10) and upper limb supraspinatus muscle samples (n = 10) were collected from both male and female tissue donors. Skeletal muscle samples were decellularized and nine property values, capturing key compositional, architectural, and mechanical properties, were measured and statistically analyzed. Mean values for each property were determined across muscle types and sexes. Additionally, the influence of muscle type (upper vs lower limb) and donor sex (male vs female) on each of the DSM material properties was examined. The data suggests that DSM materials prepared from lower limb rectus femoris samples have an increased modulus and contain a higher collagen content then upper limb supraspinatus muscles. Specifically, lower limb rectus femoris DSM material modulus and collagen content was approximately twice that of lower limb supraspinatus DSM samples. While muscle type did show some influence on material properties, we did not find significant trends related to sex. The material properties reported herein may be used as a blueprint for the data-driven design of next generation engineered scaffolds with muscle mimetic properties, as well as inputs for computational and physical models of skeletal muscle. PMID:27324779

  6. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    PubMed

    Stamelos, Vasileios A; Fisher, Natalie; Bamrah, Harnoor; Voisey, Carolyn; Price, Joshua C; Farrell, William E; Redman, Charles W; Richardson, Alan

    2016-01-01

    Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal

  7. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization

    PubMed Central

    Stamelos, Vasileios A.; Fisher, Natalie; Bamrah, Harnoor; Voisey, Carolyn; Price, Joshua C.; Farrell, William E.; Redman, Charles W.; Richardson, Alan

    2016-01-01

    Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal

  8. The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma

    PubMed Central

    2011-01-01

    Background The primary goal of current chemotherapy in hepatoblastoma (HB) is reduction of tumour volume and vitality to enable complete surgical resection and reduce risk of recurrence or metastatic disease. Drug resistance remains a major challenge for HB treatment. In some malignancies inhibition of anti-apoptotic pathways using small BH3 mimetic molecules like ABT-737 shows synergistic effects in combination with cystotoxic agents in vitro. Now we analysed toxicology and synergistic effects of this approach in HB cells and HB xenografts. Methods Viability was monitored in HB cells (HUH6 and HepT1) and fibroblasts treated with paclitaxel, ABT-737 and a combination of both in a MTT assay. HUH6 xenotransplants in NOD/LtSz-scid IL2Rγnull mice (NSG) were treated accordingly. Tumour volume and body weight were monitored. Xenografted tumours were analysed by histology and immunohistochemistry (Ki-67 and TUNEL assay). Results ABT-737 reduced viability in HUH6 and HepT1 cells cultures at concentrations above 1 μM and also enhanced the cytotoxic effect of paclitaxel when used in combination. Thereby paclitaxel could be reduced tenfold to achieve similar reduction of viability of tumour cells. In contrast no toxicity in fibroblasts was observed at the same regiments. Subcutaneous HB (HUH6) treated with paclitaxel (12 mg/kg body weight, n = 7) led to delayed tumour growth in the beginning of the experiment. However, tumour volume was similar to controls (n = 5) at day 25. Combination treatment with paclitaxel and ABT-737 (100 mg/kg, n = 8) revealed significantly 10 fold lower relative tumour volumes compared to control and paclitaxel groups. Paclitaxel dependent toxicity was observed in this mice strain. Conclusions Our results demonstrate enhancement of chemotherapy by using modulators of apoptosis. Further analyses should include improved pharmacological formulations of paclitaxel and BH3 mimetics in order to reduce toxicological effects. Sensitising HB to apoptosis

  9. Programming of enzyme specificity by substrate mimetics: investigations on the Glu-specific V8 protease reveals a novel general principle of biocatalysis.

    PubMed

    Wehofsky, N; Bordusa, F

    1999-01-25

    In this paper the universal validity of the substrate mimetic concept in enzymatic C-N ligations was expanded to anionic leaving groups based on the specificity determinants of Glu-specific endopeptidase from Staphylococcus aureus (V8 protease). In an empirical way a specific mimetic moiety was designed from simple structure-function relationship studies. The general function of the newly developed substrate mimetics to serve as an artificial recognition site for V8 protease have been examined by hydrolysis kinetic studies. Enzymatic peptide syntheses qualify the strategy of substrate mimetics as a powerful concept for programming the enzyme specificity in the direction of a more universal application of enzymes in the general area of biocatalysis. PMID:9989609

  10. Self-Assembling Glucagon-Like Peptide 1-Mimetic Peptide Amphiphiles for Enhanced Activity and Proliferation of Insulin-Secreting Cells

    PubMed Central

    Khan, Saahir; Sur, Shantanu; Newcomb, Christina J.; Appelt, Elizabeth A.

    2012-01-01

    Current treatment for type 1 diabetes mellitus requires daily insulin injections that fail to produce physiological glycemic control. Islet cell transplantation has been proposed as a permanent cure but is limited by loss of β-cell viability and function. These limitations could potentially be overcome by relying on the activity of glucagon-like peptide 1 (GLP-1), which acts on β-cells to promote insulin release, proliferation, and survival. We have developed a peptide amphiphile (PA) molecule incorporating a peptide mimetic for GLP-1. This GLP-1-mimetic PA self-assembles into one-dimensional nanofibers that stabilize the active secondary structure of GLP-1 and can be cross-linked by calcium ions to form a macroscopic gel capable of cell encapsulation and 3-dimensional culture. The GLP-1-mimetic PA nanofibers were found to stimulate insulin secretion from rat insulinoma (RINm5f) cells to a significantly greater extent than the mimetic peptide alone and to a level equivalent to that of the clinically used agonist exendin-4. The activity of the GLP-1-mimetic PA is glucose-dependent, lipid-raft dependent, and partially PKA-dependent consistent with native GLP-1. The GLP-1-mimetic PA also completely abrogates inflammatory cytokine-induced cell death to the level of untreated controls. When used as a PA gel to encapsulate RINm5f cells, the GLP-1-mimetic PA stimulates insulin secretion and proliferation in a cytokine-resistant manner that is significantly greater than a non-bioactive PA gel containing exendin-4. Due to its self-assembling property and bioactivity, the GLP-1-mimetic PA can be incorporated into previously developed islet cell transplantation protocols with the potential for significant enhancement of β-cell viability and function. PMID:22342354

  11. Hypoxia induces hypersensitivity and hyperreactivity to thromboxane receptor agonist in neonatal pulmonary arterial myocytes.

    PubMed

    Hinton, M; Mellow, L; Halayko, A J; Gutsol, A; Dakshinamurti, S

    2006-02-01

    PPHN, caused by perinatal hypoxia or inflammation, is characterized by an increased thromboxane-prostacyclin ratio and pulmonary vasoconstriction. We examined effects of hypoxia on myocyte thromboxane responsiveness. Myocytes from 3rd-6th generation pulmonary arteries of newborn piglets were grown to confluence and synchronized in contractile phenotype by serum deprivation. On the final 3 days of culture, myocytes were exposed to 10% O2 for 3 days; control myocytes from normoxic piglets were cultured in 21% O2. PPHN was induced in newborn piglets by 3-day hypoxic exposure (Fi(O2) 0.10); pulmonary arterial myocytes from these animals were maintained in normoxia. Ca2+ mobilization to thromboxane mimetic U-46619 and ATP was quantified using fura-2 AM. Three-day hypoxic exposure in vitro results in increased basal [Ca2+]i, faster and heightened peak Ca2+ response, and decreased U-46619 EC50. These functional changes persist in myocytes exposed to hypoxia in vivo but cultured in 21% O2. Blockade of Ca2+ entry and store refilling do not alter peak U-46619 Ca2+ responses in hypoxic or normoxic myocytes. Blockade of ryanodine-sensitive or IP3-gated intracellular Ca2+ channels inhibits hypoxic augmentation of peak U-46619 response. Ca2+ response to ryanodine alone is undetectable; ATP-induced Ca2+ mobilization is unaltered by hypoxia, suggesting no independent increase in ryanodine-sensitive or IP3-linked intracellular Ca2+ pool mobilization. We conclude hypoxia has a priming effect on neonatal pulmonary arterial myocytes, resulting in increased resting Ca2+, thromboxane hypersensitivity, and hyperreactivity. We postulate that hypoxia increases agonist-induced TP-R-linked IP3 pathway activation. Myocyte thromboxane hyperresponsiveness persists in culture after removal from the initiating hypoxic stimulus, suggesting altered gene expression. PMID:16214814

  12. The A's Have It: Developing Apolipoprotein A-I Mimetic Peptides Into a Novel Treatment for Asthma.

    PubMed

    Yao, Xianglan; Gordon, Elizabeth M; Barochia, Amisha V; Remaley, Alan T; Levine, Stewart J

    2016-08-01

    New treatments are needed for patients with asthma who are refractory to standard therapies, such as individuals with a phenotype of "type 2-low" inflammation. This important clinical problem could potentially be addressed by the development of apolipoprotein A-I (apoA-I) mimetic peptides. ApoA-I interacts with its cellular receptor, the ATP-binding cassette subfamily A, member 1 (ABCA1), to facilitate cholesterol efflux out of cells to form nascent high-density lipoprotein particles. The ability of the apoA-I/ABCA1 pathway to promote cholesterol efflux from cells that mediate adaptive immunity, such as antigen-presenting cells, can attenuate their function. Data from experimental murine models have shown that the apoA-I/ABCA1 pathway can reduce neutrophilic airway inflammation, primarily by suppressing the production of granulocyte-colony stimulating factor. Furthermore, administration of apoA-I mimetic peptides to experimental murine models of allergic asthma has decreased both neutrophilic and eosinophilic airway inflammation, as well as airway hyperresponsiveness and mucous cell metaplasia. Higher serum levels of apoA-I have also been associated with less severe airflow obstruction in patients with asthma. Collectively, these results suggest that the apoA-I/ABCA1 pathway may have a protective effect in asthma, and support the concept of advancing inhaled apoA-I mimetic peptides to clinical trials that can assess their safety and effectiveness. Thus, we propose that the development of inhaled apoA-I mimetic peptides as a new treatment could represent a clinical advance for patients with severe asthma who are unresponsive to other therapies. PMID:27327118

  13. Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method.

    PubMed

    Bai, Hao; Walsh, Flynn; Gludovatz, Bernd; Delattre, Benjamin; Huang, Caili; Chen, Yuan; Tomsia, Antoni P; Ritchie, Robert O

    2016-01-01

    Using a bidirectional freezing technique, combined with uniaxial pressing and in situ polymerization, "nacre-mimetic" hydroxyapatite/poly(methyl methacrylate) (PMMA) composites are developed by processing large-scale aligned lamellar ceramic scaffolds. Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials. PMID:26554760

  14. Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study

    PubMed Central

    Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.

    2013-01-01

    This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550

  15. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids

    NASA Astrophysics Data System (ADS)

    Jin, Haibao; Jiao, Fang; Daily, Michael D.; Chen, Yulin; Yan, Feng; Ding, Yan-Huai; Zhang, Xin; Robertson, Ellen J.; Baer, Marcel D.; Chen, Chun-Long

    2016-07-01

    An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications.

  16. High-order mimetic finite elements for the hydrostatic primitive equations on a cubed-sphere grid using Hamiltonian methods

    NASA Astrophysics Data System (ADS)

    Eldred, Christopher; Dubos, Thomas; Kritsikis, Evaggelos

    2016-04-01

    There has been a great deal of work in the past decade on the development of mimetic and conservative numerical schemes for atmospheric dynamical cores using Hamiltonian methods, such as Dynamico (Dubos et. al 2015). This model conserves mass, potential vorticity and total energy; and posses properties such as a curl-free pressure gradient that does not produce spurious vorticity. Unfortunately, the underlying finite-difference discretization scheme used in Dynamico has been shown to be inconsistent on general grids. An alternative scheme based on mimetic finite elements has been developed for the rotating shallow water equations that solves these accuracy issues but retains the desirable mimetic and conservation properties. Preliminary results on the extension of this scheme to the hydrostatic primitive equations are shown. The compatible 2D finite elements spaces are extended to compatible 3D spaces using tensor products, in a way that preserves their properties. It is shown that use of the same prognostic variables as Dynamico combined with a Lorenz staggering leads to a relatively simple formulation that allows conservation of total energy along with high-order accuracy.

  17. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock

    PubMed Central

    West, A C; Martin, B P; Andrews, D A; Hogg, S J; Banerjee, A; Grigoriadis, G; Johnstone, R W; Shortt, J

    2016-01-01

    Inhibitor of apoptosis proteins (IAPs) antagonize caspase activation and regulate death receptor signaling cascades. LCL-161 is a small molecule second mitochondrial activator of caspase (SMAC) mimetic, which both disengages IAPs from caspases and induces proteasomal degradation of cIAP-1 and -2, resulting in altered signaling through the NFκB pathway, enhanced TNF production and sensitization to apoptosis mediated by the extrinsic pathway. SMAC mimetics are undergoing clinical evaluation in a range of hematological malignancies. Burkitt-like lymphomas are hallmarked by a low apoptotic threshold, conveying sensitivity to a range of apoptosis-inducing stimuli. While evaluating LCL-161 in the Eμ-Myc model of aggressive Burkitt-like lymphoma, we noted unexpected resistance to apoptosis induction despite ‘on-target' IAP degradation and NFκB activation. Moreover, LCL-161 treatment of lymphoma-bearing mice resulted in apparent disease acceleration concurrent to augmented inflammatory cytokine-release in the same animals. Indiscriminate exposure of lymphoma patients to SMAC mimetics may therefore be detrimental due to both unanticipated prolymphoma effects and increased susceptibility to endotoxic shock. PMID:27043662

  18. The SMAC mimetic, LCL-161, reduces survival in aggressive MYC-driven lymphoma while promoting susceptibility to endotoxic shock.

    PubMed

    West, A C; Martin, B P; Andrews, D A; Hogg, S J; Banerjee, A; Grigoriadis, G; Johnstone, R W; Shortt, J

    2016-01-01

    Inhibitor of apoptosis proteins (IAPs) antagonize caspase activation and regulate death receptor signaling cascades. LCL-161 is a small molecule second mitochondrial activator of caspase (SMAC) mimetic, which both disengages IAPs from caspases and induces proteasomal degradation of cIAP-1 and -2, resulting in altered signaling through the NFκB pathway, enhanced TNF production and sensitization to apoptosis mediated by the extrinsic pathway. SMAC mimetics are undergoing clinical evaluation in a range of hematological malignancies. Burkitt-like lymphomas are hallmarked by a low apoptotic threshold, conveying sensitivity to a range of apoptosis-inducing stimuli. While evaluating LCL-161 in the Eμ-Myc model of aggressive Burkitt-like lymphoma, we noted unexpected resistance to apoptosis induction despite 'on-target' IAP degradation and NFκB activation. Moreover, LCL-161 treatment of lymphoma-bearing mice resulted in apparent disease acceleration concurrent to augmented inflammatory cytokine-release in the same animals. Indiscriminate exposure of lymphoma patients to SMAC mimetics may therefore be detrimental due to both unanticipated prolymphoma effects and increased susceptibility to endotoxic shock. PMID:27043662

  19. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA

    PubMed Central

    Subramanian, Aishwarya; Andronache, Adrian; Li, Yao-Cheng; Wade, Mark

    2016-01-01

    BH3 mimetic compounds induce tumor cell death through targeted inhibition of anti-apoptotic BCL2 proteins. Resistance to one such compound, ABT-737, is due to increased levels of anti-apoptotic MCL1. Using chemical and genetic approaches, we show that resistance to ABT-737 is abrogated by inhibition of the mitochondrial RING E3 ligase, MARCH5. Mechanistically, this is due to increased expression of pro-apoptotic BCL2 family member, NOXA, and is associated with MARCH5 regulation of MCL1 ubiquitylation and stability in a NOXA-dependent manner. MARCH5 expression contributed to an 8-gene signature that correlates with sensitivity to the preclinical BH3 mimetic, navitoclax. Furthermore, we observed a synthetic lethal interaction between MCL1 and MARCH5 in MCL1-dependent breast cancer cells. Our data uncover a novel level at which the BCL2 family is regulated; furthermore, they suggest targeting MARCH5-dependent signaling will be an effective strategy for treatment of BH3 mimetic-resistant tumors, even in the presence of high MCL1. PMID:26910119

  20. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids.

    PubMed

    Jin, Haibao; Jiao, Fang; Daily, Michael D; Chen, Yulin; Yan, Feng; Ding, Yan-Huai; Zhang, Xin; Robertson, Ellen J; Baer, Marcel D; Chen, Chun-Long

    2016-01-01

    An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications. PMID:27402325

  1. Impairment of antioxidant defense via glutathione depletion sensitizes acute lymphoblastic leukemia cells for Smac mimetic-induced cell death.

    PubMed

    Schoeneberger, H; Belz, K; Schenk, B; Fulda, S

    2015-07-30

    Evasion of apoptosis in pediatric acute lymphoblastic leukemia (ALL) is linked to aberrant expression of inhibitor of apoptosis (IAP) proteins and dysregulated redox homeostasis, rendering leukemic cells vulnerable to redox-targeting therapies. Here we discover that inhibition of antioxidant defenses via glutathione (GSH) depletion by buthionine sulfoximine (BSO) primes ALL cells for apoptosis induced by the Smac mimetic BV6 that antagonizes IAP proteins. Similarly, BSO cooperates with BV6 to induce cell death in patient-derived primary leukemic samples, underscoring the clinical relevance. In contrast, BSO does not sensitize non-malignant lymphohematopoietic cells from healthy donors toward BV6, pointing to some tumor selectivity. Mechanistically, both agents cooperate to stimulate reactive oxygen species (ROS) production, which is required for BSO/BV6-induced cell death, as ROS inhibitors (that is, N-acetylcysteine, MnTBAP, Trolox) significantly rescue cell death. Further, BSO and BV6 cooperate to trigger lipid peroxidation, which is necessary for cell death, as genetic or pharmacological blockage of lipid peroxidation by GSH peroxidase 4 (GPX4) overexpression or α-tocopherol significantly inhibits BSO/BV6-mediated cell death. Consistently, GPX4 knockdown or GPX4 inhibitor RSL3 enhances lipid peroxidation and cell death by BSO/BV6 cotreatment. The discovery of redox regulation of Smac mimetic-induced cell death has important implications for developing rational Smac mimetic-based combination therapies. PMID:25381820

  2. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids

    PubMed Central

    Jin, Haibao; Jiao, Fang; Daily, Michael D.; Chen, Yulin; Yan, Feng; Ding, Yan-Huai; Zhang, Xin; Robertson, Ellen J.; Baer, Marcel D.; Chen, Chun-Long

    2016-01-01

    An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications. PMID:27402325

  3. Impact of Superoxide Dismutase Mimetic AEOL 10150 on the Endothelin System of Fischer 344 Rats

    PubMed Central

    Ganesh, Devi; Kumarathasan, Prem; Thomson, Errol M.; St-Germain, Carly; Blais, Erica; Crapo, James; Vincent, Renaud

    2016-01-01

    Endothelin-1 is a potent vasoconstrictor and mitogenic peptide involved in the regulation of vasomotor tone and maintenance of blood pressure. Oxidative stress activates the endothelin system, and is implicated in pulmonary and cardiovascular diseases including hypertension, congestive heart failure, and atherosclerosis. Superoxide dismutase mimetics designed with the aim of treating diseases that involve reactive oxygen species in their pathophysiology may exert a hypotensive effect, but effects on the endothelin system are unknown. Our objective was to determine the effect of the superoxide dismutase mimetic AEOL 10150 on the basal endothelin system in vivo. Male Fischer-344 rats were injected subcutaneously with 0, 2 or 5 mg/kg body weight of AEOL 10150 in saline. Plasma oxidative stress markers and endothelins (bigET-1, ET-1, ET-2, ET-3) as well as lung and heart endothelin/nitric oxide system gene expressions were measured using HPLC-Coularray, HPLC-Fluorescence and RT-PCR respectively. AEOL 10150 reduced (p<0.05) the circulating levels of isoprostane (-25%) and 3-nitrotyrosine (-50%) measured in plasma 2h and 24h after treatment, confirming delivery of a physiologically-relevant dose and the potent antioxidant activity of the drug. The reduction in markers of oxidative stress coincided with sustained 24h decrease (p<0.05) of plasma levels of ET-1 (-50%) and ET-3 (-10%). Expression of preproET-1 and endothelin converting enzyme-1 mRNA were not altered significantly in the lungs. However preproET-1 (not significant) and ECE-1 mRNA (p<0.05) were increased (10–25%) in the heart. Changes in the lungs included decrease (p<0.05) of mRNA for the ET-1 clearance receptor ETB and the vasoconstriction-signaling ETA receptor (-30%), and an early surge of inducible nitric oxide synthase expression followed by sustained decrease (-40% after 24 hours). The results indicate that interception of the endogenous physiological flux of reactive nitrogen species and reactive

  4. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain.

    PubMed

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Ben-Yehuda, Hila; Lenhard, James M; Liang, Yin; Martin, Tonya; Atlas, Daphne

    2014-01-01

    Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38(MAPK)), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38(MAPK), and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70(S6K) kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38(MAPK) activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK-AMPK-mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological

  5. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain☆

    PubMed Central

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Ben-Yehuda, Hila; Lenhard, James M.; Liang, Yin; Martin, Tonya; Atlas, Daphne

    2014-01-01

    Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological

  6. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  7. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  8. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    NASA Astrophysics Data System (ADS)

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-07-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.

  9. Exercises in pyrrolidine chemistry: gram scale synthesis of a Pro-Pro dipeptide mimetic with a polyproline type II helix conformation.

    PubMed

    Reuter, Cédric; Huy, Peter; Neudörfl, Jörg-Martin; Kühne, Ronald; Schmalz, Hans-Günther

    2011-10-17

    A practical and scalable synthesis of a Fmoc-protected tricyclic dipeptide mimetic (6), that is, a 1,4-diaza-tricyclo-[8.3.0(3,7)]-tridec-8-ene derivative resembling a rigidified di-L-proline in a polyproline type II (PPII) helix conformation, was developed. The strategy is based on a Ru-catalyzed ring-closing metathesis of a dipeptide (4) prepared by PyBOP coupling of cis-5-vinylproline tert-butylester (2) and trans-N-Boc-3-vinylproline (rac-3) followed by chromatographic diastereomer separation. Building block 2 was prepared from L-proline in six steps via electrochemical C5-methoxylation, cyanation and conversion of the nitrile into a vinyl substituent. Building block rac-3 was prepared in five steps exploiting a Cu-catalyzed 1,4-addition of vinyl-MgBr to a 2,3-dehydroproline derivative in the key step. In the course of the investigation subtle dependencies of protecting groups on the reactivity of the 2,3- and 2,5-disubstituted pyrrolidine derivatives were observed. The configuration and conformational preference of several intermediates were determined by X-ray crystallography. The developed synthesis allows the preparation of substantial amounts of 6, which will be used in the search for new small molecules for the modulation of protein-protein interactions involving proline-rich motifs (PRDs). PMID:21901773

  10. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    PubMed Central

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-01-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical strength to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 compositing of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer. PMID:25101261

  11. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  12. Formation of stable nanodiscs by bihelical apolipoprotein A-I mimetic peptide.

    PubMed

    Kariyazono, Hirokazu; Nadai, Ryo; Miyajima, Rin; Takechi-Haraya, Yuki; Baba, Teruhiko; Shigenaga, Akira; Okuhira, Keiichiro; Otaka, Akira; Saito, Hiroyuki

    2016-02-01

    Nanodiscs are composed of scaffold protein or peptide such as apolipoprotein A-I (apoA-I) and phospholipids. Although peptide-based nanodiscs have an advantage to modulate the size of nanodiscs by changing phospholipid/peptide ratios, they are usually less stable than apoA-I-based nanodiscs. In this study, we designed a novel nanodisc scaffold peptide (NSP) that has proline-punctuated bihelical amphipathic structure based on apoA-I mimetic peptides. NSP formed α-helical structure on 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) nanodiscs prepared by cholate dialysis method. Dynamic light scattering measurements demonstrated that diameters of NSP nanodiscs vary depending upon POPC/NSP ratios. Comparison of thermal unfolding of nanodiscs monitored by circular dichroism measurements demonstrated that NSP forms much more stable nanodiscs with POPC than monohelical peptide, 4F, exhibiting comparable stability to apoA-I-POPC nanodiscs. Intrinsic Trp fluorescence measurements showed that Trp residues of NSP exhibit more hydrophobic environment than that of 4 F on nanodiscs, suggesting the stronger interaction of NSP with phospholipids. Thus, the bihelical structure of NSP appears to increase the stability of nanodiscs because of the enhanced interaction of peptides with phospholipids. In addition, NSP as well as 4F spontaneously solubilized POPC vesicles into nanodiscs without using detergent. These results indicate that bihelical NSP forms nanodiscs with comparable stability to apoA-I and has an ability to control the size of nanodiscs simply by changing phospholipid/peptide ratios. PMID:26780967

  13. Bioenergetic programming of macrophages by the apolipoprotein A-I mimetic peptide 4F.

    PubMed

    Datta, Geeta; Kramer, Philip A; Johnson, Michelle S; Sawada, Hirotaka; Smythies, Lesley E; Crossman, David K; Chacko, Balu; Ballinger, Scott W; Westbrook, David G; Mayakonda, Palgunachari; Anantharamaiah, G M; Darley-Usmar, Victor M; White, C Roger

    2015-05-01

    The apoA-I (apolipoprotein A-I) mimetic peptide 4F favours the differentiation of human monocytes to an alternatively activated M2 phenotype. The goal of the present study was to test whether the 4F-mediated differentiation of MDMs (monocyte-derived macrophages) requires the induction of an oxidative metabolic programme. 4F treatment induced several genes in MDMs that play an important role in lipid metabolism, including PPARγ (peroxisome-proliferator-activated receptor γ) and CD36. Addition of 4F was associated with a significant increase in FA (fatty acid) uptake and oxidation compared with vehicle treatment. Mitochondrial respiration was assessed by measurement of the OCR (oxygen-consumption rate). 4F increased basal and ATP-linked OCR as well as maximal uncoupled mitochondrial respiration. These changes were associated with a significant increase in ΔΨm (mitochondrial membrane potential). The increase in metabolic activity in 4F-treated MDMs was attenuated by etomoxir, an inhibitor of mitochondrial FA uptake. Finally, addition of the PPARγ antagonist T0070907 to 4F-treated MDMs reduced the expression of CD163 and CD36, cell-surface markers for M2 macrophages, and reduced basal and ATP-linked OCR. These results support our hypothesis that the 4F-mediated differentiation of MDMs to an anti-inflammatory phenotype is due, in part, to an increase in FA uptake and mitochondrial oxidative metabolism. PMID:25742174

  14. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms.

    PubMed

    Chen, Zhaowei; Ji, Haiwei; Liu, Chaoqun; Bing, Wei; Wang, Zhenzhen; Qu, Xiaogang

    2016-08-26

    Extracellular DNA (eDNA) is an essential structural component during biofilm formation, including initial bacterial adhesion, subsequent development, and final maturation. Herein, the construction of a DNase-mimetic artificial enzyme (DMAE) for anti-biofilm applications is described. By confining passivated gold nanoparticles with multiple cerium(IV) complexes on the surface of colloidal magnetic Fe3 O4  /SiO2 core/shell particles, a robust and recoverable artificial enzyme with DNase-like activity was obtained, which exhibited high cleavage ability towards both model substrates and eDNA. Compared to the high environmental sensitivity of natural DNase in anti-biofilm applications, DMAE exhibited a much better operational stability and easier recoverability. When DMAE was coated on substratum surfaces, biofilm formation was inhibited for prolonged periods of time, and the DMAE excelled in the dispersion of established biofilms of various ages. Finally, the presence of DMAE remarkably potentiated the efficiency of traditional antibiotics to kill biofilm-encased bacteria and eradiate biofilms. PMID:27484616

  15. Mimetic biomembrane-AuNPs-graphene hybrid as matrix for enzyme immobilization and bioelectrocatalysis study.

    PubMed

    Wang, Tianshu; Liu, Jiyang; Ren, Jiangtao; Wang, Jin; Wang, Erkang

    2015-10-01

    A hybrid composite constructed of phospholipids bilayer membrane, gold nanoparticles and graphene was prepared and used as matrices for microperoxidase-11 (MP11) immobilization. The direct electrochemistry and corresponding bioelectrocatalysis of the enzyme electrode was further investigated. Phospholipid bilayer membrane protected gold nanoparticles (AuNPs) were assembled on polyelectrolyte functionalized graphene sheets through electrostatic attraction to form a hybrid bionanocomposite. Owing to the biocompatible microenvironment provided by the mimetic biomembrane, microperoxidase-11 entrapped in this matrix well retained its native structure and exhibited high bioactivity. Moreover, the AuNPs-graphene assemblies could efficiently promote the direct electron transfer between the immobilized MP11 and the substrate electrode. The as-prepared enzyme electrode presented good direct electrochemistry and electrocatalytic responses to the reduction of hydrogen peroxide (H2O2). The resulting H2O2 biosensor showed a wide linear range (2.0×10(-5)-2.8×10(-4) M), a low detection limit (2.6×10(-6) M), good reproducibility and stability. Furthermore, this sensor was used for real-time detection of H2O2 dynamically released from the tumor cells MCF-7 in response to a pro-inflammatory stimulant. PMID:26078181

  16. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview.

    PubMed

    Garg, Bhaskar; Bisht, Tanuja; Ling, Yong-Chien

    2015-01-01

    "Artificial enzymes", a term coined by Breslow for enzyme mimics is an exciting and promising branch of biomimetic chemistry aiming to imitate the general and essential principles of natural enzymes using a variety of alternative materials including heterogeneous catalysts. Peroxidase enzymes represent a large family of oxidoreductases that typically catalyze biological reactions with high substrate affinity and specificity under relatively mild conditions and thus offer a wide range of practical applications in many areas of science. The increasing understanding of general principles as well as intrinsic drawbacks such as low operational stability, high cost, difficulty in purification and storage, and sensitivity of catalytic activity towards atmospheric conditions of peroxidases has triggered a dynamic field in nanotechnology, biochemical, and material science that aims at joining the better of three worlds by combining the concept adapted from nature with the processability of catalytically active graphene-based nanomaterials (G-NMs) as excellent peroxidase mimetic catalysts. This comprehensive review discusses an up-to-date synthesis, kinetics, mechanisms, and biosensing applications of a variety of G-NMs that have been explored as promising catalysts to mimic natural peroxidases. PMID:26248071

  17. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae)

    PubMed Central

    Bocek, Matej; Bocak, Ladislav

    2016-01-01

    Abstract Species delimitation was compared in a group of closely related lineages of aposematically colored Eniclases (Coleoptera, Lycidae) using morphology, genetic distances, and Bayesian implementation of the Poisson Tree Processes model. A high diversity of net-winged beetles was found in previously unsampled regions of New Guinea and ten new species are described: Eniclases bicolor sp. n., Eniclases bokondinensis sp. n., Eniclases brancuccii sp. n., Eniclases elelimensis sp. n., Eniclases infuscatus sp. n., Eniclases niger sp. n., Eniclases pseudoapertus sp. n., Eniclases pseudoluteolus sp. n., Eniclases tikapurensis sp. n., and Eniclases variabilis sp. n. Different levels of genetic and morphological diversification were identified in various sister-species pairs. As a result, both morphological and molecular analyses are used to delimit species. Sister-species with uncorrected pairwise genetic divergence as low as 0.45% were morphologically distinct not only in color pattern, but also in the relative size of eyes. Conversely, differences in color pattern regardless of their magnitude did not necessarily indicate genetic distance and intraspecific mimicry polymorphism was common. Additionally, genetic divergence without morphological differentiation was detected in one sister-species pair. Low dispersal propensity, diverse mimicry patterns, and mimetic polymorphism resulted in complex diversification of Eniclases and uncertain species delimitation in recently diversified lineages. PMID:27408550

  18. Non-Covalent Photo-Patterning of Gelatin Matrices Using Caged Collagen Mimetic Peptides

    PubMed Central

    Li, Yang; Hoa San, Boi; L. Kessler, Julian; Hwan Kim, Jin; Xu, Qingguo; Hanes, Justin; Yu, Seungju Michael

    2015-01-01

    Advancements in photolithography have enabled us to spatially encode biochemical cues in biocompatible platforms such as synthetic hydrogels. Conventional patterning works through photo-activated chemical reactions on inert polymer networks. However, these techniques cannot be directly applied to protein hydrogels without chemically altering the protein scaffolds. To this end, we developed a non-covalent photo-patterning strategy for gelatin (denatured collagen) hydrogels utilizing a caged collagen mimetic peptide (caged CMP) which binds to gelatin strands through UV activated, triple helix hybridization. Here we present 2D and 3D photo-patterning of gelatin hydrogels enabled by the caged CMPs as well as creation of concentration gradients of CMPs. We show that photo-patterning of PEG-conjugated caged CMPs can be used to spatially control cell adhesion on gelatin films. CMP’s specificity for binding to gelatin allows patterning of almost any synthetic or natural gelatin-containing matrix, such as zymograms, gelatin-methacrylate hydrogels, and even a corneal tissue. Since the CMP is a chemically and biologically inert peptide which is proven to be an ideal carrier for bioactive molecules, our patterning method provides a radically new tool for immobilizing drugs to natural tissues and for functionalizing scaffolds for complex tissue formation. PMID:25476588

  19. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    PubMed

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases. PMID:27525680

  20. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato.

    PubMed

    Nadeau, Nicola J; Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; McMillan, W Owen; Jiggins, Chris D; Papa, Riccardo

    2014-08-01

    Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data-alignment to a reference genome and de novo assembly-and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669

  1. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato

    PubMed Central

    Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; Papa, Riccardo

    2014-01-01

    Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669

  2. PEG-Based Hydrogels with Collagen Mimetic Peptide-Mediated and Tunable Physical Crosslinks

    PubMed Central

    Stahl, Patrick J.; Romano, Nicole H.; Wirtz, Denis; Yu, S. Michael

    2010-01-01

    Mechanical properties of tissue scaffolds have major effects on the morphology and differentiation of cells. In contrast to two-dimensional substrates, local biochemical and mechanical properties of three-dimensional hydrogels are difficult to control due to the geometrical confinement. We designed synthetic 3D hydrogels featuring complexes of four-arm poly(ethylene glycol) (PEG) and collagen mimetic peptides (CMPs) that form hydrogels via physical crosslinks mediated by thermally reversible triple helical assembly of CMPs. Here we present the fabrication of various PEG-CMP 3D hydrogels and their local mechanical properties determined by particle tracking microrheology. Results show that CMP mediated physical crosslinks can be disrupted by altering the temperature of the gel or by adding free CMPs that compete for triple helix formation. This allowed modulation of both bulk and local stiffness as well as the creation of stiffness gradients within the PEG-CMP hydrogel, which demonstrates its potential as a novel scaffold for encoding physico-chemical signals for tissue formation. PMID:20715762

  3. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Zhang, Hui; Zhao, Jiang; Gong, Yong-Kuan

    2012-10-01

    Cell membrane mimetic antifouling polymer brush was grown on polysulfone (PSF) membrane by surface-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC). The RAFT agent immobilized PSF substrate was prepared by successive chloromethylation, amination with ethylenediamine (EDA) and amidation of the amine group of grafted EDA with the carboxylic group of 4-cyanopentanoic acid dithiobenzoate (CPAD). The surface RAFT polymerization of MPC was initiated in aqueous solution by 4,4‧-azobis-4-cyanopentanoic acid (ACPA). The formation of PMPC brush coating is evidenced by X-ray photoelectron spectroscopy and water contact angle measurements. The degree of polymerization of PMPC and the polymer grafting density were calculated from the high resolution XPS spectra. The platelet adhesion and protein adsorption results showed that the PMPC-grafted PSF surface has excellent antifouling ability to resist platelet adhesion completely and suppress protein adsorption significantly. This biomimetic and bio-friendly surface RAFT polymerization strategy could be promising for a variety of biomedical applications.

