Science.gov

Sample records for a2 receptor tp

  1. Brain-Penetrant Tetrahydronaphthalene Thromboxane A2-Prostanoid (TP) Receptor Antagonists as Prototype Therapeutics for Alzheimer’s Disease

    PubMed Central

    2012-01-01

    A hallmark pathological feature of the Alzheimer’s disease (AD) brain is the presence of senile plaques, which comprise amyloid β (Aβ) peptides that are derived from the amyloid precursor protein (APP). The plaque-containing AD brain is thought to be under oxidative stress, as evidenced by increased lipid oxidation products that include isoprostane-F2αIII (iPF2αIII). IPF2αIII can bind to and activate the thromboxane A2-prostanoid (TP) receptor, and TP receptor activation causes increased Aβ production through enhancement of APP mRNA stability. Moreover, TP receptor antagonists have been shown to block iPF2αIII-induced increases of Aβ secretion. Thus, the TP receptor may be a potential drug target for AD therapy. However, here we show that existing TP receptor antagonists have poor blood-brain barrier (BBB) permeability, likely due to the presence of a carboxylic acid moiety that is believed to be important for receptor interaction, but which may hamper passive diffusion across the BBB. We now report selected analogues of a known tetrahydronaphthalene TP receptor antagonist, wherein the carboxylic acid moiety has been replaced by heterocyclic bioisosteres. These heterocyclic analogues retained relatively high affinity for the mouse and human TP receptors, and, unlike the parent carboxylic acid compound, several examples freely diffused across the BBB into the brain upon administration to mice. These results reveal that brain-penetrant tetrahydronaphthalene TP receptor antagonists can be developed by substituting the carboxylic acid moiety with a suitable nonacidic bioisostere. Compounds of this type hold promise as potential lead structures to develop drug candidates for the treatment of AD. PMID:23173073

  2. Flavonoids inhibit the platelet TxA2 signalling pathway and antagonize TxA2 receptors (TP) in platelets and smooth muscle cells

    PubMed Central

    Guerrero, José A; Navarro-Nuñez, Leyre; Lozano, María L; Martínez, Constantino; Vicente, Vicente; Gibbins, Jonathan M; Rivera, José

    2007-01-01

    What is already known about this subject Flavonoids are largely recognized as potential inhibitors of platelet function, through nonspecific mechanisms such as antioxidant activity and/or inhibition of several enzymes and signalling proteins. In addition, we, and few others, have shown that certain antiaggregant flavonoids may behave as specific TXA2 receptor (TP) ligands in platelets. Whether flavonoids interact with TP isoforms in other cell types is not known, and direct evidence that flavonoid–TP interaction inhibits signalling downstream TP has not been shown. What this study adds This study first demonstrates that certain flavonoids behave as ligands for both TP isoforms, not only in platelets, but also in human myometrium and in TP-transfected HEK 293T cells. Differences in the effect of certain flavonoids in platelet signalling, induced by either U46619 or thrombin, suggest that abrogation of downstream TP signalling is related to their specific blockage of the TP, rather than to a nonspecific effect on tyrosine kinases or other signalling proteins. Aims Flavonoids may affect platelet function by several mechanisms, including antagonism of TxA2 receptors (TP). These TP are present in many tissues and modulate different signalling cascades. We explored whether flavonoids affect platelet TP signalling, and if they bind to TP expressed in other cell types. Methods Platelets were treated with flavonoids, or other selected inhibitors, and then stimulated with U46619. Similar assays were performed in aspirinized platelets activated with thrombin. Effects on calcium release were analysed by fluorometry and changes in whole protein tyrosine phosphorylation and activation of ERK 1/2 by Western blot analysis. The binding of flavonoids to TP in platelets, human myometrium and TPα- and TPβ-transfected HEK 293T cells was explored using binding assays and the TP antagonist 3H-SQ29548. Results Apigenin, genistein, luteolin and quercetin impaired U46619-induced calcium

  3. Involvement of the TP receptor in TNF-α-induced endothelial tissue factor expression.

    PubMed

    Del Turco, Serena; Basta, Giuseppina; Lazzerini, Guido; Chancharme, Laurent; Lerond, Laurence; De Caterina, Raffaele

    2014-08-01

    Thromboxane (TX) A2, prostaglandin endoperoxides and F2-isoprostanes exert their effects through a TX-prostanoid (TP) receptor, also expressed in endothelial cells. We investigated a role of the TP receptor in the endothelial expression of tissue factor (TF), a key trigger to thrombosis. Human umbilical vein endothelial cells (HUVEC) exposed to the TP receptor agonist U46619 featured a concentration-dependent increase in TF surface exposure and procoagulant activity. HUVEC pre-incubation with the TP receptor antagonist S18886, followed by stimulation with either U46619 or tumor necrosis factor-α (TNF-α), attenuated TF surface exposure and activity compared with stimulated control. Aspirin or indomethacin, while inhibiting cyclooxygenase (COX)-1 and -2 activities, did not mimic this effect. Probing of underlying mechanisms by selective pharmacological and gene silencing experiments showed that S18886 reduced U46619- or TNF-α-induced TF expression inhibiting ROS production, NAD(P)H oxidase and PKC activation. In addition, S18886 also inhibited ERK activation in the presence of both U46619 and TNF-α alone, while inhibition of JNK activation only occurred in the presence of U46619. The endothelial TP receptor contributes to TF surface exposure and activity induced not only by known TP receptor agonists, but also by TNF-α. Such findings expand the therapeutic potential of TP receptor inhibition. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. TP receptor as a therapeutic target in atherosclerosis and related cardiovascular diseases.

    PubMed

    Ishizuka, Toshiaki; Higashino, Hideaki

    2006-11-01

    It had already showed that several thromboxane A(2) receptor (TP receptor) antagonists might be utilized in the treatment of cardiovascular diseases. In addition, recent reports suggested that TP receptor antagonism may be able to restrict vascular inflammation in atherosclerotic vessels. In particular, S18886 has been developed as a non-prostanoid TP receptor antagonist derived from sulotroban that is characterized by a tetrahydronaphthalene ring as a spacer between the 4-cholophenylsulfonamide group and carboxylic acid. Several reports using experimental animal models of atherosclerosis indicated that S18886 caused a regression of advanced atherosclerosis. More recently, several studies and patents showed that new thromboxane modulators combined with another pharmacological activities have been developed. Ohtake et al. discovered TRA-418 (a benzene-condensed heterocyclic derivative) having a TP receptor antagonistic activity and a prostaglandin I(2) receptor agonistic activity. Cesagrande found that 4-methyl-N- (4-trans-nitrooxycyclohexyl)-N-(3-pyridinylmethyl)-1,3- benzenedicarboxamide is endowed with anti-thromboxane and NO-donor actions. Oketani et al. discovered that E3040, a novel benzothiazole derivative, inhibited TXA(2) synthase and 5-LO activities. EK112, a combined angiotensin II and TP receptor antagonist, was developed. These new compounds may be able to restrict further infiltration of inflammatory cells in atherosclerotic vessels, thus stabilizing vulnerable plaques in the related cardiovascular diseases.

  5. Prostanoid EP1- and TP-receptors involved in the contraction of human pulmonary veins

    PubMed Central

    Walch, Laurence; de Montpreville, Vincent; Brink, Charles; Norel, Xavier

    2001-01-01

    To characterize the prostanoid receptors (TP, FP, EP1 and/or EP3) involved in the vasoconstriction of human pulmonary veins, isolated venous preparations were challenged with different prostanoid-receptor agonists in the absence or presence of selective antagonists. The stable thromboxane A2 mimetic, U46619, was a potent constrictor agonist on human pulmonary veins (pEC50=8.60±0.11 and Emax=4.61±0.46 g; n=15). The affinity values for two selective TP-antagonists (BAY u3405 and GR32191B) versus U46619 were BAY u3405: pA2=8.94±0.23 (n=3) and GR32191B: apparent pKB=8.25±0.34 (n=3), respectively. These results are consistent with the involvement of TP-receptor in the U46619 induced contractions. The two EP1-/EP3- agonists (17-phenyl-PGE2 and sulprostone) induced contraction of human pumonary veins (pEC50=8.56±0.18; Emax=0.56±0.24 g; n=5 and pEC50=7.65±0.13; Emax=1.10±0.12 g; n=14, respectively). The potency ranking for these agonists: 17-phenyl-PGE2>sulprostone suggests the involvement of an EP1-receptor rather than EP3. In addition, the contractions induced by sulprostone, 17-phenyl-PGE2 and the IP-/EP1- agonist (iloprost) were blocked by the DP-/EP1-/EP2-receptor antagonist (AH6809) as well as by the EP1 antagonist (SC19220). PGF2α induced small contractions which were blocked by AH6809 while fluprostenol was ineffective. These results indicate that FP-receptors are not implicated in the contraction of human pulmonary veins. These data suggest that the contractions induced by prostanoids involved TP- and EP1-receptors in human pulmonary venous smooth muscle. PMID:11739243

  6. Brain prostanoid TP receptor-mediated adrenal noradrenaline secretion and EP3 receptor-mediated sympathetic noradrenaline release in rats.

    PubMed

    Yokotani, Keiko; Okada, Shoshiro; Nakamura, Kumiko; Yamaguchi-Shima, Naoko; Shimizu, Takahiro; Arai, Junichi; Wakiguchi, Hiroshi; Yokotani, Kunihiko

    2005-04-04

    Sympathetic nerves release noradrenaline, whereas adrenal medullary chromaffin cells secrete noradrenaline and adrenaline. Therefore, plasma noradrenaline reflects the secretion from adrenal medulla in addition to the release from sympathetic nerves, however the exact mechanisms of adrenal noradrenaline secretion remain to be elucidated. The present study was designated to characterize the source of plasma noradrenaline induced by intracerebroventricularly (i.c.v.) administered bombesin and prostaglandin E2 in urethane-anesthetized rats. Bombesin (1.0 nmol/animal, i.c.v.) elevated plasma noradrenaline and adrenaline, while prostaglandin E2 (0.3 nmol/animal, i.c.v.) elevated only plasma noradrenaline. The bombesin-induced elevations of both catecholamines were attenuated by pretreatments with furegrelate (an inhibitor of thromboxane A2 synthase) [250 and 500 microg (0.9 and 1.8 micromol)/animal, i.c.v.)] and [(+)-S-145] [(+)-(1R,2R,3S,4S)-(5Z)-7-(3-[4-3H]-phenylsulphonyl-aminobicyclo[2.2.1]hept-2-yl)hept-5-enoic acid sodium salt] (an antagonist of prostanoid TP receptors) [100 and 250 microg (250 and 625 nmol)/animal)], and abolished by acute bilateral adrenalectomy. On the other hand, the prostaglandin E2-induced elevation of plasma noradrenaline was not influenced by acute bilateral adrenalectomy. These results suggest that adrenal noradrenaline secretion and sympathetic noradrenaline release are mediated by differential central mechanisms; brain prostanoid TP receptors activated by bombesin are involved in the adrenal noradrenaline secretion, while brain prostanoid EP (probably EP3) receptors activated by prostaglandin E2 are involved in the sympathetic noradrenaline release in rats. Brain prostanoid TP receptors activated by bombesin are also involved in the adrenal adrenaline secretion.

  7. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2.

    PubMed Central

    Thomas, D W; Mannon, R B; Mannon, P J; Latour, A; Oliver, J A; Hoffman, M; Smithies, O; Koller, B H; Coffman, T M

    1998-01-01

    Thromboxane A2 (TXA2) is a labile metabolite of arachidonic acid that has potent biological effects. Its actions are mediated by G protein-coupled thromboxane-prostanoid (TP) receptors. TP receptors have been implicated in the pathogenesis of cardiovascular diseases. To investigate the physiological functions of TP receptors, we generated TP receptor-deficient mice by gene targeting. Tp-/- animals reproduce and survive in expected numbers, and their major organ systems are normal. Thromboxane agonist binding cannot be detected in tissues from Tp-/- mice. Bleeding times are prolonged in Tp-/- mice and their platelets do not aggregate after exposure to TXA2 agonists. Aggregation responses after collagen stimulation are also delayed, although ADP-stimulated aggregation is normal. Infusion of the TP receptor agonist U-46619 causes transient increases in blood pressure followed by cardiovascular collapse in wild-type mice, but U-46619 caused no hemodynamic effect in Tp-/- mice. Tp-/- mice are also resistant to arachidonic acid-induced shock, although arachidonic acid signifi-cantly reduced blood pressure in Tp-/- mice. In summary, Tp-/- mice have a mild bleeding disorder and altered vascular responses to TXA2 and arachidonic acid. Our studies suggest that most of the recognized functions of TXA2 are mediated by the single known Tp gene locus. PMID:9835625

  8. Effects of TRA-418, a novel TP-receptor antagonist, and IP-receptor agonist, on human platelet activation and aggregation.

    PubMed

    Miyamoto, Mitsuko; Yamada, Naohiro; Ikezawa, Shiho; Ohno, Michihiro; Otake, Atsushi; Umemura, Kazuo; Matsushita, Teruo

    2003-11-01

    [4-[2-(1,1-Diphenylethylsulfanyl)-ethyl]-3,4-dihydro-2H-benzo[1,4]oxazin-8-yloxy]-acetic acid N-Methyl-d-glucamine salt (TRA-418) has both thromboxane A2 (TP)-receptor antagonist and prostacyclin (IP)-receptor agonist properties. The present study examined the advantageous effects of TRA-418 based on the dual activities, over an agent having either activity alone and also the difference in the effects of TRA-418 and a glycoprotein alphaIIb/beta3 integrin (GPIIb/IIIa) inhibitor. TRA-418 inhibited platelet GPIIb/IIIa activation as well as P-selectin expression induced by adenosine 5'-diphosphate, thrombin receptor agonist peptide 1-6 (Ser-Phe-Leu-Leu-Arg-Asn-NH2), and U-46619 in the presence of epinephrine (U-46619+ epinephrine). TRA-418 also inhibited platelet aggregation induced by those platelet-stimulants in Ca2+ chelating anticoagulant, citrate and in nonchelating anticoagulant, d-phenylalanyl-l-prolyl-l-arginyl-chloromethyl ketone (PPACK). The TP-receptor antagonist SQ-29548 inhibited only U-46619+epinephrine-induced GPIIb/IIIa activation, P-selectin expression, and platelet aggregation. The IP-receptor agonist beraprost sodium inhibited platelet activation. Beraprost also inhibited platelet aggregation induced by platelet stimulants we tested in citrate and in PPACK. The GPIIb/IIIa inhibitor abciximab blocked GPIIb/IIIa activation and platelet aggregation. However, abciximab showed slight inhibitory effects on P-selectin expression. TRA-418 is more advantageous as an antiplatelet agent than TP-receptor antagonists or IP-receptor agonists separately used. TRA-418 showed a different inhibitory profile from abciximab in the effects on P-selectin expression.

  9. Centrally administered neuromedin U elevates plasma adrenaline by brain prostanoid TP receptor-mediated mechanisms in rats.

    PubMed

    Sasaki, Tsuyoshi; Shimizu, Takahiro; Wakiguchi, Hiroshi; Yokotani, Kunihiko

    2008-09-11

    Neuromedin U is a hypothalamic peptide involved in energy homeostasis and stress responses. The peptide, when administered intracerebroventricularly (i.c.v.), decreases food intake and body weight while increasing body temperature and heat production. We examined the effect of i.c.v. administered neuromedin U on plasma catecholamines with regard to the brain prostanoid using anesthetized rats. Neuromedin U (0.1, 0.5 and 1 nmol/animal, i.c.v.) effectively elevated plasma adrenaline (a maximal response was obtained at 0.5 nmol/animal), but had little effect on plasma noradrenaline. However, intravenously administered neuromedin U (0.5 nmol/animal) had no effect on plasma catecholamines. Neuromedin U (0.5 nmol/animal, i.c.v.)-induced elevation of plasma adrenaline was effectively reduced by intracerebroventricular pretreatments with indomethacin (an inhibitor of cyclooxygenase) (0.6 and 1.2 micromol/animal), furegrelate (an inhibitor of thromboxane A2 synthase) (0.9 and 1.8 micromol/animal) and (+)-S-145 (a blocker of prostanoid TP receptors) (250 and 625 nmol/animal), respectively. The neuromedin U-induced adrenaline response was also abolished by acute bilateral adrenalectomy. These results suggest that centrally administered neuromedin U evokes the secretion of adrenaline from the adrenal medulla by brain prostanoid TP receptor-mediated mechanisms in rats.

