Science.gov

Sample records for a2 modulates migration

  1. Chemistry and biology of the compounds that modulate cell migration.

    PubMed

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  2. KIBRA Modulates Directional Migration of Podocytes

    PubMed Central

    Duning, Kerstin; Schurek, Eva-Maria; Schlüter, Marc; Bayer, Michael; Reinhardt, Hans-Christian; Schwab, Albrecht; Schaefer, Liliana; Benzing, Thomas; Schermer, Bernhard; Saleem, Moin A.; Huber, Tobias B.; Bachmann, Sebastian; Kremerskothen, Joachim; Weide, Thomas; Pavenstädt, Hermann

    2008-01-01

    Asymmetric delivery and distribution of macromolecules are essential for cell polarity and for cellular functions such as differentiation, division, and signaling. Injury of podocytes, which are polarized epithelial cells, changes the dynamics of the actin meshwork, resulting in foot process retraction and proteinuria. Although the spatiotemporal control of specific protein–protein interactions is crucial for the establishment of cell polarity, the mechanisms controlling polarity-dependent differentiation and division are incompletely understood. In this study, yeast two-hybrid screens were performed using a podocyte cDNA library and the polarity protein PATJ as bait. The protein KIBRA was identified as an interaction partner of PATJ and was localized to podocytes, tubular structures, and collecting ducts. The last four amino acids of KIBRA mediated binding to the eighth PDZ domain of PATJ. In addition, KIBRA directly bound to synaptopodin, an essential organizer of the podocyte cytoskeleton. Stable knockdown of KIBRA in immortalized podocytes impaired directed cell migration, suggesting that KIBRA modulates the motility of podocytes by linking polarity proteins and cytoskeleton-associated protein complexes. PMID:18596123

  3. Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain

    PubMed Central

    Vasudevan, Anju; Won, Chungkil; Li, Suyan; Erdélyi, Ferenc; Szabó, Gábor; Kim, Kwang-Soo

    2012-01-01

    Neuronal migration, a key event during brain development, remains largely unexplored in the mesencephalon, where dopaminergic (DA) and GABA neurons constitute two major neuronal populations. Here we study the migrational trajectories of DA and GABA neurons and show that they occupy ventral mesencephalic territory in a temporally and spatially specific manner. Our results from the Pitx3-deficient aphakia mouse suggest that pre-existing DA neurons modulate GABA neuronal migration to their final destination, providing novel insights and fresh perspectives concerning neuronal migration and connectivity in the mesencephalon in normal as well as diseased brains. PMID:22872083

  4. Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain.

    PubMed

    Vasudevan, Anju; Won, Chungkil; Li, Suyan; Erdélyi, Ferenc; Szabó, Gábor; Kim, Kwang-Soo

    2012-09-01

    Neuronal migration, a key event during brain development, remains largely unexplored in the mesencephalon, where dopaminergic (DA) and GABA neurons constitute two major neuronal populations. Here we study the migrational trajectories of DA and GABA neurons and show that they occupy ventral mesencephalic territory in a temporally and spatially specific manner. Our results from the Pitx3-deficient aphakia mouse suggest that pre-existing DA neurons modulate GABA neuronal migration to their final destination, providing novel insights and fresh perspectives concerning neuronal migration and connectivity in the mesencephalon in normal as well as diseased brains.

  5. A noncanonical release of GABA and glutamate modulates neuronal migration.

    PubMed

    Manent, Jean-Bernard; Demarque, Michaël; Jorquera, Isabel; Pellegrino, Christophe; Ben-Ari, Yehezkel; Aniksztejn, Laurent; Represa, Alfonso

    2005-05-11

    Immature neurons express GABA and glutamate receptors before synapse formation, and both transmitters are released at an early developmental stage. We have now tested the hypothesis that the ongoing release of GABA and glutamate modulates neuronal migration. Using 5-bromo-2'-deoxyuridine labeling and cocultures of hippocampal slices obtained from naive and green fluorescent protein-transgenic mice, we report that migration is severely affected by GABA(A) or NMDA receptor antagonist treatments. These effects were also present in munc18-1 knock-out slices in which soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent vesicular secretion of transmitters has been deleted. GABA(A) antagonists were more efficient than NMDA antagonists to reduce cell migration, in keeping with the earlier maturation of GABAergic mechanisms. We conclude that GABA and, to a lesser degree, glutamate released in a SNARE-independent mechanism exert a paracrine action on neuronal migration.

  6. C-reactive protein modulates human lung fibroblast migration.

    PubMed

    Kikuchi, Kazuhiko; Kohyama, Tadashi; Yamauchi, Yasuhiro; Kato, Jun; Takami, Kazutaka; Okazaki, Hitoshi; Desaki, Masashi; Nagase, Takahide; Rennard, Stephen I; Takizawa, Hajime

    2009-02-01

    C-reactive protein (CRP) has been classically used as a marker of inflammation. The aim of this study was to investigate the effect of CRP on migration of human fetal lung fibroblasts (HFL-1) to human plasma fibronectin (HFn). Using the blindwell chamber technique, CRP inhibited HFL-1 migration in a dose-dependent fashion (at 1 microg/mL, inhibition: 32.5% +/- 7.1%; P < .05). Western blot analysis showed that CRP inhibited the p38 mitogen-activated protein kinase (MAPK) activity in the presence of HFn. Moreover, the MAPK inhibitors SB202190 (25 microM) and SB203580 (25 microM) inhibited HFn-induced cell migration, suggesting an important role of p38 MAPK in HFn-induced migration. Taken together, these results suggest that the inhibitory effect of CRP is mediated by blocking MAPK. In summary, this study demonstrates that CRP directly modulates human lung fibroblasts migration. Thus, CRP may contribute to regulation of wound healing and may be endogenous antifibrotic factor acting on lung fibrosis.

  7. Microtopography and flow modulate the direction of endothelial cell migration.

    PubMed

    Uttayarat, P; Chen, M; Li, M; Allen, F D; Composto, R J; Lelkes, P I

    2008-02-01

    The migration of vascular endothelial cells under flow can be modulated by the addition of chemical or mechanical stimuli. The aim of this study was to investigate how topographic cues derived from a substrate containing three-dimensional microtopography interact with fluid shear stress in directing endothelial cell migration. Subconfluent bovine aortic endothelial cells were seeded on fibronectin-coated poly(dimethylsiloxane) substrates patterned with a combinatorial array of parallel and orthogonal microgrooves ranging from 2 to 5 microm in width at a constant depth of 1 microm. During a 4-h time-lapse observation in the absence of flow, the majority of the prealigned cells migrated parallel to the grooves with the distribution of their focal adhesions (FAs) depending on the groove width. No change in this migratory pattern was observed after the cells were exposed to moderate shear stress (13.5 dyn/cm(2)), irrespective of groove direction with respect to flow. After 4-h exposure to high shear stress (58 dyn/cm(2)) parallel to the grooves, the cells continued to migrate in the direction of both grooves and flow. By contrast, when microgrooves were oriented perpendicular to flow, most cells migrated orthogonal to the grooves and downstream with flow. Despite the change in the migration direction of the cells under high shear stress, most FAs and actin microfilaments maintained their original alignment parallel to the grooves, suggesting that topographic cues were more effective than those derived from shear stress in guiding the orientation of cytoskeletal and adhesion proteins during the initial exposure to flow.

  8. Methylene blue modulates transendothelial migration of peripheral blood cells.

    PubMed

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V; Stock, Ulrich A; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  9. Methylene Blue Modulates Transendothelial Migration of Peripheral Blood Cells

    PubMed Central

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V.; Stock, Ulrich A.; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  10. Procyanidin A2 Modulates IL-4-Induced CCL26 Production in Human Alveolar Epithelial Cells

    PubMed Central

    Coleman, Sara L.; Kruger, Marlena C.; Sawyer, Gregory M.; Hurst, Roger D.

    2016-01-01

    Allergic asthma is an inflammatory lung disease that is partly sustained by the chemokine eotaxin-3 (CCL26), which extends eosinophil migration into tissues long after allergen exposure. Modulation of CCL26 could represent a means to mitigate airway inflammation. Here we evaluated procyanidin A2 as a means of modulating CCL26 production and investigated interactions with the known inflammation modulator, Interferon γ (IFNγ). We used the human lung epithelial cell line A549 and optimized the conditions for inducing CCL26. Cells were exposed to a range of procyanidin A2 or IFNγ concentrations for varied lengths of time prior to an inflammatory insult of interleukin-4 (IL-4) for 24 h. An enzyme-linked immunosorbent assay was used to measure CCL26 production. Exposing cells to 5 μM procyanidin A2 (prior to IL-4) reduced CCL26 production by 35% compared with control. Greatest inhibition by procyanidin A2 was seen with a 2 h exposure prior to IL-4, whereas IFNγ inhibition was greatest at 24 h. Concomitant incubation of procyanidin A2 and IFNγ did not extend the inhibitory efficacy of procyanidin A2. These data provide evidence that procyanidin A2 can modulate IL-4-induced CCL26 production by A549 lung epithelial cells and that it does so in a manner that is different from IFNγ. PMID:27845745

  11. Modulation of human eosinophil polymorphonuclear leukocyte migration and function.

    PubMed Central

    Goetzl, E. J.

    1976-01-01

    Eosinophil migration toward a concentration gradient of a chemotactic factor is regulated at four levels. Diverse immunologic pathways generate stimuli with eosinophil chemotactic activity, including the complement products C5a and a fragment of C3a and the peptide products of mast cells and basophils activated by IgE-mediated reactions, such as eosinophil chemotactic factor of anaphylaxis (ECF-A) and other oligopeptides. The intrinsic preferential leukocyte activity of the chemotactic stimuli represents the second level of modulation, with ECF-A and other mast cell-derived peptides exhibiting the most selective action on eosinophils. The third level of control of eosinophil chemotaxis is composed of inactivators and inhibitors of chemotactic stimuli and is exemplified by degradation of C5a by anaphylatoxin inactivator or chemotactic factor inactivator and of ECF-A by carboxypeptidase-A or aminopeptidases. The activity of ECF-A is uniquely suppressed by equimolar quantities of its NH2- terminal tripeptide substituent, presumably by eosinophil membrane receptor competition. Factors comprising the fourth level of regulation, which alter eosinophil responsiveness to chemotactic stimuli, include the chemotactic factors themselves, through deactivation; nonchemotactic inhibitors such as the COOH-terminal tripeptide substituent of ECF-A, the neutrophil-immobilizing factor (NIF), the phagocytosis-enhancing factor Thr-Lys-Pro-Arg, and histamine at concentrations greater than 400 ng/ml; and nonchemotactic enhancing principles represented by ascorbate and by histamine at concentrations of 30 ng/ml or less. Local concentrations of eosinophils called to and immobilized at the site of a hypersenitivity reaction may express their regulatory functions by degrading the chemical mediators elaborated including histamine, slow-reacting substance of anaphylaxis (SRS-A), and platelet-activating factor (PAF) by way of their content of histaminase, arylsulfatase B, and phospholipase D

  12. Annexin A2 Limits Neutrophil Transendothelial Migration by Organizing the Spatial Distribution of ICAM-1.

    PubMed

    Heemskerk, Niels; Asimuddin, Mohammed; Oort, Chantal; van Rijssel, Jos; van Buul, Jaap D

    2016-03-15

    ICAM-1 is required for firm adhesion of leukocytes to the endothelium. However, how the spatial organization of endothelial ICAM-1 regulates leukocyte adhesion is not well understood. In this study, we identified the calcium-effector protein annexin A2 as a novel binding partner for ICAM-1. ICAM-1 clustering promotes the ICAM-1-annexin A2 interaction and induces translocation of ICAM-1 into caveolin-1-rich membrane domains. Depletion of endothelial annexin A2 using RNA interference enhances ICAM-1 membrane mobility and prevents the translocation of ICAM-1 into caveolin-1-rich membrane domains. Surprisingly, this results in increased neutrophil adhesion and transendothelial migration under flow conditions and reduced crawling time, velocity, and lateral migration distance of neutrophils on the endothelium. In conclusion, our data show that annexin A2 limits neutrophil transendothelial migration by organizing the spatial distribution of ICAM-1.

  13. Regulator of calcineurin 1 modulates cancer cell migration in vitro.

    PubMed

    Espinosa, Allan V; Shinohara, Motoo; Porchia, Leonardo M; Chung, Yun Jae; McCarty, Samantha; Saji, Motoyasu; Ringel, Matthew D

    2009-01-01

    Metastasis suppressors and other regulators of cell motility play an important role in tumor invasion and metastases. We previously identified that activation of the G protein coupled receptor 54 (GPR54) by the metastasis suppressor metastin inhibits cell migration in association with overexpression of Regulator of calcineurin 1 (RCAN1), an endogenous regulator of calcineurin. Calcineurin inhibitors also blocked cell migration in vitro and RCAN1 protein levels were reduced in nodal metastases in thyroid cancer. The purpose of the current study was to determine directly if RCAN1 functions as a motility suppressor in vitro. Several cancer cell lines derived from different cancer types with different motility rates were evaluated for RCAN1 expression levels. Using these systems we determined that reduction of endogenous RCAN1 using siRNA resulted in an increase in cancer cell motility while expression of exogenous RCAN1 reduced cell motility. In one cell line with a high migratory rate, the stability of exogenously expressed RCAN1 protein was reduced and was rescued by treatment with a proteasome inhibitor. Finally, overexpression of RCAN1 was associated with an increase in cell adhesion to collagen IV and reduced calcineurin activity. In summary, we have demonstrated that the expression of exogenous RCAN1 reduces migration and alters adhesion; and that the loss of endogenous RCAN1 leads to an increase in migration in the examined cancer cell lines. These results are consistent with a regulatory role for RCAN1 in cancer cell motility in vitro.

  14. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition.

    PubMed

    Shukla, V C; Higuita-Castro, N; Nana-Sinkam, P; Ghadiali, S N

    2016-05-01

    Biomechanical properties of the tumor microenvironment, including matrix/substrate stiffness, play a significant role in tumor evolution and metastasis. Epithelial to Mesenchymal Transition (EMT) is a fundamental biological process that is associated with increased cancer cell migration and invasion. The goal of this study was to investigate (1) how substrate stiffness modulates the migration behaviors of lung adenocarcinoma cells (A549) and (2) if stiffness-induced changes in cell migration correlate with biochemical markers of EMT. Collagen-coated polydimethylsiloxane (PDMS) substrates and an Ibidi migration assay were used to investigate how substrate stiffness alters the migration patterns of A549 cells. RT-PCR, western blotting and immunofluorescence were used to investigate how substrate stiffness alters biochemical markers of EMT, that is, E-cadherin and N-cadherin, and the phosphorylation of focal adhesion proteins. Increases in substrate stiffness led to slower, more directional migration but did not alter the biochemical markers of EMT. Interestingly, growth factor (i.e., Transforming Growth Factor-β) stimulation resulted in similar levels of EMT regardless of substrate stiffness. We also observed decreased levels of phosphorylated focal adhesion kinase (FAK) and paxillin on stiffer substrates which correlated with slower cell migration. These results indicate that substrate stiffness modulates lung cancer cell migration via focal adhesion signaling as opposed to EMT signaling.

  15. Wound re-epithelialization: modulating keratinocyte migration in wound healing.

    PubMed

    Raja; Sivamani, K; Garcia, Miki Shirakawa; Isseroff, R Rivkah

    2007-05-01

    An essential feature of a healed wound is the restoration of an intact epidermal barrier through wound epithelialization, also known as re-epithelialization. The directed migration of keratinocytes is critical to wound epithelialization and defects in this function are associated with the clinical phenotype of chronic non-healing wounds. A complex balance of signaling factors and surface proteins are expressed and regulated in a temporospatial manner that promote keratinocyte motility and survival to activate wound re-epithelialization. The majority of this review focuses on the mechanisms that regulate keratinocyte migration in the re-epithelialization process. This includes a review of cell attachments via desmosomes, hemidesmosomes, and integrins, the expression of keratins, the role of growth factors, cytokines and chemokines, eicosanoids, oxygen tension, antimicrobial peptides, and matrix metalloproteinases. Also reviewed are recently emerging novel mediators of keratinocyte motility including the role of electric fields, and signaling via the acetylcholine and beta-adrenergic receptors. These multiple regulators impact the ability of keratinocytes to migrate from the wound edge or other epidermal reservoirs to efficiently re-epithelialize a breach in the integrity of the epidermis. New discoveries will continue to uncover the elegant network of events that result in restoration of epidermal integrity and complete the wound repair process.

  16. PlexinA2 and Sema6A are required for retinal progenitor cell migration.

    PubMed

    Belle, Morgane; Parray, Aijaz; Belle, Martin; Chédotal, Alain; Nguyen-Ba-Charvet, Kim Tuyen

    2016-06-01

    In the vertebrate retina six types of neurons and one glial cell type are generated from multipotent retinal progenitor cells (RPCs) whose proliferation and differentiation are regulated by intrinsic and extrinsic factors. RPCs proliferate undergoing interkinetic nuclear migration within the neuroblastic layer, with their nuclei moving up and down along the apico-basal axis. Moreover, they only differentiate and therefore exit the cell cycle at the apical side of the neuroblastic layer. Sema6A and its receptors PlexinA4 and PlexinA2 control lamina stratification of the inner plexiform layer in the mouse retina. Nevertheless, their function in earlier developmental stages is still unknown. Here, we analyzed the embryonic retina of PlexinA2 and Sema6A knockout mice. Using time-lapse videomicroscopy we provide evidence that Sema6A/PlexinA2 signaling participates to interkinetic nuclear migration of RPCs around birth. When disrupted, RPCs migration is blocked at the apical side of the neuroblastic layer. This is the first evidence supporting a role for transmembrane molecules in the regulation of interkinetic nuclear migration in the mouse retina.

  17. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  18. Modulation of endothelial cell migration by ER stress and insulin resistance: a role during maternal obesity?

    PubMed

    Sáez, Pablo J; Villalobos-Labra, Roberto; Westermeier, Francisco; Sobrevia, Luis; Farías-Jofré, Marcelo

    2014-01-01

    Adverse microenvironmental stimuli can trigger the endoplasmic reticulum (ER) stress pathway, which initiates the unfolded protein response (UPR), to restore protein-folding homeostasis. Several studies show induction of ER stress during obesity. Chronic UPR has been linked to different mechanisms of disease in obese and diabetic individuals, including insulin resistance (IR) and impaired angiogenesis. Endothelial cell (EC) migration is an initial step for angiogenesis, which is associated with remodeling of existing blood vessels. EC migration occurs according to the leader-follower model, involving coordinated processes of chemotaxis, haptotaxis, and mechanotaxis. Thus, a fine-tuning of EC migration is necessary to provide the right timing to form the required vessels during angiogenesis. ER stress modulates EC migration at different levels, usually impairing migration and angiogenesis, although different effects may be observed depending on the tissue and/or microenvironment. In the context of pregnancy, maternal obesity (MO) induces IR in the offspring. Interestingly, several proteins associated with obesity-induced IR are also involved in EC migration, providing a potential link with the ER stress-dependent alterations observed in obese individuals. Different signaling cascades that converge on cytoskeleton regulation directly impact EC migration, including the Akt and/or RhoA pathways. In addition, ER is the main intracellular reservoir for Ca(2+), which plays a pivotal role during EC migration. Therefore, ER stress-related alterations in Ca(2+) signaling or Ca(2+) levels might also produce distorted EC migration. However, the above findings have been studied in the context of adult obesity, and no information has been reported regarding the effect of MO on fetal EC migration. Here we summarize the state of knowledge about the possible mechanisms by which ER stress and IR might impact EC migration and angiogenesis in fetal endothelium exposed to MO during

  19. Alkylindole-sensitive receptors modulate microglial cell migration and proliferation

    PubMed Central

    Fung, Susan; Cherry, Allison E.; Xu, Cong; Stella, Nephi

    2015-01-01

    Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes. Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2. Previous studies reported that WIN-2 activates an additional unknown GPCR that is not activated by plant-derived cannabinoids, and evidence indicates that microglia express these receptors. Detailed studies on the role of AI-sensitive receptors in microglial cell activation were difficult as no selective pharmacological tools were available. Here, three newly-developed AI analogues allowed us to determine if microglia express AI-sensitive receptors and if so, study how they regulate the microglial cell activation process. We found that mouse microglia in primary culture express functional AI-sensitive receptors as measured by radioligand binding and changes in intracellular cAMP levels, and that these receptors control both basal and ATP-stimulated migration. AI analogues inhibit cell proliferation stimulated by macrophage-colony stimulating factor (M-CSF) without affecting basal cell proliferation. Remarkably, AI analogues do not control the expression of effector proteins characteristic of M1 or M2 phenotypes; yet activating microglia with M1 and M2 cytokines reduces the microglial response to AI analogues. Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process. Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process. PMID:25914169

  20. Modulation of cell spreading and migration by pp125FAK phosphorylation.

    PubMed Central

    Sankar, S.; Mahooti-Brooks, N.; Hu, G.; Madri, J. A.

    1995-01-01

    We provide evidence for both matrix-dependent and pp60v-src tyrosine kinase-dependent modulation of cell migration via tyrosine phosphorylation of pp125FAK, a focal adhesion kinase, thought to be involved in integrin-mediated signaling. Enhanced pp125FAK tyrosine phosphorylation and cell spreading was associated with decreased migration. Cells plated on type I collagen were less spread and exhibited lower levels of pp125FAK tyrosine phosphorylation and faster migration rates compared with cells on fibronectin that were well spread, which exhibited enhanced levels of pp125FAK tyrosine phosphorylation and slower migration rates. Inside-out signaling via expression of pp60v-src or its kinase-negative mutant caused a decrease in cell migration by changing the extent of pp125FAK tyrosine phosphorylation to above or below the levels obtained with control cells plated on fibronectin. Hence, pp125FAK tyrosine phosphorylation appears to play a role in the signaling cascade pathway involved in regulation of extracellular matrix-modulated, integrin-mediated cell migration. Images Figure 1 Figure 2 Figure 3 PMID:7677174

  1. Higher-order modulations of fs laser pulses for GHz frequency domain photon migration system.

    PubMed

    Lin, Huang-Yi; Cheng, Nanyu; Tseng, Sheng-Hao; Chan, Ming-Che

    2014-02-24

    Except the fundamental modulation frequency, by higher-order-harmonic modulations of mode-locked laser pulses and a simple frequency demodulation circuit, a novel approach to GHz frequency-domain-photon-migration (FDPM) system was reported. With this novel approach, a wide-band modulation frequency comb is available without any external modulation devices and the only electronics to extract the optical attenuation and phase properties at a selected modulation frequency in FDPM systems are good mixers and lock-in devices. This approach greatly expands the frequency range that could be achieved by conventional FDPM systems and suggests that our system could extract much more information from biological tissues than the conventional FDPM systems. Moreover, this demonstration will be beneficial for discerning the minute change of tissue properties.

  2. Multi-factorial modulation of IGD motogenic potential in MSF (migration stimulating factor).

    PubMed

    Ellis, Ian R; Jones, Sarah J; Staunton, David; Vakonakis, Ioannis; Norman, David G; Potts, Jennifer R; Milner, Caroline M; Meenan, Nicola A G; Raibaud, Sophie; Ohea, Go; Schor, Ana M; Schor, Seth L

    2010-09-10

    Migration Stimulating Factor (MSF) is a genetically truncated isoform of fibronectin (Fn). MSF is a potent stimulator of fibroblast migration, whereas full length Fn is devoid of motogenic activity. MSF and Fn contain four IGD motifs, located in the 3rd, 5th, 7th and 9th type I modules; these modules are referred to as (3)FnI, (5)FnI, (7)FnI and (9)FnI, respectively. We have previously reported that mutation of IGD motifs in modules (7)FnI and (9)FnI of MSF is sufficient to completely abolish the motogenic response of target adult skin fibroblasts. We now report that the IGD sequences in (3)FnI and (5)FnI are also capable of exhibiting motogenic activity when present within fragments of MSF. When present within (1-5)FnI, these sequences require the presence of serum or vitronectin for their motogenic activity to be manifest, whereas the IGD sequences in (7)FnI and (9)FnI are bioactive in the absence of serum factors. All MSF and IGD-containing peptides stimulated the phosphorylation of the integrin binding protein focal adhesion kinase (FAK) but did not necessarily affect migration. These results suggest that steric hindrance determines the motogenic activity of MSF and Fn, and that both molecules contain cryptic bioactive fragments.

  3. Modulation of Cell Migration and Invasiveness by Tumor Suppressor TSC2 in Lymphangioleiomyomatosis

    PubMed Central

    Goncharova, Elena A.; Goncharov, Dmitriy A.; Lim, Poay N.; Noonan, Daniel; Krymskaya, Vera P.

    2006-01-01

    The loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle–like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine the role of tumor suppressor TSC2 in the neoplastic potential of LAM cells. We show that primary cultures of human LAM cells exhibit increased migratory activity and invasiveness, which is abolished by TSC2 re-expression. We found that TSC2 also inhibits cell migration through its N-terminus, independent of its GTPase-activating protein activity. LAM cells show increased stress fiber and focal adhesion formation, which is attenuated by TSC2 re-expression. The small GTPase RhoA is activated in LAM cells compared with normal human mesenchymal cells. Pharmacologic inhibition of Rho activity abrogates LAM cell migration; RhoA activity was also abolished by TSC2 re-expression or TSC1 knockdown with specific siRNA. These data demonstrate that TSC2 controls cell migration through its N-terminus by associating with TSC1 and regulating RhoA activity, suggesting that TSC2 may play a critical role in modulating cell migration and invasiveness, which contributes to the pathobiology of LAM. PMID:16388022

  4. Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors

    PubMed Central

    Liu, Xiuxin; Hashimoto-Torii, Kazue; Torii, Masaaki; Ding, Chen; Rakic, Pasko

    2010-01-01

    During mitotic division in the telencephalic proliferative ventricular zone (VZ), the nuclei of the neural precursors move basally away from the ventricular surface for DNA synthesis, and apically return to the surface for mitotic division; a process known as interkinetic migration or “to-and-fro” nuclear translocation. The cell, which remains attached to the ventricular surface, either continues cycling, or exits the cycle and migrates to the subventricular zone (SVZ) or the developing cortical plate. While gap junctions/hemichannels are known to modulate DNA synthesis via Ca2+ waves, the role of Ca+ oscillations and the mechanism of nuclear translocation in the VZ precursors are unclear. Here we provide evidence that during apical nuclear migration, VZ precursors display dynamic spontaneous Ca2+ transients, which depend on functional gap junctions/hemichannels via ATP release and Ca2+ mobilizing messenger diffusion. Furthermore, we found that blocking gap junctions/hemichannels or shRNA mediated knockdown of connexin 43 (Cx43) retards the apically directed interkinetic nuclear migration accompanied with changes in the nuclear length/width ratio. In addition, we demonstrated that blocking functional gap junctions/hemichannels induces phosphorylation of small GTPase cdc42 in the VZ precursors. The basal phase of interkinetic migration is much slower and appears to be mediated passively by mechanical forces after cell division. Our findings indicate that functional interference with gap junctions/hemichannels during embryonic development may lead to abnormal corticogenesis and dysfunction of the cerebral cortex in adult organisms. PMID:20335455

  5. KCa3.1 Modulates Neuroblast Migration Along the Rostral Migratory Stream (RMS) In Vivo

    PubMed Central

    Turner, Kathryn L.; Sontheimer, Harald

    2014-01-01

    From the subventricular zone (SVZ), neuronal precursor cells (NPCs), called neuroblasts, migrate through the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). Ion channels regulate neuronal migration during development, yet their role in migration through the adult RMS is unknown. To address this question, we utilized Nestin-CreERT2/R26R-YFP mice to fluorescently label neuroblasts in the adult. Patch-clamp recordings from neuroblasts reveal K+ currents that are sensitive to intracellular Ca2+ levels and blocked by clotrimazole and TRAM-34, inhibitors of intermediate conductance Ca2+-activated K+ (KCa3.1) channels. Immunolabeling and electrophysiology show KCa3.1 expression restricted to neuroblasts in the SVZ and RMS, but absent in OB neurons. Time-lapse confocal microscopy in situ showed inhibiting KCa3.1 prolonged the stationary phase of neuroblasts' saltatory migration, reducing migration speed by over 50%. Both migration and KCa3.1 currents could also be inhibited by blocking Ca2+ influx via transient receptor potential (TRP) channels, which, together with positive immunostaining for transient receptor potential canonical 1 (TRPC1), suggest that TRP channels are an important Ca2+ source modulating KCa3.1 activity. Finally, injecting TRAM-34 into Nestin-CreERT2/R26R-YFP mice significantly reduced the number of neuroblasts that reached the OB, suggesting an important role for KCa3.1 in vivo. These studies describe a previously unrecognized protein in migration of adult NPCs. PMID:23585521

  6. Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration

    PubMed Central

    Falnikar, Aditi; Tole, Shubha; Baas, Peter W.

    2011-01-01

    Kinesin-5 (also called Eg5 or kif11) is a homotetrameric motor protein that functions by modulating microtubule (MT)–MT interactions. In the case of mitosis, kinesin-5 slows the rate of separation of the half-spindles. In the case of the axon, kinesin-5 limits the frequency of transport of short MTs, and also limits the rate of axonal growth. Here we show that experimental inhibition of kinesin-5 in cultured migratory neurons results in a faster but more randomly moving neuron with a shorter leading process. As is the case with axons of stationary neurons, short MT transport frequency is notably enhanced in the leading process of the migratory neuron when kinesin-5 is inhibited. Conversely, overexpression of kinesin-5, both in culture and in developing cerebral cortex, causes migration to slow and even cease. Regions of anti-parallel MT organization behind the centrosome were shown to be especially rich in kinesin-5, implicating these regions as potential sites where kinesin-5 forces may be especially relevant. We posit that kinesin-5 acts as a “brake” on MT–MT interactions that modulates the advance of the entire MT apparatus. In so doing, kinesin-5 regulates the rate and directionality of neuronal migration and possibly the cessation of migration when the neuron reaches its destination. PMID:21411631

  7. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    PubMed

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  8. Endogenous migration modulators as parent compounds for the development of novel cardiovascular and anti-inflammatory drugs

    PubMed Central

    Poller, Wolfgang; Rother, Madlen; Skurk, Carsten; Scheibenbogen, Carmen

    2012-01-01

    Development of novel cell migration modulators for anti-inflammatory and cardiovascular therapy is a complex task since any modulator will necessarily interfere with a balanced system of physiological regulators directing proper positioning of diverse immune cell types within the body. Whereas this shall serve efficient pathogen elimination, lack of proper control over these processes may result in counterproductive chronic inflammation and progressive tissue injury instead of healing. Prediction of the therapeutic potential or side effects of any migration modulator is not possible based on theoretical considerations alone but needs to be experimentally evaluated in preclinical disease models and by clinical studies. Here, we briefly summarize basic mechanism of cell migration, and groups of synthetic drugs currently in use for migration modulation. We then discuss one fundamental problem encountered with single-target approaches that arises from the complexity of any inflammation, with multiple interacting and often redundant factors being involved. This issue is likely to arise for any class of therapeutic agent (small molecules, peptides, antibodies, regulatory RNAs) addressing a single gene or protein. Against this background of studies on synthetic migration modulators addressing single targets, we then discuss the potential of endogenous proteins as therapeutic migration modulators, or as parent compounds for the development of mimetic drugs. Regulatory proteins of this type commonly address multiple receptors and signalling pathways and act upon the immune response in a phase-specific manner. Based on recent evidence, we suggest investigation of such endogenous migration modulators as novel starting points for anti-inflammatory and cardiovascular drug development. PMID:22035209

  9. Modulation of mesangial cell migration by extracellular matrix components. Inhibition by heparinlike glycosaminoglycans

    SciTech Connect

    Person, J.M.; Lovett, D.H.; Raugi, G.J.

    1988-12-01

    Extension of mesangial cells (MC) into the pericapillary space is a pathologic response seen in several forms of glomerulonephritis. This process may involve both cytoplasmic extension by MC and actual cellular migration. For investigation of whether extracellular matrix factors could modulate this process, the migratory responses of rat MC were quantitatively examined using a cell culture model. Denuding (wounding) a portion of a confluent culture of MC was followed by migration of mesangial cells into the denuded area. The expected proliferative response to this treatment was blocked by irradiation. The migratory response began within 8 hours of wounding and continued for at least 80 hours. The MC migratory response was specifically inhibited in a dose-dependent and reversible manner by heparin and heparinlike glycosaminoglycans (GAGs). Chondroitin sulfates and hyaluronic acid did not significantly inhibit MC migration. Glomerular basement membrane heparinlike GAGs may normally prevent MC extension into the pericapillary space. Changes in the density or composition of these substances during glomerular inflammatory processes could permit the development of MC pericapillary extensions and thereby lead to further alterations in basement membrane integrity.

  10. The palmitoylation state of PMP22 modulates epithelial cell morphology and migration.

    PubMed

    Zoltewicz, Susie J; Lee, Sooyeon; Chittoor, Vinita G; Freeland, Steven M; Rangaraju, Sunitha; Zacharias, David A; Notterpek, Lucia

    2012-12-03

    PMP22 (peripheral myelin protein 22), also known as GAS 3 (growth-arrest-specific protein 3), is a disease-linked tetraspan glycoprotein of peripheral nerve myelin and constituent of intercellular junctions in epithelia. To date, our knowledge of the post-translational modification of PMP22 is limited. Using the CSS-Palm 2.0 software we predicted that C85 (cysteine 85), a highly conserved amino acid located between the second and third transmembrane domains, is a potential site for palmitoylation. To test this, we mutated C85S (C85 to serine) and established stable cells lines expressing the WT (wild-type) or the C85S-PMP22. In Schwann and MDCK (Madin-Darby canine kidney) cells mutating C85 blocked the palmitoylation of PMP22, which we monitored using 17-ODYA (17-octadecynoic acid). While palmitoylation was not necessary for processing the newly synthesized PMP22 through the secretory pathway, overexpression of C85S-PMP22 led to pronounced cell spreading and uneven monolayer thinning. To further investigate the functional significance of palmitoylated PMP22, we evaluated MDCK cell migration in a wound-healing assay. While WT-PMP22 expressing cells were resistant to migration, C85S cells displayed lamellipodial protrusions and migrated at a similar rate to vector control. These findings indicate that palmitoylation of PMP22 at C85 is critical for the role of the protein in modulating epithelial cell shape and motility.

  11. TGFβ2 Differentially Modulates Smooth Muscle Cell Proliferation and Migration in Electrospun Gelatin-Fibrinogen constructs

    PubMed Central

    Ardila, D. C.; Tamimi, E.; Danford, F.L.; Haskett, D. G.; Kellar, R. S.; Doetschman, T.; Vande Geest, J.P.

    2014-01-01

    A main goal of tissue engineering is the development of scaffolds that replace, restore and improve injured tissue. These scaffolds have to mimic natural tissue, constituted by an extracellular matrix (ECM) support, cells attached to the ECM, and signaling molecules such as growth factors that regulate cell function. In this study we created electrospun flat sheet scaffolds using different compositions of gelatin and fibrinogen. Smooth muscle cells (SMCs) were seeded on the scaffolds, and proliferation and infiltration were evaluated. Additionally, different concentrations of Transforming Growth Factor-beta2 (TGFβ2) were added to the medium with the aim of elucidating its effect on cell proliferation, migration and collagen production. Our results demostrated that a scafold with a composition of 80% gelatin-20% fibrinogen is suitable for tissue engineering applications since it promotes cell growth and migration. The addition of TGFβ2 at low concentrations (≤1ng/ml) to the culture medium resulted in an increase in SMC proliferation and scaffold infiltration, and in the reduction of collagen production. In contrast, TGFβ2 at concentrations >1ng/ml inhibited cell proliferation and migration while stimulating collagen production. According to our results TGFβ2 concentration has a differential effect on SMC function and thus can be used as a biochemical modulator that can be beneficial for tissue engineering applications. PMID:25453947

  12. LIM and SH3 protein-1 modulates CXCR2-mediated cell migration.

    PubMed

    Raman, Dayanidhi; Sai, Jiqing; Neel, Nicole F; Chew, Catherine S; Richmond, Ann

    2010-04-19

    The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as "CXCR2 chemosynapse". Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. We demonstrate here for the first time that LASP-1 is a key component of the "CXCR2 chemosynapse" and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis

  13. LIM and SH3 Protein -1 Modulates CXCR2-Mediated Cell Migration

    PubMed Central

    Raman, Dayanidhi; Sai, Jiqing; Neel, Nicole F.; Chew, Catherine S.; Richmond, Ann

    2010-01-01

    Background The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as “CXCR2 chemosynapse”. Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. Methodology/Principal Findings We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. Conclusions/Significance We demonstrate here for the first time that LASP-1 is a key component of the “CXCR2 chemosynapse” and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4

  14. Hint1 suppresses migration and invasion of hepatocellular carcinoma cells in vitro by modulating girdin activity.

    PubMed

    Wu, Xue-Song; Bao, Tian-Hao; Ke, Yang; Sun, De-Yun; Shi, Zhi-Tian; Tang, Hao-Ran; Wang, Lin

    2016-11-01

    Histidine triad nucleotide-binding protein 1 (Hint1) is a haploinsufficient tumor suppressor gene. Its role in cancer cell migration has not been previously speculated. In the current study, we examined the expression of Hint1 in metastatic and non-metastatic lymph nodes of hepatocellular carcinoma (HCC) patients and further elucidated the effect of Hint1 expression on girdin expression and phosphorylation of AKT and ERK1/2 and on the migration of HCC cells in vitro. Expression of Hint1 and girdin in primary HCC tissues and metastatic and non-metastatic lymph nodes was determined by RT-PCR assays. HepG2 cells were transfected with plasmid vectors overexpressing Hint1 or small interfering RNA (siRNA) targeting Hint1, girdin, Hint1 plus girdin, or the scrambled RNA. Migration and invasion of HCC cells were examined by wound and Transwell assays. Protein expression was detected by immunofluorescence and immunoblotting assays. RT-PCR assays revealed that the messenger RNA (mRNA) transcript levels of Hint1 were markedly lower than those of primary HCC tissues and non-metastatic lymph nodes (P < 0.01). By contrast, the mRNA transcript levels of girdin were significantly higher than non-metastatic lymph nodes (P < 0.05). Furthermore, siRNA knockdown of HINT1 resulted in a significant increase in the mRNA transcript levels of girdin in HepG2 cells (P < 0.05). Wound assays and Transwell assays showed that Hint1 knockdown by siRNA significantly enhanced the migration and invasion of HepG2 cells compared to HepG2 cells transfected with scrambled siRNA. Hint1 knockdown also led to significantly increased phosphorylation of girdin and AKT in HepG2 cells (P < 0.05), which, however, was effectively aborted by girdin knockdown by siRNA (P < 0.05). Hint1 is downregulated in metastatic lymph nodes and is implicated in migration and invasion of HCC cells in vitro by modulating girdin and AKT expression and phosphorylation. The Hint1-girdin-AKT signaling axis should be

  15. Modulation of intestinal epithelial cell proliferation, migration, and differentiation in vitro by Astragalus polysaccharides.

    PubMed

    Zhang, Chun Li; Ren, Hui Jun; Liu, Meng Meng; Li, Xiao Gai; Sun, De Li; Li, Nan; Ming, Liang

    2014-01-01

    Previous studies have shown that Astragalus polysaccharides (APS) can be used to treat general gastrointestinal disturbances including intestinal mucosal injury. However, the mechanism by which APS mediate this effect is unclear. In the present study, the effects of APS on proliferation, migration, and differentiation of intestinal epithelial cells (IEC-6) were assessed using an in vitro wounding model and colorimetric thiazolyl blue (MTT) assays. The effect of APS on IEC-6 cell differentiation was observed using a light microscope and scanning electron microscope, and the expression of differentiation-specific markers of IEC-6 cells, such as cytokeratin 18 (CK18), alkaline phosphatase (ALP), tight junction protein ZO-2, and sucrase-isomaltase (SI), was determined by immunofluorescence assay (IFA) and real-time PCR. In addition, APS-induced signaling pathways in IEC-6 cells were characterized. Our results indicated that APS significantly enhance migration and proliferation of IEC-6 cells in vitro. APS-treated IEC-6 cells have numerous microvilli on their apical surface and also highly express CK18, ALP, ZO-2, and SI. Moreover, APS-treated IEC-6 cells, in which the activity and expression level of ornithine decarboxylase (ODC) were significantly elevated, also exhibited an increase in cellular putrescine, whereas no significant increase in TGF-β levels was observed. These findings suggest that APS may enhance intestinal epithelial cell proliferation, migration, and differentiation in vitro by stimulating ODC gene expression and activity and putrescine production, independent of TGF-β. Exogenous administration of APS may provide a new approach for modulating intestinal epithelial wound restitution in vivo.

  16. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells.

    PubMed

    Piccolella, Margherita; Crippa, Valeria; Messi, Elio; Tetel, Marc J; Poletti, Angelo

    2014-01-01

    In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status.

  17. Migration of the subtropical front as a modulator of glacial climate.

    PubMed

    Bard, Edouard; Rickaby, Rosalind E M

    2009-07-16

    Ice cores extracted from the Antarctic ice sheet suggest that glacial conditions, and the relationship between isotopically derived temperatures and atmospheric PCO(2) have been constant over the last 800,000 years of the Late Pleistocene epoch. But independent lines of evidence, such as the extent of Northern Hemisphere ice sheets, sea level and other temperature records, point towards a fluctuating severity of glacial periods, particularly during the more extreme glacial stadials centred around 340,000 and 420,000 years ago (marine isotope stages 10 and 12). Previously unidentified mechanisms therefore appear to have mediated the relationship between insolation, CO(2) and climate. Here we test whether northward migration of the subtropical front (STF) off the southeastern coast of South Africa acts as a gatekeeper for the Agulhas current, which controls the transport of heat and salt from the Indo-Pacific Ocean to the Atlantic Ocean. Using a new 800,000-year record of sea surface temperature and ocean productivity from ocean sediment core MD962077, we demonstrate that during cold stadials (particularly marine isotope stages 10 and 12), productivity peaked and sea surface temperature was up to 6 degrees C cooler than modern temperatures. This suggests that during these cooler stadials, the STF moved northward by up to 7 degrees latitude, nearly shutting off the Agulhas current. Our results, combined with faunal assemblages from the south Atlantic show that variable northwards migration of the Southern Hemisphere STF can modulate the severity of each glacial period by altering the strength of the Agulhas current carrying heat and salt to the Atlantic meridional overturning circulation. We show hence that the degree of northwards migration of the STF can partially decouple global climate from atmospheric partial pressure of carbon dioxide, P CO(2), and help to resolve the long-standing puzzle of differing glacial amplitudes within a consistent range of atmospheric

  18. Modulation of Intestinal Epithelial Cell Proliferation, Migration, and Differentiation In Vitro by Astragalus Polysaccharides

    PubMed Central

    Zhang, Chun Li; Ren, Hui Jun; Liu, Meng Meng; Li, Xiao Gai; Sun, De Li; Li, Nan; Ming, Liang

    2014-01-01

    Previous studies have shown that Astragalus polysaccharides (APS) can be used to treat general gastrointestinal disturbances including intestinal mucosal injury. However, the mechanism by which APS mediate this effect is unclear. In the present study, the effects of APS on proliferation, migration, and differentiation of intestinal epithelial cells (IEC-6) were assessed using an in vitro wounding model and colorimetric thiazolyl blue (MTT) assays. The effect of APS on IEC-6 cell differentiation was observed using a light microscope and scanning electron microscope, and the expression of differentiation-specific markers of IEC-6 cells, such as cytokeratin 18 (CK18), alkaline phosphatase (ALP), tight junction protein ZO-2, and sucrase-isomaltase (SI), was determined by immunofluorescence assay (IFA) and real-time PCR. In addition, APS-induced signaling pathways in IEC-6 cells were characterized. Our results indicated that APS significantly enhance migration and proliferation of IEC-6 cells in vitro. APS-treated IEC-6 cells have numerous microvilli on their apical surface and also highly express CK18, ALP, ZO-2, and SI. Moreover, APS-treated IEC-6 cells, in which the activity and expression level of ornithine decarboxylase (ODC) were significantly elevated, also exhibited an increase in cellular putrescine, whereas no significant increase in TGF-β levels was observed. These findings suggest that APS may enhance intestinal epithelial cell proliferation, migration, and differentiation in vitro by stimulating ODC gene expression and activity and putrescine production, independent of TGF-β. Exogenous administration of APS may provide a new approach for modulating intestinal epithelial wound restitution in vivo. PMID:25157577

  19. Neuroendocrine control of T cell development in mammals: role of growth hormone in modulating thymocyte migration.

    PubMed

    Savino, Wilson

    2007-09-01

    The thymus gland is a primary lymphoid organ, in which bone-marrow-derived T cell precursors undergo differentiation, eventually leading to migration of positively selected cells to the peripheral lymphoid organs. This differentiation occurs along with cell migration in the context of the thymic microenvironment, a three-dimensional network formed by epithelial cells, macrophages, dendritic cells, fibroblasts and extracellular matrix components. A series of data clearly shows that growth hormone (GH) pleiotropically modulates thymic functions. For example, GH upregulates proliferation of thymocytes and thymic epithelial cells. Accordingly, GH-transgenic mice, as well as animals and humans treated with exogenous GH, exhibit an enhanced cellularity in the organ. Growth hormone stimulates the secretion of thymic hormones, cytokines and chemokines by the thymic microenvironment, as well as the production of extracellular matrix proteins, leading to an increase in thymocyte migratory responses and intrathymic traffic of developing T cells. In addition, GH stimulates the in vivo export of thymocytes from the organ, as ascertained by studies with intrathymic injection of GH in normal mice and with GH-transgenic mice. Moreover, since GH is produced by thymocytes and thymic epithelial cells, which express GH receptors, we should consider that, in addition to the classic endocrine pathway, the GH control of the thymus may include an autocrine/paracrine pathway. Finally, since GH promotes a replenishment of the thymus and an increase of thymocyte export, it could be envisioned as a potential adjuvant therapeutic agent in the treatment of immunodeficiencies associated with thymic atrophy.

  20. An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments.

    PubMed

    Klemke, Martin; Kramer, Elisabeth; Konstandin, Mathias H; Wabnitz, Guido H; Samstag, Yvonne

    2010-09-01

    T cells infiltrate peripheral tissues to execute immunosurveillance and effector functions. For this purpose, T cells first migrate on the two-dimensional (2D) surface of endothelial cells to undergo transendothelial migration. Then they change their mode of movement to undergo migration within the three-dimensional (3D)-extracellular matrix of the infiltrated tissue. As yet, no molecular mechanisms are known, which control migration exclusively in either 2D or 3D environments. Here, we describe a signalling module that controls T-cell chemotaxis specifically in 3D environments. In chemotaxing T cells, Ras activity is spatially restricted to the lamellipodium. There, Ras initiates activation of MEK, which in turn inhibits LIM-kinase 1 activity, thereby allowing dephosphorylation of the F-actin-remodelling protein cofilin. Interference with this MEK-cofilin module by either inhibition of MEK or by knockdown of cofilin reduces speed and directionality of chemotactic migration in 3D-extracellular matrices, but not on 2D substrates. This MEK-cofilin module may have an important function in the tissue positioning of T cells during an immune response.

  1. Pharmacological Inhibition of polysialyltransferase ST8SiaII Modulates Tumour Cell Migration

    PubMed Central

    Al-Saraireh, Yousef M. J.; Sutherland, Mark; Springett, Bradley R.; Freiberger, Friedrich; Ribeiro Morais, Goreti; Loadman, Paul M.; Errington, Rachel J.; Smith, Paul J.; Fukuda, Minoru; Gerardy-Schahn, Rita; Patterson, Laurence H.; Shnyder, Steven D.; Falconer, Robert A.

    2013-01-01

    Polysialic acid (polySia), an α-2,8-glycosidically linked polymer of sialic acid, is a developmentally regulated post-translational modification predominantly found on NCAM (neuronal cell adhesion molecule). Whilst high levels are expressed during development, peripheral adult organs do not express polySia-NCAM. However, tumours of neural crest-origin re-express polySia-NCAM: its occurrence correlates with aggressive and invasive disease and poor clinical prognosis in different cancer types, notably including small cell lung cancer (SCLC), pancreatic cancer and neuroblastoma. In neuronal development, polySia-NCAM biosynthesis is catalysed by two polysialyltransferases, ST8SiaII and ST8SiaIV, but it is ST8SiaII that is the prominent enzyme in tumours. The aim of this study was to determine the effect of ST8SiaII inhibition by a small molecule on tumour cell migration, utilising cytidine monophosphate (CMP) as a tool compound. Using immunoblotting we showed that CMP reduced ST8iaII-mediated polysialylation of NCAM. Utilizing a novel HPLC-based assay to quantify polysialylation of a fluorescent acceptor (DMB-DP3), we demonstrated that CMP is a competitive inhibitor of ST8SiaII (Ki = 10 µM). Importantly, we have shown that CMP causes a concentration-dependent reduction in tumour cell-surface polySia expression, with an absence of toxicity. When ST8SiaII-expressing tumour cells (SH-SY5Y and C6-STX) were evaluated in 2D cell migration assays, ST8SiaII inhibition led to significant reductions in migration, while CMP had no effect on cells not expressing ST8SiaII (DLD-1 and C6-WT). The study demonstrates for the first time that a polysialyltransferase inhibitor can modulate migration in ST8SiaII-expressing tumour cells. We conclude that ST8SiaII can be considered a druggable target with the potential for interfering with a critical mechanism in tumour cell dissemination in metastatic cancers. PMID:23951351

  2. Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma

    PubMed Central

    Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula

    2015-01-01

    Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF

  3. Bi-Module Sensing Device to In Situ Quantitatively Detect Hydrogen Peroxide Released from Migrating Tumor Cells

    PubMed Central

    Yu, Ling; Tian, YunLi; Gao, AnXiu; Shi, ZhuanZhuan; Liu, YingShuai; Li, ChangMing

    2015-01-01

    Cell migration is one of the key cell functions in physiological and pathological processes, especially in tumor metastasis. However, it is not feasible to monitor the important biochemical molecules produced during cell migrations in situ by conventional cell migration assays. Herein, for the first time a device containing both electrochemical sensing and trans-well cell migration modules was fabricated to sensitively quantify biochemical molecules released from the cell migration process in situ. The fully assembled device with a multi-wall carbon nanotube/graphene/MnO2 nanocomposite functionalized electrode was able to successfully characterize hydrogen peroxide (H2O2) production from melanoma A375 cells, larynx carcinoma HEp-2 cells and liver cancer Hep G2 under serum established chemotaxis. The maximum concentration of H2O2 produced from A375, HEp-2 and Hep G2 in chemotaxis was 130±1.3 nM, 70±0.7 nM and 63±0.7 nM, respectively. While the time required reaching the summit of H2O2 production was 3.0, 4.0 and 1.5 h for A375, HEp-2 and Hep G2, respectively. By staining the polycarbonate micropore membrane disassembled from the device, we found that the average migration rate of the A375, HEp-2 and Hep G2 cells were 98±6%, 38±4% and 32 ±3%, respectively. The novel bi-module cell migration platform enables in situ investigation of cell secretion and cell function simultaneously, highlighting its potential for characterizing cell motility through monitoring H2O2 production on rare samples and for identifying underlying mechanisms of cell migration. PMID:26035641

  4. Modulation of integrin α4β1 by ADAM28 promotes lymphocyte adhesion and transendothelial migration.

    PubMed

    McGinn, Owen J; English, William R; Roberts, Stephanie; Ager, Ann; Newham, Peter; Murphy, Gillian

    2011-10-01

    ADAMs (a disintegrin and metalloproteinase) are a family of type I transmembrane glycoproteins related to snake venom metalloproteases and disintegrins. They are regulatory proteins that modulate intercellular adhesion and the bioavailability of growth factors, and have been implicated in many disease states, including cancer, immunity and inflammation. One member of the ADAM family, ADAM28, has been reported to bind to the integrin α4β1 in humans; however, the distribution of ADAM28 and the biological consequences of ADAM28-α4β1 interactions are yet to be fully elucidated. The expression of ADAM28 in human and murine tissues was examined by multiple Affymetrix microarray analyses, real-time RT-PCR (reverse transcription-PCR) and immunohistochemical staining. We found that ADAM28 has a relatively restricted expression pattern in mouse and human and is highly expressed in the B-lymphocyte lineage, including chronic lymphocytic leukaemic B-cells. The murine B-lymphoma line L1-2 and recombinant soluble murine ADAM28 were used to investigate ADAM28-α4β1 interactions. Our data reveal that ADAM28 binding to α4β1 is typical of integrin-ligand interactions, since it is attenuated by anti-functional integrin antibodies, and is enhanced by Mn2+ and the integrin mAb (monoclonal antibody) 9EG7. However, a key finding was that soluble ADAM28 unexpectedly enhanced α4β1-dependent cell adhesion to VCAM-1 (vascular cell adhesion molecule-1). In so doing ADAM28 was able to influence lymphocyte adhesion to, and migration through, endothelial monolayers, suggesting a physiological role for ADAM28 in regulating the specific spatial and temporal transendothelial migration of lymphocytes.

  5. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice.

    PubMed

    Samaddar, Sreyashi; Vazquez, Kizzy; Ponkia, Dipen; Toruno, Pedro; Sahbani, Karim; Begum, Sultana; Abouelela, Ahmed; Mekhael, Wagdy; Ahmed, Zaghloul

    2017-02-01

    Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords.NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a

  6. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics.

    PubMed

    Lyle, Karen S; Raaijmakers, Judith H; Bruinsma, Wytse; Bos, Johannes L; de Rooij, Johan

    2008-06-01

    Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.

  7. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    SciTech Connect

    Weber, Jonah M.; Chin, Michael

    2002-04-30

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which the IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.

  8. Plakophilin 2 Affects Cell Migration by Modulating Focal Adhesion Dynamics and Integrin Protein Expression

    PubMed Central

    Koetsier, Jennifer L.; Amargo, Evangeline V.; Todorović, Viktor; Green, Kathleen J.; Godsel, Lisa M.

    2014-01-01

    Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell–cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ~30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ~2× larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, β4 and β1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing β1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of β1 integrin and RhoA in integrating cell–cell and cell–substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis. PMID:23884246

  9. FixO3 project results, legacy and module migration to EMSO

    NASA Astrophysics Data System (ADS)

    Lampitt, Richard

    2017-04-01

    The fixed point open ocean observatory network (FixO3) project is an international project aimed at integrating in a single network all fixed point open ocean observatories operated by European organisations and to harmonise and coordinate technological, procedural and data management across the stations. The project is running for four years since September 2013 with 29 partners across Europe and a budget of 7M Euros and is now coming to its final phase. In contrast to several past programmes, the opportunity has arisen to ensure that many of the project achievements can migrate into the newly formed European Multidisciplinary Seafloor and water column Observatory (EMSO) research infrastructure. The final phase of the project will focus on developing a strategy to transfer the results in an efficient way to maintain their relevance and maximise their use. In this presentation, we will highlight the significant achievements of FixO3 over the past three years focussing on the modules which will be transferred to EMSO in the coming 9 months. These include: 1. Handbook of best practices for operating fixed point observatories 2. Metadata catalogue 3. Earth Virtual Observatory (EarthVO) for data visualisation and comparison 4. Open Ocean Observatory Yellow Pages (O3YP) 5. Training material for hardware, data and data products used

  10. N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition.

    PubMed

    Huang, Chunyue; Huang, Miaojuan; Chen, Wenxia; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2015-11-01

    N-acetylglucosaminyltransferase V (Gnt-V) has been linked to the migration of various human cancers. Recently we have found that inhibition of Gnt-V increases the radiosensitivity of cancer cells. However, the mechanisms by which Gnt-V mediates radiosensitivity and migration, especially in small cell lung cancer (SCLC) remain unknown. In our study, two SCLC cell lines (H1688 and H146) were used to investigate whether Gnt-V modulated the radiosensitivity and migration of SCLC cells through the epithelial-mesenchymal transition (EMT). The results showed that the expression of Gnt-V correlated with the N stage in patients with SCLC. Overexpression of Gnt-V led to a further increase in the relative viable cell number and survival fraction with a decrease in apoptosis rate and Bax/Bcl-2 ratio, when the cells were treated with irradiation. By contrast, knockdown of Gnt-V with irradiation resulted in a further decrease in the relative viable cell number and survival fraction but an increase in apoptosis rate and Bax/Bcl-2 ratio. Cells expressing high levels of Gnt-V increased migration whereas low levels of Gnt-V suppressed cell migration. Besides, the transient knockdown of ZEB2 led to an increase in radiosensitivity and an inhibition in the migration of SCLC cells. Furthermore, Gnt-V was negatively correlated with E-cadherin expression but positively correlated with N-cadherin, vimentin and ZEB2 expression. Finally, an in vivo study revealed that upregulation of Gnt-V caused tumour growth more quickly, as well as the expression of EMT-related markers (N-cadherin, vimentin and ZEB2). Taken together, the study suggested that an elevation of Gnt-V could lead to the radiosensitivity and migration of SCLC cells by inducing EMT, thereby highlighting Gnt-V as a potential therapeutic target for the prevention of EMT-associated tumour radioresistance and migration.