  4. Partial Complementarity of the Mimetic Yellow Bar Phenotype in Heliconius Butterflies

    PubMed Central

    Maroja, Luana S.; Alschuler, Rebecca; McMillan, W. Owen; Jiggins, Chris D.

    2012-01-01

    Heliconius butterflies are an excellent system for understanding the genetic basis of phenotypic change. Here we document surprising diversity in the genetic control of a common phenotype. Two disjunct H. erato populations have each recruited the Cr and/or Sd loci that control similar yellow hindwing patterns, but the alleles involved partially complement one another indicating either multiple origins for the patterning alleles or developmental drift in genetic control of similar patterns. We show that in these H. erato populations cr and sd are epistatically interacting and that the parental origin of alleles can explain phenotypes of backcross individuals. In contrast, mimetic H. melpomene populations with identical phenotypes (H. m. rosina and H. m. amaryllis) do not show genetic complementation (F1s and F2s are phenotypically identical to parentals). Finally, we report hybrid female inviability in H. m. melpomene × H. m. rosina crosses (previously only female infertility had been reported) and presence of standing genetic variation for alternative color alleles at the Yb locus in true breeding H. melpomene melpomene populations (expressed when in a different genomic background) that could be an important source of variation for the evolution of novel phenotypes or a result of developmental drift. Although recent work has emphasized the simple genetic control of wing pattern in Heliconius, we show there is underlying complexity in the allelic variation and epistatic interactions between major patterning loci. PMID:23119074

  5. Partial complementarity of the mimetic yellow bar phenotype in Heliconius butterflies.

    PubMed

    Maroja, Luana S; Alschuler, Rebecca; McMillan, W Owen; Jiggins, Chris D

    2012-01-01

    Heliconius butterflies are an excellent system for understanding the genetic basis of phenotypic change. Here we document surprising diversity in the genetic control of a common phenotype. Two disjunct H. erato populations have each recruited the Cr and/or Sd loci that control similar yellow hindwing patterns, but the alleles involved partially complement one another indicating either multiple origins for the patterning alleles or developmental drift in genetic control of similar patterns. We show that in these H. erato populations cr and sd are epistatically interacting and that the parental origin of alleles can explain phenotypes of backcross individuals. In contrast, mimetic H. melpomene populations with identical phenotypes (H. m. rosina and H. m. amaryllis) do not show genetic complementation (F(1)s and F(2)s are phenotypically identical to parentals). Finally, we report hybrid female inviability in H. m. melpomene × H. m. rosina crosses (previously only female infertility had been reported) and presence of standing genetic variation for alternative color alleles at the Yb locus in true breeding H. melpomene melpomene populations (expressed when in a different genomic background) that could be an important source of variation for the evolution of novel phenotypes or a result of developmental drift. Although recent work has emphasized the simple genetic control of wing pattern in Heliconius, we show there is underlying complexity in the allelic variation and epistatic interactions between major patterning loci. PMID:23119074

  6. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.

    PubMed

    Kim, Jin-Ho; Kim, Youngwook; Bae, Ki Hyun; Park, Tae Gwan; Lee, Jung Hee; Park, Keunchil

    2015-04-01

    Water-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs). In preclinical human cancer xenograft mouse model studies, the paclitaxel-containing tumor-targeting SLNs exhibited pronounced in vivo stability and enhanced biocompatibility. Furthermore, these SLNs had superior antitumor activity to in-class nanoparticular therapeutics in clinical use (Taxol and Genexol-PM) and yielded long-term complete responses. The in vivo targeted antitumor activities of the SLN formulations in a mouse tumor model suggest that LDL-mimetic SLN formulations can be utilized as a biocompatible, tumor-targeting platform for the delivery of various anticancer therapeutics. PMID:25686010

  7. Hypoxia-mimetic effects in the secretome of human preadipocytes and adipocytes.

    PubMed

    Rosenow, Anja; Noben, Jean-Paul; Bouwman, Freek G; Mariman, Edwin C M; Renes, Johan

    2013-12-01

    White adipose tissue (WAT) regulates energy metabolism by secretion of proteins with endocrine and paracrine effects. Dysregulation of the secretome of obesity-associated enlarged WAT may lead to obesity-related disorders. This can be caused by hypoxia as a result of poorly vascularized WAT. The effect of hypoxia on the secretome of human (pre)adipocytes is largely unknown. Therefore, we investigated the effect of CoCl2, a hypoxia mimetic, on the secretome of human SGBS (pre)adipocytes by a proteomics approach combined with bioinformatic analysis. In addition, regulation of protein secretion was examined by protein turnover experiments. As such, secretome changes were particularly associated with protein down-regulation and extracellular matrix protein dysregulation. The observed up-regulation of collagens in adipocytes may be essential for cell survival while down-regulation of collagens in preadipocytes may indicate a disturbed differentiation process. These CoCl2-induced changes reflect WAT dysfunction that ultimately may lead to obesity-associated complications. In addition, 9 novel adipocyte secreted proteins were identified from which 6 were regulated by CoCl2. Mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD000162. PMID:24140569

  8. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration.

    PubMed

    Parmar, Paresh A; Chow, Lesley W; St-Pierre, Jean-Philippe; Horejs, Christine-Maria; Peng, Yong Y; Werkmeister, Jerome A; Ramshaw, John A M; Stevens, Molly M

    2015-06-01

    Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in these hydrogels exhibited improved viability and significantly enhanced chondrogenic differentiation compared to controls that were not functionalized with glycosaminoglycan-binding peptides. Hydrogels functionalized with CS-binding peptides also led to significantly higher MMP7 gene expression and activity while the HA-binding peptides significantly increased chondrogenic differentiation of the hMSCs. Our results highlight the potential of this novel biomaterial to modulate cell-mediated processes and create functional tissue engineered constructs for regenerative medicine applications. PMID:25907054

  9. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice.

    PubMed

    Aslam, Mohamad F; Frazer, David M; Faria, Nuno; Bruggraber, Sylvaine F A; Wilkins, Sarah J; Mirciov, Cornel; Powell, Jonathan J; Anderson, Greg J; Pereira, Dora I A

    2014-08-01

    The ferritin core is composed of fine nanoparticulate Fe(3+) oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe(3+) polyoxohydroxide (nanoFe(3+)). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe(2+) sulfate (FeSO4), nanoFe(3+), or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe(3+) was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe(3+) are equally bioavailable in WT mice, and at wk 8 the mean ± SEM hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe(3+) group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe(3+) is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement. PMID:24776745

  10. SMG1 and NIK regulate apoptosis induced by Smac mimetic compounds

    PubMed Central

    Cheung, H H; St Jean, M; Beug, S T; Lejmi-Mrad, R; LaCasse, E; Baird, S D; Stojdl, D F; Screaton, R A; Korneluk, R G

    2011-01-01

    Smac mimetic compounds (SMCs) are experimental small molecules that induce tumour necrosis factor alpha (TNFα)-dependent cancer cell death by targeting the inhibitor of apoptosis proteins. However, many cancer cell lines are resistant to SMC-mediated apoptosis despite the presence of TNFα. To add insight into the mechanism of SMC-resistance, we used functional siRNA-based kinomic and focused chemical screens and identified suppressor of morphogenesis in genitalia-1 (SMG1) and NF-κB-inducing kinase (NIK) as novel protective factors. Both SMG1 and NIK prevent SMC-mediated apoptosis likely by maintaining FLICE inhibitory protein (c-FLIP) levels to suppress caspase-8 activation. In SMC-resistant cells, the accumulation of NIK upon SMC treatment enhanced the activity of both the classical and alternative nuclear factor-κB pathways, and increased c-FLIP mRNA levels. In parallel, persistent SMG1 expression in SMC-resistant cells repressed SMC-mediated TNFα-induced JNK activation and c-FLIP levels were sustained. Importantly, SMC-resistance is overcome by depleting NIK and SMG1, which appear to facilitate the downregulation of c-FLIP in response to SMC and TNFα treatment, leading to caspase-8-dependent apoptosis. Collectively, these data show that SMG1 and NIK function as critical repressors of SMC-mediated apoptosis by potentially converging on the regulation of c-FLIP metabolism. PMID:21490678

  11. Smac Mimetic Compounds Potentiate Interleukin-1β-mediated Cell Death*

    PubMed Central

    Cheung, Herman H.; Beug, Shawn T.; St. Jean, Martine; Brewster, Audrey; Kelly, N. Lynn; Wang, Shaomeng; Korneluk, Robert G.

    2010-01-01

    Smac mimetic compounds (SMCs) potentiate TNFα-mediated cancer cell death by targeting the inhibitor of apoptosis (IAP) proteins. In addition to TNFα, the tumor microenvironment is exposed to a number of pro-inflammatory cytokines, including IL-1β. Here, we investigated the potential impact of IL-1β on SMC-mediated death of cancer cells. Synergy was seen in a subset of a diverse panel of 21 cancer cell lines to the combination of SMC and IL-1β treatment, which required IL-1β-induced activation of the NF-κB pathway. Elevated NF-κB activity resulted in the production of TNFα, which led to apoptosis dependent on caspase-8 and RIP1. In addition, concurrent silencing of cIAP1, cIAP2, and X-linked IAP by siRNA was most effective for triggering IL-1β-mediated cell death. Importantly, SMC-resistant cells that produced TNFα in response to IL-1β treatment were converted to an SMC-sensitive phenotype by c-FLIP knockdown. Reciprocally, ectopic expression of c-FLIP blocked cell death caused by combined SMC and IL-1β treatment in sensitive cancer cells. Together, our study indicates that a positive feed-forward loop by pro-inflammatory cytokines can be exploited by SMCs to induce apoptosis in cancer cells. PMID:20956527

  12. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration

    PubMed Central

    Parmar, Paresh A.; Chow, Lesley W.; St-Pierre, Jean-Philippe; Horejs, Christine-Maria; Peng, Yong Y.; Werkmeister, Jerome A.; Ramshaw, John A.M.; Stevens, Molly M.

    2015-01-01

    Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in these hydrogels exhibited improved viability and significantly enhanced chondrogenic differentiation compared to controls that were not functionalized with glycosaminoglycan-binding peptides. Hydrogels functionalized with CS-binding peptides also led to significantly higher MMP7 gene expression and activity while the HA-binding peptides significantly increased chondrogenic differentiation of the hMSCs. Our results highlight the potential of this novel biomaterial to modulate cell-mediated processes and create functional tissue engineered constructs for regenerative medicine applications. PMID:25907054

  13. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation.

    PubMed

    Brennan, Todd V; Lin, Liwen; Brandstadter, Joshua D; Rendell, Victoria R; Dredge, Keith; Huang, Xiaopei; Yang, Yiping

    2016-01-01

    Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies. PMID:26649979

  14. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair.

    PubMed

    Wojtowicz, Abigail M; Shekaran, Asha; Oest, Megan E; Dupont, Kenneth M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-03-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the alpha(2)beta(1) integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  15. Antiamnesic properties of analogs and mimetics of the tripeptide human urocortin 3.

    PubMed

    Telegdy, Gyula; Kovács, Anita Kármen; Rákosi, Kinga; Zarándi, Márta; Tóth, Gábor K

    2016-09-01

    Amnesia is a deficit in memory caused by brain damage, disease, or trauma. Until now, there are no successful medications on the drug market available to treat amnesia. Short analogs and mimetics of human urocortin 3 (Ucn 3) tripeptide were synthetized and tested for their action against amnesia induced by eletroconvulsion in mice. Among the 16 investigated derivatives of Ucn 3 tripeptide, eight compounds displayed antiamnesic effect. Our results proved that the configuration of chiral center of glutamine does not affect the antiamnesic properties. Alkyl amide or isoleucyl amide at the C-terminus may lead to antiamnesic compounds. As concerned the N-terminus, acetyl, Boc, and alkyl ureido moieties were found among the active analogs, but the free amino function at the N-terminus usually led to an inactive derivatives. These observations may lead to the design and synthesis of small peptidomimetics and amino acid derivatives as antiamnesic drug candidates, although the elucidation of the mechanism of the action requires further investigations. PMID:27262310

  16. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers.

    PubMed

    Zhang, Wei; Hu, Sunling; Yin, Jun-Jie; He, Weiwei; Lu, Wei; Ma, Ming; Gu, Ning; Zhang, Yu

    2016-05-11

    The generation of reactive oxygen species (ROS) is an important mechanism of nanomaterial toxicity. We found that Prussian blue nanoparticles (PBNPs) can effectively scavenge ROS via multienzyme-like activity including peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) activity. Instead of producing hydroxyl radicals (•OH) through the Fenton reaction, PBNPs were shown to be POD mimetics that can inhibit •OH generation. We theorized for the first time that the multienzyme-like activities of PBNPs were likely caused by the abundant redox potentials of their different forms, making them efficient electron transporters. To study the ROS scavenging ability of PBNPs, a series of in vitro ROS-generating models was established using chemicals, UV irradiation, oxidized low-density lipoprotein, high glucose contents, and oxygen glucose deprivation and reperfusion. To demonstrate the ROS scavenging ability of PBNPs, an in vivo inflammation model was established using lipoproteins in Institute for Cancer Research (ICR) mice. The results indicated that PBNPs hold great potential for inhibiting or relieving injury induced by ROS in these pathological processes. PMID:26918394

  17. Coating of Biomaterial Scaffolds with the Collagen-Mimetic Peptide GFOGER for Bone Defect Repair

    PubMed Central

    Wojtowicz, Abigail M.; Shekaran, Asha; Oest, Megan E.; Dupont, Kenneth M.; Templeman, Kellie L.; Hutmacher, Dietmar W.; Guldberg, Robert E.; García, Andrés J.

    2009-01-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto- and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the α2β1 integrin receptor involved in osteogenesis. GFOGER coatings passively-adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost effective and facile approach translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  18. Defensive Chemistry of Lycid Beetles and of Mimetic Cerambycid Beetles that Feed on Them

    PubMed Central

    Eisner, Thomas; Schroeder, Frank C.; Snyder, Noel; Grant, Jacqualine B.; Aneshansley, Daniel J.; Utterback, David; Meinwald, Jerrold; Eisner, Maria

    2008-01-01

    Summary Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycus commonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. PMID:18698369

  19. Furoxans (1, 2, 5 Oxadiazole-N-Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents

    PubMed Central

    Schiefer, Isaac T.; VandeVrede, Lawren; Fa', Mauro; Arancio, Ottavio; Thatcher, Gregory R. J.

    2012-01-01

    Furoxans (1,2,5 oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity towards bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO2-, but not with depletion of free thiol itself. Neuroprotection was abrogated upon co-treatment with a sGC inhibitor, ODQ, supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-β peptide (Aβ) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies. PMID:22429006

  20. Simple avarone mimetics as selective agents against multidrug resistant cancer cells.

    PubMed

    Jeremić, Marko; Pešić, Milica; Dinić, Jelena; Banković, Jasna; Novaković, Irena; Šegan, Dejan; Sladić, Dušan

    2016-08-01

    In this work, synthesis of alkylamino and aralkylamino derivatives of sesquiterpene quinone avarone and its model compound tert-butylquinone was described. For all obtained derivatives biological activity was studied. Cytotoxic activity of the synthesized derivatives towards multidrug resistant MDR human non-small cell lung carcinoma NCI-H460/R cells, their sensitive counterpart NCI-H460 and human normal keratinocytes (HaCaT) as well as detection of cell death superoxide anion generation were investigated. Antimicrobial activity towards Gram positive and Gram negative bacteria and fungal cultures was determined. The results showed that strong cytotoxic activity toward cancer cells was improved with simple avarone mimetics. Some derivatives were selective towards MDR cancer cells. The most active derivatives induced apoptosis in both cancer cell lines, but not in normal cells. Superoxide production was induced by 2,6-disubstituted compounds in MDR cancer cells and not by less active 2,5-disubstituted compounds and was accompanied by the collapse of the mitochondrial transmembrane potential. Two tert-butylquinone derivatives were particularly selective towards MDR cancer cells. Some tert-butylquinone derivatives exhibited a strong antimicrobial activity. PMID:27128177

  1. Nanoparticle Assembly and Gelatin Binding Mediated by Triple Helical Collagen Mimetic Peptide.

    PubMed

    San, Boi Hoa; Li, Yang; Tarbet, E Bart; Yu, S Michael

    2016-08-10

    Peptide-conjugated nanoparticles (NPs) have promising potential for applications in biosensing, diagnosis, and therapeutics because of their appropriate size, unique self-assembly, and specific substrate-binding properties. However, controlled assembly and selective target binding are difficult to achieve with simple peptides on NP surfaces because high surface energy makes NPs prone to self-aggregate and adhere nonspecifically. Here, we report the self-assembly and gelatin binding properties of collagen mimetic peptide (CMP) conjugated gold NPs (CMP-NPs). We show that the orientation of CMPs displayed on the NP surface can control NP assembly either by promoting or hindering triple helical folding between CMPs of neighboring NPs. We also show that CMP-NPs can specifically bind to denatured collagen by forming triple-helical hybrids between denatured collagen strands and CMPs, demonstrating their potential use for detection and selective removal of gelatin from protein mixtures. CMP conjugated NPs offer a simple and effective method for NP assembly and for targeting denatured collagens with high specificity. Therefore, they may lead to new types of functional nanomaterials for detection and study of denatured collagen associated with diseases characterized by high levels of collagen degradation. PMID:27403657

  2. Physics of cell adhesion: some lessons from cell-mimetic systems

    PubMed Central

    Sackmann, Erich; Smith, Ana-Sunčana

    2014-01-01

    Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of these rules in the context of cellular systems. We review how adhesion induced micro-domains couple to the intracellular actin and microtubule networks allowing cells to generate strong forces with a minimum of attractive cell adhesion molecules (CAMs) and to manipulate other cells through filopodia over micrometer distances. The adhesion strength can be adapted to external force fluctuations within seconds by varying the density of attractive and repellant CAMs through exocytosis and endocytosis or protease-mediated dismantling of the CAM–cytoskeleton link. Adhesion domains form local end global biochemical reaction centres enabling the control of enzymes. Actin–microtubule crosstalk at adhesion foci facilitates the mechanical stabilization of polarized cell shapes. Axon growth in tissue is guided by attractive and repulsive clues controlled by antagonistic signalling pathways. PMID:24651316

  3. Interfacial Cavity Filling To Optimize CD4-Mimetic Miniprotein Interactions with HIV-1 Surface Glycoprotein

    SciTech Connect

    Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier; Michiels, Johan; Descours, Anne; Ramos, Oscar H.P.; Yang, Yongping; Vanham, Guido; Ariën, Kevin K.; Kwong, Peter D.; Martin, Loïc; Kessler, Pascal

    2013-08-05

    Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.

  4. A mimetic spectral element solver for the Grad-Shafranov equation

    NASA Astrophysics Data System (ADS)

    Palha, A.; Koren, B.; Felici, F.

    2016-07-01

    In this work we present a robust and accurate arbitrary order solver for the fixed-boundary plasma equilibria in toroidally axisymmetric geometries. To achieve this we apply the mimetic spectral element formulation presented in [56] to the solution of the Grad-Shafranov equation. This approach combines a finite volume discretization with the mixed finite element method. In this way the discrete differential operators (∇, ∇×, ∇ṡ) can be represented exactly and metric and all approximation errors are present in the constitutive relations. The result of this formulation is an arbitrary order method even on highly curved meshes. Additionally, the integral of the toroidal current Jϕ is exactly equal to the boundary integral of the poloidal field over the plasma boundary. This property can play an important role in the coupling between equilibrium and transport solvers. The proposed solver is tested on a varied set of plasma cross sections (smooth and with an X-point) and also for a wide range of pressure and toroidal magnetic flux profiles. Equilibria accurate up to machine precision are obtained. Optimal algebraic convergence rates of order p + 1 and geometric convergence rates are shown for Soloviev solutions (including high Shafranov shifts), field-reversed configuration (FRC) solutions and spheromak analytical solutions. The robustness of the method is demonstrated for non-linear test cases, in particular on an equilibrium solution with a pressure pedestal.

  5. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation

    PubMed Central

    Brennan, Todd V.; Lin, Liwen; Brandstadter, Joshua D.; Rendell, Victoria R.; Dredge, Keith; Huang, Xiaopei; Yang, Yiping

    2015-01-01

    Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell–based antitumor therapies. PMID:26649979

  6. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with the HIV-1 surface protein

    PubMed Central

    Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier; Michiels, Johan; Descours, Anne; Ramos, Oscar H. P.; Yang, Yongping; Vanham, Guido; Ariën, Kevin K.; Kwong, Peter D.; Martin, Loïc; Kessler, Pascal

    2013-01-01

    Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface protein (gp120) and cluster of differentiation 4 (CD4) receptor, extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with eleven non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative named M48U12 (13) binds HIV-1 YU2 gp120 with 8 pM affinity, and shows potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine and its co-crystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and an aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity. PMID:23710622

  7. New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design.

    PubMed

    Barrera Guisasola, Exequiel E; Andujar, Sebastián A; Hubin, Ellen; Broersen, Kerensa; Kraan, Ivonne M; Méndez, Luciana; Delpiccolo, Carina M L; Masman, Marcelo F; Rodríguez, Ana M; Enriz, Ricardo D

    2015-05-01

    A new series of mimetic peptides possessing a significant Aβ aggregation modulating effect was reported here. These compounds were obtained based on a molecular modelling study which allowed us to perform a structural-based virtual selection. Monitoring Aβ aggregation by thioflavin T fluorescence and transmission electron microscopy revealed that fibril formation was significantly decreased upon prolonged incubation in presence of the active compounds. Dot blot analysis suggested a decrease of soluble oligomers strongly associated with cognitive decline in Alzheimer's disease. For the molecular dynamics simulations, we used an Aβ42 pentameric model where the compounds were docked using a blind docking technique. To analyze the dynamic behaviour of the complexes, extensive molecular dynamics simulations were carried out in explicit water. We also measured parameters or descriptors that allowed us to quantify the effect of these compounds as potential inhibitors of Aβ aggregation. Thus, significant alterations in the structure of our Aβ42 protofibril model were identified. Among others we observed the destruction of the regular helical twist, the loss of a stabilizing salt bridge and the loss of a stabilizing hydrophobic interaction in the β1 region. Our results may be helpful in the structural identification and understanding of the minimum structural requirements for these molecules and might provide a guide in the design of new aggregation modulating ligands. PMID:25805447

  8. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels.

    PubMed

    Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B

    2015-08-01

    Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. PMID:25931015

  9. Impact of peptide clustering on unbinding forces in the context of fusion mimetics

    SciTech Connect

    Pähler, Gesa; Lorenz, Bärbel; Janshoff, Andreas

    2013-01-18

    Highlights: ► Coiled-coil peptides as SNARE mimetics for membrane fusion. ► Interaction forces assessed by colloidal probe microscopy. ► Lateral organization of lipopeptides visualized by atomic force microscopy. -- Abstract: Coiled-coil zipping and unzipping is a pivotal process in SNARE-regulated membrane fusion. In this study we examine this process mediated by a minimal model for coiled-coil formation employing force spectroscopy in the context of membrane-coated surfaces and probes. The interaction forces of several hundred pN are surprisingly low considering the proposed amount of molecular bonds in the contact zone. However, by means of high-resolution imaging employing atomic force microscopy and studying the lateral mobility of lipids and peptides as a function of coiled-coil formation, we are able to supply a detailed view on processes occurring on the membrane surfaces during force measurements. The interaction forces determined here are not only dependent on the peptide concentration on the surface, but also on the regional organization of lateral peptide clusters found prior to coiled-coil formation.

  10. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation.

    PubMed

    Howard, Melissa D; Greineder, Colin F; Hood, Elizabeth D; Muzykantov, Vladimir R

    2014-03-10

    Production of excessive levels of reactive oxygen species (ROS) in the vascular endothelium is a common pathogenic pathway in many dangerous conditions, including acute lung injury, ischemia-reperfusion, and inflammation. Ineffective delivery of antioxidants to the endothelium limits their utility for management of these conditions. In this study, we devised a novel translational antioxidant intervention targeted to the vascular endothelium using PEG-liposomes loaded with EUK-134 (EUK), a potent superoxide dismutase/catalase mimetic. EUK loaded into antibody-coated liposomes (size 197.8±4.5 nm diameter, PDI 0.179±0.066) exerted partial activity in the intact carrier, while full activity was recovered upon liposome disruption. For targeting we used antibodies (Abs) to platelet-endothelial cell adhesion molecule (PECAM-1). Both streptavidin-biotin and SATA/SMCC conjugation chemistries provided binding of 125-150 Ab molecules per liposome. Ab/EUK/liposomes, but not IgG/EUK/liposomes: i) bound to endothelial cells and inhibited cytokine-induced inflammatory activation in vitro; and, ii) accumulated in lungs after intravascular injection, providing >60% protection against pulmonary edema in endotoxin-challenged mice (vs <6% protection afforded by IgG/liposome/EUK counterpart). Since the design elements of this drug delivery system are already in clinical use (PEG-liposomes, antibodies, SATA/SMCC conjugation), it is an attractive candidate for translational interventions using antioxidant molecules such as EUK and other clinically acceptable drugs. PMID:24412573

  11. Mimetic finite difference method for the stokes problem on polygonal meshes

    SciTech Connect

    Lipnikov, K; Beirao Da Veiga, L; Gyrya, V; Manzini, G

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  12. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL.

    PubMed

    Le Pen, J; Laurent, M; Sarosiek, K; Vuillier, C; Gautier, F; Montessuit, S; Martinou, J C; Letaï, A; Braun, F; Juin, P P

    2016-01-01

    Proapoptotic molecules directly targeting the BCL-2 family network are promising anticancer therapeutics, but an understanding of the cellular stress signals that render them effective is still elusive. We show here that the tumor suppressor p53, at least in part by transcription independent mechanisms, contributes to cell death induction and full activation of BAX by BH3 mimetic inhibitors of BCL-xL. In addition to mildly facilitating the ability of compounds to derepress BAX from BCL-xL, p53 also provides a death signal downstream of anti-apoptotic proteins inhibition. This death signal cooperates with BH3-induced activation of BAX and it is independent from PUMA, as enhanced p53 can substitute for PUMA to promote BAX activation in response to BH3 mimetics. The acute sensitivity of mitochondrial priming to p53 revealed here is likely to be critical for the clinical use of BH3 mimetics. PMID:26844698

  13. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    NASA Astrophysics Data System (ADS)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  14. Inhibition of PI3K/BMX Cell Survival Pathway Sensitizes to BH3 Mimetics in SCLC.

    PubMed

    Potter, Danielle S; Galvin, Melanie; Brown, Stewart; Lallo, Alice; Hodgkinson, Cassandra L; Blackhall, Fiona; Morrow, Christopher J; Dive, Caroline

    2016-06-01

    Most small cell lung cancer (SCLC) patients are initially responsive to cytotoxic chemotherapy, but almost all undergo fatal relapse with progressive disease, highlighting an urgent need for improved therapies and better patient outcomes in this disease. The proapoptotic BH3 mimetic ABT-737 that targets BCL-2 family proteins demonstrated good single-agent efficacy in preclinical SCLC models. However, so far clinical trials of the BH3 mimetic Navitoclax have been disappointing. We previously demonstrated that inhibition of a PI3K/BMX cell survival signaling pathway sensitized colorectal cancer cells to ABT-737. Here, we show that SCLC cell lines, which express high levels of BMX, become sensitized to ABT-737 upon inhibition of PI3K in vitro, and this is dependent on inhibition of the PI3K-BMX-AKT/mTOR signaling pathway. Consistent with these cell line data, when combined with Navitoclax, PI3K inhibition suppressed tumor growth in both an established SCLC xenograft model and in a newly established circulating tumor cell-derived explant (CDX) model generated from a blood sample obtained at presentation from a chemorefractory SCLC patient. These data show for the first time that a PI3K/BMX signaling pathway plays a role in SCLC cell survival and that a BH3 mimetic plus PI3K inhibition causes prolonged tumor regression in a chemorefractory SCLC patient-derived model in vivo These data add to a body of evidence that this combination should move toward the clinic. Mol Cancer Ther; 15(6); 1248-60. ©2016 AACR. PMID:27197306

  15. A Smac Mimetic Reduces TNF Related Apoptosis Inducing Ligand (TRAIL)-Induced Invasion and Metastasis of Cholangiocarcinoma Cells

    PubMed Central

    Fingas, Christian D.; Blechacz, Boris R. A.; Smoot, Rory L.; Guicciardi, Maria E.; Mott, Justin; Bronk, Steve F.; Werneburg, Nathan W.; Sirica, Alphonse E.; Gores, Gregory J.

    2010-01-01

    Cholangiocarcinoma (CCA) cells paradoxically express tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), a death ligand that, failing to kill CCA cells, instead promotes their tumorigenicity and especially the metastatic behaviors of cell migration and invasion. Second mitochondria-derived activator of caspase (smac) mimetics are promising cancer therapeutic agents that enhance proapoptotic death receptor signaling by causing cellular degradation of inhibitor of apoptosis (IAP) proteins. Our aim was to examine the in vitro and in vivo effects of the smac mimetic JP1584 in CCA. Despite JP1584-mediated loss of cellular inhibitor of apoptosis-1 (cIAP-1) and cIAP-2, TRAIL failed to induce apoptosis in KMCH-1, TFK-1, and BDEneu CCA cells; a finding consistent with a downstream block in death signaling. Because cIAP-1 and cIAP-2 also promote nuclear factor kappa B (NF-κB) activation by the canonical pathway, the effect of JP1584 on this signaling pathway was examined. Treatment with JP1584 inhibited TRAIL-induced NF-κB activation as well as TRAIL-mediated up-regulation of the NF-κB target gene, matrix metalloproteinase 7 (MMP7). JP1584 also reduced TRAIL-mediated CCA cell migration and invasion in vitro. Finally, in a syngeneic rat orthotopic CCA model, JP1584 administration reduced MMP7 messenger RNA levels and extrahepatic metastases. Conclusion Although the smac mimetic JP1584 does not sensitize cells to apoptosis, it reduces TRAIL-induced CCA cell metastatic behavior. These data support the emerging concept that IAPs are prometastatic and represent targets for antimetastatic therapies. PMID:20683954

  16. Crystal Structures of Complexes of Bacterial DD-Peptidases with Peptidoglycan-mimetic Ligands: The Substrate Specificity Puzzle

    PubMed Central

    Sauvage, Eric; Powell, Ailsa J.; Heilemann, Jason; Josephine, Helen R.; Charlier, Paulette; Davies, Christopher; Pratt, R.F.

    2008-01-01

    Summary The X-ray crystal structures of covalent complexes of the Actinomadura R39 DD-peptidase and Escherichia coli penicillin-binding protein 5 with β-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound non-covalently to the former enzyme has also been obtained. The R39 DD-peptidase structures reveal the presence of a specific binding site for the D-α-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these elements of the site are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these β-lactams are covalently bound to penicillin-binding protein 5. There is, therefore, no indication of a specific side chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between the kinetics and structural evidence. The essential high molecular weight penicillin binding proteins have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and β-lactam inhibitors and thus probably do not possess a specific substrate binding site of the type demonstrated here with the R39 DD-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low molecular weight substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design. PMID:18602645

  17. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice

    PubMed Central

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B.E.; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P.; Shields, Christopher B.

    2014-01-01

    Objective Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. Methods A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. Results The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. Conclusion The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and

  18. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity

    PubMed Central

    Scarpi, D; Cirelli, D; Matrone, C; Castronovo, G; Rosini, P; Occhiato, E G; Romano, F; Bartali, L; Clemente, A M; Bottegoni, G; Cavalli, A; De Chiara, G; Bonini, P; Calissano, P; Palamara, A T; Garaci, E; Torcia, M G; Guarna, A; Cozzolino, F

    2012-01-01

    Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation, sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates. PMID:22764098

  19. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity.

    PubMed

    Scarpi, D; Cirelli, D; Matrone, C; Castronovo, G; Rosini, P; Occhiato, E G; Romano, F; Bartali, L; Clemente, A M; Bottegoni, G; Cavalli, A; De Chiara, G; Bonini, P; Calissano, P; Palamara, A T; Garaci, E; Torcia, M G; Guarna, A; Cozzolino, F

    2012-01-01

    Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase 1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation,sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates. PMID:22951986

  20. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity.

    PubMed

    Scarpi, D; Cirelli, D; Matrone, C; Castronovo, G; Rosini, P; Occhiato, E G; Romano, F; Bartali, L; Clemente, A M; Bottegoni, G; Cavalli, A; De Chiara, G; Bonini, P; Calissano, P; Palamara, A T; Garaci, E; Torcia, M G; Guarna, A; Cozzolino, F

    2012-01-01

    Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation, sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates. PMID:22764098

  1. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity.

    PubMed

    Hua, J; Scott, R W; Diamond, G

    2010-12-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 μg ml(-1) mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516

  2. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99mTc-HMPAO

    PubMed Central

    Hwang, Do Won; Choi, Hongyoon; Jang, Su Chul; Yoo, Min Young; Park, Ji Yong; Choi, Na Eun; Oh, Hyun Jeong; Ha, Seunggyun; Lee, Yun-Sang; Jeong, Jae Min; Gho, Yong Song; Lee, Dong Soo

    2015-01-01

    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with 99mTc-HMPAO under physiologic conditions and monitored in vivo distribution of 99mTc-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with 99mTc-HMPAO for 1 hr incubation, followed by removal of free 99mTc-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with 99mTc-HMPAO, the radiochemical purity of 99mTc-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in 99mTc-HMPAO-ENVs. 99mTc-HMPAO-ENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with 99mTc-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with 99mTc-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application. PMID:26497063

  3. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells.

    PubMed

    Parmar, Paresh A; Skaalure, Stacey C; Chow, Lesley W; St-Pierre, Jean-Philippe; Stoichevska, Violet; Peng, Yong Y; Werkmeister, Jerome A; Ramshaw, John A M; Stevens, Molly M

    2016-08-01

    collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications. PMID:27214650

  4. Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents.