  10. Sequential genetic change at the TP53 and chemokine receptor CXCR4 locus during transformation of human ovarian surface epithelium

    PubMed Central

    Archibald, Kyra M; Kulbe, Hagen; Kwong, Joseph; Chakravarty, Probir; Temple, Jill; Chaplin, Tracy; Flak, Magdalena B; McNeish, Iain A; Deen, Suha; Brenton, James D; Young, Bryan D; Balkwill, Frances

    2011-01-01

    Early genetic events in the development of high-grade serous ovarian cancer, HGSOC, may define the molecular basis of the profound structural and numerical instability of chromosomes in this disease. To discover candidate genetic changes we sequentially passaged cells from a karyotypically normal hTERT immortalised human ovarian surface epithelial line (IOSE25) resulting in the spontaneous formation of colonies in soft agar. Cell lines (TOSE 1 and 4) established from these colonies had an abnormal karyotype and altered morphology but were not tumorigenic in immunodeficient mice. TOSE cells showed loss of heterozygosity at TP53, increased nuclear p53 immunoreactivity and altered expression profile of p53 target genes. The parental IOSE25 cells contained a missense, heterozygous R175H mutation in TP53 whereas TOSE cells had loss of heterozygosity at the TP53 locus with a new R273H mutation at the previous wild-type TP53 allele. Cytogenetic and array CGH analysis of TOSE cells also revealed a focal genomic amplification of CXCR4, a chemokine receptor commonly expressed by HGSOC cells. TOSE cells had increased functional CXCR4 protein and its abrogation reduced epidermal growth factor receptor, EGFR, expression, as well as colony size and number. The CXCR4 ligand, CXCL12, was epigenetically silenced in TOSE cells and its forced expression increased TOSE colony size. TOSE cells had other cytogenetic changes typical of those seen in HGSOC ovarian cancer cell lines and biopsies. In addition, enrichment of CXCR4 pathway in expression profiles from HGSOC correlated with enrichment of a mutated TP53 gene expression signature and of EGFR pathway genes. Our data suggest that mutations in TP53 and amplification of the CXCR4 gene locus may be early events in the development of HGSOC, and associated with chromosomal instability. PMID:22266861

  11. Sequential genetic change at the TP53 and chemokine receptor CXCR4 locus during transformation of human ovarian surface epithelium.

    PubMed

    Archibald, K M; Kulbe, H; Kwong, J; Chakravarty, P; Temple, J; Chaplin, T; Flak, M B; McNeish, I A; Deen, S; Brenton, J D; Young, B D; Balkwill, F

    2012-11-29

    Early genetic events in the development of high-grade serous ovarian cancer (HGSOC) may define the molecular basis of the profound structural and numerical instability of chromosomes in this disease. To discover candidate genetic changes we sequentially passaged cells from a karyotypically normal hTERT immortalised human ovarian surface epithelial line (IOSE25) resulting in the spontaneous formation of colonies in soft agar. Cell lines transformed ovarian surface epithelium 1 and 4 (TOSE 1 and 4) established from these colonies had an abnormal karyotype and altered morphology, but were not tumourigenic in immunodeficient mice. TOSE cells showed loss of heterozygosity (LOH) at TP53, increased nuclear p53 immunoreactivity and altered expression profile of p53 target genes. The parental IOSE25 cells contained a missense, heterozygous R175H mutation in TP53, whereas TOSE cells had LOH at the TP53 locus with a new R273H mutation at the previous wild-type TP53 allele. Cytogenetic and array CGH analysis of TOSE cells also revealed a focal genomic amplification of CXCR4, a chemokine receptor commonly expressed by HGSOC cells. TOSE cells had increased functional CXCR4 protein and its abrogation reduced epidermal growth factor receptor (EGFR) expression, as well as colony size and number. The CXCR4 ligand, CXCL12, was epigenetically silenced in TOSE cells and its forced expression increased TOSE colony size. TOSE cells had other cytogenetic changes typical of those seen in HGSOC ovarian cancer cell lines and biopsies. In addition, enrichment of CXCR4 pathway in expression profiles from HGSOC correlated with enrichment of a mutated TP53 gene expression signature and of EGFR pathway genes. Our data suggest that mutations in TP53 and amplification of the CXCR4 gene locus may be early events in the development of HGSOC, and associated with chromosomal instability.

  12. Pro-apoptotic TP53 homolog TAp63 is repressed via epigenetic silencing and B-cell receptor signalling in chronic lymphocytic leukaemia.

    PubMed

    Humphries, Leigh A; Godbersen, J Claire; Danilova, Olga V; Kaur, Prabhjot; Christensen, Brock C; Danilov, Alexey V

    2013-12-01

    Chronic lymphocytic leukaemia (CLL) is an accumulative disorder marked by deficient apoptosis. The TP53 homolog TAp63 promotes apoptosis and chemosensitivity in solid tumours and its deregulation may contribute to CLL cell survival. We found that TAp63α was the most prevalent TP63 isoform in CLL. Compared to healthy B cells, TAp63 mRNA was repressed in 55·7% of CLL samples. TP63 promoter methylation was high in CLL and inversely correlated with TP63 protein expression in B-cell lymphoma cell lines. siRNA-mediated knockdown of TP63 resulted in partial protection from spontaneous apoptosis accompanied by reductions in PMAIP1 (NOXA), BBC3 (PUMA), and BAX mRNA in CLL cells and increased proliferation of Raji lymphoma cells. TAp63 mRNA levels were higher in CLL with unmutated IGHV. B-cell receptor (BCR) engagement led to repression of TP63 mRNA expression in malignant B cells, while pharmacological inhibition of BCR signalling prevented TP63 downregulation. MIR21, known to target TAp63, correlated inversely with TAp63 expression in CLL, and BCR-mediated downregulation of TP63 was accompanied by MIR21 upregulation in most CLL samples. Our data illustrate the pro-apoptotic function of TP63, provide insights into the mechanisms of BCR-targeting agents, and establish a rationale for designing novel approaches to induce TP63 in CLL and B-cell lymphoma. © 2013 John Wiley & Sons Ltd.

  13. TRA-418, a novel compound having both thromboxane A(2) receptor antagonistic and prostaglandin I(2) receptor agonistic activities: its antiplatelet effects in human and animal platelets.

    PubMed

    Yamada, N; Miyamoto, M; Isogaya, M; Suzuki, M; Ikezawa, S; Ohno, M; Otake, A; Umemura, K

    2003-08-01

    TRA-418 is a novel compound that has been found in our screening for compounds having both thromboxane A2 (TP) receptor antagonistic and prostaglandin I2 (IP) receptor agonistic activities. In the binding assays, TRA-418 showed a 10-fold higher affinity to TP-receptors than IP-receptors. TRA-418 inhibited platelet aggregation induced by the TP-receptor agonist, U-46619 and by arachidonic acid at concentrations lower than those required for inhibition of ADP-induced aggregations. Furthermore, TRA-418 inhibited not only platelet aggregation induced by ADP alone, but also that induced by ADP in the presence of the TP-receptor antagonist, SQ-29548. When the IC50 values of TRA-418 for platelet aggregation were estimated in platelet preparations from monkeys, dogs, cats, and rats using ADP and arachidonic acid as the platelet stimulating agents, it was found that the values estimated in monkey platelets were quite similar to those estimated in human platelets. In ex vivo platelet aggregation in monkeys, TRA-418 exhibited significant inhibitory effects on arachidonic acid-induced aggregation in platelet preparations from monkeys treated at 3 micro g kg min-1 or higher doses, where neither a significant decrease in blood pressure nor a significant increase in heart rate was observed. These results are consistent with the fact that TRA-418 has a relatively potent TP-receptor antagonistic activity together with a relatively weak IP-receptor agonistic activity.

  14. Interaction of prostanoid EP₃ and TP receptors in guinea-pig isolated aorta: contractile self-synergism of 11-deoxy-16,16-dimethyl PGE₂.

    PubMed

    Jones, R L; Woodward, D F

    2011-01-01

    Surprisingly high contractile activity was reported for 11-deoxy-16,16-dimethyl prostaglandin E₂ (DX-DM PGE₂) on pig cerebral artery when used as a selective EP₃ receptor agonist. This study investigated the selectivity profile of DX-DM PGE₂, focusing on the interaction between its EP₃ and TP (thromboxane A₂-like) agonist activities. Contraction of guinea-pig trachea (EP₁ system) and aorta (EP₃ and TP systems) was measured in conventional organ baths. Strong contraction of guinea-pig aorta to sulprostone and 17-phenyl PGE₂ (EP₃ agonists) was only seen under priming with a second contractile agent such as phenylephrine, histamine or U-46619 (TP agonist). In contrast, DX-DM PGE₂ induced strong contraction, which on the basis of treatment with (DG)-3ap (EP₃ antagonist) and/or BMS-180291 (TP antagonist) was attributed to self-synergism arising from co-activation of EP₃ and TP receptors. EP₃/TP self-synergism also accounted for contraction induced by PGF(2α) and its analogues (+)-cloprostenol and latanoprost-FA. DX-DM PGE₂ also showed significant EP₁ agonism on guinea-pig trachea as defined by the EP₁ antagonists SC-51322, (ONO)-5-methyl-1 and AH-6809, although AH-6809 exhibited poor specificity at concentrations ≥3 µM. EP₃/TP self-synergism, as seen with PGE/PGF analogues in this study, may confound EP₃ agonist potency comparisons and the characterization of prostanoid receptor systems. The competitive profile of a TP antagonist may be distorted by variation in the silent/overt contraction profile of the EP₃ system in different studies. The relevance of self-synergism to in vivo actions of natural prostanoid receptor agonists is discussed. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  15. A 2-base insertion in exon 5 is a common mutation of the TP53 gene in dogs with histiocytic sarcoma.

    PubMed

    Asada, Hajime; Tsuboi, Masaya; Chambers, James K; Uchida, Kazuyuki; Tomiyasu, Hirotaka; Goto-Koshino, Yuko; Ohno, Koichi; Tsujimoto, Hajime

    2017-09-01

    Canine histiocytic sarcoma (HS) is a malignancy originating from the histiocytic cell lineage and characterized by poor response to chemotherapy and short survival time. Mutation of the TP53 gene and its association with poor prognosis has been reported in several canine tumors. However, the mutation of this gene has not been investigated in canine HS. The aim of this study was to examine a TP53 gene mutation in dogs with HS. Aberrations of the TP53 gene were examined by polymerase chain reaction-single strand conformational polymorphism analysis and DNA sequence analysis, revealing mutations of the TP53 gene in 12 (46%) of 26 dogs affected by HS. The incidence of the TP53 gene mutation was relatively high in canine HS compared with other canine tumors. Among these mutations, 10 of 12 dogs (83%) with a TP53 gene mutation harbored the same mutation: a 2-base (AT) insertion in exon 5, resulting in the introduction of a stop codon (c.446_447insAT, p.Tyr150SerfsX8). Further studies are needed to examine the functional change due to the mutation and its association with the pathogenesis of canine HS.

  16. Presynaptic BK type Ca(2+)-activated K(+) channels are involved in prostanoid TP receptor-mediated inhibition of noradrenaline release from the rat gastric sympathetic nerves.

    PubMed

    Nakamura, Kumiko; Yokotani, Kunihiko

    2010-03-10

    Previously, we reported that prostanoid TP receptor mediates the inhibition of electrically evoked noradrenaline release from gastric sympathetic nerves in rats. Prostanoid TP receptor has been shown to activate phospholipase C (PLC), which catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-triphosphate (IP(3)) and diacylglycerol; IP(3) triggers the release of Ca(2+) from intracellular stores and diacylglycerol activates protein kinase C. In the present study, therefore, we examined whether these PLC-mediated mechanisms are involved in the TP receptor-mediated inhibition of gastric noradrenaline release using an isolated, vascularly perfused rat stomach. U-46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxy PGF(2alpha)) (a prostanoid TP receptor agonist)-induced inhibition of noradrenaline release from the stomach was reduced by U-73122 [1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]-amino]hexyl]-1H-pyrrole-2,5-dine] (a PLC inhibitor) and ET-18-OCH(3) (1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine) (a phosphatidylinositol-specific PLC inhibitor), respectively. 2-APB (2-aminoethyldiphenyl borate) (a putative IP(3) receptor antagonist) also abolished the U-46619-induced inhibition of noradrenaline release, but Ro 31-8220 [2-{1-[3-(amidinothio)propyl]-1H-indol-3-yl}-3-(1-methylindol-3-yl)-maleimide] (a protein kinase C inhibitor) had no effect. Furthermore, a small dose of tetraethylammonium and charybdotoxin [blockers of BK type Ca(2+)-activated K(+) channel] abolished the U-46619-induced inhibition, but apamin (a blocker of SK-type Ca(2+)-activated K(+) channel) had no effect. These results suggest that BK type Ca(2+)-activated K(+) channels are involved in prostanoid TP receptor-mediated inhibition of electrically evoked noradrenaline release from the gastric sympathetic nerve terminals in rats.

  17. Intermolecular cross-talk between the prostaglandin E2 receptor (EP)3 of subtype and thromboxane A(2) receptor signalling in human erythroleukaemic cells.

    PubMed

    Reid, Helen M; Kinsella, B Therese

    2009-10-01

    In previous studies investigating cross-talk of signalling between prostaglandin (PG)E(2) receptor (EP) and the TPalpha and TPbeta isoforms of the human thromboxane (TX)A(2) receptor (TP), 17-phenyl trinor PGE(2)-induced desensitization of TP receptor signalling through activation of the AH6809 and SC19220-sensitive EP(1) subtype of the EP receptor family, in a cell-specific manner. Here, we sought to further investigate that cross-talk in human erythroleukaemic (HEL) 92.1.7 cells. Specificity of 17-phenyl trinor PGE(2) signalling and its possible cross-talk with signalling by TPalpha/TPbeta receptors endogenously expressed in HEL cells was examined through assessment of agonist-induced inositol 1,4,5-trisphosphate (IP)(3) generation and intracellular calcium ([Ca(2+)](i)) mobilization. While 17-Phenyl trinor PGE(2) led to activation of phospholipase (PL)Cbeta to yield increases in IP(3) generation and [Ca(2+)](i), it did not desensitize but rather augmented that signalling in response to subsequent stimulation with the TXA(2) mimetic U46619. Furthermore, the augmentation was reciprocal. Signalling by 17-phenyl trinor PGE(2) was found to occur through AH6809- and SC19920-insensitive, Pertussis toxin-sensitive, G(i)/G(betagamma)-dependent activation of PLCbeta. Further pharmacological investigation using selective EP receptor subtype agonists and antagonists confirmed that 17-phenyl trinor PGE(2)-mediated signalling and reciprocal cross-talk with the TP receptors occurred through the EP(3), rather than the EP(1), EP(2) or EP(4) receptor subtype in HEL cells. The EP(1) and EP(3) subtypes of the EP receptor family mediated intermolecular cross-talk to differentially regulate TP receptor-mediated signalling whereby activation of EP(1) receptors impaired or desensitized, while that of EP(3) receptors augmented signalling through TPalpha/TPbeta receptors, in a cell type-specific manner.

  18. Expression of the TPα and TPβ isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential

    PubMed Central

    Mulvaney, Eamon P.; Shilling, Christine; Eivers, Sarah B.; Perry, Antoinette S.; Bjartell, Anders; Kay, Elaine W.; Watson, R. William; Kinsella, B. Therese

    2016-01-01

    The prostanoid thromboxane (TX) A2 plays a central role in haemostasis and is increasingly implicated in cancer progression. TXA2 signals through two T Prostanoid receptor (TP) isoforms termed TPα and TPβ, with both encoded by the TBXA2R gene. Despite exhibiting several functional and regulatory differences, the role of the individual TP isoforms in neoplastic diseases is largely unknown. This study evaluated expression of the TPα and TPβ isoforms in tumour microarrays of the benign prostate and different pathological (Gleason) grades of prostate cancer (PCa). Expression of TPβ was significantly increased in PCa relative to benign tissue and strongly correlated with increasing Gleason grade. Furthermore, higher TPβ expression was associated with increased risk of biochemical recurrence (BCR) and significantly shorter disease-free survival time in patients post-surgery. While TPα was more variably expressed than TPβ in PCa, increased/high TPα expression within the tumour also trended toward increased BCR and shorter disease-free survival time. Comparative genomic CpG DNA methylation analysis revealed substantial differences in the extent of methylation of the promoter regions of the TBXA2R that specifically regulate expression of TPα and TPβ, respectively, both in benign prostate and in clinically-derived tissue representative of precursor lesions and progressive stages of PCa. Collectively, TPα and TPβ expression is differentially regulated both in the benign and tumourigenic prostate, and coincides with clinical pathology and altered CpG methylation of the TBXA2R gene. Analysis of TPβ, or a combination of TPα/TPβ, expression levels may have significant clinical potential as a diagnostic biomarker and predictor of PCa disease recurrence. PMID:27689401

  19. High-level expression, purification and characterization of a constitutively active thromboxane A2 receptor polymorphic variant.