  11. MiR-211/STAT5A Signaling Modulates Migration of Mesenchymal Stem Cells to Improve its Therapeutic Efficacy.

    PubMed

    Hu, Xinyang; Chen, Panpan; Wu, Yan; Wang, Kan; Xu, Yinchuan; Chen, Han; Zhang, Ling; Wu, Rongrong; Webster, Keith A; Yu, Hong; Zhu, Wei; Wang, Jian'an

    2016-07-01

    Our previous study showed that the therapeutic effects of mesenchymal stem cells (MSCs) transplantation were improved by enhancing migration. MicroRNA-211 (miR-211) can modulate the migratory properties of some cell types by mechanisms that are not fully understood. This study was designed to investigate a possible role for miR-211 in MSC migration, and whether genetic manipulation of miR-211 in MSCs could be used to enhance its beneficial effects of cell transplantation. Transwell assays confirmed that MSCs migration of was significantly impaired by miR-211 knockdown but enhanced by miR-211 overexpression. MiR-211 overexpressing MSCs also exhibited significantly increased cell engraftment in the peri-infarct areas of female rat hearts 2 days after intravenous transplantation of male MSCs as shown by GFP tracking and SYR gene quantification. This conferred a significant decrease in infarct size and improved cardiac performance. By using a loss or gain of gene function approach, we demonstrated that miR-211 targeted STAT5A to modulate MSCs migration, possibly by interacting with MAPK signaling. Furthermore, the beneficial effects of miR-211 overexpression in MSCs were abolished by simultaneous overexpression of STAT5A whereas the negative effects of miR-211 silencing on MSC migration were rescued by simultaneous downregulation of STAT5A. Finally, using ChIP-PCR and luciferase assays, we provide novel evidence that STAT3 can directly bind to promoter elements that activate miR-211 expression. STAT3/miR-211/STAT5A signaling plays a key role in MSCs migration. Intravenous infusion of genetically modified miR-211 overexpressing MSCs conveys enhanced protection from adverse post-MI remodeling compared with unmodified MSCs. Stem Cells 2016;34:1846-1858.

  12. A space oddity: geographic and specific modulation of migration in Eudyptes penguins.

    PubMed

    Thiebot, Jean-Baptiste; Cherel, Yves; Crawford, Robert J M; Makhado, Azwianewi B; Trathan, Philip N; Pinaud, David; Bost, Charles-André

    2013-01-01

    Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual's migration path, including such factors as the intrinsic influence of each locality's paleoenvironment, thereby influencing animals' wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World's seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration

  13. A Space Oddity: Geographic and Specific Modulation of Migration in Eudyptes Penguins

    PubMed Central

    Thiebot, Jean-Baptiste; Cherel, Yves; Crawford, Robert J. M.; Makhado, Azwianewi B.; Trathan, Philip N.; Pinaud, David; Bost, Charles-André

    2013-01-01

    Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual’s migration path, including such factors as the intrinsic influence of each locality’s paleoenvironment, thereby influencing animals’ wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World’s seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent

  14. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour.

    PubMed

    Fokkelman, Michiel; Balcıoğlu, Hayri E; Klip, Janna E; Yan, Kuan; Verbeek, Fons J; Danen, Erik H J; van de Water, Bob

    2016-08-17

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour.

  15. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    PubMed Central

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  16. Poliovirus Receptor-Related 2: A Cholesterol-Responsive Gene Affecting Atherosclerosis Development by Modulating Leukocyte Migration.

    PubMed

    Rossignoli, Aránzazu; Shang, Ming-Mei; Gladh, Hanna; Moessinger, Christine; Foroughi Asl, Hassan; Talukdar, Husain Ahammad; Franzén, Oscar; Mueller, Steffen; Björkegren, Johan L M; Folestad, Erika; Skogsberg, Josefin

    2017-03-01

    Recently, poliovirus receptor-related 2 (Pvrl2) emerged as a top gene in a global gene expression study aiming to detect plasma cholesterol-responsive genes causally related to atherosclerosis regression in hypercholesterolemic mice. PVRL2 is an adherens junction protein implied to play a role in transendothelial migration of leukocytes, a key feature in atherosclerosis development. In this study, we investigated the effect of Pvrl2 deficiency on atherosclerosis development and transendothelial migration of leukocytes activity. APPROACH AND RESULTS: Pvrl2-deficient mice bred onto an atherosclerosis-prone background (Pvrl2(-/-)Ldlr(-/-)Apob(100/100)) had less atherosclerotic lesions and more stable plaques compared with littermate controls (Pvrl2(+/+)Ldlr(-/-)Apob(100/100)). Pvrl2(-/-)Ldlr(-/-)Apob(100/100) mice also showed a 49% decrease in transendothelial migration of leukocytes activity observed using the in vivo air pouch model. In accordance, augmented arterial wall expression of Pvrl2 during atherosclerosis progression coincided with an increased gene expression of migrating leukocytes into the vessel wall. Both in human and mice, gene and protein expression of PVRL2 was predominantly observed in the vascular endothelium according to the immunohistochemical and gene expression data. In addition, the cholesterol responsiveness of PVRL2 was also observed in humans. PVRL2 is a plasma cholesterol-responsive gene acting at endothelial sites of vascular inflammation that could potentially be a new therapeutic target for atherosclerosis prevention through its suggested transendothelial migration of leukocytes modulating activity. © 2017 American Heart Association, Inc.

  17. Cancer derived peptide of vacuolar ATPase ‘a2’ isoform promotes neutrophil migration by autocrine secretion of IL-8

    PubMed Central

    Ibrahim, Safaa A.; Kulshrestha, Arpita; Katara, Gajendra K.; Amin, Magdy A.; Beaman, Kenneth D.

    2016-01-01

    Neutrophils play significant regulatory roles within the tumor microenvironment by directly promoting tumor progression that leads to poor clinical outcomes. Identifying the tumor associated molecules that regulate neutrophil infiltration into tumors may provide new and specific therapeutic targets for cancer treatment. The a2-isoform of vacuolar ATPase (a2V) is uniquely and highly expressed on cancer cell plasma membrane. Cancer cells secrete a peptide from a2V (a2NTD) that promotes the pro-tumorigenic properties of neutrophils. This provides a2V the propensity to control neutrophil migration. Here, we report that the treatment of human neutrophils with recombinant a2NTD leads to neutrophil adherence and polarization. Moreover, a2NTD treatment activates surface adhesion receptors, as well as FAK and Src kinases that are essential regulators of the migration process in neutrophils. Functional analysis reveals that a2NTD can act as a chemo-attractant and promotes neutrophil migration. In addition, a2Neuɸ secrete high levels of IL-8 via NF-κB pathway activation. Confirmatory assays demonstrate that the promoted migration of a2Neuɸ was dependent on the autocrine secretion of IL-8 from a2Neuɸ. These findings demonstrate for the first time the direct regulatory role of cancer associated a2-isoform V-ATPase on neutrophil migration, suggesting a2V as a potential target for cancer therapy. PMID:27845385

  18. Focal adhesion kinase modulates radial glia-dependent neuronal migration through connexin-26.

    PubMed

    Valiente, Manuel; Ciceri, Gabriele; Rico, Beatriz; Marín, Oscar

    2011-08-10

    Focal adhesion kinase (FAK) is an intracellular kinase and scaffold protein that regulates migration in many different cellular contexts but whose function in neuronal migration remains controversial. Here, we have analyzed the function of FAK in two populations of neurons with very distinct migratory behaviors: cortical interneurons, which migrate tangentially and independently of radial glia; and pyramidal cells, which undergo glial-dependent migration. We found that FAK is dispensable for glial-independent migration but is cell-autonomously required for the normal interaction of pyramidal cells with radial glial fibers. Loss of FAK function disrupts the normal morphology of migrating pyramidal cells, delays migration, and increases the tangential dispersion of neurons arising from the same radial unit. FAK mediates this process by regulating the assembly of Connexin-26 contact points in the membrane of migrating pyramidal cells. These results indicate that FAK plays a fundamental role in the dynamic regulation of Gap-mediated adhesions during glial-guided neuronal migration in the mouse.

  19. Ascorbic acid modulates cell migration in differentiated HL-60 cells and peripheral blood leukocytes.

    PubMed

    Schwager, Joseph; Bompard, Albine; Weber, Peter; Raederstorff, Daniel

    2015-08-01

    The impact of L-ascorbic acid (L-AA) on the chemokinesis (CK) and chemotaxis (CT) of HL-60 cells and polymorphonuclear cells (PMN) was investigated. HL-60 cells were differentiated with DMSO, retinoic acid (RA), vitamin D, or L-AA. Chemokinesis and chemotaxis of differentiated HL-cells were assayed. Vitamin D3-treated HL-60 cells (dHL-60vitD3 cells) and RA-treated cells (dHL-60RA cells) acquired monocyte/macrophage-like and neutrophil-like phenotypes, respectively. DMSO induced the differentiation of an intermediate phenotype (dHL-60DMSO cells), whereas L-AA downregulated neutrophil markers (dHL-60L-AA cells). dHL-60DMSO cells had increased CK and potent CT in gradients of IL-8 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). dHL-60RA cells and dHL-60L-AA cells migrated less toward IL-8 and fMLP; dHL-60vitD3 cells preferably responded to fMLP. L-AA enhanced CK of dHL-60DMSO cells and was a weak chemo-attractant. In human leukocytes, IL-8 and fMLP triggered receptor-mediated chemotaxis. CXCR2 and fMLPR were downregulated by IL-8 and fMLP, respectively. L-AA stimulated chemotaxis although significantly less than IL-8 and fMLP. IL-8 targeted chemotaxis was enhanced both in HL-60 cells and leukocytes when cells were incubated with L-AA. L-AA modulated chemokinesis and had significant chemo-attractant properties, which were independent on fMLP or IL-8 receptors. The results suggest that L-AA improves leukocyte function in innate immune responses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    PubMed

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2017-07-27

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  1. MiR-30b suppresses tumor migration and invasion by targeting EIF5A2 in gastric cancer

    PubMed Central

    Tian, Shu-Bo; Yu, Jian-Chun; Liu, Yu-Qin; Kang, Wei-Ming; Ma, Zhi-Qiang; Ye, Xin; Yan, Chao

    2015-01-01

    AIM: To elucidate the potential biological role of miR-30b in gastric cancer and investigate the underlying molecular mechanisms of miR-30b to inhibit metastasis of gastric cancer cells. METHODS: The expression of miR-30b was detected in gastric cancer cell lines and samples by reverse transcription-polymerase chain reaction. CCK-8 assays were conducted to explore the impact of miR-30b overexpression on the proliferation of gastric cancer cells. Flow cytometry was used to examine the effect of miR-30b on the apoptosis. Transwell test was used for the migration and invasion assays. Luciferase reporter assays and Western blot were employed to validate regulation of putative target of miR-30b. RESULTS: The results showed that miR-30b was downregulated in gastric cancer tissues and cancer cell lines and functioned as a tumor suppressor. Overexpression of miR-30b promoted cell apoptosis, and suppressed proliferation, migration and invasion of the gastric cancer cell lines AGS and MGC803. Bioinformatic analysis identified the 3’-untranslated region of eukaryotic translation initiation factor 5A2 (EIF5A2) as a putative binding site of miR-30b. Luciferase reporter assays and Western blot analysis confirmed the EIF5A2 gene as a target of miR-30b. Moreover, expression levels of the EIF5A2 targets E-cadherin and Vimentin were altered following transfection of miR-30b mimics. CONCLUSION: Our findings describe a link between miR-30b and EIF5A2, which plays an important role in mediating epithelial-mesenchymal transition. PMID:26309359

  2. Actin-binding protein G (AbpG) participates in modulating the actin cytoskeleton and cell migration in Dictyostelium discoideum

    PubMed Central

    Lin, Wei-Chi; Wang, Liang-Chen; Pang, Te-Ling; Chen, Mei-Yu

    2015-01-01

    Cell migration is involved in various physiological and pathogenic events, and the complex underlying molecular mechanisms have not been fully elucidated. The simple eukaryote Dictyostelium discoideum displays chemotactic locomotion in stages of its life cycle. By characterizing a Dictyostelium mutant defective in chemotactic responses, we identified a novel actin-binding protein serving to modulate cell migration and named it actin-binding protein G (AbpG); this 971–amino acid (aa) protein contains an N-terminal type 2 calponin homology (CH2) domain followed by two large coiled-coil regions. In chemoattractant gradients, abpG− cells display normal directional persistence but migrate significantly more slowly than wild-type cells; expressing Flag-AbpG in mutant cells eliminates the motility defect. AbpG is enriched in cortical/lamellipodial regions and colocalizes well with F-actin; aa 401–600 and aa 501–550 fragments of AbpG show the same distribution as full-length AbpG. The aa 501–550 region of AbpG, which is essential for AbpG to localize to lamellipodia and to rescue the phenotype of abpG− cells, is sufficient for binding to F-actin and represents a novel actin-binding protein domain. Compared with wild-type cells, abpG− cells have significantly higher F-actin levels. Collectively our results suggest that AbpG may participate in modulating actin dynamics to optimize cell locomotion. PMID:25609090

  3. Macrophage migration inhibitory factor homolog from Plasmodium yoelii modulates monocyte recruitment and activation in spleen during infection

    PubMed Central

    Zhang, Yanhui; Miura, Kazutoyo; Li, Jian; Tullo, Gregory; Zhu, Feng; Hong, Lingxian; Lin, Tianlong; Su, Xin-zhuan; Long, Carole

    2012-01-01

    Macrophage migration inhibitory factor (MIF) has been shown to be involved in the pathogenesis of severe malaria. Malaria parasites express an MIF homolog that may play a role in regulating host immune responses and a recent study showed that overexpression of MIF reduced parasitemia in a mouse malaria model. Another recent study showed migration of monocytes to the spleen contributed to the control of blood stage infection. However, there are few papers describing the effect of MIF on monocyte recruitment/activation during the infection. We generated recombinant P. yoelii MIF (rPyMIF) and investigated its function on purified mouse CD11b+ cells in vitro and monocyte responses in vivo. The result shows that rPyMIF protein bound to mouse CD11b+ cells and inhibited their random migration in vitro. On the other hand, rPyMIF did not induce cytokine release from the cells directly or modulate LPS-induced cytokine release. Mice immunized with rPyMIF showed transient, but significantly lower parasitemia than the control mice at day 3 after lethal Py17XL challenge. The total number of CD11b+ cells in the spleens was significantly higher in rPyMIF-immunized group. Further investigation revealed that there were significantly higher numbers of recruited and activated monocytes in the spleens of rPyMIF immunization group on day 3. These results indicate that PyMIF potentially modulates monocyte recruitment and activation during infection of P. yoelii erythrocytic stages. PMID:22015474

  4. Theoretical and experimental investigation of defect formation / migration in Gd2Ti2O7: General rule of oxide-ion migration in A2B2O7 pyrochlore

    NASA Astrophysics Data System (ADS)

    Nakamura, Kaoru; Mori, Masashi; Itoh, Takanori.; Ohnuma, Toshiharu

    2016-11-01

    We investigated the intrinsic defect formation energy and oxide-ion migration mechanism in Gd2Ti2O7 pyrochlore. It was found that the vacancy formation energy of Gd is lower than that of Ti. For the oxygen vacancy, O(48f) was found to show lower vacancy formation energy than O(8b). The formation energy of the vacancy complex showed that the Gd vacancy is accompanied with the O(48f) vacancy, which is consistent with our experiment. The migration energy of O(48f) along the <100> direction, which is dominant migration path for ionic conduction, was calculated to be 0.43 eV. On the other hand, we found that Gd vacancy increases O(48f) migration energy. For example, the migration energy of O(48f) along the <100> direction was increased to be 1.36 eV by the local compressive strain around Gd vacancy. This finding could explain our previous experimental result of decreasing conductivity with increasing Gd deficiency. Along with the oxide-ion migration mechanism in Gd2Ti2O7, O(48f) migration energies along both <100> and <110> directions for various A2B2O7 pyrochlore structures were investigated. As a general trend of oxide-ion migration in the pyrochlore structure, we propose that O(48f) migration along the <100> direction is governed by the strength of B-O bonding. On the other hand, the ratio of ionic radius B/A is proposed to determine O(48f) migration along the <110> direction in A2B2O7 pyrochlore.

  5. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration

    PubMed Central

    Fuseler, John W.; Valarmathi, Mani T.

    2016-01-01

    Nitric oxide (NO) is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs). Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP), especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 μM) was applied to the MSCs. In the first experimental group (SN-1), SNAP was applied immediately following wound formation, and migration kinetics were determined for 24 h. In the second experimental group (SN-2), MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2) was best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D) of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs. PMID:27933292

  6. FOXA1 modulates EAF2 regulation of AR transcriptional activity, cell proliferation, and migration in prostate cancer cells.

    PubMed

    Guo, Wenhuan; Keener, Anne L; Jing, Yifeng; Cai, Liquan; Ai, Junkui; Zhang, Jian; Fisher, A L; Fu, Guohui; Wang, Zhou

    2015-06-15

    ELL-associated factor 2 (EAF2) is an androgen-regulated tumor suppressor in the prostate. However, the mechanisms underlying tumor suppressive function of EAF2 are still largely unknown. Identification of factors capable of modulating EAF2 function will help elucidate the mechanisms underlying EAF2 tumor suppressive function. Using eaf-1(the ortholog of EAF2) mutant C. elegans model, RNAi screen was used to identify factors on the basis of their knockdown to synergistically enhance the reduced fertility phenotype of the eaf-1 mutant C. elegans. In human cells, the interaction of EAF2 with FOXA1 and the effect of EAF2 on the FOXA1 protein levels were determined by co-immunoprecipitation and protein stability assay. The effect of EAF2 and/or FOXA1 knockdown on the expression of AR-target genes was determined by real-time RT-PCR and luciferase reporter assays. The effect of EAF2 and/or FOXA1 knockdown on LNCaP human prostate cancer cell proliferation and migration was tested using BrdU assay and transwell migration assay. RNAi screen identified pha-4, the C. elegans ortholog of mammalian FOXA1, on the basis of its knockdown to synergistically enhance the reduced fertility phenotype of the eaf-1 mutant C. elegans causing sterility. EAF2 co-immunoprecipitated with FOXA1. EAF2 knockdown enhanced endogenous FOXA1 protein level, whereas transfected GFP-EAF2 down-regulated the FOXA1 protein. Also, EAF2 knockdown enhanced the expression of AR-target genes, cell proliferation, and migration in LNCaP cells. However, FOXA1 knockdown inhibited the effect of EAF2 knockdown on AR-target gene expression, cell proliferation, and migration in LNCaP cells, suggesting that FOXA1 can modulate EAF2 regulation of AR transcriptional activation, cell proliferation, and migration. These findings suggest that regulation of the AR signaling pathway, cell proliferation, and migration through FOXA1 represents an important mechanism of EAF2 suppression of prostate carcinogenesis. © 2015 Wiley

  7. Amniotic membrane stimulates cell migration by modulating Transforming Growth Factor-β signaling.

    PubMed

    Ruiz-Cañada, Catalina; Bernabé-García, Ángel; Liarte, Sergio; Insausti, Carmen Luisa; Angosto, Diego; Moraleda, José María; Castellanos, Gregorio; Nicolás, Francisco José

    2017-06-16

    Keratinocyte migration is a mandatory aspect of wound-healing. We have previously shown that Amniotic Membrane (AM) applied to chronic wounds assists healing through a process resulting in overexpression of c-Jun at the wound's leading edge. Also, we have demonstrated that amniotic membrane modifies the genetic program induced by TGF-ß in chronic wounds. In this paper, we used a scratch assay of Mv1Lu and HaCaT cells to examine the influence of AM application on the underlying signaling during scratch closure. AM-application induced c-Jun phosphorylation at the leading-edge of scratch wounds in a process dependent on MAPK and JNK signaling. Strikingly, when the TGF-ß-dependent Smad-activation inhibitor SB431542 was used together with AM, migration improvement was partially restrained, while addition of TGF-ß had a synergistic effect on the AM induced cell migration. Moreover, antagonizing TGF-ß with specific antibodies in both cell lines or knocking out TGF-ß receptors in Mv1Lu cells had similar effects on cell migration than using SB431542. Furthermore, we found that AM was able to attenuate TGF-ß-Smad signaling specifically at the migrating edge; AM treatment abated Smad2 and Smad3 nuclear localization in response to TGF-ß in a process dependent on MEK-1 activation but independent on EGF-Receptor or JNK activation. The involvement of Smad signaling onto AM effects on HaCaT keratinocytes was further corroborated by overexpression of either Smad2 or Smad3 and the use of Smad-phosphorylation specific inhibitors, revealing a differential influence on AM induced migration for each Smad. Thus, AM TGF-ß-Smad-signaling abating is essential for optimal cell migration and wound closure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Endotoxin activation of endothelium for polymorphonuclear leucocyte transendothelial migration and modulation by interferon-gamma.

    PubMed Central

    Issekutz, A C; Lopes, N

    1993-01-01

    Endotoxin [lipopolysaccharide (LPS)] is a potent inflammatory stimulus and can activate human umbilical vein endothelium (HUVE) for leucocyte adhesiveness and transendothelial migration. Here we investigated the role of HUVE-secreted cytokines in this process. When HUVE monolayers were grown on filters and preincubated for 3 hr with LPS, 51Cr-labelled polymorphonuclear leucocytes (PMNL) migrated across the HUVE in a dose- and time-dependent manner. Maximal PMNL transmigration with LPS (1 ng/ml) was 26 +/- 3% of added PMNL in 75 min. Neutralizing antibodies to interleukin-1 alpha (IL-1 alpha) and IL-1 beta, tumour necrosis factor-alpha (TNF-alpha), IL-8 or recombinant IL-1 receptor antagonist had no effect on the activation by LPS of the HUVE for supporting migration of PMNL. The HUVE 'activated state' declined with prolonged (22 hr) exposure to LPS, as reflected by a decrease in PMNL transendothelial migration to 5.5 +/- 1% and in the expression of the endothelial cell adhesion molecule, E-selectin, as compared to stimulation with LPS for 3 hr. However, simultaneous exposure to interferon-gamma (IFN-gamma) (200 IU/ml) and LPS maintained maximal PMNL transendothelial migration (28 +/- 4%) for at least 24 hr, prolonged E-selectin expression by HUVE and superinduced intracellular adhesion molecule-1 (ICAM-1) expression. The PMNL transendothelial migration was blocked by > 90% by monoclonal antibody (mAb) to CD18 with either 3 hr of LPS or 22 hr LPS + IFN-gamma stimulation. Migration was partially inhibited by mAb to E-selectin (30-40%) or to ICAM-1 (35-45%) and by a combination of both reagents (50-60%) under both stimulation conditions. Thus, LPS activation of HUVE for PMNL transendothelial migration: (a) does not require secretion of IL-1, TNF-alpha or IL-8 by the endothelium, (b) IFN-gamma enhances and prolongs endothelial activation by LPS and may increase leucocyte infiltration in LPS or bacterial inflammatory reactions, and (c) CD18-dependent mechanisms are

  9. THE TMEFF2 TUMOR SUPPRESSOR MODULATES INTEGRIN EXPRESSION, RHOA ACTIVATION AND MIGRATION OF PROSTATE CANCER CELLS

    PubMed Central

    Chen, Xiaofei; Corbin, Joshua M.; Tipton, Greg J.; Yang, Li V.; Asch, Adam S.; Ruiz-Echevarría, Maria J.

    2014-01-01

    Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain. PMID:24632071

  10. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration.

    PubMed

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R W; Johnsen, Camilla H; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A; Pol, Albert; Tebar, Francesc; Murray, Rachael Z; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-15

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.

  11. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration*

    PubMed Central

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R. W.; Johnsen, Camilla H.; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A.; Pol, Albert; Tebar, Francesc; Murray, Rachael Z.; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-01

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration. PMID:26578516

  12. Fucoidan modulates cytokine production and migration of THP‑1‑derived macrophages via colony‑stimulating factor‑1.

    PubMed

    Li, Peng; Wang, Huayang; Shao, Qianqian; Kong, Beihua; Qu, Xun

    2017-04-01

    Fucoidan is known for its various biological activities, including immunomodulatory effects on immune cells. However, the effect of fucoidan on the functions of macrophages remains to be elucidated. The present study examined the effects of fucoidan on cytokine production and migration of THP‑1‑derived macrophages and its potential mechanisms. Fucoidan was added during the differentiation process of THP‑1‑derived macrophages along with lipopolysaccharide and interferon‑γ for 42 h, and then macrophages were harvested for functional assays. Fucoidan altered the morphology of THP‑1‑derived macrophages, and also attenuated their migration activity and pro‑inflammatory cytokine production. Additionally, THP‑1‑derived macrophages intensively produced colony‑stimulating factor‑1 (CSF‑1), which was significantly decreased by fucoidan. CSF‑1 neutralizing antibody attenuated the basic production level of pro‑inflammatory cytokines in macrophages. Furthermore, when recombinant human CSF‑1 was added along with fucoidan, the attenuating effects of fucoidan on migration and cytokine production were significantly reversed. In conclusion, the present study suggests that macrophages appear to be a potential target in the immunomodulatory action of fucoidan, and CSF‑1 may be involved in this modulation.

  13. bFGF induces changes in hyaluronan synthase and hyaluronidase isoform expression and modulates the migration capacity of fibrosarcoma cells.

    PubMed

    Berdiaki, Aikaterini; Nikitovic, Dragana; Tsatsakis, Aristeidis; Katonis, Pavlos; Karamanos, Nikos K; Tzanakakis, George N

    2009-10-01

    Hyaluronan (HA) a glycosaminoglycan, is capable of transmitting extracellular matrix derived signals to regulate cellular functions. In this study, we investigated whether the changes in HT1080 and B6FS fibrosarcoma cell lines HA metabolism induced by basic fibroblast growth factor (bFGF) are correlated to their migration. Real-time PCR, in vitro wound healing assay, siRNA transfection, enzyme digestions, western blotting and immunofluorescence were utilized. bFGF inhibited the degradation of HA by decreasing hyaluronidase-2 expression in HT1080 cells (p=0.0028), increased HA-synthase-1 and -2 expression as we previously found and enhanced high molecular weight HA deposition in the pericellular matrix. Increased endogenous HA production (p=0.0022) and treatment with exogenous high molecular weight HA (p=0.0268) correlated with a significant decrease of HT1080 cell migration capacity. Transfection with siHAS2 and siHAS1 showed that mainly HAS1 synthesized high molecular weight HA regulates HT1080 cell motility. Induced degradation of the HA content by hyaluronidase treatment and addition of low molecular weight HA, resulted in a significant stimulation of HT1080 cells' motility (p<0.01). In contrast, no effects on B6FS fibrosarcoma cell motility were observed. bFGF regulates, in a cell-specific manner the migration capability of fibrosarcoma cells by modulating their HA metabolism. HA metabolism is suggested to be a potential therapeutic target in fibrosarcoma.

  14. Phosphorylation of serine-504 of tNOX (ENOX2) modulates cell proliferation and migration in cancer cells

    SciTech Connect

    Zeng, Zih-Ming; Chuang, Show-Mei; Chang, Ting-Chia; Hong, Chen-Wei; Chou, Jou-Chun; Yang, Jaw-Ji; Chueh, Pin Ju

    2012-08-15

    Tumor-associated NADH oxidase (tNOX; ENOX2) is a growth-related protein expressed in transformed cells. Consistent with this function, tNOX knockdown by RNA interference leads to a significant reduction in cell proliferation and migration in HeLa cells, whereas tNOX overexpression confers an aggressive phenotype. Here, for the first time, we report that tNOX is phosphorylated by protein kinase C{delta} (PKC{delta}) both in vitro and in vivo. Replacement of serine-504 with alanine significantly reduces phosphorylation by PKC{delta}. Co-immunoprecipitation experiments reveal an interaction between tNOX and PKC{delta}. Moreover, whereas overexpression of wild-type tNOX in NIH3T3 cells increases cell proliferation and migration, overexpression of the S504A tNOX mutant leads to diminished cell proliferation and migration, reflecting reduced stability of the unphosphorylatable tNOX mutant protein. Collectively, these results suggest that phosphorylation of serine-504 by PKC{delta} modulates the biological function of tNOX.

  15. Low Doses of Curcuma longa Modulates Cell Migration and Cell-Cell Adhesion.

    PubMed

    de Campos, Paloma Santos; Matte, Bibiana Franzen; Diel, Leonardo Francisco; Jesus, Luciano Henrique; Bernardi, Lisiane; Alves, Alessandro Menna; Rados, Pantelis Varvaki; Lamers, Marcelo Lazzaron

    2017-09-01

    Cell invasion and metastasis are involved in clinical failures in cancer treatment, and both events require the acquisition of a migratory behavior by tumor cells. Curcumin is a promising natural product with anti-proliferative activity, but its effects on cell migration are still unclear. We evaluated the effects of curcumin on the proliferation, apoptosis, migration, and cell-cell adhesion of keratinocyte, oral squamous cell carcinoma (OSCC), and fibroblast cell lines, as well as in a xenograft model of OSCC. Curcumin (2 μM) decreased cell proliferation in cell lines with mesenchymal characteristics, while cell death was detected only at 50 μM. We observed that highly migratory cells showed a decrease on migration speed and directionality when treated with 2 or 5 μM of curcumin (50% and 40%, respectively, p < 0.05). Using spheroids, we observed that curcumin dose dependently decreased cell-cell adhesion, especially on tumor-derived spheroids. Also, in a xenograft model with patient-derived OSCC cells, the administration of curcumin decreased tumor growth and aggressiveness when compared with untreated tumors, indicating the potential antitumor effect in oral cancer. These results suggest that lower doses of curcumin can influence several steps involved in tumorigenesis, including migration properties, suggesting a possible use in cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. CalpB modulates border cell migration in Drosophila egg chambers

    PubMed Central

    2012-01-01

    Background Calpains are calcium regulated intracellular cysteine proteases implicated in a variety of physiological functions and pathological conditions. The Drosophila melanogaster genome contains only two genes, CalpA and CalpB coding for canonical, active calpain enzymes. The movement of the border cells in Drosophila egg chambers is a well characterized model of the eukaryotic cell migration. Using this genetically pliable model we can investigate the physiological role of calpains in cell motility. Results We demonstrate at the whole organism level that CalpB is implicated in cell migration, while the structurally related CalpA paralog can not fulfill the same function. The downregulation of the CalpB gene by mutations or RNA interference results in a delayed migration of the border cells in Drosophila egg chambers. This phenotype is significantly enhanced when the focal adhesion complex genes encoding for α-PS2 integrin ( if), β-PS integrin ( mys) and talin ( rhea) are silenced. The reduction of CalpB activity diminishes the release of integrins from the rear end of the border cells. The delayed migration and the reduced integrin release phenotypes can be suppressed by expressing wild-type talin-head in the border cells but not talin-headR367A, a mutant form which is not able to bind β-PS integrin. CalpB can cleave talin in vitro, and the two proteins coimmunoprecipitate from Drosophila extracts. Conclusions The physiological function of CalpB in border cell motility has been demonstrated in vivo. The genetic interaction between the CalpB and the if, mys, as well as rhea genes, the involvement of active talin head-domains in the process, and the fact that CalpB and talin interact with each other collectively suggest that the limited proteolytic cleavage of talin is one of the possible mechanisms through which CalpB regulates cell migration. PMID:22827336

  17. Pancortins interact with amyloid precursor protein and modulate cortical cell migration

    PubMed Central

    Rice, Heather C.; Townsend, Matthew; Bai, Jilin; Suth, Seiyam; Cavanaugh, William; Selkoe, Dennis J.; Young-Pearse, Tracy L.

    2012-01-01

    Neuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to identify extracellular factors that may signal through APP to regulate migration, we performed an unbiased mass spectrometry-based screen for factors that bind to the extracellular domain of APP in the rodent brain. Through this screen, we identified an interaction between APP and pancortins, proteins expressed throughout the developing and mature cerebral cortex. Via co-immunoprecipitation, we show that APP interacts with all four of the mammalian pancortin isoforms (AMY, AMZ, BMY, BMZ). We demonstrate that the BMZ and BMY isoforms of pancortin can specifically reduce β-secretase- but not α-secretase-mediated cleavage of endogenous APP in cell culture, suggesting a biochemical consequence of the association between pancortins and APP. Using in utero electroporation to overexpress and knock down specific pancortin isoforms, we reveal a novel role for pancortins in migration into the cortical plate. Interestingly, we observe opposing roles for alternate pancortin isoforms, with AMY overexpression and BMZ knock down both preventing proper migration of neuronal precursor cells. Finally, we show that BMZ can partially rescue a loss of APP expression and that APP can rescue effects of AMY overexpression, suggesting that pancortins act in conjunction with APP to regulate entry into the cortical plate. Taken together, these results suggest a biochemical and functional interaction between APP and pancortins, and reveal a previously unidentified role for pancortins in mammalian cortical development. PMID:22992957

  18. Integrin {alpha}6 cleavage: A novel modification to modulate cell migration

    SciTech Connect

    Pawar, Sangita C.; Demetriou, Manolis C.; Nagle, Raymond B.; Bowden, G. Tim; Cress, Anne E. . E-mail: acress@azcc.arizona.edu

    2007-04-01

    Integrins play a major role in cell adhesion and migration. Previous work reported that a cleaved form of integrin {alpha}6 ({alpha}6p) was detected in invasive human prostate cancer tissue, absent in normal prostate tissue and was produced by urokinase-type Plasminogen Activator (uPA) in a plasmin-independent manner. Using site-directed mutagenesis we identified amino acid residues R594 and R595, located in the 'stalk' region of integrin {alpha}6, as essential for cleavage. The cleavage site is located on the extracellular region of the protein between the {beta}-barrel domain and the thigh domain. Prostate cancer cells (PC3N) were stably transfected to overexpress the cleavable, wild-type (PC3N-{alpha}6-WT) or the non-cleavable form of integrin {alpha}6 (PC3N-{alpha}6-RR). The number of cells invading laminin 111- and laminin 332-coated filters by PC3N-{alpha}6-WT cells increased by threefold as compared to PC3N-{alpha}6-RR cells. Plasminogen activator inhibitor-1 (PAI-1) reduced the invasion of PC3N-{alpha}6-WT cells by approximately 42% through laminin 332-coated filters and plasmin inhibitor aprotinin had no significant effect. Linear cell migration increased production of integrin {alpha}6p in the PC3N-{alpha}6-WT cells and not in the PC3N-{alpha}6-RR cells and 32% of the PC3N-{alpha}6-WT cells migrated on laminin 111 in the linear migration assay as compared to the 5% PC3N-{alpha}6-RR cells. These data taken together suggest that the uPA-mediated cell surface cleavage of the {alpha}6 integrin extracellular domain is involved in tumor cell invasion and migration on laminin.

  19. Cigarette smoke modulates PC3 prostate cancer cell migration by altering adhesion molecules and the extracellular matrix

    PubMed Central

    YANG, SUPING; LONG, MINICA; TACHADO, SOUVENIR D.; SENG, SEYHA

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related mortality among American males. Studies suggest that cigarette smoking is associated with the progression of PCa; however, the molecular mechanisms underlying this process have not been extensively investigated. PCa progression is characterized by increased cell migration and alterations in extracellular matrix (ECM)- and cell adhesion molecule (CAM)-related gene expression. In the present study, the influence of cigarette smoke medium (SM) on cell migration and on the expression of ECM- and CAM-related genes in PC3 prostate adenocarcinoma cells was investigated. According to a wound-healing assay, SM treatment promoted PC3 cell migration. RNA expression levels from SM-treated and control cells were analyzed using a polymerase chain reaction (PCR) array. Of 84 genes analyzed, 27.38% (23/84) exhibited a ≥2-fold change in threshold cycle in PC3 cells following 0.5% SM treatment. Functional gene grouping analysis demonstrated that SM treatment modulated the RNA transcription of approximately 18.4% of CAMs and 33.93% of ECM-related genes. Quantitative PCR analysis showed that SM treatment led to a significant decrease in transcription levels of the following genes: Collagen 5 α-1(V), connective tissue growth factor, integrin β-2, kallmann syndrome 1, laminin α 3, matrix metallopeptidase 7 (MMP7), MMP13, secreted protein acidic cysteine-rich, thrombospondin-2 and versican; and that SM significantly increased the transcription levels of MMP2 and MMP12. Furthermore, MMP2 knockdown significantly reduced the migration of SM-treated PC3 cells. The present study provides novel insights into the association of cigarette smoking with PCa progression, via the alteration of ECM/CAM interactions. PMID:26351771

  20. Cigarette smoke modulates PC3 prostate cancer cell migration by altering adhesion molecules and the extracellular matrix.

    PubMed

    Yang, Suping; Long, Minica; Tachado, Souvenir D; Seng, Seyha

    2015-11-01

    Prostate cancer (PCa) is the second leading cause of cancer‑related mortality among American males. Studies suggest that cigarette smoking is associated with the progression of PCa; however, the molecular mechanisms underlying this process have not been extensively investigated. PCa progression is characterized by increased cell migration and alterations in extracellular matrix (ECM)‑ and cell adhesion molecule (CAM)‑related gene expression. In the present study, the influence of cigarette smoke medium (SM) on cell migration and on the expression of ECM‑ and CAM‑related genes in PC3 prostate adenocarcinoma cells was investigated. According to a wound‑healing assay, SM treatment promoted PC3 cell migration. RNA expression levels from SM‑treated and control cells were analyzed using a polymerase chain reaction (PCR) array. Of 84 genes analyzed, 27.38% (23/84) exhibited a ≥2‑fold change in threshold cycle in PC3 cells following 0.5% SM treatment. Functional gene grouping analysis demonstrated that SM treatment modulated the RNA transcription of approximately 18.4% of CAMs and 33.93% of ECM‑related genes. Quantitative PCR analysis showed that SM treatment led to a significant decrease in transcription levels of the following genes: Collagen 5 α‑1(V), connective tissue growth factor, integrin β‑2, kallmann syndrome 1, laminin α 3, matrix metallopeptidase 7 (MMP7), MMP13, secreted protein acidic cysteine‑rich, thrombospondin‑2 and versican; and that SM significantly increased the transcription levels of MMP2 and MMP12. Furthermore, MMP2 knockdown significantly reduced the migration of SM‑treated PC3 cells. The present study provides novel insights into the association of cigarette smoking with PCa progression, via the alteration of ECM/CAM interactions.

  1. Modulation of Cell Adhesion and Migration by the Histone Methyltransferase Subunit mDpy-30 and Its Interacting Proteins

    PubMed Central

    Xia, Bin; Joubert, Alexandra; Groves, Benjamin; Vo, Kevin; Ashraf, Davin; Djavaherian, Derek; Awe, Jason; Xiong, Ying; Cherfils, Jacqueline; Ma, Dzwokai

    2010-01-01

    We have previously shown that a subset of mDpy-30, an accessory subunit of the nuclear histone H3 lysine 4 methyltransferase (H3K4MT) complex, also localizes at the trans-Golgi network (TGN), where its recruitment is mediated by the TGN-localized ARF guanine nucleotide exchange factor (ArfGEF) BIG1. Depletion of mDpy-30 inhibits the endosome-to-TGN transport of internalized CIMPR receptors and concurrently promotes their accumulation at the cell protrusion. These observations suggest mDpy-30 may play a novel role at the crossroads of endosomal trafficking, nuclear transcription and adhesion/migration. Here we provide novel mechanistic and functional insight into this association. First, we demonstrate a direct interaction between mDpy-30 and BIG1 and locate the binding region in the N-terminus of BIG1. Second, we provide evidence that the depletion or overexpression of mDpy-30 enhances or inhibits cellular adhesion/migration of glioma cells in vitro, respectively. A similar increase in cell adhesion/migration is observed in cells with reduced levels of BIG1 or other H3K4MT subunits. Third, knockdown of mDpy-30, BIG1, or the RbBP5 H3K4MT subunit increases the targeting of β1 integrin to cell protrusions, and suppression of H3K4MT activity by depleting mDpy-30 or RbBP5 leads to increased protein and mRNA levels of β1 integrin. Moreover, stimulation of cell adhesion/migration via mDpy-30 knockdown is abolished after treating cells with a function-blocking antibody to β1 integrin. Taken together, these data indicate that mDpy-30 and its interacting proteins function as a novel class of cellular adhesion/migration modulators partially by affecting the subcellular distribution of endosomal compartments as well as the expression of key adhesion/migration proteins such as β1 integrin. PMID:20668708

  2. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D.; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K.; Blackwell, Timothy S.; Xia, Yang; Johnston, Richard A.; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R.

    2012-01-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A2BR) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A2BR or treatment with the A2BR antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A2BR attenuated vascular remodeling and hypertension in our model. Furthermore, direct A2BR activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A2BR antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.—Karmouty-Quintana, H., Zhong, H., Acero, L., Weng, T., Melicoff, E., West, J. D., Hemnes, A., Grenz, A., Eltzschig, H. K., Blackwell, T. S., Xia, Y., Johnston, R. A., Zeng, D., Belardinelli, L., Blackburn, M. R. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. PMID:22415303

  3. Modulation of eosinophil generation and migration by Mangifera indica L. extract (Vimang).

    PubMed

    Sá-Nunes, Anderson; Rogerio, Alexandre P; Medeiros, Alexandra I; Fabris, Viciany E; Andreu, Gilberto P; Rivera, Dagmar G; Delgado, René; Faccioli, Lúcia H

    2006-09-01

    The effects of Vimang, an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae), on cell migration in an experimental model of asthma was investigated. In vivo treatment of Toxocara canis-infected BALB/c mice for 18 days with 50 mg/kg Vimang reduced eosinophil migration into the bronchoalveolar space and peritoneal cavity. Also, eosinophil generation in bone marrow and blood eosinophilia were inhibited in infected mice treated with Vimang. This reduction was associated with inhibition of IL-5 production in serum and eotaxin in lung homogenates. In all these cases the effects of Vimang were more selective than those observed with dexamethasone. Moreover, Vimang treatment is not toxic for the animals, as demonstrated by the normal body weight increase during infection. These data confirm the potent anti-inflammatory effect of Vimang and support its potential use as an alternative therapeutic drug to the treatment of eosinophilic disorders including those caused by nematodes and allergic diseases.

  4. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    PubMed

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.

  5. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator.

    PubMed

    Löbel, Madlen; Bauer, Sandra; Meisel, Christian; Eisenreich, Andreas; Kudernatsch, Robert; Tank, Juliane; Rauch, Ursula; Kühl, Uwe; Schultheiss, Heinz-Peter; Volk, Hans-Dieter; Poller, Wolfgang; Scheibenbogen, Carmen

    2012-09-01

    In this study, we performed a comprehensive analysis of the effect of CCN1 on the migration of human immune cells. The molecule CCN1, produced by fibroblasts and endothelial cells, is considered as an important matrix protein promoting tissue repair and immune cell adhesion by binding various integrins. We recently reported that CCN1 therapy is able to suppress acute inflammation in vivo. Here, we show that CCN1 binds to various immune cells including T cells, B cells, NK cells, and monocytes. The addition of CCN1 in vitro enhances both actin polymerization and transwell migration. Prolonged incubation with CCN1, however, results in the inhibition of migration of immune cells by a mechanism that involves downregulation of PI3Kγ, p38, and Akt activation. Furthermore, we observed that immune cells themselves produce constitutively CCN1 and secretion is induced by pro-inflammatory stimuli. In line with this finding, patients suffering from acute inflammation had enhanced serum levels of CCN1. These findings extend the classical concept of CCN1 as a locally produced cell matrix adhesion molecule and suggest that CCN1 plays an important role in regulating immune cell trafficking by attracting and locally immobilizing immune cells.

  6. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  7. Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression

    PubMed Central

    Cohen-Dvashi, Hadas; Ben-Chetrit, Nir; Russell, Roslin; Carvalho, Silvia; Lauriola, Mattia; Nisani, Sophia; Mancini, Maicol; Nataraj, Nishanth; Kedmi, Merav; Roth, Lee; Köstler, Wolfgang; Zeisel, Amit; Yitzhaky, Assif; Zylberg, Jacques; Tarcic, Gabi; Eilam, Raya; Wigelman, Yoav; Will, Rainer; Lavi, Sara; Porat, Ziv; Wiemann, Stefan; Ricardo, Sara; Schmitt, Fernando; Caldas, Carlos; Yarden, Yosef

    2015-01-01

    Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells. PMID:25678558

  8. Modulation of CD86 expression in skin dendritic cells does not always correlate with changes in DC motility, migration and allostimulatory functions.

    PubMed

    Bechetoille, Nicolas; Boher, Aurélie; Gaydon, Amandine; Andre-Frei, Valérie

    2010-01-01

    CD86 expression is a well-known activation marker of dendritic cells (DC). In this study, we compared the level of CD86 expression in monocyte-derived skin DC with their motility, migratory abilities and allostimulatory capabilities. We show that motility and migration could be uncoupled from activation and that the immune response-modulating effects of certain compounds may correlate with down-regulation of CD86 expression rather than with effects on motility and migration.

  9. MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2

    PubMed Central

    Xu, Guodong; Shao, Guofeng; Pan, Qiaoling; Sun, Lebo; Zheng, Dawei; Li, Minghui; Li, Ni; Shi, Huoshun; Ni, Yiming

    2017-01-01

    MicroRNAs (miRNAs) play a critical role in cancer development and progression. Bioinformatics analyses has identified eukaryotic translation initiation factor 5A2 (eIF5A2) as a target of miR-9. In this study, we attempted to determine whether miR-9 regulates non-small cell lung cancer (NSCLC) cell invasion and migration by targeting eIF5A2 We examined eIF5A2 expression using reverse transcription-quantitative PCR (RT-qPCR) and subsequently transfected A549 and NCI-H1299 NSCLC cells with a miR-9 mimic or miR-9 inhibitor to determine the migration and invasive capability of the cells via wound healing assay and Transwell invasion assay, respectively. E-cadherin and vimentin expression was detected with western blotting. The miR-9 mimic significantly reduced NSCLC cell invasive and metastatic ability, and the miR-9 inhibitor enhanced NSCLC cell migration activity, increasing the number of migrated cells. There was no significant difference between the negative control siRNA and miR-9 mimic groups after knockdown of eIF5A2; western blotting showed that miR-9 regulated E-cadherin and vimentin expression. These data show that miR-9 regulates NSCLC cell invasion and migration through regulating eIF5A2 expression. Taken together, our findings suggest that the mechanism of miR-9-regulated NSCLC cell invasion and migration may be related to epithelial-mesenchymal transition. PMID:28337276

  10. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells.

    PubMed

    Ford, Caroline E; Jary, Eve; Ma, Sean Si Qian; Nixdorf, Sheri; Heinzelmann-Schwarz, Viola A; Ward, Robyn L

    2013-01-01

    Aberrant Wnt signalling is implicated in numerous human cancers, and understanding the effects of modulation of pathway members may lead to the development of novel therapeutics. Expression of secreted frizzled related protein 4 (SFRP4), an extracellular modulator of the Wnt signalling pathway, is progressively lost in more aggressive ovarian cancer phenotypes. Here we show that recombinant SFRP4 (rSFRP4) treatment of a serous ovarian cancer cell line results in inhibition of β-catenin dependent Wnt signalling as measured by TOP/FOP Wnt reporter assay and decreased transcription of Wnt target genes, Axin2, CyclinD1 and Myc. In addition, rSFRP4 treatment significantly increased the ability of ovarian cancer cells to adhere to collagen and fibronectin, and decreased their ability to migrate across an inflicted wound. We conclude that these changes in cell behaviour may be mediated via mesenchymal to epithelial transition (MET), as rSFRP4 treatment also resulted in increased expression of the epithelial marker E-cadherin, and reduced expression of Vimentin and Twist. Combined, these results indicate that modulation of a single upstream gatekeeper of Wnt signalling can have effects on downstream Wnt signalling and ovarian cancer cell behaviour, as mediated through epithelial to mesenchymal plasticity (EMP). This raises the possibility that SFRP4 may be used both diagnostically and therapeutically in epithelial ovarian cancer.

  11. Melanoma Cell Adhesion and Migration Is Modulated by the Uronyl 2-O Sulfotransferase

    PubMed Central

    Nikolovska, Katerina; Spillmann, Dorothe; Haier, Jörg; Ladányi, Andrea; Stock, Christian; Seidler, Daniela G.

    2017-01-01

    Although the vast majority of melanomas are characterized by a high metastatic potential, if detected early, melanoma can have a good prognostic outcome. However, once metastasised, the prognosis is bleak. We showed previously that uronyl-2-O sulfotransferase (Ust) and 2-O sulfation of chondroitin/dermatan sulfate (CS/DS) are involved in cell migration. To demonstrate an impact of 2-O sulfation in metastasis we knocked-down Ust in mouse melanoma cells. This significantly reduced the amount of Ust protein and enzyme activity. Furthermore, in vitro cell motility and adhesion were significantly reduced correlating with the decrease of cellular Ust protein. Single cell migration of B16VshUst(16) cells showed a decreased cell movement phenotype. The adhesion of B16V cells to fibronectin depended on α5β1 but not αvβ3 integrin. Inhibition of glycosaminoglycan sulfation or blocking fibroblast growth factor receptor (FgfR) reduced α5 integrin in B16V cell lines. Interestingly, FgfR1 expression and activation was reduced in Ust knock-down cells. In vivo, pulmonary metastasis of B16VshUst cells was prevented due to a reduction of α5 integrin. As a proof of concept UST knock-down in human melanoma cells also showed a reduction in ITGa5 and adhesion. This is the first study showing that Ust, and consequently 2-O sulfation of the low affinity receptor for FgfR CS/DS, reduces Itga5 and leads to an impaired adhesion and migration of melanoma cells. PMID:28107390

  12. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells.

    PubMed

    Mendonsa, Alisha M; Chalfant, Madeleine C; Gorden, Lee D; VanSaun, Michael N

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration.

  13. Modulation of the Leptin Receptor Mediates Tumor Growth and Migration of Pancreatic Cancer Cells

    PubMed Central

    Chalfant, Madeleine C.; Gorden, Lee D.

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration. PMID:25919692

  14. Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration

    NASA Astrophysics Data System (ADS)

    Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa

    2017-02-01

    Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.

  15. TRAF4 Is a Novel Phosphoinositide-Binding Protein Modulating Tight Junctions and Favoring Cell Migration

    PubMed Central

    Rousseau, Adrien; McEwen, Alastair G.; Poussin-Courmontagne, Pierre; Rognan, Didier; Nominé, Yves; Rio, Marie-Christine; Tomasetto, Catherine; Alpy, Fabien

    2013-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration. PMID:24311986

  16. Transmembrane Collagen XVII Modulates Integrin Dependent Keratinocyte Migration via PI3K/Rac1 Signaling

    PubMed Central

    Löffek, Stefanie; Sigloch, Florian Christoph; Schilling, Oliver; Tasanen, Kaisa; Bruckner-Tuderman, Leena; Franzke, Claus-Werner

    2014-01-01

    The hemidesmosomal transmembrane component collagen XVII (ColXVII) plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1−/− keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1−/− keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K) activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK) as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma. PMID:24505282

  17. PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway

    PubMed Central

    Yang, Jianyi; Gong, Xuejun; Ouyang, Lu; He, Wen; Xiao, Rou; Tan, Li

    2016-01-01

    Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger factor 2 (PREX2) is a novel regulator of the small guanosine triphosphatase Rac, and has been observed to be implicated in human cancer by inhibiting the activity of phosphatase and tensin homolog (PTEN), thus upregulating the activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. However, the exact role of PREX2 in pancreatic cancer has not been reported to date. In the present study, the expression levels of PREX2 were observed to be frequently increased in pancreatic cancer specimens compared with those in their matched adjacent normal tissues. In addition, PREX2 expression was also frequently upregulated in several pancreatic cancer cell lines, including AsPC-1, BxPC-3, PANC-1 and CFAPC-1, compared with that in the normal pancreatic epithelial cell line HPC-Y5. Overexpression of PREX2 significantly promoted the proliferation, invasion and migration of pancreatic cancer PANC-1 cells, while small interfering RNA-induced knockdown of PREX2 expression significantly inhibited the proliferation, invasion and migration of these cells. Investigation of the molecular mechanism revealed that the overexpression of PREX2 upregulated the phosphorylation levels of PTEN, indicating that the activity of PTEN was reduced, which further increased the phosphorylation levels of AKT, which indicated that the activity of the PI3K signaling pathway was upregulated. By contrast, knockdown of PREX2 upregulated the activity of PTEN and inhibited the activity of the PI3K signaling pathway. In conclusion, the present study demonstrated that PREX2 regulates the proliferation, invasion and migration of pancreatic cancer cells, probably at least via modulation of the activity of PTEN and the PI3K signaling pathway. PMID:27446408

  18. Main pathways of action of Brazilian red propolis on the modulation of neutrophils migration in the inflammatory process.