    PubMed

    Kronenfeld, Gali; Engelman, Rotem; Weisman-Shomer, Pnina; Atlas, Daphne; Benhar, Moran

    2015-02-01

    S-nitrosylation, the coupling of a nitric oxide moiety to a reactive cysteine residue to form an S-nitrosothiol (SNO), is an important posttranslational mechanism for regulating protein activity. Growing evidence indicates that hyper-S-nitrosylation may contribute to cellular dysfunction associated with various human diseases. It is also increasingly appreciated that thioredoxin and thioredoxin reductase play significant roles in the cellular catabolism of SNO and protection from nitrosative stress. Here, we investigated the SNO reductase activity and protective effects of thioredoxin-mimetic peptides (TXMs), Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4), both under cell-free conditions and in nitrosatively stressed cultured cells. In vitro biochemical analyses revealed that the TXM peptides reduced small-molecule SNO compounds, such as S-nitrosoglutathione (GSNO), and acted as general and efficient protein-denitrosylating agents. In particular, CB3 was found to be a highly potent SNO-metabolizing agent. Notably, CB3 mimicked the activity of thioredoxin by coupling with thioredoxin reductase to enhance GSNO reduction. Moreover, in a cell-free lysate system, both CB3 and CB4 synergized with an NADPH-dependent activity to denitrosylate proteins. Further investigation revealed that the TXM peptides protect the peroxiredoxin-thioredoxin system from SNO-dependent inhibition. Indeed, SNO-inhibited Prx1 was efficiently denitrosylated and reactivated by CB3 or CB4. In addition, CB3 protected thioredoxin reductase from SNO-mediated inactivation both in vitro and in intact cells. Finally, CB3 and CB4 partially rescued human neuroblastoma SH-SY5Y cells and rat insulinoma INS-1 832/13 cells from GSNO-induced growth inhibition. Collectively, the present findings indicate the efficient denitrosylation activity and protective effects of TXM peptides and suggest their potential therapeutic value in treating pathological conditions related to nitrosative stress

  5. Preferred conformation of endomorphin-1 in aqueous and membrane-mimetic environments.

    PubMed

    Fiori, S; Renner, C; Cramer, J; Pegoraro, S; Moroder, L

    1999-08-01

    The newly discovered endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are potent opioid peptides with the highest affinity and selectivity for the mu receptor among all known endogenous ligands. To investigate a possible correlation between these biological properties and the conformational preferences of the small peptides, a comparative structural analysis was performed of endomorphin-1 in aqueous buffer and in membrane-mimicking SDS and AOT normal and reverse micelles by the use of CD, FT-IR, fluorescence and(1)H-NMR spectroscopy. It is well established for opioid peptides that, independently of the receptor selectivity, the Tyr1 residue plays the role of the primary pharmacophore and that the orientation of the second aromatic pharmacophore relative to the tyrosine side-chain dictates the mu or delta-receptor selectivity. By varying the environment of endomorphin-1 from water to the amphipathic SDS micelles and even more efficiently to the AOT reverse micelles, the display of the aromatic side-chains changes from an interaction of the Tyr1 and Phe4 residues to a switch of the Trp3 indole group into close contact with the phenolic moiety to prevent this type of interaction and to force an orientation of the Phe4 side-chain into the opposite direction. This conformational switch is accompanied by a stabilization of the cis -Pro2 isomer and the resulting spatial array of the pharmacophoric groups correlate well with the structural model of mu receptor-bound opioid peptides. The results indicate that AOT reverse micelles with a woof 10, where almost exclusively ordered water is secluded in the cavity, constitute with their electrostatic and hydrophobic potential an excellent mimetic of amphipathic surfaces as present on lipid bilayers and on ligand-recognition and ligand-binding sites of proteins. PMID:10438613

  6. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    SciTech Connect

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene; Katritch, Vsevolod; Wu, Huixian; Vardy, Eyal; Huang, Xi-Ping; Trapella, Claudio; Guerrini, Remo; Calo, Girolamo; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C.

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

  7. The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen.

    PubMed

    Shafiei, Mojtaba; Forouzanfar, Mohsen; Hosseini, Sayyed Morteza; Esfahani, Mohammad Hossein Nasr

    2015-05-01

    Manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE) is a cell-permeable superoxide dismutase mimetic agent which can convert superoxide to hydrogen peroxide (H2O2). Supplementation of MnTE to a commercial semen extender can protect sperm from superoxide but not H2O2. Therefore, we proposed that addition of catalase (0.0, 200, or 400 IU/mL) in combination with MnTE (0.1 μM) may further improve the cryopreservation efficiency of goat semen in commercially optimized freezing media such as Andromed. Therefore, ejaculates were obtained from three adult bucks twice a week during the breeding season and diluted with Andromed supplemented with or without MnTE and catalase and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species contents were evaluated 2 hours after dilution (before freezing) and after freezing/thawing. The results revealed that all the treatments significantly (P ≤ 0.05) improved sperm motility, viability, and membrane integrity after freezing and reduced reactive oxygen species content compared with the control group, but maximum improvement was obtained in MnTE + 400 IU/mL catalase. In addition, supplementation with these antioxidants significantly (P ≤ 0.05) increases the cleavage rate after IVF. In conclusion, the results of present study suggest that addition of antioxidant MnTE or catalase to commercial optimized media, such as Andromed, improves total motility, membrane integrity, and viability of goat semen samples after thawing. But the degree of improvement for these parameters significantly (P ≤ 0.05) higher when MnTE and catalase were simultaneously added to the cryopreservation media. PMID:25698161

  8. Dramatic nano-fluidic properties of carbon nanotube membranes as a platform for protein channel mimetics

    NASA Astrophysics Data System (ADS)

    Hinds, Bruce

    2013-03-01

    Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267

  9. Bio-Mimetics of Disaster Anticipation-Learning Experience and Key-Challenges.

    PubMed

    Tributsch, Helmut

    2013-01-01

    Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake event. The final product, however, of any energy turnover is heat. Satellite based infrared measurements have indeed identified significant thermal anomalies before major earthquakes. One of these cases, occurring during the 2001 Bhuj earthquake in Gujarat, India, is analyzed together with parallel animal anomalies observed in the Gir national park. It is suggested that the time window is identical and that both phenomena have the same geophysical origin. It therefore remains to be demonstrated that energy can be released locally before major earthquake events. It is shown that by considering appropriate geophysical feedback processes, this is

  10. Treatment of Mild Traumatic Brain Injury with an Erythropoietin-Mimetic Peptide

    PubMed Central

    Garcia, Robert; Sujit Kumar Gaddam, Samson; Grill, Raymond J.; Cerami Hand, Carla; Siva Tian, Tian; Hannay, H. Julia

    2013-01-01

    Abstract Mild traumatic brain injury (mTBI) results in an estimated 75–90% of the 1.7 million TBI-related emergency room visits each year. Post-concussion symptoms, which can include impaired memory problems, may persist for prolonged periods of time in a fraction of these cases. The purpose of this study was to determine if an erythropoietin-mimetic peptide, pyroglutamate helix B surface peptide (pHBSP), would improve neurological outcomes following mTBI. Sixty-four rats were randomly assigned to pHBSP or control (inactive peptide) 30 μg/kg IP every 12 h for 3 days, starting at either 1 hour (early treatment) or 24 h (delayed treatment), after mTBI (cortical impact injury 3 m/sec, 2.5 mm deformation). Treatment with pHBSP resulted in significantly improved performance on the Morris water maze task. Rats that received pHBSP required 22.3±1.3 sec to find the platform, compared to 26.3±1.3 sec in control rats (p=0.022). The rats that received pHBSP also traveled a significantly shorter distance to get to the platform, 5.0±0.3 meters, compared to 6.1±0.3 meters in control rats (p=0.019). Motor tasks were only transiently impaired in this mTBI model, and no treatment effect on motor performance was observed with pHBSP. Despite the minimal tissue injury with this mTBI model, there was significant activation of inflammatory cells identified by labeling with CD68, which was reduced in the pHBSP-treated animals. The results suggest that pHBSP may improve cognitive function following mTBI. PMID:22827443

  11. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

    PubMed Central

    Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P

    2009-01-01

    Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908

  12. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm.

    PubMed

    Bonnard, Thomas; Serfaty, Jean-Michel; Journé, Clément; Ho Tin Noe, Benoît; Arnaud, Denis; Louedec, Liliane; Derkaoui, Sidi Mohammed; Letourneur, Didier; Chauvierre, Cédric; Le Visage, Catherine

    2014-08-01

    We have developed injectable microparticles functionalized with fucoidan, in which sulfated groups mimic the anchor sites of P-selectin glycoprotein ligand-1 (PSGL-1), one of the principal receptors supporting leukocyte adhesion. These targeted microparticles were combined with a fluorescent dye and a T2(∗) magnetic resonance imaging (MRI) contrast agent, and then tracked in vivo with small animal imaging methods. Microparticles of 2.5μm were obtained by a water-in-oil emulsification combined with a cross-linking process of polysaccharide dextran, fluorescein isothiocyanate dextran, pullulan and fucoidan mixed with ultrasmall superparamagnetic particles of iron oxide. Fluorescent intravital microscopy observation revealed dynamic adsorption and a leukocyte-like behaviour of fucoidan-functionalized microparticles on a calcium ionophore induced an activated endothelial layer of a mouse mesentery vessel. We observed 20times more adherent microparticles on the activated endothelium area after the injection of functionalized microparticles compared to non-functionalized microparticles (197±11 vs. 10±2). This imaging tool was then applied to rats presenting an elastase perfusion model of abdominal aortic aneurysm (AAA) and 7.4T in vivo MRI was performed. Visual analysis of T2(∗)-weighted MR images showed a significant contrast enhancement on the inner wall of the aneurysm from 30min to 2h after the injection. Histological analysis of AAA cryosections revealed microparticles localized inside the aneurysm wall, in the same areas in which immunostaining shows P-selectin expression. The developed leukocyte mimetic imaging tool could therefore be relevant for molecular imaging of vascular diseases and for monitoring biologically active areas prone to rupture in AAA. PMID:24769117

  13. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO.

    PubMed

    Hwang, Do Won; Choi, Hongyoon; Jang, Su Chul; Yoo, Min Young; Park, Ji Yong; Choi, Na Eun; Oh, Hyun Jeong; Ha, Seunggyun; Lee, Yun-Sang; Jeong, Jae Min; Gho, Yong Song; Lee, Dong Soo

    2015-01-01

    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with (99m)Tc-HMPAO under physiologic conditions and monitored in vivo distribution of (99m)Tc-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with (99m)Tc-HMPAO for 1 hr incubation, followed by removal of free (99m)Tc-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with (99m)Tc-HMPAO, the radiochemical purity of (99m)Tc-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in (99m)Tc-HMPAO-ENVs. (99m)Tc-HMPAO-ENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with (99m)Tc-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with (99m)Tc-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application. PMID:26497063

  14. Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer.

    PubMed

    Jenkins, Courtney L; Meredith, Heather J; Wilker, Jonathan J

    2013-06-12

    Characterization of marine biological adhesives are teaching us how nature makes materials and providing new ideas for synthetic systems. One of the most widely studied adhering animals is the marine mussel. This mollusk bonds to wet rocks by producing an adhesive from cross-linked proteins. Several laboratories are now making synthetic mimics of mussel adhesive proteins, with 3,4-dihydroxyphenylalanine (DOPA) or similar molecules pendant from polymer chains. In select cases, appreciable bulk bonding results, with strengths as high as commercial glues. Polymer molecular weight is amongst several parameters that need to be examined in order to both understand biomimetic adhesion as well as to maximize performance. Experiments presented here explore how the bulk adhesion of a mussel mimetic polymer varies as a function of molecular weight. Systematic structure-function studies were carried out both with and without the presence of an oxidative cross-linker. Without cross-linking, higher molecular weights generally afforded higher adhesion. When a [N(C4H9)4](IO4) cross-linker was added, adhesion peaked at molecular weights of ~50,000-65,000 g/mol. These data help to illustrate how changes to the balance of cohesion versus adhesion influence bulk bonding. Mussel adhesive plaques achieve this balance by incorporating several proteins with molecular weights ranging from 6000 to 110,000 g/mol. To mimic these varied proteins we made a blend of polymers containing a range of molecular weights. Interestingly, this blend adhered more strongly than any of the individual polymers when cross-linked with [N(C4H9)4](IO4). These results are helping us to both understand the origins of biological materials as well as design high performance polymers. PMID:23668520

  15. Smac mimetic sensitizes renal cell carcinoma cells to interferon-α-induced apoptosis.

    PubMed

    Reiter, Michael; Eckhardt, Ines; Haferkamp, Axel; Fulda, Simone

    2016-05-28

    The prognosis of metastatic or relapsed renal cell carcinoma (RCC) is still very poor, highlighting the need for new treatment strategies. Here, we identify a cooperative antitumor activity of interferon-α (IFNα) together with the Smac mimetic BV6 that antagonizes antiapoptotic IAP proteins. BV6 and IFNα act together to reduce cell viability and to induce apoptosis in various RCC cell lines. Molecular studies revealed that BV6/IFNα co-treatment triggers apoptosis independently of autocrine/paracrine Tumor Necrosis Factor (TNF)α signaling, since the TNFα-blocking antibody Enbrel fails to rescue cell death. Importantly, knockdown of Receptor-Interacting Protein (RIP)1 significantly decreases BV6/IFNα-mediated apoptosis, whereas the RIP1 kinase inhibitor necrostatin-1 (Nec-1) provides no protection. This demonstrates that RIP1 protein is critically required for BV6/IFNα-induced apoptosis, while RIP1 kinase activity is dispensable, pointing to a scaffold function of RIP1. Consistently, BV6 and IFNα cooperate to trigger the interaction of RIP1, Fas-Associated Death Domain protein (FADD) and caspase-8 to form a cytosolic cell death complex that drives caspase activation. Addition of the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) significantly protects RCC cells against BV6/IFNα-induced apoptosis, demonstrating that caspase activity is required for apoptosis. In conclusion, the combination approach of IFNα and BV6 represents a promising strategy for cooperative induction of apoptosis in RCC cells, which warrants further investigation. PMID:26912071

  16. Allosteric inhibition of factor XIa. Sulfated non-saccharide glycosaminoglycan mimetics as promising anticoagulants.

    PubMed

    Al-Horani, Rami A; Gailani, David; Desai, Umesh R

    2015-08-01

    Recent development of sulfated non-saccharide glycosaminoglycan mimetics, especially sulfated pentagalloyl glucopyranoside (SPGG), as potent inhibitors of factor XIa (FXIa) (J. Med. Chem. 2013; 56:867-878 and J. Med. Chem. 2014; 57:4805-4818) has led to a strong possibility of developing a new line of factor XIa-based anticoagulants. In fact, SPGG represents the first synthetic, small molecule inhibitor that appears to bind in site remote from the active site. Considering that allosteric inhibition of FXIa is a new mechanism for developing a distinct line of anticoagulants, we have studied SPGG's interaction with FXIa with a goal of evaluating its pre-clinical relevance. Comparative inhibition studies with several glycosaminoglycans revealed the importance of SPGG's non-saccharide backbone. SPGG did not affect the activity of plasma kallikrein, activated protein C and factor XIIIa suggesting that SPGG-based anticoagulation is unlikely to affect other pathways connected with coagulation factors. SPGG's effect on APTT of citrated human plasma was also not dependent on antithrombin or heparin cofactor II. Interestingly, SPGG's anticoagulant potential was diminished by serum albumin as well as factor XI, while it could be reversed by protamine or polybrene, which implies possible avenues for developing antidote strategy. Studies with FXIa mutants indicated that SPGG engages Lys529, Arg530 and Arg532, but not Arg250, Lys252, Lys253 and Lys255. Finally, SPGG competes with unfractionated heparin, but not with polyphosphates and/or glycoprotein Ibα, for binding to FXIa. These studies enhance understanding on the first allosteric inhibitor of FXIa and highlight its value as a promising anticoagulant. PMID:25935648

  17. Niacin Alternatives for Dyslipidemia: Fool's Gold or Gold Mine? Part II: Novel Niacin Mimetics.

    PubMed

    Goel, Harsh; Dunbar, Richard L

    2016-04-01

    Two cardiovascular outcome trials established niacin 3 g daily prevents hard cardiac events. However, as detailed in part I of this series, an extended-release (ER) alternative at only 2 g nightly demonstrated no comparable benefits in two outcome trials, implying the alternative is not equivalent to the established cardioprotective regimen. Since statins leave a significant treatment gap, this presents a major opportunity for developers. Importantly, the established regimen is cardioprotective, so the pathway is likely beneficial. Moreover, though effective, the established cardioprotective regimen is cumbersome, limiting clinical use. At the same time, the ER alternative has been thoroughly discredited as a viable substitute for the established cardioprotective regimen. Therefore, by exploiting the pathway and skillfully avoiding the problems with the established cardioprotective regimen and the ER alternative, developers could validate cardioprotective variations facing little meaningful competition from their predecessors. Thus, shrewd developers could effectively tap into a gold mine at the grave of the ER alternative. The GPR109A receptor was discovered a decade ago, leading to a large body of evidence commending the niacin pathway to a lower cardiovascular risk beyond statins. While mediating niacin's most prominent adverse effects, GPR109A also seems to mediate anti-lipolytic, anti-inflammatory, and anti-atherogenic effects of niacin. Several developers are investing heavily in novel strategies to exploit niacin's therapeutic pathways. These include selective GPR109A receptor agonists, niacin prodrugs, and a niacin metabolite, with encouraging early phase human data. In part II of this review, we summarize the accumulated results of these early phase studies of emerging niacin mimetics. PMID:26932224

  18. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation[S

    PubMed Central

    Nguyen, Su Duy; Javanainen, Matti; Rissanen, Sami; Zhao, Hongxia; Huusko, Jenni; Kivelä, Annukka M.; Ylä-Herttuala, Seppo; Navab, Mohamad; Fogelman, Alan M.; Vattulainen, Ilpo; Kovanen, Petri T.; Öörni, Katariina

    2015-01-01

    Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention. PMID:25861792

  19. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent

    PubMed Central

    Orr, Sarah K.; Colas, Romain A.; Dalli, Jesmond; Chiang, Nan

    2015-01-01

    Resolution of inflammation is an active process driven by several new families of endogenous lipid mediators collectively coined specialized proresolving mediators (SPM). Here, we report a synthetic analog of resolvin D1 (RvD1) and aspirin-triggered RvD1, benzo-diacetylenic-17R-RvD1-methyl ester (BDA-RvD1), which was prepared using fewer steps than required for total organic synthesis of natural SPM. BDA-RvD1 was resistant to further metabolism by human recombinant 15-prostaglandin dehydrogenase, a major inactivation pathway for RvD1. In ischemia-reperfusion-initiated second organ injury, BDA-RvD1 intravenously (1 μg) reduced neutrophil infiltration into the lungs by 58 ± 9% and was significantly more potent than native RvD1. BDA-RvD1 at 100 ng/mouse also shortened the resolution interval, Ri, of Escherichia coli peritonitis with a similar potency as RvD1, by ∼57%, from Ri 10.5 h to 4.5 h. With isolated human phagocytes, BDA-RvD1 at picomolar concentrations (10−12 M) stimulated phagocytosis of zymosan A particles. BDA-RvD1 activated human recombinant G protein-coupled receptor 32/DRV1, an RvD1 receptor, in a dose-dependent manner. These results indicate that, both in vivo in mice and with isolated human cells, BDA-RvD1 shares defining proresolving actions of RvD1, including inhibiting leukocyte infiltration and stimulating phagocytosis. Moreover, they provide evidence for a new analog mimetic and example of an immunoresolvent, namely an agent that stimulates active resolution of inflammation, for a potential new therapeutic class. PMID:25770181

  20. Superoxidedismutase-mimetic copper(II) complexes containing saccharinate and 4-aminopyridine/4-cyanopyridine.

    PubMed

    Ferrer, Evelina G; Baeza, Natalia; Naso, Luciana G; Castellano, Eduardo E; Piro, Oscar E; Williams, Patricia A M

    2010-01-01

    Two copper(II) complexes, [Cu(sac)(2)(4-cypy)(2)(H(2)O)], 1 and [Cu(sac)(2)(4-Ampy)(2)(H(2)O)], 2 (4-cypy: 4-cyanopyridine; 4-Ampy: 4-aminopyridine) were prepared. Physicochemical properties of the complexes were studied by spectroscopic (solution UV-vis, diffuse reflectance and IR) techniques. Structural X-ray diffraction data could be obtained only for [Cu(sac)(2)(4-cypy)(2)(H(2)O)] that it crystallized in the tetragonal space group P4cc with a=b=15.313(1), c=13.240(1)A, and Z=4 molecules per unit cell. The complex was cited on a crystallographic C(2)-axis with the Cu(II) ion in a square-pyramidal environment, coordinated at the pyramid basis to the nitrogen atom of two saccharine anions [d(Cu-N)=2.011(3)A] and the pyridine N-atom of two 4-cyanopyridine ligands [d(Cu-N)=2.038(4)A]. The coordination was completed by a water molecule at the pyramid apex [d(Cu-Ow)=2.189(5)A]. Elemental and spectroscopic analyses revealed an O-saccharinate coordination mode for complex 2 and a square-pyramidal structure. Only complex 2 retained its structure in methanolic solution. However, both complexes were able to catalyze the dismutation of superoxide anion (O(2)(-)) (pH 7.5) at micromolar concentrations. Therefore, these complexes behaved as useful SOD-mimetic compounds. PMID:20122575

  1. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification.

    PubMed

    Wang, Guang-Li; Shu, Jun-Xian; Dong, Yu-Ming; Wu, Xiu-Ming; Li, Zai-Jun

    2015-04-15

    An ultrasensitive photoelectrochemical (PEC) immunoassay based on signal amplification by enzyme mimetics was fabricated for the detection of mouse IgG (as a model protein). The PEC immunosensor was constructed by a layer-by-layer assembly of poly (diallyldimethylammonium chloride) (PDDA), CdS quantum dots (QDs), primary antibody (Ab1, polyclonal goat antimouse IgG), and the antigen (Ag, mouse IgG) on an indium-tin oxide (ITO) electrode. Then, the secondary antibody (Ab2, polyclonal goat antimouse IgG) combined to a bio-bar-coded Pt nanoparticle(NP)-G-quadruplex/hemin probe was used for signal amplification. The bio-bar-coded Pt NP-G-quadruplex/hemin probe could catalyze the oxidation of hydroquinone (HQ) using H2O2 as an oxidant, demonstrating its intrinsic enzyme-like activity. High sensitivity for the target Ag was achieved by using the bio-bar-coded probe as signal amplifier due to its high catalytic activity, a competitive nonproductive absorption of hemin and the steric hindrance caused by the polymeric oxidation products of HQ. For most important, the oxidation product of HQ acted as an efficient electron acceptor of the illuminated CdS QDs. The target Ag could be detected from 0.01pg/mL to 1.0ng/mL with a low detection limit of 6.0fg/mL. The as-obtained immunosensor exhibited high sensitivity, good stability and acceptable reproducibility. This method might be attractive for clinical and biomedical applications. PMID:25437365

  2. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent.

    PubMed

    Orr, Sarah K; Colas, Romain A; Dalli, Jesmond; Chiang, Nan; Serhan, Charles N

    2015-05-01

    Resolution of inflammation is an active process driven by several new families of endogenous lipid mediators collectively coined specialized proresolving mediators (SPM). Here, we report a synthetic analog of resolvin D1 (RvD1) and aspirin-triggered RvD1, benzo-diacetylenic-17R-RvD1-methyl ester (BDA-RvD1), which was prepared using fewer steps than required for total organic synthesis of natural SPM. BDA-RvD1 was resistant to further metabolism by human recombinant 15-prostaglandin dehydrogenase, a major inactivation pathway for RvD1. In ischemia-reperfusion-initiated second organ injury, BDA-RvD1 intravenously (1 μg) reduced neutrophil infiltration into the lungs by 58 ± 9% and was significantly more potent than native RvD1. BDA-RvD1 at 100 ng/mouse also shortened the resolution interval, Ri, of Escherichia coli peritonitis with a similar potency as RvD1, by ~57%, from Ri 10.5 h to 4.5 h. With isolated human phagocytes, BDA-RvD1 at picomolar concentrations (10(-12) M) stimulated phagocytosis of zymosan A particles. BDA-RvD1 activated human recombinant G protein-coupled receptor 32/DRV1, an RvD1 receptor, in a dose-dependent manner. These results indicate that, both in vivo in mice and with isolated human cells, BDA-RvD1 shares defining proresolving actions of RvD1, including inhibiting leukocyte infiltration and stimulating phagocytosis. Moreover, they provide evidence for a new analog mimetic and example of an immunoresolvent, namely an agent that stimulates active resolution of inflammation, for a potential new therapeutic class. PMID:25770181

  3. The essential role of annexin A1 mimetic peptide in the skin allograft survival.

    PubMed

    Teixeira, Rodrigo Antonio Parra; Mimura, Kallyne Kioko Oliveira; Araujo, Leandro Pires; Greco, Karin Vicente; Oliani, Sonia Maria

    2016-02-01

    Immunosuppressive drugs have a critical role in inhibiting tissue damage and allograft rejection. Studies have demonstrated the anti-inflammatory effects of the annexin A1 (AnxA1) in the regulation of transmigration and apoptosis of leucocytes. In the present study, an experimental skin allograft model was used to evaluate a potential protective effect of AnxA1 in transplantation survival. Mice were used for the skin allograft model and pharmacological treatments were carried out using either the AnxA1 mimetic peptide Ac2-26, with or without cyclosporine A (CsA), starting 3 days before surgery until rejection. Graft survival, skin histopathology, leucocyte transmigration and expression of AnxA1 and AnxA5 post-transplantation were analysed. Pharmacological treatment with Ac2-26 increased skin allograft survival related with inhibition of neutrophil transmigration and induction of apoptosis, thereby reducing the tissue damage compared with control animals. Moreover, AnxA1 and AnxA5 expression increased after Ac2-26 treatment in neutrophils. Interestingly, the combination of Ac2-26 and cyclosporine A showed similar survival of transplants when compared with the cyclosporine A group, which could be attributed to a synergistic effect of both drugs. Investigations in vitro revealed that cyclosporine A inhibited extracellular-signal-regulated kinase (ERK) phosphorylation induced by Ac2-26 in neutrophils. Overall, the results suggest that AnxA1 has an essential role in augmenting the survival of skin allograft, mainly owing to inhibition of neutrophil transmigration and enhancement of apoptosis. This effect may lead to the development of new therapeutic approaches relevant to transplant rejection. PMID:23897745

  4. Annexin A1 mimetic peptide controls the inflammatory and fibrotic effects of silica particles in mice

    PubMed Central

    Trentin, P G; Ferreira, T P T; Arantes, A C S; Ciambarella, B T; Cordeiro, R S B; Flower, R J; Perretti, M; Martins, M A; Silva, P M R

    2015-01-01

    Background and Purpose Endogenous glucocorticoids are pro-resolving mediators, an example of which is the endogenous glucocorticoid-regulated protein annexin A1 (ANXA1). Because silicosis is an occupational lung disease characterized by unabated inflammation and fibrosis, in this study we tested the therapeutic properties of the N-terminal ANXA1-derived peptide annexin 1-(2-26) (Ac2-26) on experimental silicosis. Experimental Approach Swiss-Webster mice were administered silica particles intranasally and were subsequently treated with intranasal peptide Ac2-26 (200 μg per mouse) or dexamethasone (25 μg per mouse) for 7 days, starting 6 h post-challenge. Ac2-26 abolished the leukocyte infiltration, collagen deposition, granuloma formation and generation of pro-inflammatory cytokines evoked by silica; these variables were only partially inhibited by dexamethasone. Key Results A clear exacerbation of the silica-induced pathological changes was observed in ANXA1 knockout mice as compared with their wild-type (WT) littermate controls. Incubation of lung fibroblasts from WT mice with Ac2-26 in vitro reduced IL-13 or TGF-β-induced production of CCL2 (MCP-1) and collagen, but this peptide did not affect the production of CCL2 (MCP-1) by stimulated fibroblasts from formyl peptide receptor type 1 (FPR1) knockout mice. Ac2-26 also inhibited the production of CCL2 (MCP-1) from fibroblasts of FPR2 knockout mice. Conclusions and Implications Collectively, our findings reveal novel protective properties of the ANXA1 derived peptide Ac2-26 on the inflammatory and fibrotic responses induced by silica, and suggest that ANXA1 mimetic agents might be a promising strategy as innovative anti-fibrotic approaches for the treatment of silicosis. PMID:25659822

  5. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure

    PubMed Central

    Uribe, Phillip M.; Kawas, Leen H.; Harding, Joseph W.; Coffin, Allison B.

    2015-01-01

    Loss of sensory hair cells from exposure to certain licit drugs (e.g., aminoglycoside antibiotics, platinum-based chemotherapy agents) can result in permanent hearing loss. Here we ask if allosteric activation of the hepatocyte growth factor (HGF) cascade via Dihexa, a small molecule drug candidate, can protect hair cells from aminoglycoside toxicity. Unlike native HGF, Dihexa is chemically stable and blood-brain barrier permeable. As a synthetic HGF mimetic, it forms a functional ligand by dimerizing with endogenous HGF to activate the HGF receptor and downstream signaling cascades. To evaluate Dihexa as a potential hair cell protectant, we used the larval zebrafish lateral line, which possesses hair cells that are homologous to mammalian inner ear hair cells and show similar responses to toxins. A dose-response relationship for Dihexa protection was established using two ototoxins, neomycin and gentamicin. We found that a Dihexa concentration of 1 μM confers optimal protection from acute treatment with either ototoxin. Pretreatment with Dihexa does not affect the amount of fluorescently tagged gentamicin that enters hair cells, indicating that Dihexa’s protection is likely mediated by intracellular events and not by inhibiting aminoglycoside entry. Dihexa-mediated protection is attenuated by co-treatment with the HGF antagonist 6-AH, further evidence that HGF activation is a component of the observed protection. Additionally, Dihexa’s robust protection is partially attenuated by co-treatment with inhibitors of the downstream HGF targets Akt, TOR and MEK. Addition of an amino group to the N-terminal of Dihexa also attenuates the protective response, suggesting that even small substitutions greatly alter the specificity of Dihexa for its target. Our data suggest that Dihexa confers protection of hair cells through an HGF-mediated mechanism and that Dihexa holds clinical potential for mitigating chemical ototoxicity. PMID:25674052

  6. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure.

    PubMed

    Wang, Baochun; Walther, Andreas

    2015-11-24

    Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture. PMID:26372330

  7. Three-Dimensional Elastomeric Scaffolds Designed with Cardiac-Mimetic Structural and Mechanical Features

    PubMed Central

    Neal, Rebekah A.; Jean, Aurélie; Park, Hyoungshin; Wu, Patrick B.; Hsiao, James; Engelmayr, George C.; Langer, Robert

    2013-01-01

    Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering. PMID:23190320

  8. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer's disease.

    PubMed

    Kazim, Syed Faraz; Iqbal, Khalid

    2016-01-01

    Alzheimer's disease (AD) is an incurable and debilitating chronic progressive neurodegenerative disorder which is the leading cause of dementia worldwide. AD is a heterogeneous and multifactorial disorder, histopathologically characterized by the presence of amyloid β (Aβ) plaques and neurofibrillary tangles composed of Aβ peptides and abnormally hyperphosphorylated tau protein, respectively. Independent of the various etiopathogenic mechanisms, neurodegeneration is a final common outcome of AD neuropathology. Synaptic loss is a better correlate of cognitive impairment in AD than Aβ or tau pathologies. Thus a highly promising therapeutic strategy for AD is to shift the balance from neurodegeneration to neuroregeneration and synaptic repair. Neurotrophic factors, by virtue of their neurogenic and neurotrophic activities, have potential for the treatment of AD. However, the clinical therapeutic usage of recombinant neurotrophic factors is limited because of the insurmountable hurdles of unfavorable pharmacokinetic properties, poor blood-brain barrier (BBB) permeability, and severe adverse effects. Neurotrophic factor small-molecule mimetics, in this context, represent a potential strategy to overcome these short comings, and have shown promise in preclinical studies. Neurotrophic factor small-molecule mimetics have been the focus of intense research in recent years for AD drug development. Here, we review the relevant literature regarding the therapeutic beneficial effect of neurotrophic factors in AD, and then discuss the recent status of research regarding the neurotrophic factor small-molecule mimetics as therapeutic candidates for AD. Lastly, we summarize the preclinical studies with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021). P021 is a neurogenic and neurotrophic compound which enhances dentate gyrus neurogenesis and memory processes via inhibiting leukemia inhibitory factor (LIF) signaling pathway and increasing

  9. Synthesis of two peptide mimetics as markers for chemical changes of wool's keratin during skin unhairing process.

    PubMed

    Danalev, Dantcho; Koleva, Margarita; Ivanova, Dimitrina; Vezenkov, Lyubomir; Vassilev, Nikolay

    2008-01-01

    The sheep skins unhairing process with preliminary alkaline treatment of the wool leads to two unnatural dipeptide mimetics lysinoalanine (Lys(*) - Ala) and ornithinoalanine (Orn(*)- Ala) obtaining. They are result from the keratin hydrolysis process. The changes of wool keratin make it resistant to sulphide degradation. We synthesized and characterized these unnatural dipeptides under the experimental conditions. The structures and mechanism of Lys(*) - Ala and Orn(*)- Ala obtaining were elucidated. The using of newly synthesized products as markers for control of wool's keratin changes during skin unhairing process was demonstrated. The developments have also been the result of economic and environmental pressures to meet environmental regulations. PMID:18473946

  10. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.

    PubMed Central

    Fujiwara, T.; Angus, J. A.

    1996-01-01

    1. The mechanisms by which nicorandil causes relaxation of rat isolated small mesenteric arteries mounted on a Mulvany myograph was investigated by use of a combination of putatively mechanism-specific antagonists. 2. In arteries precontracted by the thromboxane-mimetic, U46619, the EC50 for cromakalim and levcromakalim-induced relaxation curves were raised by 36 and 17 fold by glibenclamide (3 microM) while the EC50 for nicorandil-induced relaxation was unaffected by either glibenclamide or methylene blue (10 microM). A combination of these antagonists raised the EC50 for nicorandil by 8 fold. 3. In U46619-contracted arteries, nifedipine (100 nM) did not affect the cromakalim relaxation curve but it raised the EC50 for nicorandil by 5 fold. The combination of methylene blue, glibenclamide and nifedipine further inhibited the maximum relaxation to nicorandil. 4. In separate experiments, membrane potential (Em) and force responses were measured simultaneously. In arteries depolarized and contracted by U46619 both nicorandil and cromakalim repolarized (delta Em, 35 mV) and relaxed (100%) the vessels. Glibenclamide (3 microM) did not alter the relaxation-concentration curve to nicorandil but reduced the maximum repolarization to delta 10.8 mV. In contrast to Em and relaxation-response curves to cromakalim were shifted to the right by glibenclamide by 30-100 fold. 5. In unstimulated arteries, nicorandil (but not cromakalim) -induced hyperpolarization was significantly antagonized by methylene blue (10 microM) (6.6 fold rightward shift) or nifedipine (100 nM) (2.6 fold). In depolarized arteries (U46619), nifedipine but not methylene blue inhibited the nicorandil-induced hyperpolarization. 6. In arteries precontracted to 50% tissue maximum by either KCl or U46619, nifedipine (100 nM) relaxed the artery but failed to repolarize the Em. Presumably voltage-operated calcium channels (VOCC) were blocked preventing contraction but the artery remained depolarized, presumably

  11. Synthesis, radiolabeling with fluorine-18 and preliminary in vivo evaluation of a heparan sulphate mimetic as potent angiogenesis and heparanase inhibitor for cancer applications.

    PubMed

    Kuhnast, B; El Hadri, A; Boisgard, R; Hinnen, F; Richard, S; Caravano, A; Nancy-Portebois, V; Petitou, M; Tavitian, B; Dollé, F

    2016-02-14

    Heparan Sulfate (HS) mimetics are able to block crucial interactions of the components of the extracellular matrix in angiogenic processes and as such, represent a valuable class of original candidates for cancer therapy. Here we first report the synthesis and in vitro angiogenic inhibition properties of a conjugated, novel and rationally-designed octasaccharide-based HS mimetic. We also herein report its labeling with fluorine-18 and present the preliminary in vivo Positron Emission Tomography imaging data in rats. This constitutes one of the rare examples of labeling and in vivo evaluation of a synthetic, polysaccharide-based, macromolecule. PMID:26757783

  12. Dipetalodipin, a Novel Multifunctional Salivary Lipocalin That Inhibits Platelet Aggregation, Vasoconstriction, and Angiogenesis through Unique Binding Specificity for TXA2, PGF2α, and 15(S)-HETE*

    PubMed Central

    Assumpção, Teresa C. F.; Alvarenga, Patricia H.; Ribeiro, José M. C.; Andersen, John F.; Francischetti, Ivo M. B.