    PubMed

    Xu, Bing; Chakraborty, Raja; Eilers, Markus; Dakshinamurti, Shyamala; O'Neil, Joe D; Smith, Steven O; Bhullar, Rajinder P; Chelikani, Prashen

    2013-01-01

    G protein-coupled receptors (GPCRs) exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM) of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP) is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯)-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI(-))-TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/10⁶ cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD) spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM.

  20. High-Level Expression, Purification and Characterization of a Constitutively Active Thromboxane A2 Receptor Polymorphic Variant

    PubMed Central

    Xu, Bing; Chakraborty, Raja; Eilers, Markus; Dakshinamurti, Shyamala; O’Neil, Joe D.; Smith, Steven O.; Bhullar, Rajinder P.; Chelikani, Prashen

    2013-01-01

    G protein-coupled receptors (GPCRs) exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM) of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP) is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯)-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI-)-TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/106 cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD) spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM. PMID:24086743

  1. Timosaponin AIII induces antiplatelet and antithrombotic activity via Gq-mediated signaling by the thromboxane A2 receptor

    PubMed Central

    Cong, Yue; Wang, Limei; Peng, Renjun; Zhao, Yang; Bai, Fan; Yang, Chao; Liu, Xiaolan; Wang, Daqian; Ma, Baiping; Cong, Yuwen

    2016-01-01

    The thromboxane (Tx) A2 pathway is a major contributor to the amplification of initial platelet activation and is therefore a key drug target. To identify potent small-molecule inhibitors of the thromboxane prostaglandin (TP) receptor, we screened a small steroidal saponin library using U46619-induced rat platelet aggregation assays. Timosaponin AIII (TAIII) was identified as a potent inhibitor of U46619-induced rat platelet aggregation and exhibited superior selectivity for the TP receptor versus other G protein-coupled receptors and a PKC activator. TAIII inhibited U46619-induced rat platelet aggregation independent of increases in cAMP and cGMP and the inhibition of TxA2 production. Both PKC and PLC activators restored TAIII-inhibited platelet aggregation, whereas TAIII did not inhibit platelet aggregation induced by co-activation of the G12/13 and Gz pathways. Furthermore, TAIII did not affect the platelet shape change or ROCK2 phosphorylation evoked by low-dose U46619. In vivo, TAIII prolonged tail bleeding time, reduced the mortality of animals with acute pulmonary thromboembolism and significantly reduced venous thrombus weight. Our study suggests that TAIII, by preferentially targeting Gq-mediated PLC/PKC signaling from the TP receptor, induces stronger in vitro antiplatelet activity and in vivo antithrombotic effects and may be an excellent candidate for the treatment of thrombotic disorders. PMID:27934923

  2. LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction.

    PubMed

    Dancs, Péter Tibor; Ruisanchez, Éva; Balogh, Andrea; Panta, Cecília Rita; Miklós, Zsuzsanna; Nüsing, Rolf M; Aoki, Junken; Chun, Jerold; Offermanns, Stefan; Tigyi, Gábor; Benyó, Zoltán

    2017-04-01

    Lysophosphatidic acid (LPA) has been recognized recently as an endothelium-dependent vasodilator, but several lines of evidence indicate that it may also stimulate vascular smooth muscle cells (VSMCs), thereby contributing to vasoregulation and remodeling. In the present study, mRNA expression of all 6 LPA receptor genes was detected in murine aortic VSMCs, with the highest levels of LPA1, LPA2, LPA4, and LPA6 In endothelium-denuded thoracic aorta (TA) and abdominal aorta (AA) segments, 1-oleoyl-LPA and the LPA1-3 agonist VPC31143 induced dose-dependent vasoconstriction. VPC31143-induced AA contraction was sensitive to pertussis toxin (PTX), the LPA1&3 antagonist Ki16425, and genetic deletion of LPA1 but not that of LPA2 or inhibition of LPA3, by diacylglycerol pyrophosphate. Surprisingly, vasoconstriction was also diminished in vessels lacking cyclooxygenase-1 [COX1 knockout (KO)] or the thromboxane prostanoid (TP) receptor (TP KO). VPC31143 increased thromboxane A2 (TXA2) release from TA of wild-type, TP-KO, and LPA2-KO mice but not from LPA1-KO or COX1-KO mice, and PTX blocked this effect. Our findings indicate that LPA causes vasoconstriction in VSMCs, mediated by LPA1-, Gi-, and COX1-dependent autocrine/paracrine TXA2 release and consequent TP activation. We propose that this new-found interaction between the LPA/LPA1 and TXA2/TP pathways plays significant roles in vasoregulation, hemostasis, thrombosis, and vascular remodeling.-Dancs, P. T., Ruisanchez, E., Balogh, A., Panta, C. R., Miklós, Z., Nüsing, R. M., Aoki, J., Chun, J., Offermanns, S., Tigyi, G., Benyó, Z. LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction. © FASEB.

  3. TRA-418, a thromboxane A2 receptor antagonist and prostacyclin receptor agonist, inhibits platelet-leukocyte interaction in human whole blood.

    PubMed

    Miyamoto, Mitsuko; Ohno, Michihiro; Yamada, Naohiro; Ohtake, Atsushi; Matsushita, Teruo

    2010-10-01

    TRA-418, a compound with both thromboxane A2 receptor (TP receptor) antagonistic and prostacyclin receptor (IP receptor) agonistic activities, was synthesised in our laboratory as a new antithrombotic agent. In this study, we examined the effects of TRA-418 on platelet-leukocyte interactions in human whole blood. Platelet-leukocyte interactions were induced by U-46619 in the presence of epinephrine (U-46619 + epinephrine) or with thrombin receptor agonist peptide 1-6 (TRAP). Platelet-leukocyte interactions were assessed by flow cytometry, with examination of both platelet-neutrophil and platelet-monocyte complexes. In a control experiment, the TP receptor antagonist SQ-29548 significantly inhibited the induction of platelet-leukocyte complexes by the combination of U-46619 and epinephrine, but not TRAP-induced formation of platelet-leukocyte complexes. Conversely, the IP receptor agonist beraprost sodium inhibited platelet-leukocyte complex formation induced by both methods, although the IC50 values of beraprost sodium for U-46619 + epinephrine were at least 10-fold greater than for TRAP. Under such conditions, TRA-418 inhibited both U-46619 + epinephrine-induced and TRAP-induced platelet-leukocyte complex formation in a concentration-dependent manner, in a similar range. These results suggest that TRA-418 exerts its inhibitory effects on platelet-leukocyte interactions by acting as a TP receptor antagonist as well as an IP receptor agonist in an additive or synergistic manner. These inhibitory effects of TRA-418 on formation of platelet-leukocyte complexes suggest the compound is beneficial effects as an antithrombotic agent.

  4. Brain cyclooxygenase and prostanoid TP receptors are involved in centrally administered epibatidine-induced secretion of noradrenaline and adrenaline from the adrenal medulla in rats.

    PubMed

    Shimizu, Takahiro; Yokotani, Kunihiko

    2009-03-15

    Plasma adrenaline mainly originates from adrenaline-containing cells in the adrenal medulla, whereas plasma noradrenaline reflects not only the release from sympathetic nerves but also the secretion from noradrenaline-containing cells in the adrenal medulla. The present study was undertaken to examine the mechanisms involved in centrally administered epibatidine (a potent agonist of nicotinic acethylcholine receptors)-induced elevation of plasma catecholamines with regard to the brain prostanoid. Intracerebroventricularly (i.c.v.) administered epibatidine (1, 5 and 10 nmol/animal) effectively elevated plasma noradrenaline and adrenaline. The epibatidine (5 nmol/animal, i.c.v.)-induced elevation of both catecholamines was attenuated by hexamethonium (an antagonist of nicotinic acethylcholine receptors) (0.9 and 1.8 micromol/animal, i.c.v.), indomethacin (an inhibitor of cyclooxygenase) (0.6 and 1.2 micromol/animal, i.c.v.) and (+)-S-145 (an antagonist of prostanoid TP receptors) (0.6 and 1.3 micromol/animal, i.c.v.), and abolished by acute bilateral adrenalectomy. On the other hand, intravenously administered epibatidine (5 nmol/animal) was largely ineffective on the plasma levels of catecholamines, and intravenous pretreatment with hexamethonium (1.8 micromol/animal) had no effect on the epibatidine (5 nmol/animal, i.c.v.)-induced elevation of both catecholamines. These results suggest that centrally administered epibatidine activates the brain nicotinic acethylcholine receptors, thereby evoking the secretion of noradrenaline and adrenaline from the adrenal medulla by brain cyclooxygenase- and prostanoid TP receptor-mediated mechanisms in rats.

  5. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    SciTech Connect

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  6. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis.

    PubMed

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-02-26

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy.

  7. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis*

    PubMed Central

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy. PMID:26724804

  8. Ligands and therapeutic perspectives of adenosine A(2A) receptors.

    PubMed

    Diniz, C; Borges, F; Santana, L; Uriarte, E; Oliveira, J M A; Gonçalves, J; Fresco, P

    2008-01-01

    Adenosine A(2A) receptors are members of the G protein-coupled receptor family and mediate multiple physiological effects of adenosine, both at the central nervous system (CNS) and at peripheral tissues, by activating several pathways or interacting with other receptors or proteins. Increasing evidence relate A(2A) receptors with pharmacological stress testing, neurodegenerative disorders (such as Parkinson's disease) and inflammation, renewing the interest in these receptors, increasingly viewed as promising therapeutic targets. Series of agonists and antagonists have been developed by medicinal chemistry artwork either by structure activity relationship (SAR) or quantitative structure activity relationship (QSAR) studies. These studies have allowed identification of the structural and electrostatic requirements for high affinity A(2A) receptor binding and, therefore, contributing to the rational design of A(2A) receptor ligands. Additional rational chemical modifications of the existing A(2A) receptor ligands may further improve their affinity/selectivity. The purpose of this review is to analize and summarize aspects related to the medicinal chemistry of A(2A) receptor ligands, their present and potencial therapeutic applications by exploring the molecular structure and physiological and pathophysiological roles of A(2A) receptors.

  9. Antioxidants Condition Pleiotropic Vascular Responses to Exogenous H2O2: Role of Modulation of Vascular TP Receptors and the Heme Oxygenase System

    PubMed Central

    Zhang, Fan; Monu, Sumit R.; Sodhi, Komal; Bellner, Lars; Lamon, Brian D.; Zhang, Yilun; Abraham, Nader G.; Nasjletti, Alberto

    2013-01-01

    Abstract Aims: Hydrogen peroxide (H2O2), a nonradical oxidant, is employed to ascertain the role of redox mechanisms in regulation of vascular tone. Where both dilation and constriction have been reported, we examined the hypothesis that the ability of H2O2 to effect vasoconstriction or dilation is conditioned by redox mechanisms and may be modulated by antioxidants. Results: Exogenous H2O2 (0.1–10.0 μM), dose-dependently reduced the internal diameter of rat renal interlobular and 3rd-order mesenteric arteries (p<0.05). This response was obliterated in arteries pretreated with antioxidants, including tempol, pegylated superoxide dismutase (PEG-SOD), butylated hydroxytoluene (BHT), and biliverdin (BV). However, as opposed to tempol or PEG-SOD, BHT & BV, antioxidants targeting radicals downstream of H2O2, also uncovered vasodilation. Innovations: Redox-dependent vasoconstriction to H2O2 was blocked by inhibitors of cyclooxygenase (COX) (indomethacin-10 μM), thromboxane (TP) synthase (CGS13080-10 μM), and TP receptor antagonist (SQ29548-1 μM). However, H2O2 did not increase vascular thromboxane B2 release; instead, it sensitized the vasculature to a TP agonist, U46619, an effect reversed by PEG-SOD. Antioxidant-conditioned dilatory response to H2O2 was accompanied by enhanced vascular heme oxygenase (HO)-dependent carbon monoxide generation and was abolished by HO inhibitors or by HO-1 & 2 antisense oligodeoxynucleotides treatment of SD rats. Conclusion: These results demonstrate that H2O2 has antioxidant-modifiable pleiotropic vascular effects, where constriction and dilation are brought about in the same vascular segment. H2O2-induced oxidative stress increases vascular TP sensitivity and predisposes these arterial segments to constrictor prostanoids. Conversely, vasodilation is reliant upon HO-derived products whose synthesis is stimulated only in the presence of antioxidants targeting radicals downstream of H2O2. Antioxid. Redox Signal. 18, 471–480

  10. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  11. A simple, quick, and high-yield preparation of the human thromboxane A2 receptor in full size for structural studies.

    PubMed

    Ruan, Ke-He; Cervantes, Vanessa; Wu, Jiaxin

    2008-07-01

    Human thromboxane A2 receptor (TP), a G protein-coupled receptor (GPCR), is one of the most promising targets for developing the next generation of anti-thrombosis and hypertension drugs. However, obtaining a sufficient amount of the full-sized and active membrane protein has been the major obstacle for structural elucidation that reveals the molecular mechanisms of the receptor activation and drug designs. Here we report an approach for the simple, quick, and high-yield preparation of the purified and active full-sized TP in an amount suitable for structural studies. Glycosylated human TP was highly expressed in Sf-9 cells using an optimized baculovirus (BV) expression system. The active receptor was extracted and solubilized by different detergents for comparison and was finally purified to a nearly single band with a ratio of 1:0.9 +/- 0.05 (ligand:receptor molecule) in ligand binding using a Ni column with a relatively low yield. However, a high-yield purification (milligram quantity) of the TP protein, from a modulate scale of transfected Sf-9 cell culture, has been achieved by quick and simple purification steps, which include DNA digestion, dodecyl-maltoside detergent extraction, centrifugation, and FPLC purification. The purity and quantity of the purified TP, using the high-yield approach, were suitable for protein structural studies as evidenced by SDS-PAGE, Western blot analyses, ligand binding assays, and a feasibility test using high-resolution one-dimensional and two-dimensional (1)H NMR spectroscopic analyses. These studies provide a basis for the high-yield expression and purification of the GPCR for the structural and functional characterization using biophysics approaches.

  12. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation

    PubMed Central

    Bauer, Jochen; Ripperger, Anne; Frantz, Stefan; Ergün, Süleyman; Schwedhelm, Edzard; Benndorf, Ralf A

    2014-01-01

    Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context. PMID:24646155

  13. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation.

    PubMed

    Bauer, Jochen; Ripperger, Anne; Frantz, Stefan; Ergün, Süleyman; Schwedhelm, Edzard; Benndorf, Ralf A

    2014-07-01

    Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context. © 2014 The British Pharmacological Society.

  14. Involvement of central beta2-adrenergic, NMDA and thromboxane A2 receptors in the pressor effect of anandamide in rats.