    PubMed

    Bueno-Silva, Bruno; Franchin, Marcelo; Alves, Claudiney de Freitas; Denny, Carina; Colón, David Fernando; Cunha, Thiago Mattar; Alencar, Severino Matias; Napimoga, Marcelo Henrique; Rosalen, Pedro Luiz

    2016-12-01

    Brazilian propolis is popularly used as treatment for different diseases including the ones with inflammatory origin. Brazilian red propolis chemical profile and its anti-inflammatory properties were recently described however, its mechanism of action has not been investigated yet. Elucidate Brazilian red propolis major pathways of action on the modulation of neutrophil migration during the inflammatory process. The ethanolic extract of propolis (EEP) activity was investigated for neutrophil migration into the peritoneal cavity, intravital microscopy (rolling and adhesion of leukocytes), quantification of cytokines TNF-α, IL-1β and chemokines CXCL1/KC, CXCL2/MIP-2, neutrophil chemotaxis induced by CXCL2/MIP-2, calcium influx and CXCR2 expression on neutrophils. EEP at 10mg/kg prevented neutrophil migration into peritoneal cavity (p < 0.05), reduced leukocyte rolling and adhesion on the mesenteric microcirculation (p < 0.05) and inhibited the release TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 (p < 0.05). EEP at 0.01, 0.1 and 1µg/ml reduced the CXCL2/MIP-2-induced neutrophils chemotaxis (p < 0.05) without affect cell viability (p > 0.05).EEP at 1µg/ml decreased the calcium influx induced by CXCL2/MIP-2 (p<0.05). On the other hand, none of EEP concentrations tested altered CXCR2 expression by neutrophils (p>0.05). Brazilian red propolis appears as a promising anti-inflammatory natural product which mechanism seems to be by reducing leukocyte rolling and adhesion; TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 release; CXCL2/MIP-2-induced chemotaxis and calcium influx. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Kindlin-2 Modulates the Survival, Differentiation, and Migration of Induced Pluripotent Cell-Derived Mesenchymal Stromal Cells

    PubMed Central

    Eggenschwiler, Reto; Wichmann, Christian; Buhmann, Raymund; Cantz, Tobias

    2017-01-01

    Kindlin-2 is a multidomain intracellular protein that can be recruited to β-integrin domains to activate signaling, initiate transcriptional programs, and bind to E-cadherin. To explore its involvement in cell fate decisions in mesenchymal cells, we studied the effects of Kindlin-2 modification (overexpression/knockdown) in induced pluripotent cell-derived mesenchymal stromal cells (iPSC-MSCs). Kindlin-2 overexpression resulted in increased proliferation and reduced apoptosis of iPSC-MSCs, as well as inhibition of their differentiation towards osteocytes, adipocytes, and chondrocytes. In contrast, siRNA-mediated Kindlin-2 knockdown induced increased apoptosis and increased differentiation response in iPSC-MSCs. The ability of iPSC-MSCs to adhere to VCAM-1/SDF-1α under shear stress and to migrate in a wound scratch assay was significantly increased after Kindlin-2 overexpression. In contrast, inhibition of mixed lymphocyte reaction (MLR) was generally independent of Kindlin-2 modulation in iPSC-MSCs, except for decreased production of interleukin-2 (IL-2) after Kindlin-2 overexpression in iPS-MSCs. Thus, Kindlin-2 upregulates survival, proliferation, stemness, and migration potential in iPSC-MSCs and may therefore be beneficial in optimizing performance of iPSC-MSC in therapies. PMID:28163724

  20. The Pseudomonas aeruginosa N-Acylhomoserine Lactone Quorum Sensing Molecules Target IQGAP1 and Modulate Epithelial Cell Migration

    PubMed Central

    Karlsson, Thommie; Turkina, Maria V.; Yakymenko, Olena; Magnusson, Karl-Eric; Vikström, Elena

    2012-01-01

    Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C12-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C12-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C12-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C12-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C12-HSL with a sensor bioassay. Moreover, 3O-C12-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P.aeruginosa 3O-C12-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C12-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial – human cell communication. PMID:23071436

  1. Sphingosine 1-phosphate and human ether-a'-go-go-related gene potassium channels modulate migration in human anaplastic thyroid cancer cells.

    PubMed

    Asghar, Muhammad Yasir; Viitanen, Tero; Kemppainen, Kati; Törnquist, Kid

    2012-10-01

    Anaplastic thyroid cancer (ATC) is the most aggressive form of human thyroid cancer, lacking any effective treatment. Sphingosine 1-phosphate (S1P) receptors and human ether-a'-go-go-related gene (HERG (KCNH2)) potassium channels are important modulators of cell migration. In this study, we have shown that the S1P(1-3) receptors are expressed in C643 and THJ-16T human ATC cell lines, both at mRNA and protein level. S1P inhibited migration of these cells and of follicular FTC-133 thyroid cancer cells. Using the S1P(1,3) inhibitor VPC-23019, the S1P(2) inhibitor JTE-013, and the S1P(2) receptor siRNA, we showed that the effect was mediated through S1P(2). Treatment of the cells with the Rho inhibitor C3 transferase abolished the effect of S1P on migration. S1P attenuated Rac activity, and inhibiting Rac decreased migration. Sphingosine kinase inhibitor enhanced basal migration of cells, and addition of exogenous S1P inhibited migration. C643 cells expressed a nonconducting HERG protein, and S1P decreased HERG protein expression. The HERG blocker E-4031 decreased migration. Interestingly, downregulating HERG protein with siRNA decreased the basal migration. In experiments using HEK cells overexpressing HERG, we showed that S1P decreased channel protein expression and current and that S1P attenuated migration of the cells. We conclude that S1P attenuates migration of C643 ATC cells by activating S1P(2) and the Rho pathway. The attenuated migration is also, in part, dependent on a S1P-induced decrease of HERG protein.

  2. Troglitazone inhibits cell migration, adhesion, and spreading by modulating cytoskeletal rearrangement in human breast cancer cells.

    PubMed

    Wang, Pei-Shan; Chou, Fu-Sheng; Porchia, Leonardo; Saji, Motoyasu; Pinzone, Joseph J

    2008-12-01

    Metastatic tumors are the primary cause of death in patients with breast cancer. Recent data indicate that the peroxisome proliferator-activated receptor gamma (PPARgamma) ligands, thiazolidinediones (TZDs), possess anti-invasive activities on human breast cancer cells. However, the effects of TZDs on other metastatic properties of breast cancer cells such as adhesion, spreading, and migration are not well established. In this study, we show that troglitazone (TG), a member of the TZD family, inhibits lamellipodia formation or membrane ruffling as well as actin polymerization at these structures in MDA-MB-231 and T47D breast cancer cells. In addition, TG reduces migration, adhesion, and spreading on fibronectin (FN)-coated plates. These phenomena were associated with the dramatic decrease of Tyr397 and Tyr576 phosphorylation of focal adhesion kinase (FAK) and the detergent-insoluble Rac1. We also found that TG upregulates Tyr416 phosphorylation of Src, but downregulates the Src-FAK complex. Moreover, we use a PPARgamma-inactive derivative of TG (STG28) and a PPARgamma antagonist (GW9662) to eliminate PPARgamma-mediated effects. We found that treatment with STG28 or GW9662 plus TG showed similar effects compared to TG treatment alone on tyrosine phosphorylation of FAK and Src, indicating that these effects are not the result of PPARgamma activation. Interestingly, we found that TG upregulates actin filament assembly at the point of cell-cell contact in T47D cells, indicating that TG may also upregulate cell-cell adhesion in breast cancer cells which express E-cadherin. These results suggested that TG should be investigated further for its therapeutic potential in metastatic breast cancer.

  3. Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates.

    PubMed

    De Luca, Daniele; Minucci, Angelo; Tripodi, Domenico; Piastra, Marco; Pietrini, Domenico; Zuppi, Cecilia; Conti, Giorgio; Carnielli, Virgilio P; Capoluongo, Ettore

    2011-07-01

    Meconium aspiration syndrome (MAS) is a life-threatening neonatal lung injury, whose pathophysiology has been mainly studied in animal models. In such models, pancreatic secretory phospholipase A2 (sPLA2-IB) and proinflammatory cytokines present in meconium challenge the lungs, catabolising surfactant and harming the alveoli. Locally produced phospholipases might perpetuate the injury and influence clinical pictures and therapeutic approaches. Our aim is to verify whether pulmonary phospholipase A2 (sPLA2-IIA) is involved in the damage and to determine if phospholipases and their modulators are associated with MAS clinical pictures. We studied distinct phospholipases A2 and their modulators in broncho-alveolar lavage (BAL) fluids and in meconium of five MAS neonates and in five control neonates ventilated for extrapulmonary reasons. MAS patients have higher amounts of pulmonary phospholipase (sPLA2-IIA; P = 0.016) and Clara cell secretory protein (CCSP; P = 0.032). The local production of such proteins by the lung is confirmed by their very low levels in meconium. sPLA2-IIA contributes to the higher total enzyme activity in MAS patients, as compared to controls (P = 0.008). Cytosolic phospholipase was not detected in meconium or alveolar fluid. sPLA2 activity and sPLA2-IIA concentrations are correlated with the TNFα and with the release of CCSP. sPLA2 total activity, sPLA2-IIA and TNFα concentrations in BAL fluids correlate with the oxygenation impairment and haemorrhagic lung oedema. Pulmonary sPLA2 is locally produced and contributes to the total sPLA2 activity during MAS. CCSP is also produced in trying to lower the inflammation. Both sPLA2 activity and sPLA2-IIA are significantly correlated with oxygenation impairment and haemorrhagic lung oedema.

  4. EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer

    PubMed Central

    Blayney, Jaine K.; McArt, Darragh G.; Redmond, Keara L.; Weir, Jessica-Anne; Bradley, Conor A.; Sasazuki, Takehiko; Shirasawa, Senji; Wang, Tingting; Srivastava, Supriya; Ong, Chee Wee; Arthur, Ken; Salto-Tellez, Manuel; Wilson, Richard H.

    2015-01-01

    Purpose EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumour initiation, neo-vascularization and metastasis in a wide range of epithelial and mesenchymal cancers, however its role in colorectal cancer (CRC) recurrence and progression is unclear. Experimental Design EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumours (N=338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive CRC cell line models. Results Colorectal tumours displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III CRC tissues, in both univariate and multivariate analyses. Pre-clinically, we found that EphA2 was highly expressed in KRASMT CRC cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines and down-regulation of EphA2 using RNAi or recombinant EFNA1, suppressed migration and invasion of KRASMT CRC cells. Conclusions These data show that EpHA2 is a poor prognostic marker in stage II/III CRC, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. PMID:26283684

  5. Semaphorin 3A Increases FAK Phosphorylation at Focal Adhesions to Modulate MDA-MB-231 Cell Migration and Spreading on Different Substratum Concentrations

    PubMed Central

    Compere, Frances V.; Miller, Alex M.

    2017-01-01

    Interactions between integrin-mediated adhesions and the extracellular matrix (ECM) are important regulators of cell migration and spreading. However, mechanisms by which extracellular ligands regulate cell migration and spreading in response to changes in substratum concentration are not well understood. Semaphorin 3A (Sema3A) has been shown to inhibit cell motility and alter integrin signaling in various cell types. We propose that Sema3A alters focal adhesions to modulate breast carcinoma cell migration and spreading on substrata coated with different concentrations of ECM. We demonstrate that Sema3A inhibits MDA-MB-231 cell migration and spreading on substrata coated with high concentrations of collagen and fibronectin but enhances migration and spreading at lower concentrations of collagen and fibronectin. Sema3A increases focal adhesion kinase phosphorylation at tyrosine 397 (pFAK397) at focal adhesions on all substratum concentrations of collagen and fibronectin but decreased pFAK397 levels on laminin. Rho-associated protein kinase (ROCK) inhibition blocks the Sema3A-mediated effects on cell migration, spreading, and pFAK397 at focal adhesions when cultured on all concentrations of collagen. These results suggest that Sema3A shifts the optimal level of cell-matrix adhesions to a nonoptimal ECM coating concentration, in particular collagen, to yield maximal cell migration and spreading that may be mediated through a ROCK-dependent mechanism. PMID:28182100

  6. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses

    SciTech Connect

    Kamir,D.; Zierow, S.; Leng, L.; Cho, Y.; Diaz, Y.; Griffith, J.; McDonald, C.; Merk, M.; Mitchell, R.; et al

    2008-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 x 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.

  7. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    PubMed

    Schwarz, Margaret A; Thornton, Janet; Xu, Haiming; Awasthi, Niranjan; Schwarz, Roderich E

    2012-01-01

    Endothelial-Monocyte Activating Polypeptide (EMAP II) is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date. Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration. Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  8. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses1

    PubMed Central

    Kamir, Daniela; Zierow, Swen; Leng, Lin; Cho, Yoonsang; Diaz, Yira; Griffith, Jason; McDonald, Courtney; Merk, Melanie; Mitchell, Robert A.; Trent, John; Chen, Yibang; Kwong, Yuen-Kwan Amy; Xiong, Huabao; Vermeire, Jon; Cappello, Michael; McMahon-Pratt, Diane; Walker, John; Bernhagen, Jurgen; Lolis, Elias; Bucala, Richard

    2009-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 Å). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (Kd = 2.9 × 10−8 M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction. PMID:18523291

  9. Adenosine A2A and A2B Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis.

    PubMed

    Andrés, Rosa M; Terencio, María Carmen; Arasa, Jorge; Payá, Miguel; Valcuende-Cavero, Francisca; Navalón, Pedro; Montesinos, María Carmen

    2017-01-01

    Adenosine is a potent regulator of inflammation and immunity, but the role of adenosine receptors in keratinocytes remains controversial. We determined that in addition to A2B receptors, human epidermal keratinocytes also express A2A receptors, although to a lower extent. Through the use of selective adenosine receptor agonists and antagonists, we showed that physiological concentrations of adenosine activate A2B receptors in normal human keratinocytes, inducing cell cycle arrest through the increase of intracellular calcium but not through cAMP signaling. In contrast, the selective activation of A2A receptors by CGS-21680 induces keratinocyte proliferation via p38-mitogen-activated protein kinase activation. Adenosine and selective A2A and A2B agonists presented anti-inflammatory profiles independent of adenosine receptors but mediated by membrane phosphatase activation. Finally, keratinocyte exposure to diverse inflammatory cytokines altered adenosine receptor expression by reducing A2B and increasing A2A, a pattern also observed in psoriatic epidermis. Because increased epidermal turnover and inflammatory response are characteristics of psoriatic disease, further studies are needed to assess the role and consequences of the altered adenosine receptor expression in lesional and nonlesional psoriatic keratinocytes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  11. Light Emitting Diode-Generated Blue Light Modulates Fibrosis Characteristics: Fibroblast Proliferation, Migration Speed, and Reactive Oxygen Species Generation

    PubMed Central

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2016-01-01

    Background and Objective Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Methods and Materials Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. Results Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm2 demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm2 decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p < 0.0001), and 32.3 ± 1.9% (p < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm2 resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls. Conclusion At

  12. Light emitting diode-generated blue light modulates fibrosis characteristics: fibroblast proliferation, migration speed, and reactive oxygen species generation.

    PubMed

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2015-02-01

    Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student's t-test. Human skin fibroblasts treated with LED-BL fluences of 5, 10, 15, 30, and 80 J/cm(2) demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45, and 80 J/cm(2) decreased fibroblast migration speed to 95 ± 7.0% (P = 0.64), 81.3 ± 5.5% (P = 0.021), 48.5 ± 2.7% (P < 0.0001), and 32.3 ± 1.9% (P < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm(2) resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls. At the fluences

  13. An oyster species-specific miRNA scaffold42648_5080 modulates haemocyte migration by targeting integrin pathway.

    PubMed

    Chen, Hao; Wang, Hao; Jiang, Shuai; Xu, Jiachao; Wang, Lingling; Qiu, Limei; Song, Linsheng

    2016-10-01

    miRNAs are important gene regulators at post-transcriptional level and can modulate diverse biological processes, including immune response. Dozens of species-specific miRNAs have been identified in oyster Crassostrea gigas while their functions remain largely unknown. In the present study, an oyster species-specific miRNA scaffold42648_5080 was found responsive to LPS stimulation and might target a total of 31 oyster genes possibly involved in cell communication, cellular localization and cellular response to stimulus. Besides, in gain-of-function assay of scaffold42648_5080 in vivo, the phagocytosis (30.90% in miRNA group verse 23.20% in miRNA control group), apoptosis (3.10% in miRNA group verse 5.30% in miRNA control group) and migration rate (13.88% in miRNA group verse 21.03% in miRNA control group) of oyster haemocytes were found significantly altered after the injection of scaffold42648_5080 mimics. Among the target genes, integrin-linked kinase (CgILK) was considered crucial in cell migration and its interaction with scaffold42648_5080 was then verified both in vitro and in vivo. Consequently, a significant decrease of relative luciferase ratio was observed in CgILK 3'-UTR luciferase reporter assay after transfection of scaffold42648_5080 mimics (0.70-fold of that in blank group, p < 0.01). Meanwhile, when scaffold42648_5080 was overexpressed in vivo (5.41-fold of miRNA control group, p < 0.01), the expression of CgILK declined significantly to 0.25-fold of miRNA control group (p < 0.01). Comparatively, a significant decrease of the haemocyte migration rate (19.76% verse 34.82% in siEGFP control group, p < 0.01) was observed after knock-down of CgILK in vivo. The present study, as far as we know, for the first time revealed the immunomodulation role of an oyster species-specific miRNA, which might provide new insights into miRNA-mediated adaptation mechanism of oysters.

  14. Rac1 and Cdc42 differentially modulate cigarette smoke-induced airway cell migration through p120-catenin-dependent and -independent pathways.

    PubMed

    Zhang, Lili; Gallup, Marianne; Zlock, Lorna; Finkbeiner, Walter E; McNamara, Nancy A

    2013-06-01

    The adherens junction protein p120-catenin (p120ctn) shuttles between E-cadherin-bound and cytoplasmic pools to regulate E-cadherin/catenin complex stability and cell migration, respectively. When released from the adherens junction, p120ctn promotes cell migration through modulation of the Rho GTPases Rac1, Cdc42, and RhoA. Accordingly, the down-regulation and cytoplasmic mislocalization of p120ctn has been reported in all subtypes of lung cancers and is associated with grave prognosis. Previously, we reported that cigarette smoke induced cytoplasmic translocation of p120ctn and cell migration, but the underlying mechanism was unclear. Using primary human bronchial epithelial cells exposed to smoke-concentrated medium (Smk), we observed the translocation of Rac1 and Cdc42, but not RhoA, to the leading edge of polarized and migrating human bronchial epithelial cells. Rac1 and Cdc42 were robustly activated by smoke, whereas RhoA was inhibited. Accordingly, siRNA knockdown of Rac1 or Cdc42 completely abolished Smk-induced cell migration, whereas knockdown of RhoA had no effect. p120ctn/Rac1 double knockdown completely abolished Smk-induced cell migration, whereas p120ctn/Cdc42 double knockdown did not. These data suggested that Rac1 and Cdc42 coactivation was essential to smoke-promoted cell migration in the presence of p120ctn, whereas migration proceeded via Rac1 alone in the absence of p120ctn. Thus, Rac1 may provide an omnipotent therapeutic target in reversing cell migration during the early (intact p120ctn) and late (loss of p120ctn) stages of lung carcinogenesis.

  15. Modulation of eotaxin formation and eosinophil migration by selective inhibitors of phosphodiesterase type 4 isoenzyme

    PubMed Central

    Silva, Patrícia M R; Alves, Alessandra C; Serra, Magda F; Pires, Ana Lucia A; Silva, Juliane P; Barreto, Emiliano O; Cordeiro, Renato S B; Jose, Peter J; Teixeira, Mauro M; Lagente, Vincent; Martins, Marco A

    2001-01-01

    This study was undertaken to investigate the possible contribution of the blockade of eotaxin generation to the anti-eosinophilotactic effect of phosphodiesterase (PDE) type 4 inhibitors. In some experiments, the putative synergistic interaction between PDE type 4 inhibitors and the β2-agonist salbutamol was also assessed.Sensitized guinea-pigs aerosolized with antigen (5% ovalbumin, OVA) responded with a significant increase in eotaxin and eosinophil levels in the bronchoalveolar lavage fluid (BALF) at 6 h. Eosinophil recruitment was inhibited by both PDE type 4 inhibitors rolipram (5 mg kg−1, i.p.) and RP 73401 (5 mg kg−1, i.p.) treatments. In contrast, only rolipram inhibited eotaxin production.Sensitized rats intrapleurally challenged (i.pl.) with antigen (OVA, 12 μg cavity−1) showed a marked eosinophil infiltration at 24 h, preceded by eotaxin generation at 6 h. Intravenous administration of a rabbit anti-mouse eotaxin antibody (0.5 mg kg−1) significantly reduced allergen-evoked eosinophilia in this model.Local pretreatment with rolipram (40 μg cavity−1) or RP 73401 (40 μg cavity−1) 1 h before challenge reduced eosinophil accumulation evaluated in the rat pleural effluent, but only the former was active against eotaxin generation. The inhibitors of PDE type 3 (SK&F 94836) and type 5 (zaprinast) failed to alter allergen-evoked eosinophil recruitment in rats.Local injection of β2-agonist salbutamol (20 μg cavity−1) inhibited both eosinophil accumulation and eotaxin production following pleurisy. The former was better inhibited when salbutamol and rolipram were administered in combination.Treatment with rolipram and RP 73401 dose-dependently inhibited eosinophil adhesion and migration in vitro. These effects were clearly potentiated by salbutamol at concentrations that had no effect alone.Our findings indicate that although rolipram and RP 73401 are equally effective in inhibiting allergen-induced eosinophil

  16. Cytosolic phospholipase A2α regulates G1 progression through modulating FOXO1 activity

    PubMed Central

    Naini, Said Movahedi; Choukroun, Gabriel J.; Ryan, James R.; Hentschel, Dirk M.; Shah, Jagesh V.; Bonventre, Joseph V.

    2016-01-01

    Group IVA phospholipase A2 [cytosolic phospholipase A2α (cPLA2α)] is a key mediator of inflammation and tumorigenesis. In this study, by using a combination of chemical inhibition and genetic approaches in zebrafish and murine cells, we identify a mechanism by which cPLA2α promotes cell proliferation. We identified 2 cpla2α genes in zebrafish, cpla2αa and cpla2αb, with conserved phospholipase activity. In zebrafish, loss of cpla2α expression or inhibition of cpla2α activity diminished G1 progression through the cell cycle. This phenotype was also seen in both mouse embryonic fibroblasts and mesangial cells. G1 progression was rescued by the addition of arachidonic acid or prostaglandin E2 (PGE2), indicating a phospholipase-dependent mechanism. We further show that PGE2, through PI3K/AKT activation, promoted Forkhead box protein O1 (FOXO1) phosphorylation and FOXO1 nuclear export. This led to up-regulation of cyclin D1 and down-regulation of p27Kip1, thus promoting G1 progression. Finally, using pharmacologic inhibitors, we show that cPLA2α, rapidly accelerated fibrosarcoma (RAF)/MEK/ERK, and PI3K/AKT signaling pathways cooperatively regulate G1 progression in response to platelet-derived growth factor stimulation. In summary, these data indicate that cPLA2α, through its phospholipase activity, is a critical effector of G1 phase progression through the cell cycle and suggest that pharmacological targeting of this enzyme may have important therapeutic benefits in disease mechanisms that involve excessive cell proliferation, in particular, cancer and proliferative glomerulopathies.—Naini, S. M., Choukroun, G. J., Ryan, J. R., Hentschel, D. M., Shah, J. V., Bonventre, J. V. Cytosolic phospholipase A2α regulates G1 progression through modulating FOXO1 activity. PMID:26644349

  17. The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells.

    PubMed

    Piccolella, Margherita; Crippa, Valeria; Cristofani, Riccardo; Rusmini, Paola; Galbiati, Mariarita; Cicardi, Maria Elena; Meroni, Marco; Ferri, Nicola; Morelli, Federica F; Carra, Serena; Messi, Elio; Poletti, Angelo

    2017-02-07

    Breast cancer (BC) is one of the major causes of cancer death in women and is closely related to hormonal dysregulation. Estrogen receptor (ER)-positive BCs are generally treated with anti hormone therapy using antiestrogens or aromatase inhibitors. However, BC cells may become resistant to endocrine therapy, a process facilitated by autophagy, which may either promote or suppress tumor expansion. The autophagy facilitator HSPB8 has been found overexpressed in some BC. Here we found that HSPB8 is highly expressed and differentially modulated by natural or synthetic selective ER modulators (SERMs), in the triple-positive hormone-sensitive BC (MCF-7) cells, but not in triple-negative MDA-MB-231 BC cells. Specific SERMs induced MCF-7 cells proliferation in a HSPB8 dependent manner whereas, did not modify MDA-MB-231 cell growth. ER expression was unaffected in HSPB8-depleted MCF-7 cells. HSPB8 over-expression did not alter the distribution of MCF-7 cells in the various phases of the cell cycle. Conversely and intriguingly, HSPB8 downregulation resulted in an increased number of cells resting in the G0/G1 phase, thus possibly reducing the ability of the cells to pass through the restriction point. In addition, HSPB8 downregulation reduced the migratory ability of MCF-7 cells. None of these modifications were observed, when another small HSP (HSPB1), also expressed in MCF-7 cells, was downregulated. In conclusion, our data suggest that HSPB8 is involved in the mechanisms that regulate cell cycle and cell migration in MCF-7 cells.

  18. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration.

    PubMed

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B; van der Hoorn, Frans A

    2016-07-15

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration*

    PubMed Central

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B.; van der Hoorn, Frans A.

    2016-01-01

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. PMID:27226580

  20. Matrix Metalloproteinase‐2 Negatively Regulates Cardiac Secreted Phospholipase A2 to Modulate Inflammation and Fever

    PubMed Central

    Berry, Evan; Hernandez‐Anzaldo, Samuel; Ghomashchi, Farideh; Lehner, Richard; Murakami, Makoto; Gelb, Michael H.; Kassiri, Zamaneh; Wang, Xiang; Fernandez‐Patron, Carlos

    2015-01-01

    Background Matrix metalloproteinase (MMP)‐2 deficiency makes humans and mice susceptible to inflammation. Here, we reveal an MMP‐2–mediated mechanism that modulates the inflammatory response via secretory phospholipase A2 (sPLA2), a phospholipid hydrolase that releases fatty acids, including precursors of eicosanoids. Methods and Results Mmp2−/− (and, to a lesser extent, Mmp7−/− and Mmp9−/−) mice had between 10‐ and 1000‐fold elevated sPLA2 activity in plasma and heart, increased eicosanoids and inflammatory markers (both in the liver and heart), and exacerbated lipopolysaccharide‐induced fever, all of which were blunted by adenovirus‐mediated MMP‐2 overexpression and varespladib (pharmacological sPLA2 inhibitor). Moreover, Mmp2 deficiency caused sPLA2‐mediated dysregulation of cardiac lipid metabolic gene expression. Compared with liver, kidney, and skeletal muscle, the heart was the single major source of the Ca2+‐dependent, ≈20‐kDa, varespladib‐inhibitable sPLA2 that circulates when MMP‐2 is deficient. PLA2G5, which is a major cardiac sPLA2 isoform, was proinflammatory when Mmp2 was deficient. Treatment of wild‐type (Mmp2+/+) mice with doxycycline (to inhibit MMP‐2) recapitulated the Mmp2−/− phenotype of increased cardiac sPLA2 activity, prostaglandin E2 levels, and inflammatory gene expression. Treatment with either indomethacin (to inhibit cyclooxygenase‐dependent eicosanoid production) or varespladib (which inhibited eicosanoid production) triggered acute hypertension in Mmp2−/− mice, revealing their reliance on eicosanoids for blood pressure homeostasis. Conclusions A heart‐centric MMP‐2/sPLA2 axis may modulate blood pressure homeostasis, inflammatory and metabolic gene expression, and the severity of fever. This discovery helps researchers to understand the cardiovascular and systemic effects of MMP‐2 inhibitors and suggests a disease mechanism for human MMP‐2 gene deficiency. PMID:25820137

  1. Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway.

    PubMed

    Simon, Sylvia; Schell, Ursula; Heuer, Natalie; Hager, Dominik; Albers, Michael F; Matthias, Jan; Fahrnbauer, Felix; Trauner, Dirk; Eichinger, Ludwig; Hedberg, Christian; Hilbi, Hubert

    2015-12-01

    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9.

  2. Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway

    PubMed Central

    Simon, Sylvia; Schell, Ursula; Heuer, Natalie; Hager, Dominik; Albers, Michael F.; Matthias, Jan; Fahrnbauer, Felix; Trauner, Dirk; Eichinger, Ludwig; Hedberg, Christian; Hilbi, Hubert

    2015-01-01

    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9. PMID:26633832

  3. Quaternary-Linked Changes in Structure and Dynamics That Modulate O2 Migration within Hemoglobin's Gas Diffusion Tunnels.

    PubMed

    Shadrina, Maria S; Peslherbe, Gilles H; English, Ann M

    2015-09-01

    Atomistic molecular dynamics simulations of diffusion of O2 from the hemes to the external solvent in the α- and β-subunits of the human hemoglobin (HbA) tetramer reveal transient gas tunnels that are not seen in crystal structures. We find here that the tunnel topology, which encompasses the reported experimental Xe binding cavities, is identical in HbA's T, R, and R2 quaternary states. However, the O2 population in the cavities and the preferred O2 escape portals vary significantly with quaternary structure. For example, most O2 molecules escape from the T β-subunit via the cavity at the center of the tetramer, but direct exit from the distal heme pocket dominates in the R2 β-subunit. To understand what triggers the quaternary-linked redistribution of O2 within its tunnels, we examined how the simulated tertiary structure and dynamics of each subunit differs among T, R, and R2 and report that minor adjustments in α-chain dynamics and β-heme position modulate O2 distribution and escape in HbA. Coupled to the β-heme position, residue βF71 undergoes quaternary-linked conformations that strongly regulate O2 migration between the β-subunit and HbA's central cavity. Remarkably, the distal histidine (HisE7) remains in a closed conformation near the α- and β-hemes in all states, but this does not prevent an average of 23, 31, and 46% of O2 escapes from the distal heme pockets of T, R, and R2, respectively, via several distal portals, with the balance of escapes occurring via the interior tunnels. Furthermore, preventing or restricting the access of O2 to selected cavities by mutating HisE7 and other heme pocket residues to tryptophan reveals how O2 migration adjusts to the bulky indole ring and sheds light on the experimental ligand binding kinetics of these variants. Overall, our simulations underscore the high gas porosity of HbA in its T, R, and R2 quaternary states and provide new mechanistic insights into why undergoing transitions among these states

  4. Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway

    PubMed Central

    Li, Bo; Cai, Shaoxi; Zhao, Yi; He, Qiyi; Yu, Xiaodong; Cheng, Longcong; Zhang, Yingfeng; Hu, Xiancheng; Ke, Ming; Chen, Sijia; Zou, Misha

    2016-01-01

    Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling. PMID:27835587

  5. High salt diet modulates vascular response in A2AAR (+/+) and A 2AAR (-/-) mice: role of sEH, PPARγ, and K ATP channels.

    PubMed

    Pradhan, Isha; Ledent, Catherine; Mustafa, S Jamal; Morisseau, Christophe; Nayeem, Mohammed A

    2015-06-01

    This study aims to investigate the signaling mechanism involved in HS-induced modulation of adenosine-mediated vascular tone in the presence or absence of adenosine A2A receptor (A2AAR). We hypothesized that HS-induced enhanced vascular relaxation through A2AAR and epoxyeicosatrienoic acid (EETs) is dependent on peroxisome proliferator-activated receptor gamma (PPARγ) and ATP-sensitive potassium channels (KATP channels) in A2AAR(+/+) mice, while HS-induced vascular contraction to adenosine is dependent on soluble epoxide hydrolase (sEH) that degrades EETs in A2AAR(-/-) mice. Organ bath and Western blot techniques were conducted in HS (4 % NaCl) and normal salt (NS, 0.45 % NaCl)-fed A2AAR(+/+) and A2AAR(-/-) mouse aorta. We found that enhanced vasodilation to A2AAR agonist, CGS 21680, in HS-fed A2AAR(+/+) mice was blocked by PPARγ antagonist (T0070907) and KATP channel blocker (Glibenclamide). Also, sEH inhibitor (AUDA)-dependent vascular relaxation was mitigated by PPARγ antagonist. PPARγ agonist (Rosiglitazone)-induced relaxation in HS-A2AAR(+/+) mice was attenuated by KATP channel blocker. Conversely, HS-induced contraction in A2AAR(-/-) mice was attenuated by sEH inhibitor. Overall, findings from this study that implicates the contribution of EETs, PPARγ and KATP channels downstream of A2AAR to mediate enhanced vascular relaxation in response to HS diet while, role of sEH in mediating vascular contraction in HS-fed A2AAR(-/-) mice.

  6. Hematopoietic PBX-interacting protein (HPIP) is over expressed in breast infiltrative ductal carcinoma and regulates cell adhesion and migration through modulation of focal adhesion dynamics.

    PubMed

    Bugide, S; David, D; Nair, A; Kannan, N; Samanthapudi, V S K; Prabhakar, J; Manavathi, B

    2015-08-27

    The scaffolding protein, hematopoietic PBX-interacting protein (HPIP/PBXIP1), regulates cell migration necessary for cancer cell dissemination. However, the mechanism that governs this process remains unknown. We show here that HPIP expression is associated with stages of breast cancer where cell dissemination results in poor patient outcome. Our investigation finds a novel association of HPIP with focal adhesion kinase (FAK) regulating FA dynamics. Interestingly, this interaction that led to activation of FAK protein was mediated by the C-terminal domain of HPIP and not the typical integrin-binding motif. Further, short hairpin RNA-mediated knockdown of FAK expression significantly reduced HPIP-induced cell migration indicating participation of FAK pathway. Live-cell time-lapse imaging and biochemical analysis further established the role of HPIP in microtubule-induced FA disassembly. We also found that HPIP-mediated MAPK activation led to phosphorylation and subsequent activation of calpain2, and the activated calpain2 in turn proteolyses FA protein, talin. Interestingly, HPIP is also proteolysed by calpain2 in breast cancer cells. The proteolysis of HPIP and talin by calpain2, and the activation of calapin2 by HPIP-mediated MAPK phosphorylation, is a novel regulatory axis to modulate the cell migration signal. Together, we have determined HPIP as a novel activator of FAK and a new substrate of calpain2. These molecular interactions between HPIP and FAK, and HPIP and calpain2 regulate cell adhesion and migration through modulation of FA dynamics.

  7. 7α-Hydroxypregnenolone, a key neuronal modulator of locomotion, stimulates upstream migration by means of the dopaminergic system in salmon.

    PubMed

    Haraguchi, Shogo; Yamamoto, Yuzo; Suzuki, Yuko; Hyung Chang, Joon; Koyama, Teppei; Sato, Miku; Mita, Masatoshi; Ueda, Hiroshi; Tsutsui, Kazuyoshi

    2015-07-29

    Salmon migrate upstream against an opposing current in their natal river. However, the molecular mechanisms that stimulate upstream migratory behavior are poorly understood. Here, we show that 7α-hydroxypregnenolone (7α-OH PREG), a newly identified neuronal modulator of locomotion, acts as a key factor for upstream migration in salmon. We first identified 7α-OH PREG and cytochrome P450 7α-hydroxylase (P4507α), a steroidogenic enzyme producing 7α-OH PREG, in the salmon brain and then found that 7α-OH PREG synthesis in the brain increases during upstream migration. Subsequently, we demonstrated that 7α-OH PREG increases upstream migratory behavior of salmon. We further found that 7α-OH PREG acts on dopamine neurons in the magnocellular preoptic nucleus during upstream migration. Thus, 7α-OH PREG stimulates upstream migratory behavior through the dopaminergic system in salmon. These findings provide new insights into the molecular mechanisms of fish upstream migration.

  8. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein.

    PubMed

    Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H

    2013-10-25

    Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.

  9. The Lutheran/Basal Cell Adhesion Molecule Promotes Tumor Cell Migration by Modulating Integrin-mediated Cell Attachment to Laminin-511 Protein*

    PubMed Central

    Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H.

    2013-01-01

    Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors. PMID:24036115

  10. PDZK1 and NHERF1 regulate the function of human organic anion transporting polypeptide 1A2 (OATP1A2) by modulating its subcellular trafficking and stability.

    PubMed

    Zheng, Jian; Chan, Ting; Cheung, Florence Shin Gee; Zhu, Ling; Murray, Michael; Zhou, Fanfan

    2014-01-01

    The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (V(max): 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)⁻¹ in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability.

  11. PDZK1 and NHERF1 Regulate the Function of Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) by Modulating Its Subcellular Trafficking and Stability

    PubMed Central

    Zheng, Jian; Chan, Ting; Cheung, Florence Shin Gee; Zhu, Ling; Murray, Michael; Zhou, Fanfan

    2014-01-01

    The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability. PMID:24728453

  12. Annexin A2 Promotes the Migration and Invasion of Human Hepatocellular Carcinoma Cells In Vitro by Regulating the Shedding of CD147-Harboring Microvesicles from Tumor Cells

    PubMed Central

    Cai, Lei; Song, Zhen-Shun; Cao, Da-Yong; Tao, Kai-Shan; Zhou, Wen-Ping; Chen, Zhi-Nan; Dou, Ke-Feng

    2013-01-01

    It has been reported that Annexin A2 (ANXA2) is up-regulated in hepatocellular carcinoma (HCC), but the roles of ANXA2 in the migration and invasion of HCC cells have not been determined. In this study, we found that ANXA2-specific siRNA (si-ANXA2) significantly inhibited the migration and invasion of HCC cells co-cultured with fibroblasts in vitro. In addition, the production of MMP-2 by fibroblasts cultured in supernatant collected from si-ANXA2-transfected HCC cells was notably down-regulated. ANXA2 was also found to be co-localized and co-immunoprecipitated with CD147. Further investigation revealed that the expression of ANXA2 in HCC cells affected the shedding of CD147-harboring membrane microvesicles, acting as a vehicle for CD147 in tumor-stromal interactions and thereby regulating the production of MMP-2 by fibroblasts. Together, these results suggest that ANXA2 enhances the migration and invasion potential of HCC cells in vitro by regulating the trafficking of CD147-harboring membrane microvesicles. PMID:23950866

  13. A 2.2-Hz modulation of auroral electrons imposed at the geomagnetic equator

    NASA Astrophysics Data System (ADS)

    Lepine, D. R.; Bryant, D. A.; Hall, D. S.

    1980-07-01

    The direct observation of 2.2-Hz oscillations in the intensities of 4-25 keV electrons producing a pulsating aurora is reported. Electrons were measured by a Petrel sounding rocket launched from Kiruna, Sweden in conjunction with measurements made by the geomagnetically conjugate GEOS 2 satellite. Measured precipitated energy flux variations only amounted to 3% of the energy flux at pulsation maximum, and thus do not permit the confirmation of particle modulations as the source of optical brightness modulations. The oscillations, like the previously observed 1-20 sec pulsations, are found to exhibit a marked velocity dispersion, implying an equatorial origin for both forms of modulation. A comparison of the rocket results with GEOS 2 measurements indicates VLF hiss emissions to be modulated at a frequency close to that of electron intensity oscillations, however isotropic angular distributions observed suggest that low-frequency micropulsations cannot cause auroral pulsations by modulating whistler-mode wave amplitudes which induce variations in the rate of pitch-angle scattering of electrons from the magnetosphere.

  14. Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells.

    PubMed

    Kong, Yaxian; Wang, Hong; Lin, Tao; Wang, Shuling

    2014-01-01

    The recruitment of bone marrow-derived mesenchymal stem cells (BMSCs) to damaged tissues and sites of inflammation is an essential step for clinical therapy. However, the signals regulating the motility of these cells are still not fully understood. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is known to have a variety of biological effects on various cells. Here, we investigated the roles of S1P and S1P receptors (S1PRs) in migration of human BMSCs. We found that S1P exerted a powerful migratory action on human BMSCs. Moreover, by employing RNA interference technology and pharmacological tools, we demonstrated that S1PR1 and S1PR3 are responsible for S1P-induced migration of human BMSCs. In contrast, S1PR2 mediates the inhibition of migration. Additionally, we explored the downstream signaling pathway of the S1P/S1PRs axis and found that activation of S1PR1 or S1PR3 increased migration of human BMSCs through a G i /extracellular regulated protein kinases 1/2- (ERK1/2-) dependent pathway, whereas activation of S1PR2 decreased migration through the Rho/Rho-associated protein kinase (ROCK) pathway. In conclusion, we reveal that the S1P/S1PRs signaling axis regulates the migration of human BMSCs via a dual-directional mechanism. Thus, selective modulation of S1PR's activity on human BMSCs may provide an effective approach to immunotherapy or tissue regeneration.

  15. LGR4 Is a Direct Target of MicroRNA-34a and Modulates the Proliferation and Migration of Retinal Pigment Epithelial ARPE-19 Cells

    PubMed Central

    Hou, Qiang; Zhou, Linglin; Tang, Jiajia; Ma, Nan; Xu, Ancong; Tang, Jiang; Zheng, Dandan; Chen, Xiaogang; Chen, Feng; Dong, Xiang Da; Tu, LiLi

    2016-01-01

    The pathology of proliferative vitreoretinopathy and proliferative diabetic retinopathy is linked to proliferation, migration, and adhesion of the retinal pigment epithelium. MicroRNA-34a (miR-34a) expression modulates changes in proliferation and migration of retinal pigment epithelial cell line ARPE-19. In this study, we determined that miR-34a interacts with LGR4, identified by bioinformatics using TargetScan Human 5.0, to affect these changes. Double luciferase gene reporter assay confirmed miR-34a involvement in mediating control. miR-34a mimic transfection decreased LGR4 expression. Western blot analysis documented corresponding protein expression inhibition. MTS, Ki67 immunostaining, scratch and transwell testing, along with attachment assay showed that miR-34a upregulation inhibited ARPE-19 cell proliferation, migration and attachment partly through downregulation of LGR4 protein expression. Western blot analysis revealed that both miR-34a upregulation and LGR4 downregulation induced declines in E2F1, p-CDC2, CDK2, CDK4 and CDK6 protein expression. Taken together, miR-34a gene expression upregulation inhibits ARPE-19 cell proliferation, migration and adhesion partly by suppressing LGR4 expression. These results substantiate earlier indications that both miR-34a and LGR4 are potential drug targets to prevent fibrosis in a clinical setting. PMID:27977785

  16. LGR4 Is a Direct Target of MicroRNA-34a and Modulates the Proliferation and Migration of Retinal Pigment Epithelial ARPE-19 Cells.

    PubMed

    Hou, Qiang; Zhou, Linglin; Tang, Jiajia; Ma, Nan; Xu, Ancong; Tang, Jiang; Zheng, Dandan; Chen, Xiaogang; Chen, Feng; Dong, Xiang Da; Tu, LiLi

    2016-01-01

    The pathology of proliferative vitreoretinopathy and proliferative diabetic retinopathy is linked to proliferation, migration, and adhesion of the retinal pigment epithelium. MicroRNA-34a (miR-34a) expression modulates changes in proliferation and migration of retinal pigment epithelial cell line ARPE-19. In this study, we determined that miR-34a interacts with LGR4, identified by bioinformatics using TargetScan Human 5.0, to affect these changes. Double luciferase gene reporter assay confirmed miR-34a involvement in mediating control. miR-34a mimic transfection decreased LGR4 expression. Western blot analysis documented corresponding protein expression inhibition. MTS, Ki67 immunostaining, scratch and transwell testing, along with attachment assay showed that miR-34a upregulation inhibited ARPE-19 cell proliferation, migration and attachment partly through downregulation of LGR4 protein expression. Western blot analysis revealed that both miR-34a upregulation and LGR4 downregulation induced declines in E2F1, p-CDC2, CDK2, CDK4 and CDK6 protein expression. Taken together, miR-34a gene expression upregulation inhibits ARPE-19 cell proliferation, migration and adhesion partly by suppressing LGR4 expression. These results substantiate earlier indications that both miR-34a and LGR4 are potential drug targets to prevent fibrosis in a clinical setting.

  17. Group IB secretory phospholipase A2 promotes matrix metalloproteinase-2-mediated cell migration via the phosphatidylinositol 3-kinase and Akt pathway.

    PubMed

    Choi, Young-Ae; Lim, Hyung-Kyu; Kim, Jae-Ryong; Lee, Chu-Hee; Kim, Young-Jo; Kang, Shin-Sung; Baek, Suk-Hwan

    2004-08-27

    Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.

  18. MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2

    PubMed Central

    Deng, Biao; Wang, Bin; Fang, Jiaqing; Zhu, Xuchao; Cao, Zhongwei; Lin, Qi; Zhou, Lisheng; Sun, Xing

    2016-01-01

    While it is known that miR-203 is frequently downregulated in many types of human cancer, little is known regarding its expression and functional role in colorectal cancer (CRC). In this study, we aimed to investigate the expression and the potential mechanisms of miR-203 in colorectal cancer. MiR-203 was significantly downregulated in CRC tissues compared with matched normal adjacent tissues. Our clinical data show that decreased miR-203 was associated with an advanced clinical tumor-node-metastasis stage, lymph node metastasis, and poor survival in CRC patients. Furthermore, externally induced expression of miR-203 significantly inhibited CRC cell proliferation and invasion in vitro and in vivo. Mechanistically, we identified EIF5A2 as a direct and functional target of miR-203. The levels of miR-203 were inversely correlated with levels of the EIF5A2 in the CRC tissues. Restoration of EIF5A2 in the miR-203-overexpressing CRC cells reversed the suppressive effects of miR-203. Our results demonstrate that miR-203 serves as a tumor suppressor gene and may be useful as a new potential therapeutic target in CRC. PMID:27376958

  19. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Pyrogallol abates VSMC migration via modulation of Caveolin-1, matrix metalloproteinase and intima hyperplasia in carotid ligation mouse.

    PubMed

    Ma, Yu-Dong; Thiyagarajan, Varadharajan; Tsai, May-Jywan; Lue, Sheng-I; Chia, Yi-Chen; Shyue, Song-Kun; Weng, Ching-Feng

    2016-12-01

    Migration of vascular smooth muscle cells (VSMCs) contributes to intimal hyperplasia and other vascular diseases. Caveolin-1 (Cav-1) has been recognized as a proliferative inhibitor of VSMCs and is likely to be an important regulator of VSMC migration. The underlying mechanism of pyrogallol on the VSMC migration is not fully understood. This study attempted to dissect the role of Cav-1 and matrix metalloproteinase (MMP) in VSMC migration and to investigate the effect of pyrogallol on VSMC mobility during carotid artery ligation mice. The mRNA expression of MMP-3 and MMP-13 was down-regulated in cultured VSMC prepared from Cav-1-deficient (Cav-1 KO) mice whereas MMP-14 expression was up-regulated. Pyrogallol effectively inhibited the migration of Cav-1 KO VSMC by promoting the expression of tissue inhibitors of metalloproteinase (TIMP)-2. Pyrogallol also inhibited the migration of Cav-1 wild type (WT) VSMC, however, by increasing TIMP-1 expression and repressing MMP-2 activity. In a parallel in vivo study, intra-peritoneal (ip) of pyrogallol to carotid artery ligated mice significantly suppressed intima formation in mice carotid artery. Furthermore, the proMMP-9 activity in pyrogallol-treated mice serum significantly increased from Day 0 to Day 2 and decreased from Day 2 to Day 7 in a time-dependent manner. In addition, WT mice treated with pyrogallol had significantly reduced neointima formation, whereas no differences were observed in Cav-1 knock out (KO) mice. These results suggest that pyrogallol not only inhibited VSMC migration but also effectively diminishes the severity of neointima hyperplasia, implying that pyrogallol possesses potential anti-atherogenic effects for the treatment of vascular diseases.

  1. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  2. Japanese Migration and the Americas: An Introduction to the Study of Migration.

    ERIC Educational Resources Information Center

    Mukai, Gary; Brunette, Rachel

    This curriculum module introduces students to the study of migration, including a brief overview of some categories of migration and reasons why people migrate. As a case study, the module uses the Japanese migration experience in the United States, Peru, Brazil, Canada, Mexico, Argentina, Bolivia, and Paraguay. The module introduces students to…

  3. Annexin A2 Modulates Radiation-Sensitive Transcriptional Programming and Cell Fate

    SciTech Connect

    Waters, Katrina M.; Stenoien, David L.; Sowa, Marianne B.; von Neubeck, Claere; Chrisler, William B.; Tan, Ruimin; Sontag, Ryan L.; Weber, Thomas J.

    2013-01-01

    There is considerable public interest in the health effects of low doses of radiation (LDR) that fall below the doses that can be plausibly investigated in epidemiological studies. At these low doses, experimental models can detect perturbations in signaling pathways and use this information to define functional consequences of LDR exposures prospectively. In this study, we show increased nuclear annexin A2 (AnxA2) levels in human skin organotypic culture and murine progenitor cell model systems following exposure to X-radiation (10-200 cGy). LDR (2-20 cGy) inhibits cell transformation responses following epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA) exposures, indicating LDR may have a protective component mediated in part by nuclear localization of AnxA2. Oncogenic protein kinase C epsilon (PKC) levels are increased in nuclear extracts from AnxA2 silenced [shRNA] cells, suggesting that AnxA2 may contribute to PKC nuclear export, perhaps reducing oncogenic potential. Coordinately, silencing AnxA2 results in a sensitive phenotype and cells grow constitutively in soft agar. Using global microarray analysis, we show that silencing AnxA2 fundamentally alters transcriptional programming, changing the radioresponsive transcriptome and revealing biological processes that are induced in the absence of AnxA2. These observations suggest that AnxA2 plays a fundamental role in the sensitivity of cellular and tissue response to ionizing radiation, and deficiency of AnxA2 could result in a permissive environment for radiation-induced health effects.

  4. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  5. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery.

    PubMed

    Jursinic, Paul A; Nelms, Ben E

    2003-05-01

    An analysis is made of a two-dimensional array of diodes that can be used for measuring dose generated in a plane by a radiation beam. This measuring device is the MapCHECK Model 1175 (Sun Nuclear, Melbourne, FL). This device has 445 N-type diodes in a 22 x 22 cm2 2-D array with variable spacing. The entire array of diodes is easily calibrated to allow for measurements in absolute dose. For IMRT quality assurance, each beam is measured individually with the beam central axis oriented perpendicular to the plane of diodes. Software is available to do the analytical comparison of measurements versus dose distributions calculated by a treatment planning system. Comparison criteria of percent difference and distance-to-agreement are defined by the operator. Data are presented that show the diode array has linear response when beam fluence changes by over 300-fold, which is typical of the level of modulation in intensity modulated radiation therapy, IMRT, beams. A linear dependence is also shown for a 100-fold change in monitors units delivered. Methods for how this device can be used in the clinic for quality assurance of IMRT fields are described. Measurements of typical IMRT beams that are modulated by compensators and MLCs are presented with comparisons to treatment planning system dose calculations. A time analysis is done for typical IMRT quality assurance measurements. The setup, calibration, and analysis time for the 2-D diode array are on the order of 20 min, depending on numbers of fields. This is significantly less time than required to do similar analysis with radiographic film. The 2-D diode array is ideal for per-plan quality assurance after an IMRT system is fully commissioned.

  6. Modulation of radiation induced lipid peroxidation by phospholipase A 2 and calmodulin antagonists: Relevance to detoxification

    NASA Astrophysics Data System (ADS)

    Varshney, Rajeev; Kale, R. K.

    1995-04-01

    Ghost membranes prepared from erythrocytes of Swiss albino mice were irradiated with 0.9 Gy s -1. Lipid peroxidation initiated by ionizing radiation was enhanced by phospholipase A 2, and required both phospholipase A 2 and GSH-peroxidase for consecutive action to convert fatty acid peroxides into corresponding alcohols. The ability of phospholipase A 2 to enhance lipid peroxidation was increased in presence of Ca 2+. However, in combination, phospholipase A 2 and GSH-peroxidase were effective in inhibiting lipid peroxidation. These findings show that free fatty acid peroxides considerably increase the peroxidation. Calmodulin antagonists inhibit lipid peroxidation and decrease the radiation induced release of Ca 2+ from the membranes. Our results suggest the importance of Ca 2+ dependent phospholipase A 2 in detoxification of fatty acid peroxides in the membranes. It is quite possible that scavenging of free radicals by calmodulin antagonists lower the formation of hydroperoxides, resulting in the decrease in activity of phospholipase A 2. Alternatively, decrease in Ca 2+ release due to the calmodulin antagonists might have affected the activity of phospholipase A 2. Our observations might be of considerable significance in the understanding of post irradiation effect on biological membranes.

  7. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway.

    PubMed

    Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L

    2017-07-01

    Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca(2+)-dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.

  8. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

    PubMed Central

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions. PMID:24966910

  9. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    PubMed

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  10. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  11. Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways.

    PubMed

    Cheung, Caroline T; Bendris, Nawal; Paul, Conception; Hamieh, Abdallah; Anouar, Youssef; Hahne, Michael; Blanchard, Jean-Marie; Lemmers, Bénédicte

    2015-08-01

    We have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) and metastasis. This phenotype was potentiated by activated oncogenic H-Ras. However, the mechanisms governing EMT in these cells have not yet been elucidated. Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. In Cyclin A2-depleted normal murine mammary gland (NMuMG) cells expressing RasV12, we found that β-catenin was liberated from the cell membrane and cell-cell junctions and underwent nuclear translocation and activation. Components of the canonical wingless (WNT) pathway, including WNT8b, WNT10a, WNT10b, frizzled 1 and 2 and TCF4 were upregulated at the messenger RNA and protein levels following Cyclin A2 depletion. However, suppression of the WNT pathway using the acetyltransferase porcupine inhibitor C59 did not reverse EMT whereas a dominant negative form of TCF4 as well as inhibition of phospholipase C using U73122 were able to do so. This suggests that a WNT-independent mechanism of β-catenin activation via phospholipase C is involved in the EMT induced by Cyclin A2 depletion. Our findings will broaden our knowledge on how Cyclin A2 contributes to EMT and metastasis.

  12. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  13. Argininosuccinate lyase interacts with cyclin A2 in cytoplasm and modulates growth of liver tumor cells.

    PubMed

    Hung, Yu-Hsuan; Huang, Hau-Lun; Chen, Wei-Ching; Yen, Meng-Chi; Cho, Chien-Yu; Weng, Tzu-Yang; Wang, Chih-Yang; Chen, Yi-Ling; Chen, Li-Tzong; Lai, Ming-Derg

    2017-02-01

    Arginine is a critical amino acid in specific cancer types including hepatocellular carcinoma (HCC) and melanoma. Novel molecular mechanisms and therapeutic targets in arginine metabolism-mediated cancer formation await further identification. Our laboratory has previously demonstrated that arginine metabolic enzyme argininosuccinate lyase (ASL) promoted HCC formation in part via maintenance of cyclin A2 protein expression and arginine production for channeling to nitric oxide synthase. In this study, we investigated the mechanism by which ASL regulates cyclin A2 expression. We found that ASL interacted with cyclin A2 in HCC cells and the localization of their interaction was in the cytoplasm. Mutation of essential residues for enzymatic activity of ASL did not affect the binding of ASL to cyclin A2. Moreover, the mutant ASL retained the ability to restore the decreased tumorigenicity caused by ASL shRNA. Furthermore, overexpression of ASL conferred resistance to arginine deprivation therapy. Finally, the important pathways and potential therapeutic targets in ASL-regulated HCC were identified by bioinformatics analyses with Metacore database and Connectivity Map database. Our analyses suggested that bisoprolol, celecoxib, and ipratropium bromide, are potential therapeutics for ASL-regulated HCC formation. Thus, ASL interacts with cyclin A2 in cytoplasm, and may promote HCC formation through this non-enzymatic function. Overexpression of ASL may be a contributing factor in drug resistance for arginine deprivation therapy.

  14. Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II.

    PubMed

    Zhang, Qing-Hua; Yuen, Wai Shan; Adhikari, Deepak; Flegg, Jennifer A; FitzHarris, Greg; Conti, Marco; Sicinski, Piotr; Nabti, Ibtissem; Marangos, Petros; Carroll, John

    2017-10-02

    Cyclin A2 is a crucial mitotic Cdk regulatory partner that coordinates entry into mitosis and is then destroyed in prometaphase within minutes of nuclear envelope breakdown. The role of cyclin A2 in female meiosis and its dynamics during the transition from meiosis I (MI) to meiosis II (MII) remain unclear. We found that cyclin A2 decreases in prometaphase I but recovers after the first meiotic division and persists, uniquely for metaphase, in MII-arrested oocytes. Conditional deletion of cyclin A2 from mouse oocytes has no discernible effect on MI but leads to disrupted MII spindles and increased merotelic attachments. On stimulation of exit from MII, there is a dramatic increase in lagging chromosomes and an inhibition of cytokinesis. These defects are associated with an increase in microtubule stability in MII spindles, suggesting that cyclin A2 mediates the fidelity of MII by maintaining microtubule dynamics during the rapid formation of the MII spindle. © 2017 Crown copyright. The government of Australia, Canada, or the UK ("the Crown") owns the copyright interests of authors who are government employees. The Crown Copyright is not transferable.

  15. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats.

    PubMed

    Mandhane, S N; Chopde, C T; Ghosh, A K

    1997-06-11

    The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease.