    2010-01-01

    Dipetalodipin (DPTL) is an 18 kDa protein cloned from salivary glands of the triatomine Dipetalogaster maxima. DPTL belongs to the lipocalin superfamily and has strong sequence similarity to pallidipin, a salivary inhibitor of collagen-induced platelet aggregation. DPTL expressed in Escherichia coli was found to inhibit platelet aggregation by collagen, U-46619, or arachidonic acid without affecting aggregation induced by ADP, convulxin, PMA, and ristocetin. An assay based on incubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) followed by chromatography, mass spectrometry, and isothermal titration calorimetry showed that DPTL binds with high affinity to carbocyclic TXA2, TXA2 mimetic (U-46619), TXB2, PGH2 mimetic (U-51605), PGD2, PGJ2, and PGF2α. It also interacts with 15(S)-HETE, being the first lipocalin described to date to bind to a derivative of 15-lipoxygenase. Binding was not observed to other prostaglandins (e.g. PGE1, PGE2, 8-iso-PGF2α, prostacyclin), leukotrienes (e.g,. LTB4, LTC4, LTD4, LTE4), HETEs (e.g. 5(S)-HETE, 12(S)-HETE, 20-HETE), lipids (e.g. arachidonic acid, PAF), and biogenic amines (e.g. ADP, serotonin, epinephrine, norepinephrine, histamine). Consistent with its binding specificity, DPTL prevents contraction of rat uterus stimulated by PGF2α and induces relaxation of aorta previously contracted with U-46619. Moreover, it inhibits angiogenesis mediated by 15(S)-HETE and did not enhance inhibition of collagen-induced platelet aggregation by SQ29548 (TXA2 antagonist) and indomethacin. A 3-D model for DPTL and pallidipin is presented that indicates the presence of a conserved Arg39 and Gln135 in the binding pocket of both lipocalins. Results suggest that DPTL blocks platelet aggregation, vasoconstriction, and angiogenesis through binding to distinct eicosanoids involved in inflammation. PMID:20889972

  13. A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction.

    PubMed

    Nisar, Shaista P; Lordkipanidzé, Marie; Jones, Matthew L; Dawood, Ban; Murden, Sherina; Cunningham, Margaret R; Mumford, Andrew D; Wilde, Jonathan T; Watson, Steve P; Mundell, Stuart J; Lowe, Gillian C

    2014-05-01

    A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function. PMID:24452735

  14. Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis.

    PubMed

    Chromik, Joerg; Safferthal, Charlotta; Serve, Hubert; Fulda, Simone

    2014-03-01

    The prognosis for patients with acute myeloid leukaemia (AML) is still poor, thus calling for novel treatment strategies. Here, we report that the small-molecule Smac mimetic BV6, which antagonizes Inhibitor of Apoptosis (IAP) proteins, acts in concert with cytarabine (AraC) to trigger cell death in AML cells in a highly synergistic manner (combination index 0.02-0.27). Similarly, BV6 cooperates with AraC to trigger cell death in primary AML samples, underscoring the clinical relevance of our findings. Molecular studies reveal that the TNFα-blocking antibody Enbrel significantly reduces BV6/AraC-induced cell death, demonstrating that an autocrine/paracrine TNFα loop mediates cell death. Furthermore, BV6 and AraC synergize to induce loss of mitochondrial membrane potential, caspase activation and DNA fragmentation, consistent with apoptotic cell death. Nevertheless, the caspase inhibitor zVAD.fmk fails to protect against BV6/AraC-induced cell death. Intriguingly, this cell death upon caspase inhibition is significantly reduced by pharmacological inhibition of two key components of necroptosis signaling, i.e. by RIP1 kinase inhibitor Necrostatin-1 or MLKL inhibitor NSA. Thus, BV6 sensitizes AML cells to AraC-induced cell death and overcomes apoptosis resistance by triggering necroptosis as alternative form of cell death. These findings have important implications for Smac mimetic-based strategies to bypass apoptosis resistance of AML. PMID:24184825

  15. SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells

    PubMed Central

    Held, Matthew A.; Mamillapalli, Ramanaiah; Iyidogan, Pinar; Theodosakis, Nicholas; Platt, James T.; Levy, Frederic; Vuagniaux, Gregoire; Wang, Shaomeng; Bosenberg, Marcus W.; Stern, David F.

    2015-01-01

    Targeting anti-apoptotic proteins can sensitize tumor cells to conventional chemotherapies or other targeted agents. Antagonizing the Inhibitor of Apoptosis Proteins (IAPs) with mimetics of the pro-apoptotic protein SMAC is one such approach. We used sensitization compound screening to uncover possible agents with the potential to further sensitize lung adenocarcinoma cells to the SMAC mimetic Debio 1143. Several compounds in combination with Debio 1143, including taxanes, topoisomerase inhibitors, and bromodomain inhibitors, super-additively inhibited growth and clonogenicity of lung adenocarcinoma cells. Co-treatment with Debio 1143 and the bromodomain inhibitor JQ1 suppresses the expression of c-IAP1, c-IAP2, and XIAP. Non-canonical NF-κB signaling is also activated following Debio 1143 treatment, and Debio 1143 induces the formation of the ripoptosome in Debio 1143-sensitive cell lines. Sensitivity to Debio 1143 and JQ1 co-treatment was associated with baseline caspase-8 expression. In vivo treatment of lung adenocarcinoma xenografts with Debio 1143 in combination with JQ1 or docetaxel reduced tumor volume more than either single agent alone. As Debio 1143-containing combinations effectively inhibited both in vitro and in vivo growth of lung adenocarcinoma cells, these data provide a rationale for Debio 1143 combinations currently being evaluated in ongoing clinical trials and suggest potential utility of other combinations identified here. PMID:26485762

  16. Smart CuS Nanoparticles as Peroxidase Mimetics for the Design of Novel Label-Free Chemiluminescent Immunoassay.

    PubMed

    Yang, Zhanjun; Cao, Yue; Li, Juan; Lu, Mimi; Jiang, Zhikang; Hu, Xiaoya

    2016-05-18

    In the present work, a novel label-free chemiluminescent (CL) immunoassay method was designed by employing smart CuS nanoparticles (CuSNPs) as peroxidase mimetics. The CuSNPs were synthesized through a simple coprecipitation method, and showed high catalytic activity and stability. This efficient label-free CL immunoassay could be easily achieved through a simple strategy. First, CuSNPs dispersed in chitosan were modified on the epoxy-functionalized glass slide to form a solid CL signal interface. Streptavidin was then used to functionalize CuSNPs to capture the biotinylated antibody, further producing a sensing interface. After online incubation with antigen molecules, the formed antibody-antigen complex on the biosensing substrate could prevent the diffusion channel of CL substrate toward the signal interface, and restrained the mimic enzyme-catalyzed CL reaction, finally resulting in the decrease of CL signals of the assay system. Compared to the label-based CL immunoassay, the proposed label-free assay mode is more simple, cheap and fast. Using a model analyte alpha-fetoprotein, the label-free CL immunoassay method had a linear range of 0.1-60 ng/mL and a low detection limit of 0.07 ng/mL. Moreover, the peroxidase mimetic-based label-free CL immunoassay system showed good specificity, acceptable repeatability, and good accuracy. The study provided a promising strategy for the development of highly efficient label-free CL immunoassay system. PMID:27137349

  17. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic

    SciTech Connect

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Voronova, Anastassia; Skerjanc, Ilona; Couture, Jean-Francois

    2011-08-24

    The SET1 family of methyltransferases carries out the bulk of histone H3 Lys-4 methylation in vivo. One of the common features of this family is the regulation of their methyltransferase activity by a tripartite complex composed of WDR5, RbBP5, and Ash2L. To selectively probe the role of the SET1 family of methyltransferases, we have developed a library of histone H3 peptide mimetics and report herein the characterization of an N{alpha} acetylated form of histone H3 peptide (N{alpha}H3). Binding and inhibition studies reveal that the addition of an acetyl moiety to the N terminus of histone H3 significantly enhances its binding to WDR5 and prevents the stimulation of MLL1 methyltransferase activity by the WDR5-RbBP5-Ash2L complex. The crystal structure of N{alpha}H3 in complex with WDR5 reveals that a high-affinity hydrophobic pocket accommodates the binding of the acetyl moiety. These results provide the structural basis to control WDR5-RbBP5-Ash2L-MLL1 activity and a tool to manipulate stem cell differentiation programs.-Avdic, V., Zhang, P., Lanouette, S., Voronova, A., Skerjanc, I., Couture, J.-F. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic.

  18. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA.

    PubMed

    Ling, Pinghua; Lei, Jianping; Zhang, Lei; Ju, Huangxian

    2015-04-01

    A sensitive electrochemical sensor is designed for DNA detection based on mimetic catalysis of metal-organic framework (MOF) and allosteric switch of hairpin DNA. The functional MOFs are synthesized as signal probes by a one-pot encapsulation of iron(III) meso-5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin chloride (FeTCPP) into a prototypal MOF, HKUST-1(Cu), and sequentially conjugated with streptavidin (SA) as a recognition element. The resulting FeTCPP@MOF composites can mimetically catalyze the oxidation of o-phenylenediamine (o-PD) to 2,2'-diaminoazobenzene, which is a good electrochemical indicator for signal readout. The presence of target DNA introduces the allosteric switch of hairpin DNA to form SA aptamer, and thus, FeTCPP@MOF-SA probe is brought on the electrode surface via the specific recognition between SA and the corresponding aptamer, resulting in the enhancement of electrochemical signal. The "signal-on" electrochemical sensor can detect target DNA down to 0.48 fM with the linear range of 10 fM to 10 nM. Moreover, the MOF-based electrochemical sensor exhibits acceptable selectivity against even a single mismatched DNA and good feasibility in complex serum matrixes. This strategy opens up a new direction of porphyrin-functionalized MOF for signal transduction in electrochemical biosensing. PMID:25741988

  19. Nacre-mimetic clay/xyloglucan bionanocomposites: a chemical modification route for hygromechanical performance at high humidity.

    PubMed

    Kochumalayil, Joby J; Morimune, Seira; Nishino, Takashi; Ikkala, Olli; Walther, Andreas; Berglund, Lars A

    2013-11-11

    Nacre-mimetic bionanocomposites of high montmorillonite (MTM) clay content, prepared from hydrocolloidal suspensions, suffer from reduced strength and stiffness at high relative humidity. We address this problem by chemical modification of xyloglucan in (XG)/MTM nacre-mimetic nanocomposites, by subjecting the XG to regioselective periodate oxidation of side chains to enable it to form covalent cross-links to hydroxyl groups in neighboring XG chains or to the MTM surface. The resulting materials are analyzed by FTIR spectroscopy, thermogravimetric analysis, carbohydrate analysis, calorimetry, X-ray diffraction, scanning electron microscopy, tensile tests, and oxygen barrier properties. We compare the resulting mechanical properties at low and high relative humidity. The periodate oxidation leads to a strong increase in modulus and strength of the materials. A modulus of 30 GPa for cross-linked composite at 50% relative humidity compared with 13.7 GPa for neat XG/MTM demonstrates that periodate oxidation of the XG side chains leads to crucially improved stress transfer at the XG/MTM interface, possibly through covalent bond formation. This enhanced interfacial adhesion and internal cross-linking of the matrix moreover preserves the mechanical properties at high humidity condition and leads to a Young's modulus of 21 GPa at 90%RH. PMID:24083456

  20. A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition

    DOE PAGESBeta

    Gerritsma, Marc; Bochev, Pavel

    2016-03-22

    Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less

  1. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform

    PubMed Central

    Ananthanarayanan, Badriprasad; Kim, Yushan; Kumar, Sanjay

    2011-01-01

    Glioblastoma multiforme (GBM) is a malignant brain tumor characterized by diffuse infiltration of single cells into the brain parenchyma, which is a process that relies in part on aberrant biochemical and biophysical interactions between tumor cells and the brain extracellular matrix (ECM). A major obstacle to understanding ECM regulation of GBM invasion is the absence of model matrix systems that recapitulate the distinct composition and physical structure of brain ECM while allowing independent control of adhesive ligand density, mechanics, and microstructure. To address this need, we synthesized brain-mimetic ECMs based on hyaluronic acid (HA) with a range of stiffnesses that encompasses normal and tumorigenic brain tissue and functionalized these materials with short Arg-Gly-Asp (RGD) peptides to facilitate cell adhesion. Scanning electron micrographs of the hydrogels revealed a dense, sheet-like microstructure with apparent nanoscale porosity similar to brain extracellular space. On flat hydrogel substrates, glioma cell spreading area and actin stress fiber assembly increased strongly with increasing density of RGD peptide. Increasing HA stiffness under constant RGD density produced similar trends and increased the speed of random motility. In a three-dimensional (3D) spheroid paradigm, glioma cells invaded HA hydrogels with morphological patterns distinct from those observed on flat surfaces or in 3D collagen-based ECMs but highly reminiscent of those seen in brain slices. This material system represents a brain-mimetic model ECM with tunable ligand density and stiffness amenable to investigations of the mechanobiological regulation of brain tumor progression. PMID:21820737

  2. In vivo efficacy of HDL-like nanolipid particles containing multivalent peptide mimetics of apolipoprotein A-I.

    PubMed

    Zhao, Yannan; Black, Audrey S; Bonnet, David J; Maryanoff, Bruce E; Curtiss, Linda K; Leman, Luke J; Ghadiri, M Reza

    2014-10-01

    We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective. Surprisingly, these nanoparticles were also effective when administered orally at a dose of 75 mg/kg, despite the peptide construct being composed of l-amino acids and being undetectable in the plasma. The orally administered nanoparticles reduced whole aorta lesion areas by 55% and aortic sinus lesion volumes by 71%. Reductions in plasma cholesterol were due to the loss of non-HDL lipoproteins, while plasma HDL-cholesterol levels were increased. At a 10-fold lower oral dose, the nanoparticles were marginally effective in reducing atherosclerotic lesions. Intriguingly, analogous results were obtained with nanolipids of the corresponding monomeric peptide. These nanolipid formulations provide an avenue for developing orally efficacious therapeutic agents to manage atherosclerosis. PMID:24975585

  3. Thioredoxin-Mimetic-Peptides Protect Cognitive Function after Mild Traumatic Brain Injury (mTBI)

    PubMed Central

    Baratz-Goldstein, Renana; Deselms, Hanna; Heim, Leore Raphael; Khomski, Lena; Hoffer, Barry J.

    2016-01-01

    Mild traumatic brain injury (mTBI) is recognized as a common injury among children, sportsmen, and elderly population. mTBI lacks visible objective structural brain damage but patients frequently suffer from long-lasting cognitive, behavioral and emotional difficulties associated with biochemical and cellular changes. Currently there is no effective treatment for patients with mTBI. The thioredoxin reductase/thioredoxin pathway (TrxR/Trx1) has both anti-inflammatory and anti-oxidative properties. If the system is compromised, Trx1 remains oxidized and triggers cell death via an ASK1-Trx1 signal transduction mechanism. We previously showed tri and tetra peptides which were derived from the canonical -CxxC- motif of the Trx1-active site, called thioredoxin mimetic (TXM) peptides, reversed inflammatory and oxidative stress damage mimicking Trx1 activity. Here, TXM-peptides were examined for protecting cognitive function following weight drop closed-head injury in a mouse model of mTBI. TXM-CB3 (AcCys-Pro-CysNH2), TXM-CB13 (DY-70; AcCys-Met-Lys-CysNH2) or AD4 (ACysNH2) were administered at 50 mg/kg, 60 min after injury and cognitive performance was monitored by the novel-object-recognition and Y-maze tests. Behavioral deficits subsequent to mTBI injury were reversed by a single dose of TXM-CB3, TXM-CB13 and, to a lesser extent, by AD4. TXM-CB13 similar to TXM-CB3 and AD4 reversed oxidative stress-induced phosphorylation of mitogen-activated kinases, p38MAPK and c-Jun N-terminal kinase, (JNK) in human neuronal SH-SY5Y cells. We conclude that significantly improved cognitive behavior post mTBI by the TXM-peptides could result from anti-apoptotic, and/or anti-inflammatory activities. Future preclinical studies are required to establish the TXM-peptides as potential therapeutic drugs for brain injuries. PMID:27285176

  4. Thioredoxin-Mimetic-Peptides Protect Cognitive Function after Mild Traumatic Brain Injury (mTBI).

    PubMed

    Baratz-Goldstein, Renana; Deselms, Hanna; Heim, Leore Raphael; Khomski, Lena; Hoffer, Barry J; Atlas, Daphne; Pick, Chaim G

    2016-01-01

    Mild traumatic brain injury (mTBI) is recognized as a common injury among children, sportsmen, and elderly population. mTBI lacks visible objective structural brain damage but patients frequently suffer from long-lasting cognitive, behavioral and emotional difficulties associated with biochemical and cellular changes. Currently there is no effective treatment for patients with mTBI. The thioredoxin reductase/thioredoxin pathway (TrxR/Trx1) has both anti-inflammatory and anti-oxidative properties. If the system is compromised, Trx1 remains oxidized and triggers cell death via an ASK1-Trx1 signal transduction mechanism. We previously showed tri and tetra peptides which were derived from the canonical -CxxC- motif of the Trx1-active site, called thioredoxin mimetic (TXM) peptides, reversed inflammatory and oxidative stress damage mimicking Trx1 activity. Here, TXM-peptides were examined for protecting cognitive function following weight drop closed-head injury in a mouse model of mTBI. TXM-CB3 (AcCys-Pro-CysNH2), TXM-CB13 (DY-70; AcCys-Met-Lys-CysNH2) or AD4 (ACysNH2) were administered at 50 mg/kg, 60 min after injury and cognitive performance was monitored by the novel-object-recognition and Y-maze tests. Behavioral deficits subsequent to mTBI injury were reversed by a single dose of TXM-CB3, TXM-CB13 and, to a lesser extent, by AD4. TXM-CB13 similar to TXM-CB3 and AD4 reversed oxidative stress-induced phosphorylation of mitogen-activated kinases, p38MAPK and c-Jun N-terminal kinase, (JNK) in human neuronal SH-SY5Y cells. We conclude that significantly improved cognitive behavior post mTBI by the TXM-peptides could result from anti-apoptotic, and/or anti-inflammatory activities. Future preclinical studies are required to establish the TXM-peptides as potential therapeutic drugs for brain injuries. PMID:27285176

  5. A multilevel multiscale mimetic (M 3) method for two-phase flows in porous media

    NASA Astrophysics Data System (ADS)

    Lipnikov, K.; Moulton, J. D.; Svyatskiy, D.

    2008-07-01

    We describe a multilevel multiscale mimetic (M 3) method for solving two-phase flow (water and oil) in a heterogeneous reservoir. The governing equations are the elliptic equation for the reservoir pressure and the hyperbolic equation for the water saturation. On each time step, we first solve the pressure equation and then use the computed flux in an explicit upwind finite volume method to update the saturation. To reduce the computational cost, the pressure equation is solved on a much coarser grid than the saturation equation. The coarse-grid pressure discretization captures the influence of multiple scales via the subgrid modeling technique for single-phase flow recently proposed in [Yu. A. Kuznetsov. Mixed finite element method for diffusion equations on polygonal meshes with mixed cells. J. Numer. Math., 14 (4) (2006) 305-315; V. Gvozdev. discretization of the diffusion and Maxwell equations on polyhedral meshes. Technical Report Ph.D. Thesis, University of Houston, 2007; Yu. Kuznetsov. Mixed finite element methods on polyhedral meshes for diffusion equations, in: Computational Modeling with PDEs in Science and Engineering, Springer-Verlag, Berlin, in press]. We extend significantly the applicability of this technique by developing a new robust and efficient method for estimating the flux coarsening parameters. Specifically, with this advance the M 3 method can handle full permeability tensors and general coarsening strategies, which may generate polygonal meshes on the coarse grid. These problem dependent coarsening parameters also play a critical role in the interpolation of the flux, and hence, in the advection of saturation for two-phase flow. Numerical experiments for two-phase flow in highly heterogeneous permeability fields, including layer 68 of the SPE Tenth Comparative Solution Project, demonstrate that the M 3 method retains good accuracy for high coarsening factors in both directions, up to 64 for the considered models. Moreover, we demonstrate

  6. Bio-Mimetics of Disaster Anticipation—Learning Experience and Key-Challenges

    PubMed Central

    Tributsch, Helmut

    2013-01-01

    Simple Summary Starting from 1700 B.C. in the old world and up to recent times in China there is evidence of earthquake prediction based on unusual metrological phenomena and animal behavior. The review tries to explore the credibility and to pin down the nature of geophysical phenomena involved. It appears that the concept of ancient Greek philosophers in that a dry gas, pneuma is correlated with earthquakes, is relevant. It is not the cause of earthquakes, as originally thought, but may be an accompanying phenomenon and occasional precursor. This would explain unusual animal behavior as well as thermal anomalies detected from satellites. Abstract Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake

  7. Development of electrospun bone-mimetic matrices for bone regenerative applications

    NASA Astrophysics Data System (ADS)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  8. Encoding physico-chemical cues in synthetic hydrogels by triple helix assembly of collagen mimetic peptides

    NASA Astrophysics Data System (ADS)

    Stahl, Patrick

    The ECM is a complex natural system evolved to promote proliferation and differentiation of cells during tissue development. In order to create synthetic biomaterials for studying cell-scaffold interactions and ultimately for engineering tissues, scientists strive to recapitulate many characteristics of ECM by developing hydrogels that contain mechanical cues and biochemical signals such as adhesion moieties and cell growth factors. While synthetic hydrogels bypass limitations of naturally-derived materials (e.g. transfer of pathogens), nature provides inspiration to enhance the functionality of synthetic hydrogels through biomimetic approaches. The collagen triple helix is the basis for the supramolecular structure of collagen in the ECM, and its adaptation in collagen mimetic peptides (CMPs) has provided hybridization mechanisms that can be employed in the formation and functionalization of synthetic hydrogels. The aim of this dissertation is to develop novel poly(ethylene glycol) (PEG)-based hydrogels that employ CMP triple helix assembly as a non-covalent yet target-specific tool to encode physical and chemical cues into the hydrogel with spatial control. We demonstrate that multi-arm PEG functionalized with CMPs form hydrogels supported by physical crosslinks mediated by CMP triple helix. Particle tracking microrheology shows that these physical crosslinks are sensitive to temperature as well as addition of exogenous CMPs that can disrupt crosslinks by competing for triple helix formation. This physical crosslink disruption enables the modulation of bulk hydrogel elasticity and the introduction of local stiffness gradients in PEG-CMP hydrogels. We also present photopolymerized PEG diacrylate (PEGDA) hydrogels displaying CMPs that can be further conjugated to CMPs with bioactive moieties via triple helix hybridization. Encoding these hydrogels with cell-adhesive CMPs induces cell spreading and proliferation. We further demonstrate generation of gradients and

  9. Structural Insight into Inhibitor of Apoptosis Proteins Recognition by a Potent Divalent Smac-Mimetic

    PubMed Central

    Vachette, Patrice; Malvezzi, Francesca; Grassi, Serena; Lecis, Daniele; Delia, Domenico; Drago, Carmelo; Seneci, Pierfausto; Bolognesi, Martino; Mastrangelo, Eloise

    2012-01-01

    Genetic alterations enhancing cell survival and suppressing apoptosis are hallmarks of cancer that significantly reduce the efficacy of chemotherapy or radiotherapy. The Inhibitor of Apoptosis Protein (IAP) family hosts conserved proteins in the apoptotic pathway whose over-expression, frequently found in tumours, potentiates survival and resistance to anticancer agents. In humans, IAPs comprise eight members hosting one or more structural Baculoviral IAP Repeat (BIR) domains. Cellular IAPs (cIAP1 and 2) indirectly inhibit caspase-8 activation, and regulate both the canonical and the non-canonical NF-κB signaling pathways. In contrast to cIAPs, XIAP (X chromosome-linked Inhibitor of Apoptosis Protein) inhibits directly the effector caspases-3 and -7 through its BIR2 domain, and initiator caspase-9 through its BIR3 domain; molecular docking studies suggested that Smac/DIABLO antagonizes XIAP by simultaneously targeting both BIR2 and BIR3 domains. Here we report analytical gel filtration, crystallographic and SAXS experiments on cIAP1-BIR3, XIAP-BIR3 and XIAP-BIR2BIR3 domains, alone and in the presence of compound 9a, a divalent homodimeric Smac mimetic. 9a is shown to bind two BIR domains inter- (in the case of two BIR3) and intra-molecularly (in the case of XIAP-BIR2BIR3), with higher affinity for cIAP1-BIR3, relative to XIAP-BIR3. Despite the different crystal lattice packing, 9a maintains a right handed helical conformation in both cIAP1-BIR3 and XIAP-BIR3 crystals, that is likely conserved in solution as shown by SAXS data. Our structural results demonstrate that the 9a linker length, its conformational degrees of freedom and its hydrophobicity, warrant an overall compact structure with optimal solvent exposure of its two active moieties for IAPs binding. Our results show that 9a is a good candidate for pre-clinical and clinical studies, worth of further investigations in the field of cancer therapy. PMID:23166698

  10. Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues.

    PubMed

    Coïc, Yves-Marie; Vincent, Michel; Gallay, Jacques; Baleux, Françoise; Mousson, Florence; Beswick, Veronica; Neumann, Jean-Michel; de Foresta, Béatrice

    2005-12-01

    Membrane protein insertion in the lipid bilayer is determining for their activity and is governed by various factors such as specific sequence motifs or key amino-acids. A detailed fluorescence study of such factors is exemplified with PMP1, a small (38 residues) single-membrane span protein that regulates the plasma membrane H(+)-ATPase in yeast and specifically interacts with phosphatidylserines. Such interactions may stabilize raft domains that have been shown to contain H(+)-ATPase. Previous NMR studies of various fragments have focused on the critical role of interfacial residues in the PMP1 structure and intermolecular interactions. The C-terminal domain contains a terminal Phe (F38), a single Trp (W28) and a single Tyr (Y25) that may act together to anchor the protein in the membrane. In order to describe the location and dynamics of W28 and the influence of Y25 on protein insertion within membrane, we carried out a detailed steady-state and time-resolved fluorescence study of the synthetic G13-F38 fragment and its Tyr-less mutant, Y25L in various membrane mimetic systems. Detergent micelles are conveniently used for this purpose. We used dodecylphosphocholine (DPC) in order to compare with and complement previous NMR results. In addition, dodecylmaltoside (DM) was used so that we could apply our recently described new quenching method by two brominated analogs of DM (de Foresta et al. 2002, Eur. Biophys. J. 31:185-97). In both systems, and in the presence and absence of Y25, W28 was shown to be located below but close to the polar headgroup region, as shown by its maximum emission wavelengths (lambda(max)), curves for the quenching of Trp by the brominated analogs of DM and bimolecular constants for quenching (k(q)) by acrylamide. Results were interpreted by comparison with calibration data obtained with fluorescent model peptides. Time-resolved anisotropy measurements were consistent with PMP1 fragment immobilization within peptide-detergent complexes. We

  11. Effect of fat level on the perception of five flavor chemicals in ice cream with or without fat mimetics by using a descriptive test.

    PubMed

    Liou, B K; Grün, I U

    2007-10-01

    Fat mimetics are commonly used in the manufacture of low-fat and fat-free ice creams. However, the use of fat mimetics affects flavor and texture characteristics of ice cream, which results in decreased overall acceptability by consumers. The initial objective of this study was to investigate the release behavior of 5 strawberry flavor compounds in ice creams with Simplesse((R)), Litesse((R)), and Litesse((R))/Simplesse((R)) mixes using descriptive analysis. Fat mimetics and flavor formulation significantly influenced the perception of Furaneoltrade mark (cooked sugar flavor), alpha-ionone (violet flavor), and gamma-undecalactone (peach flavor), but there was no interaction between ice cream type and flavor formulation for the 3 flavors. Furaneol and ethyl-3-methyl-3-phenylglycidate (candy flavor) were perceived more strongly in full-fat ice cream, while cis-3-hexen-1-ol (grassy flavor), alpha-ionone, and gamma-undecalactone were perceived more strongly in low-fat ice cream. Ice creams with Simplesse and full-fat ice cream had similar sensory characteristics, while ice creams with Litesse were similar to low-fat ice creams in flavor characteristics, and ice creams with Litesse/Simplesse mixes were closer in flavor profile to low-fat ice cream but had similar texture properties to those of full-fat ice cream. Simplesse was found to be a better fat mimetic for duplicating the flavor profiles and mouthfeel of full-fat ice cream. PMID:17995626

  12. Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: restoration by superoxide dismutase mimetics

    PubMed Central

    MacKenzie, Andrew; Martin, William

    1998-01-01

    Structurally distinct superoxide dismutase (SOD) mimetics were examined for their ability to protect nitric oxide (NO) from destruction by oxidant stress in rabbit aorta.These were the spin traps, PTIYO (4-phenyl-2,2,5,5-tetramethyl imidazolin-1-yloxy-5-oxide), tempol (4-hydroxy 2,2,6,6,-tetramethylpiperidine-1-oxyl) and tiron (4,5-dihydroxy-1,3-benzene-disulphonic acid), the metal salts, CuSO4 and MnCl2, and the metal-based agents CuDIPS (Cu (II)-[diisopropylsalicylate]2) and MnTMPyP (Mn (III) tetrakis [1-methyl-4-pyridyl]porphyrin).Oxidant stress was generated in isolated aortic rings by inactivating endogenous Cu/Zn SOD with diethyldithiocarbamate (DETCA; 60 min) either alone at 3 mM or at 0.3 mM in combination with superoxide generation using xanthine oxidase (XO; 4.8 mu ml−1) and hypoxanthine (HX; 0.1 mM).Acetylcholine (ACh)-induced relaxation was inhibited by DETCA (3 mM, 60 min) and was not restored by exogenous SOD (250 u ml−1), suggesting the oxidant stress was intracellular. MnTMPyP (600 μM and 1 mM) and MnCl2 (100 μM) were the only agents to reverse the blockade of ACh-induced relaxation.Addition of XO/HX to DETCA (0.3 mM)-treated tissues powerfully impaired ACh-induced relaxation and exogneous SOD (250 u ml−1) fully reversed the blockade, suggesting the oxidant stress was extracellular. CuDIPS (0.1–3 μM), CuSO4 (0.3–3 μM), MnCl2 (1–100 μM) and MnTMPyP (100–600 μM) also reversed blockade powerfully, tempol (30 μM–1 mM) and tiron (0.3–10 mM) reversed blockade weakly and PTIYO (10–300 μM) enhanced the blockade.Thus, MnTMPyP was the only SOD mimetic to restore NO-dependent relaxation in conditions of both extracellular and intracellular oxidant stress. This agent may, therefore, provide a lead in the development of SOD mimetics for the treatment of pathologies associated with oxidant stress. PMID:9690864

  13. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    NASA Astrophysics Data System (ADS)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the

  14. A novel insulin mimetic vanadium-flavonol complex: synthesis, characterization and in vivo evaluation in STZ-induced rats.

    PubMed

    Pillai, Subramanian Iyyam; Subramanian, Sorimuthu Pillai; Kandaswamy, Muthusamy

    2013-05-01

    Since 1985, when Heyliger et al., first demonstrated a serendipitous discovery that oral administration of 0.8 mg/ml of sodium orthovanadate in drinking water to streptozotocin-induced diabetic rats resulted in normoglycemia, numerous extensive studies have been pursued on the anti-diabetic and insulinomimetic actions of vanadium. The acceptance of vanadium compounds as promising therapeutic antidiabetic agents has been slowed due to the concern for chronic toxicity associated with vanadium accumulation. In order to circumvent the toxic effects of vanadium, we have taken up a combinational approach wherein a novel vanadium-flavonol complex was synthesized, characterized and its toxic as well as insulin mimetic potential was evaluated in STZ-induced experimental diabetes in rats. The results indicate that the complex is non-toxic and possess anti-diabetic activity. PMID:23466606

  15. 'Better off alone than in bad company': agonistic colour display in mimetic juveniles of two ephippid species.

    PubMed

    Barros, B; Sakai, Y; Hashimoto, H; Gushima, K; Vallinoto, M

    2012-08-01

    Comparative field observations of agonistic interactions in juvenile leaf-mimicking Platax orbicularis and Chaetodipterus faber (Ephippidae) were conducted in coastal waters of the Pacific and Atlantic Oceans. Similar agonistic behaviour was observed in the two species, in which individuals stopped displaying their mimetic colouration during encounters with conspecifics, to display conspicuous colours, such as transverse stripes along the body. These events were observed occasionally, almost invariably in individuals of smaller body size. Larger-bodied individuals of both species spent less time in agonistic displays. The absolute size of the fish, however, did not appear to affect the outcome of the encounter, suggesting that dominance is a temporary condition, based on the relative size of the opponents during encounters. PMID:22880735

  16. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications.

    PubMed

    Erginer, Merve; Akcay, Ayca; Coskunkan, Binnaz; Morova, Tunc; Rende, Deniz; Bucak, Seyda; Baysal, Nihat; Ozisik, Rahmi; Eroglu, Mehmet S; Agirbasli, Mehmet; Toksoy Oner, Ebru

    2016-09-20

    Chemical derivatives of levan from Halomonas smyrnensis AAD6(T) with low, medium and high levels of sulfation were synthesized and characterized by FTIR and 2D-NMR. Sulfated levan samples were found to exhibit anticoagulation activity via the intrinsic pathway like heparin in a dose-dependent manner. Exceptionally high heparin equivalent activity of levan sulfate was shown to proceed via thrombin inhibition where decreased Factor Xa activity with increasing concentration was observed in antithrombin tests and above a certain concentration, levan sulfate showed a better inhibitor activity than heparin. In vitro experimental results were then verified in silico by docking studies using equilibrium structures obtained by molecular dynamic simulations and results suggested a sulfation dependent binding mechanism. With its high biocompatibility and heparin mimetic activity, levan sulfate can be considered as a suitable functional biomaterial to design biologically active, functionalized, thin films and engineered smart scaffolds for cardiac tissue engineering applications. PMID:27261753

  17. Synthesis of multivalent carbohydrate mimetics with aminopolyol end groups and their evaluation as L-selectin inhibitors

    PubMed Central

    Salta, Joana; Dernedde, Jens

    2015-01-01

    Summary In this article a series of divalent and trivalent carbohydrate mimetics on the basis of an enantiopure aminopyran and of serinol is described. These aminopolyols are connected by amide bonds to carboxylic acid derived spacer units either by Schotten–Baumann acylation or by coupling employing HATU as reagent. The O-sulfation employing the SO3·DMF complex was optimized. It was crucial to follow this process by 700 MHz 1H NMR spectroscopy to ensure full conversion and to use a refined neutralization and purification protocol. Many of the compounds could not be tested as L-selectin inhibitor by SPR due to their insolubility in water, nevertheless, a divalent and a trivalent amide showed surprisingly good activities with IC50 values in the low micromolar range. PMID:26124866

  18. In Vivo and In Vitro Effects of an Apolipoprotein E Mimetic Peptide on Amyloid-β Pathology

    PubMed Central

    Handattu, Shaila P.; Monroe, Candyce E.; Nayyar, Gaurav; Palgunachari, Mayakonda N.; Kadish, Inga; van Groen, Thomas; Anantharamaiah, G.M.; Garber, David W.

    2014-01-01

    Background Apolipoprotein E (ApoE) is the major apolipoprotein present in the high-density lipoprotein-like particles in the central nervous system (CNS). ApoE is involved in various protective functions in CNS including cholesterol transport, anti-inflammatory, and antioxidant effects. An ApoE peptide would be expected to exert protective effects on neuroinflammation. Objective To determine the effects of an ApoE mimetic peptide Ac-hE18A-NH2 on amyloid-β pathology. Method Using human APP/PS1ΔE9 transgenic mice and in vitro studies, we have evaluated the effect of an ApoE mimetic peptide, Ac-hE18A-NH2, on amyloid plaque deposition and inflammation. Results Administration of Ac-hE18A-NH2 to APP/PS1ΔE9 mice for 6 weeks (50 μg/mouse, 3 times a week) significantly improved cognition with a concomitant decrease in amyloid plaque deposition and reduced activated microglia and astrocytes, and increased brain ApoE levels. Oligomeric Aβ42 (oAβ42) and oxidized PAPC (ox-PAPC) inhibited secretion of ApoE in U251 cells, a human astrocyte cell line, and this effect was ameliorated in the presence of peptide Ac-hE18A-NH2. The peptide also increased Aβ42 uptake in a cell line of human macrophages. Conclusions Peptide Ac-hE18A-NH2 attenuates the effects of oxidative stress on ApoE secretion, inhibits amyloid plaque deposition, and thus could be beneficial in the treatment of Alzheimer’s disease. PMID:23603398

  19. Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152.