    PubMed

    Malinowska, B; Zakrzeska, A; Kurz, C M; Göthert, M; Kwolek, G; Wielgat, P; Braszko, J J; Schlicker, E

    2010-04-01

    Intravenous (i.v.) injection of the endocannabinoid anandamide induces triphasic cardiovascular responses, including a pressor effect mediated via unknown central and peripheral mechanism(s). The aim of the present study was to determine the central mechanism(s) responsible for the pressor response to anandamide. For this purpose, the influence of antagonists at thromboxane A(2) TP (sulotroban, daltroban, SQ 29548), NMDA (MK-801) and beta(2)-adrenergic receptors (ICI 118551) on the pressor effect induced by i.v. and intracerebroventricularly (i.c.v.) administered anandamide was examined in urethane-anaesthetized rats. Anandamide (1.5-3 micromol/kg, i.v.) or its stable analogue methanandamide (0.75 micromol/kg, i.v.) increased blood pressure by 25%. Anandamide (0.03 mumol per animal i.c.v.) caused a pure pressor effect (by 20%) but only in the presence of antagonists of CB(1) and TRPV1 receptors. The effects of cannabinoids (i.v. or i.c.v.) were diminished by i.v. daltroban, sulotroban (10 mumol/kg each), and/or SQ 29548 (1 mumol/kg). The effect of anandamide i.v. was reduced by SQ 29548 (0.02 mumol per animal i.c.v.) and by the thromboxane A(2) synthesis inhibitor furegrelate i.c.v. (1.8 micromol per animal). ICI 118551, MK-801 (1 micromol/kg i.v. each), and bilateral adrenalectomy diminished the effect of anandamide i.c.v. Sulotroban (i.v.) failed to affect the response to anandamide (i.v.) in pithed rats, and anandamide and methanandamide did not bind to TP receptors in rat platelets. The present study suggests that central beta(2)-adrenergic, NMDA and thromboxane A(2) receptors are involved in the anandamide-induced adrenal secretion of catecholamines and their pressor effect in urethane-anaesthetized rats.

  15. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  16. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function

    PubMed Central

    Ferré, Sergi; Quiroz, César; Orru, Marco; Guitart, Xavier; Navarro, Gemma; Cortés, Antonio; Casadó, Vicent; Canela, Enric I.; Lluis, Carme; Franco, Rafael

    2011-01-01

    A very significant density of adenosine A2A receptors (A2ARs) is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs). In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs). In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striatopallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl cyclase (AC). Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striatopallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs) and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders. PMID:21731559

  17. EphrinA2 Receptor (EphA2) Is an Invasion and Intracellular Signaling Receptor for Chlamydia trachomatis

    PubMed Central

    Subbarayal, Prema; Karunakaran, Karthika; Winkler, Ann-Cathrin; Rother, Marion; Gonzalez, Erik; Meyer, Thomas F.; Rudel, Thomas

    2015-01-01

    The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and

  18. Regulation of activator protein-1 by 8-iso-prostaglandin E2 in a thromboxane A2 receptor-dependent and -independent manner

    SciTech Connect

    Weber, Thomas J.; Markillie, Lye MENG.

    2003-05-01

    The thromboxane (TX) A{sub 2} receptor (TP) encompasses two alternatively spliced forms, termed the platelet/placental (TP-P) and endothelial (TP-E) type receptors. Experimental evidence suggests that TP activity may be modulated by novel ligands, termed the isoprostanes, that paradoxically act as TP agonists in smooth muscle and TP antagonists in platelet preparations. Here we have investigated whether prototypical isoprostanes 8-iso-prostaglandin (PG)F{sub 2{alpha}} and 8-iso-PGE{sub 2} regulate the activity of TP isoforms expressed in Chinese hamster ovary (CHO) cells using activator protein-1 (AP-1)-luciferase activity as a reporter. AP-1-luciferase activity was increased by a TP agonist [9,11-dideoxy-9{alpha},11{alpha}-methanoepoxy PGF{sub 2{alpha}} (U46619)] in CHO cells transfected with the human TP-P and TP-E receptors, and this response was fully inhibited by TP antagonists [1S-[1{alpha},2{beta}(Z),3{alpha},5{alpha}

  19. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  20. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  1. A2A Adenosine Receptor (A2AAR) as a Therapeutic Target in Diabetic Retinopathy

    PubMed Central

    Ibrahim, Ahmed S.; El-shishtawy, Mamdouh M.; Zhang, Wenbo; Caldwell, Ruth B.; Liou, Gregory I.

    2011-01-01

    In diabetic retinopathy (DR), abnormalities in vascular and neuronal function are closely related to the local production of inflammatory mediators whose potential source is microglia. A2A adenosine receptor (A2AAR) has been shown to possess anti-inflammatory properties that have not been studied in DR. Here, we evaluate the role of A2AAR and its underlying signaling in retinal complications associated with diabetes. Initial studies in wild-type mice revealed that the treatment with the A2AAR agonist resulted in marked decreases in hyperglycemia-induced retinal cell death and tumor necrosis factor (TNF)-α release. To further assess the role of A2AAR in DR, we studied the effects of A2AAR ablation on diabetes-induced retinal abnormalities. Diabetic A2AAR−/− mice had significantly more terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells, TNF-α release, and intercellular adhesion molecule-1 expression compared with diabetic wild-type mice. To explore a potential mechanism by which A2AAR signaling regulates inflammation in DR, we performed additional studies using microglial cells treated with Amadori-glycated albumin, a risk factor in diabetic disorders. The results showed that activation of A2AAR attenuated Amadori-glycated albumin-induced TNF-α release in a cAMP/exchange protein directly activated by cAMP-dependent mechanism and significantly repressed the inflammatory cascade, C-Raf/extracellular signal-regulated kinase (ERK), in activated microglia. Collectively, this work provides pharmacological and genetic evidence for A2AAR signaling as a control point of cell death in DR and suggests that the retinal protective effect of A2AAR is mediated by abrogating the inflammatory response that occurs in microglia via interaction with C-Raf/ERK pathway. PMID:21514428

  2. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system.

    PubMed

    Popoli, Patrizia; Pepponi, Rita

    2012-09-01

    Adenosine A2B and, much more importantly, adenosine A2A receptors modulate many physiological and pathological processes in the brain. In this review, the most recent evidence concerning the role of such receptors and their potential therapeutic relevance is discussed. The low affinity of A2B receptors for adenosine implies that they might represent a good therapeutic target, since they are activated only under pathological conditions (when adenosine levels raise up to micromolar concentrations). The availability of selective ligands for A2B receptors would allow exploration of such an hypothesis. Since adenosine A2A receptors mediate both potentially neuroprotective and potentially neurotoxic effects, their role in neurodegenerative diseases is highly controversial. Nevertheless, A2A receptor antagonists have shown clear antiparkinsonian effects, and a great interest exists on the role of A2A receptors in Alzheimer's disease, brain ischaemia, spinal cord injury, drug addiction and other conditions. In order to establish whether such receptors represent a target for CNS diseases, at least two conditions are needed: the full comprehension of A2A-dependent mechanisms and the availability of ligands capable of discriminating among the different receptor populations.

  3. Adenosine A2A and A2B Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis.

    PubMed

    Andrés, Rosa M; Terencio, María Carmen; Arasa, Jorge; Payá, Miguel; Valcuende-Cavero, Francisca; Navalón, Pedro; Montesinos, María Carmen

    2017-01-01

    Adenosine is a potent regulator of inflammation and immunity, but the role of adenosine receptors in keratinocytes remains controversial. We determined that in addition to A2B receptors, human epidermal keratinocytes also express A2A receptors, although to a lower extent. Through the use of selective adenosine receptor agonists and antagonists, we showed that physiological concentrations of adenosine activate A2B receptors in normal human keratinocytes, inducing cell cycle arrest through the increase of intracellular calcium but not through cAMP signaling. In contrast, the selective activation of A2A receptors by CGS-21680 induces keratinocyte proliferation via p38-mitogen-activated protein kinase activation. Adenosine and selective A2A and A2B agonists presented anti-inflammatory profiles independent of adenosine receptors but mediated by membrane phosphatase activation. Finally, keratinocyte exposure to diverse inflammatory cytokines altered adenosine receptor expression by reducing A2B and increasing A2A, a pattern also observed in psoriatic epidermis. Because increased epidermal turnover and inflammatory response are characteristics of psoriatic disease, further studies are needed to assess the role and consequences of the altered adenosine receptor expression in lesional and nonlesional psoriatic keratinocytes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Antagonism of thromboxane receptors by diclofenac and lumiracoxib

    PubMed Central

    Selg, E; Buccellati, C; Andersson, M; Rovati, G E; Ezinga, M; Sala, A; Larsson, A-K; Ambrosio, E; Låstbom, L; Capra, V; Dahlén, B; Ryrfeldt, Å; Folco, G C; Dahlén, S-E

    2007-01-01

    Background and purpose: Non-steroidal anti-inflammatory drugs (NSAIDs) are analgesic and anti-inflammatory by virtue of inhibition of the cyclooxygenase (COX) reaction that initiates biosynthesis of prostaglandins. Findings in a pulmonary pharmacology project gave rise to the hypothesis that certain members of the NSAID class might also be antagonists of the thromboxane (TP) receptor. Experimental approach: Functional responses due to activation of the TP receptor were studied in isolated airway and vascular smooth muscle preparations from guinea pigs and rats as well as in human platelets. Receptor binding and activation of the TP receptor was studied in HEK293 cells. Key results: Diclofenac concentration-dependently and selectively inhibited the contraction responses to TP receptor agonists such as prostaglandin D2 and U-46619 in the tested smooth muscle preparations and the aggregation of human platelets. The competitive antagonism of the TP receptor was confirmed by binding studies and at the level of signal transduction. The selective COX-2 inhibitor lumiracoxib shared this activity profile, whereas a number of standard NSAIDs and other selective COX-2 inhibitors did not. Conclusions and implications: Diclofenac and lumiracoxib, in addition to being COX unselective and highly COX-2 selective inhibitors, respectively, displayed a previously unknown pharmacological activity, namely TP receptor antagonism. Development of COX-2 selective inhibitors with dual activity as potent TP antagonists may lead to coxibs with improved cardiovascular safety, as the TP receptor mediates cardiovascular effects of thromboxane A2 and isoprostanes. PMID:17965743

  5. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington's disease mice.

    PubMed

    Martire, Alberto; Ferrante, Antonella; Potenza, Rosa Luisa; Armida, Monica; Ferretti, Roberta; Pézzola, Antonella; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-01-01

    Excitotoxicity plays a major role in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) modulate excitotoxicity and have been suggested to play a pathogenetic role in HD. The main aim of this study was to evaluate the effect of A(2A)R blockade on the expression and functions of NMDA receptors in the striatum of HD mice (R6/2). We found that 3 weeks' treatment with SCH 58261 (0.01 mg/kg/day i.p. from the 8th week of age) modified NR1 and NR2A/NR2B expression in the striatum of R6/2 (Western blotting) while had no effect on NMDA-induced toxicity in corticostriatal slices (electrophysiological experiments). In conclusion, in vivo A(2A)R blockade induced a remodeling of NMDA receptors in the striatum of HD mice. Even though the functional relevance of the above effect remains to be fully elucidated, these results add further evidence to the modulatory role of A(2A)Rs in HD.

  6. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Gessi, Stefania

    2015-09-01

    Over the last two decades, diabetes mellitus has become one of the most challenging health problems worldwide. Diabetes mellitus, classified as type I and II, is a pathology concerning blood glucose level in the body. The nucleoside adenosine has long been known to affect insulin secretion, glucose homeostasis and lipid metabolism, through activation of four G protein coupled adenosine receptors (ARs), named A1, A2A, A2B and A3. Currently, the novel promising subtype to develop new drugs for diabetes treatment is the A2BAR subtype. The use of selective agonists and antagonists for A2BAR subtype in various diabetic animal models allowed us to identify several effects of A2BAR signaling in cell metabolism. In particular, the focus of this review is to summarize the studies on purinergic signaling associated with diabetes through A2BARs modulation.

  7. Regulation of protein kinase C-related kinase (PRK) signalling by the TPα and TPβ isoforms of the human thromboxane A2 receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer.

    PubMed

    O'Sullivan, Aine G; Mulvaney, Eamon P; Kinsella, B Therese

    2017-04-01

    The prostanoid thromboxane (TX) A2 and its T Prostanoid receptor (the TP) are increasingly implicated in prostate cancer (PCa). Mechanistically, we recently discovered that both TPα and TPβ form functional signalling complexes with members of the protein kinase C-related kinase (PRK) family, AGC- kinases essential for the epigenetic regulation of androgen receptor (AR)-dependent transcription and promising therapeutic targets for treatment of castrate-resistant prostate cancer (CRPC). Critically, similar to androgens, activation of the PRKs through the TXA2/TP signalling axis induces phosphorylation of histone H3 at Thr11 (H3Thr11), a marker of androgen-induced chromatin remodelling and transcriptional activation, raising the possibility that TXA2-TP signalling can mimic and/or enhance AR-induced cellular changes even in the absence of circulating androgens such as in CRPC. Hence the aim of the current study was to investigate whether TXA2/TP-induced PRK activation can mimic and/or enhance AR-mediated cellular responses in the model androgen-responsive prostate adenocarcinoma LNCaP cell line. We reveal that TXA2/TP signalling can act as a neoplastic- and epigenetic-regulator, promoting and enhancing both AR-associated chromatin remodelling (H3Thr11 phosphorylation, WDR5 recruitment and acetylation of histone H4 at lysine 16) and AR-mediated transcriptional activation (e.g of the KLK3/prostate-specific antigen and TMPRSS2 genes) through mechanisms involving TPα/TPβ mediated-PRK1 and PRK2, but not PRK3, signalling complexes. Overall, these data demonstrate that TPα/TPβ can act as neoplastic and epigenetic regulators by mimicking and/or enhancing the actions of androgens within the prostate and provides further mechanistic insights into the role of the TXA2/TP signalling axis in PCa, including potentially in CRPC.

  8. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  9. Role of adenosine A2b receptor overexpression in tumor progression.

    PubMed

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  10. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders.

    PubMed

    Cunha, Rodrigo A; Ferré, Sergi; Vaugeois, Jean-Marie; Chen, Jiang-Fan

    2008-01-01

    The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.

  11. Targeting Thromboxane A2 Receptor for Antimetastasis Therapy of Breast Cancer

    DTIC Science & Technology

    2012-09-01

    determined in the presence or absence of TP activation or inhibition. The isoform (s) of TP involved in tumor cell contraction and motility will be...the role of TP activation in breast cancer cell motility. Aim 2. Determine the isoform (s) of TP involved in cytoskeleton reorganization in motility of...indicated time points. 7 Task 2. Determine the isoform (s) of TP involved in cytoskeleton reorganization in motility of tumor cells (Months 13-24

  12. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    PubMed

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  13. Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows.

    PubMed

    Popoli, Patrizia; Minghetti, Luisa; Tebano, Maria Teresa; Pintor, Annita; Domenici, Maria Rosaria; Massotti, Marino

    2004-01-01

    Adenosine A2A receptor antagonists are regarded as potential neuroprotective drugs, although the mechanisms underlying their effects remain to be elucidated. In this review, quinolinic acid (QA)-induced striatal toxicity was used as a tool to investigate the mechanisms of the neuroprotective effects of A2A receptor antagonists. After having examined the effects of selective A2A receptor antagonists toward different mechanisms of QA toxicity, we conclude that (1) the effect elicited by A2A receptor blockade on QA-induced glutamate outflow may be one of the mechanisms of the neuroprotective activity of A2A receptor antagonists; (2) A2A receptor antagonists have a potentially worsening influence on QA-dependent NMDA receptor activation; and (3) the ability of A2A receptor antagonists to prevent QA-induced lipid peroxidation does not correlate with the neuroprotective effects. These results suggest that A2A receptor antagonists may have either potentially beneficial or detrimental influence in models of neurodegeneration that are mainly due to increased glutamate levels or enhanced sensitivity of NMDA receptors, respectively.

  14. TP53-Associated Pediatric Malignancies

    PubMed Central

    Pinto, Emilia M.; Ribeiro, Raul C.; Figueiredo, Bonald C.; Zambetti, Gerard P.

    2011-01-01

    Although the majority of pediatric malignancies express wild-type p53, it is well established that germline TP53 mutations or functional inactivation of this pathway by other means contribute to childhood cancer. Epidemiology studies have revealed the existence of diverse inherited mutant TP53 alleles that display different levels of tumor suppressor activity, which correlate with cancer risk in terms of penetrance, age of onset, and tumor types. In this monograph, the authors describe those childhood cancers associated with functional inactivation of TP53 focusing on adrenocortical carcinoma as a model for tissues that are highly sensitive to loss of p53 activity. PMID:21779516

  15. Role for the thromboxane A2 receptor β-isoform in the pathogenesis of intrauterine growth restriction

    PubMed Central

    Powell, Katie L.; Stevens, Veronica; Upton, Dannielle H.; McCracken, Sharon A.; Simpson, Ann M.; Cheng, Yan; Tasevski, Vitomir; Morris, Jonathan M.; Ashton, Anthony W.