  16. Phosphorylation of BRN2 Modulates Its Interaction with the Pax3 Promoter To Control Melanocyte Migration and Proliferation

    PubMed Central

    Berlin, Irina; Denat, Laurence; Steunou, Anne-Lise; Puig, Isabel; Champeval, Delphine; Colombo, Sophie; Roberts, Karen; Bonvin, Elise; Bourgeois, Yveline; Davidson, Irwin; Delmas, Véronique; Nieto, Laurence; Goding, Colin R.

    2012-01-01

    MITF-M and PAX3 are proteins central to the establishment and transformation of the melanocyte lineage. They control various cellular mechanisms, including migration and proliferation. BRN2 is a POU domain transcription factor expressed in melanoma cell lines and is involved in proliferation and invasion, at least in part by regulating the expression of MITF-M and PAX3. The T361 and S362 residues of BRN2, both in the POU domain, are conserved throughout the POU protein family and are targets for phosphorylation, but their roles in vivo remain unknown. To examine the role of this phosphorylation, we generated mutant BRN2 in which these two residues were replaced with alanines (BRN2TS→BRN2AA). When expressed in melanocytes in vitro or in the melanocyte lineage in transgenic mice, BRN2TS induced proliferation and repressed migration, whereas BRN2AA repressed both proliferation and migration. BRN2TS and BRN2AA bound and repressed the MITF-M promoter, whereas PAX3 transcription was induced by BRN2TS but repressed by BRN2AA. Expression of the BRN2AA transgene in a Mitf heterozygous background and in a Pax3 mutant background enhanced the coat color phenotype. Our findings show that melanocyte migration and proliferation are controlled both through the regulation of PAX3 by nonphosphorylated BRN2 and through the regulation of MITF-M by the overall BRN2 level. PMID:22290434

  17. A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array.

    PubMed

    Kong, Lingbo; Chan, James

    2014-07-01

    We report the development of a rapidly modulated multifocal detection scheme that enables full Raman spectra (~500-2000 cm(-1)) from a 2-D focal array to be acquired simultaneously. A spatial light modulator splits a laser beam to generate an m × n multifocal array. Raman signals generated within each focus are projected simultaneously into a spectrometer and imaged onto a TE-cooled CCD camera. A shuttering system using different masks is constructed to collect the superimposed Raman spectra of different multifocal patterns. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra with no crosstalk using a postacquisition data processing algorithm. This system is expected to significantly improve the speed of current Raman-based instruments such as laser tweezers Raman spectroscopy and hyperspectral Raman imaging.

  18. A novel 3D bone-mimetic scaffold composed of collagen/MTA/MWCNT modulates cell migration and osteogenesis.

    PubMed

    Valverde, Thalita M; Castro, Elisandra G; Cardoso, Maíssa H S; Martins-Júnior, Paulo A; Souza, Lívia M O; Silva, Patrícia P; Ladeira, Luiz O; Kitten, Gregory T

    2016-10-01

    This study characterized a three-dimensional (3D) biocomposite scaffolds produced using type I collagen, mineral trioxide aggregate (MTA) and multi-walled carbon nanotubes (MWCNT) to be used in bone tissue regeneration. The scaffolds were analyzed via scanning (SEM) and transmission (TEM) electron microscopy, as well as the viability and migration of osteoblasts and mineralization of the scaffolds. SEM and TEM analyses showed that MTA and MWCNT were distributed as both large agglomerates entrapped within the collagen network and as smaller accumulations or individual molecules dispersed throughout the scaffold. Ultrastructural analysis revealed that osteoblastic MC3T3-E1 cells grown in the biocomposite endocytosed MWCNT, which were localized in the cytoplasm and in vesicles. Analysis of cells grown in the 3D scaffolds demonstrated that >95% of the cells remained viable in all tested combinations and concentrations of the biocomposite. MC3T3-E1 osteoblasts migrated into scaffolds formed with concentrations of type I collagen between 1.75 and 3.0mg/mL. Cells displayed increased migration into scaffolds formed with collagen and a range of low to high concentrations of MTA. In contrast, the presence of MWCNT in the biocomposite had a slight negative effect on migration. Collagen gels containing specific concentrations of MTA, or MWCNT, or combinations of MTA/MWCNT, caused an increase in mineralization of scaffolds. Scaffolds composed of defined concentrations of type I collagen, MTA and MWCNT are biocompatible, promote migration and mineralization of osteoblasts, and hence may be useful as bone tissue mimetics. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1.

    PubMed

    Huang, Chen; Li, Haidong; Wu, Weidong; Jiang, Tao; Qiu, Zhengjun

    2013-09-01

    In the present study, we investigated the effects of miR-155 on pancreatic cancer cell invasion and migration in vitro, underlying gene expression, expression of miR-155 and its target genes in pancreatic cancer tissues, and their association with metastasis and clinical stage. miR-155 mimics and an inhibitor were transfected into Panc-1 and Capan-2 cells in order to regulate the expression of miR-155. qPCR and western immunoblotting were performed in order to detect gene expression. Transwell assays were performed to characterize the invasion and migration of pancreatic cancer cells in vitro. Immunohistochemical analysis and in situ hybridization were used to detect the expression of protein and microRNA in pancreatic cancer tissue. miR-155 mimics and an inhibitor upregulated and downregulated, respectively, the expression of miR-155 in pancreatic cancer cells. The invasion and migration of pancreatic cancer cells increased or decreased along with miR-155 expression in vitro. Suppressor of cytokine signaling 1 (SOCS1) protein expression was upregulated when miR-155 was inhibited and downregulated when miR-155 was increased. However, the expression of P-signal transducer and activator of transcription-3 (STAT3) was synchronized with that of miR-155. Transcription of SOCS1 and STAT3 was unchanged by miR-155 regulation. miR-155 expression was high in pancreatic cancer tissues and SOCS1 expression was high in tumor-adjacent tissues. There was no relationship between these genes in cancer and tumor-adjacent tissues. In addition, miR-155 expression was associated with lymph node metastasis and clinical stage. In conclusion, miR-155 plays an important role in the regulation of pancreatic cancer cell invasion and migration by modulating the STAT3 signaling pathway and reducing SOCS1 expression in pancreatic cancer cells.

  20. Caffeine Impact on Metabolic Syndrome Components Is Modulated by a CYP1A2 Variant.

    PubMed

    Platt, Daniel E; Ghassibe-Sabbagh, Michella; Salameh, Pascale; Salloum, Angelique K; Haber, Marc; Mouzaya, Francis; Gauguier, Dominique; Al-Sarraj, Yasser; El-Shanti, Hatem; Zalloua, Pierre A; Abchee, Antoine B

    2016-01-01

    Cultural, dietary, and lifestyle factors are the main modulators of type 2 diabetes mellitus (T2DM) disease risk. Coffee is one of the most popular worldwide beverages, and recent epidemiological studies have showed that coffee consumption is associated with a lower risk of T2DM. This study investigates the impact of coffee intake on T2DM risk and assesses the effect of CYP variants with caffeine exposures on T2DM. Data from 7,607 study subjects were analyzed by logistic regression models, among whom 3,290 GWAS data were available for CYP variants association studies using Plink analysis. These data suggest a protective relationship for women, but not for men; however, the results were not statistically significant in this dataset and there is a significant interaction in favor of women regarding heavy coffee consumption. The interaction between male gender and heavy coffee consumption becomes significant, thereby tending to cancel the protective effect of coffee for males. CYP rs2470890 allele 'C' increases the odds of T2DM by a factor of around 1.2 but decreases the odds of caffeine boosting T2DM of 1.7 by a factor of 0.77. rs2470890 showed an association with T2DM only when the interaction with coffee was considered, thereby setting an example of genetic activation by dietary changes associating with metabolic syndrome. © 2015 S. Karger AG, Basel.

  1. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  2. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  3. Phosphorylation of rat liver heterogeneous nuclear ribonucleoproteins A2 and C can be modulated by calmodulin.

    PubMed Central

    Bosser, R; Faura, M; Serratosa, J; Renau-Piqueras, J; Pruschy, M; Bachs, O

    1995-01-01

    It was previously reported that the phosphorylation of three proteins of 36, 40 to 42, and 50 kDa by casein kinase 2 is inhibited by calmodulin in nuclear extracts from rat liver cells (R. Bosser, R. Aligué, D. Guerini, N. Agell, E. Carafoli, and O. Bachs, J. Biol. Chem. 268:15477-15483, 1993). By immunoblotting, peptide mapping, and endogenous phosphorylation experiments, the 36- and 40- to 42-kDa proteins have been identified as the A2 and C proteins, respectively, of the heterogeneous nuclear ribonucleoprotein particles. To better understand the mechanism by which calmodulin inhibits the phosphorylation of these proteins, they were purified by using single-stranded DNA chromatography, and the effect of calmodulin on their phosphorylation by casein kinase 2 was analyzed. Results revealed that whereas calmodulin inhibited the phosphorylation of purified A2 and C proteins in a Ca(2+)-dependent manner, it did not affect the casein kinase 2 phosphorylation of a different protein substrate, i.e., beta-casein. These results indicate that the effect of calmodulin was not on casein kinase 2 activity but on specific protein substrates. The finding that the A2 and C proteins can bind to a calmodulin-Sepharose column in a Ca(2+)-dependent manner suggests that this association could prevent the phosphorylation of the proteins by casein kinase 2. Immunoelectron microscopy studies have revealed that such interactions could also occur in vivo, since calmodulin and A2 and C proteins colocalize on the ribonucleoprotein particles in rat liver cell nuclei. PMID:7823935

  4. N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance.

    PubMed

    Chion, Alain; O'Sullivan, Jamie M; Drakeford, Clive; Bergsson, Gudmundur; Dalton, Niall; Aguila, Sonia; Ward, Soracha; Fallon, Padraic G; Brophy, Teresa M; Preston, Roger J S; Brady, Lauren; Sheils, Orla; Laffan, Michael; McKinnon, Thomas A J; O'Donnell, James S

    2016-10-13

    Enhanced von Willebrand factor (VWF) clearance is important in the etiology of von Willebrand disease. However, the molecular mechanisms underlying VWF clearance remain poorly understood. In this study, we investigated the role of VWF domains and specific glycan moieties in regulating in vivo clearance. Our findings demonstrate that the A1 domain of VWF contains a receptor-recognition site that plays a key role in regulating the interaction of VWF with macrophages. In A1-A2-A3 and full-length VWF, this macrophage-binding site is cryptic but becomes exposed following exposure to shear or ristocetin. Previous studies have demonstrated that the N-linked glycans within the A2 domain play an important role in modulating susceptibility to ADAMTS13 proteolysis. We further demonstrate that these glycans presented at N1515 and N1574 also play a critical role in protecting VWF against macrophage binding and clearance. Indeed, loss of the N-glycan at N1515 resulted in markedly enhanced VWF clearance that was significantly faster than that observed with any previously described VWF mutations. In addition, A1-A2-A3 fragments containing the N1515Q or N1574Q substitutions also demonstrated significantly enhanced clearance. Importantly, clodronate-induced macrophage depletion significantly attenuated the increased clearance observed with N1515Q and N1574Q in both full-length VWF and A1-A2-A3. Finally, we further demonstrate that loss of these N-linked glycans does not enhance clearance in VWF in the presence of a structurally constrained A2 domain. Collectively, these novel findings support the hypothesis that conformation of the VWF A domains plays a critical role in modulating macrophage-mediated clearance of VWF in vivo.

  5. Dual allosteric modulation of opioid antinociceptive potency by a2A-adrenoceptors

    PubMed Central

    Chabot-Doré, Anne-Julie; Millecamps, Magali; Naso, Lina; Devost, Dominic; Trieu, Phan; Piltonen, Marjo; Diatchenko, Luda; Fairbanks, Carolyn A.; Wilcox, George L.; Hébert, Terence E.; Stone, Laura S.

    2015-01-01

    Opioid and α2-adrenoceptor (AR) agonists are analgesic when administered in the spinal cord and show a clinically beneficial synergistic interaction when co-administered. However, α2-AR antagonists can also inhibit opioid antinociception, suggesting a complex interaction between the two systems. The α2A-AR subtype is necessary for spinal adrenergic analgesia and synergy with opioids for most agonist combinations. Therefore, we investigated whether spinal opioid antinociception and opioid-adrenergic synergy were under allosteric control of the α2A-AR. Drugs were administered intrathecally in wild type (WT) and α2A-knock-out (KO) mice and antinociception was measured using hot water tail immersion or substance P behavioral assays. The α2A-AR agonist clonidine was less effective in α2A-KO mice in both assays. The absence of the α2A-AR resulted in 10–70-fold increases in the antinociceptive potency of the opioid agonists morphine and DeltII. In contrast, neither morphine nor DeltII synergized with clonidine in α2AKO mice, indicating that the α2AAR has both positive and negative modulatory effects on opioid antinociception. Depletion of descending adrenergic terminals with 6-OHDA resulted in a significant decrease in morphine efficacy in WT but not in α2A-KO mice, suggesting that endogenous norepinephrine acts through the α2A-AR to facilitate morphine antinociception. Based on these findings, we propose a model whereby ligand-occupied versus ligand-free α2A-AR produce distinct patterns of modulation of opioid receptor activation. In this model, agonist-occupied α2A-ARs potentiate opioid analgesia, while non-occupied α2A-ARs inhibit opioid analgesia. Exploiting such interactions between the two receptors could lead to the development of better pharmacological treatments for pain management. PMID:26254859

  6. NDUFV2 regulates neuronal migration in the developing cerebral cortex through modulation of the multipolar-bipolar transition.

    PubMed

    Chen, Tianda; Wu, Qinwei; Zhang, Yang; Zhang, Dai

    2015-11-02

    Abnormalities during brain development are tightly linked several psychiatric disorders. Mutations in NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2) are responsible for schizophrenia, bipolar disorder and Parkinson׳s disease. However, the function of NDUFV2 during brain development remains unclear. Here we reported that ndufv2 is expressed in the developing cerebral cortex. In utero suppression of ndufv2 arrested neuronal migration, leading to accumulation of ectopic neurons in the intermediate zone. ndufv2 inhibition did not affect radial glia scaffold, progenitor cells or neurons survival. However, the loss of ndufv2 impairs neuronal multipolar-bipolar transition in vivo and polarization in vitro. Moreover, ndufv2 affected actin cytoskeleton and tubulin stabilization in cortical neurons. Overall, our findings establish a new NDUFV2 dependent mechanism underlying neuronal migration and psychiatric disorders.

  7. Inhibition of miR-664a interferes with the migration of osteosarcoma cells via modulation of MEG3.

    PubMed

    Sahin, Yunus; Altan, Zekiye; Arman, Kaifee; Bozgeyik, Esra; Koruk Ozer, Meltem; Arslan, Ahmet

    2017-08-26

    Osteosarcoma is the most common primary bone tumor in children and adolescents. Understanding the basic molecular mechanisms in developing cancer can be helpful in developing alternative treatment strategies. The relationship between dysregulated non-coding RNAs' (ncRNA) expression level and osteosarcoma was detected. Among those ncRNAs, the expression levels of miR-664a were detected to be upregulated and MEG3 long non-coding RNA levels were detected to be downregulated in osteosarcoma tissue and cell lines. In this study, miR-664a inhibitor was used in order to investigate the changes in the expression levels of MEG3 gene and miR-664a in osteosarcoma cancer cell line (U2-OS) and human osteoblast cell line (hFOB 1.19). According to our results, the expression level of MEG3 gene was increased while the expression level of miR-664a was decreased, as expected. In addition, changes in expression level of MEG3 and miR-644a interferes with the migration of osteosarcoma cells migration speed of osteosarcoma cells. These results are found to be statistically significant (p < 0.05). As a result of this study, it was shown that the upregulated expression of miR-664a could have an inhibitory effect on MEG3 gene expression and migration of osteosarcoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

    PubMed Central

    Rau, Andrew R.; Ariwodola, Olusegun J.

    2015-01-01

    Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability. Results: Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells. PMID:25716780

  9. Cognitive Stimulation Modulates Platelet Total Phospholipases A2 Activity in Subjects with Mild Cognitive Impairment.

    PubMed

    Balietti, Marta; Giuli, Cinzia; Fattoretti, Patrizia; Fabbietti, Paolo; Postacchini, Demetrio; Conti, Fiorenzo

    2016-01-01

    We evaluated the effect of cognitive stimulation (CS) on platelet total phospholipases A2 activity (tPLA2A) in patients with mild cognitive impairment (MCI_P). At baseline, tPLA2A negatively correlated with Mini-Mental State Examination score (MMSE_s): patients with MMSE_s <26 (Subgroup 1) had significantly higher activity than those with MMSE_s ≥26 (Subgroup 2), who had values similar to the healthy elderly. Regarding CS effect, Subgroup 1 had a significant tPLA2A reduction, whereas Subgroup 2 did not significantly changes after training. Our results showed for the first time that tPLA2A correlates with the cognitive conditions of MCI_P, and that CS acts selectively on subjects with a dysregulated tPLA2A.

  10. Cognitive Stimulation Modulates Platelet Total Phospholipases A2 Activity in Subjects with Mild Cognitive Impairment

    PubMed Central

    Balietti, Marta; Giuli, Cinzia; Fattoretti, Patrizia; Fabbietti, Paolo; Postacchini, Demetrio; Conti, Fiorenzo

    2016-01-01

    We evaluated the effect of cognitive stimulation (CS) on platelet total phospholipases A2 activity (tPLA2A) in patients with mild cognitive impairment (MCI_P). At baseline, tPLA2A negatively correlated with Mini-Mental State Examination score (MMSE_s): patients with MMSE_s <26 (Subgroup 1) had significantly higher activity than those with MMSE_s ≥26 (Subgroup 2), who had values similar to the healthy elderly. Regarding CS effect, Subgroup 1 had a significant tPLA2A reduction, whereas Subgroup 2 did not significantly changes after training. Our results showed for the first time that tPLA2A correlates with the cognitive conditions of MCI_P, and that CS acts selectively on subjects with a dysregulated tPLA2A. PMID:26836161

  11. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2.

    PubMed

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S; Juknaitė, Lina; Pøhlsgaard, Jacob; Olsen, Lars; Frydenvang, Karla; Goffin, Eric; Pirotte, Bernard; Kastrup, Jette S

    2016-06-07

    The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind in a cleft formed by the interface of two neighboring ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (ΔH, kcal/mol) from -4.9 (2) and -7.5 (3) to -6.2 (4) and -14.5 (5), but also a less favorable binding entropy (-TΔS, kcal/mol) from -2.3 (2) and -1.3 (3) to -0.5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, μM) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 μM L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 μM, respectively. The binding mode of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely explanation of the underlying structural mechanism. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis.

    PubMed

    Polko, Joanna K; van Rooij, Jop A; Vanneste, Steffen; Pierik, Ronald; Ammerlaan, Ankie M H; Vergeer-van Eijk, Marleen H; McLoughlin, Fionn; Gühl, Kerstin; Van Isterdael, Gert; Voesenek, Laurentius A C J; Millenaar, Frank F; Beeckman, Tom; Peeters, Anton J M; Marée, Athanasius F M; van Zanten, Martijn

    2015-09-01

    Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis1[OPEN

    PubMed Central

    Polko, Joanna K.; van Rooij, Jop A.; Vanneste, Steffen; Pierik, Ronald; Ammerlaan, Ankie M.H.; Vergeer-van Eijk, Marleen H.; McLoughlin, Fionn; Gühl, Kerstin; Van Isterdael, Gert; Voesenek, Laurentius A.C.J.; Millenaar, Frank F.; Beeckman, Tom; Peeters, Anton J.M.; Marée, Athanasius F.M.; van Zanten, Martijn

    2015-01-01

    Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth. PMID:26041787

  14. Macrophage A2A Adenosinergic Receptor Modulates Oxygen-Induced Augmentation of Murine Lung Injury

    PubMed Central

    D’Alessio, Franco R.; Eto, Yoshiki; Chau, Eric; Avalos, Claudia; Waickman, Adam T.; Garibaldi, Brian T.; Mock, Jason R.; Files, Daniel C.; Sidhaye, Venkataramana; Polotsky, Vsevolod Y.; Powell, Jonathan; Horton, Maureen; King, Landon S.

    2013-01-01

    Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality. Exacerbating factors increasing the risk of ARDS remain unknown. Supplemental oxygen is often necessary in both mild and severe lung disease. The potential effects of supplemental oxygen may include augmentation of lung inflammation by inhibiting anti-inflammatory pathways in alveolar macrophages. We sought to determine oxygen-derived effects on the anti-inflammatory A2A adenosinergic (ADORA2A) receptor in macrophages, and the role of the ADORA2A receptor in lung injury. Wild-type (WT) and ADORA2A−/− mice received intratracheal lipopolysaccharide (IT LPS), followed 12 hours later by continuous exposure to 21% oxygen (control mice) or 60% oxygen for 1 to 3 days. We measured the phenotypic endpoints of lung injury and the alveolar macrophage inflammatory state. We tested an ADORA2A-specific agonist, CGS-21680 hydrochloride, in LPS plus oxygen-exposed WT and ADORA2A−/− mice. We determined the specific effects of myeloid ADORA2A, using chimera experiments. Compared with WT mice, ADORA2A−/− mice exposed to IT LPS and 60% oxygen demonstrated significantly more histologic lung injury, alveolar neutrophils, and protein. Macrophages from ADORA2A−/− mice exposed to LPS plus oxygen expressed higher concentrations of proinflammatory cytokines and cosignaling molecules. CGS-21680 prevented the oxygen-induced augmentation of lung injury after LPS only in WT mice. Chimera experiments demonstrated that the transfer of WT but not ADORA2A−/− bone marrow cells into irradiated ADORA2A−/− mice reduced lung injury after LPS plus oxygen, demonstrating myeloid ADORA2A protection. ADORA2A is protective against lung injury after LPS and oxygen. Oxygen after LPS increases macrophage activation to augment lung injury by inhibiting the ADORA2A pathway. PMID:23349051

  15. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    PubMed

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation.

  16. Modulation of the uptake of critical nutrients by breast cancer cells by lactate: Impact on cell survival, proliferation and migration.

    PubMed

    Guedes, Marta; Araújo, João R; Correia-Branco, Ana; Gregório, Inês; Martel, Fátima; Keating, Elisa

    2016-02-15

    This work aimed to characterize the uptake of folate and glucose by breast cancer cells and to study the effect of lactate upon the transport of these nutrients and upon cell viability, proliferation and migration capacity. Data obtained showed that: a) MCF7 cells uptake (3)H-folic acid ((3)H-FA) at physiological but not at acidic pH; b) T47D cells accumulate (3)H-FA and (14)C-5-methyltetrahydrofolate ((14)C-5-MTHF) more efficiently at acidic than at physiological pH; c) (3)H-deoxyglucose ((3)H-DG) uptake by T47D cells is sodium-independent, inhibited by cytochalasin B (CYT B) and stimulated by insulin. Regarding the effect of lactate, in T47D cells, acute (26 min) and chronic (24 h) exposure to lactic acid (LA) stimulated (3)H-FA uptake. Acute exposure to LA also stimulated (3)H-DG uptake and chronic exposure to LA significantly stimulated T47D cell migratory capacity. In conclusion, the transport of folates is strikingly different in two phenotypically similar breast cancer cell lines: MCF7 and T47D cells. Additionally, lactate seems to act as a signaling molecule which increases the uptake of nutrients and promotes the migration capacity of T47D cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Transforming Growth Factor β Controls the Directional Migration of Hepatocyte Cohorts by Modulating Their Adhesion to Fibronectin

    PubMed Central

    Binamé, Fabien; Lassus, Patrice

    2008-01-01

    Transforming growth factor β (TGF-β) has a strong impact on liver development and physiopathology, exercised through its pleiotropic effects on growth, differentiation, survival, and migration. When exposed to TGF-β, the mhAT3F cells, immortalized, highly differentiated hepatocytes, maintained their epithelial morphology and underwent dramatic alterations of adhesion, leading to partial or complete detachment from a culture plate, followed by readhesion and spreading. These alterations of adhesive behavior were caused by sequential changes in expression of the α5β1 integrin and of its ligand, the fibronectin. The altered specificity of anchorage to the extracellular matrix gave rise to changes in cells' collective motility: cohorts adhering to fibronectin maintained a persistent, directional motility, with ezrin-rich pathfinder cells protruding from the tips of the cohorts. The absence of adhesion to fibronectin prevented the appearance of polarized pathfinders and lead to random, oscillatory motility. Our data suggest a novel role for TGF-β in the control of collective migration of epithelial cohorts. PMID:18094041

  18. Golgi phosphoprotein 2 (GOLPH2) is a novel bile acid-responsive modulator of oesophageal cell migration and invasion

    PubMed Central

    Byrne, Anne-Marie; Bekiaris, Spiros; Duggan, Gina; Prichard, David; Kirca, Murat; Finn, Stephen; Reynolds, John V; Kelleher, Dermot; Long, Aideen

    2015-01-01

    Background: The aetiology of Barrett's oesophagus (BO) and oesophageal cancer is poorly understood. We previously demonstrated that Golgi structure and function is altered in oesophageal cancer cells. A Golgi-associated protein, GOLPH2, was previously established as a tissue biomarker for BO. Cellular functions for GOLPH2 are currently unknown, therefore in this study we sought to investigate functional roles for this Golgi-associated protein in oesophageal disease. Methods: Expression, intracellular localisation and secretion of GOLPH2 were identified by immunofluorescence, immunohistochemistry and western blot. GOLPH2 expression constructs and siRNA were used to identify cellular functions for GOLPH2. Results: We demonstrate that the structure of the Golgi is fragmented and the intracellular localisation of GOLPH2 is altered in BO and oesophageal adenocarcinoma tissue. GOLPH2 is secreted by oesophageal cancer cells and GOLPH2 expression, cleavage and secretion facilitate cell migration and invasion. Furthermore, exposure of cells to DCA, a bile acid component of gastric refluxate and known tumour promoter for oesophageal cancer, causes disassembly of the Golgi structure into ministacks, resulting in cleavage and secretion of GOLPH2. Conclusions: This study demonstrates that GOLPH2 may be a useful tissue biomarker for oesophageal disease. We provide a novel mechanistic insight into the aetiology of oesophageal cancer and reveal novel functions for GOLPH2 in regulating tumour cell migration and invasion, important functions for the metastatic process in oesophageal cancer. PMID:26461057

  19. The Lnc RNA SPRY4-IT1 Modulates Trophoblast Cell Invasion and Migration by Affecting the Epithelial-Mesenchymal Transition

    PubMed Central

    Zuo, Qing; Huang, Shiyun; Zou, Yanfen; Xu, Yetao; Jiang, Ziyan; Zou, Shan; Xu, Haoqing; Sun, Lizhou

    2016-01-01

    Preeclampsia is a common, pregnancy-specific disease and a major contributor to maternal and foetal morbidity and mortality. Some placental abnormalities, including deficient implantation, abnormal trophoblast cell function, and improper placental vascular development, are believed to lead to preeclampsia. The long noncoding RNA SPRY4-IT1 is more highly expressed in preeclamptic human placentas than in normal placentas. We assessed the role of epithelial-mesenchymal transition (EMT)-associated invasion and migration in HTR-8/SVneo trophoblast cells. Overexpression of SPRY4-IT1 suppressed trophoblast cell migration and invasion, whereas reduced expression of SPRY4-IT1 prevented the EMT process. Mechanistically, an RNA immunoprecipitation experiment showed that SPRY4-IT1 bound directly to HuR and mediated the β-catenin expression associated with EMT in HTR-8/SVneo cells. Moreover, the expression levels of genes in the WNT family, such as WNT3 and WNT5B, were changed after transfection of HTR-8/SVneo with SPRY4-IT1. Together, our results highlight the roles of SPRY4-IT1 in causing trophoblast cell dysfunction by acting through the Wnt/β-catenin pathway, and consequently in impairing spiral artery remodelling. These results suggest a new potential therapeutic target for intervention against preeclampsia. PMID:27853262

  20. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells.

    PubMed

    Drifka, Cole R; Loeffler, Agnes G; Esquibel, Corinne R; Weber, Sharon M; Eliceiri, Kevin W; Kao, W John

    2016-12-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.

  1. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors.

    PubMed

    Ota, Kuniaki; Quint, Patrick; Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2013-11-01

    The processes of bone resorption and bone formation are tightly coupled in young adults, which is crucial to maintenance of bone integrity. We have documented that osteoclasts secrete chemotactic agents to recruit osteoblast lineage cells, contributing to coupling. Bone formation subsequent to bone resorption becomes uncoupled with aging, resulting in significant bone loss. During bone resorption, osteoclasts release and activate transforming growth factor beta 1 (TGF-β1) from the bone matrix; thus, elevated bone resorption increases the level of active TGF-β in the local environment during aging. In this study, we examined the influences of TGF-β1 on the ability of osteoclasts to recruit osteoblasts. TGF-β1 increased osteoclast expression of the chemokine CXCL16 to promote osteoblast migration. TGF-β1 also directly stimulated osteoblast migration; however, this direct response was blocked by conditioned medium from TGF-β1-treated osteoclasts due to the presence of leukemia inhibitory factor (LIF) in the medium. CXCL16 and LIF expression was dependent on TGF-β1 activation of Smad2 and Smad3. These results establish that TGF-β1 induces CXCL16 and LIF production in osteoclasts, which modulate recruitment of osteoblasts to restore the bone lost during the resorptive phase of bone turnover. © 2013. Published by Elsevier Inc. All rights reserved.

  2. Epithelial MUC1 promotes cell migration, reduces apoptosis and affects levels of mucosal modulators during acetylsalicylic acid (aspirin)-induced gastropathy.

    PubMed

    Banerjee, Debashish; Fernandez, Harvey Robert; Patil, Pradeep Bhatu; Premaratne, Pushpa; Quiding-Järbrink, Marianne; Lindén, Sara Katarina

    2015-02-01

    MUC1 is a transmembrane mucin highly expressed in the stomach. Although extensive research has uncovered many of its roles in cancer, knowledge about the functions of MUC1 in normal tissues is limited. In the present study, we showed that acetylsalicylic acid (ASA; aspirin) up-regulated MUC1/Muc1 expression in the gastric mucosa of humans and wild-type (WT) mice. ASA induced mucosal injury in all mice to a similar extent; however, WT animals and those chimaeras with Muc1 on the epithelia recovered faster than Muc1-knockout (KO) mice and chimaeras carrying Muc1 on haemopoietic but not epithelial cells. MUC1 enhanced proliferation and migration of the human gastric cell line MKN-7 and increased resistance to apoptosis. The repeated treatment regime used caused a reduction in cyclo-oxygenase-1 (Cox-1) expression, though WT animals returned faster towards pre-treatment levels and had increased Cox-2 and vascular endothelial growth factor levels during recovery. Thus we found that epithelial Muc1 is more important for the healing process than haemopoietic Muc1 and Muc1/MUC1 facilitates wound healing by enhancing cell migration and proliferation, protecting against apoptosis and mediating expression of mucosal modulators. Thus MUC1 plays essential roles during wound healing and development of treatment modalities targeting enhanced expression of MUC1 may be beneficial to treat mucosal wounds.

  3. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton.

    PubMed

    Cui, Cheng; Chatterjee, Bishwanath; Lozito, Thomas P; Zhang, Zhen; Francis, Richard J; Yagi, Hisato; Swanhart, Lisa M; Sanker, Subramaniam; Francis, Deanne; Yu, Qing; San Agustin, Jovenal T; Puligilla, Chandrakala; Chatterjee, Tania; Tansey, Terry; Liu, Xiaoqin; Kelley, Matthew W; Spiliotis, Elias T; Kwiatkowski, Adam V; Tuan, Rocky; Pazour, Gregory J; Hukriede, Neil A; Lo, Cecilia W

    2013-11-01

    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to

  4. Expression of membrane progesterone receptors (mPRs) in rat peripheral glial cell membranes and their potential role in the modulation of cell migration and protein expression.

    PubMed

    Castelnovo, Luca F; Magnaghi, Valerio; Thomas, Peter

    2017-09-26

    The role played by progestogens in modulating Schwann cell pathophysiology is well established. Progestogens exert their effects in these cells through both classical genomic and non-genomic mechanisms, the latter mediated by the GABA-A receptor. However, there is evidence that other receptors may be involved. Membrane progesterone receptors (mPRs) are novel 7-transmembrane receptors coupled to G proteins that have been characterized in different tissues and cells, including the central nervous system (CNS). The mPRs were shown to mediate some of progestogens' neuroprotective effects in the CNS, and to be upregulated in glial cells after traumatic brain injury. Based on this evidence, this paper investigated the possible involvement of mPRs in mediating progestogen actions in S42 Schwann cells. All five mPR isoforms and progesterone receptor membrane component 1 (PGRMC1) were detected in Schwann cells, and were present on the cell membrane. Progesterone and the mPR-specific agonist, Org-OD-02-0 (02) bound to these membranes, indicating the presence of functional mPRs. The mPR agonist 02 rapidly increased cell migration in an in vitro assay, suggesting a putative role of mPRs in the nerve regeneration process. Treatment with pertussis toxin, and 8-Br-cAMP blocked 02-induced cell migration, suggesting this progestogen action is mediated by activation of an inhibitory G protein leading to a decrease in intracellular cAMP levels. In contrast, long-term mPR activation led to increased expression levels of myelin associated glycoprotein (MAG). Taken together, these findings show that mPRs are present and active in Schwann cells and have a role in modulating their physiological processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton

    PubMed Central

    Cui, Cheng; Chatterjee, Bishwanath; Lozito, Thomas P.; Zhang, Zhen; Francis, Richard J.; Yagi, Hisato; Swanhart, Lisa M.; Sanker, Subramaniam; Francis, Deanne; Yu, Qing; San Agustin, Jovenal T.; Puligilla, Chandrakala; Chatterjee, Tania; Tansey, Terry; Liu, Xiaoqin; Kelley, Matthew W.; Spiliotis, Elias T.; Kwiatkowski, Adam V.; Tuan, Rocky; Pazour, Gregory J.; Hukriede, Neil A.; Lo, Cecilia W.

    2013-01-01

    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet–Biedl/Meckel–Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to

  6. Upregulation of long noncoding RNA SPRY4-IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR-8SV/neo.

    PubMed

    Zou, Yanfen; Jiang, Ziyan; Yu, Xiang; Sun, Ming; Zhang, Yuanyuan; Zuo, Qing; Zhou, Jing; Yang, Nana; Han, Ping; Ge, Zhiping; De, Wei; Sun, Lizhou

    2013-01-01

    SPRY4-IT1 has been reported to have extremely high expression in normal placenta tissues. It is a Long noncoding RNA (lncRNA), which is associated with cell growth, migration, invasion, and apoptosis in melanoma. A 2.8-fold increase of SPRY4-IT1 expression was validated by Real-time reverse transcription-polymerase chain reaction (qRT-PCR) in severe preeclamptic placenta as compared with that of the normal ones (n=25) in this study. Furthermore, the role of SPRY4-IT1 in proliferation, migration, apoptosis, and network formation ability of trophoblast cells HTR-8/SVneo was assessed. Suppression of SPRY4-IT1 using siRNA treatment and its overexpression using plasmid targeting SPRY4-IT1 were performed in order to explore the biological function of SPRY4-IT1 in the development and progression of trophoblast cells HTR-8/SVneo, in vitro. The results showed that SPRY4-IT1 knockdown enhanced the cell migration and proliferation, and reduced the response of cells to apoptosis. However, exogenous SPRY4-IT1 overexpression significantly decreased the cell migration and proliferation, while increased cell apoptosis. Our study showed for the first time that aberrant expression of lncRNA SPRY4-IT1 might contribute to the abnormal condition of trophoblast cells HTR-8/SVneo. Therefore, we proposed SPRY4-IT1 as a novel lncRNA molecule, which might be associated with the pathogenesis of preeclampsia and might provide a new target for its early diagnosis and treatment.

  7. Cytoplasmic Phospholipase A2 Modulation of Adolescent Rat Ethanol-Induced Protein Kinase C Translocation and Behavior

    PubMed Central

    Santerre, J. L.; Kolitz, E. B.; Pal, R.; Rogow, J. A.; Werner, D. F.

    2015-01-01

    Ethanol consumption typically begins during adolescence, a developmental period which exhibits many age-dependent differences in ethanol behavioral sensitivity. Protein kinase C (PKC) activity is largely implicated in ethanol-behaviors, and our previous work indicates that regulation of novel PKC isoforms likely contributes to decreased high-dose ethanol sensitivity during adolescence. The cytoplasmic Phospholipase A2 (cPLA2) signaling cascade selectivity modulates novel and atypical PKC isoform activity, as well as adolescent ethanol hypnotic sensitivity. Therefore, the current study was designed to ascertain adolescent cPLA2 activity both basally and in response to ethanol, as well as it's involvement in ethanol-induced PKC isoform translocation patterns. cPLA2 expression was elevated during adolescence, and activity was increased only in adolescents following high-dose ethanol administration. Novel, but not atypical PKC isoforms translocate to cytosolic regions following high-dose ethanol administration. Inhibiting cPLA2 with AACOCF3 blocked ethanol-induced PKC cytosolic translocation. Finally, inhibition of novel, but not atypical, PKC isoforms when cPLA2 activity was elevated, modulated adolescent high-dose ethanol-sensitivity. These data suggest that the cPLA2/PKC pathway contributes to the acute behavioral effects of ethanol during adolescence. PMID:25791059

  8. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.

  9. High Expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma

    PubMed Central

    Yang, Liting; Tang, Yanyan; He, Yi; Wang, Yumin; Lian, Yu; Xiong, Fang; Shi, Lei; Zhang, Shanshan; Gong, Zhaojian; Zhou, Yujuan; Liao, Qianjin; Zhou, Ming; Li, Xiaoling; Xiong, Wei; Li, Yong; Li, Guiyuan; Zeng, Zhaoyang; Guo, Can

    2017-01-01

    Recent studies demonstrated that long non-coding RNAs (lncRNAs) deregulated in many cancer tissues including nasopharyngeal carcinoma (NPC) and had critical roles in cancer progression and metastasis. In this study, we aimed to assess a lncRNA LINC01420 expression in NPC and explore its role in NPC pathogenesis. Our research revealed that the expression level of LINC01420 in NPC tissues were higher than nasopharyngeal epithelial (NPE) tissues. Moreover, NPC patients with high LINC01420 expression level showed poor overall survival. Knockdown LINC01420 inhibited NPC cell migration and invasion in vitro. In summary, LINC01420 may play a critical role in NPC progression and may serve as a potential prognostic biomarker in NPC patients. PMID:28123602

  10. Structural Modulation of Brain Development by Oxygen: Evidence on Adolescents Migrating from High Altitude to Sea Level Environment

    PubMed Central

    Zhang, Jiaxing; Zhang, Haiyan; Chen, Ji; Fan, Ming; Gong, Qiyong

    2013-01-01

    The present study aimed to investigate structural modulation of brain by high level of oxygen during its peak period of development. Voxel-based morphometry analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics analysis of WM fractional anisotropy (FA) and mean diffusion (MD) based on MRI images were carried out on 21 Tibetan adolencents (15–18 years), who were born and raised in Qinghai-Tibetan Plateau (2900–4700 m) and have lived at sea level (SL) in the last 4 years. The control group consisted of matched Tibetan adolescents born and raised at high altitude all the time. SL immigrants had increased GM volume in the left insula, left inferior parietal gyrus, and right superior parietal gyrus and decreased GM in the left precentral cortex and multiple sites in cerebellar cortex (left lobule 8, bilateral lobule 6 and crus 1/2). Decreased WM volume was found in the right superior frontal gyrus in SL immigrants. SL immigrants had higher FA and lower MD at multiple sites of WM tracts. Moreover, we detected changes in ventilation and circulation. GM volume in cerebellum lobule 8 positively correlated with diastolic pressure, while GM volume in insula positively correlated vital capacity and hypoxic ventilatory response. Our finding indicate that the structural modulations of GM by high level of oxygen during its peak period of development are related to respiratory and circulatory regulations, while the modulation in WM mainly exhibits an enhancement in myelin maturation. PMID:23874449

  11. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion.

    PubMed

    Miret, Noelia; Pontillo, Carolina; Ventura, Clara; Carozzo, Alejandro; Chiappini, Florencia; Kleiman de Pisarev, Diana; Fernández, Natalia; Cocca, Claudia; Randi, Andrea

    2016-07-29

    Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell assay) through the Smad, JNK, and p38 pathways, while ERK1/2 is only involved in HCB-induced cell migration. These results demonstrate that HCB modulates the crosstalk between AhR and TGF-β1 and consequently exacerbates a pro-migratory phenotype in MDA-MB-231 cells, which contributes to a high degree of malignancy. Taken together, our findings help to

  12. Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers

    PubMed Central

    Ferré, Sergi; Woods, Amina S.; Navarro, Gemma; Aymerich, Marisol; Lluís, Carme; Franco, Rafael

    2009-01-01

    The adenosine A2A-dopamine D2 receptor heteromer is one of the most studied receptor heteromers. It has important implications for basal ganglia function and pathology. Recent studies using Bioluminescence and Sequential Resonance Energy Transfer techniques shed light on the role of Ca2+ in the modulation of the quaternary structure of the A2A-D2 receptor heteromer, which was found to depend on the binding of calmodulin (CaM) to the carboxy terminus of the A2A receptor in the A2A-D2 receptor heteromer. Importantly, the changes in quaternary structure correlate with changes in function. A Ca2+/CaM-dependent modulation of MAPK signaling upon agonist treatment could only be observed in cells expressing A2A-D2 receptor heteromers. These studies provide a first example of a Ca2+-mediated modulation of the quaternary structure and function of a receptor heteromer. PMID:19896897

  13. Modulation of tumor cell stiffness and migration by type IV collagen through direct activation of integrin signaling pathway.

    PubMed

    Chen, Sheng-Yi; Lin, Jo-Shi; Yang, Bei-Chang

    2014-08-01

    Excessive collagen deposition plays a critical role in tumor progression and metastasis. To understand how type IV collagen affects mechanical stiffness and migration, low-collagen-IV-expressing transfectants of B16F10, U118MG, and Huh7 (denoted shCol cells) were established by the lentiviral-mediated delivery of small interfering RNA against type IV-α1 collagen (Col4A1). Although having similar growth rates, shCol cells showed a flatter morphology compared to that of the corresponding controls. Notably, knocking down the Col4A1 gene conferred the cells with higher levels of elasticity and lower motility. Exposure to blocking antibodies against human β1 integrin or α2β1 integrin or the pharmacological inhibition of Src and ERK activity by PP1 and U0126, respectively, effectively reduced cell motility and raised cell stiffness. Reduced Src and ERK activities in shCol cells indicate the involvement of a collagen IV/integrin signaling pathway. The forced expression of β1 integrin significantly stimulated Src and ERK phosphorylation, reduced cell stiffness, and accelerated cell motility. In an experimental metastasis assay using C57BL/6 mice, B16F10 shCol cells formed significantly fewer and smaller lung nodules, confirming the contribution of collagen to metastasis. In summary, the integrin signaling pathway activated in a tumor environment with collagen deposition is responsible for low cell elasticity and high metastatic ability.

  14. Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration

    PubMed Central

    Parascandolo, Alessia; Rappa, Francesca; Cappello, Francesco; Kim, Jaehyup; Cantu, David A.; Chen, Herbert; Mazzoccoli, Gianluigi; Hematti, Peiman; Castellone, Maria Domenica; Salvatore, Marco; Laukkanen, Mikko O.

    2017-01-01

    Tumor stroma-secreted growth factors, cytokines, and reactive oxygen species (ROS) influence tumor development from early stages to the metastasis phase. Previous studies have demonstrated downregulation of ROS-producing extracellular superoxide dismutase (SOD3) in thyroid cancer cell lines although according to recent data, the expression of SOD3 at physiological levels stimulates normal and cancer cell proliferation. Therefore, to analyze the expression of SOD3 in tumor stroma, we characterized stromal cells from the thyroid. We report mutually exclusive desmoplasia and inflammation in papillary and follicular thyroid cancers and the presence of multipotent mesenchymal stem/stromal cells (MSCs) in non-carcinogenic thyroids and papillary thyroid cancer (PTC). The phenotypic and differentiation characteristics of Thyroid MSCs and PTC MSCs were comparable with bone marrow MSCs. A molecular level analysis showed increased FIBROBLAST ACTIVATING PROTEIN, COLLAGEN 1 TYPE A1, TENASCIN, and SOD3 expression in PTC MSCs compared to Thyroid MSCs, suggesting the presence of MSCs with a fibrotic fingerprint in papillary thyroid cancer tumors and the autocrine-paracrine conversion of SOD3 expression, which was enhanced by cancer cells. Stromal SOD3 had a stimulatory effect on cancer cell growth and an inhibitory effect on cancer cell migration, thus indicating that SOD3 might be a novel player in thyroid tumor stroma. PMID:28216675

  15. The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration.

    PubMed

    Meighan-Mantha, R L; Hsu, D K; Guo, Y; Brown, S A; Feng, S L; Peifley, K A; Alberts, G F; Copeland, N G; Gilbert, D J; Jenkins, N A; Richards, C M; Winkles, J A

    1999-11-12

    The binding of polypeptide growth factors to their appropriate cell surface transmembrane receptors triggers numerous biochemical responses, including the transcriptional activation of specific genes. We have used a differential display approach to identify fibroblast growth factor-1-inducible genes in murine NIH 3T3 cells. Here, we report that the fibroblast growth factor-inducible-14 (Fn14) gene is a growth factor-regulated, immediate-early response gene expressed in a developmental stage- and adult tissue-specific manner in vivo. This gene, located on mouse chromosome 17, is predicted to encode an 129-amino acid type Ia membrane protein with no significant sequence similarity to any known protein. We have used two experimental approaches, direct fluorescence microscopy and immunoprecipitation analysis of biotinylated cell surface proteins, to demonstrate that Fn14 is located on the plasma membrane. To examine the biological consequences of constitutive Fn14 expression, we isolated NIH 3T3 cell lines expressing variable levels of epitope-tagged Fn14 and analyzed their phenotypic properties in vitro. These experiments revealed that Fn14 expression decreased cellular adhesion to the extracellular matrix proteins fibronectin and vitronectin and also reduced serum-stimulated cell growth and migration. These results indicate that Fn14 is a novel plasma membrane-spanning molecule that may play a role in cell-matrix interactions.

  16. Identification of VLDLR as a novel endothelial cell receptor for fibrin that modulates fibrin-dependent transendothelial migration of leukocytes.

    PubMed

    Yakovlev, Sergiy; Mikhailenko, Irina; Cao, Chunzhang; Zhang, Li; Strickland, Dudley K; Medved, Leonid

    2012-01-12

    While testing the effect of the (β15-66)(2) fragment, which mimics a pair of fibrin βN-domains, on the morphology of endothelial cells, we found that this fragment induces redistribution of vascular endothelial-cadherin in a process that is inhibited by the receptor-associated protein (RAP). Based on this finding, we hypothesized that fibrin may interact with members of RAP-dependent low-density lipoprotein (LDL) receptor family. To test this hypothesis, we examined the interaction of (β15-66)(2), fibrin, and several fibrin-derived fragments with 2 members of this family by ELISA and surface plasmon resonance. The experiments showed that very LDL (VLDL) receptor (VLDLR) interacts with high affinity with fibrin through its βN-domains, and this interaction is inhibited by RAP and (β15-66)(2). Furthermore, RAP inhibited transendothelial migration of neutrophils induced by fibrin-derived NDSK-II fragment containing βN-domains, suggesting the involvement of VLDLR in fibrin-dependent leukocyte transmigration. Our experiments with VLDLR-deficient mice confirmed this suggestion by showing that, in contrast to wild-type mice, fibrin-dependent leukocyte transmigration does not occur in such mice. Altogether, the present study identified VLDLR as a novel endothelial cell receptor for fibrin that promotes fibrin-dependent leukocyte transmigration and thereby inflammation. Establishing the molecular mechanism underlying this interaction may result in the development of novel inhibitors of fibrin-dependent inflammation.

  17. Vitamin D Modulates Hematological Parameters and Cell Migration into Peritoneal and Pulmonary Cavities in Alloxan-Diabetic Mice

    PubMed Central

    Bella, Leonardo M.; Fieri, Isis; Nunes, Fernanda P. B.; Ferreira, Sabrina S.; Azevedo, Carolina B.

    2017-01-01

    Background/Aims. The effects of cholecalciferol supplementation on the course of diabetes in humans and animals need to be better understood. Therefore, this study investigated the effect of short-term cholecalciferol supplementation on biochemical and hematological parameters in mice. Methods. Male diabetic (alloxan, 60 mg/kg i.v., 10 days) and nondiabetic mice were supplemented with cholecalciferol for seven days. The following parameters were determined: serum levels of 25-hydroxyvitamin D, phosphorus, calcium, urea, creatinine, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, red blood cell count, white blood cell count (WBC), hematocrit, hemoglobin, differential cell counts of peritoneal lavage (PeL), and bronchoalveolar lavage (BAL) fluids and morphological analysis of lung, kidney, and liver tissues. Results. Relative to controls, cholecalciferol supplementation increased serum levels of 25-hydroxyvitamin D, calcium, hemoglobin, hematocrit, and red blood cell counts and decreased leukocyte cell counts of PeL and BAL fluids in diabetic mice. Diabetic mice that were not treated with cholecalciferol had lower serum calcium and albumin levels and hemoglobin, WBC, and mononuclear blood cell counts and higher serum creatinine and urea levels than controls. Conclusion. Our results suggest that cholecalciferol supplementation improves the hematological parameters and reduces leukocyte migration into the PeL and BAL lavage of diabetic mice. PMID:28503574

  18. Unsaturated Fatty Acids Drive Disintegrin and Metalloproteinase (ADAM)-dependent Cell Adhesion, Proliferation, and Migration by Modulating Membrane Fluidity*

    PubMed Central

    Reiss, Karina; Cornelsen, Isabell; Husmann, Matthias; Gimpl, Gerald; Bhakdi, Sucharit

    2011-01-01

    The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers. PMID:21642425

  19. Unsaturated fatty acids drive disintegrin and metalloproteinase (ADAM)-dependent cell adhesion, proliferation, and migration by modulating membrane fluidity.

    PubMed

    Reiss, Karina; Cornelsen, Isabell; Husmann, Matthias; Gimpl, Gerald; Bhakdi, Sucharit

    2011-07-29

    The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers.

  20. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions.

    PubMed

    Fraley, Stephanie I; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  1. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization

    PubMed Central

    Bernasconi, Enos; Speck, Roberto F.; Proietti, Michele; Sauermann, Ulrike; D’Agostino, Gianluca; Danelon, Gabriela; Rezzonico Jost, Tanja; Grassi, Fabio; Raeli, Lorenzo; Schöni-Affolter, Franziska; Stahl-Hennig, Christiane

    2017-01-01

    CD4+ T cell repopulation of the gut is rarely achieved in HIV-1–infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6+ and CXCR3+ Th cells accumulate in the blood of aviremic HIV-1–infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities. PMID:27895171

  2. Interplay between PCBP2 and miRNA modulates ARHGDIA expression and function in glioma migration and invasion

    PubMed Central

    Lin, Xihua; Yang, Bin; Liu, Wei; Tan, Xiaochao; Wu, Fan; Hu, Peishan; Jiang, Tao; Bao, Zhaoshi; Yuan, Jiangang; Qiang, Boqin; Peng, Xiaozhong; Han, Wei

    2016-01-01

    RNA-RNA and protein-RNA interactions are essential for post-transcriptional regulationin normal development and may be deregulated in cancer initiation and progression. The RNA-binding protein PCBP2, an oncogenic protein in human malignant gliomas, is an essential regulator of mRNA and miRNA biogenesis, stability and activity. Here, we identified Rho GDP dissociation inhibitor α (ARHGDIA) as a target mRNA that binds to PCBP2, and we uncovered the role of ARHGDIA as a putative metastasis suppressor through analyses of in vitro and in vivo models of EMT and metastasis. Furthermore, we demonstrated that ARHGDIA is a potential target of miR-151-5p and miR-16 in gliomas. The interaction between PCBP2 and the 3′UTR of the ARHGDIA mRNA may induce a local change in RNA structure that favors subsequent binding of miR-151-5p and miR-16, thus leading to the suppression of ARHGDIA expression. PCBP2 may facilitate miR-151-5p and miR-16 promotion of glioma cell migration and invasion through mitigating the function of ARHGDIA. PMID:26761212

  3. EOS7CA Version 1.0: TOUGH2 Module for Gas Migration in Shallow Subsurface Porous Media Systems

    SciTech Connect

    Oldenburg, Curtis M.

    2015-03-06

    EOS7CA is a TOUGH2 module for mixtures of a non-condensible gas (NCG) and air with or without a gas tracer, an aqueous phase, and water vapor. The user can select the NCG as being CO2, N2, or CH4. EOS7CA uses a cubic equation of state with a multiphase version of Darcy’s Law to model flow and transport of gas and aqueous phase mixtures over a range of pressures and temperatures appropriate to shallow subsurface porous media systems. The limitation to shallow systems arises from the use of Henry’s Law for gas solubility which is appropriate for low pressures but begins to over-predict solubility starting at pressures greater than approximately 1 MPa (10 bar). The components modeled in EOS7CA are water, brine, NCG, gas tracer, air, and optional heat. The real gas properties module (ZEVCA) has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. This user guide provides instructions for use and two sample problems as verification and demonstration of EOS7CA.

  4. EOS7CA Version 1.0: TOUGH2 Module for Gas Migration in Shallow Subsurface Porous Media Systems

    SciTech Connect

    Oldenburg, Curtis M.

    2015-06-22

    EOS7CA is a TOUGH2 module for mixtures of a non-condensible gas (NCG) and air (with or without a gas tracer), an aqueous phase, and water vapor. The user can select the NCG as being CO2, N2, or CH4. EOS7CA uses a cubic equation of state with a multiphase version of Darcy’s Law to model flow and transport of gas and aqueous phase mixtures over a range of pressures and temperatures appropriate to shallow subsurface porous media systems. The limitation to shallow systems arises from the use of Henry’s Law for gas solubility which is appropriate for low pressures but begins to over-predict solubility starting at pressures greater than approximately 1 MPa (10 bar). The components modeled in EOS7CA are water, brine, NCG, gas tracer, air, and optional heat.

  5. Systemic Neutrophil Depletion Modulates the Migration and Fate of Transplanted Human Neural Stem Cells to Rescue Functional Repair.

    PubMed

    Nguyen, Hal X; Hooshmand, Mitra J; Saiwai, Hirokazu; Maddox, Jake; Salehi, Arjang; Lakatos, Anita; Nishi, Rebecca A; Salazar, Desiree; Uchida, Nobuko; Anderson, Aileen J

    2017-09-20

    The interaction of transplanted stem cells with local cellular and molecular cues in the host CNS microenvironment may affect the potential for repair by therapeutic cell populations. In this regard, spinal cord injury (SCI), Alzheimer's disease, and other neurological injuries and diseases all exhibit dramatic and dynamic changes to the host microenvironment over time. Previously, we reported that delayed transplantation of human CNS-derived neural stem cells (hCNS-SCns) at 9 or 30 d post-SCI (dpi) resulted in extensive donor cell migration, predominantly neuronal and oligodendrocytic donor cell differentiation, and functional locomotor improvements. Here, we report that acute transplantation of hCNS-SCns at 0 dpi resulted in localized astroglial differentiation of donor cells near the lesion epicenter and failure to produce functional improvement in an all-female immunodeficient mouse model. Critically, specific immunodepletion of neutrophils (polymorphonuclear leukocytes) blocked hCNS-SCns astroglial differentiation near the lesion epicenter and rescued the capacity of these cells to restore function. These data represent novel evidence that a host immune cell population can block the potential for functional repair derived from a therapeutic donor cell population, and support targeting the inflammatory microenvironment in combination with cell transplantation after SCI.SIGNIFICANCE STATEMENT The interaction of transplanted cells with local cellular and molecular cues in the host microenvironment is a key variable that may shape the translation of neurotransplantation research to the clinical spinal cord injury (SCI) human population, and few studies have investigated these events. We show that the specific immunodepletion of polymorphonuclear leukocyte neutrophils using anti-Ly6G inhibits donor cell astrogliosis and rescues the capacity of a donor cell population to promote locomotor improvement after SCI. Critically, our data demonstrate novel evidence that a

  6. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  7. Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis.