    PubMed

    Tchoghandjian, A; Soubéran, A; Tabouret, E; Colin, C; Denicolaï, E; Jiguet-Jiglaire, C; El-Battari, A; Villard, C; Baeza-Kallee, N; Figarella-Branger, D

    2016-01-01

    Glioblastomas (GBMs) are the most aggressive primary brain tumors in adult and remain a therapeutic challenge. Targeting key apoptosis regulators with the ultimate aim to restore apoptosis in tumor cells could be an interesting therapeutic strategy. The inhibitors of apoptosis proteins (IAPs) are regulators of cell death and represent attractive targets, especially because they can be antagonized by SMAC mimetics. In this study, we first investigated the expression of cIAP1, cIAP2, XIAP and ML-IAP in human GBM samples and in four different cell lines. We showed that all GBM samples and GBM cell lines expressed all these IAPs, although the expression of each IAP varied from one case to another. We then showed that high level of ML-IAP predicted worse progression-free survival and overall survival in both univariate and multivariate analyses in two independent cohorts of 58 and 43 primary human GBMs. We then used GDC-0152, a SMAC mimetic that antagonizes these IAPs and confirmed that GDC-0152 treatment in vitro decreased IAPs in all the cell lines studied. It affected cell line viability and triggered apoptosis, although the effect was higher in U87MG and GL261 than in GBM6 and GBM9 cell lines. In vivo, GDC-0152 effect on U87MG orthotopic xenografts was dose dependent; it postponed tumor formation and slowed down tumor growth, significantly improving survival of GBM-bearing mice. This study revealed for the first time that ML-IAP protein expression correlates with GBM patient survival and that its antagonist GDC-0152 improves outcome in xenografted mouse. PMID:27490930

  20. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite.

    PubMed

    Phipps, Matthew C; Clem, William C; Catledge, Shane A; Xu, Yuanyuan; Hennessy, Kristin M; Thomas, Vinoy; Jablonsky, Michael J; Chowdhury, Shafiul; Stanishevsky, Andrei V; Vohra, Yogesh K; Bellis, Susan L

    2011-01-01

    The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications. PMID:21346817

  1. Structure-Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity.

    PubMed

    Back, Thomas G.; Pharis, Richard P.

    2003-12-01

    A number of novel brassinosteroid analogues were synthesized and subjected to the rice leaf lamina inclination bioassay. Modified B-ring analogues included lactam, thiolactone, cyclic ether, ketone, hydroxyl, and exocyclic methylene derivatives of brassinolide. Those derivatives containing polar functional groups retained considerable bioactivity, whereas the exocyclic methylene compounds were devoid of activity. Analogues containing normal alkyl and cycloalkyl substituents at C-24 (in place of the isopropyl group of brassinolide) showed an inverse relationship between activity and chain length or ring size, respectively. The corresponding cyclopropyl and cyclobutyl derivatives were significantly more active than brassinolide and appear to be the most potent brassinosteroids reported to date. When synergized with the auxin indole-3-acetic acid (IAA), their bioactivity can be further enhanced by 1-2 orders of magnitude. The cyclopropyl derivative, when coapplied with the auxin naphthaleneacetic acid, gave a significant increase in yield of wheat in a field trial. Certain 25- and 26-hydroxy derivatives are known metabolites of brassinosteroids. All of the C-25 stereoisomers of 25-hydroxy, 26-hydroxy, and 25,26-dihydroxy derivatives of brassinolide were prepared and shown to be much less active than brassinolide. This indicates that they are likely metabolic deactivation products of the parent phytohormone. A series of methyl ethers of brassinolide was synthesized to block deactivation by glucosylation of the free hydroxyl groups. The most significant finding was that the compound where three of the four hydroxyl groups (at C-3, C-22, and C-23) had been converted to methyl ethers retained substantial bioactivity. This type of modification could, in theory, allow brassinolide or 24-epibrassinolide to resist deactivation and thus offer greater persistence in field applications. A series of nonsteroidal mimetics of brassinolide was designed and synthesized. Two of the

  2. A Phase I Study of the SMAC-Mimetic Birinapant in Adults with Refractory Solid Tumors or Lymphoma.

    PubMed

    Amaravadi, Ravi K; Schilder, Russell J; Martin, Lainie P; Levin, Myron; Graham, Martin A; Weng, David E; Adjei, Alex A

    2015-11-01

    The inhibitor of apoptosis (IAP) family of antiapoptotic proteins has been identified as a target for small molecule inhibitors in cancer. Second mitochondrial-derived activator of caspases (SMAC) efficiently and naturally antagonizes IAPs, and preclinical studies have determined that SMAC mimetics have potent anticancer properties. Here, we report a first-in-human trial designed to determine the maximum tolerated dose (MTD), safety, and pharmacokinetics/pharmacodynamics (PK/PD) of birinapant, a novel SMAC mimetic. Patients with advanced solid tumors or lymphoma were enrolled in a 3+3 dose escalation design with birinapant administered intravenously from 0.18 to 63 mg/m(2) once weekly every 3 of 4 weeks. Fifty patients were enrolled to 12 dose cohorts. Birinapant 47 mg/m(2) was determined to be the MTD. At 63 mg/m(2), dose-limiting toxicities included headache, nausea, and vomiting. Two cases of Bell's palsy (grade 2) also occurred at 63 mg/m(2). Birinapant had a plasma half-life of 30 to 35 hours and accumulated in tumor tissue. Birinapant suppressed cIAP1 and increased apoptosis in peripheral blood mononuclear cells and tumor tissue. Prolonged stable disease was observed in 3 patients: non-small cell lung cancer (5 months), colorectal cancer (5 months), and liposarcoma (9 months). Two patients with colorectal cancer had radiographic evidence of tumor shrinkage. In conclusion, birinapant was well tolerated with an MTD of 47 mg/m(2) and exhibited favorable PK and PD properties. Several patients demonstrated stable disease and evidence of antitumor activity. These results support the ongoing clinical trials of birinapant in patients with cancer. PMID:26333381

  3. Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic

    PubMed Central

    Sarkar, Siddik; Quinn, Bridget A.; Shen, Xue-Ning; Dash, Rupesh; Das, Swadesh K.; Emdad, Luni; Klibanov, Alexander L.; Wang, Xiang-Yang; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell deathcorrelated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP. PMID:25926554

  4. Vaccination with peptide mimetics of the gp41 prehairpin fusion intermediate yields neutralizing antisera against HIV-1 isolates

    PubMed Central

    Bianchi, Elisabetta; Joyce, Joseph G.; Miller, Michael D.; Finnefrock, Adam C.; Liang, Xiaoping; Finotto, Marco; Ingallinella, Paolo; McKenna, Philip; Citron, Michael; Ottinger, Elizabeth; Hepler, Robert W.; Hrin, Renee; Nahas, Deborah; Wu, Chengwei; Montefiori, David; Shiver, John W.; Pessi, Antonello; Kim, Peter S.

    2010-01-01

    Eliciting a broadly neutralizing polyclonal antibody response against HIV-1 remains a major challenge. One approach to vaccine development is prevention of HIV-1 entry into cells by blocking the fusion of viral and cell membranes. More specifically, our goal is to elicit neutralizing antibodies that target a transient viral entry intermediate (the prehairpin intermediate) formed by the HIV-1 gp41 protein. Because this intermediate is transient, a stable mimetic is required to elicit an immune response. Previously, a series of engineered peptides was used to select a mAb (denoted D5) that binds to the surface of the gp41 prehairpin intermediate, as demonstrated by x-ray crystallographic studies. D5 inhibits the replication of HIV-1 clinical isolates, providing proof-of-principle for this vaccine approach. Here, we describe a series of peptide mimetics of the gp41 prehairpin intermediate designed to permit a systematic analysis of the immune response generated in animals. To improve the chances of detecting weak neutralizing polyclonal responses, two strategies were employed in the initial screening: use of a neutralization-hypersensitive virus and concentration of the IgG fraction from immunized animal sera. This allowed incremental improvements through iterative cycles of design, which led to vaccine candidates capable of generating a polyclonal antibody response, detectable in unfractionated sera, that neutralize tier 1 HIV-1 and simian HIV primary isolates in vitro. Our findings serve as a starting point for the design of more potent immunogens to elicit a broadly neutralizing response against the gp41 prehairpin intermediate. PMID:20483992

  5. Synthesis and antiplatelet evaluation of novel aryl-sulfonamide derivatives, from natural safrole.

    PubMed

    Lima, L M; Ormelli, C B; Brito, F F; Miranda, A L; Fraga, C A; Barreiro, E J

    1999-06-01

    In the scope of a research program aiming at the synthesis and pharmacological evaluation of novel possible antiplatelet prototype compounds, exploring bioisosterism principles for molecular design, we describe in this paper the synthesis of new aryl-sulfonamides derivatives, structurally similar to known thromboxane A2 receptor antagonists. The synthetic route used to access the new compounds described herein starts from safrole, an abundant Brazilian natural product, which occurs in Sassafras oil (Ocotea pretiosa). The results from preliminary evaluation of these novel aryl-sulfonamide compounds by the platelet aggregation inhibitory test, using rabbit PRP, induced by ADP, collagen, arachidonic acid, and U46619, identified the N-[2-(4-carboxymethoxyphenyl)ethyl]-6-methyl-3,4-methylenedioxyphe nyl- sulfonamido derivative as the most active among them, presenting in IC50 value for the U-46619-induced platelet aggregation in rabbit platelet-rich plasma: 329 microM. PMID:10443173

  6. Regulation of myosin light chain phosphorylation in the trabecular meshwork: role in aqueous humour outflow facility.

    PubMed

    Rao, P Vasantha; Deng, Peifeng; Sasaki, Yasuharu; Epstein, David L

    2005-02-01

    Cellular contraction and relaxation and integrity of the actin cytoskeleton in trabecular meshwork (TM) tissue have been thought to influence aqueous humour outflow. However, the cellular pathways that regulate these events in TM cells are not well understood. In this study, we investigated physiological agonist-mediated regulation of myosin light chain (MLC) phosphorylation in the TM, and correlated such effects with alterations in aqueous outflow facility, since MLC phosphorylation is a critical biochemical determinant of cellular contraction in TM cells. Treatment of serum starved human TM cells with endothelin-1 (0.1 microM), thromboxane A2 mimetic U-46619 (1.0 microM), or angiotensin II (1 microM), all of which are agonists of G-protein coupled receptors, triggered activation of MLC phosphorylation, as determined by urea/glycerol-based Western blot analysis. Agonist-stimulated increase in MLC phosphorylation was associated with activation of Rho GTPase in TM cells, as determined in pull-down assays. In contrast, treatment of human TM cells with a novel Rho-kinase inhibitor H-1152 (0.1-2 microM), in the presence of serum reduced basal MLC phosphorylation. H-1152 also increased aqueous outflow facility significantly in a dose-dependent fashion, in perfusion studies with cadaver porcine eyes. This effect of H-1152 on outflow facility was associated with decreased MLC phosphorylation in TM tissue of drug-perfused eyes. Collectively, this study identifies potential physiological regulators of MLC phosphorylation in human TM cells and demonstrates the significance of Rho/Rho-kinase pathway-mediated MLC phosphorylation in modulation of aqueous outflow facility through TM. PMID:15670798

  7. Evaluation of a Set of C9 N-acyl Neu5Ac2en Mimetics as Viral Sialidase Selective Inhibitors

    PubMed Central

    Magesh, Sadagopan; Sriwilaijaroen, Nongluk; Moriya, Setsuko; Ando, Hiromune; Miyagi, Taeko; Suzuki, Yasuo; Ishida, Hideharu; Kiso, Makoto

    2011-01-01

    Identification of selective influenza viral sialidase inhibitors is highly desirable in order to minimize or avoid the adverse effects due to the possible inhibition of endogenous human sialidases. We recently reported the evaluation of C9 N-acyl Neu5Ac2en mimetics as probes for human sialidases. Herein, we describe the in vitro activity of the same set of C9 N-acyl Neu5Ac2en mimetics against sialidases expressed by influenza virus A/PR/8/34 (H1N1), A/Memphis/1/72 (H3N2), and A/Duck/313/78 (H5N3) strains. Compound 8 is identified as a promising starting point for the development of viral sialidase selective inhibitors. Multiple sequence alignment and molecular docking techniques are also performed to explore the plausible interaction of compound 8 with viral sialidases.

  8. Identification and Characterization of a Peptide Mimetic That May Detect a Species of Disease-Associated Anticardiolipin Antibodies in Patients With the Antiphospholipid Syndrome

    PubMed Central

    Visvanathan, Sudha; Scott, Jamie K.; Hwang, Kwan-Ki; Banares, Michelle; Grossman, Jennifer M.; Merrill, Joan T.; FitzGerald, John; Chukwuocha, Reginald U.; Tsao, Betty P.; Hahn, Bevra H.; Chen, Pojen P.

    2007-01-01

    Objective To test the feasibility of applying a mimetic (specific for a patient-derived prothrombotic anticardiolipin antibody [aCL]) to study the homologous, disease-associated aCL in patients with antiphospholipid syndrome (APS). Methods We used the CL15 monoclonal aCL to screen 17 phage-display peptide libraries. Peptides (corresponding to recurrent peptide sequences) and their derivatives were synthesized and analyzed for binding to CL15 and for their abilities to inhibit CL15 from binding to cardiolipin. A peptide was chosen and used to study CL15-like IgG aCL in plasma samples from patients with APS, patients with systemic lupus erythematosus (SLE) but without APS, and normal healthy donors. Results Library screening with CL15 yielded 4 recurrent peptide sequences. Analyses of peptides showed that peptide CL154C reacted with antibody CL15 and inhibited binding of CL15 to cardiolipin, indicating that peptide CL154C may be a peptide mimetic for the CL15 aCL. Initial studies with plasma samples revealed that CL154C-reactive IgG was present (positivity defined as the mean + 3 SD optical density of the 25 normal controls) in 15 of 21 APS patients and 1 of 12 SLE patients. Conclusion These findings suggest that it is feasible to develop a specific enzyme-linked immunosorbent assay for each immunologically and functionally distinct disease-associated aCL. Additional testing of CL154C with a larger number of APS patients and SLE patients, as well as identification of peptide mimetics for each distinct aCL, will reveal the diagnostic potential of CL154C and other mimetics in identifying patients with aCL who are at risk of developing life-threatening thrombosis. PMID:12632428

  9. Inhibition of CD4+ T lymphocyte binding to fibronectin and immune-cell accumulation in inflammatory sites by non-peptidic mimetics of Arg-Gly-Asp.

    PubMed

    Hershkoviz, R; Greenspoon, N; Mekori, Y A; Hadari, R; Alon, R; Kapustina, G; Lider, O

    1994-02-01

    The Arg-Gly-Asp (RGD) cell adhesion motif has been demonstrated in various studies to play a pivotal role in leucocyte and platelet interactions with plasma and extracellular matrix (ECM) glycoproteins. The recognition of the RGD sequence is mediated by heterodimeric receptors designated integrins of the beta 1 subfamily, expressed on distinct cell types, including T lymphocytes. We have recently shown that flexible non-peptidic mimetics of RGD, in which the two ionic side groups were separated by a linear spacer of 11 atoms, bound specifically to the platelet integrin alpha 11b beta 3, and inhibited T cell-mediated immune responses. The present study was designed to (i) further characterize the structural requirements for RGD interactions with CD4+ T cells, and (ii) examine the mechanisms by which the RGD mimetics interfere with immune cell reactivity in vivo. We now report that freezing the conformational degrees of freedom in the spacer chain, which fixes the relative orientation of the guanidinium and carboxylate side groups in a favourable manner, results in a higher level of inhibition of T cell binding to immobilized fibronectin, an RGD-containing ECM glycoprotein. In vivo, treatment of mice with relatively low doses of the RGD mimetics, but not the RGD peptide, inhibited the elicitation of an adoptively transferred DTH reaction. This inhibition was achieved by direct impairment of the ability of antigen-primed lymph node cells to migrate and accumulate in inflammatory sites. Hence, we suggest that the design and production of non-peptidic mimetics of RGD offers a novel approach to study defined parameters related to the structure-function requirements of small adhesion epitopes. Furthermore, this approach could be used therapeutically to inhibit pathological processes which depend on RGD recognition. PMID:7905794

  10. Application of Multianalyte Microphysiometry to Characterize Macrophage Metabolic Responses to Oxidized LDL and Effects of an ApoA-1 Mimetic

    PubMed Central

    Kimmel, Danielle W.; Dole, William P.; Cliffel, David E.

    2013-01-01

    Although the interaction of macrophages with oxidized low density liopoprotein (oxLDL) is critical to the pathogenesis of atherosclerosis, relatively little is known about their metabolic response to oxLDL. Our development of the multianalyte microphysiometer (MAMP) allows for simultaneous measurement of extracellular metabolic substrates and products in real-time. Here, we use the MAMP to study changes in the metabolic rates of RAW-264.7 cells undergoing respiratory burst in response to oxLDL. These studies indicate that short duration exposure of macrophages to oxLDL results in time-dependent increases in glucose and oxygen consumption and in lactate production and extracellular acidification rate. Since apolipoprotein A-I (apoA-I) and apoA-I mimetics prevent experimental atherosclerosis, we hypothesized that the metabolic response of the macrophage during respiratory burst can be modulated by apoA-I mimetics. We tested this hypothesis by examining the effects of the apoA-I peptide mimetic, L-4F, alone and complexed with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) on the macrophage metabolic response to oxLDL. L-4F and the DMPC/L-4F complexes attenuated the macrophage respiratory burst in response to oxLDL. The MAMP provides a novel approach for studying macrophage ligand-receptor interactions and cellular metabolism and our results provide new insights into the metabolic effects of oxLDL and mechanism of action of apoA-I mimetics. PMID:23313489

  11. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    SciTech Connect

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan; Li, Lin; Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen; Jiang, Shibo

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  12. Microfluidic paper-based multiplex colorimetric immunodevice based on the catalytic effect of Pd/Fe₃O₄@C peroxidase mimetics on multiple chromogenic reactions.

    PubMed

    Liang, Linlin; Ge, Shenguang; Li, Li; Liu, Fang; Yu, Jinghua

    2015-03-01

    In this report, a non-toxic method was proposed for the simple synthesis of palladium nanoparticles (Pd)/Fe3O4@C peroxidase mimetics by virtue of in situ growth of Pd nanoparticles on Fe3O4@C magnetic nanoparticles. And a microfluidic paper-based multiplex colorimetric immunodevice (named α-sheet) was developed by site-selectively immobilizing multiple antigens owing to its intrinsic high-efficiency catalytic activity of peroxidase mimetics to multiple chromogenic reactions. The immunosensor platform was prepared by growing a layer of flower-like gold nanoparticles which could entrap the primary antibodies onto paper sensing zones, and the as-prepared Pd/Fe3O4@C peroxidase mimetics was used to label secondary antibodies. In the presence of 3,3',5,5'-tetramethylbenzidine and o-phenylenediamine chromogenic substrates, Pd/Fe3O4@C peroxidase mimetics catalyzed chromogenic reactions and showed different colors with respective intensity. To precisely identify the intensity, a piece of black wax printed chromatographic paper with three observing windows (named β-sheet) was flatted on α-sheet. Under the optimal condition, the proposed multiplex colorimetric immunodevice displayed wide linear ranges from 0.005 to 30 ng mL(-1) with low detection limits of 1.7 pg mL(-1) for carcinoembryonic antigen (CEA) and α-fetoprotein (α-AFP). Meanwhile, the proposed method provided provided a non-toxic, low-cost and promising tool for point-of-care diagnosis. PMID:25682430

  13. Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization.

    PubMed

    Kukovetz, W R; Holzmann, S; Braida, C; Pöch, G

    1991-04-01

    In addition to previous results from our laboratory showing that nicorandil relaxed vascular smooth muscle by increasing cyclic GMP levels, it was shown to activate K-channels as well, an effect that also leads to relaxation. In the present study, we attempted to differentiate quantitatively between these two effects in isolated bovine coronary artery strips with simultaneous isotonic measurement of length and radioimmunoassay (RIA) determination of cyclic GMP. When the strips were contracted by the thromboxane A2 analogue U 46619 (1 microM) with 10 microM methylene blue added, nicorandil produced 30-50% relaxation without significant changes in cyclic GMP. When in U 46619-contracted strips the hyperpolarizing effect of nicorandil was suppressed by increasing extracellular K+ to 80.4 mM (30-fold), nicorandil caused only 52% relaxation, whereas cyclic GMP increases were not significantly suppressed. Quantitative separation of both mechanisms of relaxation by nicorandil was further achieved through calculation of the cyclic GMP-mediated component from a correlation between increases in cyclic GMP and percentage of relaxation as produced by nicorandil under conditions of inhibited hyperpolarization, i.e., in strips contracted with 1 microM U 46619 or 26.8 mM K+ (10-fold) and exposed to either 30-fold K+ or 10 mM Ba2+. Under both conditions, similar correlations between cyclic GMP and relaxation were obtained. Because U 46619, in addition to its contractile effect, partially antagonized the relaxation by nicorandil without changing cyclic GMP, the correlation was corrected for this effect and indicated a participation of cyclic GMP in the overall relaxant response of approximately 30-40% at low and less than or equal to 80-90% at high concentrations of nicorandil. PMID:1711631

  14. Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction.

    PubMed Central

    Johnson, G J; Leis, L A; Dunlop, P C

    1993-01-01

    Human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors are linked to phosphoinositide-specific phospholipase C (PI-PLC) via a G protein tentatively identified as a member of the Gq class. In contrast, platelet thrombin receptors appear to activate PI-PLC via other unidentified G proteins. Platelets from most dogs are TXA2 insensitive (TXA2-); i.e., they do not aggregate irreversibly or secrete although they bind TXA2, but they respond normally to thrombin. In contrast, a minority of dogs have TXA2-sensitive (TXA2+) platelets that are responsive to TXA2. To determine the mechanism responsible for TXA2- platelets, we evaluated receptor activation of PI-PLC. Equilibrium binding of TXA2/PGH2 receptor agonists, [125I]BOP and [3H]U46619, and antagonist, [3H]SQ29,548, revealed comparable high-affinity binding to TXA2-, TXA2+, and human platelets. U46619-induced PI-PLC activation was impaired in TXA2- platelets as evidenced by reduced (a) phosphorylation of the 47-kD substrate of protein kinase C, (b) phosphatidic acid (PA) formation, (c) rise in cytosolic calcium concentration, and (d) inositol 1,4,5 trisphosphate (IP3) formation, while thrombin-induced PI-PLC activation was not impaired. GTPase activity stimulated by U46619, but not by thrombin, was markedly reduced in TXA2- platelets. Antisera to Gq class alpha subunits abolished U46619-induced GTPase activity in TXA2-, TXA2+, and human platelets. Direct G protein stimulation by GTP gamma S yielded significantly less PA and IP3 in TXA2- platelets. Immunotransfer blotting revealed comparable quantities of Gq class alpha-subunits in all three platelet types. Thus, TXA2- dog platelets have impaired PI-PLC activation in response to TXA2/PGH2 receptor agonists secondary to G protein dysfunction, presumably involving a member of the Gq class. Images PMID:8227362

  15. Blockade of thromboxane/endoperoxide receptor-mediated responses in the pulmonary vascular bed of the cat by sulotroban.

    PubMed

    Nossaman, B D; McMahon, T J; Ragheb, M S; Ibrahim, I N; Babycos, C R; Hood, J S; Kadowitz, P J

    1992-03-17

    The effects of sulotroban (BM13.177; SK & F 95587), a thromboxane (TX) A2/endoperoxide (PGH2) receptor blocking agent on responses to the TXA2/PGH2 mimics, U46619 and U44069, were investigated in the pulmonary vascular bed of the intact-chest cat under constant flow conditions. Injections of U46619 and U44069 directly into the perfused lobar artery caused dose-related increases in lobar arterial pressure without altering left atrial pressure. Following administration of sulotroban in a dose of 5 mg/kg i.v., dose-response curves for U46619 and U44069 were shifted to the right in a parallel manner. The duration of the blocking effect of sulotroban was investigated, and responses to U46619 returned to approximately 50% of control in 120 min and were not significantly different from control 240 min after administration of the receptor antagonist. Sulotroban was without significant effect on responses to prostaglandin (PG) D2 or F2 alpha or serotonin, histamine, norepinephrine, angiotensin II or BAY K8644, an agent which enhances calcium entry. Sulotroban was without effect on responses to endothelin (ET)-1, sarafotoxin (S) 6a or S6c and platelet-activating factor (PAF). Sulotroban did not alter baseline vascular pressures in the cat and responses to the PG and TXA2/PGH2 precursor, arachidonic acid, were reduced. The present data show that sulotroban selectively blocks TXA2/PGH2 receptor-mediated responses in a competitive and reversible manner in the pulmonary vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1379928

  16. Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia

    PubMed Central

    Allegretti, Matteo; Mirabilii, Simone; Licchetta, Roberto; Bergamo, Paola; Rinaldo, Cinzia; Zeuner, Ann; Foà, Robin; Milella, Michele; McCubrey, James A.; Martelli, Alberto M.; Tafuri, Agostino

    2015-01-01

    Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL. PMID:26392332

  17. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    NASA Astrophysics Data System (ADS)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  18. Distinct Regulatory Mechanisms of the Human Ferritin Gene by Hypoxia and Hypoxia Mimetic Cobalt Chloride at the Transcriptional and Post-transcriptional Levels

    PubMed Central

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-01-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5′UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels. PMID:25172425

  19. Three-dimensional structure and mimetic-membrane association of consensus 11-amino-acid motif from soybean LEA3 protein.

    PubMed

    Xue, Rong; Liu, Yun; Zheng, Yizhi; Wu, Yijie; Li, Xiaojing; Pei, Fengkui; Ni, Jiazuan

    2012-01-01

    The occurrence of a highly conserved 11-mer repeating motif in the primary sequence is a major characteristic of group 3 late embryogenesis abundant (LEA3) proteins, which are strongly associated with abiotic stress tolerance of the plants. In this study, the three-dimensional structure, mimetic membrane association, and salt effect for consensus 11-mer motif from soybean PM2 protein (LEA3) were investigated in sodium dodecyl sulfate (SDS) micelles by NMR techniques. It was shown that the 11-mer motif was disordered in aqueous solution, but adopted an α-helix in SDS micelles. NMR diffusion measurements demonstrated that the 11-mer motif was associated with SDS micelles. Paramagnetic quenching NMR experiments further revealed the orientation of the 11-mer motif with respect to the mimetic membrane: the ordered N-terminal segment was inserted into the mimetic membrane, and the disordered C-terminal segment was exposed to water. In addition, salt addition could not change the secondary structure of the 11-mer motif, but might slightly alter the relative spatial position of some N-terminal residue atoms. These results implied that the 11-mer motif would take an important role in structural plasticity and membrane stabilization for LEA3 proteins. PMID:23325560

  20. BIRC2/cIAP1 Is a Negative Regulator of HIV-1 Transcription and Can Be Targeted by Smac Mimetics to Promote Reversal of Viral Latency.

    PubMed

    Pache, Lars; Dutra, Miriam S; Spivak, Adam M; Marlett, John M; Murry, Jeffrey P; Hwang, Young; Maestre, Ana M; Manganaro, Lara; Vamos, Mitchell; Teriete, Peter; Martins, Laura J; König, Renate; Simon, Viviana; Bosque, Alberto; Fernandez-Sesma, Ana; Cosford, Nicholas D P; Bushman, Frederic D; Young, John A T; Planelles, Vicente; Chanda, Sumit K

    2015-09-01

    Combination antiretroviral therapy (ART) is able to suppress HIV-1 replication to undetectable levels. However, the persistence of latent viral reservoirs allows for a rebound of viral load upon cessation of therapy. Thus, therapeutic strategies to eradicate the viral latent reservoir are critically needed. Employing a targeted RNAi screen, we identified the ubiquitin ligase BIRC2 (cIAP1), a repressor of the noncanonical NF-κB pathway, as a potent negative regulator of LTR-dependent HIV-1 transcription. Depletion of BIRC2 through treatment with small molecule antagonists known as Smac mimetics enhanced HIV-1 transcription, leading to a reversal of latency in a JLat latency model system. Critically, treatment of resting CD4+ T cells isolated from ART-suppressed patients with the histone deacetylase inhibitor (HDACi) panobinostat together with Smac mimetics resulted in synergistic activation of the latent reservoir. These data implicate Smac mimetics as useful agents for shock-and-kill strategies to eliminate the latent HIV reservoir. PMID:26355217

  1. SMAC mimetic (JP1201) sensitizes non-small cell lung cancers to multiple chemotherapy agents in an IAP dependent but TNFα independent manner

    PubMed Central

    Greer, Rachel M.; Peyton, Michael; Larsen, Jill E.; Girard, Luc; Xie, Yang; Gazdar, Adi; Harran, Patrick; Wang, Lai; Brekken, Rolf A.; Wang, Xiaodong; Minna, John D.

    2012-01-01

    Inhibitors of apoptosis proteins (IAPs) are key regulators of apoptosis and are inhibited by the second mitocondrial activator of caspases (SMAC). Previously, a small subset of TNFα-expressing non-small cell lung cancers (NSCLCs) was found to be sensitive to SMAC mimetics alone. In this study we determined if a SMAC mimetic (JP1201) could sensitize non-responsive NSCLC cell lines to standard chemotherapy. We found that JP1201 sensitized NSCLCs to doxorubicin, erlotinib, gemcitabine, paclitaxel, vinorelbine, and the combination of carboplatin with paclitaxel in a synergistic manner at clinically achievable drug concentrations. Sensitization did not occur with platinum alone. Furthermore, sensitization was specific for tumor compared to normal lung epithelial cells, increased in NSCLCs harvested after chemotherapy treatment, and did not induce TNFα secretion. Sensitization also was enhanced in vivo with increased tumor inhibition and increased survival of mice carrying xenografts. These effects were accompanied by caspase 3, 4, and 9 activation, indicating that both mitochondrial and ER stress-induced apoptotic pathways are activated by the combination of vinorelbine and JP1201. Chemotherapies that induce cell death through the mitochondrial pathway required only inhibition of XIAP for sensitization, while chemotherapies that induce cell death through multiple apoptotic pathways required inhibition of cIAP1, cIAP2, and XIAP. Therefore, the data suggest that IAP-targeted therapy using a SMAC mimetic provides a new therapeutic strategy for synergistic sensitization of NSCLCs to standard chemotherapy agents, which appears to occur independently of TNFα secretion. PMID:22049529

  2. Pulmonary vascular and airway responses to systemic vasoconstrictors in anesthetized BALB/c mice.

    PubMed

    Wang, Mofei; Shibamoto, Toshishige; Shinomiya, Shohei; Yamamoto, Yuki; Kurata, Yasutaka; Kuda, Yuhichi; Tanida, Mamoru; Toga, Hirohisa

    2015-04-01

    There is no systematic study in which the effects of vasoactive substances were investigated on pulmonary vascular resistance (PVR) in in vivo mouse by directly measuring cardiac output and the inflow and outflow pressures in the pulmonary circulation. We determined the responses of PVR, total peripheral resistance (TPR), and airway pressure (AWP) to angiotensin II, endothelin-1, vasopressin, phenylephrine, and thromboxane A2 analog U46619 in anesthetized BALB/c mice. Pulmonary arterial pressure, left atrial pressure (LAP), and aortic blood flow were measured. TPR increased dose-dependently in response to consecutive administration of all vasoconstrictors except vasopressin which reduced TPR at the highest dose of 100 nmol/kg. At high doses of vasoconstrictors, pulmonary arterial pressure and AWP increased due to increased LAP, as demonstrated by the separate LAP elevation experiments. When LAP transiently increased at high doses, PVR did not increase but decreased. Nonetheless, enodothelin-1, angiotensin II, and U46619 increased PVR. Vasopressin at 100 nmol/kg increased AWP without LAP elevation. In conclusion, the high doses of the vasoconstrictors studied here exert indirectly a transient pulmonary vasodilatory and AWP increasing actions due to pulmonary congestion evoked by strong systemic vasoconstriction. Nevertheless, enodothelin-1, angiotensin II, and U46619 cause pulmonary vasoconstriction, and vasopressin constricts airway in anesthetized BALB/c mice. PMID:25853950

  3. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies.

    PubMed

    Han, Sifei; Quach, Tim; Hu, Luojuan; Wahab, Anisa; Charman, William N; Stella, Valentino J; Trevaskis, Natalie L; Simpson, Jamie S; Porter, Christopher J H

    2014-03-10

    A lipophilic prodrug approach has been used to promote the delivery of a model immunomodulator, mycophenolic acid (MPA), to the lymphatic system after oral administration. Lymphatic transport was employed to facilitate enhanced drug uptake into lymphocytes, as recent studies demonstrate that targeted drug delivery to lymph resident lymphocytes may enhance immunomodulatory effects. Two classes of lymph-directing prodrugs were synthesised. Alkyl chain derivatives (octyl mycophenolate, MPA-C8E; octadecyl mycophenolate, MPA-C18E; and octadecyl mycophenolamide, MPA-C18AM), to promote passive partitioning into lipids in lymphatic transport pathways, and a triglyceride mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) to facilitate metabolic integration into triglyceride deacylation-reacylation pathways. Lymphatic transport, lymphocyte uptake and plasma pharmacokinetics were assessed in mesenteric lymph and carotid artery cannulated rats following intraduodenal infusion of lipid-based formulations containing MPA or MPA prodrugs. Patterns of prodrug hydrolysis in rat digestive fluid, and cellular re-esterification in vivo, were evaluated to examine the mechanisms responsible for lymphatic transport. Poor enzyme stability and low absorption appeared to limit lymphatic transport of the alkyl derivatives, although two of the three alkyl chain prodrugs - MPA-C18AM (6-fold) and MPA-C18E (13-fold) still increased lymphatic drug transport when compared to MPA. In contrast, 2-MPA-TG markedly increased lymphatic drug transport (80-fold) and drug concentrations in lymphocytes (103-fold), and this was achieved via biochemical incorporation into triglyceride deacylation-reacylation pathways. The prodrug was hydrolysed rapidly to 2-mycophenoloyl glycerol (2-MPA-MG) in the presence of rat digestive fluid, and 2-MPA-MG was subsequently re-esterified in the enterocyte with oleic acid (most likely originating from the co-administered formulation) prior to accessing the

  4. Syntheses of vanadyl and zinc(II) complexes of 1-hydroxy-4,5,6-substituted 2(1H)-pyrimidinones and their insulin-mimetic activities.