    2016-01-01

    Intrauterine growth restriction (IUGR) is a pathology of pregnancy that results in failure of the fetus to reach its genetically determined growth potential. In developed nations the most common cause of IUGR is impaired placentation resulting from poor trophoblast function, which reduces blood flow to the fetoplacental unit, promotes hypoxia and enhances production of bioactive lipids (TXA2 and isoprostanes) which act through the thromboxane receptor (TP). TP activation has been implicated as a pathogenic factor in pregnancy complications, including IUGR; however, the role of TP isoforms during pregnancy is poorly defined. We have determined that expression of the human-specific isoform of TP (TPβ) is increased in placentae from IUGR pregnancies, compared to healthy pregnancies. Overexpression of TPα enhanced trophoblast proliferation and syncytialisation. Conversely, TPβ attenuated these functions and inhibited migration. Expression of the TPβ transgene in mice resulted in growth restricted pups and placentae with poor syncytialisation and diminished growth characteristics. Together our data indicate that expression of TPα mediates normal placentation; however, TPβ impairs placentation, and promotes the development of IUGR, and represents an underappreciated pathogenic factor in humans. PMID:27363493

  16. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  17. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease.

    PubMed

    Ikeda, Ken; Kurokawa, Masako; Aoyama, Shiro; Kuwana, Yoshihisa

    2002-01-01

    Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities.

  18. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  19. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907. © 2016 International Society for Neurochemistry.

  20. Adenosine A2B receptor: from cell biology to human diseases

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  1. Adenosine A2B Receptor: From Cell Biology to Human Diseases

    PubMed Central

    Sun, Ying; Huang, Pingbo

    2016-01-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases. PMID:27606311

  2. Promyelocytic Leukemia Zinc Finger-Retinoic Acid Receptor α (PLZF-RARα), an Oncogenic Transcriptional Repressor of Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) and Tumor Protein p53 (TP53) Genes*

    PubMed Central

    Choi, Won-Il; Yoon, Jae-Hyeon; Kim, Min-Young; Koh, Dong-In; Licht, Jonathan D.; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) is an oncogene transcriptional repressor that is generated by a chromosomal translocation between the PLZF and RARα genes in acute promyelocytic leukemia (APL-type) patients. The molecular interaction between PLZF-RARα and the histone deacetylase corepressor was proposed to be important in leukemogenesis. We found that PLZF-RARα can repress transcription of the p21WAF/CDKN1A gene, which encodes the negative cell cycle regulator p21 by binding to its proximal promoter Sp1-binding GC-boxes 3, 4, 5/6, a retinoic acid response element (RARE), and distal p53-responsive elements (p53REs). PLZF-RARα also acts as a competitive transcriptional repressor of p53, RARα, and Sp1. PLZF-RARα interacts with co-repressors such as mSin3A, NCoR, and SMRT, thereby deacetylating histones Ac-H3 and Ac-H4 at the CDKN1A promoter. PLZF-RARα also interacts with the MBD3-NuRD complex, leading to epigenetic silencing of CDKN1A through DNA methylation. Furthermore, PLZF-RARα represses TP53 and increases p53 protein degradation by ubiquitination, further repressing p21 expression. Resultantly, PLZF-RARα promotes cell proliferation and significantly increases the number of cells in S-phase. PMID:24821728

  3. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats.

    PubMed

    Bachtell, Ryan K; Self, David W

    2009-10-01

    Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.

  4. Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the β2-adrenergic receptor and the human adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Sherbiny, Farag F.; Schiedel, Anke C.; Maaß, Astrid; Müller, Christa E.

    2009-11-01

    A three-dimensional model of the human adenosine A2B receptor was generated by means of homology modelling, using the crystal structures of bovine rhodopsin, the β2-adrenergic receptor, and the human adenosine A2A receptor as templates. In order to compare the three resulting models, the binding modes of the adenosine A2B receptor antagonists theophylline, ZM241385, MRS1706, and PSB601 were investigated. The A2A-based model was much better able to stabilize the ligands in the binding site than the other models reflecting the high degree of similarity between A2A and A2B receptors: while the A2B receptor shares about 21% of the residues with rhodopsin, and 31% with the β2-adrenergic receptor, it is 56% identical to the adenosine A2A receptor. The A2A-based model was used for further studies. The model included the transmembrane domains, the extracellular and the intracellular hydrophilic loops as well as the terminal domains. In order to validate the usefulness of this model, a docking analysis of several selective and nonselective agonists and antagonists was carried out including a study of binding affinities and selectivities of these ligands with respect to the adenosine A2A and A2B receptors. A common binding site is proposed for antagonists and agonists based on homology modelling combined with site-directed mutagenesis and a comparison between experimental and calculated affinity data. The new, validated A2B receptor model may serve as a basis for developing more potent and selective drugs.

  5. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  6. A critical evaluation of adenosine A2A receptors as potentially "druggable" targets in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Domenici, Maria Rosaria; Burnouf, Sylvie; Chern, Yijuang

    2008-01-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by the expansion of a polymorphic CAG trinucleotide repeat encoding a poly-glutamine tract within the Huntingtin protein. GABAergic enkephalin neurons of the basal ganglia, which show the highest levels of expression of adenosine A(2A) receptors, are the most vulnerable in HD. Such a selective neuronal vulnerability, which occurs despite ubiquitous expression of mutant and normal Huntingtin, has suggested that adenosine A(2A) receptors might play a pathogenetic role in HD. In agreement, changes in A(2A) receptor expression and signaling have been reported in various experimental models of HD. The interpretation of the functional significance of the aberrant A(2A) receptor phenotype in HD mice is however complicated by the conflicting data so far reported on the potential neuroprotective and neurodegenerative effects of these receptors in the brain, with some data suggesting a potential pathogenetic role and some other data suggesting activation of trophic or protective pathways in neurons. The same complex profile has emerged in experimental models of HD, in which both A(2A) receptor agonists and antagonists have shown beneficial effects. The main aim of this review is to critically evaluate whether adenosine A(2A) receptors may represent a suitable target to develop drugs against HD.

  7. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    PubMed

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    SciTech Connect

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L. )

    1989-09-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-(4-(2-(2-((4- aminophenyl)methylcarbonylamino)ethylaminocarbonyl)- ethyl)phenyl)ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-((R)-1-methyl- 2-phenylethyl)adenosine (R-PIA) greater than (+)-N6-((S)-1-methyl-2- phenylethyl)adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-(beta, gamma-imido)triphosphate.

  9. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  10. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  11. Prognostic significance of TP53 alterations in breast carcinoma.

    PubMed Central

    Andersen, T. I.; Holm, R.; Nesland, J. M.; Heimdal, K. R.; Ottestad, L.; Børresen, A. L.

    1993-01-01

    Constant denaturant gel electrophoresis (CDGE) was used to screen 179 breast carcinomas for mutations in the conserved regions of the TP53 gene (exons 5 through 8). Mutations were found in 35 of 163 primary tumours (21%) and in 5 of 16 metastases (31%) and resided predominantly in exon 7. The majority of the mutations were G:C-->A:T transitions. Immunohistochemistry demonstrated nuclear accumulation of p53 protein in 35 of 162 primary tumours (22%) and in four of 15 metastases (27%). TP53 mutation was strongly associated with nuclear accumulation of p53 protein. In total 42 of 163 primary tumours (26%) and 5 of 16 metastases (31%) were demonstrated to contain TP53 alterations (mutation and/or nuclear protein accumulation). TP53 alteration in primary tumour was significantly associated with the following parameters: positive node status, T status > 1, negative oestrogen receptor status, negative progesterone receptor status, presence of ERBB2 gene amplification, and invasive ductal histology. Furthermore, there were statistically significant associations, independent of other prognostic factors, between TP53 alterations in primary tumour and disease-free and overall survival. Images Figure 1 Figure 2 PMID:8102535

  12. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats.

    PubMed

    Mandhane, S N; Chopde, C T; Ghosh, A K

    1997-06-11

    The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease.

  13. The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity

    PubMed Central

    Koupenova, Milka; Carroll, Shannon; Ravid, Katya

    2014-01-01

    High fat diet (HFD)-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR), an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice. PMID:24892847

  14. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  15. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory

    PubMed Central

    Orr, Anna G.; Hsiao, Edward C.; Wang, Max M.; Ho, Kaitlyn; Kim, Daniel H.; Wang, Xin; Guo, Weikun; Kang, Jing; Yu, Gui-Qiu; Adame, Anthony; Devidze, Nino; Dubal, Dena B.; Masliah, Eliezer; Conklin, Bruce R.; Mucke, Lennart

    2014-01-01

    Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer’s disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice, and increased the levels of Arc/Arg3.1, an immediate-early gene required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Similar to humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss. PMID:25622143

  16. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  17. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    PubMed

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  18. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection

    PubMed Central

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases. PMID:19508402

  19. Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis

    PubMed Central

    Chan, Edwin S L; Montesinos, Maria Carmen; Fernandez, Patricia; Desai, Avani; Delano, David L; Yee, Herman; Reiss, Allison B; Pillinger, Michael H; Chen, Jiang-Fan; Schwarzschild, Michael A; Friedman, Scott L; Cronstein, Bruce N

    2006-01-01

    Adenosine is a potent endogenous regulator of inflammation and tissue repair. Adenosine, which is released from injured and hypoxic tissue or in response to toxins and medications, may induce pulmonary fibrosis in mice, presumably via interaction with a specific adenosine receptor. We therefore determined whether adenosine and its receptors contribute to the pathogenesis of hepatic fibrosis. As in other tissues and cell types, adenosine is released in vitro in response to the fibrogenic stimuli ethanol (40 mg dl−1) and methotrexate (100 nM). Adenosine A2A receptors are expressed on rat and human hepatic stellate cell lines and adenosine A2A receptor occupancy promotes collagen production by these cells. Liver sections from mice treated with the hepatotoxins carbon tetrachloride (CCl4) (0.05 ml in oil, 50 : 50 v : v, subcutaneously) and thioacetamide (100 mg kg−1 in PBS, intraperitoneally) released more adenosine than those from untreated mice when cultured ex vivo. Adenosine A2A receptor-deficient, but not wild-type or A3 receptor-deficient, mice are protected from development of hepatic fibrosis following CCl4 or thioacetamide exposure. Similarly, caffeine (50 mg kg−1 day−1, po), a nonselective adenosine receptor antagonist, and ZM241385 (25 mg kg−1 bid), a more selective antagonist of the adenosine A2A receptor, diminished hepatic fibrosis in wild-type mice exposed to either CCl4 or thioacetamide. These results demonstrate that hepatic adenosine A2A receptors play an active role in the pathogenesis of hepatic fibrosis, and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. PMID:16783407

  20. A role of the SAM domain in EphA2 receptor activation.

    PubMed

    Shi, Xiaojun; Hapiak, Vera; Zheng, Ji; Muller-Greven, Jeannine; Bowman, Deanna; Lingerak, Ryan; Buck, Matthias; Wang, Bing-Cheng; Smith, Adam W

    2017-03-24

    Among the 20 subfamilies of protein receptor tyrosine kinases (RTKs), Eph receptors are unique in possessing a sterile alpha motif (SAM domain) at their C-terminal ends. However, the functions of SAM domains in Eph receptors remain elusive. Here we report on a combined cell biology and quantitative fluorescence study to investigate the role of the SAM domain in EphA2 function. We observed elevated tyrosine autophosphorylation levels upon deletion of the EphA2 SAM domain (EphA2ΔS) in DU145 and PC3 prostate cancer cells and a skin tumor cell line derived from EphA1/A2 knockout mice. These results suggest that SAM domain deletion induced constitutive activation of EphA2 kinase activity. In order to explain these effects, we applied fluorescence correlation spectroscopy to investigate the lateral molecular organization of EphA2. Our results indicate that SAM domain deletion (EphA2ΔS-GFP) increases oligomerization compared to the full length receptor (EphA2FL-GFP). Stimulation with ephrinA1, a ligand for EphA2, induced further oligomerization and activation of EphA2FL-GFP. The SAM domain deletion mutant, EphA2ΔS-GFP, also underwent further oligomerization upon ephrinA1 stimulation, but the oligomers were larger than those observed for EphA2FL-GFP. Based on these results, we conclude that the EphA2 SAM domain inhibits kinase activity by reducing receptor oligomerization.

  1. A role of the SAM domain in EphA2 receptor activation

    PubMed Central

    Shi, Xiaojun; Hapiak, Vera; Zheng, Ji; Muller-Greven, Jeannine; Bowman, Deanna; Lingerak, Ryan; Buck, Matthias; Wang, Bing-Cheng; Smith, Adam W.

    2017-01-01

    Among the 20 subfamilies of protein receptor tyrosine kinases (RTKs), Eph receptors are unique in possessing a sterile alpha motif (SAM domain) at their C-terminal ends. However, the functions of SAM domains in Eph receptors remain elusive. Here we report on a combined cell biology and quantitative fluorescence study to investigate the role of the SAM domain in EphA2 function. We observed elevated tyrosine autophosphorylation levels upon deletion of the EphA2 SAM domain (EphA2ΔS) in DU145 and PC3 prostate cancer cells and a skin tumor cell line derived from EphA1/A2 knockout mice. These results suggest that SAM domain deletion induced constitutive activation of EphA2 kinase activity. In order to explain these effects, we applied fluorescence correlation spectroscopy to investigate the lateral molecular organization of EphA2. Our results indicate that SAM domain deletion (EphA2ΔS-GFP) increases oligomerization compared to the full length receptor (EphA2FL-GFP). Stimulation with ephrinA1, a ligand for EphA2, induced further oligomerization and activation of EphA2FL-GFP. The SAM domain deletion mutant, EphA2ΔS-GFP, also underwent further oligomerization upon ephrinA1 stimulation, but the oligomers were larger than those observed for EphA2FL-GFP. Based on these results, we conclude that the EphA2 SAM domain inhibits kinase activity by reducing receptor oligomerization. PMID:28338017

  2. A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation

    PubMed Central

    Tozzi, Alessandro; de Iure, Antonio; Marsili, Valentina; Romano, Rosaria; Tantucci, Michela; Di Filippo, Massimiliano; Costa, Cinzia; Napolitano, Francesco; Mercuri, Nicola Biagio; Borsini, Franco; Giampà, Carmen; Fusco, Francesca Romana; Picconi, Barbara; Usiello, Alessandro; Calabresi, Paolo

    2012-01-01

    Background Cocaine increases the level of endogenous dopamine (DA) in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs) have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. Principal Findings Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. Conclusions The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine. PMID:22715379

  3. Pharmacological evidence for different populations of postsynaptic adenosine A2A receptors in the rat striatum

    PubMed Central

    Orrú, Marco; Quiroz, César; Guitart, Xavier; Ferré, Sergi

    2011-01-01

    Adenosine A2A receptors (A2ARs) are highly concentrated in the striatum. Two pharmacological different functional populations of A2ARs have been recently described based on their different affinities for the A2AR antagonist SCH-442416. This compound has high affinity for A2ARs not forming heteromers or forming heteromers with adenosine A1 receptors (A1Rs) while showing very low affinity for A2ARs forming heteromers with dopamine D2 receptors (D2Rs). It has been widely described that striatal A1R-A2AR heteromers are preferentially localized presynaptically in the glutamatergic terminals that contact GABAergic dynorphinergic neurons, and that A2AR-D2R heteromers are localized postsynaptically in GABAergic enkephalinergic neurons. In the present study we provide evidence suggesting that SCH-442416 also targets postsynaptic A2AR not forming heteromers with D2R, which are involved in the motor depressant effects induced by D2R antagonists. SCH-442416 counteracted motor depression in rats induced by the D2R antagonist raclopride at a dose that did not produce motor activation or that blocked motor depression induced by an A2AR agonist. Furthermore, we re-evaluated the recently suggested key role of cannabinoid CB1 receptors (CB1Rs) in the effects of A2AR antagonists acting at postsynaptic A2ARs. By recording locomotor activity and monitoring striatal glutamate release induced by cortical electrical stimulation in rats after administration of A2AR and CB1R antagonists, we did not find evidence for any significant role of endocannabinoids in the post- or presynaptic effects of A2AR antagonists. The present results further suggest the existence of at least two functionally and pharmacologically different populations of striatal postsynaptic A2ARs. PMID:21752341

  4. Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia.