    PubMed

    Yang, H; Zheng, S; Mao, Y; Chen, Z; Zheng, C; Li, H; Sumners, C; Li, Q; Yang, P; Lei, B

    2016-02-01

    The aim of this study was to examine whether macrophage migration inhibitory factor (MIF) could exaggerate inflammatory response in a mouse model of experimental autoimmune uveitis (EAU) and to explore the underlying mechanism. Mutant serotype 8 adeno-associated virus (AAV8) (Y733F)-chicken β-actin (CBA)-MIF or AAV8 (Y733F)-CBA-enhanced green fluorescent protein (eGFP) vector was delivered subretinally into B10.RIII mice, respectively. Three weeks after vector delivery, EAU was induced with a subcutaneous injection of a mixture of interphotoreceptor retinoid binding protein (IRBP) peptide with CFA. The levels of proinflammatory cytokines were detected by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Retinal function was evaluated with electroretinography (ERG). We found that the expression of MIF and its two receptors CD74 and CD44 was increased in the EAU mouse retina. Compared to AAV8.CBA.eGFP-injected and untreated EAU mice, the level of proinflammatory cytokines, the expression of Notch1, Notch4, delta-like ligand 4 (Dll4), Notch receptor intracellular domain (NICD) and hairy enhancer of split-1 (Hes-1) increased, but the ERG a- and b-wave amplitudes decreased in AAV8.CBA.MIF-injected EAU mice. The Notch inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) reduced the expression of NICD, Hes-1 and proinflammatory cytokines. Further, a MIF antagonist ISO-1 attenuated intraocular inflammation, and inhibited the differentiation of T helper type 1 (Th1) and Th17 in EAU mice. We demonstrated that over-expression of MIF exaggerated ocular inflammation, which was associated with the activation of the Notch signalling. The expression of both MIF and its receptors are elevated in EAU mice. Over-expression of MIF exaggerates ocular inflammation, and this exaggerated inflammation is associated with the activation of the Notch signalling and Notch pathway. Our data suggest that the MIF-Notch axis

  8. Small molecular modulation of macrophage migration inhibitory factor in the hyperoxia-induced mouse model of bronchopulmonary dysplasia

    PubMed Central

    2013-01-01

    Background The role and mechanism of action of MIF in bronchopulmonary dysplasia (BPD) are not known. We hypothesized that increased MIF signaling would ameliorate the pulmonary phenotype of BPD in the mouse lung. Methods We studied newborn wild type (WT), MIF knockout (MIFKO), and lung MIF transgenic (MIFTG) mice in room air and a BPD model, and examined the effects of administering a small molecule MIF agonist and antagonist. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed. Results The pulmonary phenotype of MIFKO and MIFTG mice lungs in room air (RA) and BPD model were comparable to the WT-BPD mice at postnatal (PN) day 14. Vascular endothelial growth factor (VEGF)-A, -R1 and Angiopoietin (Ang)1 mRNA were decreased, and Ang2 increased in the WT-BPD, MIFKO-RA, MIFKO-BPD, MIFTG-RA and MIFTG-BPD mice lungs, compared to appropriate controls. The protein expression of Ang1 in the MIFKO-RA was similar to WT-RA, but decreased in MIFTG-RA, and decreased in all the BPD groups. Ang2 was increased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. Tie2 was increased in WT-BPD compared to WT-RA, but decreased in MIFKO- and MIFTG- RA and BPD groups. VEGFR1 was uniformly decreased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. VEGF-A had a similar expression across all RA and BPD groups. There was partial recovery of the pulmonary phenotype in the WT-BPD model treated with the MIF agonist, and in the MIFTG mice treated with the MIF antagonist. Conclusions These data point to the careful regulatory balance exerted by MIF in the developing lung and response to hyperoxia and support the potential therapeutic value of small molecule MIF modulation in BPD. PMID:23448134

  9. Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor.

    PubMed

    Suladze, Saba; Cinar, Suleyman; Sperlich, Benjamin; Winter, Roland

    2015-10-07

    Phospholipases A2 (PLA2) catalyze the hydrolysis reaction of sn-2 fatty acids of membrane phospholipids and are also involved in receptor signaling and transcriptional pathways. Here, we used pressure modulation of the PLA2 activity and of the membrane's physical-chemical properties to reveal new mechanistic information about the membrane association and subsequent enzymatic reaction of PLA2. Although the effect of high hydrostatic pressure (HHP) on aqueous soluble and integral membrane proteins has been investigated to some extent, its effect on enzymatic reactions operating at the water/lipid interface has not been explored, yet. This study focuses on the effect of HHP on the structure, membrane binding and enzymatic activity of membrane-associated bee venom PLA2, covering a pressure range up to 2 kbar. To this end, high-pressure Fourier-transform infrared and high-pressure stopped-flow fluorescence spectroscopies were applied. The results show that PLA2 binding to model biomembranes is not significantly affected by pressure and occurs in at least two kinetically distinct steps. Followed by fast initial membrane association, structural reorganization of α-helical segments of PLA2 takes place at the lipid water interface. FRET-based activity measurements reveal that pressure has a marked inhibitory effect on the lipid hydrolysis rate, which decreases by 75% upon compression up to 2 kbar. Lipid hydrolysis under extreme environmental conditions, such as those encountered in the deep sea where pressures up to the kbar-level are encountered, is hence markedly affected by HHP, rendering PLA2, next to being a primary osmosensor, a good candidate for a sensitive pressure sensor in vivo.

  10. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin.

    PubMed

    Chiou, Yi-Ling; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2014-12-15

    Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Ivabradine Reduces Chemokine-Induced CD4-Positive Lymphocyte Migration

    PubMed Central

    Walcher, Thomas; Bernhardt, Peter; Vasic, Dusica; Bach, Helga; Durst, Renate; Rottbauer, Wolfgang; Walcher, Daniel

    2010-01-01

    Aims. Migration of CD4-positive lymphocytes into the vessel wall is a critical step in atherogenesis. Recent data suggest that ivabradine, a selective I(f)-channel blocker, reduces atherosclerotic plaque formation in apolipoprotein E-deficient mice, hitherto nothing is known about the mechanism by which ivabradine modulates plaque formation. Therefore, the present study investigated whether ivabradine regulates chemokine-induced migration of lymphocytes. Methods and results. Stimulation of CD4-positive lymphocytes with SDF-1 leads to a 2.0 ± 0.1 fold increase in cell migration (P < .01; n = 7). Pretreatment of cells with ivabradine reduces this effect to a maximal 1.2 ± 0.1 fold induction at 0.1 µmol/L ivabradine (P < .01 compared to SDF-1-treated cells, n = 7). The effect of ivabradine on CD4-positive lymphocyte migration was mediated through an early inhibition of chemokine-induced PI-3 kinase activity as determined by PI-3 kinase activity assays. Downstream, ivabradine inhibits activation of the small GTPase Rac and phosphorylation of the Myosin Light Chain (MLC). Moreover, ivabradine treatment reduces f-actin formation as well as ICAM3 translocation to the uropod of the cell, thus interfering with two important steps in T cell migration. Conclusion. Ivabradine inhibits chemokine-induced migration of CD4-positive lymphocytes. Given the crucial importance of chemokine-induced T-cell migration in early atherogenesis, ivabradine may be a promising tool to modulate this effect. PMID:21188276

  12. A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA transport into astrocytes.

    PubMed

    Cristóvão-Ferreira, Sofia; Navarro, Gemma; Brugarolas, Marc; Pérez-Capote, Kamil; Vaz, Sandra H; Fattorini, Giorgia; Conti, Fiorenzo; Lluis, Carmen; Ribeiro, Joaquim A; McCormick, Peter J; Casadó, Vicent; Franco, Rafael; Sebastião, Ana M

    2013-09-01

    Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R-A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.

  13. CD97 inhibits cell migration in human fibrosarcoma cells by modulating TIMP-2/MT1- MMP/MMP-2 activity--role of GPS autoproteolysis and functional cooperation between the N- and C-terminal fragments.

    PubMed

    Hsiao, Cheng-Chih; Wang, Wen-Chih; Kuo, Wan-Lin; Chen, Hsin-Yi; Chen, Tse-Ching; Hamann, Jörg; Lin, Hsi-Hsien

    2014-11-01

    CD97 is a tumor-associated adhesion-class G-protein-coupled receptor involved in modulating cell migration. Adhesion-class G-protein-coupled receptors are characterized by proteolytic cleavage at a G-protein-coupled receptor proteolysis site (GPS) into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), which remain associated noncovalently. The molecular mechanism and the role of GPS proteolysis in CD97-modulated cell migration are not completely understood. We report here that CD97 expression in HT1080 fibrosarcoma cells enhanced tissue inhibitor of metalloproteinase-2 secretion, leading to reduced membrane type 1 matrix metalloproteinase and matrix metalloproteinase 2 activities. This, in turn, impaired cell migration and invasion in vitro and lung macrometastasis in vivo. CD97 expression also upregulated the expression of integrins, promoting cell adhesion. Importantly, these cellular functions absolutely required the presence of both the NTF and the CTF of CD97, confirming functional cooperation between the two receptor subunits. CD97 gene knockdown reversed these phenotypic changes. We conclude that GPS proteolysis and the functional interplay between the NTF and the CTF are indispensible for CD97 to inhibit HT1080 cell migration by suppressing matrix metalloproteinase activity. © 2014 FEBS.

  14. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    PubMed

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Structural and Functional Analysis of Two New Positive Allosteric Modulators of GluA2 Desensitization and Deactivation

    SciTech Connect

    Timm, David E.; Benveniste, Morris; Weeks, Autumn M.; Nisenbaum, Eric S.; Partin, Kathryn M.

    2011-10-14

    At the dimer interface of the extracellular ligand-binding domain of {alpha}-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors a hydrophilic pocket is formed that is known to interact with two classes of positive allosteric modulators, represented by cyclothiazide and the ampakine 2H,3H,6aH-pyrrolidino(2,1-3',2')1,3-oxazino(6',5'-5,4)benzo(e)1,4-dioxan-10-one (CX614). Here, we present structural and functional data on two new positive allosteric modulators of AMPA receptors, phenyl-1,4-bis-alkylsulfonamide (CMPDA) and phenyl-1,4-bis-carboxythiophene (CMPDB). Crystallographic data show that these compounds bind within the modulator-binding pocket and that substituents of each compound overlap with distinct moieties of cyclothiazide and CX614. The goals of the present study were to determine (1) the degree of modulation by CMPDA and CMPDB of AMPA receptor deactivation and desensitization; (2) whether these compounds are splice isoform-selective; and (3) whether predictions of mechanism of action could be inferred by comparing molecular interactions between the ligand-binding domain and each compound with those of cyclothiazide and CX614. CMPDB was found to be more isoform-selective than would be predicted from initial binding assays. It is noteworthy that these new compounds are both more potent and more effective and may be more clinically relevant than the AMPA receptor modulators described previously.

  16. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells.

    PubMed

    Shetty, Praveenkumar; Bargale, Anil; Patil, Basavraj R; Mohan, Rajashekar; Dinesh, U S; Vishwanatha, Jamboor K; Gai, Pramod B; Patil, Vidya S; Amsavardani, T S

    2016-01-01

    Overexpression and activation of tyrosine kinase receptors like EGFR and Src regulate the progression and metastasis of Her-2 negative breast cancer. Recently we have reported the role of cell membrane interaction of phospholipid-binding protein annexin A2 (AnxA2) and EGFR in regulating cellular signaling in the activation of angiogenesis, matrix degradation, invasion, and cancer metastasis. Beta-galactoside-specific animal lectin galectin-3 is an apoptosis inhibitor, and cell surface-associated extracellular galectin-3 also has a role in cell migration, cancer progression, and metastasis. Similar expression pattern and membrane co-localization of these two proteins made us to hypothesize in the current study that galectin-3 and AnxA2 interaction is critical for Her-2 negative breast cancer progression. By various experimental analyses, we confirm that glycosylated AnxA2 at the membrane surface interacts with galectin-3. N-linked glycosylation inhibitor tunicamycin treatment convincingly blocked AnxA2 membrane translocation and its association with galectin-3. To analyze whether this interaction has any functional relevance, we tried to dissociate this interaction with purified plant lectin from chickpea (Cicer arietinum agglutinin). This highly specific 30 kDa plant lectin could dissociate AnxA2 from endogenous lectin galectin-3 interaction at the cell surface. This dissociation could down-regulate Bcl-2 family proteins, cell proliferation, and migration simultaneously triggering cell apoptosis. Targeting this interaction of membrane surface glycoprotein and its animal lectin in Her-2 negative breast cancer may be of therapeutic value.

  17. Test of a 2 MVA medium voltage HTS fault current limiter module made of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Kraemer, H.-P.; Schmidt, W.; Wohlfart, M.; Neumueller, H.-W.; Otto, A.; Verebelyi, D.; Schoop, U.; Malozemoff, A. P.

    2008-02-01

    A fault current limiter module for medium voltage applications has been built and tested successfully. The module corresponds to one phase of a 3-phase limiter for the 13 kV-class distribution voltage level. The resistive type limiter consists of 15 bifilar coils wound from a total of 15 × 50 m of AMSC's 344S superconductors, a commercially available second generation YBCO tape stabilized by stainless steel laminates. The module has a rated current of 300 Arms and a rated voltage of 7.5 kV corresponding to a nominal apparent power of 2.25 MVA. The cryostat is equipped with commercial current feed-throughs and the module is operated in liquid nitrogen at atmospheric pressure. For long term operation as a closed system a commercial cryogenic refrigerator coldhead is installed. Power tests and dielectric tests of the module have been performed at the IPH Berlin (Institut "Prüffeld für elektrische Hochleistungstechnik") up to prospective currents of 28 kA. In standard power tests at voltages up to 7.8 kV and fault hold times of about 50 ms an excellent limiting performance was observed both at various prospective fault currents and at different fault starting phase angles. Within a second experimental series, an appropriate shunt reactor was connected in parallel to the limiter. The benefit of this method is that the limited current can be adjusted to the customers needs and the required amount of HTS-wire can be also appreciably reduced. The setup of the module and the test results are reported.

  18. Tetraspanins in Cell Migration

    PubMed Central

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  19. Sonic Hedgehog-GLI Family Zinc Finger 1 Signaling Pathway Promotes the Growth and Migration of Pancreatic Cancer Cells by Regulating the Transcription of Eukaryotic Translation Initiation Factor 5A2.

    PubMed

    Xu, Xuanfu; Liu, Hua; Zhang, Hui; Dai, Weiqi; Guo, Chuanyong; Xie, Chuangao; Wei, Shumei; He, Shengli; Xu, Xiaorong

    2015-11-01

    The Hh (hedgehog) signaling pathway is still waiting for further studies because its downstream molecular mechanism remains elusive. Because EIF5A2 (eukaryotic translation initiation factor 5A2) gene was up-regulated upon Gli1 (GLI family zinc finger 1) in pancreatic cancer (PC) cells, we speculated that this pathway might promote tumor progression through regulating EIF5A2. We investigated regulation effect of Hh signaling pathway to EIF5A2 gene transcription by Gli1 knockdown or overexpression in PC cell lines first. Then, the regulation mechanism of Gli1 to EIF5A2 gene was studied at transcription level. Finally, we studied cancer-promoting effects of Gli1-dependent EIF5A2 in PC cells. The data showed that Gli1 up-regulated expression of EIF5A2 by promoting transcription via cis-acting elements in PC cells. Moreover, vimentin gene was up-regulated significantly by sonic hedgehog (SHh)/Gli1 expression increasing, and E-cadherin was significantly reduced. The EIF5A2 knockdown partially reversed cell proliferation and migration induced by artificial SHh overexpression and inhibited epithelial mesenchymal transition process in PC cells with SHh overexpression (P < 0.05). Our data establish a novel transcription mechanism of Gli1 to EIF5A2 gene in cis-regulatory manner in PC cells. Thus, EIF5A2 oncogene effect could be incorporated into cancer-promoting molecular network upon Hh signaling pathway.

  20. Regulation of cellular interactions with laminin by integrin cytoplasmic domains: the A and B structural variants of the alpha 6 beta 1 integrin differentially modulate the adhesive strength, morphology, and migration of macrophages.

    PubMed Central

    Shaw, L M; Mercurio, A M

    1994-01-01

    Several integrin alpha subunits have structural variants that are identical in their extracellular and transmembrane domains but that differ in their cytoplasmic domains. The functional significance of these variants, however, is unknown. In the present study, we examined the possibility that the A and B variants of the alpha 6 beta 1 integrin laminin receptor differ in function. For this purpose, we expressed the alpha 6A and alpha 6B cDNAs, as well as a truncated alpha 6 cDNA (alpha 6-delta CYT) in which the cytoplasmic domain sequence was deleted after the GFFKR pentapeptide, in P388D1 cells, an alpha 6 deficient macrophage cell line. Populations of stable alpha 6A, alpha 6B, and alpha 6-delta CYT transfectants that expressed equivalent levels of cell surface alpha 6 were obtained by fluorescence-activated cell sorter and shown to form heterodimers with endogenous beta 1 subunits. Upon attachment to laminin, the alpha 6A transfectants extended numerous pseudopodia. In contrast, the alpha 6B transfectants remained rounded and extended few processes. The transfectants were also examined for their ability to migrate toward a laminin substratum using Transwell chambers. The alpha 6A transfectants were three- to fourfold more migratory than the alpha 6B transfectants. The alpha 6-delta CYT transfectants did not attach to laminin in normal culture medium, but they did attach in the presence of Mn2+. The alpha 6-delta CYT transfectants migrated to a lesser extent than either the alpha 6A or alpha 6B transfectants in the presence of Mn2+. The alpha 6 transfectants differed significantly in the concentration of substratum bound laminin required for half-maximal adhesion in the presence of Mn2+:alpha 6A (2.1 micrograms/ml), alpha 6B (6.3 micrograms/ml), and alpha 6-delta CYT (8.8 micrograms/ml). Divalent cation titration studies revealed that these transfectants also differed significantly in both the [Ca2+] and [Mn2+] required to obtain half-maximal adhesion to laminin

  1. Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A): Reliability prediction report for module A1 (channels 3 through 15) and module A2 (channels 1 and 2)

    NASA Technical Reports Server (NTRS)

    Geimer, W.

    1995-01-01

    This report documents the final reliability prediction performed on the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A). The A1 Module contains Channels 3 through 15, and is referred to herein as 'EOS/AMSU-A1'. The A2 Module contains Channels 1 and 2, and is referred herein as 'EOS/AMSU-A2'. The 'specified' figures were obtained from Aerojet Reports 8897-1 and 9116-1. The predicted reliability figure for the EOS/AMSU-A1 meets the specified value and provides a Mean Time Between Failures (MTBF) of 74,390 hours. The predicted reliability figure for the EOS/AMSU-A2 meets the specified value and provides a MTBF of 193,110 hours.

  2. Structural and Functional Analysis of Two New Positive Allosteric Modulators of GluA2 Desensitization and Deactivation

    PubMed Central

    Timm, David E.; Benveniste, Morris; Weeks, Autumn M.; Nisenbaum, Eric S.

    2011-01-01

    At the dimer interface of the extracellular ligand-binding domain of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors a hydrophilic pocket is formed that is known to interact with two classes of positive allosteric modulators, represented by cyclothiazide and the ampakine 2H,3H,6aH-pyrrolidino(2,1–3′,2′)1,3-oxazino(6′,5′-5,4)benzo(e)1,4-dioxan-10-one (CX614). Here, we present structural and functional data on two new positive allosteric modulators of AMPA receptors, phenyl-1,4-bis-alkylsulfonamide (CMPDA) and phenyl-1,4-bis-carboxythiophene (CMPDB). Crystallographic data show that these compounds bind within the modulator-binding pocket and that substituents of each compound overlap with distinct moieties of cyclothiazide and CX614. The goals of the present study were to determine 1) the degree of modulation by CMPDA and CMPDB of AMPA receptor deactivation and desensitization; 2) whether these compounds are splice isoform-selective; and 3) whether predictions of mechanism of action could be inferred by comparing molecular interactions between the ligand-binding domain and each compound with those of cyclothiazide and CX614. CMPDB was found to be more isoform-selective than would be predicted from initial binding assays. It is noteworthy that these new compounds are both more potent and more effective and may be more clinically relevant than the AMPA receptor modulators described previously. PMID:21543522

  3. Neuronal damage by secretory phospholipase A2: modulation by cytosolic phospholipase A2, platelet-activating factor, and cyclooxygenase-2 in neuronal cells in culture.

    PubMed

    Kolko, Miriam; Rodriguez de Turco, Elena B; Diemer, Nils H; Bazan, Nicolas G

    2003-02-27

    Activation of cytosolic phospholipase A(2) (cPLA(2)) is an early event in brain injury, which leads to the formation and accumulation of bioactive lipids: platelet-activating factor (PAF), free arachidonic acid, and eicosanoids. A cross-talk between secretory PLA(2) (sPLA(2)) and cPLA(2) in neural signal transduction has previously been suggested (J Biol Chem 271:32722; 1996). Here we show, using neuronal cell cultures, an up-regulation of cPLA(2) expression and an inhibition by the selective cPLA(2) inhibitor AACOCF3 after exposure to neurotoxic concentrations of sPLA(2)-OS2. Pretreatment of neuronal cultures with recombinant PAF acetylhydrolase (rPAF-AH) or the presynaptic PAF receptor antagonist, BN52021, partially blocked neuronal cell death induced by sPLA(2)-OS2. Furthermore, selective COX-2 inhibitors ameliorated sPLA(2)-OS2-induced neurotoxicity. We conclude that sPLA(2)-OS2 activates a neuronal signaling cascade that includes activation of cPLA(2), arachidonic acid release, PAF production, and induction of COX-2.

  4. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation.

    PubMed

    Benilova, Iryna; Gallardo, Rodrigo; Ungureanu, Andreea-Alexandra; Castillo Cano, Virginia; Snellinx, An; Ramakers, Meine; Bartic, Carmen; Rousseau, Frederic; Schymkowitz, Joost; De Strooper, Bart

    2014-11-07

    Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously.

  5. The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation*

    PubMed Central

    Benilova, Iryna; Gallardo, Rodrigo; Ungureanu, Andreea-Alexandra; Castillo Cano, Virginia; Snellinx, An; Ramakers, Meine; Bartic, Carmen; Rousseau, Frederic; Schymkowitz, Joost; De Strooper, Bart

    2014-01-01

    Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously. PMID:25253695

  6. Extracellular matrix (ECM) modulates the EGF-induced migration of liver epithelial cells in serum-free, hormone-supplemented medium.

    PubMed

    Bade, E G; Nitzgen, B

    1985-04-01

    The influence of the extracellular matrix (ECM) glycoproteins collagen IV, laminin (LN), and fibronectin (FN) on the in vitro migration of epithelial cells was studied using the ECM migration track method (4) with preparations immunostained for LN and FN. The locomotion of rat liver epithelial cells stimulated to migrate in serum-free medium by epidermal growth factor (EGF) in the presence of insulin is inhibited by substratum-bound FN. The inhibition is concentration-dependent up to 0.7 microgram of the protein per cm2. Neither LN nor collagen IV decreased the number of migrating cells, indicating that the inhibition is a specific effect of fibronectin. The data also indicate that the FN-mediated inhibition of migration is an additional and not alternative mechanism to the well-established contact inhibition of locomotion (1) which also occurs in liver epithelial cell cultures. The system is being used for a further analysis of the factors that influence migration of normal and neoplastic epithelial cells and the biochemical mechanisms underlying the migration reaction.

  7. Cocaine-Induced Changes of Synaptic Transmission in the Striatum are Modulated by Adenosine A2A Receptors and Involve the Tyrosine Phosphatase STEP

    PubMed Central

    Chiodi, Valentina; Mallozzi, Cinzia; Ferrante, Antonella; Chen, Jiang F; Lombroso, Paul J; Di Stasi, Anna Maria Michela; Popoli, Patrizia; Domenici, Maria Rosaria

    2014-01-01

    The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine. PMID:23989619

  8. Cocaine-induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP.

    PubMed

    Chiodi, Valentina; Mallozzi, Cinzia; Ferrante, Antonella; Chen, Jiang F; Lombroso, Paul J; Di Stasi, Anna Maria Michela; Popoli, Patrizia; Domenici, Maria Rosaria

    2014-02-01

    The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine.

  9. A2A Adenosine Receptors Are Differentially Modulated by Pharmacological Treatments in Rheumatoid Arthritis Patients and Their Stimulation Ameliorates Adjuvant-Induced Arthritis in Rats

    PubMed Central

    Vincenzi, Fabrizio; Padovan, Melissa; Targa, Martina; Corciulo, Carmen; Giacuzzo, Sarah; Merighi, Stefania; Gessi, Stefania; Govoni, Marcello; Borea, Pier Andrea; Varani, Katia

    2013-01-01

    A2A adenosine receptors (ARs) play a key role in the inhibition of the inflammatory process. The purpose of this study was to evaluate the modulation of A2AARs in rheumatoid arthritis (RA) patients after different pharmacological treatments and to investigate the effect of A2AAR stimulation in a rat model of arthritis. We investigated A2AAR density and functionality in RA progression by using a longitudinal study in RA patients before and after methotrexate (MTX), anti-TNFα agents or rituximab treatments. A2AARs were analyzed by saturation binding assays in lymphocytes from RA patients throughout the 24-month study timeframe. In an adjuvant-induced arthritis model in rats we showed the efficacy of the A2AAR agonist, CGS 21680 in comparison with standard therapies by means of paw volume assessment, radiographic and ultrasonographic imaging. Arthritic-associated pain was investigated in mechanical allodynia and thermal hyperalgesia tests. IL-10 release following A2AAR stimulation in lymphocytes from RA patients and in serum from arthritic rats was measured. In lymphocytes obtained from RA patients, the A2AAR up-regulation was gradually reduced in function of the treatment time and the stimulation of these receptors mediated a significant increase of IL-10 production. In the same cells, CGS 21680 did not affected cell viability and did not produced cytotoxic effects. The A2AAR agonist CGS 21680 was highly effective, as suggested by the marked reduction of clinical signs, in rat adjuvant-induced arthritis and associated pain. This study highlighted that A2AAR agonists represent a physiological-like therapeutic alternative for RA treatment as suggested by the anti-inflammatory role of A2AARs in lymphocytes from RA patients. The effectiveness of A2AAR stimulation in a rat model of arthritis supported the role of A2AAR agonists as potential pharmacological treatment for RA. PMID:23326596

  10. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  11. Non-Selective Cannabinoid Receptor Antagonists, Hinokiresinols Reduce Infiltration of Microglia/Macrophages into Ischemic Brain Lesions in Rat via Modulating 2-Arachidonolyglycerol-Induced Migration and Mitochondrial Activity

    PubMed Central

    Anthony Jalin, Angela M. A.; Rajasekaran, Maheswari; Prather, Paul L.; Kwon, Jin Sun; Gajulapati, Veeraswamy; Choi, Yongseok; Kim, Chunsook; Pahk, Kisoo; Ju, Chung; Kim, Won-Ki

    2015-01-01

    Growing evidence suggests that therapeutic strategies to modulate the post-ischemic inflammatory responses are promising approaches to improve stroke outcome. Although the endocannabinoid system has been emerged as an endogenous therapeutic target to regulate inflammation after stroke insult, the downstream mechanisms and their potentials for therapeutic intervention remain controversial. Here we identified trans- and cis-hinokiresinols as novel non-selective antagonists for two G-protein-coupled cannabinoid receptors, cannabinoid receptor type 1 and type 2. The Electric Cell-substrate Impedance Sensing and Boyden chamber migration assays using primary microglial cultures revealed that both hinokiresinols significantly inhibited an endocannabinoid, 2-arachidonoylglycerol-induced migration. Hinokiresinols modulated 2-arachidonoylglycerol-induced mitochondrial bioenergetics in microglia as evidenced by inhibition of ATP turnover and reduction in respiratory capacity, thereby resulting in impaired migration activity. In rats subjected to transient middle cerebral artery occlusion (1.5-h) followed by 24-h reperfusion, post-ischemic treatment with hinokiresinols (2 and 7-h after the onset of ischemia, 10 mg/kg) significantly reduced cerebral infarct and infiltration of ED1-positive microglial/macrophage cells into cerebral ischemic lesions in vivo. Co-administration of exogenous 2-AG (1 mg/kg, i.v., single dose at 2 h after starting MCAO) abolished the protective effect of trans-hinokiresionol. These results suggest that hinokiresinols may serve as stroke treatment by targeting the endocannabinoid system. Alteration of mitochondrial bioenergetics and consequent inhibition of inflammatory cells migration may be a novel mechanism underlying anti-ischemic effects conferred by cannabinoid receptor antagonists. PMID:26517721

  12. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  13. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    PubMed

    Katsanou, Efrosini S; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE.

  14. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling

    PubMed Central

    Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-01-01

    The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis. PMID:26716413

  15. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling.

    PubMed

    Cui, Hong-Yong; Wang, Shi-Jie; Miao, Ji-Yu; Fu, Zhi-Guang; Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-02-02

    The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis.

  16. Role of adenosine A(2A) receptors in modulating synaptic functions and brain levels of BDNF: a possible key mechanism in the pathophysiology of Huntington's disease.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Chiodi, Valentina; Ferrante, Antonella; Popoli, Patrizia

    2010-09-01

    In the last few years, accumulating evidence has shown the existence of an important cross-talk between adenosine A(2A) receptors (A(2A)Rs) and brain-derived neurotrophic factor (BDNF). Not only are A(2A)Rs involved in the mechanism of transactivation of BDNF receptor TrkB, they also modulate the effect of BDNF on synaptic transmission, playing a facilitatory and permissive role. The cAMP-PKA pathway, the main transduction system operated by A(2A)Rs, is involved in such effects. Furthermore, a basal tonus of A(2A)Rs is required to allow the regulation of BDNF physiological levels in the brain, as demonstrated by the reduced protein levels measured in A(2A)Rs KO mice. The crucial role of adenosine A(2A)Rs in the maintenance of synaptic functions and BDNF levels will be reviewed here and discussed in the light of possible implications for Huntington's disease therapy, in which a joint impairment of BDNF and A(2A)Rs seems to play a pathogenetic role.

  17. Modulation of GABA transport by adenosine A1R-A2AR heteromers, which are coupled to both Gs- and G(i/o)-proteins.

    PubMed

    Cristóvão-Ferreira, Sofia; Navarro, Gemma; Brugarolas, Marc; Pérez-Capote, Kamil; Vaz, Sandra H; Fattorini, Giorgia; Conti, Fiorenzo; Lluis, Carmen; Ribeiro, Joaquim A; McCormick, Peter J; Casadó, Vicent; Franco, Rafael; Sebastião, Ana M

    2011-11-02

    Astrocytes play a key role in modulating synaptic transmission by controlling the available extracellular GABA via the GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that an additional level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A(1) (A(1)R) and A(2A) (A(2A)R) receptors. This regulation occurs through a complex of heterotetramers (two interacting homodimers) of A(1)R-A(2A)R that signal via two different G-proteins, G(s) and G(i/o), and either enhances (A(2A)R) or inhibits (A(1)R) GABA uptake. These results provide novel mechanistic insight into how G-protein-coupled receptor heteromers signal. Furthermore, we uncover a previously unknown mechanism in which adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.

  18. Basal adenosine modulates the functional properties of AMPA receptors in mouse hippocampal neurons through the activation of A1R A2AR and A3R

    PubMed Central

    Di Angelantonio, Silvia; Bertollini, Cristina; Piccinin, Sonia; Rosito, Maria; Trettel, Flavia; Pagani, Francesca; Limatola, Cristina; Ragozzino, Davide

    2015-01-01

    Adenosine is a widespread neuromodulator within the CNS and its extracellular level is increased during hypoxia or intense synaptic activity, modulating pre- and postsynaptic sites. We studied the neuromodulatory action of adenosine on glutamatergic currents in the hippocampus, showing that activation of multiple adenosine receptors (ARs) by basal adenosine impacts postsynaptic site. Specifically, the stimulation of both A1R and A3R reduces AMPA currents, while A2AR has an opposite potentiating effect. The effect of ARs stimulation on glutamatergic currents in hippocampal cultures was investigated using pharmacological and genetic approaches. A3R inhibition by MRS1523 increased GluR1-Ser845 phosphorylation and potentiated AMPA current amplitude, increasing the apparent affinity for the agonist. A similar effect was observed blocking A1R with DPCPX or by genetic deletion of either A3R or A1R. Conversely, impairment of A2AR reduced AMPA currents, and decreased agonist sensitivity. Consistently, in hippocampal slices, ARs activation by AR agonist NECA modulated glutamatergic current amplitude evoked by AMPA application or afferent fiber stimulation. Opposite effects of AR subtypes stimulation are likely associated to changes in GluR1 phosphorylation and represent a novel mechanism of physiological modulation of glutamatergic transmission by adenosine, likely acting in normal conditions in the brain, depending on the level of extracellular adenosine and the distribution of AR subtypes. PMID:26528137

  19. Neutrophil migration across cultured intestinal epithelial monolayers is modulated by epithelial exposure to IFN-gamma in a highly polarized fashion

    PubMed Central

    1993-01-01

    Neutrophil, or polymorphonuclear leukocyte (PMN), migration across intestinal epithelial barriers, such as occurs in many disease states, appears to result in modifications of epithelial barrier and ion transport functions (Nash, S., J. Stafford, and J. L. Madara. 1987. J. Clin. Invest. 80:1104-1113; Madara, J. L., C. A. Parkos, S. P. Colgan, R. J. MacLeod, S. Nash, J. B. Matthews, C. Delp, and W. I. Lencer. 1992. J. Clin. Invest. 89:1938-1944). Here we investigate the effects of epithelial exposure to IFN-gamma on PMN migration across cultured monolayers of the human intestinal epithelial cell line T84. Transepithelial migration of PMN was initially assessed in the apical- to-basolateral direction, since previous studies indicate general qualitative similarities between PMN migration in the apical-to- basolateral and in the basolateral-to-apical directions. In the apical- to-basolateral direction, epithelial exposure to IFN-gamma markedly upregulated transepithelial migration of PMN in a dose- and time- dependent fashion as measured by both electrical and myeloperoxidase assays. This IFN-gamma-elicited effect on transmigration was specifically due to a IFN-gamma effect on epithelial cells and was not secondary to IFN-gamma effects on epithelial tight junction permeability. Moreover, this IFN-gamma effect was dependent on epithelial protein synthesis, and involved a pathway in which CD11b/18, but not ICAM-1 or CD11a/18, appeared to play a crucial role in PMN- epithelial adhesion. IFN-gamma also substantially modified PMN transepithelial migration in the natural, basolateral-to-apical direction. The IFN-gamma effect on naturally directed transmigration was also specifically due to an IFN-gamma effect on epithelial cells, showed comparable time and dose dependency to that of oppositely directed migration, was CD11b/18 dependent, and required epithelial protein synthesis. Additionally, however, important qualitative differences existed in how IFN-gamma affected

  20. Intermediate-conductance Calcium-activated Potassium Channel KCa3.1 and Chloride Channel Modulate Chemokine Ligand (CCL19/CCL21)-induced Migration of Dendritic Cells

    PubMed Central

    Shao, Zhifei; Gaurav, Rohit; Agrawal, Devendra K

    2014-01-01

    The role of ion channels is largely unknown in chemokine-induced migration in non-excitable cells such as dendritic cells. Here, we examined the role of KCa3.1 and chloride channels in lymphatic chemokines-induced migration of dendritic cells. The amplitude and kinetics of CCL19/21-induced Ca2+ influx were associated with CCR7 expression levels, extracellular free Ca2+ and Cl−, and independent of extracellular K+. Chemokines, CCL19 and CCL21, and KCa3.1 activator, 1-EBIO, induced plasma membrane hyperpolarization and K+ efflux, which was blocked by TRAM-34, suggesting that KCa3.1 carried larger conductance than the inward CRAC. Blockade of KCa3.1, low Cl− in the medium, and low dose of DIDS impaired CCL19/CCL21-induced Ca2+ influx, cell volume change, and DC migration. High doses of DIDS completely blocked DC migration possibly by significantly disrupting mitochondrial membrane potential. In conclusion, KCa3.1 and chloride channel are critical in human DC migration by synergistically regulating membrane potential, chemokine-induced Ca2+ influx, and cell volume. PMID:25583444

  1. Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells.

    PubMed

    Shao, Zhifei; Gaurav, Rohit; Agrawal, Devendra K

    2015-07-01

    The role of ion channels is largely unknown in chemokine-induced migration in nonexcitable cells such as dendritic cells (DCs). Here, we examined the role of intermediate-conductance calcium-activated potassium channel (KCa3.1) and chloride channel (CLC3) in lymphatic chemokine-induced migration of DCs. The amplitude and kinetics of chemokine ligand (CCL19/CCL21)-induced Ca(2+) influx were associated with chemokine receptor 7 expression levels, extracellular-free Ca(2+) and Cl(-), and independent of extracellular K(+). Chemokines (CCL19 and CCL21) and KCa3.1 activator (1-ethyl-1,3-dihydro-2H-benzimidazol-2-one) induced plasma membrane hyperpolarization and K(+) efflux, which was blocked by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, suggesting that KCa3.1 carried larger conductance than the inward calcium release-activated calcium channel. Blockade of KCa3.1, low Cl(-) in the medium, and low dose of 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) impaired CCL19/CCL21-induced Ca(2+) influx, cell volume change, and DC migration. High doses of DIDS completely blocked DC migration possibly by significantly disrupting mitochondrial membrane potential. In conclusion, KCa3.1 and CLC3 are critical in human DC migration by synergistically regulating membrane potential, chemokine-induced Ca(2+) influx, and cell volume.

  2. Drinking modulates monocyte migration in healthy subjects: a randomised intervention study of water, ethanol, red wine and beer with or without alcohol.

    PubMed

    Imhof, Armin; Blagieva, Roza; Marx, Nikolaus; Koenig, Wolfgang

    2008-03-01

    Moderate alcohol consumption is associated with reduced cardiovascular mortality compared to non-consumption of alcohol and heavy drinking. Experimental data suggest a direct effect of alcohol on atherosclerotic lesion development. We assessed the effect of consumption of moderate amounts of alcoholic and non-alcoholic beverages on monocyte migration, a crucial step in atherogenesis. Forty-nine healthy men and women (aged 22-56 years) were enrolled in this randomised controlled trial. After wash-out, participants were assigned to either ethanol (concentration 12.5%), beer (5.6%) or red wine (12.5%) equivalent to 30 grams of ethanol per day (g/d) for men and 20 g/d for women, or to the same amount of de-alcoholised beer or red wine, or to water. Monocyte migration was evaluated ex vivo using a modified Boyden chamber. Intake of ethanol or de-alcoholised red wine significantly reduced monocyte chemoattractant protein-1 (MCP-1)-induced monocyte migration by 58% (p<0.05; n=6) and 36% (p<0.05; n=7) and FMLP (N-formyl-methionyl-leucyl-phenylalanine)-induced migration by 41% (p<0.05) and 36% (p<0.05), respectively. MCP-1 receptor expression was not affected by these interventions, as shown by flow cytometry. Short-term intervention with moderate amounts of ethanol and de-alcoholised red wine inhibits monocyte migration ex vivo. This might represent one mechanism by which alcoholic beverages lower cardiovascular risk.

  3. The CLC-2 Chloride Channel Modulates ECM Synthesis, Differentiation, and Migration of Human Conjunctival Fibroblasts via the PI3K/Akt Signaling Pathway.

    PubMed

    Sun, Lixia; Dong, Yaru; Zhao, Jing; Yin, Yuan; Zheng, Yajuan

    2016-06-09

    Recent evidence suggests that chloride channels are critical for cell proliferation, migration, and differentiation. We examined the effects of transforming growth factor (TGF)-β1 on chloride channel expression and associations with human conjunctival fibroblast (HConF) biology. To investigate the potential role of chloride channel (CLC)-2 in migration, transition to myofibroblasts and extracellular matrix (ECM) synthesis of HconF, a small interfering RNA (siRNA) approach was applied. TGF-β1-induced migration and transition of fibroblasts to myofibroblasts characterized by α-smooth muscle actin (α-SMA) expression, supported by increased endogenous expression of CLC-2 protein and mRNA transcripts. ECM (collagen I and fibronectin) synthesis in HConF was enhanced by TGF-β1. CLC-2 siRNA treatment reduced TGF-β1-induced cell migration, transition of fibroblasts to myofibroblasts, and ECM synthesis of HConF. CLC-2 siRNA treatment in the presence of TGF-β1 inhibited phosphorylation of PI3K and Akt in HConF. These findings demonstrate that CLC-2 chloride channels are important for TGF-β1-induced migration, differentiation, and ECM synthesis via PI3K/Akt signaling in HConF.

  4. Lactate-Modulated Induction of THBS-1 Activates Transforming Growth Factor (TGF)-beta2 and Migration of Glioma Cells In Vitro

    PubMed Central

    Moeckel, Sylvia; Jachnik, Birgit; Lottaz, Claudio; Kreutz, Marina; Brawanski, Alexander; Proescholdt, Martin; Bogdahn, Ulrich; Bosserhoff, Anja-Katrin; Vollmann-Zwerenz, Arabel; Hau, Peter

    2013-01-01

    Background An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein. Methods Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. Results Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. Conclusion We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion. PMID:24223867

  5. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    SciTech Connect

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C.; Wolburg, Hartwig; Ziviani, Elena; Whitworth, Alexander J.; Martins, L. Miguel; Kahle, Philipp J.; Krueger, Rejko

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  6. A2B and A3 Adenosine Receptors Modulate Vascular Endothelial Growth Factor and Interleukin-8 Expression in Human Melanoma Cells Treated with Etoposide and Doxorubicin

    PubMed Central

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Mirandola, Prisco; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2009-01-01

    Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often have abnormal growth factor and cytokine profiles. Thus, serum levels of interleukin-8 (IL-8) are elevated in patients with malignant melanoma. In addition to IL-8, aggressive melanoma cells secrete, through its transcriptional regulator hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), which promotes angiogenesis and metastasis of human cancerous cells. Whether these responses are related to adenosine, a ubiquitous mediator expressed at high concentrations in cancer and implicated in numerous inflammatory processes, is not known and is the focus of this study. We have examined whether the DNA-damaging agents etoposide (VP-16) and doxorubicin can affect IL-8, VEGF, and HIF-1 expressions in human melanoma cancer cells. In particular, we have investigated whether these responses are related to the modulation of the adenosine receptor subtypes, namely, A1, A2A, A2B, and A3. We have demonstrated that A2B receptor blockade can impair IL-8 production, whereas blocking A3 receptors, it is possible to further decrease VEGF secretion in melanoma cells treated with VP-16 and doxorubicin. This understanding may present the possibility of using adenosine antagonists to reduce chemotherapy-induced inflammatory cytokine production and to improve the ability of chemotherapeutic drugs to block angiogenesis. Consequently, we conclude that adenosine receptor modulation may be useful for refining the use of chemotherapeutic drugs to treat human cancer more effectively. PMID:19794965

  7. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor.

    PubMed

    Ben Addi, Abduelhakem; Lefort, Anne; Hua, Xiaoyang; Libert, Frédérick; Communi, Didier; Ledent, Catherine; Macours, Pascale; Tilley, Stephen L; Boeynaems, Jean-Marie; Robaye, Bernard

    2008-06-01

    Adenosine triphosphate has previously been shown to induce semi-mature human monocyte-derived dendritic cells (DC). These are characterized by the up-regulation of co-stimulatory molecules, the inhibition of IL-12 and the up-regulation of some genes involved in immune tolerance, such as thrombospondin-1 and indoleamine 2,3-dioxygenase. The actions of adenosine triphosphate are mediated by the P2Y(11) receptor; since there is no functional P2Y(11) gene in the murine genome, we investigated the action of adenine nucleotides on murine DC. Adenosine 5'-(3-thiotriphosphate) and adenosine inhibited the production of IL-12p70 by bone marrow-derived DC (BMDC). These inhibitions were relieved by 8-p-sulfophenyltheophylline, an adenosine receptor antagonist. The use of selective ligands and A(2B) (-/-) BMDC indicated the involvement of the A(2B) receptor. A microarray experiment, confirmed by quantitative PCR, showed that, in presence of LPS, 5'-(N-ethylcarboxamido) adenosine (NECA, the most potent A(2B) receptor agonist) regulated the expression of several genes: arginase I and II, thrombospondin-1 and vascular endothelial growth factor were up-regulated whereas CCL2 and CCL12 were down-regulated. We further showed that NECA, in combination with LPS, increased the arginase I enzymatic activity. In conclusion, the described actions of adenine nucleotides on BMDC are mediated by their degradation product, adenosine, acting on the A(2B) receptor, and will possibly lead to an impairment of Th1 response or tolerance.

  8. Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats.

    PubMed

    Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R

    2003-12-01

    Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the

  9. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway.

    PubMed

    Sun, Jing; Zhang, Daohai; Zheng, Ying; Zhao, Qian; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2013-02-01

    The iron-regulated metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), is up-regulated by cellular iron depletion mediated by iron chelators and can inhibit cancer cell migration. However, the mechanism of how NDRG1 achieves this effect remains unclear. In this study, we implemented established and newly constructed NDRG1 overexpression and knockdown models using the DU145, HT29, and HCT116 cancer cell lines to investigate the molecular basis by which NDRG1 exerts its inhibitory effect on cell migration. Using these models, we demonstrated that NDRG1 overexpression inhibits cell migration by preventing actin-filament polymerization, stress fiber assembly and formation. In contrast, NDRG1 knockdown had the opposite effect. Moreover, we identified that NDRG1 inhibited an important regulatory pathway mediated by the Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated myosin light chain 2 (pMLC2) pathway that modulates stress fiber assembly. The phosphorylation of MLC2 is a key process in inducing stress fiber contraction, and this was shown to be markedly decreased or increased by NDRG1 overexpression or knockdown, respectively. The mechanism involved in the inhibition of MLC2 phosphorylation by NDRG1 was mediated by a significant (P < 0.001) decrease in ROCK1 expression that is a key kinase involved in MLC2 phosphorylation. Considering that NDRG1 is up-regulated after cellular iron depletion, novel thiosemicarbazone iron chelators (e.g., di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone) were demonstrated to inhibit ROCK1/pMLC2-modulated actin-filament polymerization, stress fiber assembly, and formation via a mechanism involving NDRG1. These results highlight the role of the ROCK1/pMLC2 pathway in the NDRG1-mediated antimetastatic signaling network and the therapeutic potential of iron chelators at inhibiting metastasis.

  10. Cytoskeleton-modulating effectors of enteropathogenic and enterohemorrhagic Escherichia coli: role of EspL2 in adherence and an alternative pathway for modulating cytoskeleton through Annexin A2 function.

    PubMed

    Tobe, Toru

    2010-06-01

    Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic Escherichia coli (EPEC) are attaching/effacing pathogens that possess a type III secretion system and deliver a variety of effectors into host cells for successful infection. EHEC produces at least 20 effector families with various functions. Reorganization of the cellular cytoskeleton at the adherent site is a hallmark of these pathogens. EspL2 of EHEC is a novel effector class that can modulate the cellular cytoskeleton. By interacting with and activating Annexin A2, EspL2 contributes to the formation of a condensed microcolony and may adhere to host cells in a translocated intimin receptor-independent manner. The interaction of EspL2 with Annexin A2 increases F-actin bundling activity and strengthens the membrane-cytoskeleton linkage, resulting in the condensation of actin fibers and the induction of a pseudopod-like structure. Membrane microdomains, namely the lipid raft, which is rich in Annexin A2, may be a platform by which EHEC/EPEC infection modulates cellular signaling and the cytoskeleton.

  11. A(2A) adenosine receptors are differentially modulated by pharmacological treatments in rheumatoid arthritis patients and their stimulation ameliorates adjuvant-induced arthritis in rats.

    PubMed

    Vincenzi, Fabrizio; Padovan, Melissa; Targa, Martina; Corciulo, Carmen; Giacuzzo, Sarah; Merighi, Stefania; Gessi, Stefania; Govoni, Marcello; Borea, Pier Andrea; Varani, Katia

    2013-01-01

    A(2A) adenosine receptors (ARs) play a key role in the inhibition of the inflammatory process. The purpose of this study was to evaluate the modulation of A(2A)ARs in rheumatoid arthritis (RA) patients after different pharmacological treatments and to investigate the effect of A(2A)AR stimulation in a rat model of arthritis. We investigated A(2A)AR density and functionality in RA progression by using a longitudinal study in RA patients before and after methotrexate (MTX), anti-TNFα agents or rituximab treatments. A(2A)ARs were analyzed by saturation binding assays in lymphocytes from RA patients throughout the 24-month study timeframe. In an adjuvant-induced arthritis model in rats we showed the efficacy of the A(2A)AR agonist, CGS 21680 in comparison with standard therapies by means of paw volume assessment, radiographic and ultrasonographic imaging. Arthritic-associated pain was investigated in mechanical allodynia and thermal hyperalgesia tests. IL-10 release following A(2A)AR stimulation in lymphocytes from RA patients and in serum from arthritic rats was measured. In lymphocytes obtained from RA patients, the A(2A)AR up-regulation was gradually reduced in function of the treatment time and the stimulation of these receptors mediated a significant increase of IL-10 production. In the same cells, CGS 21680 did not affected cell viability and did not produced cytotoxic effects. The A(2A)AR agonist CGS 21680 was highly effective, as suggested by the marked reduction of clinical signs, in rat adjuvant-induced arthritis and associated pain. This study highlighted that A(2A)AR agonists represent a physiological-like therapeutic alternative for RA treatment as suggested by the anti-inflammatory role of A(2A)ARs in lymphocytes from RA patients. The effectiveness of A(2A)AR stimulation in a rat model of arthritis supported the role of A(2A)AR agonists as potential pharmacological treatment for RA.

  12. Genetic variation in SLC7A2 interacts with calcium and magnesium intakes in modulating the risk of colorectal polyps.

    PubMed

    Sun, Pin; Zhu, Xiangzhu; Shrubsole, Martha J; Ness, Reid M; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Hou, Lifang; Smalley, Walter E; Edwards, Todd L; Giovannucci, Edward; Zheng, Wei; Dai, Qi

    2017-09-01

    Solute carrier family 7, member 2 (SLC7A2) gene encodes a protein called cationic amino acid transporter 2, which mediates the transport of arginine, lysine and ornithine. l-Arginine is necessary for cancer development and progression, including an important role in colorectal cancer pathogenesis. Furthermore, previous studies found that both calcium and magnesium inhibit the transport of arginine. Thus, calcium, magnesium or calcium:magnesium intake ratio may interact with polymorphisms in the SLC7A2 gene in association with colorectal cancer. We conducted a two-phase case-control study within the Tennessee Colorectal Polyps Study. In the first phase, 23 tagging single-nucleotide polymorphisms in the SLC7A2 gene were included for 725 colorectal adenoma cases and 755 controls. In the second phase conducted in an independent set of 607 cases and 2113 controls, we replicated the significant findings in the first phase. We observed that rs2720574 significantly interacted with calcium:magnesium intake ratio in association with odds of adenoma, particularly multiple/advanced adenoma. In the combined analysis, among those with a calcium:magnesium intake ratio below 2.78, individuals who carried GC/CC genotypes demonstrated higher odds of adenoma [OR (95% CI):1.36 (1.11-1.68)] and multiple/advanced adenoma [OR (95% CI): 1.68 (1.28, 2.20)] than those who carried the GG genotype. The P values for interactions between calcium:magnesium intake ratio and rs2720574 were .002 for all adenomas and <.001 for multiple/advanced adenoma. Among those with the GG genotype, a high calcium:magnesium ratio was associated with increased odds of colorectal adenoma [OR (95% CI): 1.73 (1.27-2.36)] and advanced/multiple adenomas [1.62 (1.05-2.50)], whereas among those with the GC/CC genotypes, high calcium:magnesium ratio was related to reduced odds of colorectal adenoma [0.64 (0.42-0.99)] and advanced/multiple adenomas [0.55 (0.31-1.00)]. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Substrate curvature regulates cell migration

    NASA Astrophysics Data System (ADS)

    He, Xiuxiu; Jiang, Yi

    2017-06-01

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  14. Substrate curvature regulates cell migration.

    PubMed

    He, Xiuxiu; Jiang, Yi

    2017-05-23

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  15. The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages.

    PubMed

    Vázquez-Medina, José Pablo; Dodia, Chandra; Weng, Liwei; Mesaros, Clementina; Blair, Ian A; Feinstein, Sheldon I; Chatterjee, Shampa; Fisher, Aron B

    2016-08-01

    Peroxiredoxin 6 (Prdx6) is essential for activation of NADPH oxidase type 2 (NOX2) in pulmonary microvascular endothelial cells (PMVECs), alveolar macrophages (AMs), and polymorphonuclear leukocytes. Angiotensin II and phorbol ester increased superoxide/H2O2 generation in PMVECs, AMs, and isolated lungs from wild-type (WT) mice, but had much less effect on cells or lungs from Prdx6-null or Prdx6-D140A-knock-in mice that lack the phospholipase A2 activity (PLA2) of Prdx6; addition of either lysophosphatidylcholine (LPC) or lysophosphatidic acid (LPA) to cells restored their oxidant generation. The generation of LPC by PMVECs required Prdx6-PLA2 We propose that Prdx6-PLA2 modulates NOX2 activation by generation of LPC that is converted to LPA by the lysophospholipase D activity of autotaxin (ATX/lysoPLD). Inhibition of lysoPLD with HA130 (cells,10 μM; lungs, 20 μM; IC50, 29 nM) decreased agonist-induced oxidant generation. LPA stimulates pathways regulated by small GTPases through binding to G-protein-coupled LPA receptors (LPARs). The LPAR blocker Ki16425 (cells, 10 μM; lungs, 25 μM; Ki, 0.34 μM) or cellular knockdown of LPAR type 1 decreased oxidant generation and blocked translocation of rac1 to plasma membrane. Thus, Prdx6-PLA2 modulates NOX2 activation through generation of LPC for conversion to LPA; binding of LPA to LPAR1 signals rac activation.-Vázquez-Medina, J. P., Dodia, C., Weng, L., Mesaros, C., Blair, I. A., Feinstein, S. I., Chatterjee, S., Fisher, A. B. The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. © FASEB.

  16. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice

    PubMed Central

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  17. CD98hc (SLC3A2) Loss Protects Against Ras-Driven Tumorigenesis by Modulating Integrin-Mediated Mechanotransduction

    PubMed Central

    Estrach, Soline; Lee, Sin-Ae; Boulter, Etienne; Pisano, Sabrina; Errante, Aurélia; Tissot, Floriane S.; Cailleteau, Laurence; Pons, Catherine; Ginsberg, Mark H.; Féral, Chloé C.