    PubMed

    Yamaguchi, Mika; Wakasugi, Kei; Saito, Ryota; Adachi, Yusuke; Yoshikawa, Yutaka; Sakurai, Hiromu; Katoh, Akira

    2006-02-01

    Control of the glucose level in the blood plasma has been achieved in vitro and in vivo by administration of vanadium and zinc in form of inorganic salts. It has been shown that elements are poorly absorbed in their inorganic forms and required high doses which have been associated with undesirable side effects. Many researchers, therefore, have focused on metal complexes that were prepared from VOSO(4) or ZnSO(4) and low-molecular-weight bidentate ligands. Seven kinds of 1-hydroxy-4,6-disubstituted and 1-hydroxy-4,5,6-trisubstituted-2(1H)-pyrimidinones were synthesized by reaction of N-benzyloxyurea and beta-diketones and subsequent removal of the protecting group. Six kinds of 1-hydroxy-4-(substituted)amino-2(1H)-pyrimidinones were synthesized by the substitution reaction of 1-benzyloxy-4-(1',2',4'-triazol-1'-yl)-2(1H)-pyrimidinone with various alkyl amines or amino acids. Treatment with VOSO(4) and ZnSO(4) or Zn(OAc)(2) afforded vanadyl(IV) and zinc(II) complexes which were characterized by means of (1)H NMR, IR, EPR, and UV-vis spectroscopies, and combustion analysis. The in vitro insulin-mimetic activity of these complexes was evaluated from 50% inhibitory concentrations (IC(50)) on free fatty acid (FFA) release from isolated rat adipocytes treated with epinephrine. Vanadyl complexes of 4,6-disubstituted-2(1H)-pyrimidinones showed higher insulin-mimetic activities than those of 4,5,6-trisubstituted ones. On the other hand, Zn(II) complexes showed lower insulin-mimetic activities than VOSO(4) and ZnSO(4) as positive controls. It was found that the balance of the hydrophilicity and/or hydrophobicity is important for higher insulin-mimetic activity. The in vivo insulin-mimetic activity was evaluated with streptozotocin (STZ)-induced diabetic rats. Blood glucose levels were lowered from hyperglycemic to normal levels after the treatment with bis(1,2-dihydro-4,6-dimethyl-2-oxo-1-pyrimidinolato)oxovanadium(IV) by daily intraperitoneal injections. The improvement in

  5. BH3-Mimetics- and Cisplatin-Induced Cell Death Proceeds through Different Pathways Depending on the Availability of Death-Related Cellular Components

    PubMed Central

    Andreu-Fernández, Vicente; Genovés, Ainhoa; Messeguer, Angel; Orzáez, Mar; Sancho, Mónica; Pérez-Payá, Enrique

    2013-01-01

    Background Owing to their important function in regulating cell death, pharmacological inhibition of Bcl-2 proteins by dubbed BH3-mimetics is a promising strategy for apoptosis induction or sensitization to chemotherapy. However, the role of Apaf-1, the main protein constituent of the apoptosome, in the process has yet not been analyzed. Furthermore as new chemotherapeutics develop, the possible chemotherapy-induced toxicity to rapidly dividing normal cells, especially sensitive differentiated cells, has to be considered. Such undesirable effects would probably be ameliorated by selectively and locally inhibiting apoptosis in defined sensitive cells. Methodology and Principal Findings Mouse embryonic fibroblasts (MEFS) from Apaf-1 knock out mouse (MEFS KO Apaf-1) and Bax/Bak double KO (MEFS KO Bax/Bak), MEFS from wild-type mouse (MEFS wt) and human cervix adenocarcinoma (HeLa) cells were used to comparatively investigate the signaling cell death-induced pathways of BH3-mimetics, like ABT737 and GX15-070, with DNA damage-inducing agent cisplatin (cis-diammineplatinum(II) dichloride, CDDP). The study was performed in the absence or presence of apoptosis inhibitors namely, caspase inhibitors or apoptosome inhibitors. BH3-mimetic ABT737 required of Apaf-1 to exert its apoptosis-inducing effect. In contrast, BH3-mimetic GX15-070 and DNA damage-inducing CDDP induced cell death in the absence of both Bax/Bak and Apaf-1. GX15-070 induced autophagy-based cell death in all the cell lines analyzed. MEFS wt cells were protected from the cytotoxic effects of ABT737 and CDDP by chemical inhibition of the apoptosome through QM31, but not by using general caspase inhibitors. Conclusions BH3-mimetic ABT737 not only requires Bax/Bak to exert its apoptosis-inducing effect, but also Apaf-1, while GX15-070 and CDDP induce different modalities of cell death in the absence of Bax/Bak or Apaf-1. Inclusion of specific Apaf-1 inhibitors in topical and well-localized administrations, but not

  6. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    PubMed

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes. PMID:26861908

  7. A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids.

    PubMed

    Navab, Mohamad; Ruchala, Piotr; Waring, Alan J; Lehrer, Robert I; Hama, Susan; Hough, Greg; Palgunachari, Mayakonda N; Anantharamaiah, G M; Fogelman, Alan M

    2009-08-01

    Administered subcutaneously, D-4F or L-4F are equally efficacious, but only D-4F is orally efficacious because of digestion of L-4F by gut proteases. Orally administering niclosamide (a chlorinated salicylanilide used as a molluscicide, antihelminthic, and lampricide) in temporal proximity to oral L-4F (but not niclosamide alone) in apoE null mice resulted in significant improvement (P < 0.001) in the HDL-inflammatory index (HII), which measures the ability of HDL to inhibit LDL-induced monocyte chemotactic activity in endothelial cell cultures. Oral administration of L-[113-122]apoJ with niclosamide also resulted in significant improvement (P < 0.001) in HII. Oral administration of niclosamide and L-4F together with pravastatin to female apoE null mice at 9.5 months of age for six months significantly reduced aortic sinus lesion area (P = 0.02), en face lesion area (P = 0.033), and macrophage lesion area (P = 0.02) compared with pretreatment, indicating lesion regression. In contrast, lesions were significantly larger in mice receiving only niclosamide and pravastatin or L-4F and pravastatin (P < 0.001). In vitro niclosamide and L-4F tightly associated rendering the peptide resistant to trypsin digestion. Niclosamide itself did not inhibit trypsin activity. The combination of niclosamide with apolipoprotein mimetic peptides appears to be a promising method for oral delivery of these peptides. PMID:19225094

  8. A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids

    PubMed Central

    Navab, Mohamad; Ruchala, Piotr; Waring, Alan J.; Lehrer, Robert I.; Hama, Susan; Hough, Greg; Palgunachari, Mayakonda N.; Anantharamaiah, G. M.; Fogelman, Alan M.

    2009-01-01

    Administered subcutaneously, D-4F or L-4F are equally efficacious, but only D-4F is orally efficacious because of digestion of L-4F by gut proteases. Orally administering niclosamide (a chlorinated salicylanilide used as a molluscicide, antihelminthic, and lampricide) in temporal proximity to oral L-4F (but not niclosamide alone) in apoE null mice resulted in significant improvement (P < 0.001) in the HDL-inflammatory index (HII), which measures the ability of HDL to inhibit LDL-induced monocyte chemotactic activity in endothelial cell cultures. Oral administration of L-[113-122]apoJ with niclosamide also resulted in significant improvement (P < 0.001) in HII. Oral administration of niclosamide and L-4F together with pravastatin to female apoE null mice at 9.5 months of age for six months significantly reduced aortic sinus lesion area (P = 0.02), en face lesion area (P = 0.033), and macrophage lesion area (P = 0.02) compared with pretreatment, indicating lesion regression. In contrast, lesions were significantly larger in mice receiving only niclosamide and pravastatin or L-4F and pravastatin (P < 0.001). In vitro niclosamide and L-4F tightly associated rendering the peptide resistant to trypsin digestion. Niclosamide itself did not inhibit trypsin activity. The combination of niclosamide with apolipoprotein mimetic peptides appears to be a promising method for oral delivery of these peptides. PMID:19225094

  9. Collagen-Gelatin Mixtures as Wound Model, and Substrates for VEGF-Mimetic Peptide Binding and Endothelial Cell Activation

    PubMed Central

    Chan, Tania R.; Stahl, Patrick J.; Li, Yang; Yu, S. Michael

    2015-01-01

    In humans, high level of collagen remodeling is seen during normal physiological events such as bone renewal, as well as in pathological conditions, such as arthritis, tumor growth and other chronic wounds. Our lab recently discovered that collagen mimetic peptide (CMP) is able to hybridize with denatured collagens at these collagen remodeling sites with high affinity. Here, we show that the CMP's high binding affinity to denatured collagens can be utilized to deliver angiogenic signals to scaffolds composed of heat-denatured collagens (gelatins). We first demonstrate hybridization between denatured collagens and QKCMP, a CMP with pro-angiogenic QK domain. We show that high levels of QKCMP can be immobilized to a new artificial matrix containing both fibrous type I collagen and heat denatured collagen through triple helix hybridization, and that the QKCMP is able to stimulate early angiogenic response of endothelial cells (ECs). We also show that the QKCMP can bind to excised tissues from burn injuries in cutaneous mouse model, suggesting its potential for promoting neovascularization of burn wounds. PMID:25584990

  10. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides.

    PubMed

    Zhang, Ruiyan; Loers, Gabriele; Schachner, Melitta; Boelens, Rolf; Wienk, Hans; Siebert, Simone; Eckert, Thomas; Kraan, Stefan; Rojas-Macias, Miguel A; Lütteke, Thomas; Galuska, Sebastian P; Scheidig, Axel; Petridis, Athanasios K; Liang, Songping; Billeter, Martin; Schauer, Roland; Steinmeyer, Jürgen; Schröder, Jens-Michael; Siebert, Hans-Christian

    2016-05-01

    Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions. PMID:27136597

  11. A magnetic nanoscale Fe₃O₄/Pβ-CD composite as an efficient peroxidase mimetic for glucose detection.

    PubMed

    Shi, Yun; Huang, Jun; Wang, Jiangning; Su, Ping; Yang, Yi

    2015-10-01

    Magnetic polymer particles with different surface functionalizations were prepared by a simple one-pot solvothermal method and characterized as peroxidase mimetics. The fluorescence enhancement obtained by attaching a β-cyclodextrin polymer (Pβ(-CD)) to the surfaces of Fe3O4 magnetic microspheres (Fe3O4 MMs) to generate a Fe3O4/P(β-CD) composite allowed the rapid, sensitive and selective analysis of glucose. The catalytic activity of the Fe3O4/P(β-CD) composite was evaluated with regard to the effects of catalyst particle size and species, pH value, level of catalyst, benzoic acid concentration and reaction time. Detection limits of 0.015 μM for H2O2 and 0.03 μM for glucose were determined when measuring at the 10-min mark. The presence of other saccharides, ion species, amino acids and proteins, had little effect on the results, and this technique was found to allow the analysis of glucose in human serum with high accuracy. The reusability of the Fe3O4/P(β-CD) composite was also investigated after 10 successive runs. A possible mechanism is proposed in which Fe3O4 plays a significant role in inducing fluorescence and P(β-CD) enhances the fluorescence signal, acting as both a stabilizer and a phase transfer agent. PMID:26078184

  12. Imaging Denatured Collagen Strands In vivo and Ex vivo via Photo-triggered Hybridization of Caged Collagen Mimetic Peptides

    PubMed Central

    Li, Yang; Foss, Catherine A.; Pomper, Martin G.; Yu, S. Michael

    2014-01-01

    Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity. PMID:24513868

  13. Lamellar body mimetic system: An up-to-down repairing strategy of the stratum corneum lipid structure.

    PubMed

    Moner, Verónica; Fernández, Estibalitz; Rodríguez, Gelen; Cócera, Mercedes; Barbosa-Barros, Lucyanna; de la Maza, Alfonso; López, Olga

    2016-08-20

    Epidermal lamellar bodies (LBs) are organelles that secrete their content, mainly lipids and enzymes, into the intercorneocyte space of the stratum corneum (SC) to form the lamellar structure of this tissue. Thus, LBs have a key role in permeability and the microbial cutaneous barrier. In this work, a complex lipid system that mimics the morphology, structure and composition of LBs has been designed. To evaluate the effect of this system on delipidized SC, in vitro experiments using porcine skin were performed. The microstructure of SC samples (native, delipidized and, delipidized after treatment) was evaluated by freeze substitution transmission electron microscopy (FSTEM) and grazing-incidence small-angle X-ray scattering (GISAXS). Delipidized SC samples showed no evidence of lipid lamellae after extraction with organic solvents. However, after treatment with the LB mimetic system, new lamellar structures between corneocytes were detected by FSTEM, and high intensity peaks and reflections were found in the GISAXS pattern. These results demonstrate a strong effect of the treatment in repairing part of the lipid lamellar structure of the SC. Accordingly, future research could extend the use of this system to repair skin barrier dysfunction. PMID:27311355

  14. Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity

    PubMed Central

    Filograna, Roberta; Godena, Vinay K.; Sanchez-Martinez, Alvaro; Ferrari, Emanuele; Casella, Luigi; Beltramini, Mariano; Bubacco, Luigi; Whitworth, Alexander J.; Bisaglia, Marco

    2016-01-01

    Parkinson disease is a debilitating and incurable neurodegenerative disorder affecting ∼1–2% of people over 65 years of age. Oxidative damage is considered to play a central role in the progression of Parkinson disease and strong evidence links chronic exposure to the pesticide paraquat with the incidence of the disease, most probably through the generation of oxidative damage. In this work, we demonstrated in human SH-SY5Y neuroblastoma cells the beneficial role of superoxide dismutase (SOD) enzymes against paraquat-induced toxicity, as well as the therapeutic potential of the SOD-mimetic compound M40403. Having verified the beneficial effects of superoxide dismutation in cells, we then evaluated the effects using Drosophila melanogaster as an in vivo model. Besides protecting against the oxidative damage induced by paraquat treatment, our data demonstrated that in Drosophila M40403 was able to compensate for the loss of endogenous SOD enzymes, acting both at a cytosolic and mitochondrial level. Because previous clinical trials have indicated that the M40403 molecule is well tolerated in humans, this study may have important implication for the treatment of Parkinson disease. PMID:26953346

  15. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin.

    PubMed

    Doctrow, Susan R; Lopez, Argelia; Schock, Ashley M; Duncan, Nathan E; Jourdan, Megan M; Olasz, Edit B; Moulder, John E; Fish, Brian L; Mäder, Marylou; Lazar, Jozef; Lazarova, Zelmira

    2013-04-01

    In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure. PMID:23190879

  16. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    PubMed Central

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-01-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819

  17. Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications.

    PubMed

    Rossi, Eleonora; Gerges, Irini; Tocchio, Alessandro; Tamplenizza, Margherita; Aprile, Paola; Recordati, Camilla; Martello, Federico; Martin, Ivan; Milani, Paolo; Lenardi, Cristina

    2016-10-01

    Despite clinical treatments for adipose tissue defects, in particular breast tissue reconstruction, have certain grades of efficacy, many drawbacks are still affecting the long-term survival of new formed fat tissue. To overcome this problem, in the last decades, several scaffolding materials have been investigated in the field of adipose tissue engineering. However, a strategy able to recapitulate a suitable environment for adipose tissue reconstruction and maintenance is still missing. To address this need, we adopted a biologically and mechanically driven design to fabricate an RGD-mimetic poly(amidoamine) oligomer macroporous foam (OPAAF) for adipose tissue reconstruction. The scaffold was designed to fulfil three fundamental criteria: capability to induce cell adhesion and proliferation, support of in vivo vascularization and match of native tissue mechanical properties. Poly(amidoamine) oligomers were formed into soft scaffolds with hierarchical porosity through a combined free radical polymerization and foaming reaction. OPAAF is characterized by a high water uptake capacity, progressive degradation kinetics and ideal mechanical properties for adipose tissue reconstruction. OPAAF's ability to support cell adhesion, proliferation and adipogenesis was assessed in vitro using epithelial, fibroblast and endothelial cells (MDCK, 3T3L1 and HUVEC respectively). In addition, in vivo subcutaneous implantation in murine model highlighted OPAAF potential to support both adipogenesis and vessels infiltration. Overall, the reported results support the use of OPAAF as a scaffold for engineered adipose tissue construct. PMID:27428768

  18. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics

    PubMed Central

    Philipp, Jenny; Künze, Georg; Wodtke, Robert; Löser, Reik; Fahmy, Karim; Pisabarro, M. Teresa

    2016-01-01

    Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB) in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1), which are relevant for its interaction with interleukin-10 (IL-10) has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands. PMID:27123592

  19. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic.

    PubMed

    Wagner, Stefan; Schütz, Anja; Rademann, Jörg

    2015-06-15

    Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT). PMID:25907367

  20. Functional characterization of solute carrier (SLC) 26/sulfate permease (SulP) proteins in membrane mimetic systems.

    PubMed

    Srinivasan, Lakshmi; Baars, Tonie Luise; Fendler, Klaus; Michel, Hartmut

    2016-04-01

    Solute carrier (SLC) 26 or sulfate permease (SulP) anion transporters, belong to a phylogenetically ancient family of secondary active transporters. Members of the family are involved in several human genetic diseases and cell physiological processes. Despite their importance, the substrates for transport by this family of proteins have been poorly characterized. In this study, recombinant StmYchM/DauA, a SulP from Salmonella typhimurium was purified to homogeneity and functionally characterized. StmYchM/DauA was found to be a dimer in solution as determined by size exclusion chromatography coupled to multiple angle light scattering. We report a functional characterization of the SulP proteins in two membrane mimetic systems and reveal a dual nature of anionic substrates for SulP. StmYchM/DauA functionally incorporated into nanodiscs could bind fumarate with millimolar affinities (KD = 4.6 ± 0.29 mM) as detected by intrinsic tryptophan fluorescence quench studies. In contrast, electrophysiological experiments performed in reconstituted liposomes indicate a strong bicarbonate transport in the presence of chloride but no detectable electrogenic fumarate transport. We hence suggest that while SulP acts as an electrogenic bicarbonate transporter, fumarate may serve as substrate under different conditions indicating multiple functions of SulP. PMID:26774215

  1. Characterization of TRIF selectivity in the AGP class of lipid A mimetics: role of secondary lipid chains.

    PubMed

    Khalaf, Juhienah K; Bowen, William S; Bazin, Hélène G; Ryter, Kendal T; Livesay, Mark T; Ward, Jon R; Evans, Jay T; Johnson, David A

    2015-02-01

    TLR4 agonists that favor TRIF-dependent signaling and the induction of type 1 interferons may have potential as vaccine adjuvants with reduced toxicity. CRX-547 (4), a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of lipid A mimetics possessing three (R)-3-decanoyloxytetradecanoyl groups and d-relative configuration in the aglycon, selectively reduces MyD88-dependent signaling resulting in TRIF-selective signaling, whereas the corresponding secondary ether lipid 6a containing (R)-3-decyloxytetradecanoyl groups does not. In order to determine which secondary acyl groups are important for the reduction in MyD88-dependent signaling activity of 4, the six possible ester/ether hybrid derivatives of 4 and 6a were synthesized and evaluated for their ability to induce NF-κB in a HEK293 cell reporter assay. An (R)-3-decanoyloxytetradecanoyl group on the 3-position of the d-glucosamine unit was found to be indispensable for maintaining low NF-κB activity irrespective of the substitutions (decyl or decanoyl) on the other two secondary positions. These results suggest that the carbonyl group of the 3-secondary lipid chain may impede homodimerization and/or conformational changes in the TLR4-MD2 complex necessary for MyD88 binding and pro-inflammatory cytokine induction. PMID:25553892

  2. BH3 mimetic ABT-737 sensitizes colorectal cancer cells to ixazomib through MCL-1 downregulation and autophagy inhibition.

    PubMed

    Yang, Lifeng; Wan, Juefeng; Xiao, Sheng; Barkhouse, Darryll; Zhu, Ji; Li, Guichao; Lu, Bo; Zhang, Zhen

    2016-01-01

    The proteasome inhibitor MLN9708 is an orally administered drug that is hydrolyzed into its active form, MLN2238 (ixazomib). Compared with Bortezomib, MLN2238 has a shorter proteasome dissociation half-life and a lower incidence and severity of peripheral neuropathy, which makes it an attractive candidate for colorectal cancer treatment. In the present study, we observed that MLN2238 induced autophagy, as evidenced by conversion of the autophagosomal marker LC3 from LC3I to LC3II, in colorectal cancer cell lines. Mcl-1, an anti-apoptotic Bcl-2 family protein, was markedly elevated after treating a colorectal cancer cell line with MLN2238. We proved that inhibiting Mcl-1 expression enhances MLN2238 induced apoptosis and negatively regulates autophagy. Co-administration of BH3 mimetic ABT-737 with MLN2238 synergistically kills colorectal cancer cells through MCL-1 neutralization and autophagy inhibition. Furthermore, the synergistic killing effect of the combination therapy is correlated with P53 status in colorectal cancer. These data highlight that the combination of ABT-737 with MLN9708 is a promising therapeutic strategy for human colorectal cancer. PMID:27429848

  3. BH3 mimetic ABT-737 sensitizes colorectal cancer cells to ixazomib through MCL-1 downregulation and autophagy inhibition

    PubMed Central

    Yang, Lifeng; Wan, Juefeng; Xiao, Sheng; Barkhouse, Darryll; Zhu, Ji; Li, Guichao; Lu, Bo; Zhang, Zhen

    2016-01-01

    The proteasome inhibitor MLN9708 is an orally administered drug that is hydrolyzed into its active form, MLN2238 (ixazomib). Compared with Bortezomib, MLN2238 has a shorter proteasome dissociation half-life and a lower incidence and severity of peripheral neuropathy, which makes it an attractive candidate for colorectal cancer treatment. In the present study, we observed that MLN2238 induced autophagy, as evidenced by conversion of the autophagosomal marker LC3 from LC3I to LC3II, in colorectal cancer cell lines. Mcl-1, an anti-apoptotic Bcl-2 family protein, was markedly elevated after treating a colorectal cancer cell line with MLN2238. We proved that inhibiting Mcl-1 expression enhances MLN2238 induced apoptosis and negatively regulates autophagy. Co-administration of BH3 mimetic ABT-737 with MLN2238 synergistically kills colorectal cancer cells through MCL-1 neutralization and autophagy inhibition. Furthermore, the synergistic killing effect of the combination therapy is correlated with P53 status in colorectal cancer. These data highlight that the combination of ABT-737 with MLN9708 is a promising therapeutic strategy for human colorectal cancer. PMID:27429848

  4. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin.

    PubMed

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K

    2015-01-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819

  5. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics.

    PubMed

    Ruiz-Gómez, Gloria; Hawkins, John C; Philipp, Jenny; Künze, Georg; Wodtke, Robert; Löser, Reik; Fahmy, Karim; Pisabarro, M Teresa

    2016-01-01

    Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB) in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1), which are relevant for its interaction with interleukin-10 (IL-10) has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands. PMID:27123592

  6. Gamma-tocotrienol acts as a BH3 mimetic to induce apoptosis in neuroblastoma SH-SY5Y cells.

    PubMed

    Tan, Jen-Kit; Then, Sue-Mian; Mazlan, Musalmah; Raja Abdul Rahman, Raja Noor Zaliha; Jamal, Rahman; Wan Ngah, Wan Zurinah

    2016-05-01

    Bcl-2 family proteins are crucial regulators of apoptosis. Both pro- and antiapoptotic members exist, and overexpression of the latter facilitates evasion of apoptosis in many cancer types. Bcl-2 homology domain 3 (BH3) mimetics are small molecule inhibitors of antiapoptotic Bcl-2 family members, and these inhibitors are promising anticancer agents. In this study, we report that gamma-tocotrienol (γT3), an isomer of vitamin E, can inhibit Bcl-2 to induce apoptosis. We demonstrate that γT3 induces cell death in human neuroblastoma SH-SY5Y cells by depolarising the mitochondrial membrane potential, enabling release of cytochrome c to the cytosol and increasing the activities of caspases-9 and -3. Treatment of cells with inhibitors of Bax or caspase-9 attenuated the cell death induced by γT3. Simulated docking analysis suggested that γT3 binds at the hydrophobic groove of Bcl-2, while a binding assay showed that γT3 competed with a fluorescent probe to bind at the hydrophobic groove. Our data suggest that γT3 mimics the action of BH3-only protein by binding to the hydrophobic groove of Bcl-2 and inducing apoptosis via the intrinsic pathway in a Bax- and caspase-9-dependent manner. PMID:27133421

  7. Rapid Endolysosomal Escape and Controlled Intracellular Trafficking of Cell Surface Mimetic Quantum-Dots-Anchored Peptides and Glycopeptides.

    PubMed

    Tan, Roger S; Naruchi, Kentaro; Amano, Maho; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2015-09-18

    A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems. PMID:26107406

  8. Radiosensitization of head and neck squamous cell carcinoma by a SMAC-mimetic compound, SM-164, requires activation of caspases

    PubMed Central

    Yang, Jie; McEachern, Donna; Li, Wenyan; Davis, Mary A.; Li, Hua; Morgan, Meredith A.; Bai, Longchuan; Sebolt, Jonathan T.; Sun, Haiying; Lawrence, Theodore S.; Wang, Shaomeng; Sun, Yi

    2011-01-01

    Chemoradiation is the treatment of choice for locally advanced head and neck squamous cell carcinoma (HNSCC). However, radioresistance, which contributes to local recurrence, remains a significant therapeutic problem. In this study, we characterized SM-164, a small SMAC mimetic compound that promotes degradation of cIAP-1 (also known as BIRC2) and releases active caspases from XIAP inhibitory binding, as a radiosensitizing agent in HNSCC cells. We found that SM-164 at nanomolar concentrations induced radiosensitization in some HNSCC cell lines in a manner dependent on intrinsic sensitivity to caspase activation and apoptosis induction. Blockage of caspase activation via siRNA knockdown or a pan-caspase inhibitor, z-VAD-fmk largely abrogated SM-164 radiosensitization. On the other hand, the resistant lines with a high level of BCL-2 that blocks caspase activation and apoptosis induction became sensitive to radiation upon BCL-2 knockdown. Mechanistic studies revealed that SM-164 radiosensitization in sensitive cells was associated with NFκB activation and TNFα secretion, followed by activation of caspases-8 and -9, leading to enhanced apoptosis. Finally, SM-164 also radiosensitized human tumor xenograft, while causing minimal toxicity. Thus, SM-164 is a potent radiosensitizer via a mechanism involving caspase activation and holds promise for future clinical development as a novel class of radiosensitizer for the treatment of a subset of head and neck cancer patients. PMID:21282353

  9. Furoxans (1,2,5-Oxadiazole-N-Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents

    SciTech Connect

    Schiefer, Isaac T.; VandeVrede, Lawren; Fa; , Mauro; Arancio, Ottavio; Thatcher, Gregory R.J.

    2012-08-31

    Furoxans (1,2,5-oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity toward bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO{sub 2}{sup -}, but not with depletion of free thiol itself. Neuroprotection was abrogated upon cotreatment with a sGC inhibitor, ODQ, thus supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-{beta} peptide (A{beta}) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies.

  10. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis.

    PubMed Central

    Symula, R; Schulte, R; Summers, K

    2001-01-01

    Examples of Müllerian mimicry, in which resemblance between unpalatable species confers mutual benefit, are rare in vertebrates. Strong comparative evidence for mimicry is found when the colour and pattern of a single species closely resemble several different model species simultaneously in different geographical regions. Todemonstrate this, it is necessary to provide compelling evidence that the putative mimics do, in fact, form a monophyletic group. We present molecular phylogenetic evidence that the poison frog Dendrobates imitator mimics three different poison frogs in different geographical regions in Peru. DNA sequences from four different mitochondrial gene regions in putative members of a single species are analysed using parsimony, maximum-likelihood and neighbour-joining methods. The resulting hypotheses of phylogenetic relationships demonstrate that the different populations of D.imitator form a monophyletic group. To our knowledge, these results provide the first evidence for a Müllerian mimetic radiation in amphibians in which a single species mimics different sympatric species in different geographical regions. PMID:11747559

  11. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

    PubMed

    Xiang, Jingyu; Hurchla, Michelle A; Fontana, Francesca; Su, Xinming; Amend, Sarah R; Esser, Alison K; Douglas, Garry J; Mudalagiriyappa, Chidananda; Luker, Kathryn E; Pluard, Timothy; Ademuyiwa, Foluso O; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L; Dembowsky, Klaus; Weilbaecher, Katherine N

    2015-11-01

    The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. PMID:26269605

  12. Ochre Bathing of the Bearded Vulture: A Bio-Mimetic Model for Early Humans towards Smell Prevention and Health.

    PubMed

    Tributsch, Helmut

    2016-01-01

    Since primordial times, vultures have been competing with man for animal carcasses. One of these vultures, the once widespread bearded vulture ( Gypaetus barbatus ), has the habit of bathing its polluted feathers and skin in red iron oxide - ochre - tainted water puddles. Why? Primitive man may have tried to find out and may have discovered its advantages. Red ochre, which has accompanied human rituals and everyday life for more than 100,000 years, is not just a simple red paint for decoration or a symbol for blood. As modern experiments demonstrate, it is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. In this way, ochre can in sunlight sterilize and clean the skin to provide health and comfort and make it scentless, a definitive advantage for nomadic meat hunters. This research thus also demonstrates a sanitary reason for the vulture's habit of bathing in red ochre mud. Prehistoric people have therefore included ochre use into their rituals, especially into those in relation to birth and death. Significant ritual impulses during evolution of man may thus have developed bio-mimetically, inspired from the habits of a vulture. It is discussed how this health strategy could be developed to a modern standard helping to fight antibiotics-resistant bacteria in hospitals. PMID:26784238

  13. Structural and morphological changes in bacteria-membrane mimetic DPPE/DPPG/water systems induced by sulfadiazine.

    PubMed

    Oszlánczi, Agnes; Bóta, Attila; Berényi, Szilvia; Klumpp, Erwin

    2010-04-01

    The effects of sulfadiazine (SD), one of the generally used antibiotics was studied on bacteria-membrane mimetic model systems consisting of pure dipalmitoylphosphatidylethanolamine (DPPE) and DPPE/dipalmitoylphosphatidylglycerol (DPPG) at 95/5, 80/20 and 50/50 DPPE/DPPG ratios by using differential scanning calorimetry (DSC), simultaneous small- and wide-angle X-ray scattering (SWAXS) and freeze-fracture technique. In the presence of SD, varied between 10-3 and 1 SD/lipid molar ratios, the 95/5 DPPE/DPPG system shows tendentious destruction in the layer arrangement which is accompanied by minor perturbations in the thermotropic behaviour. Moreover, at this lipid composition the addition of SD results in the formation of stacks of extremely extended flat bilayers. Systems having a higher DPPG molar ratio exhibit complex and diffuse morphologies. At 50/50 DPPE/DPPG ratio DPPG and SD act together and form large spherical vesicles. The uniform morphology is not accompanied by a regular lamellar arrangement. The range of the SD/lipid ratio, where the SD molecules are embedded into the lipid bilayers, extends to about 10-1. Over this limit the separation of SD molecules can be observed at all investigated DPPE/DPPG ratios. PMID:20074918

  14. Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1

    SciTech Connect

    Zhang, Hongmin; Liu, Jin-huan; Yang, Wei; Springer, Timothy; Shimaoka, Motomu; Wang, Jia-huai

    2010-09-21

    The activity of integrin LFA-1 ({alpha}{sub L}{beta}{sub 2}) to its ligand ICAM-1 is regulated through the conformational changes of its ligand-binding domain, the I domain of {alpha}{sub L} chain, from an inactive, low-affinity closed form (LA), to an intermediate-affinity form (IA), and then finally, to a high-affinity open form (HA). A ligand-mimetic human monoclonal antibody AL-57 (activated LFA-1 clone 57) was identified by phage display to specifically recognize the affinity-upregulated I domain. Here, we describe the crystal structures of the Fab fragment of AL-57 in complex with IA, as well as in its unligated form. We discuss the structural features conferring AL-57's strong selectivity for the high affinity, open conformation of the I domain. The AL-57-binding site overlaps the ICAM-1 binding site on the I domain. Furthermore, an antibody Asp mimics an ICAM Glu by forming a coordination to the metal-ion dependent adhesion site (MIDAS). The structure also reveals better shape complementarity and a more hydrophobic interacting interface in AL-57 binding than in ICAM-1 binding. The results explain AL-57's antagonistic mimicry of LFA-1's natural ligands, the ICAM molecules.

  15. SIRT3 participates in glucose metabolism interruption and apoptosis induced by BH3 mimetic S1 in ovarian cancer cells.

    PubMed

    Xiang, Xi-Yan; Kang, Jin-Song; Yang, Xiao-Chun; Su, Jing; Wu, Yao; Yan, Xiao-Yu; Xue, Ya-Nan; Xu, Ye; Liu, Yu-He; Yu, Chun-Yan; Zhang, Zhi-Chao; Sun, Lian-Kun

    2016-08-01

    The Bcl-2 antiapoptotic proteins are important cancer therapy targets; however, their role in cancer cell metabolism remains unclear. We found that the BH3-only protein mimetic S1, a novel pan Bcl-2 inhibitor, simultaneously interrupted glucose metabolism and induced apoptosis in human SKOV3 ovarian cancer cells, which was related to the activation of SIRT3, a stress-responsive deacetylase. S1 interrupted the cellular glucose metabolism mainly through causing damage to mitochondrial respiration and inhibiting glycolysis. Moreover, S1 upregulated the gene and protein expression of SIRT3, and induced the translocation of SIRT3 from the nucleus to mitochondria. SIRT3 silencing reversed the effects of S1 on glucose metabolism and apoptosis through increasing the level of HK-II localized to the mitochondria, while a combination of the glycolysis inhibitor 2-DG and S1 intensified the cytotoxicity through further upregulation of SIRT3 expression. This study underscores an essential role of SIRT3 in the antitumor effect of Bcl-2 inhibitors in human ovarian cancer through regulating both metabolism and apoptosis. The manipulation of Bcl-2 inhibitors combined with the use of classic glycolysis inhibitors may be rational strategies to improve ovarian cancer therapy. PMID:27277143

  16. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    NASA Astrophysics Data System (ADS)

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-06-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.

  17. A synthetic, bioactive PDGF mimetic with binding to both alpha-PDGF and beta-PDGF receptors.

    PubMed

    Lin, Xinhua; Takahashi, Kazuyuki; Liu, Yi; Derrien, Alexandrine; Zamora, Paul O

    2007-04-01

    A multi-domain peptide, PAB2-1c, was designed and synthesized as a bioactive mimic of PDGF. PBA2-1c bound to both alpha- and beta-PDGF receptors as determined by surface plasmon resonance (SPR). The equilibrium dissociation constant (Kd) of binding to alpha-PDGF receptors by PAB2-1c (1.7 x 10(-8) M) compared favorably rhPDGF-AA (1.34 x 10(-8) M). Binding to -PDGF receptor by PAB2-1c (2.2 x 10(-8) M) was less favorable than, that of recombinant human PDGFBB (1.59 x 10(-9) M). Interestingly, PBA2-1c bound to these two receptors with similar affinity suggesting that, PBA2-1c was not PDGF receptor selective. In a murine myoblast cell line C2C12, PBA2-1c increased the tyrosine phosphorylation on PDGF receptors and the phosphorylation of AKT and ERK1/2 in a concentration-related manner. PBA2-1c also stimulated an increase in cell proliferation, cell migration, and collagen gel contraction. In these cell-based assays, PAB2-1c was effective at 1 microg/ml or lesser. The results support the hypothesis that PBA2-1c is a mimetic of PDGF, although it has a more promiscuous receptor interaction. PMID:17852406

  18. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    PubMed Central

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes. PMID:26861908

  19. Sera from Children with Autism Induce Autistic Features Which Can Be Rescued with a CNTF Small Peptide Mimetic in Rats

    PubMed Central

    Kazim, Syed Faraz; Cardenas-Aguayo, Maria del Carmen; Arif, Mohammad; Blanchard, Julie; Fayyaz, Fatima; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-01-01

    Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF) small peptide mimetic, Peptide 6 (P6), which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF) expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism. PMID:25769033

  20. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    NASA Astrophysics Data System (ADS)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  1. Development of Superoxide Dismutase Mimetic Surfaces to Reduce Accumulation of Reactive Oxygen Species for Neural Interfacing Applications

    PubMed Central

    Potter-Baker, Kelsey A.; Nguyen, Jessica K.; Kovach, Kyle M.; Gitomer, Martin M.; Srail, Tyler W.; Stewart, Wade G.; Skousen, John L.; Capadona, Jeffrey R.