    PubMed

    Oliveira, Paulo A de; Dalton, James A R; López-Cano, Marc; Ricarte, Adrià; Morató, Xavier; Matheus, Filipe C; Cunha, Andréia S; Müller, Christa E; Takahashi, Reinaldo N; Fernández-Dueñas, Víctor; Giraldo, Jesús; Prediger, Rui D; Ciruela, Francisco

    2017-05-12

    Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.

  5. a2* Nicotinic Acetylcholine Receptors Influence Hippocampus-Dependent Learning and Memory in Adolescent Mice

    ERIC Educational Resources Information Center

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim

    2017-01-01

    The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…

  6. Structure of an agonist-bound human A2A adenosine receptor.

    PubMed

    Xu, Fei; Wu, Huixian; Katritch, Vsevolod; Han, Gye Won; Jacobson, Kenneth A; Gao, Zhan-Guo; Cherezov, Vadim; Stevens, Raymond C

    2011-04-15

    Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.

  7. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    PubMed

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation. © 2016 S. Karger AG, Basel.

  8. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  9. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    PubMed Central

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  10. Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in Zebrafish.

    PubMed

    Maximino, Caio; Lima, Monica G; Olivera, Karen R M; Picanço-Diniz, Domingos L W; Herculano, Anderson M

    2011-09-01

    Adenosinergic systems have been implicated in anxiety-like states, as caffeine can induce a state of anxiety in human beings. Caffeine is an antagonist at A(1) and A(2) adenosine receptors but it remains unclear whether anxiety is mediated by one or both of these. As the adenosinergic system is rather conserved, we opted to pursue these questions using zebrafish, a widely used model organism in genetics and developmental biology. Zebrafish adenosine 1. 2A.1 and 2A.2 receptors conserve histidine residues in TM6 and TM7 that are responsible for affinity in bovine A1 receptor. We investigated the effects of caffeine, PACPX (an A(1) receptor antagonist) and 1,3-dimethyl-1-propargylxanthine (DMPX) (an A(2) receptor antagonist) on anxiety-like behaviour and locomotor activity of zebrafish in the scototaxis test as well as evaluated the effects of these drugs on pigment aggregation. Caffeine increased anxiety at the dose of 100 mg/kg, while locomotion at the dose of 10 mg/kg was increased. Both doses of 10 and 100 mg/kg induced pigment aggregation. PACPX, on the other hand, increased anxiety at a dose of 6 mg/kg and induced pigment aggregation at the doses of 0.6 and 6 mg/kg, but did not produce a locomotor effect. DMPX, in turn, increased locomotion at the dose of 6 mg/kg but did not produce any effect on pigment aggregation or anxiety-like behaviour. These results indicate that blockade of A(1)-R, but not A(2)-R, induces anxiety and autonomic arousal, while the blockade of A(2)-R induces hyperlocomotion. Thus, as in rodents, caffeine's anxiogenic and arousing effects are probably mediated by A(1) receptors in zebrafish and its locomotor activating effect is probably mediated by A(2) receptors. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  11. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons.

    PubMed

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L; Anggono, Victor; Gether, Ulrik; Huganir, Richard L; Madsen, Kenneth L

    2013-08-27

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity.

  12. Involvement of adenosine A2A receptors in depression and anxiety.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. © 2014 Elsevier Inc. All rights reserved.

  13. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    PubMed

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  14. Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry.

    PubMed

    Jacobson, Kenneth A

    2013-12-20

    New insights into drug design are derived from the X-ray crystallographic structures of G protein-coupled receptors (GPCRs), and the adenosine receptors (ARs) are at the forefront of this effort. The 3D knowledge of receptor binding and activation promises to enable drug discovery for GPCRs in general, and specifically for the ARs. The predictability of modeling based on the X-ray structures of the A2AAR has been well demonstrated in the identification, design and modification of both known and novel AR agonists and antagonists. It is expected that structure-based design of drugs acting through ARs will provide new avenues to clinically useful agents.

  15. Nuclear Receptor Nr4a2 Promotes Alternative Polarization of Macrophages and Confers Protection in Sepsis.

    PubMed

    Mahajan, Sahil; Saini, Ankita; Chandra, Vemika; Nanduri, Ravikanth; Kalra, Rashi; Bhagyaraj, Ella; Khatri, Neeraj; Gupta, Pawan

    2015-07-24

    The orphan nuclear receptor Nr4a2 is known to modulate both inflammatory and metabolic processes, but the mechanism by which it regulates innate inflammatory homeostasis has not been adequately addressed. This study shows that exposure to ligands for Toll-like receptors (TLRs) robustly induces Nr4a2 and that this induction is tightly regulated by the PI3K-Akt signaling axis. Interestingly, exogenous expression of Nr4a2 in macrophages leads to their alternative phenotype with induction of genes that are prototypical M2 markers. Moreover, Nr4a2 transcriptionally activates arginase 1 expression by directly binding to its promoter. Adoptive transfer experiments revealed that increased survival of animals in endotoxin-induced sepsis is Nr4a2-dependent. Thus our data identify a previously unknown role for Nr4a2 in the regulation of macrophage polarization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Adenosine A2B receptor blockade slows growth of bladder and breast tumors.

    PubMed

    Cekic, Caglar; Sag, Duygu; Li, Yuesheng; Theodorescu, Dan; Strieter, Robert M; Linden, Joel

    2012-01-01

    The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.

  17. Chemical Modification and Irreversible Inhibition of Striatal A2a Adenosine Receptors

    PubMed Central

    JACOBSON, KENNETH A.; STILES, GARY L.; JI, XIAO-DUO

    2012-01-01

    SUMMARY The ligand recognition site of A2a-adenosine receptors in rabbit striatal membranes was probed using non-site-directed labeling reagents and specific affinity labels. Exposure of membranes to diethylpyrocarbonate at a concentration of 2.5 mm, followed by washing, was found to inhibit the binding of [3H]CGS 21680 and [3H]xanthine amine congener to A2a receptors, by 86 and 30%, respectively. Protection from diethylpyrocarbonate inactivation by an adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine, and an antagonist, theophylline, suggested the presence of two histidyl residues on the receptor, one associated with agonist binding and the other with antagonist binding. Binding of [3H]CGS 21680 or [3H]xanthine amine congener was partially restored after incubation with 250 mm hydroxylamine, further supporting histidine as the modification site. Preincubation with disulfide-reactive reagents, dithiothreitol or sodium dithionite, at >5 mm inhibited radioligand binding, indicating the presence of essential disulfide bridges in A2a receptors, whereas the concentration of mercaptoethanol required to inhibit binding was >50 mm. A number of isothiocyanate-bearing affinity labels derived from the A2a-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5′-N-ethylcarboxamidoadenosine (APEC) were synthesized and found to inhibit A2a receptor binding in rabbit and bovine striatal membranes. Binding to rabbit A1 receptors was not inhibited. Preincubation with the affinity label 4-isothiocyanatophenylaminothiocarbonyl-APEC (100 nm) diminished the Bmax for [3H]CGS 21680 binding by 71%, and the Kd was unaffected, suggesting a direct modification of the ligand binding site. Reversal of 4-isothiocyanatophenylaminothiocarbonyl-APEC inhibition of [3H]CGS 21680 binding with hydroxylamine suggested that the site of modification by the isothiocyanate is a cysteine residue. A bromoacetyl derivative of APEC was ineffective as an affinity label at

  18. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  19. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers

    PubMed Central

    Brozmanova, M.; Mazurova, L.; Ru, F.; Tatar, M.; Hu, Y.; Yu, S.

    2015-01-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10–60 mmHg) in a concentration-dependent fashion (1–100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  20. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1.

  1. Contribution of Adenosine A2B Receptors in Clostridium difficile Intoxication and Infection

    PubMed Central

    Li, Yuesheng; Calabrese, Gina M.; Freire, Rosemayre S.; Zaja-Milatovic, Snjezana; van Opstal, Edward; Figler, Robert A.; Linden, Joel; Guerrant, Richard L.

    2012-01-01

    Clostridium difficile toxins A (TcdA) and B (TcdB) induce a pronounced systemic and intestinal inflammatory response. A2B adenosine receptors (A2BARs) are the predominant adenosine receptors in the intestinal epithelium. We investigated whether A2BARs are upregulated in human intestinal cells by TcdA or TcdB and whether blockade of A2BARs can ameliorate C. difficile TcdA-induced enteritis and alter the outcome of C. difficile infection (CDI). Adenosine receptor subtype (A1, A2A, A2B, and A3) mRNAs were assayed in HCT-8 cells. Ileal loops from wild-type rabbits and mice and A2BAR−/− mice were treated with TcdA, with or without the selective A2BAR antagonist ATL692 or PSB1115. A murine model of CDI was used to determine the effect of A2BAR deletion or blockade with the orally available agent ATL801, on clinical outcome, histopathology and intestinal interleukin-6 (IL-6) expression from infection. TcdA and TcdB upregulated A2BAR gene expression in HCT-8 cells. ATL692 decreased TcdA-induced secretion and epithelial injury in rabbit ileum. Deletion of A2BARs reduced secretion and histopathology in TcdA-challenged mouse ileum. Deletion or blockade of A2BARs reduced histopathology, IL-6 expression, weight loss, diarrhea, and mortality in C. difficile-infected mice. A2BARs mediate C. difficile toxin-induced enteritis and disease. Inhibition of A2BAR activation may be a potential strategy to limit morbidity and mortality from CDI. PMID:23045479

  2. Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Chiodi, Valentina; Pepponi, Rita; Ferrante, Antonella; Domenici, Maria Rosaria; Frank, Claudio; Chen, Jiang-Fan; Ledent, Catherine; Popoli, Patrizia

    2009-09-01

    Adenosine A(2A), cannabinoid CB(1) and metabotropic glutamate 5 (mGlu(5)) receptors are all highly expressed in the striatum. The aim of the present work was to investigate whether, and by which mechanisms, the above receptors interact in the regulation of striatal synaptic transmission. By extracellular field potentials (FPs) recordings in corticostriatal slices, we demonstrated that the ability of the selective type 1 cannabinoid receptor (CB(1)R) agonist WIN55,212-2 to depress synaptic transmission was prevented by the pharmacological blockade or the genetic inactivation of A(2A)Rs. Such a permissive effect of A(2A)Rs towards CB(1)Rs does not seem to occur pre-synaptically as the ability of WIN55,212-2 to increase the R2/R1 ratio under a protocol of paired-pulse stimulation was not modified by ZM241385. Furthermore, the effects of WIN55,212-2 were reduced in slices from mice lacking post-synaptic striatal A(2A)Rs. The selective mGlu(5)R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) potentiated the synaptic effects of WIN55,212-2, and such a potentiation was abolished by A(2A)R blockade. Unlike the synaptic effects, the ability of WIN55,212-2 to prevent NMDA-induced toxicity was not influenced by ZM241385. Altogether, these results show that the state of activation of A(2A)Rs regulates the synaptic effects of CB(1)Rs and that A(2A)Rs may control CB(1) effects also indirectly, namely through mGlu(5)Rs.

  3. The impact of adenosine and A(2B) receptors on glucose homoeostasis.

    PubMed

    Rüsing, D; Müller, C E; Verspohl, E J

    2006-12-01

    Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.

  4. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion

    PubMed Central

    Yang, Dan; Zhang, Ying; Nguyen, Hao G.; Koupenova, Milka; Chauhan, Anil K.; Makitalo, Maria; Jones, Matthew R.; Hilaire, Cynthia St.; Seldin, David C.; Toselli, Paul; Lamperti, Edward; Schreiber, Barbara M.; Gavras, Haralambos; Wagner, Denisa D.; Ravid, Katya

    2006-01-01

    Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target. PMID:16823489

  5. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Popoli, Patrizia; Varani, Katia

    2013-09-01

    Adenosine, a purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors (ARs), is a potent endogenous modulator of inflammatory and neuronal processes involved in the pathophysiology of several neurodegenerative diseases. In the present study, ARs were investigated in lymphocytes from patients with amyotrophic lateral sclerosis (ALS) and compared with age-matched healthy subjects. In ALS patients A2AARs were analysed by using RT-PCR, Western blotting and saturation binding experiments. The effect of A2AAR stimulation on cyclic AMP levels was evaluated in lymphocytes from ALS patients and healthy subjects. An up-regulation of A2AARs was observed in ALS patients with respect to healthy subjects while A1, A2B and A3AR affinity and density did not change. In ALS patients, the A2AAR density values correlated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Furthermore, the stimulation of A2AARs mediated a significant increase in cyclic AMP levels in lymphocytes from ALS patients, with a higher potency than in lymphocytes from healthy subjects. In conclusion, the positive correlation between A2AAR density and ALSFRS-R scores could indicate a possible protective effect of this receptor subtype, representing an interesting starting point for the study of alternative therapeutic approaches for ALS based on A2AAR modulation.

  6. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism.

    PubMed Central

    Ledent, C; Dumont, J E; Vassart, G; Parmentier, M

    1992-01-01

    Cyclic AMP (cAMP) is the major intracellular second messenger of thyrotropin (TSH) action on thyroid cells. It stimulates growth as well as the function and differentiation of cultured thyrocytes. The adenosine A2 receptor, which activates adenylyl cyclase via coupling to the stimulating G protein (Gs), has been shown to promote constitutive activation of the cAMP cascade when transfected into various cell types. In order to test whether the A2 receptor was able to function similarly in vivo and to investigate the possible consequences of permanent adenylyl cyclase activation in thyroid cells, lines of transgenic mice were generated expressing the canine A2 adenosine receptor under control of the bovine thyroglobulin gene promoter. Thyroid-specific expression of the A2 adenosine receptor transgene promoted gland hyperplasia and severe hyperthyroidism causing premature death of the animals. The resulting goitre represents a model of hyperfunctioning adenomas: it demonstrates that constitutive activation of the cAMP cascade in such differentiated epithelial cells is sufficient to stimulate autonomous and uncontrolled function and growth. Images PMID:1371462

  7. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease.

    PubMed

    Chen, J F; Xu, K; Petzer, J P; Staal, R; Xu, Y H; Beilstein, M; Sonsalla, P K; Castagnoli, K; Castagnoli, N; Schwarzschild, M A

    2001-05-15

    Recent epidemiological studies have established an association between the common consumption of coffee or other caffeinated beverages and a reduced risk of developing Parkinson's disease (PD). To explore the possibility that caffeine helps prevent the dopaminergic deficits characteristic of PD, we investigated the effects of caffeine and the adenosine receptor subtypes through which it may act in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin model of PD. Caffeine, at doses comparable to those of typical human exposure, attenuated MPTP-induced loss of striatal dopamine and dopamine transporter binding sites. The effects of caffeine were mimicked by several A(2A) antagonists (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), 3,7-dimethyl-1-propargylxanthine, and (E)-1,3-diethyl-8 (KW-6002)-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione) (KW-6002) and by genetic inactivation of the A(2A) receptor, but not by A(1) receptor blockade with 8-cyclopentyl-1,3-dipropylxanthine, suggesting that caffeine attenuates MPTP toxicity by A(2A) receptor blockade. These data establish a potential neural basis for the inverse association of caffeine with the development of PD, and they enhance the potential of A(2A) antagonists as a novel treatment for this neurodegenerative disease.

  8. Synthesis and SAR evaluation of 1,2,4-triazoles as A(2A) receptor antagonists.

    PubMed

    Alanine, Alexander; Anselm, Lilli; Steward, Lucinda; Thomi, Stefan; Vifian, Walter; Groaning, Michael D

    2004-02-09

    The synthesis and in vitro structure-activity relationships (SAR) of a series of triazoles as A(2A) receptor antagonists is reported. This resulted in the identification of potent, selective and permeable 1,2,4-triazoles such as 42 for further optimization and evaluation in vivo.