    2016-01-01

    CD98hc (SLC3A2) is the heavy chain component of the dimeric transmembrane glycoprotein CD98, which comprises the large neutral amino acid transporter LAT1 (SLC7A5) in cells. Overexpression of CD98hc occurs widely in cancer cells, and is associated with poor prognosis clinically, but its exact contributions to tumorigenesis are uncertain. In this study, we showed that that genetic deficiency of CD98hc protects against Ras-driven skin carcinogenesis. Deleting CD98hc after tumor induction was also sufficient to cause regression of existing tumors. Investigations into the basis for these effects defined two new functions of CD98hc that contribute to epithelial cancer beyond an intrinsic effect on CD98hc on tumor cell proliferation. First, CD98hc increased the stiffness of the tumor microenvironment. Second, CD98hc amplified the capacity of cells to respond to matrix rigidity, an essential factor in tumor development. Mechanistically, CD98hc mediated this stiffness-sensing by increasing Rho kinase (ROCK) activity, resulting in increased transcription mediated by YAP/TAZ, a nuclear relay for mechanical signals. Our results suggest that CD98hc contributes to carcinogenesis by amplifying a positive feedback loop which increases both extracellular matrix stiffness and resulting cellular responses. This work supports a rationale to explore the use of CD98hc inhibitors as cancer therapeutics, PMID:25267066

  18. [Internal migration].

    PubMed

    Borisovna, L

    1991-06-01

    Very few studies have been conducted that truly permit explanation of internal migration and it repercussions on social and economic structure. It is clear however that a profound knowledge of the determinants and consequences of internal migration will be required as a basis for economic policy decisions that advance the goal of improving the level of living of the population. the basic supposition of most studies of the relationship of population and development is that socioeconomic development conditions demographic dynamics. The process of development in Mexico, which can be characterized by great heterogeneity, consequently produces great regional disparities. At the national level various studies have estimated the volume of internal migration in Mexico, but they have usually been limited to interstate migration because the main source of data, the census, is classified by states. But given the great heterogeneity within states in all the elements related to internal migration, it is clear that studies of internal migration within states are also needed. Such studies are almost nonexistent because of their technical difficulty. National level studies show that interstate migration increased significantly between 1940-80. The proportion of Mexicans living outside their states of birth increased by 558% in those years, compared to the 342% increase in the total Mexican population. Although Puebla has a high rate of increase, migration has kept it below Mexico's national growth rate. Migration between Puebla and other states and within Puebla has led to an increasing unevenness of spatial distribution. Between 1970-80, 57 of Puebla's municipios had growth rates above the state average of 2.8%/year, 6 had growth rates equal to the average, and 129 had growth rates that were below the average but not negative. 25 states with negative growth rates that were considered strongly expulsive. In 1980, 51.7% of the population was concentrated in the 57 municipios

  19. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression.

    PubMed

    Shin, Seung-Shick; Park, Sung-Soo; Hwang, Byungdoo; Kim, Won Tae; Choi, Yung Hyun; Kim, Wun-Jae; Moon, Sung-Kwon

    2016-10-01

    Despite the clinical significance of tumorigenesis, little is known about the cellular signaling networks of microRNAs (miRs). Here we report a new finding that mir‑106a regulates the proliferation, migration, and invasion of bladder cancer cells. Basal expression levels of mir‑106a were significantly lower in bladder cancer cells than in normal urothelial cells. Overexpression of mir‑106a suppressed the proliferation of bladder cancer cell line EJ. Transient transfection of mir‑106a into EJ cells led to downregulation of ERK phosphorylation and upregulation of p38 and JNK phosphorylation over their levels in the control. Flow cytometry analysis revealed that mir‑106a-transfected cells accumulated in the G1-phase of the cell cycle, and cyclin D1 and CDK6 were significantly downregulated. This G1-phase cell cycle arrest was due in part to the upregulation of p21CIP1/WAF1. In addition, mir‑106a overexpression blocked the wound-healing migration and invasion of EJ cells. Furthermore, mir‑106a transfection resulted in decreased expression of MMP-2 and diminished binding activity of transcription factor Ets-1 in EJ cells. Collectively, we report the novel mir‑106a-mediated molecular signaling networks that regulate the proliferation, migration, and invasion of bladder cancer cells, suggesting that mir‑106a may be a therapeutic target for treating advanced bladder tumors.

  20. Notch 1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway.

    PubMed

    Sweeney, Catherine; Morrow, David; Birney, Yvonne A; Coyle, Seamus; Hennessy, Colm; Scheller, Agnieszka; Cummins, Philip M; Walls, Dermot; Redmond, Eileen M; Cahill, Paul A

    2004-09-01

    Vascular smooth muscle cell (SMC) fate decisions (cell growth, migration, and apoptosis) are fundamental features in the pathogenesis of vascular disease. We investigated the role of Notch 1 and 3 receptor signaling in controlling adult SMC fate in vitro by establishing that hairy enhancer of split (hes-1 and -5) and related hrt's (hrt-1, -2, and -3) are direct downstream target genes of Notch 1 and 3 receptors in SMC and identified an essential role for nuclear protein CBF-1/RBP-Jk in their regulation. Constitutive expression of active Notch 1 and 3 receptors (Notch IC) resulted in a significant up-regulation of CBF-1/RBP-Jk-dependent promoter activity and Notch target gene expression concomitant with significant increases in SMC growth while concurrently inhibiting SMC apoptosis and migration. Moreover, inhibition of endogenous Notch mediated CBF-1/RBP-Jk regulated gene expression with a non-DNA binding mutant of CBF-1, a Notch IC deleted of its delta RAM domain and the Epstein-Barr virus encoded RPMS-1, in conjunction with pharmacological inhibitors of Notch IC receptor trafficking (brefeldin A and monensin), resulted in a significant decrease in cell growth while concomitantly increasing SMC apoptosis and migration. These findings suggest that endogenous Notch receptors and downstream target genes control vascular cell fate in vitro. Notch signaling, therefore, represents a novel therapeutic target for disease states in which changes in vascular cell fate occur in vivo.

  1. Rubus idaeus extract suppresses migration and invasion of human oral cancer by inhibiting MMP-2 through modulation of the Erk1/2 signaling pathway.

    PubMed

    Huang, Yi-Wen; Chuang, Chun-Yi; Hsieh, Yih-Shou; Chen, Pei-Ni; Yang, Shun-Fa; Shih-Hsuan-Lin; Chen, Yang-Yu; Lin, Chiao-Wen; Chang, Yu-Chao

    2017-03-01

    Raspberries (Rubus idaeus L.) have been extensively studies worldwide because of their beneficial effects on health. Recently reports indicate that crude extracts of Rubus idaeus (RIE) have antioxidant and anticancer ability. The aim of this study was to evaluate the mechanism of its antimetastatic ability in oral cancer cells. In this study, SCC-9 and SAS oral cancer cells were subjected to a treatment with RIE and then analyzed the effect of RIE on migration and invasion. The addition of RIE inhibited the migration and invasion ability of oral cancer cells. Real time PCR, western blot and zymography analysis demonstrated that mRNA, protein expression and enzyme activity of matrix metalloproteinases-2 (MMP-2) were down-regulated by RIE. Moreover, the phosphorylation of Focal adhesion kinase (FAK), src, and extracellular signal-regulated kinase (ERK) were inhibited after RIE treatment. In conclusion, these results demonstrated that RIE exerted an inhibitory effect of migration and invasion in oral cancer cells and alter metastasis by suppression of MMP-2 expression through FAK/Scr/ERK signaling pathway. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1037-1046, 2017. © 2016 Wiley Periodicals, Inc.

  2. Dose-dependent modulation of HIF-1alpha/sima controls the rate of cell migration and invasion in Drosophila ovary border cells.

    PubMed

    Doronkin, S; Djagaeva, I; Nagle, M E; Reiter, L T; Seagroves, T N

    2010-02-25

    The role of the hypoxic response during metastasis was analysed in migrating border cells of the Drosophila ovary. Acute exposure to 1% O(2) delayed or blocked border cell migration (BCM), whereas prolonged exposure resulted in the first documented accelerated BCM phenotype. Similarly, manipulating the expression levels of sima, the Drosophila hypoxia-inducible factor (HIF)-1alpha ortholog, revealed that Sima can either block or restore BCM in a dose-dependent manner. In contrast, over-expression of Vhl (Drosophila von Hippel-Lindau) generated a range of phenotypes, including blocked, delayed and accelerated BCM, whereas over-expression of hph (Drosophila HIF prolyl hydroxylase) only accelerated BCM. Mosaic clone analysis of sima or tango (HIF-1beta ortholog) mutants revealed that cells lacking Hif-1 transcriptional activity were preferentially detected in the leading cell position of the cluster, resulting in either a delay or acceleration of BCM. Moreover, in sima mutant cell clones, there was reduced expression of nuclear slow border cells (Slbo) and basolateral DE-cadherin, proteins essential for proper BCM. These results show that Sima levels define the rate of BCM in part through regulation of Slbo and DE-cadherin, and suggest that dynamic regulation of Hif-1 activity is necessary to maintain invasive potential of migrating epithelial cells.

  3. Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon

    PubMed Central

    Schmidt, Thomas; Bremmer, Felix; Burfeind, Peter; Kaulfuß, Silke

    2015-01-01

    The focal adhesion protein leupaxin (LPXN) is overexpressed in a subset of prostate cancers (PCa) and is involved in the progression of PCa. In the present study, we analyzed the LPXN-mediated adhesive and cytoskeletal changes during PCa progression. We identified an interaction between the actin-binding protein caldesmon (CaD) and LPXN and this interaction is increased during PCa cell migration. Furthermore, knockdown of LPXN did not affect CaD expression but reduced CaD phosphorylation. This is known to destabilize the affinity of CaD to F-actin, leading to dynamic cell structures that enable cell motility. Thus, downregulation of CaD increased migration and invasion of PCa cells. To identify the kinase responsible for the LPXN-mediated phosphorylation of CaD, we used data from an antibody array, which showed decreased expression of TGF-beta-activated kinase 1 (TAK1) after LPXN knockdown in PC-3 PCa cells. Subsequent analyses of the downstream kinases revealed the extracellular signal-regulated kinase (ERK) as an interaction partner of LPXN that facilitates CaD phosphorylation during LPXN-mediated PCa cell migration. In conclusion, we demonstrate that LPXN directly influences cytoskeletal dynamics via interaction with the actin-binding protein CaD and regulates CaD phosphorylation by recruiting ERK to highly dynamic structures within PCa cells. PMID:26079947

  4. Secreted phospholipase A2 inhibitor modulates fatty acid composition and reduces obesity-induced inflammation in Beagle dogs.

    PubMed

    Xu, J; Bourgeois, H; Vandermeulen, E; Vlaeminck, B; Meyer, E; Demeyere, K; Hesta, M

    2015-05-01

    Secreted phospholipase A2 inhibitor (sPLA2i) has been reported to have an anti-inflammatory function by blocking the production of inflammatory mediators. Obesity is characterized by low-grade inflammation and oxidative stress. The aim of this study was to investigate the effects of dietary supplementation of sPLA2i on inflammation, oxidative stress and serum fatty acid profile in dogs. Seven obese and seven lean Beagle dogs were used in a 28-day double blind cross-over design. Dogs were fed a control diet without supplemental sPLA2i or an sPLA2i supplemented diet. The sPLA2i diet decreased plasma fibrinogen levels and increased the protein:fibrinogen ratio in obese dogs to levels similar to those of lean dogs fed the same diet. Obese dogs had a higher plasma concentration of the lipophilic vitamin A with potential antioxidative capacity and a lower ratio of retinol binding protein 4:vitamin A compared to lean dogs, independent of the diets. A higher proportion of myristic acid (C14:0) and a lower proportion of linoleic acid (C18:2n-6) were observed in the dogs fed with the sPLA2i diet compared to dogs fed with the control diet. Furthermore, a higher ratio of n-6 to n-3, a lower proportion of n-3 polyunsaturated fatty acids and lower omega-3 index were observed in obese compared to lean dogs. The results indicate that obese dogs are characterized by a more 'proinflammatory' serum fatty acid profile and that diet inclusion of sPLA2i may reduce inflammation and alter fatty acid profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons.

    PubMed

    Hernández-González, O; Hernández-Flores, T; Prieto, G A; Pérez-Burgos, A; Arias-García, M A; Galarraga, E; Bargas, J

    2014-01-01

    D(1)- and D(2)-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A(1)-type receptors are located in both neuron classes, and adenosine A(2A)-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca(2+)-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D(1)-type receptors increase, while D(2)-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca(2+)-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A(1)- and A(2A)-receptors have not been compared observing their actions on Ca(2+)-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca(2+)-currents by A(1)-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A(1)- and A2A-receptors. We demonstrate that A(1)-type receptors reduced Ca(2+)-currents in all SPNs tested. However, A(2A)-type receptors enhanced Ca(2+)-currents only in half tested neurons. Intriguingly, to observe the actions of A(2A)-type receptors, occupation of A(1)-type receptors had to occur first. However, A(1)-receptors decreased Ca(V)2 Ca(2+)-currents, while A(2A)-type receptors enhanced current through Ca(V)1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.

  6. A critical role of striatal A2A R-mGlu5 R interactions in modulating the psychomotor and drug-seeking effects of methamphetamine.

    PubMed

    Wright, Sherie R; Zanos, Panos; Georgiou, Polymnia; Yoo, Ji-Hoon; Ledent, Catherine; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2016-07-01

    Addiction to psychostimulants is a major public health problem with no available treatment. Adenosine A2A receptors (A2A R) co-localize with metabotropic glutamate 5 receptors (mGlu5 R) in the striatum and functionally interact to modulate behaviours induced by addictive substances, such as alcohol. Using genetic and pharmacological antagonism of A2A R in mice, we investigated whether A2A R-mGlu5 R interaction can regulate the locomotor, stereotypic and drug-seeking effect of methamphetamine and cocaine, two drugs that exhibit distinct mechanism of action. Genetic deletion of A2A R, as well as combined administration of sub-threshold doses of the selective A2A R antagonist (SCH 58261, 0.01 mg/kg, i.p.) with the mGlu5 R antagonist, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (0.01 mg/kg, i.p.), prevented methamphetamine- but not cocaine-induced hyperactivity and stereotypic rearing behaviour. This drug combination also prevented methamphetamine-rewarding effects in a conditioned-place preference paradigm. Moreover, mGlu5 R binding was reduced in the nucleus accumbens core of A2A R knockout (KO) mice supporting an interaction between these receptors in a brain region crucial in mediating addiction processes. Chronic methamphetamine, but not cocaine administration, resulted in a significant increase in striatal mGlu5 R binding in wild-type mice, which was absent in the A2A R KO mice. These data are in support of a critical role of striatal A2A R-mGlu5 R functional interaction in mediating the ambulatory, stereotypic and reinforcing effects of methamphetamine but not cocaine-induced hyperlocomotion or stereotypy. The present study highlights a distinct and selective mechanistic role for this receptor interaction in regulating methamphetamine-induced behaviours and suggests that combined antagonism of A2A R and mGlu5 R may represent a novel therapy for methamphetamine addiction.

  7. Myelin Proteolipid Protein Complexes with αv Integrin and AMPA Receptors In Vivo and Regulates AMPA-Dependent Oligodendrocyte Progenitor Cell Migration through the Modulation of Cell-Surface GluR2 Expression

    PubMed Central

    Harlow, Danielle E.; Saul, Katherine E.; Komuro, Hitoshi

    2015-01-01

    In previous studies, stimulation of ionotropic AMPA/kainate glutamate receptors on cultured oligodendrocyte cells induced the formation of a signaling complex that includes the AMPA receptor, integrins, calcium-binding proteins, and, surprisingly, the myelin proteolipid protein (PLP). AMPA stimulation of cultured oligodendrocyte progenitor cells (OPCs) also caused an increase in OPC migration. The current studies focused primarily on the formation of the PLP–αv integrin–AMPA receptor complex in vivo and whether complex formation impacts OPC migration in the brain. We found that in wild-type cerebellum, PLP associates with αv integrin and the calcium-impermeable GluR2 subunit of the AMPA receptor, but in mice lacking PLP, αv integrin did not associate with GluR2. Live imaging studies of OPC migration in ex vivo cerebellar slices demonstrated altered OPC migratory responses to neurotransmitter stimulation in the absence of PLP and GluR2 or when αv integrin levels were reduced. Chemotaxis assays of purified OPCs revealed that AMPA stimulation was neither attractive nor repulsive but clearly increased the migration rate of wild-type but not PLP null OPCs. AMPA receptor stimulation of wild-type OPCs caused decreased cell-surface expression of the GluR2 AMPA receptor subunit and increased intracellular Ca2+ signaling, whereas PLP null OPCs did not reduce GluR2 at the cell surface or increase Ca2+ signaling in response to AMPA treatment. Together, these studies demonstrate that PLP is critical for OPC responses to glutamate signaling and has important implications for OPC responses when levels of glutamate are high in the extracellular space, such as following demyelination. SIGNIFICANCE STATEMENT After demyelination, such as occurs in multiple sclerosis, remyelination of axons is often incomplete, leading to loss of neuronal function and clinical disability. Remyelination may fail because oligodendrocyte precursor cells (OPCs) do not completely migrate into

  8. Migration Theories

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien

    2015-08-01

    The great variety of the architectures of the extra-solar planetary systems has revealed the fundamental role played by planetary migration: the interactions between the planets and the gaseous disk in which they form leads to a modification of their orbits. Here, I will review the basic processes and the most recent results in this area.Planets up to ~50 Earth masses are prone to so-called type I migration.I will describe the processes at play, namely the Lindblad and corotation torques, and explain how the total torque depends on the planet mass and the local disk structure. Application to realistic disks shows one or two sweet spot(s) for outward migration of planets roughly between 5 and 30 Earth masses around the snowline ; this is confirmed by dedicated 3D numerical simulations. This has strong consequences on the formation of hot Super-Earths or mini-Neptunes.For smaller mass planets, it has been recently proposed that the heating of the neighboring gas by the luminous planet can lead to a positive torque, hence promoting outward migration. On the other hand, if the planet is not a heat source, a cold finger appears, whose resulting torque is negative. Applications of these two recent results should be discussed.Giant planets open gaps in the proto-planetary disk, and then are supposedly subject to type II migration, following the viscous accretion of the disk. This standard picture has been questioned recently, as gas appears to drift through the gap. Although the gap opening process is well understood in 2D for a planet on a fixed orbit, recent results on 3D simulations or migrating planets make the picture more accurate.Our ever better understanding of planet-disk interactions is of crucial importance as the statistics on extra solar systems keep growing and the results of these interactions are now imaged.

  9. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR).

    PubMed

    Xiong, Yaoyao; Wang, Long; Li, Yuan; Chen, Minfeng; He, Wei; Qi, Lin

    2017-08-31

    Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells' proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3'UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Methylmercury-Dependent Increases in Fluo4 Fluorescence in Neonatal Rat Cerebellar Slices Depend on Granule Cell Migrational Stage and GABAA Receptor Modulation

    PubMed Central

    Bradford, Aaron B.; Mancini, Jayme D.

    2016-01-01

    Methylmercury (MeHg) disrupts cerebellar function, especially during development. Cerebellar granule cells (CGC), which are particularly susceptible to MeHg by unknown mechanisms, migrate during this process. Transient changes in intracellular Ca2+ (Ca2+i) are crucial to proper migration, and MeHg is well known to disrupt CGC Ca2+i regulation. Acutely prepared slices of neonatal rat cerebellum in conjunction with confocal microscopy and fluo4 epifluorescence were used to track changes induced by MeHg in CGC Ca2+i regulation in the external (EGL) and internal granule cell layers (IGL) as well as the molecular layer (ML). MeHg caused no cytotoxicity but did cause a time-dependent increase in fluo4 fluorescence that depended on the stage of CGC development. CGCs in the EGL were most susceptible to MeHg-induced increases in fluo4 fluorescence. MeHg increased fluorescence in CGC processes but only diffusely; Purkinje cells rarely fluoresced in these slices. Neither muscimol nor bicuculline alone altered baseline fluo4 fluorescence in any CGC layer, but each delayed the onset and reduced the magnitude of effect of MeHg on fluo4 fluorescence in the EGL and ML. In the IGL, both muscimol and bicuculline delayed the onset of MeHg-induced increases in fluo4 fluorescence but did not affect fluorescence magnitude. Thus, acute exposure to MeHg causes developmental stage-dependent increases in Ca2+i in CGCs. Effects are most prominent in CGCs during development or early stages of migration. GABAA receptors participate in an as yet unclear manner to MeHg-induced Ca2+i dysregulation of CGCs. PMID:26514794

  11. Migrating Planets

    NASA Astrophysics Data System (ADS)

    Murray, N.; Hansen, B.; Holman, M.; Tremaine, S.

    1998-01-01

    A planet orbiting in a disk of planetesimals can experience an instability in which it migrates to smaller orbital radii. Resonant interactions between the planet and planetesimals remove angular momentum from the planetesimals, increasing their eccentricities. Subsequently, the planetesimals either collide with or are ejected by the planet, reducing the semimajor axis of the planet. If the surface density of planetesimals exceeds a critical value, corresponding to 0.03 solar masses of gas inside the orbit of Jupiter, the planet will migrate inward a large distance. This instability may explain the presence of Jupiter-mass objects in small orbits around nearby stars.

  12. Phospholipase A2 inhibits cisplatin-induced acute kidney injury by modulating regulatory T cells by the CD206 mannose receptor.

    PubMed

    Kim, Hyunseong; Lee, Hyojung; Lee, Gihyun; Jang, Hyunil; Kim, Sung-Su; Yoon, Heera; Kang, Geun-Hyung; Hwang, Deok-Sang; Kim, Sun Kwang; Chung, Hwan-Suck; Bae, Hyunsu

    2015-09-01

    Previously, we found that Foxp3-expressing CD4(+) regulatory T (Treg) cells attenuate cisplatin-induced acute kidney injury in mice and that bee venom and its constituent phospholipase A2 (PLA2) are capable of modulating Treg cells. Here we tested whether PLA2 could inhibit cisplatin-induced acute kidney injury. As a result of treatment with PLA2, the population of Treg cells was significantly increased, both in vivo and in vitro. PLA2-injected mice showed reduced levels of serum creatinine, blood urea nitrogen, renal tissue damage, and pro-inflammatory cytokine production upon cisplatin administration. These renoprotective effects were abolished by depletion of Treg cells. Furthermore, PLA2 bound to CD206 mannose receptors on dendritic cells, essential for the PLA2-mediated protective effects on renal dysfunction. Interestingly, PLA2 treatment increased the secretion of IL-10 in the kidney from normal mice. Foxp3(+)IL-10(+) cells and CD11c(+)IL-10(+) cells were increased by PLA2 treatment. The anticancer effects of repeated administrations of a low dose of cisplatin were not affected by PLA2 treatment in a tumor-bearing model. Thus, PLA2 may prevent inflammatory responses in cisplatin-induced acute kidney injury by modulating Treg cells and IL-10 through the CD206 mannose receptor.

  13. Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner

    PubMed Central

    2014-01-01

    Background Inhibitor of DNA binding/Differentiation 1 (ID1) is a helix loop helix transcription factor that lacks the basic DNA binding domain. Over-expression of ID1 has been correlated with a variety of human cancers; our earlier studies had shown that reported ID1 is induced by nicotine or EGF stimulation of non-small cell lung cancer (NSCLC) cells and its down regulation abrogates cell proliferation, invasion and migration. Here we made attempts to identify downstream targets of ID1 that mediate these effects. Methods A microarray analysis was done on two different NSCLC cell lines (A549 and H1650) that were transfected with a siRNA to ID1 or a control, non-targeting siRNA. Cells were stimulated with nicotine and genes that were differentially expressed upon nicotine stimulation and ID1 depletion were analyzed to identify potential downstream targets of ID1. The prospective role of the identified genes was validated by RT-PCR. Additional functional assays were conducted to assess the role of these genes in nicotine induced proliferation, invasion and migration. Experiments were also conducted to elucidate the role of ID1, which does not bind to DNA directly, affects the expression of these genes at transcriptional level. Results A microarray analysis showed multiple genes are affected by the depletion of ID1; we focused on two of them: Stathmin-like3 (STMN3), a microtubule destabilizing protein, and GSPT1, a protein involved in translation termination; these proteins were induced by both nicotine and EGF in an ID1 dependent fashion. Overexpression of ID1 in two different cell lines induced STMN3 and GSPT1 at the transcriptional level, while depletion of ID1 reduced their expression. STMN3 and GSPT1 were found to facilitate the proliferation, invasion and migration of NSCLC cells in response to nAChR activation. Attempts made to assess how ID1, which is a transcriptional repressor, induces these genes showed that ID1 down regulates the expression of two

  14. Calycosin inhibits migration and invasion through modulation of transforming growth factor beta-mediated mesenchymal properties in U87 and U251 cells

    PubMed Central

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Liu, Ru-en; Xu, Ru-xiang

    2016-01-01

    In this study, we investigated the potential anticancer effects of calycosin against human glioblastoma cells, including the impacts on cell proliferation, apoptosis, and cell cycle distribution. We further studied its inhibitory activity on migration and invasion in U87 and U251 cells. Furthermore, transforming growth factor beta-mediated reductions of mesenchymal-associated genes/activators, matrix metalloproteinases-2, and -9 were detected in this process. Administration of calycosin in a glioblastoma xenograft model showed that calycosin could not only reduce tumor volume but also suppress transforming growth factor beta as well as its downstream molecules. These results revealed calycosin as a potential antitumor agent in human glioblastoma. PMID:26955262

  15. Morin Inhibits Proliferation, Migration, and Invasion of Bladder Cancer EJ Cells via Modulation of Signaling Pathways, Cell Cycle Regulators, and Transcription Factor-Mediated MMP-9 Expression.

    PubMed

    Shin, Seung-Shick; Won, Se Yeon; Noh, Dae-Hwa; Hwang, Byungdoo; Kim, Wun-Jae; Moon, Sung-Kwon

    2017-03-01

    Preclinical Research Previous studies have shown that morin exerts diverse pharmacological activities. In this study, we investigated the inhibitory activity of morin on bladder cancer EJ cells. Morin significantly inhibited EJ cell proliferation, which was related to the G1-phase cell cycle arrest together with the reduced expression of cyclin D1, cyclin E, CDK2, and CDK4 via increased expression of p21WAF1. Morin also increased ERK1/2 phosphorylation and decreased JNK and AKT phosphorylation without altering the p38MAPK phosphorylation levels. Morin treatment suppressed the migration and invasion of EJ cells in wound-healing and transwell cell invasion assays. Zymographic and electrophoretic mobility shift assays showed that morin suppressed the expression of matrix metalloproteinase-9 (MMP-9) via repression of the binding activity of AP-1, Sp-1, and NF-κB. Collectively, these results demonstrate that morin reduced cyclin D1, cyclin E, CDK2 and CDK4 expression via the induction of p21WAF1 expression, increased ERK1/2 phosphorylation and decreased JNK, and AKT phosphorylation, and prevented MMP-9 expression via the inhibition of transcription factors AP-1, Sp-1, and NF-κB, thereby resulting in the inhibition of growth, migration, and invasion of bladder cancer EJ cells. These results provide a novel insight into the use of morin in the prevention of bladder cancer. Drug Dev Res 78 : 81-90, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. The abnormal photovoltaic effect in BiFeO3 thin films modulated by bipolar domain orientations and oxygen-vacancy migration

    NASA Astrophysics Data System (ADS)

    Bai, Zilong; Geng, Wenping; Zhang, Yan; Xu, Shuaiqi; Guo, Huizhen; Jiang, Anquan

    2017-08-01

    SrRuO3/BiFeO3/SrRuO3 thin-film capacitors were fabricated to investigate the role of mobile oxygen vacancies in a switchable photovoltaic (PV) effect that depends on ferroelectric domain orientations. Normally, the flowing direction of the stabilized photocurrent is opposite to ferroelectric polarization orientation. However, an abnormal overshoot of initial positive transient photocurrent parallel to the ferroelectric polarization could be observed under light illumination for a poled BiFeO3 thin film with the polarization pointing to the bottom electrode. Moreover, the photocurrent has a strong response with respect to voltage poling time and relaxation time after poling, which seems to be correlated with time-dependent migration of oxygen vacancies and concurrent charge trapping effect. Our results not only reveal the scenario how oxygen-vacancy migration and charge trapping effect affect the switchable PV effect, besides ferroelectric polarization, but also are helpful for the understanding and designing of new switchable photoelectric devices.

  17. Androgen receptor enhances cell adhesion and decreases cell migration via modulating β1-integrin-AKT signaling in hepatocellular carcinoma cells.

    PubMed

    Ma, Wen-Lung; Jeng, Long-Bin; Lai, Hsueh-Chou; Liao, Pei-Yin; Chang, Chawnshang

    2014-08-28

    The androgen receptor (AR) has been shown to promote the initiation and development of hepatocellular carcinoma (HCC) during the early stage of the disease process and to suppress HCC cell invasion during the later stages of the disease. The mechanisms governing these dual yet opposite roles have yet to be elucidated. Using carcinogen-induced HCC in vivo mouse models and the in vitro human HCC cell line SKhep1, we found that knockout of AR in primary HCC cells led to a decrease in HCC cell focal adhesion capacity compared to cells from wildtype mice. Similar results were obtained after adding functional AR into human HCC SKhep1 cells. Further analysis revealed that the role AR plays in adhesion of HCC cells is governed, at least in part, by its ability to up-regulate β1-integrin and activate the PI3K/AKT pathway. We also found that AR-β1-integrin-mediated cell adhesion suppresses cell migration. Those findings indicate that the AR-β1-integrin-PI3K/AKT signaling pathway might play a role in the bimodal function of AR on cell adhesion and migration at the cellular level.

  18. Dateline Migration.

    ERIC Educational Resources Information Center

    Tomasi, Lydio E., Ed.

    1995-01-01

    Presents data on international migration and its effects in and between various countries in North America, Europe, and Africa. Discussions include refugee, immigrant, and migrant worker flows; the legal, political, and social problems surrounding immigrants; alien terrorism and law enforcement problems; and migrant effects on education, social…

  19. Monarch Migration.

    ERIC Educational Resources Information Center

    Williamson, Brad; Taylor, Orley

    1996-01-01

    Describes the Monarch Watch program that tracks the migration of the monarch butterfly. Presents activities that introduce students to research and international collaboration between students and researchers. Familiarizes students with monarchs, stimulates their interest, and helps them generate questions that can lead to good research projects.…

  20. Monarch Migration.

    ERIC Educational Resources Information Center

    Williamson, Brad; Taylor, Orley

    1996-01-01

    Describes the Monarch Watch program that tracks the migration of the monarch butterfly. Presents activities that introduce students to research and international collaboration between students and researchers. Familiarizes students with monarchs, stimulates their interest, and helps them generate questions that can lead to good research projects.…

  1. An Lmx1b-miR135a2 Regulatory Circuit Modulates Wnt1/Wnt Signaling and Determines the Size of the Midbrain Dopaminergic Progenitor Pool

    PubMed Central

    Anderegg, Angela; Lin, Hsin-Pin; Chen, Jun-An; Caronia-Brown, Giuliana; Cherepanova, Natalya; Yun, Beth; Joksimovic, Milan; Rock, Jason; Harfe, Brian D.; Johnson, Randy; Awatramani, Rajeshwar

    2013-01-01

    MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs) results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key ingredient for

  2. AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway.

    PubMed

    Tsai, Shih-Chang; Tsai, Ming-Hsui; Chiu, Chang-Fang; Lu, Chi-Cheng; Kuo, Sheng-Chu; Chang, Nai-Wen; Yang, Jai-Sing

    2016-07-01

    Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist and lipid-lowering agent, has been used worldwide for treatment of hyperlipidemia. The clinical trials demonstrate that fenofibrate possesses multiple pharmacological activities, including antitumor effects. However, the precise mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we investigated the anticancer effects of fenofibrate on the migration and invasion of human oral cancer CAL 27 cells. Fenofibrate inhibited the cell migration and invasion of CAL 27 cells by the wound healing and Boyden chamber transwell assays, respectively. In addition, fenofibrate reduced the protein expressions of MMP-1, MMP-2, MMP-7, and MMP-9 by Western blotting and inhibited enzyme activities of MMP-2/-9 using gelatin zymography assay. Results from immunoblotting analysis showed that the proteins of p-LKB1 (Ser428), LKB1, p-AMPKα (Thr172), p-AMPKα1/α2 (Ser425/Ser491), p-AMPKβ1 (Ser108), and AMPKγ1 were upregulated by fenofibrate; the levels of p-IKKα/β (Ser176) and p-IκBα were reduced in fenofibrate-treated cells. Also, fenofibrate suppressed the expressions of nuclear NF-κB p65 and p50 by immunoblotting and NF-κB DNA binding activity by EMSA assay. The anti-invasive effect of fenofibrate was attenuated by compound C [an adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibitor] or dominant negative form of AMPK (DN-AMPKα1). Thus, fenofibrate considerably inhibited metastatic behaviors of CAL 27 cells might be mediated through blocking NF-κB signaling, resulting in the inhibition of MMPs; these effects were AMPK-dependent rather than PPARα signaling. Our findings provide a molecular rationale, whereby fenofibrate exerts anticancer effects and additional beneficial effects for the treatment of cancer patients. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 866-876, 2016. © 2014 Wiley Periodicals, Inc.

  3. Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission.

    PubMed

    Nascimento, Filipe; Sebastião, Ana M; Ribeiro, Joaquim A

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A(1) receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4-6 weeks old) and symptomatic (12-14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg(2+) paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N (6)-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.

  4. [MATCHE: Management Approach to Teaching Consumer and Homemaking Education.] Consumer Approach Strand: Core. Module I-A-2: Community Consumer Resources.

    ERIC Educational Resources Information Center

    Barkley, Margaret

    This competency-based preservice home economics teacher education module on community consumer resources is the second in a set of four core curriculum modules on consumer approach to homemaking education. (This set is part of a larger set of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking Education [MATCHE]--see…

  5. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.

    PubMed

    Elnozahi, Neveen A; AlQot, Hadir E; Mohy El-Din, Mahmoud M; Bistawroos, Azza E; Abou Zeit-Har, Mohamed S

    2016-06-21

    This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells.

    PubMed

    Sathyanarayanan, Anusha; Chandrasekaran, Karthik Subramanian; Karunagaran, Devarajan

    2017-04-01

    Previously, it has been reported that microRNA-145 (miR-145) is lowly expressed in human cervical cancers and that its putative tumour suppressive role may be attributed to epithelial-mesenchymal transition (EMT) regulation. Here, we aimed to assess whether miR-145 may affect EMT-associated markers/genes and suppress cervical cancer growth and motility, and to provide a mechanistic basis for these phenomena. The identification of the SMAD-interacting protein 1 (SIP1) mRNA as putative miR-145 target was investigated using a 3' untranslated region (3'UTR) luciferase assay and Western blotting, respectively. The functional effects of exogenous miR-145 expression, miR-145 suppression or siRNA-mediated SIP1 expression down-regulation in cervical cancer-derived C33A and SiHa cells were analysed using Western blotting, BrdU incorporation (proliferation), transwell migration and invasion assays. In addition, the expression levels of miR-145 and SIP1 were determined in primary human cervical cancer and non-cancer tissue samples using qRT-PCR. We found that miR-145 binds to the wild-type 3'UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP1 expression. In addition, we found that exogenous miR-145 expression or siRNA-mediated down-regulation of SIP1 expression attenuates the proliferation, migration and invasion of C33A and SiHa cells and alters the expression of the EMT-associated markers CDH1, VIM and SNAI1, whereas inhibition of endogenous miR-145 expression elicited the opposite effects. The expression of miR-145 in cervical cancer tissue samples was found to be low, while that of SIP1 was found to be high compared to non-cancerous cervical tissues. An inverse expression correlation between the two was substantiated through the anlaysis of data deposited in the TCGA database. Our data indicate that low miR-145 expression levels in conjunction with elevated SIP1 expression levels may contribute to

  7. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation

    SciTech Connect

    Brand, Stephan . E-mail: stephan.brand@med.uni-muenchen.de; Dambacher, Julia; Beigel, Florian; Olszak, Torsten; Diebold, Joachim; Otte, Jan-Michel; Goeke, Burkhard; Eichhorst, Soeren T.

    2005-10-15

    Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting in increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.

  8. Long Noncoding RNA RGMB-AS1 Indicates a Poor Prognosis and Modulates Cell Proliferation, Migration and Invasion in Lung Adenocarcinoma

    PubMed Central

    Li, Ping; Zhang, Guojun; Li, Juan; Yang, Rui; Chen, Shanshan; Wu, Shujun; Zhang, Furui; Bai, Yong; Zhao, Huasi; Wang, Yuanyuan; Dun, Shaozhi; Chen, Xiaonan; Sun, Qianqian; Zhao, Guoqiang

    2016-01-01

    Lung cancer is the most common cause of cancer-related mortality worldwide. It is a complex disease involving multiple genetic and epigenetic alterations. The development of transcriptomics revealed the important role of long non-coding RNAs (lncRNAs) in lung cancer occurrence and development. Here, microarray analysis of lung adenocarcinoma tissues showed the abnormal expression of lncRNA RGMB-AS1. However, the role of lncRNA RGMB-AS1 in lung adenocarcinoma remains largely unknown. We showed that upregulation of lncRNA RGMB-AS1 was significantly correlated with differentiation, TNM stage, and lymph node metastasis. In lung adenocarcinoma cells, downregulation of lncRNA RGMB-AS1 inhibited cell proliferation, migration, invasion, and caused cell cycle arrest at the G1/G0 phase. In vivo experiments showed that lncRNA RGMB-AS1 downregulation significantly suppressed the growth of lung adenocarcinoma. The expression of lncRNA RGMB-AS1 was inversely correlated with that of repulsive guidance molecule b (RGMB) in lung adenocarcinoma tissues, and UCSC analysis and fluorescence detection assay indicated that lncRNA RGMB-AS1 may be involved in the development of human lung adenocarcinoma by regulating RGMB expression though exon2 of RGMB. In summary, our findings indicate that lncRNA RGMB-AS1 may play an important role in lung adenocarcinoma and may serve as a potential therapeutic target. PMID:26950071

  9. IMP-3 promotes migration and invasion of melanoma cells by modulating the expression of HMGA2 and predicts poor prognosis in melanoma.

    PubMed

    Sheen, Yi-Shuan; Liao, Yi-Hua; Lin, Ming-Hsien; Chu, Chia-Ying; Ho, Bing-Ying; Hsieh, Meng-Chen; Chen, Pin-Chun; Cha, Shih-Ting; Jeng, Yung-Ming; Chang, Cheng-Chi; Chiu, Hsien-Ching; Jee, Shiou-Hwa; Kuo, Min-Liang; Chu, Chia-Yu

    2015-04-01

    IGF II mRNA-binding protein 3 (IMP-3) has been reported to be a marker of melanoma progression. However, the mechanisms by which it impacts melanoma are incompletely understood. In this study, we investigate the clinical significance of IMP-3 in melanoma progression and also its underlying mechanisms. We found that IMP-3 expression was much higher in advanced-stage/metastatic melanomas and that it was associated with a poor prognosis (P=0.001). Univariate analysis showed that IMP-3 expression was associated with stage III/IV melanomas (odds ratio=5.40, P=0.031) and the acral lentiginous subtype (odds ratio=3.93, P=0.0034). MeWo cells with overexpression of IMP-3 showed enhanced proliferation and migration and significantly increased tumorigenesis and metastatic ability in nude mice. We further demonstrated that IMP-3 could bind and enhance the stability of the mRNA of high mobility group AT-hook 2 (HMGA2). It was also confirmed that IMP-3 had an important role in melanoma invasion and metastasis through regulating HMGA2 mRNA expression. IMP-3 expression was positively correlated with HMGA2 expression in melanoma cells and also in melanoma tissues. Our results show that IMP-3 expression is a strong prognostic factor for melanoma, especially acral lentiginous melanoma.

  10. ClC-3 chloride channel modulates the proliferation and migration of osteosarcoma cells via AKT/GSK3β signaling pathway.

    PubMed

    Du, Shuai; Yang, Liqing

    2015-01-01

    In cultured human osteosarcoma (OS) cells, we recently demonstrated that insulin-like growth factors (IGF-1)-induced MG-63 and 143B human OS cells proliferation were consistent with increasing ClC-3 expression, and ClC-3 was up-regulated in cells with high metastatic potency. Blockade of ClC-3 greatly suppressed the phosphorylation activation of Akt/GSK3β. We also found that blockade of ClC-3 effectively down-regulated the expression of cyclin D1 and cyclin E, and caused activation of p27(KIP) and p21(CIP). The synthesized effects on these proteins which play a major role in cell cycle regulation bring about G0/G1 cell cycle arrest in MG-63 cells, and finally abrogate the cell proliferation. Besides, ClC-3 deletion attenuates OS cell migration via down-regulation the expression of MMP-2 and MMP-9. Such information suggests that ClC-3 might be a potential target for anti-OS.

  11. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    SciTech Connect

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  12. Clinacanthus nutans Extracts Modulate Epigenetic Link to Cytosolic Phospholipase A2 Expression in SH-SY5Y Cells and Primary Cortical Neurons.

    PubMed

    Tan, Charlene Siew-Hon; Ho, Christabel Fung-Yih; Heng, Swan-Ser; Wu, Jui-Sheng; Tan, Benny Kwong-Huat; Ng, Yee-Kong; Sun, Grace Y; Lin, Teng-Nan; Ong, Wei-Yi

    2016-09-01

    Clinacanthus nutans Lindau (C. nutans), commonly known as Sabah Snake Grass in southeast Asia, is widely used in folk medicine due to its analgesic, antiviral, and anti-inflammatory properties. Our recent study provided evidence for the regulation of cytosolic phospholipase A2 (cPLA2) mRNA expression by epigenetic factors (Tan et al. in Mol Neurobiol. doi: 10.1007/s12035-015-9314-z , 2015). This enzyme catalyzes the release of arachidonic acid from glycerophospholipids, and formation of pro-inflammatory eicosanoids or toxic lipid peroxidation products such as 4-hydroxynonenal. In this study, we examined the effects of C. nutans ethanol leaf extracts on epigenetic regulation of cPLA2 mRNA expression in SH-SY5Y human neuroblastoma cells and mouse primary cortical neurons. C. nutans modulated induction of cPLA2 expression in SH-SY5Y cells by histone deacetylase (HDAC) inhibitors, MS-275, MC-1568, and TSA. C. nutans extracts also inhibited histone acetylase (HAT) activity. Levels of cPLA2 mRNA expression were increased in primary cortical neurons subjected to 0.5-h oxygen-glucose deprivation injury (OGD). This increase was significantly inhibited by C. nutans treatment. Treatment of primary neurons with the HDAC inhibitor MS-275 augmented OGD-induced cPLA2 mRNA expression, and this increase was modulated by C. nutans extracts. OGD-stimulated increase in cPLA2 mRNA expression was also reduced by a Tip60 HAT inhibitor, NU9056. In view of a key role of cPLA2 in the production of pro-inflammatory eicosanoids and free radical damage, and the fact that epigenetic effects on genes are often long-lasting, results suggest a role for C. nutans and phytochemicals to inhibit the production of arachidonic acid-derived pro-inflammatory eicosanoids and chronic inflammation, through epigenetic regulation of cPLA2 expression.

  13. Autonomous reciprocating migration of an active material.

    PubMed

    Ren, Lin; Wang, Meng; Pan, Changwei; Gao, Qingyu; Liu, Yang; Epstein, Irving R

    2017-08-15

    Periodic to-and-fro migration is a sophisticated mode of locomotion found in many forms of active matter in nature. Providing a general description of periodic migration is challenging, because many details of animal migration remain a mystery. We study periodic migration in a simpler system using a mechanistic model of a photosensitive, active material in which a stimulus-responsive polymer gel is propelled by chemical waves under the regulation of an illumination gradient sensed by the gel, which plays a role analogous to the environment in periodic animal migration. The reciprocating gel migration results from autonomous transitions between retrograde and direct wave locomotion modes arising from the gradient distribution of the illumination intensity. The local dynamics of the chemical waves modulates the asymmetry between push and pull forces to achieve repeated reorientation of the direction of locomotion. Materials that display similar intelligent, self-adaptive locomotion might be tailored for such functions as drug delivery or self-cleaning systems.

  14. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    PubMed

    Kim, Hyunseong; Keum, Dong June; Kwak, Jung won; Chung, Hwan-Suck; Bae, Hyunsu

    2014-01-01

    The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/-) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  15. Bee Venom Phospholipase A2 Protects against Acetaminophen-Induced Acute Liver Injury by Modulating Regulatory T Cells and IL-10 in Mice

    PubMed Central

    Kim, Hyunseong; Keum, Dong June; Kwak, Jung won; Chung, Hwan-Suck; Bae, Hyunsu

    2014-01-01

    The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10−/−) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10−/− mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production. PMID:25478691

  16. Salt modulates vascular response through adenosine A(2A) receptor in eNOS-null mice: role of CYP450 epoxygenase and soluble epoxide hydrolase.

    PubMed

    Nayeem, Mohammed A; Zeldin, Darryl C; Boegehold, Matthew A; Falck, John R

    2011-04-01

    High salt (HS) intake can change the arterial tone in mice, and the nitric oxide (NO) acts as a mediator to some of the receptors mediated vascular response. The main aim of this study was to explore the mechanism behind adenosine-induced vascular response in HS-fed eNOS(+/+) and eNOS(-/-) mice The modulation of vascular response by HS was examined using aortas from mice (eNOS(+/+) and eNOS(-/-)) fed 4% (HS) or 0.45% (NS) NaCl-diet through acetylcholine (ACh), NECA (adenosine-analog), CGS 21680 (A(2A) AR-agonist), MS-PPOH (CYP epoxygenase-blocker; 10(-5) M), AUDA (sEH-blocker; 10(-5) M), and DDMS (CYP4A-blocker; 10(-5) M). ACh-response was greater in HS-eNOS(+/+) (+59.3 ± 6.3%) versus NS-eNOS(+/+) (+33.3 ± 8.0%; P < 0.05). However, there was no response in both HS-eNOS(-/-) and NS-eNOS(-/-). NECA-response was greater in HS-eNOS(-/-) (+37.4 ± 3.2%) versus NS-eNOS(-/-) (+7.4.0 ± 3.8%; P < 0.05). CGS 21680-response was also greater in HS-eNOS(-/-) (+45.4 ± 5.2%) versus NS-eNOS(-/-)(+5.1 ± 5.0%; P < 0.05). In HS-eNOS(-/-), the CGS 21680-response was reduced by MS-PPOH (+7.3 ± 3.2%; P < 0.05). In NS-eNOS(-/-), the CGS 21680-response was increased by AUDA (+38.2 ± 3.3%; P < 0.05) and DDMS (+30.1 ± 4.1%; P < 0.05). Compared to NS, HS increased CYP2J2 in eNOS(+/+) (35%; P < 0.05) and eNOS(-/-) (61%; P < 0.05), but decreased sEH in eNOS(+/+) (74%; P < 0.05) and eNOS(-/-) (40%; P < 0.05). Similarly, CYP4A decreased in HS-eNOS(+/+) (35%; P < 0.05) and HS-eNOS(-/-) (34%; P < 0.05). These data suggest that NS causes reduced-vasodilation in both eNOS(+/+) and eNOS(-/-) via sEH and CYP4A. However, HS triggers possible A(2A)AR-induced relaxation through CYP epoxygenase in both eNOS(+/+) and eNOS(-/-).

  17. Salt modulates vascular response through adenosine A2A receptor in eNOS-null mice: role of CYP450 epoxygenase and soluble epoxide hydrolase

    PubMed Central

    Zeldin, Darryl C.; Boegehold, Matthew A.; Falck, John R.

    2011-01-01

    High salt (HS) intake can change the arterial tone in mice, and the nitric oxide (NO) acts as a mediator to some of the receptors mediated vascular response. The main aim of this study was to explore the mechanism behind adenosine-induced vascular response in HS-fed eNOS+/+ and eNOS−/− mice The modulation of vascular response by HS was examined using aortas from mice (eNOS+/+ and eNOS−/−) fed 4% (HS) or 0.45% (NS) NaCl-diet through acetylcholine (ACh), NECA (adenosine-analog), CGS 21680 (A2A AR-agonist), MS-PPOH (CYP epoxygenase-blocker; 10−5 M), AUDA (sEH-blocker; 10−5 M), and DDMS (CYP4A-blocker; 10−5 M). ACh-response was greater in HS-eNOS+/+ (+59.3 ± 6.3%) versus NS-eNOS+/+ (+33.3 ± 8.0%; P < 0.05). However, there was no response in both HS-eNOS−/− and NS-eNOS−/−. NECA-response was greater in HS-eNOS−/− (+37.4 ± 3.2%) versus NS-eNOS−/− (+7.4.0 ± 3.8%; P < 0.05). CGS 21680-response was also greater in HS-eNOS−/− (+45.4 ± 5.2%) versus NS-eNOS−/−(+5.1 ± 5.0%; P < 0.05). In HS-eNOS−/−, the CGS 21680-response was reduced by MS-PPOH (+7.3 ± 3.2%; P < 0.05). In NS-eNOS−/−, the CGS 21680-response was increased by AUDA (+38.2 ± 3.3%; P < 0.05) and DDMS (+30.1 ± 4.1%; P < 0.05). Compared to NS, HS increased CYP2J2 in eNOS+/+ (35%; P < 0.05) and eNOS−/− (61%; P < 0.05), but decreased sEH in eNOS+/+ (74%; P < 0.05) and eNOS−/− (40%; P < 0.05). Similarly, CYP4A decreased in HS-eNOS+/+ (35%; P < 0.05) and HS-eNOS−/− (34%; P < 0.05). These data suggest that NS causes reduced-vasodilation in both eNOS+/+ and eNOS−/− via sEH and CYP4A. However, HS triggers possible A2AAR-induced relaxation through CYP epoxygenase in both eNOS+/+ and eNOS−/−. PMID:21161333

  18. The angular dependence of a 2-dimensional diode array and the feasibility of its application in verifying the composite dose distribution of intensity-modulated radiation therapy.

    PubMed

    Li, Qi-Lin; Deng, Xiao-Wu; Chen, Li-Xin; Huang, Xiao-Yan; Huang, Shao-Min

    2010-06-01

    The planning dose distribution of intensity-modulated radiation therapy (IMRT) has to be verified before clinical implementation. The commonly used verification method is to measure the beam fluency at 0 degree gantry angle with a 2-dimensional (2D) detector array, but not the composite dose distribution of the real delivery in the planned gantry angles. This study was to investigate the angular dependence of a 2D diode array (2D array) and the feasibility of using it to verify the composite dose distribution of IMRT. Angular response of the central detector in the 2D array was measured for 6 MV X-ray, 10 cmx10 cm field and 100 cm source axis distance (SAD) in different depths. With the beam incidence angle of 0-60 degrees, at intervals of 10 degrees, and inherent buildup of the 2D array (2 g/cm2), the array was irradiated and the readings of the central diode were compared with the measurement of thimble ionization chamber. Using a combined 30 cmx30 cmx30 cm phantom which consisted of solid water slabs on top and underlying the 2D array, with the diode detectors placed at 8 g/cm2 depth, measurements were taken for beam angles of 0 degrees-180 degrees at intervals of 10 degrees and compared with the calculation of treatment planning system (TPS) that pre-verified with ion chamber measuring. Differences between the array detector and thimble chamber measurements were greater than 1% and 3.5% when the beam angle was larger than 30 degrees and 60 degrees, respectively. The measurements in the combined phantom were different from the calculation as high as 20% for 90 degrees beam angle, 2% at 90 degrees+/-5 degrees and less than 1% for all the other beam angles. The 2D diode array is capable of being used in composite dose verification of IMRT when the beam angles of 90 degrees+/-5 degrees and 270 degrees+/-5 degrees are avoided.

  19. LXR activation inhibits chemokine-induced CD4-positive lymphocyte migration.

    PubMed

    Walcher, Daniel; Vasic, Dusica; Heinz, Philipp; Bach, Helga; Durst, Renate; Hausauer, Angelina; Hombach, Vinzenz; Marx, Nikolaus

    2010-07-01

    Migration of CD4-positive lymphocytes into the vessel wall is a critical step in atherogenesis. Recent data suggest that CD4-positive lymphocytes express the nuclear transcription factors Liver-X-Receptor (LXR) alpha and beta with an effect of LXR activators on TH1-cytokine release from these cells. However, the role of LXR in lymphocyte migration remains currently unexplored. Therefore, the present study investigated whether LXR activation might modulate chemokine-induced migration of these cells. Stimulation of CD4-positive lymphocytes with SDF-1 leads to a 2.5 +/- 0.8-fold increase in cell migration (P < 0.05; n = 12). Pretreatment of cells with the LXR activator T0901317 reduces this effect in a concentration-dependent manner to a maximal 0.9 +/- 0.4-fold induction at 1 micromol/L T0901317 (P < 0.05 compared to SDF-1-treated cells; n = 12). Similar results were obtained with the LXR activator GW3965. The effect of LXR activators on CD4-positive lymphocyte migration was mediated through an early inhibition of chemokine-induced PI-3 kinase activity as determined by PI-3 kinase activity assays. Downstream, T0901317 inhibited activation of the small GTPase Rac and phosphorylation of the myosin light chain (MLC). Moreover, LXR activator treatment reduced f-actin formation as well as ICAM3 translocation to the uropod of the cell, thus interfering with two important steps in T cell migration. Transfection of CD4-positive lymphocytes with LXRalpha/beta siRNA abolished T0901317 inhibitory effect on MLC phosphorylation and ICAM3 translocation. LXR activation by T0901317 or GW3965 inhibits chemokine-induced migration of CD4-positive lymphocytes. Given the crucial importance of chemokine-induced T cell migration in early atherogenesis, LXR activators may be promising tools to modulate this effect.

  20. Phase modulation in dipolar-coupled A 2 spin systems: effect of maximum state mixing in 1H NMR in vivo

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.

  1. The conformational flexibility of the carboxy terminal residues 105–114 is a key modulator of the catalytic activity and stability of Macrophage Migration Inhibitory Factor (MIF)†

    PubMed Central

    El-Turk, Farah; Cascella, Michele; Ouertatani-Sakouhi, Hajer; Narayanan, Raghavendran Lakshmi; Leng, Lin; Bucala, Richard; Hweckstetter, Markus; Rothlisberger, Ursula; Lashuel, Hilal A.

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo as well as the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Δ110-114NSTFA and Δ105–114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants ΔC5 huMIF1-109 and ΔC10 huMIF1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105–114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that inter-subunit interactions involving the C-terminal region 105–114, including a salt-bridge interaction between Arg73 of one monomer and the

  2. Comparative migration issues.

    PubMed

    Driscoll, B A

    1995-01-01

    "This article reviews migration issues in Canada, the United States, and Mexico in the context of a general interpretation that NAFTA's [North American Free Trade Agreement] migration provisions are insufficient to deal with the larger continental migration problems." excerpt

  3. High peak power, 28 ns Q-switched Tm:LuAG laser at a 2 μm wavelength by dual-loss-modulation

    NASA Astrophysics Data System (ADS)

    Luan, Chao; Yang, Kejian; Zhao, Jia; Zhao, Shengzhi; Qiao, Wenchao; Li, Tao; Liu, Cheng; Chu, Hongwei; Qiao, Junpeng; Zheng, Lihe; Xu, Xiaodong; Xu, Jun

    2016-02-01

    By employing output couplers (OCs) with different transmissions T and GaAs saturable absorbers (SAs) with different modulation depth ΔR in a passively Q-switched Tm:LuAG laser at 2 μm, the optimal parameters of OCs and SAs for obtaining short pulse width and high peak power were investigated. By inserting an electro-optical modulator (EOM) into the optimized passively Q-switched Tm:LuAG laser (T  =  2%/ΔR  =  19%), a dual-loss-modulated Q-switched Tm:LuAG laser with an EOM and GaAs was realized. The experimental results show that the dual-loss-modulated Q-switched laser can generate a shorter pulse width and higher peak power than the single-loss-modulated case. At an incident pump power of 8.4 W, the shortest pulse width achieved was 28 ns and the highest peak power reached 74 kW.