    2014-01-01

    Despite successful initial recording, neuroinflammatory-mediated oxidative stress products can contribute to microelectrode failure by a variety of mechanisms including: inducing microelectrode corrosion, degrading insulating/passivating materials, promoting blood-brain barrier breakdown, and directly damaging surrounding neurons. We have shown that a variety of anti-oxidant treatments can reduce intracortical microelectrode-mediated oxidative stress, and preserve neuronal viability. Unfortunately, short-term soluble delivery of anti-oxidant therapies may be unable to provide sustained therapeutic benefits due to low bio-availability and fast clearance rates. In order to develop a system to provide sustained neuroprotection, we investigated modifying the microelectrode surface with an anti-oxidative coating. For initial proof of concept, we chose the superoxide dismutase (SOD) mimetic Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP). Our system utilizes a composite coating of adsorbed and immobilized MnTBAP designed to provide an initial release followed by continued presentation of an immobilized layer of the antioxidant. Surface modification was confirmed by XPS and QCMB-D analysis. Antioxidant activity of composite surfaces was determined using a Riboflavin/NitroBlue Tetrazolium (RF/NBT) assay. Our results indicate that the hybrid modified surfaces provide several days of anti-oxidative activity. Additionally, in vitro studies with BV-2 microglia cells indicated a significant reduction of intracellular and extracellular reactive oxygen species when cultured on composite MnTBAP surfaces. PMID:25132966

  2. Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche.

    PubMed

    Zhu, Meiling; Lin, Sien; Sun, Yuxin; Feng, Qian; Li, Gang; Bian, Liming

    2016-01-01

    N-cadherin is considered to be the key factor in directing cell-cell interactions during mesenchymal condensation, which is essential to osteogenesis. In this study, hyaluronic acid (HA) hydrogels are biofunctionalized with an N-cadherin mimetic peptide to mimic the pro-osteogenic niche in the endosteal space to promote the osteogenesis of human mesenchymal stem cells (hMSCs). Results show that the conjugation of the N-cadherin peptide in the HA hydrogels enhances the expression of the osteogenic marker genes in the seeded hMSCs. Furthermore, the biofunctionalized HA hydrogels promote the alkaline phosphatase activity, type I collagen deposition, and matrix mineralization by the seeded hMSCs under both in vitro and in vivo condition. We postulate that the biofunctionalized hydrogels emulates the N-cadherin-mediated homotypic cell-cell adhesion among MSCs and the "orthotypic" interaction between the osteoblasts and MSCs. These findings demonstrate that the biofunctionalized HA hydrogels provide a supportive niche microenvironment for the osteogenesis of hMSCs. PMID:26580785

  3. Bio-mimetic drug delivery systems designed to help the senior population reconstruct melatonin plasma profiles similar to those of the healthy younger population

    PubMed Central

    Li, Ying; Wang, Liuyi; Wu, Li; Zhang, Xueju; Li, Xue; Guo, Zhen; Li, Haiyan; York, Peter; Gui, Shuangying; Zhang, Jiwen

    2014-01-01

    The secretion of melatonin (MT) is obviously different in the younger and the senior sectors of the population, and the maximum plasma concentration of seniors is only half of that in the younger population group. If exogenous MT can be supplied to senior citizens based on the secretion rate and amount of endogenous MT in the younger population by a bio-mimetic drug delivery system (DDS), an improved therapeutic effect and reduced side effects can be expected. Based upon this hypothesis, the pharmacokinetic parameters of MT, namely, the absorption rate constant (ka), the elimination rate constant (ke), and the ratio of absorption rate (F) to the apparent volume of distribution (V) were obtained by a residual method depending on the plasma concentration curve of immediate release preparations in the healthy younger population. The dose-division method was applied to calculate the cumulative release profiles of MT achieved by oral administration of a controlled release drug delivery system (DDS) to generate plasma MT profiles similar to the physiological level-time profiles. The in vivo release of MT deduced from the healthy younger population physiological MT profiles as the pharmacokinetic output of the bio-mimetic DDS showed a two-phase profile with two different zero order release rates, namely, 4.919 μg/h during 0–4 h (r=0.9992), and 11.097 μg/h during 4–12 h (r=0.9886), respectively. Since the osmotic pump type of DDS generally exhibits a good correlation between in vivo and in vitro release behaviors, an osmotic pump controlled delivery system was designed in combination with dry coating technology targeting on the cumulative release characteristics to mimic the physiological MT profiles in the healthy younger population. The high similarity between the experimental drug release profiles and the theoretical profiles (similarity factor f2>50) and the high correlation between the predicted plasma concentration profiles and the theoretical plasma

  4. Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Walther, Andreas

    2013-09-01

    Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance materials. Herein, we demonstrate that ionic supramolecular bonds, introduced by infiltration of divalent Cu2+ ions, allow efficient stabilization of the mechanical properties of self-assembled water-borne nacre-mimetics based on sustainable sodium carboxymethylcellulose (Na+CMC) and natural sodium montmorillonite nanoclay (Na+MTM) against high humidity (95% RH). The mechanical properties in the highly hydrated state (Young's modulus up to 13.5 GPa and tensile strength up to 125 MPa) are in fact comparable to a range of non-crosslinked nacre-mimetic materials in the dry state. Moreover, the Cu2+-treated nacre-inspired materials display synergetic mechanical properties as found in a simultaneous improvement of stiffness, strength and toughness, as compared to the pristine material. Significant inelastic deformation takes place considering the highly reinforced state. This contrasts the typical behaviour of tight, covalent crosslinks and is suggested to originate from a sacrificial, dynamic breakage and rebinding of transient supramolecular ionic bonds. Considering easy access to a large range of ionic interactions and alteration of counter-ion charge via external stimuli, we foresee responsive and adaptive mechanical properties in highly reinforced and stiff bio-inspired bulk nanocomposites and in other bio-inspired materials, e.g. nanocellulose papers and peptide-based materials.Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high

  5. Phage randomization in a charybdotoxin scaffold leads to CD4-mimetic recognition motifs that bind HIV-1 envelope through non-aromatic sequences.

    PubMed

    Li, C; Dowd, C S; Zhang, W; Chaiken, I M

    2001-06-01

    Binding of HIV-1 gp120 to T-cell receptor CD4 initiates conformational changes in the viral envelope that trigger viral entry into host cells. Phage epitope randomization of a beta-turn loop of a charybdotoxin-based miniprotein scaffold was used to identify peptides that can bind gp120 and block the gp120-CD4 interaction. We describe here the display of the charybdotoxin scaffold on the filamentous phage fUSE5, its use to construct a beta-turn library, and miniprotein sequences identified through library panning with immobilized Env gp120. Competition enzyme-linked immunosorbent assay (ELISA) identified high-frequency phage selectants for which specific gp120 binding was competed by sCD4. Several of these selectants contain hydrophobic residues in place of the Phe that occurs in the gp120-binding beta-turns of both CD4 and previously identified scorpion toxin CD4 mimetics. One of these selectants, denoted TXM[24GQTL27], contains GQTL in place of the CD4 beta-turn sequence 40QGSF43. TXM[24GQTL27] peptide was prepared using solid-phase chemical synthesis, its binding to gp120 demonstrated by optical biosensor kinetics analysis and its affinity for the CD4 binding site of gp120 confirmed by competition ELISA. The results demonstrate that aromatic-less loop-containing CD4 recognition mimetics can be formed with detectable envelope protein binding within a beta-turn of the charybdotoxin miniprotein scaffold. The results of this work establish a methodology for phage display of a charybdotoxin miniprotein scaffold and point to the potential value of phage-based epitope randomization of this miniprotein for identifying novel CD4 mimetics. The latter are potentially useful in deconvoluting structural determinants of CD4-HIV envelope recognition and possibly in designing antagonists of viral entry. PMID:11437954

  6. An apoA-I mimetic peptide containing a proline residue has greater in vivo HDL binding and anti-inflammatory ability than the 4F peptide.

    PubMed

    Wool, Geoffrey D; Vaisar, Tomas; Reardon, Catherine A; Getz, Godfrey S

    2009-09-01

    Modifying apolipoprotein (apo) A-I mimetic peptides to include a proline-punctuated alpha-helical repeat increases their anti-inflammatory properties as well as allows better mimicry of full-length apoA-I function. This study compares the following mimetics, either acetylated or biotinylated (b): 4F (18mer) and 4F-proline-4F (37mer, Pro). b4F interacts with both mouse HDL (moHDL) and LDL in vitro. b4F in vivo plasma clearance kinetics are not affected by mouse HDL level. Administration of biotinylated peptides to mice demonstrates that b4F does not associate with lipoproteins smaller than LDL in vivo, though it does associate with fractions containing free hemoglobin (Hb). In contrast, bPro specifically interacts with HDL. b4F and bPro show opposite binding responses to HDL by surface plasmon resonance. Administration of acetylated Pro to apoE(-/-) mice significantly decreases plasma serum amyloid A levels, while acetylated 4F does not have this ability. In contrast to previous reports that inferred that 4F associates with HDL in vivo, we systematically examined this potential interaction and demonstrated that b4F does not interact with HDL in vivo but rather elutes with Hb-containing plasma fractions. bPro, however, specifically binds to moHDL in vivo. In addition, the number of amphipathic alpha-helices and their linker influences the anti-inflammatory effects of apoA-I mimetic peptides in vivo. PMID:19433476

  7. An apoA-I mimetic peptide containing a proline residue has greater in vivo HDL binding and anti-inflammatory ability than the 4F peptide

    PubMed Central

    Wool, Geoffrey D.; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.

    2009-01-01

    Modifying apolipoprotein (apo) A-I mimetic peptides to include a proline-punctuated α-helical repeat increases their anti-inflammatory properties as well as allows better mimicry of full-length apoA-I function. This study compares the following mimetics, either acetylated or biotinylated (b): 4F (18mer) and 4F-proline-4F (37mer, Pro). b4F interacts with both mouse HDL (moHDL) and LDL in vitro. b4F in vivo plasma clearance kinetics are not affected by mouse HDL level. Administration of biotinylated peptides to mice demonstrates that b4F does not associate with lipoproteins smaller than LDL in vivo, though it does associate with fractions containing free hemoglobin (Hb). In contrast, bPro specifically interacts with HDL. b4F and bPro show opposite binding responses to HDL by surface plasmon resonance. Administration of acetylated Pro to apoE−/− mice significantly decreases plasma serum amyloid A levels, while acetylated 4F does not have this ability. In contrast to previous reports that inferred that 4F associates with HDL in vivo, we systematically examined this potential interaction and demonstrated that b4F does not interact with HDL in vivo but rather elutes with Hb-containing plasma fractions. bPro, however, specifically binds to moHDL in vivo. In addition, the number of amphipathic α-helices and their linker influences the anti-inflammatory effects of apoA-I mimetic peptides in vivo. PMID:19433476

  8. Peptide Mimetic of the S100A4 Protein Modulates Peripheral Nerve Regeneration and Attenuates the Progression of Neuropathy in Myelin Protein P0 Null Mice

    PubMed Central

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana; Pankratova, Stanislava; Fugleholm, Kåre; Klingelhofer, Jorg; Bock, Elisabeth; Berezin, Vladimir; Krarup, Christian; Kiryushko, Darya

    2013-01-01

    We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies. PMID:23508572

  9. The gamma interferon (IFN-gamma) mimetic peptide IFN-gamma (95-133) prevents encephalomyocarditis virus infection both in tissue culture and in mice.

    PubMed

    Mujtaba, Mustafa G; Patel, Chintak B; Patel, Ravi A; Flowers, Lawrence O; Burkhart, Marjorie A; Waiboci, Lilian W; Martin, James; Haider, Mohammad I; Ahmed, Chulbul M; Johnson, Howard M

    2006-08-01

    We have demonstrated previously that the C-terminal gamma interferon (IFN-gamma) mimetic peptide consisting of residues 95 to 133 [IFN-gamma(95-133)], which contains the crucial IFN-gamma nuclear localization sequence (NLS), has antiviral activity in tissue culture. Here we evaluate the efficacy of this peptide and its derivatives first in vitro and then in an animal model of lethal viral infection with the encephalomyocarditis (EMC) virus. Deletion of the NLS region from the IFN-gamma mimetic peptide IFN-gamma(95-133) resulted in loss of antiviral activity. However, the NLS region does not have antiviral activity in itself. Replacing the NLS region of IFN-gamma(95-133) with the NLS region of the simian virus 40 large T antigen retains the antiviral activity in tissue culture. IFN-gamma(95-133) prevented EMC virus-induced lethality in mice in a dose-dependent manner compared to controls. Mice treated with IFN-gamma(95-133) had no or low EMC virus titers in their internal organs, whereas control mice had consistently high viral titers, especially in the heart tissues. Injection of B8R protein, which is encoded by poxviruses as a defense mechanism to neutralize host IFN-gamma, did not inhibit IFN-gamma(95-133) protection against a lethal dose of EMC virus, whereas mice treated with rat IFN-gamma were not protected. The data presented here show that the IFN-gamma mimetic peptide IFN-gamma(95-133) prevents EMC virus infection in vivo and in vitro and may have potential against other lethal viruses, such as the smallpox virus, which encodes the B8R protein. PMID:16893996

  10. Differential response of head and neck cancer cell lines to TRAIL or Smac mimetics is associated with the cellular levels and activity of caspase-8 and caspase-10

    PubMed Central

    Raulf, N; El-Attar, R; Kulms, D; Lecis, D; Delia, D; Walczak, H; Papenfuss, K; Odell, E; Tavassoli, M

    2014-01-01

    Background: Current treatment strategies for head and neck cancer are associated with significant morbidity and up to 50% of patients relapse, highlighting the need for more specific and effective therapeutics. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Smac mimetics (SMs) are promising anticancer agents, but their effect on head and neck squamous cell carcinoma (HNSCC) remains unknown. Methods: We examined the response of a panel of nine HNSCC cell lines to TRAIL and SMs and investigated the mechanism of cell type-specific response by functional analysis. Results: Head and neck cancer cell lines revealed a converse response pattern with three cell lines being highly sensitive to Smac-164 (SM) but resistant to TRAIL, whereas the other six were sensitive to TRAIL but resistant to SM. Distinct protein expression and activation patterns were found to be associated with susceptibility of HNSCC cell lines to TRAIL and SM. Tumour necrosis factor-related apoptosis-inducing ligand sensitivity was associated with high caspase-8 and Bid protein levels, and TRAIL-sensitive cell lines were killed via the type II extrinsic apoptotic pathway. Smac mimetic-sensitive cells expressed low levels of caspase-8 and Bid but had high TNF-α expression. Smac mimetic-induced cell death was associated with caspase-10 activation, suggesting that in the absence of caspase-8, caspase-10 mediates response to SM. Cotreatment with TNF-α sensitised the resistant cells to SM, demonstrating a decisive role for TNF-α-driven feedback loop in SM sensitivity. Conclusions: Tumour necrosis factor-related apoptosis-inducing ligand and SMs effectively kill HNSCC cell lines and therefore represent potential targeted therapeutics for head and neck cancer. Distinct molecular mechanisms determine the sensitivity to each agent, with levels of TNF-α, caspase-8, Bid and caspase-10 providing important predictive biomarkers of response to these agents. PMID:25314064

  11. Development of αGlcN(1↔1)αMan-Based Lipid A Mimetics as a Novel Class of Potent Toll-like Receptor 4 Agonists

    PubMed Central

    2014-01-01

    The endotoxic portion of lipopolysaccharide (LPS), a glycophospholipid Lipid A, initiates the activation of the Toll-like Receptor 4 (TLR4)–myeloid differentiation factor 2 (MD-2) complex, which results in pro-inflammatory immune signaling. To unveil the structural requirements for TLR4·MD-2-specific ligands, we have developed conformationally restricted Lipid A mimetics wherein the flexible βGlcN(1→6)GlcN backbone of Lipid A is exchanged for a rigid trehalose-like αGlcN(1↔1)αMan scaffold resembling the molecular shape of TLR4·MD-2-bound E. coli Lipid A disclosed in the X-ray structure. A convergent synthetic route toward orthogonally protected αGlcN(1↔1)αMan disaccharide has been elaborated. The α,α-(1↔1) linkage was attained by the glycosylation of 2-N-carbamate-protected α-GlcN-lactol with N-phenyl-trifluoroacetimidate of 2-O-methylated mannose. Regioselective acylation with (R)-3-acyloxyacyl fatty acids and successive phosphorylation followed by global deprotection afforded bis- and monophosphorylated hexaacylated Lipid A mimetics. αGlcN(1↔1)αMan-based Lipid A mimetics (α,α-GM-LAM) induced potent activation of NF-κB signaling in hTLR4/hMD-2/CD14-transfected HEK293 cells and robust LPS-like cytokines expression in macrophages and dendritic cells. Thus, restricting the conformational flexibility of Lipid A by fixing the molecular shape of its carbohydrate backbone in the “agonistic” conformation attained by a rigid αGlcN(1↔1)αMan scaffold represents an efficient approach toward powerful and adjustable TLR4 activation. PMID:25252784

  12. High-resolution NMR characterization of a spider-silk mimetic composed of 15 tandem repeats and a CRGD motif

    PubMed Central

    McLachlan, Glendon D; Slocik, Joseph; Mantz, Robert; Kaplan, David; Cahill, Sean; Girvin, Mark; Greenbaum, Steve

    2009-01-01

    Multidimensional solution NMR spectroscopic techniques have been used to obtain atomic level information about a recombinant spider silk construct in hexafluoro-isopropanol (HFIP). The synthetic 49 kDa silk-like protein mimics authentic silk from Nephila clavipes, with the inclusion of an extracellular matrix recognition motif. 2D 1H-15N HSQC NMR spectroscopy reveals 33 cross peaks, which were assigned to amino acid residues in the semicrystalline repeat units. Signals from the amorphous segments in the primary sequence were weak and broad, suggesting that this region is highly dynamic and undergoing conformational exchange. An analysis of the deviations of the 13Cα, 13Cβ, and 13CO chemical shifts relative to the expected random coil values reveals two highly α-helical regions from amino acid 12–19 and 26–32, which comprise the polyalanine track and a GGLGSQ sequence. This finding is further supported by φ-value analysis and sequential and medium-range NOE interactions. Pulsed field gradient NMR measurements indicate that the topology of the silk mimetic in HFIP is nonglobular. Moreover, the 3D 15N-NOESY HSQC spectrum exhibits few long-range NOEs. Similar spectral features have been observed for repeat modules in other polypeptides and are characteristic of an elongated conformation. The results provide a residue-specific description of a silk sequence in nonaqueous solution and may be insightful for understanding the fold and topology of highly concentrated, stable silk before spinning. Additionally, the insights obtained may find application in future design and large-scale production and storage of synthetic silks in organic solvents. PMID:19177364

  13. Regional Variation in Use of a New Class of Antidiabetic Medication Among Medicare Beneficiaries: The Case of Incretin Mimetics

    PubMed Central

    Marcum, Zachary A.; Driessen, Julia; Thorpe, Carolyn T.; Donohue, Julie M.; Gellad, Walid F.

    2016-01-01

    Background When incretin mimetic (IM) medications were introduced in 2005, their effectiveness compared other less-expensive second-line diabetes therapies was unknown, especially for older adults. Physicians likely had uncertainty about the role of IMs in the diabetes treatment armamentarium. Regional variation in uptake of IMs may be marker of such uncertainty. Objective To investigate the extent of regional variation in the use of IMs among beneficiaries and estimate the cost implications for Medicare. Methods This was a cross-sectional analysis of 2009–2010 claims from a nationally representative sample of 238 499 Medicare Part D beneficiaries aged ≥65 years, who were continuously enrolled in fee-for-service Medicare and Part D and filled ≥1 antidiabetic prescription. Beneficiaries were assigned to 1 306 hospital-referral regions (HRRs) using ZIP codes. The main outcome was adjusted proportion of antidiabetic users an HRR receiving an IM. Results Overall, 29 933 beneficiaries (12.6%) filled an IM prescription, including 26 939 (11. for sitagliptin or saxagliptin and 3718 (1.6%) for exenatide or liraglutide. The adjusted proportion of beneficiaries using varied more than 3-fold across HRRs, from 5th and 95th percentiles of 5.2% to 17.0%. Compared with non-IM users, users faced a 155% higher annual Part D plan ($1067 vs $418) and 144% higher patient ($369 vs $151) costs for antidiabetic prescriptions. Conclusion Among older Part D beneficiaries using antidiabetic drugs, substantial regional variation in the use of IMs, not accounted for by sociodemographics and health status. IM use was associated with substantially greater costs for Part D plans and beneficiaries. PMID:25515869

  14. Suppression of Prostate Epithelial Proliferation and Intraprostatic Progrowth Signaling in Transgenic Mice by a New Energy Restriction-Mimetic Agent

    PubMed Central

    Berman-Booty, Lisa D.; Chu, Po-Chen; Thomas-Ahner, Jennifer M.; Bolon, Brad; Wang, Dasheng; Yang, Tiffany; Clinton, Steven K.; Kulp, Samuel K.; Chen, Ching-Shih

    2013-01-01

    Cells undergoing malignant transformation often exhibit a shift in cellular metabolism from oxidative phosphorylation to glycolysis. This glycolytic shift, called the Warburg effect, provides a mechanistic basis for targeting glycolysis to suppress carcinogenesis through the use of dietary caloric restriction and energy restriction-mimetic agents (ERMA). We recently reported the development of a novel class of ERMAs that exhibits high potency in eliciting starvation-associated cellular responses and epigenetic changes in cancer cells though glucose uptake inhibition. The lead ERMA in this class, OSU-CG5, decreases the production of ATP and NADH in LNCaP prostate cancer cells. In this study, we examined the effect of OSU-CG5 on the severity of preneoplastic lesions in male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Daily oral treatment with OSU-CG5 at 100 mg/kg from 6 to 10 weeks of age resulted in a statistically significant decrease in the weight of urogenital tract and microdissected dorsal, lateral, and anterior prostatic lobes relative to vehicle controls. The suppressive effect of OSU-CG5 was evidenced by marked decreases in Ki67 immunostaining and proliferating cell nuclear antigen (PCNA) expression in the prostate. OSU-CG5 treatment was not associated with evidence of systemic toxicity. Microarray analysis indicated a central role for Akt, and Western blot analysis showed reduced phosphorylation and/or expression levels of Akt, Src, androgen receptor, and insulin-like growth factor-1 receptor in prostate lobes. These findings support further investigation of OSU-CG5 as a potential chemopreventive agent. PMID:23275006

  15. Synthesis and Characterization of Elastin-Mimetic Hybrid Polymers with Multiblock, Alternating Molecular Architecture and Elastomeric Properties

    PubMed Central

    Grieshaber, Sarah E.; Farran, Alexandra J. E.; Lin-Gibson, Sheng; Kiick, Kristi L.; Jia, Xinqiao

    2009-01-01

    We are interested in developing elastin–mimetic hybrid polymers (EMHPs) that capture the multiblock molecular architecture of tropoelastin as well as the remarkable elasticity of mature elastin. In this study, multiblock EMHPs containing flexible synthetic segments based on poly(ethylene glycol) (PEG) alternating with alanine-rich, lysine-containing peptides were synthesized by step-growth polymerization using α,ω-azido-PEG and alkyne-terminated AKA3KA (K = lysine, A = alanine) peptide, employing orthogonal click chemistry. The resulting EMHPs contain an estimated three to five repeats of PEG and AKA3KA and have an average molecular weight of 34 kDa. While the peptide alone exhibited α-helical structures at high pH, the fractional helicity for EMHPs was reduced. Covalent cross-linking of EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residue in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 MPa when hydrated. The mechanical properties of xEMHP are comparable to a commercial polyurethane elastomer (Tecoflex SG80A) under the same conditions. In vitro toxicity studies showed that while the soluble EMHPs inhibited the growth of primary porcine vocal fold fibroblasts (PVFFs) at concentrations ≥0.2 mg/mL, the cross-linked hybrid elastomers did not leach out any toxic reagents and allowed PVFFs to grow and proliferate normally. The hybrid and modular approach provides a new strategy for developing elastomeric scaffolds for tissue engineering. PMID:19763157

  16. The role of GLP-1 mimetics and basal insulin analogues in type 2 diabetes mellitus: guidance from studies of liraglutide

    PubMed Central

    Barnett, A H

    2012-01-01

    In people with type 2 diabetes mellitus (T2DM), the incretin effect is reduced, but the recent advent of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide (GLP)-1 agonists/analogues has enabled restoration of at least some of the function of the incretin system, with accompanying improvements in glycaemic control. Two GLP-1 receptor agonists/analogues are currently approved for the treatment of T2DM—exenatide (Byetta®, Eli Lilly & Co., Indianapolis, IN, US) and liraglutide (Victoza®, Novo Nordisk, Bagsvaerd, Denmark); a once-weekly formulation of exenatide (Bydureon®, Eli Lilly & Co.) has also been approved by the European Medicines Agency. The National Institute for Health and Clinical Excellence (NICE) has recently published guidance on the use of liraglutide in T2DM, based on evidence from the Liraglutide Effect and Action in Diabetes (LEAD) Phase III trial programme, which compared liraglutide with existing glucose-lowering therapies, such as exenatide and insulin glargine. The LEAD programme reported HbA1c reductions from 0.8 to 1.5% with liraglutide (1.2 and 1.8 mg), accompanied by low rates of hypoglycaemia and some weight loss; side effects were primarily gastrointestinal in nature (e.g. nausea and diarrhoea). Based on the findings of the LEAD studies and the NICE recommendation, liraglutide now represents an important therapy widely available in the UK for certain patient groups, including those with a body mass index (BMI) ≥35.0 kg/m2, and patients with a BMI <35 kg/m2 who are considered unsuitable for insulin and are failing to meet targets for glycaemic control with oral agents. NICE guidelines still suggest that most patients without considerable obesity (BMI <35 kg/m2) are probably best managed using insulin therapy. Evidence also suggests a future role for GLP-1 mimetics in combination with basal insulin. PMID:22051096

  17. Ochre Bathing of the Bearded Vulture: A Bio-Mimetic Model for Early Humans towards Smell Prevention and Health

    PubMed Central

    Tributsch, Helmut

    2016-01-01

    Simple Summary The once widespread bearded vulture (Gypaetus barbatus) has the habit of bathing its polluted feathers and skin in red iron oxide-ochre-tainted water puddles. Primitive man may have tried to find out why: ochre is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. There is consequently a sanitary reason for the vulture’s habit of bathing in red ochre mud and this explains why prehistoric people included ochre use into their habits and rituals. Abstract Since primordial times, vultures have been competing with man for animal carcasses. One of these vultures, the once widespread bearded vulture (Gypaetus barbatus), has the habit of bathing its polluted feathers and skin in red iron oxide - ochre - tainted water puddles. Why? Primitive man may have tried to find out and may have discovered its advantages. Red ochre, which has accompanied human rituals and everyday life for more than 100,000 years, is not just a simple red paint for decoration or a symbol for blood. As modern experiments demonstrate, it is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. In this way, ochre can in sunlight sterilize and clean the skin to provide health and comfort and make it scentless, a definitive advantage for nomadic meat hunters. This research thus also demonstrates a sanitary reason for the vulture’s habit of bathing in red ochre mud. Prehistoric people have therefore included ochre use into their rituals, especially into those in relation to birth and death. Significant ritual impulses during evolution of man may thus have developed bio-mimetically, inspired from the habits of a vulture. It is discussed how this health strategy could be developed to a modern standard helping to fight antibiotics-resistant bacteria in

  18. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile

    PubMed Central

    Al-Horani, Rami A.; Karuturi, Rajesh; Lee, Michael; Afosah, Daniel K.

    2016-01-01

    Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa’s active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants. PMID:27467511

  19. OSU-CG5, a novel energy restriction mimetic agent, targets human colorectal cancer cells in vitro

    PubMed Central

    Arafa, El-shaimaa A; Abdelazeem, Ahmed H; Arab, Hany H; Omar, Hany A

    2014-01-01

    Aim: Energy-restriction mimetic agents (ERMAs) are small-molecule agents that target various aspects of energy metabolism, which has emerged as a promising approach in cancer therapy. In the current study, we tested the ability of OSU-CG5, a novel ERMA, to target human colorectal cancer (CRC) in vitro. Methods: Two human CRC cell lines (HCT-116 and Caco-2) were tested. Cell viability was assessed using MTT assay. Caspase-3/7 activities were measured using Caspase-Glo 3/7 assay kit. Western blot analysis was used to measure the expression of relevant proteins in the cells. Glucose consumption of the cells was detected using glucose uptake cell-based assay kit. Results: OSU-CG5 dose-dependently inhibited HCT-116 and Caco-2 cell proliferation with the IC50 values of 3.9 and 4.6 μmol/L, respectively, which were 20–25-fold lower than those of resveratrol, a reference ERMA. Both OSU-CG5 (5, 10, and 20 μmol/L) and resveratrol (50, 100, and 200 μmol/L) dose-dependently increased caspase-3/7 activity and PARP level in the cells. Furthermore, both OSU-CG5 and resveratrol induced dose-dependent energy restriction in the cells: they suppressed glucose uptake and Akt phosphorylation, decreased the levels of p-mTOR and p-p70S6K, increased the levels of ER stress response proteins GRP78 and GADD153, and increased the level of β-TrCP, which led to the downregulation of cyclin D1 and Sp1. Conclusion: OSU-CG5 exhibits promising anti-cancer activity against human CRC cells in vitro, which was, at least in part, due to energy restriction and the consequent induction of ER stress and apoptosis. PMID:24464048

  20. Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions

    PubMed Central

    Cejas, Mabel A.; Kinney, William A.; Chen, Cailin; Vinter, Jeremy G.; Almond, Harold R.; Balss, Karin M.; Maryanoff, Cynthia A.; Schmidt, Ute; Breslav, Michael; Mahan, Andrew; Lacy, Eilyn; Maryanoff, Bruce E.

    2008-01-01

    Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)10, as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a′–d′ (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a′ > 1b′ > 1c′ > 1d′, supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a–d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC50 potency: 1a/1b ≫ 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs. PMID:18559857

  1. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    PubMed Central

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  2. Cyclin E/Cdk2-dependent phosphorylation of Mcl-1 determines its stability and cellular sensitivity to BH3 mimetics

    PubMed Central

    Choudhary, Gaurav S.; Tat, Trinh T.; Misra, Saurav; Hill, Brian T.; Smith, Mitchell R.; Almasan, Alexandru; Mazumder, Suparna

    2015-01-01

    Cyclin E/Cdk2 kinase activity is frequently deregulated in human cancers, resulting in impaired apoptosis. Here, we show that cyclin E/Cdk2 phosphorylates and stabilizes the pro-survival Bcl-2 family protein Mcl-1, a key cell death resistance determinant to the small molecule Bcl-2 family inhibitors ABT-199 and ABT-737, mimetics of the Bcl-2 homology domain 3 (BH3). Cyclin E levels were elevated and there was increased association of cyclin E/Cdk2 with Mcl-1 in ABT-737-resistant compared to parental cells. Cyclin E depletion in various human tumor cell-lines and cyclin E−/− mouse embryo fibroblasts showed decreased levels of Mcl-1 protein, with no change in Mcl-1 mRNA levels. In the absence of cyclin E, Mcl-1 ubiquitination was enhanced, leading to decreased protein stability. Studies with Mcl-1 phosphorylation mutants show that cyclin E/Cdk2-dependent phosphorylation of Mcl-1 residues on its PEST domain resulted in increased Mcl-1 stability (Thr92, and Thr163) and Bim binding (Ser64). Cyclin E knock-down restored ABT-737 sensitivity to acquired and inherently resistant Mcl-1-dependent tumor cells. CDK inhibition by dinaciclib resulted in Bim release from Mcl-1 in ABT-737-resistant cells. Dinaciclib in combination with ABT-737 and ABT-199 resulted in robust synergistic cell death in leukemic cells and primary chronic lymphocytic leukemia patient samples. Collectively, our findings identify a novel mechanism of cyclin E-mediated Mcl-1 regulation that provides a rationale for clinical use of Bcl-2 family and Cdk inhibitors for Mcl-1-dependent tumors. PMID:26219338

  3. Applying the Fe(III) binding property of a chemical transferrin mimetic to Ti(IV) anticancer drug design.

    PubMed

    Parks, Timothy B; Cruz, Yahaira M; Tinoco, Arthur D

    2014-02-01

    As an endogenous serum protein binder of Ti(IV), transferrin (Tf) serves as an excellent vehicle to stabilize the hydrolysis prone metal ion and successfully transport it into cells. This transporting role is thought to be central to Ti(IV)'s anticancer function, but efforts to synthesize Ti(IV) compounds targeting transferrin have not produced a drug. Nonetheless, the Ti(IV) transferrin complex (Ti2Tf) greatly informs on a new Ti(IV)-based anticancer drug design strategy. Ti2Tf interferes with cellular uptake of Fe(III), which is particularly detrimental to cancer cells because of their higher requirement for iron. Ti(IV) compounds of chemical transferrin mimetic (cTfm) ligands were designed to facilitate Ti(IV) activity by attenuating Fe(III) intracellular levels. In having a higher affinity for Fe(III) than Ti(IV), these ligands feature the appropriate balance between stability and lability to effectively transport Ti(IV) into cancer cells, release Ti(IV) via displacement by Fe(III), and deplete the intracellular Fe(III) levels. The cTfm ligand N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) was selected to explore the feasibility of the design strategy. Kinetic studies on the Fe(III) displacement process revealed that Ti(IV) can be transported and released into cells by HBED on a physiologically relevant time scale. Cell viability studies using A549 cancerous and MRC5 normal human lung cells and testing the cytotoxicity of HBED and its Ti(IV), Fe(III), and Ga(III) compounds demonstrate the importance of Fe(III) depletion in the proposed drug design strategy and the specificity of the strategy for Ti(IV) activity. The readily derivatized cTfm ligands demonstrate great promise for improved Ti(IV) anticancer drugs. PMID:24422475

  4. SOD Mimetic Improves the Function, Growth and Survival of Small Size Liver Grafts after Transplantation in Rats

    PubMed Central

    Cui, Yi-Yao; Qian, Jian-Ming; Yao, Ai-Hua; Ma, Zhen-Yu; Qian, Xiao-Feng; Zha, Xiao-Min; Zhao, Yi; Ding, Qiang; Zhao, Jia; Wang, Shui; Wu, Jian

    2012-01-01

    BACKGROUND Small-for-size syndrome (SFSS) may occur when graft volume is less than 45% of the standard liver volume, and it manifests as retarded growth and failure of the grafts and an increased mortality. However, its pathogenesis is poorly understood, and few effective interventions have been attempted. AIMS The present study aims to delineate the critical role of oxidant stress in SFSS and protective effects of a superoxide dismutase (SOD) mimetic, MnTBAP, on graft function, growth and survival in the recipient rats. METHODS Small size graft liver transplantation (SSGLT) was performed to determine the survival, graft injury and growth. MnTBAP was administered in SSGLT recipients (SSGLT+MnTBAP). RESULTS Serum ALT levels were sustained higher in SSGLT recipients, which were correlated with an increased apoptotic cell count and hepatocellular necrosis in liver sections. Malondialdehyde content, gene expression of TNF-α and IL-1β and DNA binding activity of NF-κB in the grafts were increased significantly in SSGLT recipients compared to sham-operated controls. Both phosphorylated p38 MAPK and nuclear c-jun were increased in SSGLT. All these changes were strikingly reversed by the administration of MnTBAP, with an increase in serum SOD activity. Moreover, in situ bromo-deoxyuridine incorporation demonstrated that graft regeneration in SSGLT+MnTBAP group was much profound than in the SSGLT group. Finally, the survival of recipients with MnTBAP treatments was significantly improved. CONCLUSIONS Enhanced oxidant stress with activation of the p38-c-Jun-NF-κB signaling pathway contributes to SFS-associated graft failure, retarded graft growth and poor survival. MnTBAP effectively reversed the pathologic changes in SFS-associated graft failure. PMID:22955229

  5. MLN2238 synergizes BH3 mimetic ABT-263 in castration-resistant prostate cancer cells by induction of NOXA.

    PubMed

    Wei, Xinghua; Zhou, Ping; Lin, Xuanting; Lin, Yurong; Wu, Sifeng; Diao, Pengfei; Xie, Haiqing; Xie, Keji; Tang, Ping

    2014-10-01

    Patients undergoing androgen blockade therapy develop castration-resistant prostate cancer (CRPC), which is associated with Bcl-2 upregulation and results in disease progression and death. In recent years, promising therapeutic agents, such as the BH3-only mimetic ABT-263 and proteasome inhibitors, have been developed and widely evaluated against a broad spectrum of cancer types, including prostate cancer, alone or in combination with other chemotherapeutic agents. In this study, the antitumor efficacy of ABT-263 and MLN2238 were evaluated as single agents and in combination in four CRPC cell lines: PC3, C4-2B, C4-2, and DU145. The viability of the treated cells and markers of apoptosis were assayed. Protein-protein interactions were analyzed by co-immunoprecipitation in drug-treated cells. Lentivirus-mediated short hairpin RNA was used to knockdown Bax, Mcl-1, and NOXA expressions. We found that ABT-263 and MLN2238 alone exhibited a mild cytotoxicity, and in combination, they elicited a synergistic cytotoxic effect in CRPC cells. The cell apoptosis induced by the combination drug treatment was evidenced by enhanced caspase-3 and Poly (ADP-ribose) polymerase (PARP) cleavage, and annexin-V-positive staining was significantly depleted by Bax knockdown. MLN2238 treatment upregulated NOXA and Mcl-1 expression, leading NOXA/Mcl-1 complexes to disassociate Bak from its complexes with Mcl-1 and enhancing ABT263-triggered Bax activation. NOXA knockdown by short hairpin RNA significantly attenuated the cytotoxicity of ABT-263 and MLN2238 co-administration. In conclusion, MLN2238 and ABT-263 synergistically triggered apoptosis in CRPC cells by upregulating NOXA and activating Bax, indicating a promising therapeutic strategy for the treatment of CRPC. PMID:25027405

  6. Differential Effect Triggered by a Heparan Mimetic of the RGTA Family Preventing Oral Mucositis Without Tumor Protection

    SciTech Connect

    Mangoni, Monica; Yue Xiaoli; Morin, Christophe; Violot, Dominique; Frascogna, Valerie; Tao Yungan; Opolon, Paule; Castaing, Marine; Auperin, Anne; Biti, Giampaolo; Barritault, Denis; Vozenin-Brotons, Marie-Catherine; Deutsch, Eric; Bourhis, Jean

    2009-07-15

    Purpose: Oral mucositis is a common side effect induced by radio/chemotherapy in patients with head and neck cancer. Although it dramatically impairs patient quality of life, no efficient and safe therapeutic solution is available today. Therefore, we investigated the protective efficacy of a new heparan mimetic biopolymer, RGTA-OTR4131, used alone or in combination with amifostine, for oral mucositis and simultaneously evaluated its effect on tumor growth in vitro and in vivo. Methods and Materials: A single dose of 16.5 Gy was selectively delivered to the snout of mice, and the effects of OTR4131 or amifostine-OTR4131 were analyzed by macroscopic scoring and histology. The effect of OTR4131 administration on tumor growth was then investigated in vitro and in xenograft models using two cell lines (HEP-2 and HT-29). Results: Amifostine and OTR4131 significantly decreased the severity and duration of lip mucosal reactions. However, amifostine has to be administered before irradiation, whereas the most impressive protection was obtained when OTR4131 was injected 24 h after irradiation. In addition, OTR4131 was well tolerated, and the combination of amifostine and OTR4131 further enhanced mucosal protection. At the tumor level, OTR4131 did not modify HEP-2 cell line clonogenic survival in vitro or protect xenografted tumor cells from radiotherapy. Of interest, high doses of OTR4131 significantly decreased clonogenic survival of HT-29 cells. Conclusions: RGTAs-OTR4131 is a well-tolerated, natural agent that effectively reduces radio-induced mucositis without affecting tumor sensitivity to irradiation. This suggests a possible transfer into the clinic for patients' benefit.