  9. Tp-e interval and Tp-e/QT ratio in patients with Human Immunodeficiency Virus.

    PubMed

    Ünal, Sefa; Yayla, Çağrı; Açar, Burak; Ertem, Ahmet G; Akboğa, Mehmet K; Gökaslan, Serkan; Erdöl, Mehmet A; Sönmezer, Meliha Ç; Kaya Kiliç, Esra; Ataman Hatipoğlu, Çiğdem; Aydoğdu, Sinan; Temizhan, Ahmet

    2017-03-09

    Human Immunodeficiency Virus (HIV) infection and AIDS are known to cause cardiovascular diseases such as premature coronary artery disease, cardiomyopathy, and arrhythmias. Recently, Tp-e interval and Tp-e/QT ratio has been shown as a novel marker of ventricular repolarization. We aimed to evaluate the ventricular repolarization using Tp-e interval and Tp-e/QT ratio in patients with Human Immunodeficiency Virus (HIV) infection. Totally 48 patients with HIV and 60 control subjects were enrolled to the study. Tp-e interval, Tp-e/QT and Tp-e/QTc ratio were measured from the 12-lead electrocardiogram. Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio were significantly higher in patients with HIV than control subjects (all p<0.01). In correlation analysis, there were positive correlation between Tp-e interval and disease duration (r=0.298, p=0.048). and inverse correlation between Tp-e interval and CD4 count(r=-0.303, p=0.036). Our study showed that Tp-e interval, Tp-e/QT and Tp-e/QTc ratios were increased in patients with HIV than control subjects.

  10. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Merighi, Stefania; Gessi, Stefania; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Varani, Katia

    2013-08-01

    Multiple sclerosis (MS) is an autoimmune-mediated inflammatory disease characterized by multifocal areas of demyelination. Experimental evidence indicates that A2A adenosine receptors (ARs) play a pivotal role in the inhibition of inflammatory processes. The aim of this study was to investigate the contribution of A2A ARs in the inhibition of key pro-inflammatory mediators for the pathogenesis of MS. In lymphocytes from MS patients, A1, A2A, A2B, and A3 ARs were analyzed by using RT-PCR, Western blotting, immunofluorescence, and binding assays. Moreover the effect of A2A AR stimulation on proinflammatory cytokine release such as TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and on lymphocyte proliferation was evaluated. The capability of an A2A AR agonist on the modulation of very late antigen (VLA)-4 expression and NF-κB was also explored. A2A AR upregulation was observed in lymphocytes from MS patients in comparison with healthy subjects. The stimulation of these receptors mediated a significant inhibition of TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and cell proliferation as well as VLA-4 expression and NF-κB activation. This new evidence highlights that A2A AR agonists could represent a novel therapeutic tool for MS treatment as suggested by the antiinflammatory role of A2A ARs in lymphocytes from MS patients.

  11. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer.

    PubMed

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D

    2016-05-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson's disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other's effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. Published by Elsevier Ltd.

  12. High salt diet exacerbates vascular contraction in the absence of adenosine A2A receptor

    PubMed Central

    Pradhan, Isha; Zeldin, Darryl C.; Ledent, Catherine; Mustafa, S. Jamal; Falck, John R.; Nayeem, Mohammed A

    2014-01-01

    High salt (4%NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A2A-receptor (A2AAR). Evidence suggests A2AAR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A2AAR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A2AAR+/+, but exaggerates contraction in A2AAR−/−. Organ-bath and Western-blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A2AAR+/+ and A2AAR−/− mice aortae. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A2AAR+/+, whereas contraction was observed in A2AAR−/− mice and this was attenuated by A1AR antagonist (DPCPX). CGS-21680 (selective A2AAR-agonist) enhanced relaxation in HS-A2AAR+/+ vs. NS-A2AAR+/+, that was blocked by EETs antagonist (14,15-EEZE). Compared to NS, HS significantly upregulated expression of vasodilators A2AAR and cyp2c29, while vasoconstrictors A1AR and cyp4a in A2AAR+/+ were downregulated. In A2AAR−/− mice, however, HS significantly downregulated the expression of cyp2c29, while A1AR and cyp4a were upregulated compared to A2AAR+/+ mice. Hence, our data suggest that in A2AAR+/+, HS enhances A2AAR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A1AR levels, whereas in A2AAR−/−, HS exaggerates contraction through decreased cyp-epoxygenases and increased A1AR levels. PMID:24390173

  13. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    SciTech Connect

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  14. Adenosine A2B Receptor Deficiency Promotes Host Defenses against Gram-Negative Bacterial Pneumonia

    PubMed Central

    Barletta, Kathryn E.; Cagnina, R. Elaine; Burdick, Marie D.; Linden, Joel

    2012-01-01

    Rationale: Activation of the adenosine A2B receptor (A2BR) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. Objectives: To test the hypothesis that absence of adenosine A2B receptor signaling promotes host defense against bacterial pneumonia. Methods: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A2BR. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. Measurements and Main Results: A2BR–/– mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow–derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A2BR–/– and wild-type mice, but A2BR–/– neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A2BR–/– mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. Conclusions: These data suggest that the absence of A2BR signaling enhances antimicrobial activity in gram-negative bacterial pneumonia. PMID:22997203

  15. A covalent antagonist for the human adenosine A2A receptor.

    PubMed

    Yang, Xue; Dong, Guo; Michiels, Thomas J M; Lenselink, Eelke B; Heitman, Laura; Louvel, Julien; IJzerman, Ad P

    2016-12-03

    The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.

  16. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Martire, Alberto; Ledent, Catherine; Ceruti, Stefania; Abbracchio, Maria P

    2007-04-01

    The aim of this review is to summarize and critically discuss the complex role played by adenosine A(2A) receptors (A(2A)Rs) in Huntington's disease (HD). Since A(2A)Rs are mainly localized on the neurons, which degenerate early in HD, and given their ability to stimulate glutamate outflow and inflammatory gliosis, it was hypothesized that they could be involved in the pathogenesis of HD, and that A(2A)R antagonists could be neuroprotective. This was further sustained by the demonstration that A(2A)Rs and underlying signaling systems undergo profound changes in cellular and animal models of HD. More recently, however, the equation A(2A) receptor blockade=neuroprotection has appeared too simplistic. First, it is now definitely clear that, besides mediating 'bad' responses (for example, stimulation of glutamate outflow and excessive glial activation), A(2A)Rs also promote 'good' responses (such as trophic and antinflammatory effects). This implies that A(2A)R blockade results either in pro-toxic or neuroprotective effects according to the mechanisms involved in a given experimental model. Second, since HD is a chronically progressive disease, the multiple mechanisms involving A(2A)Rs may play different relative roles along the degenerative process. Such different mechanisms can be influenced by A(2A)R activation or blockade in different ways, even leading to opposite outcomes depending on the time of agonist/antagonist administration. The number, and the complexity, of the possible scenarios is further increased by the influence of mutant Huntingtin on both the expression and functions of A(2A)Rs, and by the strikingly different effects mediated by A(2A)Rs expressed by different cell populations within the brain.

  17. Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain.

    PubMed

    Wei, Catherine J; Augusto, Elisabete; Gomes, Catarina A; Singer, Philipp; Wang, Yumei; Boison, Detlev; Cunha, Rodrigo A; Yee, Benjamin K; Chen, Jiang-Fan

    2014-06-01

    Adenosine A2A receptors (A2ARs) are enriched in the striatum but are also present at lower levels in the extrastriatal forebrain (i.e., hippocampus, cortex), integrating dopamine, glutamate, and brain-derived neurotrophic factor (BDNF) signaling, and are thus essential for striatal neuroplasticity and fear and anxiety behavior. We tested two brain region-specific A2AR knockout lines with A2ARs selectively deleted either in the striatum (st-A2AR KO) or the entire forebrain (striatum, hippocampus, and cortex [fb-A2AR KO]) on fear and anxiety-related responses. We also examined the effect of hippocampus-specific A2AR deletion by local injection of adeno-associated virus type 5 (AAV5)-Cre into floxed-A2AR knockout mice. Selectively deleting A2ARs in the striatum increased Pavlovian fear conditioning (both context and tone) in st-A2AR KO mice, but extending the deletion to the rest of the forebrain apparently spared context fear conditioning and attenuated tone fear conditioning in fb-A2AR KO mice. Moreover, focal deletion of hippocampal A2ARs by AAV5-Cre injection selectively attenuated context (but not tone) fear conditioning. Deletion of A2ARs in the entire forebrain in fb-A2AR KO mice also produced an anxiolytic phenotype in both the elevated plus maze and open field tests, and increased the startle response. These extrastriatal forebrain A2AR behavioral effects were associated with reduced BDNF levels in the fb-A2AR KO hippocampus. This study provides evidence that inactivation of striatal A2ARs facilitates Pavlovian fear conditioning, while inactivation of extrastriatal A2ARs in the forebrain inhibits fear conditioning and also affects anxiety-related behavior. Copyright © 2014. Published by Elsevier Inc.

  18. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D.; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K.; Blackwell, Timothy S.; Xia, Yang; Johnston, Richard A.; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R.

    2012-01-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A2BR) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A2BR or treatment with the A2BR antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A2BR attenuated vascular remodeling and hypertension in our model. Furthermore, direct A2BR activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A2BR antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.—Karmouty-Quintana, H., Zhong, H., Acero, L., Weng, T., Melicoff, E., West, J. D., Hemnes, A., Grenz, A., Eltzschig, H. K., Blackwell, T. S., Xia, Y., Johnston, R. A., Zeng, D., Belardinelli, L., Blackburn, M. R. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. PMID:22415303

  19. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1994-01-01

    1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor

  20. [Adenosine A2A receptor as a drug target for treatment of sepsis].

    PubMed

    Sivak, K V; Vasin, A V; Egorov, V V; Tsevtkov, V B; Kuzmich, N N; Savina, V A; Kiselev, O I

    2016-01-01

    Sepsis is a generalized infection accompanied by response of the body that manifests in a clinical and laboratory syndrome, namely, in the systemic inflammatory response syndrome (SIRS) from the organism to the infection. Although sepsis is a widespread and life-threatening disease, the assortment of drugs for its treatment is mostly limited by antibiotics. Therefore, the search for new cellular targets for drug therapy of sepsis is an urgent task of modern medicine and pharmacology. One of the most promising targets is the adenosine A(2A) receptor (A(2A)AR). The activation of this receptor, which is mediated by extracellular adenosine, manifests in almost all types of immune cells (lymphocytes, monocytes, macrophages, and dendritic cells) and results in reducing the severity of inflammation and reperfusion injury in various tissues. The activation of adenosine A(2A) receptor inhibits the proliferation of T cells and production of proinflammatory cytokines, which contributes to the activation of the synthesis of anti-inflammatory cytokines, thereby suppressing the systemic response. For this reason, various selective A(2A)AR agonists and antagonists may be considered to be drug candidates for sepsis pharmacotherapy. Nevertheless, they remain only efficient ligands and objects of pre-clinical and clinical trials. This review examines the molecular mechanisms of inflammatory response in sepsis and the structure and functions of A(2A)AR and its role in the pathogenesis of sepsis, as well as examples of using agonists and antagonists of this receptor for the treatment of SIRS and sepsis.

  1. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety.

    PubMed

    Alsene, Karen; Deckert, Jürgen; Sand, Philipp; de Wit, Harriet

    2003-09-01

    The adenosine receptor system, which mediates the psychoactive effects of caffeine, is also thought to be involved in the regulation of anxiety. In this study, we examined the association between variations in anxiogenic responses to caffeine and polymorphisms in the A1 and A2a adenosine receptor genes. Healthy, infrequent caffeine users (N=94) recorded their subjective mood states following a 150 mg oral dose of caffeine freebase or placebo in a double-blind study. We found a significant association between self-reported anxiety after caffeine administration and two linked polymorphisms on the A2a receptor gene, the 1976C>T and 2592C>Tins polymorphisms. Individuals with the 1976T/T and the 2592Tins/Tins genotypes reported greater increases in anxiety after caffeine administration than the other genotypic groups. The study shows that an adenosine receptor gene polymorphism that has been associated with Panic Disorder is also associated with anxiogenic responses to an acute dose of caffeine.

  2. Investigation of the conformational dynamics of the apo A2A adenosine receptor

    PubMed Central

    Caliman, Alisha D; Swift, Sara E; Wang, Yi; Miao, Yinglong; McCammon, J Andrew

    2015-01-01

    The activation/deactivation processes for G-protein coupled receptors (GPCRs) have been computationally studied for several different classes, including rhodopsin, the β2 adrenergic receptor, and the M2 muscarinic receptor. Despite determined cocrystal structures of the adenosine A2A receptor (A2AAR) in complex with antagonists, agonists and an antibody, the deactivation process of this GPCR is not completely understood. In this study, we investigate the convergence of two apo simulations, one starting with an agonist-bound conformation (PDB: 3QAK)14 and the other starting with an antagonist-bound conformation (PDB: 3EML)11. Despite the two simulations not completely converging, we were able to identify distinct intermediate steps of the deactivation process characterized by the movement of Y2887.53 in the NPxxY motif. We find that Y2887.53 contributes to the process by forming hydrogen bonds to residues in transmembrane helices 2 and 7 and losing these interactions upon full deactivation. Y1975.58 also plays a role in the process by forming a hydrogen bond only once the side chain moves from the lipid interface to the middle of the helical bundle. PMID:25761901

  3. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance.

    PubMed

    Silwal-Pandit, Laxmi; Vollan, Hans Kristian Moen; Chin, Suet-Feung; Rueda, Oscar M; McKinney, Steven; Osako, Tomo; Quigley, David A; Kristensen, Vessela N; Aparicio, Samuel; Børresen-Dale, Anne-Lise; Caldas, Carlos; Langerød, Anita

    2014-07-01

    In breast cancer, the TP53 gene is frequently mutated and the mutations have been associated with poor prognosis. The prognostic impact of the different types of TP53 mutations across the different molecular subtypes is still poorly understood. Here, we characterize the spectrum and prognostic significance of TP53 mutations with respect to the PAM50 subtypes and integrative clusters (IC). TP53 mutation status was obtained for 1,420 tumor samples from the METABRIC cohort by sequencing all coding exons using the Sanger method. TP53 mutations were found in 28.3% of the tumors, conferring a worse overall and breast cancer-specific survival [HR = 2.03; 95% confidence interval (CI), 1.65-2.48, P < 0.001], and were also found to be an independent marker of poor prognosis in estrogen receptor-positive cases (HR = 1.86; 95% CI, 1.39-2.49, P < 0.001). The mutation spectrum of TP53 varied between the breast cancer subtypes, and individual alterations showed subtype-specific association. TP53 mutations were associated with increased mortality in patients with luminal B, HER2-enriched, and normal-like tumors, but not in patients with luminal A and basal-like tumors. Similar observations were made in ICs, where mutation associated with poorer outcome in IC1, IC4, and IC5. The combined effect of TP53 mutation, TP53 LOH, and MDM2 amplification on mortality was additive. This study reveals that TP53 mutations have different clinical relevance in molecular subtypes of breast cancer, and suggests diverse roles for TP53 in the biology underlying breast cancer development. ©2014 American Association for Cancer Research.

  4. An Update on Adenosine A2A-Dopamine D2 receptor interactions. Implications for the Function of G Protein-Coupled Receptors

    PubMed Central

    Ferré, S.; Quiroz, C.; Woods, A. S.; Cunha, R.; Popoli, P.; Ciruela, F.; Lluis, C.; Franco, R.; Azdad, K.; Schiffmann, S. N.