  4. A 2.52-mW continuous-time ΣΔ modulator with 72 dB dynamic range for FM radio

    NASA Astrophysics Data System (ADS)

    Mingyi, Chen; Liguo, Zhou; Chenghao, Bian; Jun, Yan; Yin, Shi

    2014-10-01

    A continuous-time ΣΔ modulator with a third-order loop filter and a 3-bit quantizer is realized. The modulator is robust to the excess loop delay, clock jitter, and RC product variations. When designing the integrator, an op-amp with novel GBW extension structure, improving the linearity of the loop filter, is adopted. The prototype chip is designed in a 130 nm CMOS technology, targeting FM radio applications. The experimental results show that the prototype modulator achieves a 72 dB dynamic range and a 70.7 dB signal to noise and distortion ratio over a 500 kHz bandwidth with a 26 MHz clock, consuming 2.52 mW power from a 1.2 V supply.

  5. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  6. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    PubMed

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca(2+) in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca(2+)-independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca(2+) complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca(2+)-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca(2+) on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca(2+) influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca(2+), a fact that might power agonist-mediated receptor internalization and function.

  7. Microfluidic platform for the quantitative analysis of leukocyte migration signatures.

    PubMed

    Boneschansker, Leo; Yan, Jun; Wong, Elisabeth; Briscoe, David M; Irimia, Daniel

    2014-09-03

    Leukocyte migration into tissues is characteristic of inflammation. It is usually measured in vitro as the average displacement of populations of cells towards a chemokine gradient, not acknowledging other patterns of cell migration. Here, we designed and validated a microfluidic migration platform to simultaneously analyse four qualitative migration patterns: chemoattraction, -repulsion, -kinesis and -inhibition, using single-cell quantitative metrics of direction, speed, persistence and fraction of cells responding. We find that established chemokines, complement component 5a and IL-8 induce chemoattraction and repulsion in equal proportions, resulting in the dispersal of cells. These migration signatures are characterized by high persistence and speed and are independent of the chemokine dose or receptor expression. Furthermore, we find that twice as many T lymphocytes migrate away than towards stromal cell-derived factor 1 and their directional migration patterns are not persistent. Overall, our platform helps discover migratory signature responses and uncovers an avenue for precise characterization of leukocyte migration and therapeutic modulators.

  8. MICROFLUIDIC PLATFORM FOR THE QUANTITATIVE ANALYSIS OF LEUKOCYTE MIGRATION SIGNATURES

    PubMed Central

    Wong, Elisabeth; Briscoe, David M.; Irimia, Daniel

    2014-01-01

    Leukocyte migration into tissues is characteristic of inflammation. It is usually measured in vitro as the average displacement of populations of cells towards a chemokine gradient, not acknowledging other patterns of cell migration. Here, we designed and validated a microfluidic migration platform to simultaneously analyze four qualitative migration patterns: chemo-attraction, -repulsion, -kinesis and -inhibition, using single-cell quantitative metrics of direction, speed, persistence, and fraction of cells responding. We find that established chemokines C5a and IL-8 induce chemoattraction and repulsion in equal proportions, resulting in the dispersal of cells. These migration signatures are characterized by high persistence and speed and are independent of the chemokine dose or receptor expression. Furthermore, we find that twice as many T-lymphocytes migrate away than towards SDF-1 and their directional migration patterns are not persistent. Overall, our platform characterizes migratory signature responses and uncovers an avenue for precise characterization of leukocyte migration and therapeutic modulators. PMID:25183261

  9. Endogenous prostaglandin endoperoxides and prostacyclin modulate the thrombolytic activity of tissue plasminogen activator. Effects of simultaneous inhibition of thromboxane A2 synthase and blockade of thromboxane A2/prostaglandin H2 receptors in a canine model of coronary thrombosis.

    PubMed Central

    Golino, P; Rosolowsky, M; Yao, S K; McNatt, J; De Clerck, F; Buja, L M; Willerson, J T

    1990-01-01

    We tested the hypothesis that simultaneous inhibition of TxA2 synthase and blockade of TxA2/PHG2 receptors is more effective in enhancing thrombolysis and preventing reocclusion after discontinuation of tissue plasminogen activator (t-PA) than either intervention alone. Coronary thrombosis was induced in 35 dogs by placing a copper coil into the left anterior descending coronary artery. Coronary flow was measured with a Doppler flow probe. 30 min after thrombus formation, the animals received saline (controls, n = 10); SQ 29548 (0.4 mg/kg bolus + 0.4 mg/kg per h infusion), a TxA2/PGH2 receptor antagonist (n = 8); dazoxiben (5 mg/kg bolus + 5 mg/kg per h infusion), a TxA2 synthase inhibitor (n = 9); or R 68070 (5 mg/kg bolus + 5 mg/kg per h infusion), a drug that blocks TxA2/PGH2 receptors and inhibits TxA2 synthase (n = 8). Then, all dogs received heparin (200 U/kg) and a bolus of t-PA (80 micrograms/kg) followed by a continuous infusion (8 micrograms/kg per min) for up to 90 min or until reperfusion was achieved. The time to thrombolysis did not change significantly in SQ 29548-treated dogs as compared with controls (42 +/- 5 vs. 56 +/- 7 min, respectively, P = NS), but it was significantly shortened by R 68070 and dazoxiben (11 +/- 2 and 25 +/- 6 min, respectively, P less than 0.001 vs. controls and SQ 29548-treated dogs). R 68070 administration resulted in a lysis time significantly shorter than that observed in the dazoxiben-treated group (P less than 0.01). Reocclusion was observed in eight of eight control dogs, five of seven SQ 29548-treated dogs, seven of nine dazoxiben-treated dogs, and zero of eight R 68070-treated animals (P less than 0.001). TxB2 and 6-keto-PGF1 alpha, measured in blood samples obtained from the coronary artery distal to the thrombus, were significantly increased at reperfusion and at reocclusion in control animals and in dogs receiving SQ 29548. R 68070 and dazoxiben prevented the increase in plasma TxB2 levels, whereas 6-keto-PGF1

  10. Bioactive saponins and glycosides. IV. Four methyl-migrated 16,17-seco-dammarane triterpene gylcosides from Chinese natural medicine, hoveniae semen seu fructus, the seeds and fruit of Hovenia dulcis THUNB.: absolute stereostructures and inhibitory activity on histamine release of hovenidulciosides A1, A2, B1, and B2.

    PubMed

    Yoshikawa, M; Murakami, T; Ueda, T; Matsuda, H; Yamahara, J; Murakami, N

    1996-09-01

    Four bioactive methyl-migrated 16,17-seco-dammarane type triterpene glycosides called hovenidulciosides A1, A2, B1, and B2 were isolated from a Chinese natural medicine, Hoveniae Semen Seu Fructus, the seeds and fruit of Hovenia dulcis THUNB. (Rhamnaceae) together with hoduloside III and (+)-gallocatechin. The absolute stereostructures of hovenidulciosides A1, A2, B1, and B2 have been elucidated by chemical and physicochemical evidence. All were found to inhibit the histamine release from rat peritoneal exudate cells induced by compound 48/80 and calcium ionophore A-23187.

  11. [Contemporary international migrations and migration policy].

    PubMed

    Latuch, M

    1995-01-01

    With a focus on Poland, the author examines the following aspects and questions regarding international migration: "The intensification of spatial mobility in Poland as well as in other countries; the necessity for modernisation of migratory policy; socio-economic implications of out-migration and migratory policy; Poland--a country of transit, political asylum or immigration?; the phenomenon of transit migration in Poland; stability or flexibility of migratory policy? [and] migration as a focus of world population conferences." (SUMMARY IN ENG AND RUS) excerpt

  12. Modulation of C-reactive protein and plasma omega-6 fatty acid levels by phospholipase A2 gene polymorphisms following a 6-week supplementation with fish oil.

    PubMed

    Tremblay, B L; Rudkowska, I; Couture, P; Lemieux, S; Julien, P; Vohl, M C

    2015-12-01

    This clinical trial investigated the impact of a six-week supplementation with fish oil and single nucleotide polymorphisms (SNPs) in PLA2G4A and PLA2G6 genes on total omega-6 fatty acid (n-6 FA) levels in plasma phospholipids (PL) and plasma C-reactive protein (CRP) levels in 191 subjects. Interaction effects between SNPs and supplementation modulated total n-6 FAs and CRP levels in both men and women. Associations between SNPs and total n-6 FA levels and between SNPs and CRP levels were identified in men, independently of supplementation. Supplementation decreased total n-6 FAs without affecting plasma CRP levels. Changes in CRP levels correlated positively with changes in total n-6 FAs in men (r=0.25 p=0.01), but not in women. In conclusion, total n-6 FA levels in plasma PL and plasma CRP levels are modulated by SNPs within PLA2G4A and PLA2G6 genes alone or in combination with fish oil supplementation.

  13. Population, migration and urbanization.

    PubMed

    1982-06-01

    Despite recent estimates that natural increase is becoming a more important component of urban growth than rural urban transfer (excess of inmigrants over outmigrants), the share of migration in the total population growth has been consistently increasing in both developed and developing countries. From a demographic perspective, the migration process involves 3 elements: an area of origin which the mover leaves and where he or she is considered an outmigrant; the destination or place of inmigration; and the period over which migration is measured. The 2 basic types of migration are internal and international. Internal migration consists of rural to urban migration, urban to urban migration, rural to rural migration, and urban to rural migration. Among these 4 types of migration various patterns or processes are followed. Migration may be direct when the migrant moves directly from the village to the city and stays there permanently. It can be circular migration, meaning that the migrant moves to the city when it is not planting season and returns to the village when he is needed on the farm. In stage migration the migrant makes a series of moves, each to a city closer to the largest or fastest growing city. Temporary migration may be 1 time or cyclical. The most dominant pattern of internal migration is rural urban. The contribution of migration to urbanization is evident. For example, the rapid urbanization and increase in urban growth from 1960-70 in the Republic of Korea can be attributed to net migration. In Asia the largest component of the population movement consists of individuals and groups moving from 1 rural location to another. Recently, because urban centers could no longer absorb the growing number of migrants from other places, there has been increased interest in the urban to rural population redistribution. This reverse migration also has come about due to slower rates of employment growth in the urban centers and improved economic opportunities

  14. A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists.

    PubMed

    Cristalli, G; Lambertucci, C; Marucci, G; Volpini, R; Dal Ben, D

    2008-01-01

    Since the discovery of the biological effects of adenosine, the development of potent and selective agonists and antagonists of adenosine receptors has been the subject of medicinal chemistry research for several decades, even if their clinical evaluation has been discontinued. Main problems include side effects due to the ubiquity of the receptors and the possibility of side effects, or to low brain penetration (in particular for the targeting of CNS diseases), short half-life of compounds, lack of effects. Furthermore, species differences in the affinity of ligands make difficult preclinical testing in animal models. Nevertheless, adenosine receptors continue to represent promising drug targets. A(2A) receptor has proved to be a promising pharmacological target for small synthetic ligands, and while A(2A) agonists are undergoing clinical trials for myocardial perfusion imaging and as anti-inflammatory agents, A(2A) antagonists represent an attractive field of research to discover new drugs for the treatment of neurodegenerative disorders, such as Parkinson's disease. Furthermore, the information coming from bioinformatics and molecular modeling studies for the A(2A) receptor has made easier the understanding of ligand-target interaction and the rational design of agonists and antagonists for this subtype. The aim of this review is to show an overview of the most significant steps and progresses in developing A(2A) adenosine receptor agonists and antagonists.

  15. [Circular migration in Indonesia].

    PubMed

    Mantra, I B

    1979-12-01

    The author examines circular migration in Indonesia, with primary focus on the 1970s. It is found that circular, or repeated return migration, generally occurs over short distances and for short periods and is more frequent than lifetime migration. The relationships between improvements in the national transport system, access to labor force opportunities in both the formal and informal sectors of the economy, and circular migration are discussed.

  16. Downregulation of Chloroplast RPS1 Negatively Modulates Nuclear Heat-Responsive Expression of HsfA2 and Its Target Genes in Arabidopsis

    PubMed Central

    Yu, Hai-Dong; Yang, Xiao-Fei; Chen, Si-Ting; Wang, Yu-Ting; Li, Ji-Kai; Shen, Qi; Liu, Xun-Liang; Guo, Fang-Qing

    2012-01-01

    Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants. PMID:22570631

  17. Chandra Contaminant Migration Model

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; O'Dell, Steve L.

    2014-01-01

    High volatility cleans OBFs and low volatility produces a high build-up at OBF centers; only a narrow (factor of 2 or less) volatility range produces the observed spatial pattern. Simulations predict less accumulation above outer S-array CCDs; this may explain, in part, gratings/imaging C/MnL discrepancies. Simulations produce a change in center accumulation due solely to DH heater ON/OFF temperature change; but a 2nd contaminant and perhaps a change in source rate is also required. Emissivity E may depend on thickness; another model parameter. Additional physics, e.g., surface migration, is not warranted at this time. At t approx. 14 yrs, model produced 0.22 grams of contaminant, 0.085 grams remaining within ACIS cavity; 7 percent (6mg) on OBFs.

  18. Migration and Adult Education

    ERIC Educational Resources Information Center

    Gois, William

    2007-01-01

    The objective of this paper is to highlight the role of adult education as a tool in addressing labour migration issues, specifically those concerning the protection of migrant workers' rights and the transformation of the impact of migration into positive holistic developmental gains. The view of labour migration as a means to forge the economic…

  19. More Myths of Migration.

    ERIC Educational Resources Information Center

    Basch, Linda; Lerner, Gail

    1986-01-01

    Challenges "myths" about women and migration, including (1) the causes of migration are economic, not racism; (2) migrant women receive support from feminist groups and trade unions; (3) transnational corporations are positive forces in developing nations; (4) migration today has little impact on family life; and (5) most migrants cluster in…

  20. Migration and Adult Education

    ERIC Educational Resources Information Center

    Gois, William

    2007-01-01

    The objective of this paper is to highlight the role of adult education as a tool in addressing labour migration issues, specifically those concerning the protection of migrant workers' rights and the transformation of the impact of migration into positive holistic developmental gains. The view of labour migration as a means to forge the economic…

  1. miR-181b-5p Modulates Cell Migratory Proteins, Tissue Inhibitor of Metalloproteinase 3, and Annexin A2 During In Vitro Decidualization in a Human Endometrial Stromal Cell Line.

    PubMed

    Graham, Amanda; Holbert, Joshua; Nothnick, Warren B

    2016-01-01

    Decidualization is essential for successful embryo implantation and is regulated by concerted actions of growth factors and hormones. More recently, microRNAs, small RNA molecules that regulate posttranscriptional gene expression, have been implicated to play a role in the decidualization process. Of these microRNAs, miR-181b-5p has been associated with decidualization but its precise role and targets are not well established. To address this gap in our knowledge, we assessed the expression of miR-181b-5p, and its target tissue inhibitor of metalloproteinase 3 (TIMP-3), during in vitro decidualization using the well-characterized human endometrial stromal cell line, t-HESC. miR-181b-5p expression was highest prior to decidualization and significantly decreased in response to decidualization stimulus. In contrast, TIMP-3 expression was absent prior to in vitro decidualization and increased during decidualization. Regulation of TIMP-3 expression by miR-181b-5p was confirmed in vitro by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and 3' untranslated region reporter constructs. To identify unforeseen targets of miR-181b-5p during in vitro decidualization, t-HESC cells were transfected with pre- miR-181b-5p, and protein profiles were determined by 2-dimensional differential in-gel electrophoresis followed by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight (MALDI TOF/TOF) tandem mass spectrometry. Of these proteins, several downregulated proteins associated with cell migration were identified including annexin A2, which we subsequently confirmed by qRT-PCR and Western blot analysis to be regulated by miR-181b-5p. In conclusion, miR-181b-5p is downregulated during the process of in vitro decidualization and may regulate the expression of proteins associated with cell migration including TIMP-3 and annexin A2.

  2. Transcription factors make a turn into migration

    PubMed Central

    2009-01-01

    The formation of the brain depends on a tightly regulated process of proliferation, neuronal fate specification and migration which eventually leads to the final architecture of the cerebral cortex. The specification of different neuronal subtypes depends on a complex developmental program mastered by several transcription factors. Besides, it was shown that the same transcription factors can subsequently control neural migration. However, the mechanisms of this regulation are still unclear. Two papers recently published by Heng et al.1 and Nóbrega-Pereira et al.2 confirm that these transcription factors are involved in controlling neural migration. In addition, these studies show that these transcription factors can control neural migration via different molecular mechanisms: Heng and coworkers show that Neurogenin 2 controls neural migration by directly regulating the expression of the small GTPase Rnd2 (a modulator of cytoskeletal dynamics); whereas Nóbrega-Pereira and colleagues demonstrate that Nkx2-1 establishes the response to guidance cues, in migrating interneurons, by directly regulating the expression of the semaphorin receptor Neuropilin 2. Taken together, these findings support the idea that transcription factors are reused during development to control neural migration and they shed light on the molecular mechanisms underlying this regulation. PMID:19262164

  3. [The theory of migration].

    PubMed

    Delbruck, C; Raffelhuschen, B

    1993-09-01

    "The present and expected migration flows in Europe require a detailed analysis of determinants and elements of migration decisions. This survey encompasses a view on classical--labor market and demand side oriented--theories, the more recent human capital approach as well as on migration under asymmetric information. Since these theories so far yield an unsatisfactory basis for description and forecasting of multilateral migration flows, a closer look at empirical methods of migration research is taken. Consequently, a description of possible policy oriented applications of the gravity model and the random utility approach, with their descriptive and normative characteristics, is given." (SUMMARY IN ENG)

  4. Regulation of endothelial migration and proliferation by ephrin-A1.

    PubMed

    Wiedemann, Elisa; Jellinghaus, Stefanie; Ende, Georg; Augstein, Antje; Sczech, Ronny; Wielockx, Ben; Weinert, Sönke; Strasser, Ruth H; Poitz, David M

    2017-01-01

    Endothelial migration and proliferation are fundamental processes in angiogenesis and wound healing of injured or inflamed vessels. The present study aimed to investigate the regulation of the Eph/ephrin-system during endothelial proliferation and the impact of the ligand ephrin-A1 on proliferation and migration of human umbilical venous (HUVEC) and arterial endothelial cells (HUAEC). Endothelial cells that underwent contact inhibition showed a massive induction of ephrin-A1. In contrast, an injury to a confluent endothelial layer, associated with induction of migration and proliferation, showed reduced ephrin-A1 levels. In addition, reducing ephrin-A1 expression by siRNA led to increased proliferation, whereas the overexpression of ephrin-A1 led to decreased proliferative activity. Due to the fact that wound healing is a combination of proliferation and migration, migration was investigated in detail. First, classical wound-healing assays showed increased wound closure in both ephrin-A1 silenced and overexpressing cells. Live-cell imaging enlightened the underlying differences. Silencing of ephrin-A1 led to a faster but more disorientated migration. In contrast, ephrin-A1 overexpression did not influence velocity of the cells, but the migration was more directed in comparison to the controls. Additional analysis of EphA2-silenced cells showed similar results in terms of proliferation and migration compared to ephrin-A1 silenced cells. Detailed analysis of EphA2 phosphorylation on ligand-dependent phospho-site (Y588) and autonomous activation site (S897) revealed a distinct phosphorylation pattern. Furthermore, the endothelial cells ceased to migrate when they came in contact with an ephrin-A1 coated surface. Using a baculoviral-mediated expression system, ephrin-A1 silencing and overexpression was shown to modulate the formation of focal adhesions. This implicates that ephrin-A1 is involved in changes of the actin cytoskeleton which explains the alterations in

  5. Modulation of Lactobacillus casei bacteriophage A2 lytic/lysogenic cycles by binding of Gp25 to the early lytic mRNA.

    PubMed

    Carrasco, Begoña; Escobedo, Susana; Alonso, Juan C; Suárez, Juan E

    2016-01-01

    The genetic switch of Lactobacillus casei bacteriophage A2 is regulated by the CI protein, which represses the early lytic promoter PR and Cro that abolishes expression from the lysogenic promoter PL . Lysogens contain equivalent cI and cro-gp25 mRNA concentrations, i.e., CI only partially represses P(R), predicting a lytic cycle dominance. However, A2 generates stable lysogens. This may be due to Gp25 binding to the cro-gp25 mRNA between the ribosomal binding site and the cro start codon, which abolishes its translation. Upon lytic cycle induction, CI is partially degraded, cro-gp25 mRNA levels increase, and Cro accumulates, launching viral progeny production. The concomitant concentration increase of Gp25 restricts cro mRNA translation, which, together with the low but detectable levels of CI late during the lytic cycle, promotes reentry of part of the cell population into the lysogenic cycle, thus explaining the low proportion of L. casei lysogens that become lysed (∼ 1%). A2 shares its genetic switch structure with many other Firmicutes phages. The data presented may constitute a model of how these phages make the decision for lysis versus lysogeny.

  6. Analyzing bat migration

    USGS Publications Warehouse

    Cryan, Paul M.; Diehl, Robert H.

    2009-01-01

    T HE MIGRATORY MOVEIvl.ENTS OF BATS have proven ex­ tremely difficult to determine. Despite extensive efforts during the past century to track the movements of bats across landscapes, efficient methods of following small- to medium-size volant animals <240 gl for extended periods (>8 weeks) over long distances (>100 km) have not been developed. Important questions about bat migration remain unanswered: Which bats migrate? Where do they go? How far do they move? How high and fast do they fly? What are their habitat needs during migration? How do bats orient and navigate during migration? Addressing these apparently simple questions will be a considerable challenge to anyone interested in advancing the study of bat migration. In this chapter, we present direct and indirect methods used to study bat migration as well as techniques that have worked for studying bird migration that could feasibly be adapted to the study of bats.

  7. PCaAnalyser: A 2D-Image Analysis Based Module for Effective Determination of Prostate Cancer Progression in 3D Culture

    PubMed Central

    Lovitt, Carrie J.; Avery, Vicky M.

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated. PMID:24278197

  8. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy

    PubMed Central

    Ricotti, Valeria; Spinty, Stefan; Roper, Helen; Hughes, Imelda; Tejura, Bina; Robinson, Neil; Layton, Gary; Davies, Kay

    2016-01-01

    Purpose SMT C1100 is a utrophin modulator being evaluated as a treatment for Duchenne muscular dystrophy (DMD). This study, the first in pediatric DMD patients, reports the safety, tolerability and PK parameters of single and multiple doses of SMT C1100, as well as analyze potential biomarkers of muscle damage. Methods This multicenter, Phase 1 study enrolled 12 patients, divided equally into three groups (A–C). Group A were given 50 mg/kg on Days 1 and 11, and 50 mg/kg bid on Days 2 to 10. Group B and C received 100 mg/kg on Days 1 and 11; Group B and Group C were given 100 mg/kg bid and 100 mg/kg tid, respectively, on Days 2 to 10. A safety review was performed on all patients following the single dose and there was at least 2 weeks between each dose escalation, for safety and PK review. Adverse events (AEs) were monitored throughout the study. Results Most patients experienced mild AEs and there were no serious AEs. Two patients required analgesia for pain (headache, ear pain and toothache). One patient experienced moderate psychiatric AEs (abnormal behaviour and mood swings). Plasma concentrations of SMT C1100 at Days 1 and 11 indicated a high degree of patient variability regardless of dose. Unexpectedly the SMT C1100 levels were significantly lower than similar doses administered to healthy volunteers in an earlier clinical study. In general, individual baseline changes of creatine phosphokinase, alanine aminotransferase, aspartate aminotransferase levels fell with SMT C1100 dosing. Conclusions SMT C1100 was well tolerated in pediatric DMD patients. Trial Registration ClinicalTrials.gov NCT02383511 PMID:27055247

  9. Safety, tolerability, and pharmacokinetics of SMT C1100, a 2‐arylbenzoxazole utrophin modulator, following single‐ and multiple‐dose administration to healthy male adult volunteers

    PubMed Central

    Tinsley, Jon; Robinson, Neil; Davies, Kay E.

    2015-01-01

    Abstract SMT C1100 is a small molecule utrophin modulator in development to treat Duchenne muscular dystrophy. This study evaluated the safety, tolerability, and pharmacokinetics of SMT C1100 in healthy volunteers. This double‐blind, placebo‐controlled Phase 1 study comprised: Part 1, an escalating, single‐dose with/without fasting involving 50 mg/kg, 100 mg/kg, 200 mg/kg, and 400 mg/kg doses; and Part 2, a multiple 10 day dose evaluation involving 100 mg/kg bid and 200 mg/kg bid doses. Adverse events were recorded. SMT C1100 was absorbed rapidly following single and multiple oral doses, with median tmax attained within 2–3.5 hour across all doses. Considerable variability of pharmacokinetic parameters was noted among subjects. Following single doses, systemic exposure increased in a sub‐proportional manner, with the 8.0‐fold dose increment resulting in 2.7‐ and 2.4‐fold increases in AUC0‐∞ and Cmax, respectively. AUC0‐∞ and Cmax were estimated as 4.2‐ and 4.8‐fold greater, respectively, following food. Systemic exposure reduced upon repeat dosing with steady‐state concentrations achieved within 3–5 days of multiple bid dosing. No serious or severe adverse events were reported. SMT C1100 was safe and well tolerated with plasma concentrations achieved sufficient to cause a 50% increase in concentrations of utrophin in cells in vitro. PMID:25651188

  10. Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to healthy male adult volunteers.

    PubMed

    Tinsley, Jon; Robinson, Neil; Davies, Kay E

    2015-06-01

    SMT C1100 is a small molecule utrophin modulator in development to treat Duchenne muscular dystrophy. This study evaluated the safety, tolerability, and pharmacokinetics of SMT C1100 in healthy volunteers. This double-blind, placebo-controlled Phase 1 study comprised: Part 1, an escalating, single-dose with/without fasting involving 50 mg/kg, 100 mg/kg, 200 mg/kg, and 400 mg/kg doses; and Part 2, a multiple 10 day dose evaluation involving 100 mg/kg bid and 200 mg/kg bid doses. Adverse events were recorded. SMT C1100 was absorbed rapidly following single and multiple oral doses, with median tmax attained within 2-3.5 hour across all doses. Considerable variability of pharmacokinetic parameters was noted among subjects. Following single doses, systemic exposure increased in a sub-proportional manner, with the 8.0-fold dose increment resulting in 2.7- and 2.4-fold increases in AUC0-∞ and Cmax , respectively. AUC0-∞ and Cmax were estimated as 4.2- and 4.8-fold greater, respectively, following food. Systemic exposure reduced upon repeat dosing with steady-state concentrations achieved within 3-5 days of multiple bid dosing. No serious or severe adverse events were reported. SMT C1100 was safe and well tolerated with plasma concentrations achieved sufficient to cause a 50% increase in concentrations of utrophin in cells in vitro. © 2015 The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  11. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy.

    PubMed

    Ricotti, Valeria; Spinty, Stefan; Roper, Helen; Hughes, Imelda; Tejura, Bina; Robinson, Neil; Layton, Gary; Davies, Kay; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    SMT C1100 is a utrophin modulator being evaluated as a treatment for Duchenne muscular dystrophy (DMD). This study, the first in pediatric DMD patients, reports the safety, tolerability and PK parameters of single and multiple doses of SMT C1100, as well as analyze potential biomarkers of muscle damage. This multicenter, Phase 1 study enrolled 12 patients, divided equally into three groups (A-C). Group A were given 50 mg/kg on Days 1 and 11, and 50 mg/kg bid on Days 2 to 10. Group B and C received 100 mg/kg on Days 1 and 11; Group B and Group C were given 100 mg/kg bid and 100 mg/kg tid, respectively, on Days 2 to 10. A safety review was performed on all patients following the single dose and there was at least 2 weeks between each dose escalation, for safety and PK review. Adverse events (AEs) were monitored throughout the study. Most patients experienced mild AEs and there were no serious AEs. Two patients required analgesia for pain (headache, ear pain and toothache). One patient experienced moderate psychiatric AEs (abnormal behaviour and mood swings). Plasma concentrations of SMT C1100 at Days 1 and 11 indicated a high degree of patient variability regardless of dose. Unexpectedly the SMT C1100 levels were significantly lower than similar doses administered to healthy volunteers in an earlier clinical study. In general, individual baseline changes of creatine phosphokinase, alanine aminotransferase, aspartate aminotransferase levels fell with SMT C1100 dosing. SMT C1100 was well tolerated in pediatric DMD patients. ClinicalTrials.gov NCT02383511.

  12. PCaAnalyser: a 2D-image analysis based module for effective determination of prostate cancer progression in 3D culture.

    PubMed

    Hoque, Md Tamjidul; Windus, Louisa C E; Lovitt, Carrie J; Avery, Vicky M

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated.

  13. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling.

    PubMed

    Kundumani-Sridharan, Venkatesh; Singh, Nikhlesh K; Kumar, Sanjay; Gadepalli, Ravisekhar; Rao, Gadiparthi N

    2013-07-26

    Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting

  14. Modulation by salt intake of the vascular response mediated through adenosine A(2A) receptor: role of CYP epoxygenase and soluble epoxide hydrolase.

    PubMed

    Nayeem, Mohammed A; Zeldin, Darryl C; Boegehold, Matthew A; Morisseau, Christophe; Marowsky, Anne; Ponnoth, Dovenia S; Roush, Kevin P; Falck, John R

    2010-07-01

    High-salt intake can change the effect of adenosine on arterial tone in mice. The aim of this study was to clarify the mechanism by which this occurs. Using aortas from mice fed a 4% NaCl (HS) or 0.45% NaCl (NS) diet for 4-5 wks, concentration-response curves for ACh, 5'-N-ethylcarboxamidoadenosine (NECA; adenosine analog) and 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate [CGS-21680; A(2A) adenosine receptor (A(2A) AR) agonist] were obtained with N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide inhibitor, 10(-4) M), methylsulfonyl-propargyloxyphenylhexanamide [MS-PPOH; a CYP (cytochrome P-450) epoxygenase blocker, 10(-5) M including CYP2J2], 12-(3-adamantan-1-yl-ureido)dodecanoic acid [AUDA; soluble epoxide hydrolase (sEH) blocker, 10(-5) M], dibromo-dodecenyl-methylsulfimide [DDMS; CYP omega-hydroxylase (CYP4A blocker), 10(-5) M], glibenclamide (K(ATP) channel blocker; 10(-5) M) and 5-hydroxydecanoate (5-HD; mitochondrial-K(ATP) channel blocker, 10(-4) M). HS dose response to ACh (10(-7) - 10(-5) M) was not different from NS (P > 0.05). Relaxation to 10(-6) M NECA was greater in the HS group (28.4 +/- 3.9%) than in the NS group (4.1 +/- 2.3%). Relaxation to 10(-6) M CGS-21680 was also greater in HS (27.9 +/- 4.5%) than in NS (4.9 +/- 2.2%). L-NAME was able to block the dose response of ACh (10(-7) - 10(-5) M) equally in both HS and NS (P > 0.05), whereas L-NAME did not block CGS-21680-induced response in HS. In HS the CGS-21680 response was greatly reduced by MS-PPOH (to 4.7 +/- 2.0%) and 5-HD (to 8.9 +/- 2.2%), and also abolished by glibenclamide (-1.0 +/- 5.9%). In NS, the CGS-21680 response was increased by AUDA (to 26.3 +/- 3.4%) and DDMS (to 27.2 +/- 3.0%). Compared with NS, HS vessels showed increased CYP2J2 and A(2A) AR expression (46 and 74% higher, respectively) but decreased sEH, CYP4A, and A(1) AR expression (75, 30, and 55% lower, respectively). These data suggest that in mice fed NS-containing diet

  15. Modulation by salt intake of the vascular response mediated through adenosine A2A receptor: role of CYP epoxygenase and soluble epoxide hydrolase

    PubMed Central

    Zeldin, Darryl C.; Boegehold, Matthew A.; Morisseau, Christophe; Marowsky, Anne; Ponnoth, Dovenia S.; Roush, Kevin P.; Falck, John R.

    2010-01-01

    High-salt intake can change the effect of adenosine on arterial tone in mice. The aim of this study was to clarify the mechanism by which this occurs. Using aortas from mice fed a 4% NaCl (HS) or 0.45% NaCl (NS) diet for 4–5 wks, concentration-response curves for ACh, 5′-N-ethylcarboxamidoadenosine (NECA; adenosine analog) and 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride hydrate [CGS-21680; A2A adenosine receptor (A2A AR) agonist] were obtained with Nω-nitro-l-arginine methyl ester (l-NAME; nitric oxide inhibitor, 10−4 M), methylsulfonyl-propargyloxyphenylhexanamide [MS-PPOH; a CYP (cytochrome P-450) epoxygenase blocker, 10−5 M including CYP2J2], 12-(3-adamantan-1-yl-ureido)dodecanoic acid [AUDA; soluble epoxide hydrolase (sEH) blocker, 10−5 M], dibromo-dodecenyl-methylsulfimide [DDMS; CYP ω-hydroxylase (CYP4A blocker), 10−5 M], glibenclamide (KATP channel blocker; 10−5 M) and 5-hydroxydecanoate (5-HD; mitochondrial-KATP channel blocker, 10−4 M). HS dose response to ACh (10−7 − 10−5 M) was not different from NS (P > 0.05). Relaxation to 10−6 M NECA was greater in the HS group (28.4 ± 3.9%) than in the NS group (4.1 ± 2.3%). Relaxation to 10−6 M CGS-21680 was also greater in HS (27.9 ± 4.5%) than in NS (4.9 ± 2.2%). l-NAME was able to block the dose response of ACh (10−7 − 10−5 M) equally in both HS and NS (P > 0.05), whereas l-NAME did not block CGS-21680-induced response in HS. In HS the CGS-21680 response was greatly reduced by MS-PPOH (to 4.7 ± 2.0%) and 5-HD (to 8.9 ± 2.2%), and also abolished by glibenclamide (−1.0 ± 5.9%). In NS, the CGS-21680 response was increased by AUDA (to 26.3 ± 3.4%) and DDMS (to 27.2 ± 3.0%). Compared with NS, HS vessels showed increased CYP2J2 and A2A AR expression (46 and 74% higher, respectively) but decreased sEH, CYP4A, and A1 AR expression (75, 30, and 55% lower, respectively). These data suggest that in mice fed NS-containing diet, upregulation of

  16. Selective A2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats.

    PubMed

    Bortolatto, Cristiani F; Reis, Angélica S; Pinz, Mikaela P; Voss, Guilherme T; Oliveira, Renata L; Vogt, Ane G; Roman, Silvane; Jesse, Cristiano R; Luchese, Cristiane; Wilhelm, Ethel A

    2017-08-09

    The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.

  17. Pipoxolan Ameliorates Cerebral Ischemia via Inhibition of Neuronal Apoptosis and Intimal Hyperplasia through Attenuation of VSMC Migration and Modulation of Matrix Metalloproteinase-2/9 and Ras/MEK/ERK Signaling Pathways

    PubMed Central

    Chen, Yuh-Fung; Tsai, Huei-Yann; Wu, Kuo-Jen; Siao, Lian-Ru; Wood, W. Gibson

    2013-01-01

    Pipoxolan (PIPO) has anti-spasmodic effects, and it is used clinically to relieve smooth muscle spasms. Cerebrovascular disease is one of the leading causes of disability and death worldwide. The main aim of this study was to investigate the effects of PIPO on cerebral ischemia and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. Cerebral infarction area, ratio of intima to media area (I/M ratio) and PCNA antibody staining of the carotid artery in vivo were measured. Cell viability of A7r5 cells, PDGF-BB-stimulated cell migration, and potential mechanisms of PIPO were evaluated by wound healing, transwell and Western blotting. PIPO (10 and 30 mg/kg p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive cells; cleaved caspase 3-positive cells; intimal hyperplasia; and inhibited proliferating cell nuclear antigen (PCNA)-positive cells in rodents. PIPO (5, 10 and 15 µM) significantly inhibited PDGF-BB-stimulated VSMC migration and reduced Ras, MEK, and p-ERK levels. Moreover, PIPO decreased levels of matrix metalloproteinases -2 and -9 in PDGF-BB-stimulated A7r5 cells. In summary, PIPO is protective in models of ischemia/reperfusion-induced cerebral infarction, carotid artery ligation-induced intimal hyperplasia and VSMC migration both in vivo and in vitro. PIPO could be potentially efficacious in preventing cerebrovascular and vascular diseases. PMID:24086601

  18. Pipoxolan ameliorates cerebral ischemia via inhibition of neuronal apoptosis and intimal hyperplasia through attenuation of VSMC migration and modulation of matrix metalloproteinase-2/9 and Ras/MEK/ERK signaling pathways.

    PubMed

    Chen, Yuh-Fung; Tsai, Huei-Yann; Wu, Kuo-Jen; Siao, Lian-Ru; Wood, W Gibson

    2013-01-01

    Pipoxolan (PIPO) has anti-spasmodic effects, and it is used clinically to relieve smooth muscle spasms. Cerebrovascular disease is one of the leading causes of disability and death worldwide. The main aim of this study was to investigate the effects of PIPO on cerebral ischemia and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. Cerebral infarction area, ratio of intima to media area (I/M ratio) and PCNA antibody staining of the carotid artery in vivo were measured. Cell viability of A7r5 cells, PDGF-BB-stimulated cell migration, and potential mechanisms of PIPO were evaluated by wound healing, transwell and Western blotting. PIPO (10 and 30 mg/kg p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive cells; cleaved caspase 3-positive cells; intimal hyperplasia; and inhibited proliferating cell nuclear antigen (PCNA)-positive cells in rodents. PIPO (5, 10 and 15 µM) significantly inhibited PDGF-BB-stimulated VSMC migration and reduced Ras, MEK, and p-ERK levels. Moreover, PIPO decreased levels of matrix metalloproteinases -2 and -9 in PDGF-BB-stimulated A7r5 cells. In summary, PIPO is protective in models of ischemia/reperfusion-induced cerebral infarction, carotid artery ligation-induced intimal hyperplasia and VSMC migration both in vivo and in vitro. PIPO could be potentially efficacious in preventing cerebrovascular and vascular diseases.

  19. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.

    PubMed

    Fang, Likui; Zhao, Fangming; Cong, Yunfei; Sang, Xianchun; Du, Qing; Wang, Dezhong; Li, Yunfeng; Ling, Yinghua; Yang, Zhenglin; He, Guanghua

    2012-06-01

    As an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells.

  20. Migration and its risks.

    PubMed

    O'brien, P

    1996-01-01

    "This essay applies the theories of Ulrich Beck...to the politics of migration in Germany. In particular, the essay focuses on Beck's notion of the waning influence, indeed even relevancy, of science and scientists regarding postmodern risk phenomena. The essay argues that migration to Germany can be understood as a Beckian risk phenomenon, helping to explain the decreasing influence of social scientists over the politics of migration in the Federal Republic."

  1. A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF-κB activities in HT1080 cells.

    PubMed

    Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha

    2012-07-01

    Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.

  2. Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2.

    PubMed Central

    Millanvoye-Van Brussel, Elisabeth; Topal, Gökce; Brunet, Annie; Do Pham, Thuc; Deckert, Valérie; Rendu, Francine; David-Dufilho, Monique

    2004-01-01

    The oxidation of plasma LDLs (low-density lipoproteins) is a key event in the pathogenesis of atherosclerosis. LPC (lysophosphatidylcholine) and oxysterols are major lipid constitutents of oxidized LDLs. In particular, 7-oxocholesterol has been found in plasma from cardiac patients and atherosclerotic plaque. In the present study, we investigated the ability of 7-oxocholesterol and LPC to regulate the activation of eNOS (endothelial nitric oxide synthase) and cPLA2 (cytosolic phospholipase A2) that synthesize two essential factors for vascular wall integrity, NO (nitric oxide) and arachidonic acid. In endothelial cells from human umbilical vein cords, both 7-oxocholesterol (150 microM) and LPC (20 microM) decreased histamine-induced NO release, but not the release activated by thapsigargin. The two lipids decreased NO release through a PI3K (phosphoinositide 3-kinase)-dependent pathway, and decreased eNOS phosphorylation. Their mechanisms of action were, however, different. The NO release reduction was dependent on superoxide anions in LPC-treated cells and not in 7-oxocholesterol-treated ones. The Ca2+ signals induced by histamine were abolished by LPC, but not by 7-oxocholesterol. The oxysterol also inhibited (i) the histamine- and thapsigargin-induced arachidonic acid release, and (ii) the phosphorylation of both cPLA2 and ERK1/2 (extracellular-signal-regulated kinases 1/2). The results show that 7-oxocholesterol inhibits eNOS and cPLA2 activation by altering a Ca2+-independent upstream step of PI3K and ERK1/2 cascades, whereas LPC desensitizes eNOS by interfering with receptor-activated signalling pathways. This suggests that 7-oxocholesterol and LPC generate signals which cross-talk with heterologous receptors, effects which could appear at early stage of atherosclerosis. PMID:14992685

  3. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity

    PubMed Central

    Borrmann, Lars; Schwanbeck, Ralf; Heyduk, Tomasz; Seebeck, Birte; Rogalla, Piere; Bullerdiek, Jörn; Wiśniewski, Jacek R.

    2003-01-01

    High mobility group A2 (HMGA2) chromosomal non-histone protein and its derivatives play an important role in development and progression of benign and malignant tumors, obesity and arteriosclerosis, although the underlying mechanisms of these conditions are poorly understood. Therefore, we tried to identify target genes for this transcriptional regulator and to provide insights in the mechanism of interaction to its target. Multiple genes have been identified by microarray experiments as being transcriptionally regulated by HMGA2. Among these we chose the ERCC1 gene, encoding a DNA repair protein, for this study. DNA-binding studies were performed using HMGA2 and C-terminally truncated ΔHMGA2, a derivative that is frequently observed in a variety of tumors. A unique high affinity HMGA2 binding site was mapped to a specific AT-rich region located –323 to –298 upstream of the ERCC1 transcription start site, distinguishing it from other potential AT-rich binding sites. The observed 1:1 stoichiometry for the binding of wild-type HMGA2 to this region was altered to 1:2 upon binding of truncated ΔHMGA2, causing DNA bending. Furthermore, the regulatory effect of HMGA2 was confirmed by luciferase promoter assays showing that ERCC1 promoter activity is down-regulated by all investigated HMGA2 forms, with the most striking effect exerted by ΔHMGA2. Our results provide the first insights into how HMGA2 and its aberrant forms bind and regulate the ERCC1 promoter. PMID:14627817

  4. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase.

    PubMed

    Hong, Jungil; Bose, Mousumi; Ju, Jihyeung; Ryu, Jae-Ha; Chen, Xiaoxin; Sang, Shengmin; Lee, Mao-Jung; Yang, Chung S

    2004-09-01

    Aberrant arachidonic acid metabolism is involved in the inflammatory and carcinogenic processes. In this study, we investigated the effects of curcumin, a naturally occurring chemopreventive agent, and related beta-diketone derivatives on the release of arachidonic acid and its metabolites in the murine macrophage RAW264.7 cells and in HT-29 human colon cancer cells. We also examined their effects on the catalytic activities and protein levels of related enzymes: cytosolic phospholipase A(2) (cPLA(2)), cyclooxygenases (COX) as well as 5-lipoxygenase (5-LOX). At 10 micro M, dibenzoylmethane (DBM), trimethoxydibenzoylmethane (TDM), tetrahydrocurcumin (THC) and curcumin effectively inhibited the release of arachidonic acid and its metabolites in lipopolysaccharide (LPS)-stimulated RAW cells and A23187-stimulated HT-29 cells. Inhibition of phosphorylation of cPLA(2), the activation process of this enzyme, rather than direct inhibition of cPLA(2) activity appears to be involved in the effect of curcumin. All the curcuminoids (10 micro M) potently inhibited the formation of prostaglandin E(2) (PGE(2)) in LPS-stimulated RAW cells. Curcumin (20 micro M) significantly inhibited LPS-induced COX-2 expression; this effect, rather than the catalytic inhibition of COX, may contribute to the decreased PGE(2) formation. Without LPS-stimulation, however, curcumin increased the COX-2 level in the macrophage cells. Studies with isolated ovine COX-1 and COX-2 enzymes showed that the curcuminoids had significantly higher inhibitory effects on the peroxidase activity of COX-1 than that of COX-2. Curcumin and THC potently inhibited the activity of human recombinant 5-LOX, showing estimated IC(50) values of 0.7 and 3 micro M, respectively. The results suggest that curcumin affects arachidonic acid metabolism by blocking the phosphorylation of cPLA(2), decreasing the expression of COX-2 and inhibiting the catalytic activities of 5-LOX. These activities may contribute to the anti

  5. Determinants of spring migration departure decision in a bat.

    PubMed

    Dechmann, Dina K N; Wikelski, M; Ellis-Soto, D; Safi, K; O'Mara, M Teague

    2017-09-01

    Migratory decisions in birds are closely tied to environmental cues and fat stores, but it remains unknown if the same variables trigger bat migration. To learn more about the rare phenomenon of bat migration, we studied departure decisions of female common noctules (Nyctalus noctula) in southern Germany. We did not find the fattening period that modulates departure decisions in birds. Female noctules departed after a regular evening foraging session, uniformly heading northeast. As the day of year increased, migratory decisions were based on the interactions among wind speed, wind direction and air pressure. As the migration season progressed, bats were likely to migrate on nights with higher air pressure and faster tail winds in the direction of travel, and also show high probability of migration on low-pressure nights with slow head winds. Common noctules thus monitor complex environmental conditions to find the optimal migration night. © 2017 The Authors.

  6. The Future of Migration.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    This book comprises papers delivered at a conference of National Experts on Migration. The principle objective of the conference was twofold: to examine significant trends that will affect the future of migration in countries in the Organization for Economic Co-operation and Development (OCED), and to identify the relevant issues that will have to…

  7. College Student Migration.

    ERIC Educational Resources Information Center

    Fenske, R. H.; And Others

    This study examines the background characteristics of two large national samples of first-time enrolled freshmen who (a) attended college within their state of residence but away from their home community, (b) migrated to a college in an adjacent state, (c) migrated to a college in a distant state, and (d) attended college in their home community.…

  8. The Great Migration.

    ERIC Educational Resources Information Center

    Trotter, Joe William, Jr.

    2002-01-01

    Describes the migration of African Americans in the United States and the reasons why African Americans migrated from the south. Focuses on issues, such as the effect of World War I, the opportunities offered in the north, and the emergence of a black industrial working class. (CMK)

  9. Cell migration, freshly squeezed.

    PubMed

    Welch, Matthew D

    2015-02-12

    Migrating cells exhibit distinct motility modes and can switch between modes based on chemical or physical cues. Liu et al. and Ruprecht et al. now describe how confinement and contractility influence motility mode plasticity and instigate a mode termed stable bleb migration in embryonic and tumor cells.

  10. Migration of health workers.

    PubMed

    Buchan, James

    2008-01-01

    The discussion and debate stimulated by these papers focused across a range of issues but there were four main areas of questioning: "measuring" and monitoring migration (issues related to comparability, completeness and accuracy of data sets on human resources); the impact of migration of health workers on health systems; the motivations of individual health workers to migrate (the "push" and "pull" factors) and the effect of policies designed either to reduce migration (e.g "self ufficiency") or to stimulate it (e.g active international recruitment). It was recognised that there was a critical need to examine migratory flows within the broader context of all health care labour market dynamics within a country, that increasing migration of health workers was an inevitable consequence of globalisation, and that there was a critical need to improve monitoring so as to better inform policy formulation and policy testing in this area.

  11. Migration and Environmental Hazards

    PubMed Central

    Hunter, Lori M.

    2011-01-01

    Losses due to natural hazards (e.g., earthquakes, hurricanes) and technological hazards (e.g., nuclear waste facilities, chemical spills) are both on the rise. One response to hazard-related losses is migration, with this paper offering a review of research examining the association between migration and environmental hazards. Using examples from both developed and developing regional contexts, the overview demonstrates that the association between migration and environmental hazards varies by setting, hazard types, and household characteristics. In many cases, however, results demonstrate that environmental factors play a role in shaping migration decisions, particularly among those most vulnerable. Research also suggests that risk perception acts as a mediating factor. Classic migration theory is reviewed to offer a foundation for examination of these associations. PMID:21886366

  12. Human skin melanocyte migration towards stromal cell-derived factor-1α demonstrated by optical real-time cell mobility assay: modulation of their chemotactic ability by α-melanocyte-stimulating hormone.

    PubMed

    Yamauchi, Akira; Hadjur, Christophe; Takahashi, Tadahito; Suzuki, Itaru; Hirose, Kunitaka; Mahe, Yann F

    2013-10-01

    To identify potential regulators of normal human melanocyte behaviour, we have developed an in vitro human melanocyte migration assay, using the optically accessible, real-time cell motility assay device TAXIScan. Coating of the glass surface with an extracellular matrix that served as scaffolding molecule was essential to demonstrate efficient melanocyte migration. Among several chemokines tested, stromal cell-derived factor (SDF)-1α/CXCL12 was the most effective driver of human normal skin melanocytes. Incubation of melanocytes with α-melanocyte-stimulating hormone (MSH) before the assay specifically enhanced CXCR4 expression and consequently chemotaxis towards SDF-1α/CXCL12. These results suggest that α-MSH acts on melanocytes to produce melanin as well as stimulates the cells to migrate to the site where they work through CXCR4 up-regulation, which is a new dynamic mode of action of α-MSH on melanocyte physiology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Nitric oxide regulates neutrophil migration through microparticle formation.

    PubMed

    Nolan, Sarah; Dixon, Rachel; Norman, Keith; Hellewell, Paul; Ridger, Victoria

    2008-01-01

    The role of nitric oxide (NO) in regulating neutrophil migration has been investigated. Human neutrophil migration to interleukin (IL)-8 (1 nmol/L) was measured after a 1-hour incubation using a 96-well chemotaxis plate assay. The NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME) significantly (P < 0.001) enhanced IL-8-induced migration by up to 45%. Anti-CD18 significantly (P < 0.001) inhibited both IL-8-induced and L-NAME enhanced migration. Antibodies to L-selectin or PSGL-1 had no effect on IL-8-induced migration but prevented the increased migration to IL-8 induced by L-NAME. L-NAME induced generation of neutrophil-derived microparticles that was significantly (P < 0.01) greater than untreated neutrophils or D-NAME. This microparticle formation was dependent on calpain activity and superoxide production. Only microparticles from L-NAME and not untreated or D-NAME-treated neutrophils induced a significant (P < 0.01) increase in IL-8-induced migration and transendothelial migration. Pretreatment of microparticles with antibodies to L-selectin (DREG-200) or PSGL-1 (PL-1) significantly (P < 0.001) inhibited this effect. The ability of L-NAME-induced microparticles to enhance migration was found to be dependent on the number of microparticles produced and not an increase in microparticle surface L-selectin or PSGL-1 expression. These data show that NO can modulate neutrophil migration by regulating microparticle formation.

  14. Collagen-Derived N-Acetylated Proline-Glycine-Proline in Intervertebral Discs Modulates CXCR1/2 Expression and Activation in Cartilage Endplate Stem Cells to Induce Migration and Differentiation Toward a Pro-Inflammatory Phenotype.

    PubMed

    Feng, Chencheng; Zhang, Yang; Yang, Minghui; Huang, Bo; Zhou, Yue

    2015-12-01

    The factors that regulate the migration and differentiation of cartilage endplate stem cells (CESCs) remain unknown. N-Acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine that is involved in inflammatory diseases. The purpose of this study was to detect N-Ac-PGP in degenerative intervertebral discs (IVDs) and to determine its roles in the migration and differentiation of CESCs. Enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry results indicated that the levels of the proteases that generate N-Ac-PGP as well as N-Ac-PGP levels themselves increase with the progression of IVD degeneration. Immunohistochemistry and an N-Ac-PGP generation assay demonstrated that nucleus pulposus (NP) cells generate N-Ac-PGP from collagen. The effects of N-Ac-PGP on the migration and differentiation of CESCs were determined using migration assays, RT-PCR, immunoblot analysis, and ELISA. The results showed that the expression of N-Ac-PGP receptors (CXCR1 and CXCR2) in CESCs was upregulated by N-Ac-PGP. Additionally, N-Ac-PGP induced F-actin cytoskeletal rearrangement in CESCs and increased CESC chemotaxis. Furthermore, N-Ac-PGP recruited chondrocytes and spindle-shaped cells from the cartilage endplate (CEP) into the NP in vivo. These spindle-shaped cells expressed CD105 and Stro-1 (mesenchymal stem cell markers). N-Ac-PGP induced the differentiation of CESCs toward a pro-inflammatory phenotype with increased production of inflammatory cytokines rather than toward an NP-like phenotype. Our study indicated that, in the complex microenvironment of a degenerative disc, N-Ac-PGP is generated by NP cells and induces the migration of CESCs from the CEP into the NP. N-Ac-PGP induces a pro-inflammatory phenotype in CESCs, and these cells promote the inflammatory response in degenerative discs. © 2015 The Authors. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. Galectin-1 promotes human neutrophil migration.

    PubMed

    Auvynet, Constance; Moreno, Samadhi; Melchy, Erika; Coronado-Martínez, Iris; Montiel, Jose Luis; Aguilar-Delfin, Irma; Rosenstein, Yvonne

    2013-01-01

    An important step of innate immune response is the recruitment of polymorphonuclear leukocytes (PMN) to injured tissues through chemotactic molecules. Galectins, a family of endogenous lectins, participate in numerous functions such as lymphoid cell migration, homing, cell-cell and cell-matrix interactions. Particularly, galectin-3 (Gal-3) and -9 have been implicated in the modulation of acute and chronic inflammation by inducing the directional migration of monocytes/macrophages and eosinophils, whereas Gal-1 is considered to function as an anti-inflammatory molecule, capable of inhibiting the influx of PMN to the site of injury. In this study, we assessed the effect of Gal-1 on neutrophil recruitment, in the absence of additional inflammatory insults. Contrasting with its capacity to inhibit cell trafficking and modulate the release of mediators described in models of acute inflammation and autoimmunity, we evidenced that Gal-1 has the capacity to induce neutrophil migration both in vitro and in vivo. This effect is not mediated through a G-protein-coupled receptor but potentially through the sialoglycoprotein CD43, via carbohydrate binding and through the p38 mitogen-activated protein kinase pathway. These results suggest a novel biological function for CD43 on neutrophils and highlight that depending on the environment, Gal-1 can act either as chemoattractant or, as a molecule that negatively regulates migration under acute inflammatory conditions, underscoring the potential of Gal-1 as a target for innovative drug development.

  16. Modular Sequence: Puerto Rican Pupils in Mainland Schools. TTP 003.02. Migration Patterns of the Puerto Rican. Teacher Corps Bilingual Project.

    ERIC Educational Resources Information Center

    Hartford Univ., West Hartford, CT. Coll. of Education.

    This module presents an overview of the background of Puerto Rican migration to the U.S. and an explanation of the migrant's current situation. Upon completion of this module the participant will be able to (a) describe the cultural roots of the migrants, (b) list reasons for the migration after 1898, (c) characterize the migration since 1950, and…

  17. Neuronal migration illuminated

    PubMed Central

    Trivedi, Niraj

    2011-01-01

    During vertebrate brain development, migration of neurons from the germinal zones to their final laminar positions is essential to establish functional neural circuits.1–3 Whereas key insights into neuronal migration initially came from landmark studies identifying the genes mutated in human cortical malformations,4 cell biology has recently greatly advanced our understanding of how cytoskeletal proteins and molecular motors drive the morphogenic cell movements that build the developing brain. This Commentary & View reviews recent studies examining the role of the molecular motors during neuronal migration and critically examines current models of acto-myosin function in the two-step neuronal migration cycle. Given the apparent emerging diversity of neuronal sub-type cytoskeletal organizations, we propose that two approaches must be taken to resolve differences between the current migration models: the mechanisms of radial and tangential migration must be compared, and the loci of tension generation, migration substrates and sites of adhesion dynamics must be precisely examined in an integrated manner. PMID:20935494

  18. Migration without migraines

    SciTech Connect

    Lines, L.; Burton, A.; Lu, H.X.