  7. Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis.

    PubMed

    Sharifov, Oleg F; Xu, Xin; Gaggar, Amit; Grizzle, William E; Mishra, Vinod K; Honavar, Jaideep; Litovsky, Silvio H; Palgunachari, Mayakonda N; White, C Roger; Anantharamaiah, G M; Gupta, Himanshu

    2013-01-01

    Acute respiratory distress syndrome (ARDS) due to sepsis has a high mortality rate with limited treatment options. High density lipoprotein (HDL) exerts innate protective effects in systemic inflammation. However, its role in ARDS has not been well studied. Peptides such as L-4F mimic the secondary structural features and functions of apolipoprotein (apo)A-I, the major protein component of HDL. We set out to measure changes in HDL in sepsis-mediated ARDS patients, and to study the potential of L-4F to prevent sepsis-mediated ARDS in a rodent model of lipopolysaccharide (LPS)-mediated acute lung injury, and a combination of primary human leukocytes and human ARDS serum. We also analyzed serum from non-lung disease intubated patients (controls) and sepsis-mediated ARDS patients. Compared to controls, ARDS demonstrates increased serum endotoxin and IL-6 levels, and decreased HDL, apoA-I and activity of anti-oxidant HDL-associated paraoxanase-1. L-4F inhibits the activation of isolated human leukocytes and neutrophils by ARDS serum and LPS in vitro. Further, L-4F decreased endotoxin activity and preserved anti-oxidant properties of HDL both in vitro and in vivo. In a rat model of severe endotoxemia, L-4F significantly decreased mortality and reduces lung and liver injury, even when administered 1 hour post LPS. Our study suggests the protective role of the apoA-I mimetic peptide L-4F in ARDS and gram-negative endotoxemia and warrant further clinical evaluation. The main protective mechanisms of L-4F are due to direct inhibition of endotoxin activity and preservation of HDL anti-oxidant activity. PMID:23691230

  8. Rediscovering Chemical Gardens: Self-Assembling Cytocompatible Protein-Intercalated Silicate-Phosphate Sponge-Mimetic Tubules.

    PubMed

    Punia, Kamia; Bucaro, Michael; Mancuso, Andrew; Cuttitta, Christina; Marsillo, Alexandra; Bykov, Alexey; L'Amoreaux, William; Raja, Krishnaswami S

    2016-08-30

    The classic chemical garden experiment is reconstructed to produce protein-intercalated silicate-phosphate tubules that resemble tubular sponges. The constructs were synthesized by seeding calcium chloride into a solution of sodium silicate-potassium phosphate and gelatin. Sponge-mimetic tubules were fabricated with varying percentages of gelatin (0-15% w/v), in diameters ranging from 200 μm to 2 mm, characterized morphologically and compositionally, functionalized with biomolecules for cell adhesion, and evaluated for cytocompatibility. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) experiments showed that the external surface of the tubules was relatively more amorphous in texture and carbon/protein-rich in comparison to the interior surface. Transmission electron microscopy (TEM) images indicate a network composed of gelatin incorporated into the inorganic scaffold. The presence of gelatin in the constructs was confirmed by infrared spectroscopy. Powder X-ray diffraction (XRD) was used to identify inorganic crystalline phases in the scaffolds that are mainly composed of Ca(OH)2, NaCl, and Ca2SiO4 along with a band corresponding to amorphous gelatin. Bioconjugation and coating protocols were developed to program the scaffolds with cues for cell adhesion, and the resulting constructs were employed for 3D cell culture of marine (Pyrocystis lunula) and mammalian (HeLa and H9C2) cell lines. The cytocompatibility of the constructs was demonstrated by live cell assays. We have successfully shown that these biomimetic materials can indeed support life; they serve as scaffolds that facilitate the attachment and assembly of individual cells to form multicellular entities, thereby revisiting the 350-year-old effort to link chemical gardens with the origins of life. Hybrid chemical garden biomaterials are programmable, readily fabricated and could be employed in tissue engineering, biomolecular materials development, 3D mammalian

  9. Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia.

    PubMed

    Opel, Daniela; Schnaiter, Andrea; Dodier, Dagmar; Jovanovic, Marjana; Gerhardinger, Andreas; Idler, Irina; Mertens, Daniel; Bullinger, Lars; Stilgenbauer, Stephan; Fulda, Simone

    2015-12-15

    Inhibitor of apoptosis (IAP) proteins are highly expressed in chronic lymphocytic leukemia (CLL) cells and contribute to evasion of cell death and poor therapeutic response. Here, we report that Smac mimetic BV6 dose-dependently induces cell death in 28 of 51 (54%) investigated CLL samples, while B-cells from healthy donors are largely unaffected. Importantly, BV6 is significantly more effective in prognostic unfavorable cases with, e.g., non-mutated VH status and TP53 mutation than samples with unknown or favorable prognosis. The majority of cases with 17p deletion (10/12) and Fludarabine refractory cases respond to BV6, indicating that BV6 acts independently of p53. BV6 also triggers cell death under survival conditions mimicking the microenvironment, e.g., by adding CD40 ligand or conditioned medium. Gene expression profiling identifies cell death, NF-κB and redox signaling among the top pathways regulated by BV6 not only in CLL but also in core-binding factor (CBF) acute myeloid leukemia (AML). Consistently, BV6 stimulates production of reactive oxygen species (ROS), which are contributing to BV6-induced cell death, since antioxidants reduce cell death. While BV6 causes degradation of cellular inhibitor of apoptosis (cIAP)1 and cIAP2 and nuclear factor-kappaB (NF-κB) pathway activation in primary CLL samples, BV6 induces cell death independently of caspase activity, receptor-interacting protein (RIP)1 activity or tumor necrosis factor (TNF)α, as zVAD.fmk, necrostatin-1 or TNFα-blocking antibody Enbrel fail to inhibit cell death. Together, these novel insights into BV6-regulated cell death in CLL have important implications for developing new therapeutic strategies to overcome cell death resistance especially in poor prognostic CLL subgroups. PMID:26096065

  10. Chemical ultraviolet absorbers topically applied in a skin barrier mimetic formulation remain in the outer stratum corneum of porcine skin.

    PubMed

    Haque, T; Crowther, J M; Lane, M E; Moore, D J

    2016-08-20

    The objective of the present study was to evaluate the fate of three chemical sunscreens, isoamyl p-methoxycinnamate (IPMC), diethylamino hydroxybenzoyl hexyl benzoate (DHHB), and bis-ethylhexylphenol methoxyphenyl triazine (BEMT), topically applied to mammalian skin from a skin barrier mimetic oil-in-water formulation. High Performance Liquid Chromatography (HPLC) methods were developed for the analysis of each molecule and validated. Franz cell permeation studies were conducted following application of finite doses of the formulations to excised porcine skin. A vehicle formulation containing no sunscreens was evaluated as a control. Permeation studies were conducted for 12h after which full mass balance studies were carried out. Analysis of individual UV sunscreens was achieved with HPLC following application of the formulation to the skin with no interference from the vehicle components. No skin permeation of any of the chemical sunscreens was evident after 12h. While sunscreens were detected in up to 12 tape strips taken from the SC, 87% or more of the applied doses recovered in the first 5 tape strips. When corrected for the amount of protein removed per tape strip this corresponded to a penetration depth in porcine stratum corneum of ∼1.7μm. Mass balance studies indicated total recovery values were within accepted guidelines for cosmetic formulations. Overall, only superficial penetration into the SC was observed for each compound. These findings are consistent with the physicochemical properties of the selected UV absorbing molecules and their formulation into an ordered biomimetic barrier formulation thus support their intended use in topical consumer formulations designed to protect from UV exposure. To our knowledge this is the first report of depth profiling of chemical sunscreens in the SC that combines tape stripping and protein determination following in vitro Franz cell studies. PMID:27321112

  11. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its d,l-polylactide microparticle formulation

    PubMed Central

    Bartolini, D.; Piroddi, M.; Tidei, C.; Giovagnoli, S.; Pietrella, D.; Manevich, Y.; Tew, K.D.; Giustarini, D.; Rossi, R.; Townsend, D.M.; Santi, C.; Galli, F.

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this “depowered” GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage

  12. Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose.

    PubMed

    Tian, Jingqi; Liu, Qian; Asiri, Abdullah M; Qusti, Abdullah H; Al-Youbi, Abdulrahman O; Sun, Xuping

    2013-12-01

    In this article, we demonstrate for the first time that ultrathin graphitic carbon nitride nanosheets (g-C3N4) possess peroxidase activity. Fe doping of the nanosheets leads to peroxidase mimetics with greatly enhanced catalytic performance and the mechanism involved is proposed. We further demonstrate the novel use of such Fe-g-C3N4 as a cheap nanosensor for simple, rapid, highly selective and sensitive optical detection of glucose with a pretty low detection limit of 0.5 μM. PMID:24121798

  13. Tetrahydro-β-carboline-based spirocyclic lactam as type II' β-turn: application to the synthesis and biological evaluation of somatostatine mimetics.

    PubMed

    Lesma, Giordano; Cecchi, Roberto; Cagnotto, Alfredo; Gobbi, Marco; Meneghetti, Fiorella; Musolino, Manuele; Sacchetti, Alessandro; Silvani, Alessandra

    2013-03-15

    The synthesis of novel spirocyclic lactams, embodying D-tryptophan (Trp) amino acid as the central core and acting as peptidomimetics, is presented. It relies on the strategic combination of Seebach's self-reproduction of chirality chemistry and Pictet-Spengler condensation as key steps. Investigation of the conformational behavior by molecular modeling, X-ray crystallography, and NMR and IR spectroscopies suggests very stable and highly predictable type II' β-turn conformations for all compounds. Relying on this feature, we also pursued their application to two potential mimetics of the hormone somatostatin, a pharmaceutically relevant natural peptide, which contains a Trp-based type II' β-turn pharmacophore. PMID:23409740

  14. M48U1 CD4 mimetic has a sustained inhibitory effect on cell-associated HIV-1 by attenuating virion infectivity through gp120 shedding

    PubMed Central

    2013-01-01

    Background HIV-1 infected cells can establish new infections by crossing the vaginal epithelia and subsequently producing virus in a milieu that avoids the high microbicide concentrations of the vaginal lumen. Findings To address this problem, here, we report that pretreatment of HIV-infected peripheral blood mononuclear cells (PBMCs) with a 27 amino acid CD4-mimetic, M48U1, causes dramatic and prolonged reduction of infectious virus output, due to its induction of gp120 shedding. Conclusions M48U1 may, therefore, be valuable for prophylaxis of mucosal HIV-1 transmission. PMID:23375046

  15. Decreased bioavailability of nitric oxide in aorta from ovariectomized senescent mice. Role of cyclooxygenase.

    PubMed

    Vidal-Gómez, Xavier; Novella, Susana; Pérez-Monzó, Isabel; Garabito, Manel; Dantas, Ana Paula; Segarra, Gloria; Hermenegildo, Carlos; Medina, Pascual

    2016-04-01

    This study investigates the effects of aging and/or ovariectomy on vascular reactivity to thromboxane A2 (TXA2) receptor stimulation with U46619, and the modulation by nitric oxide (NO) and cyclooxygenase (COX) in aorta from female senescence-accelerated mice (SAMP8) and from senescence resistant mice (SAMR1). Five-month-old female SAMR1 and SAMP8 were divided into three groups: sham-operated, ovariectomized and ovariectomized plus estradiol. Twenty-eight days after surgery, thoracic aortic rings were mounted for isometric recording of tension and concentration-response curves for U46619 (10(-10)-3×10(-7)M) were performed in the absence and in the presence of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME, 10(-4)M) and/or COX inhibitor indomethacin (10(-5)M). Vascular superoxide production was detected by dihydroethidium staining on sections of thoracic aorta. NO bioavailability in response to U46619 was suppressed by estrogen withdrawn in young and senescent mice and was restored by the administration of estradiol. In the presence of indomethacin, contractions to U46619 decreased in all groups indicating an aging- and estrogen-dependent modulation of contractile prostanoids. The simultaneous incubation of L-NAME and indomethacin did not change the maximal responses and sensitivities to TXA2 in any group in comparison with untreated aortic segments. The superoxide generation induced by TXA2 was greater in aorta from SAMP8 than in SAMR1. Moreover, in ovariectomized groups superoxide production was further increased and treatment with 17β-estradiol reverted the effects of the ovariectomy. Inhibition of COX with indomethacin prevented the U46619-induced increase in superoxide formation. Our results indicate that NO bioavailability in response to TP receptor activation is both estrogen- and aging-dependent. TXA2 induced contractions are partially mediated by COX activation. Both aging and ovariectomy enhanced COX-dependent component of the TXA2

  16. Pyrimidinone nicotinamide mimetics as selective tankyrase and wnt pathway inhibitors suitable for in vivo pharmacology.

    PubMed

    Johannes, Jeffrey W; Almeida, Lynsie; Barlaam, Bernard; Boriack-Sjodin, P Ann; Casella, Robert; Croft, Rosemary A; Dishington, Allan P; Gingipalli, Lakshmaiah; Gu, Chungang; Hawkins, Janet L; Holmes, Jane L; Howard, Tina; Huang, Jian; Ioannidis, Stephanos; Kazmirski, Steven; Lamb, Michelle L; McGuire, Thomas M; Moore, Jane E; Ogg, Derek; Patel, Anil; Pike, Kurt G; Pontz, Timothy; Robb, Graeme R; Su, Nancy; Wang, Haiyun; Wu, Xiaoyun; Zhang, Hai-Jun; Zhang, Yue; Zheng, Xiaolan; Wang, Tao

    2015-03-12

    The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms. PMID:25815142

  17. Pyrimidinone Nicotinamide Mimetics as Selective Tankyrase and Wnt Pathway Inhibitors Suitable for in Vivo Pharmacology

    PubMed Central

    2015-01-01

    The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms. PMID:25815142

  18. Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose.

    PubMed

    Dalui, Amit; Pradhan, Bapi; Thupakula, Umamahesh; Khan, Ali Hossain; Kumar, Gundam Sandeep; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata

    2015-05-21

    Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications. PMID:25921601

  19. Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems.

    PubMed

    Shi, Yun; Su, Ping; Wang, Yingying; Yang, Yi

    2014-12-01

    Enzyme mimetics have recently attracted considerable interest because of their high stability and low cost. We developed a general H2O2-involved fluorescence system using Fe3O4 magnetic microspheres as peroxidase mimetics and benzoic acid (BA) as indicator. Glucose and p-nitrophenol were used as models to determine the characteristics and effectiveness of the system. Glucose oxidase hydrolyzes glucose, in the presence of oxygen, to H2O2 followed by the activation of Fe3O4 MMs, resulting in the catalyzed oxidation of benzoic acid. Glucose can be determined by the quantitative fluorescence production. p-Nitrophenol is determined as model compounds which competes with benzoic acid for H2O2 resulting in the decreased catalytic oxidation of benzoic acid with the Fe3O4 MMs. The detection limit of the Fe3O4/H2O2/BA system is 0.008 μM for H2O2, 0.025 μM for glucose and 0.05 μM for p-nitrophenol. Furthermore, the system had high sensitivity, good selectivity and was capable of sensing glucose in human serum and p-nitrophenol in water samples. The proposed system has great potential in the chemical/biological sensing of a variety of analytes associated with reactions that produce or consume H2O2. PMID:25159407

  20. Morphometric comparisons of plant-mimetic juvenile fish associated with plant debris observed in the coastal subtropical waters around Kuchierabu-jima Island, southern Japan.

    PubMed

    de Queiroz, Alexya Cunha; Sakai, Yoichi; Vallinoto, Marcelo; Barros, Breno

    2016-01-01

    The general morphological shape of plant-resembling fish and plant parts were compared using a geometric morphometrics approach. Three plant-mimetic fish species, Lobotes surinamensis (Lobotidae), Platax orbicularis (Ephippidae) and Canthidermis maculata (Balistidae), were compared during their early developmental stages with accompanying plant debris (i.e., leaves of several taxa) in the coastal subtropical waters around Kuchierabu-jima Island, closely facing the Kuroshio Current. The degree of similarity shared between the plant parts and co-occurring fish species was quantified, however fish remained morphologically distinct from their plant models. Such similarities were corroborated by analysis of covariance and linear discriminant analysis, in which relative body areas of fish were strongly related to plant models. Our results strengthen the paradigm that morphological clues can lead to ecological evidence to allow predictions of behavioural and habitat choice by mimetic fish, according to the degree of similarity shared with their respective models. The resemblance to plant parts detected in the three fish species may provide fitness advantages via convergent evolutionary effects. PMID:27547571

  1. Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity

    PubMed Central

    Richard, Jonathan; Veillette, Maxime; Ding, Shilei; Zoubchenok, Daria; Alsahafi, Nirmin; Coutu, Mathieu; Brassard, Nathalie; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno; Smith, Amos B.; Shaw, George M.; Hahn, Beatrice H.; Sodroski, Joseph; Kaufmann, Daniel E.; Finzi, Andrés

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection causes a progressive depletion of CD4 + T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4 + T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC) mediates the death of uninfected bystander CD4 + T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4 + T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4 + T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells. PMID:26870823

  2. Morphometric comparisons of plant-mimetic juvenile fish associated with plant debris observed in the coastal subtropical waters around Kuchierabu-jima Island, southern Japan

    PubMed Central

    2016-01-01

    The general morphological shape of plant-resembling fish and plant parts were compared using a geometric morphometrics approach. Three plant-mimetic fish species, Lobotes surinamensis (Lobotidae), Platax orbicularis (Ephippidae) and Canthidermis maculata (Balistidae), were compared during their early developmental stages with accompanying plant debris (i.e., leaves of several taxa) in the coastal subtropical waters around Kuchierabu-jima Island, closely facing the Kuroshio Current. The degree of similarity shared between the plant parts and co-occurring fish species was quantified, however fish remained morphologically distinct from their plant models. Such similarities were corroborated by analysis of covariance and linear discriminant analysis, in which relative body areas of fish were strongly related to plant models. Our results strengthen the paradigm that morphological clues can lead to ecological evidence to allow predictions of behavioural and habitat choice by mimetic fish, according to the degree of similarity shared with their respective models. The resemblance to plant parts detected in the three fish species may provide fitness advantages via convergent evolutionary effects. PMID:27547571

  3. A comparative study of PGI2 mimetics used clinically on the vasorelaxation of human pulmonary arteries and veins, role of the DP-receptor.

    PubMed

    Benyahia, Chabha; Boukais, Kamel; Gomez, Ingrid; Silverstein, Adam; Clapp, Lucie; Fabre, Aurélie; Danel, Claire; Leséche, Guy; Longrois, Dan; Norel, Xavier

    2013-12-01

    Prostacyclin (PGI2) and its mimetics (iloprost, treprostinil, beraprost and MRE-269) are potent vasodilators (via IP-receptor activation) and a major therapeutic intervention for pulmonary hypertension (PH). These PGI2 mimetics have anti-proliferative and potent vasodilator effects on pulmonary vessels. We compared the relaxant effects induced by these recognized IP-agonists in isolated human pulmonary arteries (HPA) and veins (HPV). In addition, using selective antagonists, the possible activation of other prostanoid relaxant receptors (DP, EP4) was investigated. Iloprost and treprostinil were the more potent relaxant agonists when both vessels were analyzed. HPA were significantly more sensitive to iloprost than to treprostinil, pEC50 values: 7.94±0.06 (n=23) and 6.73±0.08 (n=33), respectively. In contrast, in HPV these agonists were equipotent. The relaxations induced by treprostinil were completely or partially inhibited by IP-antagonists in HPA or HPV, respectively. The effects of the IP-agonists were not significantly modified by the EP4 antagonist. Finally, DP-antagonists inhibited the relaxations induced by treprostinil in HPV, suggesting that the DP-receptor plays a role in treprostinil-induced relaxation in the HPV. These data suggest that iloprost and treprostinil should be the most effective clinically available agonists to decrease pulmonary vascular resistance and to prevent oedema formation (by similar decrease in HPA and HPV resistance) in PH patients. PMID:23850788

  4. Calmangafodipir [Ca4Mn(DPDP)5], mangafodipir (MnDPDP) and MnPLED with special reference to their SOD mimetic and therapeutic properties.

    PubMed

    Karlsson, Jan Olof G; Ignarro, Louis J; Lundström, Ingemar; Jynge, Per; Almén, Torsten

    2015-04-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) participate in pathological tissue damage. Mitochondrial manganese superoxide dismutase (MnSOD) normally keeps ROS and RNS in check. During development of mangafodipir (MnDPDP) as a magnetic resonance imaging (MRI) contrast agent, it was discovered that MnDPDP and its metabolite manganese pyridoxyl ethyldiamine (MnPLED) possessed SOD mimetic activity. MnDPDP has been tested as a chemotherapy adjunct in cancer patients and as an adjunct to percutaneous coronary intervention in patients with myocardial infarctions, with promising results. Whereas MRI contrast depends on release of Mn(2+), the SOD mimetic activity depends on Mn(2+) that remains bound to DPDP or PLED. Calmangafodipir [Ca4Mn(DPDP)5] is stabilized with respect to Mn(2+) and has superior therapeutic activity. Ca4Mn(DPDP)5 is presently being explored as a chemotherapy adjunct in a clinical multicenter Phase II study in patients with metastatic colorectal cancer. PMID:25463039

  5. Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells.

    PubMed

    Gerges, Steve; Rohde, Katharina; Fulda, Simone

    2016-05-28

    Treatment resistance in acute lymphoblastic leukemia (ALL) is often caused by defects in programmed cell death, e.g. by overexpression of Inhibitor of Apoptosis (IAP) proteins. Here, we report that small-molecule Smac mimetics (i.e. BV6, LCL161, birinapant) that neutralize x-linked IAP (XIAP), cellular IAP (cIAP)1 and cIAP2 cooperate with demethylating agents (i.e. 5-azacytidine (5AC) or 5-aza-2'-deoxycytidine (DAC)) to induce cell death in ALL cells. Molecular studies reveal that induction of cell death is preceded by BV6-mediated depletion of cIAP1 protein and involves tumor necrosis factor (TNF)α autocrine/paracrine signaling, since the TNFα-blocking antibody Enbrel significantly reduces BV6/5AC-induced cell death. While BV6/5AC cotreatment induces caspase-3 activation, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) only partly rescues ALL cells from BV6/5AC-induced cell death. This indicates that BV6/5AC cotreatment engages non-apoptotic cell death upon caspase inhibition. Indeed, genetic silencing of key components of necroptosis such as Receptor-Interacting Protein (RIP)3 or mixed lineage kinase domain-like (MLKL) in parallel with administration of zVAD.fmk provides a significantly better protection against BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. Similarly, concomitant administration of pharmacological inhibitors of necroptosis (i.e. necrostatin-1s, GSK'872, dabrafenib, NSA) together with zVAD.fmk is superior in rescuing cells from BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. These findings demonstrate that in ALL cells BV6/5AC-induced cell death is mediated via both apoptotic and necroptotic pathways. Importantly, BV6/5AC cotreatment triggers necroptosis in ALL cells that are resistant to apoptosis due to caspase inhibition. This opens new perspectives to overcome apoptosis resistance with important implications for the development of new treatment strategies

  6. Design, Synthesis, and Validation of a β-Turn Mimetic Library Targeting Protein–Protein and Peptide–Receptor Interactions

    PubMed Central

    Whitby, Landon R.; Ando, Yoshio; Setola, Vincent; Vogt, Peter K.; Roth, Bryan L.; Boger, Dale L.

    2011-01-01

    The design and synthesis of a β-turn mimetic library as a key component of a small molecule library targeting the major recognition motifs involved in protein–protein interactions is described. Analysis of a geometric characterization of 10,245 β-turns in the protein data bank (PDB) suggested that trans-pyrrolidine-3,4-dicarboxamide could serve as an effective and synthetically accessible library template. This was confirmed by initially screening select compounds against a series of peptide-activated GPCRs that recognize a β-turn structure in their endogenous ligands. This validation study was highlighted by identification of both nonbasic and basic small molecules with high affinities (Ki = 390 nM and 23 nM, respectively) for the κ-opioid receptor (KOR). Consistent with the screening capabilities of collaborators and following the design validation, the complete library was assembled as 210 mixtures of 20 compounds, providing a total of 4,200 compounds designed to mimic all possible permutations of 3 of the 4 residues in a naturally occurring β-turn. Unique to the design and because of the C2 symmetry of the template, a typical 20 × 20 × 20-mix (8,000 compounds prepared as 400 mixtures of 20 compounds) needed to represent 20 variations in the side chains of three amino acid residues reduces to a 210 × 20-mix, thereby simplifying the library synthesis and subsequent screening. The library was prepared using a solution-phase synthetic protocol with liquid–liquid or liquid–solid extractions for purification and conducted on a scale that insures its long-term availability for screening campaigns. Screening the library against the human opioid receptors (KOR, MOR, and DOR) identified not only the activity of library members expected to mimic the opioid receptor peptide ligands, but also additional side chain combinations that provided enhanced receptor binding selectivities (>100-fold) and affinities (as low as Ki = 80 nM for KOR). A key insight to

  7. Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells.

    PubMed

    Steinwascher, Sofie; Nugues, Anne-Lucie; Schoeneberger, Hannah; Fulda, Simone

    2015-09-28

    Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in acute myeloid leukemia (AML) and contribute to resistance to programmed cell death. Here, we report that inhibition of IAP proteins by the small-molecule Smac mimetic BV6 acts together with histone deacetylase (HDAC) inhibitors (HDACIs) such as MS275 or SAHA to trigger cell death in AML cell lines in a synergistic manner, as underscored by calculation of combination index (CI). Also, BV6 and HDACIs cooperate to trigger DNA fragmentation, a marker of apoptotic cell death, and to suppress long-term clonogenic survival of AML cells. In contrast, equimolar concentrations of BV6 and MS275 or SAHA do not synergize to elicit cell death in normal peripheral blood lymphocytes (PBLs), emphasizing some tumor cell selectivity of this combination treatment. Addition of the tumor necrosis factor (TNF)α-blocking antibody Enbrel significantly reduces BV6/MS275-induced cell death in the majority of AML cell lines, indicating that autocrine/paracrine TNFα signaling contributes to cell death. Remarkably, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue MV4-11, Molm13 and OCI-AML3 cells and even enhances BV6/MS275-mediated cell death, whereas zVAD.fmk reduces BV6/MS275-induced cell death in NB4 cells. Annexin-V/propidium iodide (PI) double staining reveals that BV6/MS275 cotreatment predominately increases the percentage of double-positive cells. Of note, the Receptor-Interacting Protein (RIP)1 inhibitor necrostatin-1 (Nec-1) or the Mixed Lineage Kinase Domain-Like protein (MLKL) inhibitor necrosulfonamide (NSA) significantly reduce BV6/MS275-induced cell death in the presence of zVAD.fmk, suggesting that BV6/MS275 cotreatment triggers necroptosis when caspases are inhibited. Thus, BV6 acts in concert with HDACIs to induce cell death in AML cells and can bypass apoptosis resistance, at least in several AML cell lines, by engaging necroptosis as an

  8. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    PubMed Central

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  9. Ligand Targeting of EphA2 Enhances Keratinocyte Adhesion and Differentiation via Desmoglein 1

    PubMed Central

    Lin, Samantha; Gordon, Kristin; Kaplan, Nihal

    2010-01-01

    EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for dampening Erk1/2-MAPK signaling after a calcium switch in primary human epidermal keratinocytes, the loss of this receptor did not prevent exit from the cell cycle. Incubating keratinocytes with a soluble ephrin-A1-Fc peptide mimetic to target EphA2 further increased receptor activation leading to its down-regulation. Moreover, soluble ligand targeting of EphA2 restricted the lateral expansion of epidermal cell colonies without limiting proliferation in these primary cultures. Rather, ephrin-A1-Fc peptide treatment promoted epidermal cell colony compaction and stratification in a manner that was associated with increased keratinocyte differentiation. The ligand-dependent increase in keratinocyte adhesion and differentiation relied largely upon the up-regulation of desmoglein 1, a desmosomal cadherin that maintains the integrity and differentiated state of suprabasal keratinocytes in the epidermis. These data suggest that keratinocytes expressing EphA2 in the basal layer may respond to ephrin-A1–based cues from their neighbors to facilitate entry into a terminal differentiation pathway. PMID:20861311

  10. Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds.

    PubMed

    Phipps, Matthew C; Xu, Yuanyuan; Bellis, Susan L

    2012-01-01

    The recruitment of mesenchymal stem cells (MSCs) is a vital step in the bone healing process, and hence the functionalization of osteogenic biomaterials with chemotactic factors constitutes an important effort in the tissue engineering field. Previously we determined that bone-mimetic electrospun scaffolds composed of polycaprolactone, collagen I and nanohydroxyapatite (PCL/col/HA) supported greater MSC adhesion, proliferation and activation of integrin-related signaling cascades than scaffolds composed of PCL or collagen I alone. In the current study we investigated the capacity of bone-mimetic scaffolds to serve as carriers for delivery of an MSC chemotactic factor. In initial studies, we compared MSC chemotaxis toward a variety of molecules including PDGF-AB, PDGF-BB, BMP2, and a mixture of the chemokines SDF-1α, CXCL16, MIP-1α, MIP-1β, and RANTES. Transwell migration assays indicated that, of these factors, PDGF-BB was the most effective in stimulating MSC migration. We next evaluated the capacity of PCL/col/HA scaffolds, compared with PCL scaffolds, to adsorb and release PDGF-BB. We found that significantly more PDGF- BB was adsorbed to, and subsequently released from, PCL/col/HA scaffolds, with sustained release extending over an 8-week interval. The PDGF-BB released was chemotactically active in transwell migration assays, indicating that bioactivity was not diminished by adsorption to the biomaterial. Complementing these studies, we developed a new type of migration assay in which the PDGF-BB-coated bone-mimetic substrates were placed 1.5 cm away from the cell migration front. These experiments confirmed the ability of PDGF-BB-coated PCL/col/HA scaffolds to induce significant MSC chemotaxis under more stringent conditions than standard types of migration assays. Our collective results substantiate the efficacy of PDGF-BB in stimulating MSC recruitment, and further show that the incorporation of native bone molecules, collagen I and nanoHA, into

  11. [Affect and mimetic behavior].

    PubMed

    Zepf, S; Ullrich, B; Hartmann, S

    1998-05-01

    The relationship between facial expression and experienced affect presents many problems. The two diametrically opposed positions proposing solutions to this problem are exemplified using the conceptions of Mandler u. Izard. The underlying premises of both conceptions still prevail in various forms. The authors reject the concepts according to which facial expression is merely correlated to the affects (see Mandler 1975) as well as the view that facial expression controls the affects (see Izard 1977). The relationship between affect and facial expression is reexamined, subjecting it to a semiotic, essentially semantic analysis similar to the Ogden and Richards' language and meaning approach. This analysis involves a critical discussion of Scherer's attempt of a purely communicational interpretation using Bühler's organon model. In the author's approach, facial expression is seen not simply as a system of signals, but as a system of representative signs which signify the affects and refer to the emotive meaning of things for the subject. The authors develop the thesis that human beings are not born simply with the ability to speak, but also with the abstract possibility of performing facial expressions. This ability develops by way of coordinating patterns of expressions, which are presumably phylogenetically determined, with affects that take on a socially determined individual form, similar to language acquisition during socialisation. The authors discuss the methodological impl