    1994-12-31

    Accurate velocity models are a necessity for reliable migration results. Velocity analysis generally involves the use of methods such as normal moveout analysis (NMO), seismic traveltime tomography, or iterative prestack migration. These techniques can be effective, and each has its own advantage or disadvantage. Conventional NMO methods are relatively inexpensive but basically require simplifying assumptions about geology. Tomography is a more general method but requires traveltime interpretation of prestack data. Iterative prestack depth migration is very general but is computationally expensive. In some cases, there is the opportunity to estimate vertical velocities by use of well information. The well information can be used to optimize poststack migrations, thereby eliminating some of the time and expense of iterative prestack migration. The optimized poststack migration procedure defined here computes the velocity model which minimizes the depth differences between seismic images and formation depths at the well by using a least squares inversion method. The optimization methods described in this paper will hopefully produce ``migrations without migraines.``

  19. Migration and AIDS.

    PubMed

    1998-01-01

    This article presents the perspectives of UNAIDS and the International Organization for Migration (IOM) on migration and HIV/AIDS. It identifies research and action priorities and policy issues, and describes the current situation in major regions of the world. Migration is a process. Movement is enhanced by air transport, rising international trade, deregulation of trade practices, and opening of borders. Movements are restricted by laws and statutes. Denial to freely circulate and obtain asylum is associated with vulnerability to HIV infections. A UNAIDS policy paper in 1997 and IOM policy guidelines in 1988 affirm that refugees and asylum seekers should not be targeted for special measures due to HIV/AIDS. There is an urgent need to provide primary health services for migrants, voluntary counseling and testing, and more favorable conditions. Research is needed on the role of migration in the spread of HIV, the extent of migration, availability of health services, and options for HIV prevention. Research must be action-oriented and focused on vulnerability to HIV and risk taking behavior. There is substantial mobility in West and Central Africa, economic migration in South Africa, and nonvoluntary migration in Angola. Sex workers in southeast Asia contribute to the spread. The breakup of the USSR led to population shifts. Migrants in Central America and Mexico move north to the US where HIV prevalence is higher.

  20. Glossary: migration and health.

    PubMed

    Urquia, Marcelo L; Gagnon, Anita J

    2011-05-01

    The literature on migration and health is quite heterogeneous in how migrants are labelled and how the relation between migration and health is conceptualised. A narrative review has been carried out. This glossary presents the most commonly used terms in the field of migration and health, along with synonyms and related concepts, and discusses the suitability of their use in epidemiological studies. The terminology used in migrant health is ambiguous in many cases. Studies on migrant health should avoid layman terms and strive to use internationally defined concepts.

  1. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells.

    PubMed

    Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong

    2015-12-01

    ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.

  2. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration

    PubMed Central

    Brinkman, C. Colin; Iwami, Daiki; Hritzo, Molly K.; Xiong, Yanbao; Ahmad, Sarwat; Simon, Thomas; Hippen, Keli L.; Blazar, Bruce R.; Bromberg, Jonathan S.

    2016-01-01

    Regulatory T cells (Tregs) are essential to suppress unwanted immunity or inflammation. After islet allo-transplant Tregs must migrate from blood to allograft, then via afferent lymphatics to draining LN to protect allografts. Here we show that Tregs but not non-Treg T cells use lymphotoxin (LT) during migration from allograft to draining LN, and that LT deficiency or blockade prevents normal migration and allograft protection. Treg LTαβ rapidly modulates cytoskeletal and membrane structure of lymphatic endothelial cells; dependent on VCAM-1 and non-canonical NFκB signalling via LTβR. These results demonstrate a form of T-cell migration used only by Treg in tissues that serves an important role in their suppressive function and is a unique therapeutic focus for modulating suppression. PMID:27323847

  3. Hax1 lacks BH modules and is peripherally associated to heavy membranes: implications for Omi/HtrA2 and PARL activity in the regulation of mitochondrial stress and apoptosis.

    PubMed

    Jeyaraju, D V; Cisbani, G; De Brito, O M; Koonin, E V; Pellegrini, L

    2009-12-01

    Hax1 has an important role in immunodeficiency syndromes and apoptosis. A recent report (Chao et al., Nature, 2008) proposed that the Bcl-2-family-related protein, Hax1, suppresses apoptosis in lymphocytes and neurons through a mechanism that involves its association to the inner mitochondrial membrane rhomboid protease PARL, to proteolytically activate the serine protease Omi/HtrA2 and eliminate active Bax. This model implies that the control of cell-type sensitivity to pro-apoptotic stimuli is governed by the PARL/Hax1 complex in the mitochondria intermembrane space and, more generally, that Bcl-2-family-related proteins can control mitochondrial outer-membrane permeabilization from inside the mitochondrion. Further, it defines a novel, anti-apoptotic Opa1-independent pathway for PARL. In this study, we present evidence that, in vivo, the activity of Hax1 cannot be mechanistically coupled to PARL because the two proteins are confined in distinct cellular compartments and their interaction in vitro is an artifact. We also show by sequence analysis and secondary structure prediction that Hax1 is extremely unlikely to be a Bcl-2-family-related protein because it lacks Bcl-2 homology modules. These results indicate a different function and mechanism of Hax1 in apoptosis and re-opens the question of whether mammalian PARL, in addition to apoptosis, regulates mitochondrial stress response through Omi/HtrA2 processing.

  4. Marine Bromophenol Bis (2,3-Dibromo-4,5-dihydroxy-phenyl)-methane Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Modulating β1-Integrin/FAK Signaling

    PubMed Central

    Wu, Ning; Luo, Jiao; Jiang, Bo; Wang, Lijun; Wang, Shuaiyu; Wang, Changhui; Fu, Changqing; Li, Jian; Shi, Dayong

    2015-01-01

    Bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC50 = 8.7 μg/mL). Further studies have shown that prior to the onset of apoptosis, the BDDPM induces BEL-7402 cell detachment by decreasing the adherence of cells to the extracellular matrix (ECM). Detachment experiments have shown that the treatment of BEL-7402 cells with low concentrations of BDDPM (5.0 μg/mL) significantly inhibits cell adhesion to fibronectin and collagen IV as well as cell migration and invasion. High doses of BDDPM (10.0 μg/mL) completely inhibit the migration of BEL-7402 cells, and the expression level of MMPs (MMP-2 and MMP-9) is significantly decreased. Moreover, the expression of β1-integrin and focal adhesion kinase (FAK) is found to be down-regulated by BDDPM. This study suggests that BDDPM has a potential to be developed as a novel anticancer therapeutic agent due to its anti-metastatic activity and also indicates that BDDPM, which has a unique chemical structure, could serve as a lead compound for rational drug design and for future development of anticancer agents. PMID:25689564

  5. Marine bromophenol bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells via modulating β1-integrin/FAK signaling.

    PubMed

    Wu, Ning; Luo, Jiao; Jiang, Bo; Wang, Lijun; Wang, Shuaiyu; Wang, Changhui; Fu, Changqing; Li, Jian; Shi, Dayong

    2015-02-13

    Bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC50 = 8.7 μg/mL). Further studies have shown that prior to the onset of apoptosis, the BDDPM induces BEL-7402 cell detachment by decreasing the adherence of cells to the extracellular matrix (ECM). Detachment experiments have shown that the treatment of BEL-7402 cells with low concentrations of BDDPM (5.0 μg/mL) significantly inhibits cell adhesion to fibronectin and collagen IV as well as cell migration and invasion. High doses of BDDPM (10.0 μg/mL) completely inhibit the migration of BEL-7402 cells, and the expression level of MMPs (MMP-2 and MMP-9) is significantly decreased. Moreover, the expression of β1-integrin and focal adhesion kinase (FAK) is found to be down-regulated by BDDPM. This study suggests that BDDPM has a potential to be developed as a novel anticancer therapeutic agent due to its anti-metastatic activity and also indicates that BDDPM, which has a unique chemical structure, could serve as a lead compound for rational drug design and for future development of anticancer agents.

  6. Indonesia's migration transition.

    PubMed

    Hugo, G

    1995-01-01

    This article describes population movements in Indonesia in the context of rapid and marked social and economic change. Foreign investment in Indonesia is increasing, and global mass media is available to many households. Agriculture is being commercialized, and structural shifts are occurring in the economy. Educational levels are increasing, and women's role and status are shifting. Population migration has increased over the decades, both short and long distance, permanent and temporary, legal and illegal, and migration to and between urban areas. This article focuses specifically on rural-to-urban migration and international migration. Population settlements are dense in the agriculturally rich inner areas of Java, Bali, and Madura. Although the rate of growth of the gross domestic product was 6.8% annually during 1969-94, the World Bank ranked Indonesia as a low-income economy in 1992 because of the large population size. Income per capita is US $670. Indonesia is becoming a large exporter of labor to the Middle East, particularly women. The predominance of women as overseas contract workers is changing women's role and status in the family and is controversial due to the cases of mistreatment. Malaysia's high economic growth rate of over 8% per year means an additional 1.3 million foreign workers and technicians are needed. During the 1980s urban growth increased at a very rapid rate. Urban growth tended to occur along corridors and major transportation routes around urban areas. It is posited that most of the urban growth is due to rural-to-urban migration. Data limitations prevent an exact determination of the extent of rural-to-urban migration. More women are estimated to be involved in movements to cities during the 1980s compared to the 1970s. Recruiters and middlemen have played an important role in rural-to-urban migration and international migration.

  7. The planar cell polarity pathway directs parietal endoderm migration.

    PubMed

    LaMonica, Kristi; Bass, Maya; Grabel, Laura

    2009-06-01

    Parietal endoderm (PE) contributes to the yolk sac and is the first migratory cell type in the mammalian embryo. We can visualize PE migration in vitro using the F9 teratocarcinoma derived embryoid body outgrowth system and, show here that PE migration is directed by the non-canonical Wnt planar cell polarity (PCP) pathway via Rho/ROCK. Based on golgi apparatus localization and microtubule orientation, 68.6% of cells in control outgrowths are oriented in the direction of migration. Perturbation of Wnt signaling via sFRP treatment results in a loss of orientation coupled with an increase in cell migration. Inhibition of the PCP pathway at the level of Daam1 also results in a loss of cell orientation along with an increase in cell migration, as seen with sFRP treatment. Constitutively active Daam can inhibit the loss of orientation that occurs with sFRP treatment. We previously demonstrated that ROCK inhibition leads to an increase in cell migration, and we now show that these cells also lack oriented migration. Canonical Wnt signaling or the Rac arm of the PCP pathway does not appear to play a role in PE oriented migration. These data suggest the PCP pathway via Rho/ROCK modulates migration of PE.

  8. Astrocytes in Migration.

    PubMed

    Zhan, Jiang Shan; Gao, Kai; Chai, Rui Chao; Jia, Xi Hua; Luo, Dao Peng; Ge, Guo; Jiang, Yu Wu; Fung, Yin-Wan Wendy; Li, Lina; Yu, Albert Cheung Hoi

    2017-01-01

    Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.

  9. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration.

    PubMed

    Theveneau, Eric; Mayor, Roberto

    2012-06-01

    After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  11. Cross-modulation and molecular interaction at the Cav3.3 protein between the endogenous lipids and the T-type calcium channel antagonist TTA-A2.

    PubMed

    Cazade, Magali; Nuss, Cindy E; Bidaud, Isabelle; Renger, John J; Uebele, Victor N; Lory, Philippe; Chemin, Jean

    2014-02-01

    T-type calcium channels (T/Ca(v)3-channels) are implicated in various physiologic and pathophysiologic processes such as epilepsy, sleep disorders, hypertension, and cancer. T-channels are the target of endogenous signaling lipids including the endocannabinoid anandamide, the ω3-fatty acids, and the lipoamino-acids. However, the precise molecular mechanism by which these molecules inhibit T-current is unknown. In this study, we provided a detailed electrophysiologic and pharmacologic analysis indicating that the effects of the major N-acyl derivatives on the Ca(v)3.3 current share many similarities with those of TTA-A2 [(R)-2-(4-cyclopropylphenyl)-N-(1-(5-(2,2,2-trifluoroethoxy)pyridin-2-yl)ethyl)acetamide], a synthetic T-channel inhibitor. Using radioactive binding assays with the TTA-A2 derivative [(3)H]TTA-A1 [(R)-2-(4-(tert-butyl)phenyl)-N-(1-(5-methoxypyridin-2-yl)ethyl)acetamide], we demonstrated that polyunsaturated lipids, which inhibit the Ca(v)3.3 current, as NAGly (N-arachidonoyl glycine), NASer (N-arachidonoyl-l-serine), anandamide, NADA (N-arachidonoyl dopamine), NATau (N-arachidonoyl taurine), and NA-5HT (N-arachidonoyl serotonin), all displaced [(3)H]TTA-A1 binding to membranes prepared from cells expressing Ca(v)3.3, with Ki in a micromolar or submicromolar range. In contrast, lipids with a saturated alkyl chain, as N-arachidoyl glycine and N-arachidoyl ethanolamine, which did not inhibit the Ca(v)3.3 current, had no effect on [(3)H]TTA-A1 binding. Accordingly, bio-active lipids occluded TTA-A2 effect on Ca(v)3.3 current. In addition, TTA-Q4 [(S)-4-(6-chloro-4-cyclopropyl-3-(2,2-difluoroethyl)-2-oxo-1,2,3,4-tetrahydroquinazolin-4-yl)benzonitrile], a positive allosteric modulator of [(3)H]TTA-A1 binding and TTA-A2 functional inhibition, acted in a synergistic manner to increase lipid-induced inhibition of the Ca(v)3.3 current. Overall, our results demonstrate a common molecular mechanism for the synthetic T-channel inhibitors and the endogenous

  12. [International migration in Latin America].

    PubMed

    Pellegrino, A

    1995-12-01

    Trends in international migration in Latin America are reviewed using data from published sources. Aspects considered include historical views; migration according to occupational status and educational level; migration to the United States; migration characteristics in different regions of Latin America; and the crisis of the 1980s and its impact on population distribution.

  13. Human rights and migration policies.

    PubMed

    Marmora, L

    1990-01-01

    This paper concerns the history of migration, migration policies, and the rights of migrants in Latin America from 1500 to the present. In the first part of the article, the author identifies and discusses the basic rights of migrants. In the second part, migration policies, migration flows, and the treatment of migrants are examined over time.

  14. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis

    PubMed Central

    Bastock, Rebecca; Strutt, David

    2007-01-01

    SUMMARY Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied, however in vivo cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about 6-10 epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells they carry along. Disruption of planar polarity signalling causes abnormalities in actin rich processes on the cell surface and leads to less efficient migration. This is apparently due in part to loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that during collective cell migration the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics. PMID:17652348

  15. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis.

    PubMed

    Bastock, Rebecca; Strutt, David

    2007-09-01

    Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics.

  16. Environmental concerns and international migration.

    PubMed

    Hugo, G

    1996-01-01

    "This article focuses on international migration occurring as a result of environmental changes and processes. It briefly reviews attempts to conceptualize environment-related migration and then considers the extent to which environmental factors have been and may be significant in initiating migration. Following is an examination of migration as an independent variable in the migration-environment relationship. Finally, ethical and policy dimensions are addressed."

  17. Draxin, an axon guidance protein, affects chick trunk neural crest migration.

    PubMed

    Su, Yuhong; Naser, Iftekhar B; Islam, Shahidul M; Zhang, Sanbing; Ahmed, Giasuddin; Chen, Sandy; Shinmyo, Yohei; Kawakami, Minoru; Yamamura, Ken-ichi; Tanaka, Hideaki

    2009-12-01

    The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin's inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.

  18. Migration and pension.

    PubMed

    Razin, A; Sadka, E

    1998-11-01

    "Migration has important implications for the financial soundness of the pension system.... While it is common sense to expect that young migrants, even if low-skilled, can help society pay the benefits to the currently elderly, it may nevertheless be reasonable to argue that these migrants would adversely affect current young since, after all, the migrants are net beneficiaries of the welfare state. In contrast to the adverse effects of low skilled migration in a static model, [the authors] show that in a Samuelsonian overlapping generations model...migration is a Pareto-improving measure. All the existing income (low and high) and age (young and old) groups living at the time of the migrant's arrival would be better off."

  19. Detecting interstellar migrations

    NASA Astrophysics Data System (ADS)

    Matloff, Gregory L.; Pazmino, John

    1997-01-01

    Interstellar migrations may occur when a civilization's star enters the red giant phase, thereby dooming the life-bearing planet. Ecologically self-contained 'world ships', massing billions of kilograms and propelled by hyperthin, space manufactured solar sails thousands of kilometers in diameter unfurled near the home star are possible vehicles to transfer a threatened civilization to a neighboring star. Consideration of the nearest red giants reveals that Pollux is the nearest formerly solar-type red giant. Known stellar neighbors of Pollux are surveyed to determine likely directions for an interstellar migration departing Pollux. Such migrations might consist of many world ships launched over millennia on voyages of about 1000 terrestrial-year duration; discovery of such events will be serendipitous. The difficulties of observing solar-sail star ships near Pollux are considered. A facility dedicated to imaging extrasolar planets within 10 parsecs might be capable of detecting these large spacecraft.

  20. Migration from Packaging Materials

    NASA Astrophysics Data System (ADS)

    Meulenaer, B. De

    Various chemical compounds can be present in foodstuffs which may induce health problems in humans. The origin of these compounds can be very diverse. Mathematical modeling can sometimes be used to predict the concentration of these chemicals in the food. Particularly for compounds which are produced in the food during, e.g., processing and for compounds which migrate from a food contact material this technique can be very fruitful. For the former type of compounds, classical chemical kinetics can be applied. In this contribution, the modeling of the migration from polymeric food contact materials is considered. This migration phenomenon can be modeled mathematically since the physical processes which govern this process are very well studied and understood. Therefore, initially some of these fundamentals will be discussed in more detail.

  1. More myths of migration.

    PubMed

    Basch, L; Lerner, G

    1986-01-01

    This paper discusses some of the myths of migration. The 5 myths presented are: 1) racism has little to do with the causes of migration and does not necessarily impede the adjustment or success of migrants; 2) in areas where there is a strong feminist movement and trade unions, migrant women receive their support and can count on the solidarity of these organizations; 3) transnational corporations are positive forces in the developing countries where they operate--not only do they provide these states with new sources of capital, but they also impart new industrial skills to the labor force; 4) migration today is essentially short-term in nature--it therefore does not have a strong impact on family life; and 5) most migrants cluster together in ethnic enclaves which provide a strong source of support and diminish dislocation inherent in the migrant process.

  2. Differential migration and proliferation of geometrical ensembles of cell clusters

    SciTech Connect

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  3. Analysing immune cell migration.

    PubMed

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2009-11-01

    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  4. [Migration, climate and health].

    PubMed

    Tellier, Siri; Carballo, Manuel; Calballo, Manuel

    2009-10-26

    Many tentative connections have been postulated between migration and climate. This article points to rural-urban migration, particularly into low elevation urban slums prone to flooding as an issue needing urgent attention by health professionals. It also notes the no-man's land in which environmental refugees find themselves and the consequences this may have. Finally, it points to the urgent need to reform health systems in both developing and developed countries to adapt to rapidly changing disease patterns and to become more responsive to them.

  5. What's driving migration?

    PubMed

    Kane, H

    1995-01-01

    During the 1990s investment in prevention of international or internal migration declined, and crisis intervention increased. The budgets of the UN High Commissioner for Refugees and the UN Development Program remained about the same. The operating assumption is that war, persecution, famine, and environmental and social disintegration are inevitable. Future efforts should be directed to stabilizing populations through investment in sanitation, public health, preventive medicine, land tenure, environmental protection, and literacy. Forces pushing migration are likely to increase in the future. Forces include depletion of natural resources, income disparities, population pressure, and political disruption. The causes of migration are not constant. In the past, migration occurred during conquests, settlement, intermarriage, or religious conversion and was a collective movement. Current migration involves mass movement of individuals and the struggle to survive. There is new pressure to leave poor squatter settlements and the scarcities in land, water, and food. The slave trade between the 1500s and the 1800s linked continents, and only 2-3 million voluntarily crossed national borders. Involuntary migration began in the early 1800s when European feudal systems were in a decline, and people sought freedom. Official refugees, who satisfy the strict 1951 UN definition, increased from 15 million in 1980 to 23 million in 1990 but remained a small proportion of international migrants. Much of the mass movement occurs between developing countries. Migration to developed countries is accompanied by growing intolerance, which is misinformed. China practices a form of "population transfer" in Tibet in order to dilute Tibetan nationalism. Colonization of countries is a new less expensive form of control over territory. Eviction of minorities is another popular strategy in Iraq. Public works projects supported by foreign aid displace millions annually. War and civil conflicts

  6. Extrinsic ion migration in perovskite solar cells

    DOE PAGES

    Li, Zhen; Xiao, Chuanxiao; Yang, Ye; ...

    2017-04-10

    In this study, the migration of intrinsic ions (e.g., MA+, Pb2+, I–) in organic–inorganic hybrid perovskites has received significant attention with respect to the critical roles of these ions in the hysteresis and degradation in perovskite solar cells (PSCs). Here, we demonstrate that extrinsic ions (e.g., Li+, H+, Na+), when used in the contact layers in PSCs, can migrate across the perovskite layer and strongly impact PSC operation. In a TiO2/perovskite/spiro-OMeTAD-based PSC, Li+-ion migration from spiro-OMeTAD to the perovskite and TiO2 layer is illustrated by time-of-flight secondary-ion mass spectrometry. The movement of Li+ ions in PSCs plays an importantmore » role in modulating the solar cell performance, tuning TiO2 carrier-extraction properties, and affecting hysteresis in PSCs. The influence of Li+-ion migration was investigated using time-resolved photoluminescence, Kelvin probe force microscopy, and external quantum efficiency spectra. Other extrinsic ions such as H+ and Na+ also show a clear impact on the performance and hysteresis in PSCs. Understanding the impacts of extrinsic ions in perovskite-based devices could lead to new material and device designs to further advance perovskite technology for various applications.« less

  7. Protein kinase Cepsilon is important for migration of neuroblastoma cells

    PubMed Central

    Stensman, Helena; Larsson, Christer

    2008-01-01

    Background Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility. Methods PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot. Results Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS. Conclusion PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration. PMID:19077250

  8. [Migration and health].

    PubMed

    Litvinjenko, S

    1997-01-01

    In the last decades of this century we are witnesses of frequent crises in different parts of the world produced by internal disturbance and wars. These crises, together with natural disasters, poverty and hunger, follow the history of mankind often forcing huge population groups to leave their homes. The harmful health consequences are among negative effects of migrations. While stable populations have well-tried routines for maintaining health, migrations mean abandoning such support systems. The increased exposure to harmful factors contributes more to the bad health condition of the migrant population. Setting of newcomers and local people together in the same homes, reduction in food and heating resources, drug shortage as well as importation of new infectious agents, may also endanger health of the native population. These observations have also been confirmed by Yugoslav experience. Depending on the fact whether a migration is elemental or organized i.e. dependent on its place in the large scale between these two extreme endpoints, the size of risk is also dependent on the consequences and degree of their difficulty. Mass health disturbances occur during migrations of the population from war regions, migrations from areas of natural disasters, mass pilgrimage, migrations of seasonal workers and migrations of armies during wars. However, even in these difficult times and conditions, a good organization can contribute to the mitigation of harmful consequences caused by these migrations. For instance, in 1942 there was an epidemic of typhus fever in Bosnia when many refugees crossed the Drina river on the way to Serbia escaping from Ustasha terrorism. At the Serbian side there were checkpoints where the refugees could taka a bath and where their laundry and clothing were depediculated with dry air, and after a two-week quarantine they could continue to Serbian provinces without making new foci of typhus fever. The most vulnerable and numerous group of refugees

  9. Strain effects on oxygen migration in perovskites.

    PubMed

    Mayeshiba, Tam; Morgan, Dane

    2015-01-28

    Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its underlying mechanisms are not well-understood, particularly in the widely-used perovskite-structured oxygen conductors. This work reports on an ab initio prediction of strain effects on migration energetics for nine perovskite systems of the form LaBO3, where B = [Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga]. Biaxial strain, as might be easily produced in epitaxial systems, is predicted to lead to approximately linear changes in migration energy. We find that tensile biaxial strain reduces the oxygen vacancy migration barrier across the systems studied by an average of 66 meV per percent strain for a single selected hop, with a low of 36 and a high of 89 meV decrease in migration barrier per percent strain across all systems. The estimated range for the change in migration barrier within each system is ±25 meV per percent strain when considering all hops. These results suggest that strain can significantly impact transport in these materials, e.g., a 2% tensile strain can increase the diffusion coefficient by about three orders of magnitude at 300 K (one order of magnitude at 500 °C or 773 K) for one of the most strain-responsive materials calculated here (LaCrO3). We show that a simple elasticity model, which assumes only dilative or compressive strain in a cubic environment and a fixed migration volume, can qualitatively but not quantitatively model the strain dependence of the migration energy, suggesting that factors not captured by continuum elasticity play a significant role in the strain response.

  10. AVO migration and inversion: Are they commutable?

    SciTech Connect

    Beydoun, W.B.; Jin, S.; Hanitzsch, C.

    1994-12-31

    With the increasing ambition of characterizing hydrocarbon traps in more subtle or complex reservoirs, Amplitude Variation with Offset (AVO) techniques are becoming a valuable seismic tool for quantitative seismic discrimination of lithologies and fluids. One of the biggest remaining challenges is to acquire and process the data in an amplitude preserved fashion and in multi-dimensional geology. This study is a component of this puzzle, and attempts to address the following processing question: what are the benefits of prestack migration before AVO inversion (process 1) versus performing an AVO inversion followed by a poststack migration (process 2)? The comparison is done on a 2-D synthetic model which is valid for process 2. The technique used for process 1 is the prestack depth AVO migration/inversion described in the text which estimates reflectivities and incidence angles in multi-dimensions from the data prior to AVO inversion. Process 2 results are derived using a commercial seismic processing software package.

  11. Do downy woodpeckers migrate?

    USGS Publications Warehouse

    Browning, M.R.

    1995-01-01

    Seasonal movement and migration of Downy Woodpeckers (Picoides pubescens) are indicated in several sources in the literature. Analyses of 3784 recoveries of banded birds, with other data, indicate that the species is resident, and that movements of a few individuals may indicate dispersal.

  12. [Internal migration in Tanzania].

    PubMed

    Banyikwa, W F

    1982-01-01

    A general survey of population distribution in Tanzania is first presented using data from censuses taken between 1948 and 1979. Variations in distribution patterns are identified and discussed. The author then considers both spontaneous and planned internal migration trends and the factors affecting them. The effects of the official policy to resettle the rural population in larger villages are considered. (summary in ENG, RUS)

  13. Brain Migration Revisited

    ERIC Educational Resources Information Center

    Vinokur, Annie

    2006-01-01

    The "brain drain/brain gain" debate has been going on for the past 40 years, with irresolvable theoretical disputes and unenforceable policy recommendations that economists commonly ascribe to the lack of reliable empirical data. The recent report of the World Bank, "International migration, remittances and the brain drain", documents the…

  14. Brain Migration Revisited

    ERIC Educational Resources Information Center

    Vinokur, Annie

    2006-01-01

    The "brain drain/brain gain" debate has been going on for the past 40 years, with irresolvable theoretical disputes and unenforceable policy recommendations that economists commonly ascribe to the lack of reliable empirical data. The recent report of the World Bank, "International migration, remittances and the brain drain", documents the…

  15. Engineered Models of Confined Cell Migration

    PubMed Central

    Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2017-01-01

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  16. Hippocampal GluA2 and GluA4 protein but not corresponding mRNA and promoter methylation levels are modulated at retrieval in spatial learning of the rat.

    PubMed

    Rössner, Birgit; Klingler, Maximilian; Bulat, Tanja; Sase, Ajinkya; Zeilinger, Andrea; Spitzwieser, Melanie; Aradska, Jana; Cichna-Markl, Margit; Lubec, Gert

    2017-01-01

    AMPA receptors mediate most fast excitatory synaptic transmission in the brain. Highly dynamic AMPA receptors are subjected to trafficking, recycling, and/or degradation and replacement. Changes in AMPA receptor abundance is an important mechanism involved in learning and memory formation. Results obtained with the Morris water maze (MWM), a paradigm for testing spatial memory in rodent, correlate with hippocampal synaptic plasticity and NMDA function. Different phases of spatial learning like acquisition and retrieval involve AMPA receptors. Long-term memory formation requires dynamic changes in gene transcription and protein synthesis. It is, however, not known so far if epigenetic marks such as DNA methylation and mRNA levels participate in regulation of AMPA receptors in hippocampus during memory retrieval. In the present study, rats were trained or untrained in the MWM. Steady state levels of hippocampal GluA1-4 mRNA were determined by RT-PCR and promoter methylation levels of GluA1-4 by in-house developed bisulfite pyrosequencing methods. GluA1-4 protein levels were determined in parallel in a membrane fraction by SDS-PAGE followed by Western blotting. Our results indicate that changes of hippocampal membrane AMPA receptors were modulated at the protein level, while no changes were observed at the mRNA and at the promoter methylation level of hippocampal GluA1-4. Training in the MWM at retrieval may, therefore, involve GluA2 and GluA4 subunits that may be regulated by protein stability or trafficking as protein determinations were carried out in a hippocampal membrane fraction.

  17. Method of migrating seismic records

    DOEpatents

    Ober, Curtis C.; Romero, Louis A.; Ghiglia, Dennis C.

    2000-01-01

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  18. The commercialization of migration.

    PubMed

    Abrera-mangahas, M A

    1989-01-01

    International migration is not new to the Philippines. In the recent outflow of contract workers to the Middle East, there is a shift from individual and family initiated migrations to the more organized, highly commercial variety. While profit-taking intermediaries have played some role in the past, the increase in the number and influence of these intermediaries has altered the story of migration decision-making. In 1975, the signing of the bilateral labor agreement between the governments of Iran and the Philippines signalled the rising demand for Filipino contract workers. From 1970 to 1975, the number of Asian migrant workers in the Gulf countries rose from about 120,000 to 370,000. These figures rose dramatically to 3.3 million in 1985. The growing share of organized and commercialized migration has altered migration decision making. Primarily, intermediaries are able to broaden access to foreign job and high wage opportunities. Commercialization effectively raises the transaction costs for contract migration. Studies on recruitment costs and fees show that self-solicited foreign employment costs less than employment obtained through recruitment agents and intermediaries. The difference in the 2 prices is due, not only to overhead costs of intermediation, but more importantly to the rent exacted by agents from having job information and placement rights. In the Philippines in October 1987 the average placement fee was P8000, greatly exceeding the mandated maximum fee level of P5000. This average is understated because the computation includes the 17% who do not pay any fees. The widespread and popular view of recruitment intermediaries is negative, dominated by images of abuses and victims. Private intermediaries and the government bureaucracy need each other. Intermediaries need government; their consistent demand for incentives and protection is indicative. On the other hand, government expands its supervision of control of overseas employment via the

  19. Gβ1 is required for neutrophil migration in zebrafish.

    PubMed

    Ke, Wenfan; Ye, Ding; Mersch, Kacey; Xu, Hui; Chen, Songhai; Lin, Fang

    2017-08-01

    Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Refugee children's play: Before and after migration to Australia.

    PubMed

    MacMillan, Kelli K; Ohan, Jeneva; Cherian, Sarah; Mutch, Raewyn C

    2015-08-01

    Play is vital to children's development, health and resilience. Play modulates cognitive, emotional and social well-being. Children constitute approximately half of all humanitarian refugee entrants resettled in Australia. Refugee children are commonly victims and witnesses of war and persecution, living across resource-poor environs during transit. Little is known about the effects of refugee migration on play. This study explores how refugee children engaged in play pre-migration (in their home country) and post-migration (Australia). Refugee children attending the Refugee Health Clinic of a tertiary children's hospital were invited to complete a qualitative descriptive study of play. The children were asked to draw how they played pre- and post-migration. Drawings were analysed for (i) the presence of play; (ii) location of play; and (iii) drawing detail. Nineteen refugee children were recruited (mean age 8.5 years ± standard deviation 6.4 months). Significantly fewer children drew play pre- versus post-migration (11/19, 58% vs. 18/19, 95% P < 0.03). Girls had greater comparative changes in play with migration (pre: 2/8, 25% vs. post: 7/8, 87%, P = 0.06), trending to significance. Of those children who drew play, almost all drew playing outside (pre-migration: 10/11, 90.9%; post-migration: 17/18, 94.4%). Drawings showed equivalent detail pre- and post-migration. Resettled refugee children, especially girls, demonstrated limited play pre-migration, with higher levels of engagement post-resettlement. Facilitating opportunities for variety of play may strengthen positive resettlement outcomes for children and parents. Larger longitudinal studies examining play in refugee children and associations with physical, development and psychological well-being are warranted. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  1. [Migration in the Caribbean Basin].

    PubMed

    Pastor, R A

    1982-06-01

    A review of recent migration trends in the Caribbean region is presented. The region is defined as those countries and territories in or surrounding the Caribbean. Consideration is also given to migration from the region to the United States. The characteristics and consequences of these migration trends are discussed.

  2. Ion channels and transporters in tumour cell migration and invasion

    PubMed Central

    Schwab, Albrecht; Stock, Christian

    2014-01-01

    Cell migration is a central component of the metastatic cascade requiring a concerted action of ion channels and transporters (migration-associated transportome), cytoskeletal elements and signalling cascades. Ion transport proteins and aquaporins contribute to tumour cell migration and invasion among other things by inducing local volume changes and/or by modulating Ca2+ and H+ signalling. Targeting cell migration therapeutically bears great clinical potential, because it is a prerequisite for metastasis. Ion transport proteins appear to be attractive candidate target proteins for this purpose because they are easily accessible as membrane proteins and often overexpressed or activated in cancer. Importantly, a number of clinically widely used drugs are available whose anticipated efficacy as anti-tumour drugs, however, has now only begun to be evaluated. PMID:24493750

  3. Forced Migration: Refugee Populations

    PubMed Central

    Boyle, Joyceen S.

    2015-01-01

    Undocumented migration is a global phenomenon that manifests in various contexts. This article describes the impact of the movement of large numbers of people in several African countries, producing a unique type of migrant—the refugee. We describe issues that refugee movements create on fragile health care systems, situations that precipitate refugee movements, certain human rights violations that are of particular concern such as gender based violence (GBV) and child soldiers, and lastly, implications for nursing practice and policy. We use examples from several countries in Sub-Saharan Africa, including the Democratic Republic of the Congo, Rwanda, Liberia, Sierra Leone, and Mozambique. Drawing on key documents from the United Nations High Commissioner for Refugees, current literature, as well as the international experience of the authors, this article presents an overview of forced migration and discusses opportunities for nurses to impact research, practice and policy related to refugee health. PMID:25645484

  4. Integration by migration?

    PubMed

    Shafik, N

    1994-01-01

    "In terms of trade and capital flows, the Middle East is one of the least economically integrated regions of the world. The major exception is labor mobility, where intraregional migration flows are extensive. The explanation for this pattern lies in the extreme differences in factor endowments across the region and development policies adopted by both labor-importing and exporting countries. Because the obstacles to trade in goods have been greater than the obstacles to migration, labor mobility and its associated capital flows have been the most important mechanism through which the benefits of the oil windfall have been spread to the poorer states of the region. There is evidence that incomes across the Middle East have become more equal."

  5. Computational model of mesenchymal migration in 3D under chemotaxis.

    PubMed

    Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M

    2017-01-01

    Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL(-1) a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.

  6. Computational model of mesenchymal migration in 3D under chemotaxis

    PubMed Central

    Ribeiro, F. O.; Gómez-Benito, M. J.; Folgado, J.; Fernandes, P. R.; García-Aznar, J. M.

    2017-01-01

    Abstract Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell–matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices – collagen and fibrin – and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL−1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency. PMID:27336322

  7. Erosion, Contamination, and Migration

    SciTech Connect

    Strachan, J. D.

    2010-05-20

    This paper will summarize studies of carbon impurity sources, contamination, and migration developed through JET methane gas injection experiments. These studies were analyzed using the 2D SOL code EDGE2D/NIMBUS. The code is capable of repeating the JET analysis using the ITER geometry and SOL plasma. This allows assessment of whether the physical processes occurring in JET might also occur in ITER, and thus whether the JET results transfer, in any sense, to the ITER plasmas. Certainly, the ITER choice of wall materials (W and Be) is different than for the present JET C studies. So the present status of these studies is to relate JET carbon behavior to carbon in ITER.JET carbon sources were studied spectroscopically and analyzed with atomic physics models in EDGE2D. The carbon sources are dominated by chemical sputtering at rates which are within a factor-of-two of the published literature. The JET carbon contamination is dominated by main chamber sources which are ionized in the main chamber SOL about 1-2 cm from the separatrix. Contamination occurs from carbon ions which diffuse across the field lines and reach the separatrix before they can parallel transport to the divertor. JET carbon migration was studied by injecting methane composed of {sup 13}C on the last run day before an opening and then analyzing removed tiles to identify migration to those locations. Modeling was accomplished by the same EDGE2D models that were used to describe the carbon sources and contamination. The entire migration process is complicated.

  8. Erosion, Contamination, and Migration

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.

    2010-05-01

    This paper will summarize studies of carbon impurity sources, contamination, and migration developed through JET methane gas injection experiments. These studies were analyzed using the 2D SOL code EDGE2D/NIMBUS. The code is capable of repeating the JET analysis using the ITER geometry and SOL plasma. This allows assessment of whether the physical processes occurring in JET might also occur in ITER, and thus whether the JET results transfer, in any sense, to the ITER plasmas. Certainly, the ITER choice of wall materials (W and Be) is different than for the present JET C studies. So the present status of these studies is to relate JET carbon behavior to carbon in ITER. JET carbon sources were studied spectroscopically and analyzed with atomic physics models in EDGE2D. The carbon sources are dominated by chemical sputtering at rates which are within a factor-of-two of the published literature. The JET carbon contamination is dominated by main chamber sources which are ionized in the main chamber SOL about 1-2 cm from the separatrix. Contamination occurs from carbon ions which diffuse across the field lines and reach the separatrix before they can parallel transport to the divertor. JET carbon migration was studied by injecting methane composed of 13C on the last run day before an opening and then analyzing removed tiles to identify migration to those locations. Modeling was accomplished by the same EDGE2D models that were used to describe the carbon sources and contamination. The entire migration process is complicated.

  9. Migration and stratification

    PubMed Central

    Jasso, Guillermina

    2011-01-01

    Migration and stratification are increasingly intertwined. One day soon it will be impossible to understand one without the other. Both focus on life chances. Stratification is about differential life chances - who gets what and why - and migration is about improving life chances - getting more of the good things of life. To examine the interconnections of migration and stratification, we address a mix of old and new questions, carrying out analyses newly enabled by a unique new data set on recent legal immigrants to the United States (the New Immigrant Survey). We look at immigrant processing and lost documents, depression due to the visa process, presentation of self, the race-ethnic composition of an immigrant cohort (made possible by the data for the first time since 1961), black immigration from Africa and the Americas, skin-color diversity among couples formed by U.S. citizen sponsors and immigrant spouses, and English fluency among children age 8–12 and their immigrant parents. We find, inter alia, that children of previously illegal parents are especially more likely to be fluent in English, that native-born U.S. citizen women tend to marry darker, that immigrant applicants who go through the visa process while already in the United States are more likely to have their documents lost and to suffer visa depression, and that immigration, by introducing accomplished black immigrants from Africa (notably via the visa lottery), threatens to overturn racial and skin color associations with skill. Our analyses show the mutual embeddedness of migration and stratification in the unfolding of the immigrants' and their children's life chances and the impacts on the stratification structure of the United States. PMID:26321771

  10. Retrograde gastrojejunostomy tube migration.

    PubMed

    Adesina, Adeleke; Rammohan, Guhan; Jeanmonod, Rebecca

    2014-01-01

    Percutaneous enteral feeding tubes are placed about 250,000 times each year in the United States. Although they are relatively safe, their placement may be complicated by perforation, infection, bleeding, vomiting, dislodgment, and obstruction. There have been numerous reports of antegrade migration of gastrojejunostomy (G-J) tubes. We report a case of G-J tube regurgitation following protracted vomiting and discuss the management of this very rare entity.

  11. Conservation physiology of animal migration.

    PubMed

    Lennox, Robert J; Chapman, Jacqueline M; Souliere, Christopher M; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D; Cooke, Steven J

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  12. Conservation physiology of animal migration

    PubMed Central

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  13. Gender and migration from Albania.

    PubMed

    Stecklov, Guy; Carletto, Calogero; Azzarri, Carlo; Davis, Benjamin

    2010-11-01

    This article examines the dynamics and causes of the shift in the gender composition of migration, and more particularly, in women's access to migration opportunities and decision-making. Our analysis focuses on Albania, a natural laboratory for studying international migration where out-migration was essentially nonexistent from the end of World War II to the end of the 1980s. Interest in the Albanian case is heightened because of the complex layers of inequality existing at the time when migration began: relatively low levels of inequality within the labor market and educational system-a product of the Communist era-while household relations remained heavily steeped in tradition and patriarchy. We use micro-level data from the Albania 2005 Living Standards Measurement Study, including migration histories for family members since migration began. Based on discrete-time hazard models, the analysis shows a dramatic increase in male migration and a gradual and uneven expansion of the female proportion of this international migration. Female migration, which is shown to be strongly associated with education, wealth, and social capital, appears responsive to economic incentives and constraints. Using information on the dependency of female migration to the household demographic structure as well as the sensitivity of female migration to household-level shocks, we show how household-level constraints and incentives affect male and female migration differently. Throughout this period, however, women's migration behavior appears more directly aligned with household-level factors, and there is little evidence to suggest that increased female migration signals rising behavioral independence among Albanian women.

  14. Gender and Migration from Albania

    PubMed Central

    STECKLOV, GUY; CARLETTO, CALOGERO; AZZARRI, CARLO; DAVIS, BENJAMIN

    2010-01-01

    This article examines the dynamics and causes of the shift in the gender composition of migration, and more particularly, in women’s access to migration opportunities and decision-making. Our analysis focuses on Albania, a natural laboratory for studying international migration where out-migration was essentially nonexistent from the end of World War II to the end of the 1980s. Interest in the Albanian case is heightened because of the complex layers of inequality existing at the time when migration began: relatively low levels of inequality within the labor market and educational system—a product of the Communist era—while household relations remained heavily steeped in tradition and patriarchy. We use micro-level data from the Albania 2005 Living Standards Measurement Study, including migration histories for family members since migration began. Based on discrete-time hazard models, the analysis shows a dramatic increase in male migration and a gradual and uneven expansion of the female proportion of this international migration. Female migration, which is shown to be strongly associated with education, wealth, and social capital, appears responsive to economic incentives and constraints. Using information on the dependency of female migration to the household demographic structure as well as the sensitivity of female migration to household-level shocks, we show how household-level constraints and incentives affect male and female migration differently. Throughout this period, however, women’s migration behavior appears more directly aligned with household-level factors, and there is little evidence to suggest that increased female migration signals rising behavioral independence among Albanian women. PMID:21308565

  15. Hydrodynamics of pronuclear migration

    NASA Astrophysics Data System (ADS)

    Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael

    2014-11-01

    Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.

  16. Detours in bird migration.

    PubMed

    Alerstam, T

    2001-04-07

    Bird migration routes often follow detours where passages across ecological barriers are reduced in extent. This occurs in spite of the fact that long barrier crossings are within the birds' potential flight range capacity. Long-distance flights are associated with extra energy costs for transport of the heavy fuel loads required. This paper explores how important the fuel transport costs, estimated on the basis of flight mechanics, may be to explain detours for birds migrating by flapping flight. Maximum detours in relation to expanse of the barrier are predicted for cases where birds travel along the detour by numerous short flights and small fuel reserves, divide the detour into a limited number of flight steps, and where a reduced barrier passage is included in the detour. The principles for determining the optimum route, often involving a shortcut across part of the barrier, are derived. Furthermore, the effects of differences in fuel deposition rates and in transport costs for the profitability of detours are briefly considered. An evaluation of a number of observed and potential detours in relation to the general predictions of maximum detours, indicates that reduction of fuel transport costs may well be a factor of widespread importance for the evolution of detours in bird migration at wide ecological barriers. Copyright 2001 Academic Press.

  17. Insulators and Materials for Closed-Spaced Thermoelectric Modules

    SciTech Connect

    Donald P. Snowden

    2003-07-20

    The primary goal of this Phase I program has been accomplished: to demonstrate a ceramic, injection-molded eggcrate which will form the support structure for a close-spaced thermoelectric module which can operate at significantly higher temperatures than presently possible with such modules. It has been shown that yttria-stabilized zirconia is compatible at high temperatures with typical thermoelectric materials (TAGS, SnTE and PbTe) and that it can serve as a barrier between them to preclude cross-contamination and doping of the constituents of one leg type by those from the other. Using a 2 x 2 ceramic eggcrate, thermally sprayed molybdenum electrodes have been deposited on a test module which effectively seal each pocket, further reducing the possibility of migration of elements. Based on these results the next tasks are to refine the design of the injection tool and the injection parameters to produce consistent results and to allow increase in the size of the module to that on which commercial, high-temperature thermoelectric modules can be based. In addition, development of the fabrication techniques for segmented thermoelectric legs for use with these ceramic eggcrates at high temperatures must be continued.

  18. Modulation techniques

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1982-01-01

    Bandwidth efficient digital modulation techniques, proposed for use on and/or applied to satellite channels, are reviewed. In a survey of recent works on digital modulation techniques, the performance of several schemes operating in various environments are compared. Topics covered include: (1) quadrature phase shift keying; (2) offset - QPSK and MSK; (3) combined modulation and coding; and (4) spectrally efficient modulation techniques.

  19. Lines of evidence for environmentally driven human migration

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; D'Odorico, P.

    2012-12-01

    determine additional factors that may help explain migration at global, regional, continental and community-based (i.e. maximized module) scales. Lastly, we explore the relationship between migration and natural disasters (e.g. drought, flooding) to identify instances in which the environment is a proximate cause of human displacement and in turn use this information to determine if a subsequent cascade of human movements appears in neighboring countries as a result of the elevated inflow of migrants from the initial country of interest. In this way, we seek to gain a fuller picture of the environmental factors driving the dynamics of modern human migration.

  20. Physical view on migration modes

    PubMed Central

    Mierke, Claudia Tanja

    2015-01-01

    Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility. PMID:26192136

  1. Physical view on migration modes.

    PubMed

    Mierke, Claudia Tanja

    2015-01-01

    Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.

  2. ILO - International Migration Programme.

    PubMed

    Boudraa, Miriam

    2011-01-01

    In a wide International Context characterised not only by the economical development but also by the social, cultural, political and individual development, we witness more and more to a exchange between the developed and the developing countries, which can be translated especially in the migration of the work force. In theory, all countries are either countries of origin either countries of transit or destination, and they are all responsible for the rights of migrant workers by promoting the rights, by monitoring and by preventing the abusive conditions. The process of migration of the workforce can be divided into three stages: the first coincides with the period prior to departure, the second is represented by the aftermath of the departure and the period of stay in the country of destination, the third stage corresponds to the return in the country of origin. The workers must be protected throughout this process by the international organizations that perform the catalytic role of communication and exchange between countries, for the only purpose of protecting the rights of immigrant and/or immigrants workers. The responsibility for the protection of workers is divided among the various players in the International Labour Organisation. Every country has to apply measures according to the international standards regarding workers' rights, standards that guide the various countries in the formulation and implementation of their policies and legislation. These standards are suggested by International Conventions, the ILO Conventions and other international instruments such as the human rights instrument. There has been a big step forward once the ILO Fundamental Conventions and Conventions on Migrant Workers where implemented and this implementation represented the use of the Guidelines "ILO Multilateral Framework on Labour Migration".

  3. Migration of Asteroidal Dust

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.

    2003-01-01

    Using the Bulirsh Stoer method of integration, we investigated the migration of dust particles under the gravitational influence of all planets, radiation pressure, Poynting Robertson drag and solar wind drag for equal to 0.01, 0.05, 0.1, 0.25, and 0.4. For silicate particles such values of correspond to diameters equal to about 40, 9, 4, 2, and 1 microns, respectively [1]. The relative error per integration step was taken to be less than 10sup-8. Initial orbits of the particles were close to the orbits of the first numbered mainbelt asteroids.

  4. [Multiple sclerosis and migration].

    PubMed

    Materljan, E; Sepcić, J; Materljan, B

    1996-01-01

    Multiple sclerosis, original primary demyelination in the central nervous system, is a disease of as yet unknown cause. Epidemiologic research may contribute to the clarification of this problem. Migration studies have proven that susceptibility to multiple sclerosis is associated with ethnic origin and environment, and that the critical age for the disease development is till 15 years. In Croatia, emigrating inhabitants of Gorski Kotar, a region with high exposure to this disease, carry the risk of multiple sclerosis development, provided that have emigrated after adolescence.

  5. [Obesity, migration and adolescence].

    PubMed

    Chamay-Weber, Catherine; Shehu-Brovina, Shqipe; Narring, Françoise

    2012-06-13

    Weight management interventions during adolescence are challenging. Migration adds complexity to this problem, making migrant families more vulnerable. Teenagers confront families to new values transmitted by the host society: opulence, junk food, video games. Obesity should not be seen as a single issue of calories-excess, but must be considered as being part of a larger problem, which takes into account the context of the familial and societal life of the migrants. The caregivers must have an overall view of the situation to provide appropriate approaches to weight management.

  6. Migration of Asteroidal Dust

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.

    2003-01-01

    Using the Bulirsh Stoer method of integration, we investigated the migration of dust particles under the gravitational influence of all planets, radiation pressure, Poynting Robertson drag and solar wind drag for equal to 0.01, 0.05, 0.1, 0.25, and 0.4. For silicate particles such values of correspond to diameters equal to about 40, 9, 4, 2, and 1 microns, respectively [1]. The relative error per integration step was taken to be less than 10sup-8. Initial orbits of the particles were close to the orbits of the first numbered mainbelt asteroids.

  7. Migration and AIDS.

    PubMed

    Decosas, J; Kane, F; Anarfi, J K; Sodji, K D; Wagner, H U

    1995-09-23

    A successful short-term solution to transmission of AIDS in Western Africa by migrants involves provision of accessible and acceptable basic health and social services to migrants at their destination. The aim is to establish a sense of security and community, which is a health requirement. When migrants are excluded from community life or victimized as carriers of HIV infections, they will be driven by basic survival needs and dysfunctional social organization, which results in the rapid spread of HIV. Closing borders and mass deportation may not be an option. The long-term solution is population policy, environmental protection, and economic development. The focus on mapping the spread of AIDS must shift to a consideration of the migrant social conditions that make them vulnerable to AIDS. The issue of migration and AIDS will be addressed at the First European Conference on Tropical Medicine in October 1995 in Hamburg, Germany. In Uganda, HIV seroprevalence rates ranged from 5.5% among the stable population to 12.4% among internal migrants moving between villages to 16.3% among migrants from other areas. A World Bank project is operating in Western Africa, which traces seasonal male migration from the Cameroon to Liberia, Senegal to Nigeria, and from the Sahel to the coast during dry seasons. National border rules may influence the routes but not the extent of migration. A major destination place is Cote d' Ivoire, which has 25% of total population comprised of migrants from other countries and one of the highest HIV prevalence rates in Western Africa. On plantations prostitutes are brought in. Each prostitute serves about 25 workers. The pattern of sexual mixing contributes to the high HIV rates. Female migration is smaller and usually concentrated in prostitution at place of destination. Illiteracy and poverty drive women migrants into the trade. Their frequent health problems are malaria, pelvic pain, menstrual irregularity, vaginal discharge, and genital

  8. Excitation mechanism of non-migrating tides

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yasunobu; Pancheva, Dora; Mukhtarov, Plamen; Jin, Hidekatsu; Fujiwara, Hitoshi; Shinagawa, Hiroyuki

    2017-04-01

    Using an atmosphere-ionosphere coupled model, the excitation source and temporal (seasonal and interannual) variations in non-migrating tides are investigated in this study. We first focus our attention on temporal variations in eastward moving diurnal tide with zonal wavenumber 3 (DE3), which is the largest of all the non-migrating tides in the mesosphere and lower thermosphere (MLT). Our simulation results indicate that upward propagation of the DE3 excited in the troposphere is sensitive to the zonal mean zonal wind in the stratosphere and mesosphere. The DE3 amplitude is enhanced in the region where the vertical shear of the zonal mean zonal wind is positive (westerly shear). Quasi-2-year variation in the DE3 amplitude in the MLT region is generated by quasi-2-year variation in the zonal mean zonal wind between 40 and 70 km, which is modulated by the stratospheric QBO. The excitation mechanisms of SW3 (westward moving semidiurnal tide with zonal wavenumber 3) and SW1 (westward moving semidiurnal tide with zonal wavenumber 1) are also investigated. During equinoxes, the SW3 and SW1 are excited by tropospheric heating (latent heat release and solar radiative heating) associated with cumulus convection in the tropics, and propagate upward into the MLT region. On the other hand, during solstices, SW3 and SW1 are generated in the winter stratosphere and mesosphere through the nonlinear interaction between the stationary planetary wave and migrating semidiurnal tide, and propagate upward to the lower thermosphere. The excitation sources of other non-migrating tides are also discussed.

  9. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Lee, C.; Manga, M.

    2012-12-01

    The position of active volcanism relative to the trench in arcs depends on melt focusing processes within the mantle wedge and the geometric parameters of subduction. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where backarc extension dominates, exhibit a more stationary front in time relative to the trench. In addition, crustal indices of magmatism as measured by the ratio of trace elements La/Yb or isotopes 87}Sr/{86Sr covary with arc front migration (e.g., Haschke et al., 2002). Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust. Thickening proceeds through intrusive as well as extrusive volcanism, modulated by tectonics and surface erosion. Migration rate is set by the mantle melt flux into the crust, which decreases as thickening occurs. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop an analytic model of this process that produces migration rates consistent with published data and explains arc fronts that do not move (dominated by extension, such as in the case of intra-oceanic arcs). We present new geochemical and age data from the Peninsular Ranges Batholith that are also consistent with

  10. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where back-arc extension dominates, migrate more slowly, if at all. Coupled with arc migration there are systematic changes in the geochemistry of magmas such as the ratio of trace elements La/Yb and 87Sr/86Sr isotopes (e.g., Haschke et al., 2002). The position of active volcanic arcs relative to the trench is controlled by the location where melt is generated in the mantle wedge, in turn controlled by the geometry of subduction, and the processes that focus rising melt. Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust and lithosphere. Thickening rate is determined by the mantle melt flux into the crust, modulated by tectonics and surface erosion. It is not steady in time, as crustal thickening progressively truncates the mantle melt column and eventually shuts it off. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop a quantitative model for arc front migration that is consistent with published arc front data, and explains why arc fronts do not move when there is extension, such

  11. Collective cell migration in development

    PubMed Central

    Scarpa, Elena

    2016-01-01

    During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298

  12. Cell migration in the forebrain.

    PubMed

    Marín, Oscar; Rubenstein, John L R

    2003-01-01

    The forebrain comprises an intricate set of structures that are required for some of the most complex and evolved functions of the mammalian brain. As a reflection of its complexity, cell migration in the forebrain is extremely elaborated, with widespread dispersion of cells across multiple functionally distinct areas. Two general modes of migration are distinguished in the forebrain: radial migration, which establishes the general cytoarchitectonical framework of the different forebrain subdivisions; and tangential migration, which increases the cellular complexity of forebrain circuits by allowing the dispersion of multiple neuronal types. Here, we review the cellular and molecular mechanisms underlying each of these types of migrations and discuss how emerging concepts in neuronal migration are reshaping our understanding of forebrain development in normal and pathological situations.

  13. Migration control: a distance compensation strategy in ants.

    PubMed</