    2008-01-01

    Adenosine A2A-dopamine D2 receptor interactions play a very important role in striatal function. A2A-D2 receptor interactions provide an example of the capabilities of information processing by just two different G protein-coupled receptors. Thus, there is evidence for the coexistence of two reciprocal antagonistic interactions between A2A and D2 receptors in the same neurons, the GABAergic enkephalinergic nens. An antagonistic A2A-D2 intramembrane receptor interaction, which depends on A2A-D2 receptor heteromerization and Gq/11-PLC signaling, modulates neuronal excitability and neurotransmitter release. On the other hand, an antagonistic A2A-D2 receptor interaction at the adenylyl-cyclase level, which depends on Gs/olf- and Gi/o- type V adenylyl-cyclase signaling, modulates protein phosphorylation and gene expression. Finally, under conditions of upregulation of an activator of G protein signaling (AGS3), such as during chronic treatment with addictive drugs, a synergistic A2A-D2 receptor interaction can also be demonstrated. AGS3 facilitates a synergistic interaction between Gs/olf- and Gi/o- coupled receptors on the activation of types II/IV adenylyl cyclase, leading to a paradoxical increase in protein phosphorylation and gene expression upon co-activation of A2A and D2 receptors. The analysis of A2-D2 receptor interactions will have implications for the pathophysiology and treatment of basal ganglia disorders and drug addiction. PMID:18537670

  5. The Immunosuppressive Role of Adenosine A2A Receptors in Ischemia Reperfusion Injury and Islet Transplantation

    PubMed Central

    Chhabra, Preeti; Linden, Joel; Lobo, Peter; Okusa, Mark Douglas; Brayman, Kenneth Lewis

    2014-01-01

    Activation of adenosine A2A receptors (A2AR) reduces inflammation by generally inhibiting the activation of pro-inflammatory cells, decreasing endothelial adhesion molecule expression and reducing the release of proinflammatory cytokine mediators. Numerous preclinical studies using selective A2AR agonists, antagonists, A2AR knockout as well as chimeric mice have suggested the therapeutic potential of A2AR agonists for the treatment of ischemia reperfusion injury (IRI) and autoimmune diseases. This review summarizes the immunosuppressive actions of A2AR agonists in murine IRI models of liver, kidney, heart, lung and CNS, and gives details on the cellular effects of A2AR activation in neutrophils, macrophages, dendritic cells, natural killer cells, NKT cells, T effector cells and CD4+CD25+FoxP3+ T regulatory cells. This is discussed in the context of cytokine mediators involved in inflammatory cascades. Whilst the role of adenosine receptor agonists in various models of autoimmune disease has been well-documented, very little information is available regarding the role of A2AR activation in type 1 diabetes mellitus (T1DM). An overview of the pathogenesis of T1DM as well as early islet graft rejection in the immediate peri-transplantation period offers insight regarding the use of A2AR agonists as a beneficial intervention in clinical islet transplantation, promoting islet graft survival, minimizing early islet loss and reducing the number of islets required for successful transplantation, thereby increasing the availability of this procedure to a greater number of recipients. In summary, the use of A2AR agonists as a clinical intervention in IRI and as an adjunct to clinical immunesuppressive regimen in islet transplantation is highlighted. PMID:22934547

  6. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    DTIC Science & Technology

    2012-12-01

    in Traumatic Optic Neuropathies ” PRINCIPAL INVESTIGATOR: Gregory I. Liou, PhD CONTRACTING ORGANIZATION: Georgia Health Sciences...Adenosine Receptor A2A in Traumatic Optic Neuropathies 5b. GRANT NUMBER W81XWH-11-2-0046 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ABSTRACT Our goal is to develop an early therapeutic intervention before the progression of traumatic optic neuropathy (TON), a vision-threatening

  7. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia.

    PubMed

    Villar-Menéndez, Izaskun; Díaz-Sánchez, Sara; Blanch, Marta; Albasanz, José Luis; Pereira-Veiga, Thais; Monje, Alfonso; Planchat, Luis Maria; Ferrer, Isidre; Martín, Mairena; Barrachina, Marta

    2014-04-01

    Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity. It has also been proposed that there is a hypoadenosynergic state. Adenosine is a nucleoside widely distributed in the organism with neuromodulative and neuroprotective activity in the central nervous system. In the brain, the most abundant adenosine receptors are A1R and A2AR. In the present report, we characterize the presence of both receptors in human postmortem putamens of patients suffering SZ with real time TaqMan PCR, western blotting and radioligand binding assay. We show that A1R levels remain unchanged with respect to age-matched controls, whereas nearly fifty percent of patients have reduced A2AR, at the transcriptional and translational levels. Moreover, we describe how DNA methylation plays a role in the pathological A2AR levels with the bisulfite-sequencing technique. In fact, an increase in 5-methylcytosine percentage in the 5' UTR region of ADORA2A was found in those SZ patients with reduced A2AR levels. Interestingly, there was a relationship between the A2A/β-actin ratio and motor disturbances as assessed with some items of the PANSS, AIMS and SAS scales. Therefore, there may be a subgroup of SZ patients with reduced striatal A2AR levels accompanied by an altered motor phenotype.

  8. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

    PubMed Central

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N.; Borycz, Janusz; Kachroo, Anil; Canas, Paula M.; Orru, Marco; Schwarzschild, Michael A.; Rosin, Diane L.; Kreitzer, Anatol C.; Cunha, Rodrigo A.; Watanabe, Masahiko; Ferré, Sergi

    2010-01-01

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel anti-parkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional functionally significant segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of cortico-striatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders. PMID:19936569

  9. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    PubMed

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  10. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    PubMed Central

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  11. Human monocytes respond to extracellular cAMP through A2A and A2B adenosine receptors

    PubMed Central

    Sciaraffia, Ester; Riccomi, Antonella; Lindstedt, Ragnar; Gesa, Valentina; Cirelli, Elisa; Patrizio, Mario; De Magistris, Maria Teresa; Vendetti, Silvia

    2014-01-01

    In this study, we test the hypothesis that cAMP, acting as an extracellular mediator, affects the physiology and function of human myeloid cells. The cAMP is a second messenger recognized as a universal regulator of several cellular functions in different organisms. Many studies have shown that extracellular cAMP exerts regulatory functions, acting as first mediator in multiple tissues. However, the impact of extracellular cAMP on cells of the immune system has not been fully investigated. We found that human monocytes exposed to extracellular cAMP exhibit higher expression of CD14 and lower amount of MHC class I and class II molecules. When cAMP-treated monocytes are exposed to proinflammatory stimuli, they exhibit an increased production of IL-6 and IL-10 and a lower amount of TNF-α and IL-12 compared with control cells, resembling the features of the alternative-activated macrophages or M2 macrophages. In addition, we show that extracellular cAMP affects monocyte differentiation into DCs, promoting the induction of cells displaying an activated, macrophage-like phenotype with reduced capacity of polarized, naive CD4+ T cells into IFN-γ-producing lymphocytes compared with control cells. The effects of extracellular cAMP on monocytes are mediated by CD73 ecto-5′-nucleotidase and A2A and A2B adenosine receptors, as selective antagonists could reverse its effects. Of note, the expression of CD73 molecules has been found on the membrane of a small population of CD14+CD16+ monocytes. These findings suggest that an extracellular cAMP-adenosine pathway is active in cells of the immune systems. PMID:24652540

  12. Clinical/pharmacological aspect of adenosine A2A receptor antagonist for dyskinesia.

    PubMed

    Kanda, Tomoyuki; Uchida, Shin-ichi

    2014-01-01

    Dopamine replacement therapy using the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), with a peripheral dopa decarboxylase inhibitor is the most effective treatment currently available for the symptoms of Parkinson's disease (PD). However, the long-term use of dopaminergic therapies for PD is often limited by the development of motor response complications, such as dyskinesia. Adenosine A2A receptors are a promising nondopaminergic target for the treatment of PD. The treatment of motor response complications involves combinations of regular and controlled release L-DOPA, perhaps with the addition of a COMT inhibitor or the use of a longer-acting dopamine agonist. However, when dyskinesia is already established, the increase in dopaminergic load produced by the addition of a dopamine agonist can result in an increase in the severity and duration of dyskinesia. Currently, there are no well-tolerated antidyskinesia agents available. Amantadine, which may exert its effects through the inhibition of N-methyl-D-aspartate (NMDA) receptors, shows some effects on established dyskinesia. Dyskinesia has a negative impact on the quality of life of patients, sometimes being more disabling than PD itself. Although some patients prefer experiencing dyskinesia than being in the OFF state and unable to move, alternative, more effective therapies are still required for severe disabling dyskinesia to afford patients an improved quality of life while in the ON state. The mechanisms causing and maintaining the dyskinesia have not been clarified. The application of a nondopaminergic approach to modify the basal ganglial activity would be helpful to better understand and treat dyskinesia. The use of an adenosine A2A receptor may provide one such approach. In this literature review, we will summarize the current knowledge from both clinical and nonclinical studies on the effects of adenosine A2A receptor blockade on dyskinesia.

  13. Adenosine A2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory.

    PubMed

    Simões, Ana Patrícia; Machado, Nuno J; Gonçalves, Nélio; Kaster, Manuella P; Simões, Ana T; Nunes, Ana; Pereira de Almeida, Luís; Goosens, Ki Ann; Rial, Daniel; Cunha, Rodrigo A

    2016-11-01

    The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A2A receptors (A2ARs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A2ARs in the amygdala regulate synaptic plasticity and fear memory. We report that A2ARs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A2ARs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A2AR (shA2AR)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A2ARs in the amygdala after fear acquisition. The importance of A2ARs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A2AR antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A1R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A2ARs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A2AR polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A2ARs to manage fear-related pathologies.

  14. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis.

    PubMed

    Liu, Zhiping; Yan, Siyuan; Wang, Jiaojiao; Xu, Yiming; Wang, Yong; Zhang, Shuya; Xu, Xizhen; Yang, Qiuhua; Zeng, Xianqiu; Zhou, Yaqi; Gu, Xuejiao; Lu, Sarah; Fu, Zhongjie; Fulton, David J; Weintraub, Neal L; Caldwell, Ruth B; Zhang, Wenbo; Wu, Chaodong; Liu, Xiao-Ling; Chen, Jiang-Fan; Ahmad, Aftab; Kaddour-Djebbar, Ismail; Al-Shabrawey, Mohamed; Li, Qinkai; Jiang, Xuejun; Sun, Ye; Sodhi, Akrit; Smith, Lois; Hong, Mei; Huo, Yuqing

    2017-09-19

    Adenosine/adenosine receptor-mediated signaling has been implicated in the development of various ischemic diseases, including ischemic retinopathies. Here, we show that the adenosine A2a receptor (ADORA2A) promotes hypoxia-inducible transcription factor-1 (HIF-1)-dependent endothelial cell glycolysis, which is crucial for pathological angiogenesis in proliferative retinopathies. Adora2a expression is markedly increased in the retina of mice with oxygen-induced retinopathy (OIR). Endothelial cell-specific, but not macrophage-specific Adora2a deletion decreases key glycolytic enzymes and reduces pathological neovascularization in the OIR mice. In human primary retinal microvascular endothelial cells, hypoxia induces the expression of ADORA2A by activating HIF-2α. ADORA2A knockdown decreases hypoxia-induced glycolytic enzyme expression, glycolytic flux, and endothelial cell proliferation, sprouting and tubule formation. Mechanistically, ADORA2A activation promotes the transcriptional induction of glycolytic enzymes via ERK- and Akt-dependent translational activation of HIF-1α protein. Taken together, these findings advance translation of ADORA2A as a therapeutic target in the treatment of proliferative retinopathies and other diseases dependent on pathological angiogenesis.Pathological angiogenesis in the retina is a major cause of blindness. Here the authors show that adenosine receptor A2A drives pathological angiogenesis in the oxygen-induced retinopathy mouse model by promoting glycolysis in endothelial cells via the ERK/Akt/HIF-1α pathway, thereby suggesting new therapeutic targets for disease treatment.

  15. Hydration Site Thermodynamics Explain SARs for Triazolylpurines Analogues Binding to the A2A Receptor

    PubMed Central

    2010-01-01

    A series of triazolylpurine analogues show interesting and unintuitive structure−activity relationships against the A2A adenosine receptor. As the 2-substituted aliphatic group is initially increased to methyl and isopropyl, there is a decrease in potency; however, extending the substituent to n-butyl and n-pentyl results in a significant gain in potency. This trend cannot be readily explained by ligand−receptor interactions, steric effects, or differences in ligand desolvation. Here, we show that a novel method for characterizing solvent thermodynamics in protein binding sites correctly predicts the trend in binding affinity for this series based on the differential water displacement patterns. In brief, small unfavorable substituents occupy a region in the A2A adenosine receptor binding site predicted to contain stable waters, while the longer favorable substituents extend to a region that contains several unstable waters. The predicted binding energies associated with displacing water within these hydration sites correlate well with the experimental activities. PMID:24900189

  16. Modification of the tetrodotoxin receptor in Electrophorus electricus by phospholipase A2.

    PubMed

    Reed, J K

    1981-08-06

    The effects of phospholipase A2 treatment on the tetrodotoxin receptors in Electrophorus electricus was studied. (1) The binding of [3H]tetrodotoxin to electroplaque membranes was substantially reduced by treatment of the membranes with low concentrations of phospholipase A2 from a number of sources, including bee venom, Vipera russelli and Crotalus adamanteus and by beta-bungarotoxin. (2) Phospholipase A2 from bee venom and from C. adamanteus both caused extensive hydrolysis of electroplaque membrane phospholipids although the substrate specificity differed. Analysis of the phospholipid classes hydrolyzed revealed a striking correlation between loss of toxin binding and hydrolysis of phosphatidylethanolamine but not of phosphatidylserine. (3) The loss of toxin binding could be partially reversed by treatment of the membranes with bovine serum albumin, conditions which are known to remove hydrolysis products from the membrane. (4) Equilibrium binding studies on the effects of phospholipase A2 treatment of [3H]tetrodotoxin binding showed that the reduction reflected loss of binding sites and not a change in affinity. (5) These results are interpreted in terms of multiple equilibrium states of the tetrodotoxin-receptors with conformations determined by the phospholipid environment.

  17. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor.

    PubMed

    Lebon, Guillaume; Edwards, Patricia C; Leslie, Andrew G W; Tate, Christopher G

    2015-06-01

    The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R.

  18. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils

    PubMed Central

    Varani, Katia; Gessi, Stefania; Merighi, Stefania; Iannotta, Valeria; Cattabriga, Elena; Spisani, Susanna; Cadossi, Ruggero; Borea, Pier Andrea

    2002-01-01

    The present study describes the effect of low frequency, low energy, pulsing electromagnetic fields (PEMFs) on A2A adenosine receptors in human neutrophils.Saturation experiments performed using a high affinity adenosine antagonist [3H]-ZM 241385 revealed a single class of binding sites in control and in PEMF-treated human neutrophils with similar affinity (KD=1.05±0.10 and 1.08±0.12 nM, respectively). Furthermore, after 1 h of exposure to PEMFs the receptor density was statistically increased (P<0.01) (Bmax =126±10 and 215±15 fmol mg−1 protein, respectively).The effect of PEMFs was specific to the A2A adenosine receptors. This effect was also intensity, time and temperature dependent.In the adenylyl cyclase assays the A2A receptor agonists, HE-NECA and NECA, increased cyclic AMP accumulation in untreated human neutrophils with an EC50 value of 43 (40 – 47) and 255 (228 – 284) nM, respectively. The capability of HE-NECA and NECA to stimulate cyclic AMP levels in human neutrophils was increased (P<0.01) after exposure to PEMFs with an EC50 value of 10(8 – 13) and 61(52 – 71) nM, respectively.In the superoxide anion (O2−) production assays HE-NECA and NECA inhibited the generation of O2− in untreated human neutrophils, with an EC50 value of 3.6(3.1 – 4.2) and of 23(20 – 27) nM, respectively. Moreover, in PEMF-treated human neutrophils, the same compounds show an EC50 value of 1.6(1.2 – 2.1) and of 6.0(4.7 – 7.5) nM respectively.These results indicate the presence of significant alterations in the expression and in the functionality of adenosine A2A receptors in human neutrophils treated with PEMFs. PMID:11976268

  19. TP-H1148 knitline integrity evaluation

    NASA Technical Reports Server (NTRS)

    Gill, M.

    1990-01-01

    The main objective was to reevaluate the TP-H1148 propellant knitting capabilities due to minor changes in TP-H1148 raw materials and to test the effects of aging on the knitline and the bondline of the propellant to the liner (when epoxy primer was applied).

  20. [TP53 mutations and molecular epidemiology].

    PubMed

    Otsuka, Kazunori; Ishioka, Chikashi

    2007-05-01

    Tumor suppressor p53 protein is activated by a variety of cellular stresses through several pathways and transactivates its downstream genes, including regulators of cell cycle, apoptosis and DNA repair. The loss of p53 function by TP53 gene mutations therefore fails to activate these genes and is thought to be a critical cause of carcinogenesis and/or tumor progression. TP53 is one of the most frequently mutated genes in human cancer. TP53 mutations are found in about 50% of human cancers, although the frequency of TP53 mutations differs among tumor types. However, the degree of functional disorder of mutant p53 varies according to the type of TP53 mutation. And the effects of p53 on cancer formation and/or progression are influenced by the degree of p53 dysfunction. So it is important to analyze the effects of TP53 mutations carefully according to the oncogenicity of each mutation from the molecular epidemiological point of view. Here, together with some cautions needed for analyzing and interpreting the significance of TP53 gene mutations, we present some examples of the identified specific mutation spectrum and the correlation between the prognosis and TP53 mutation in some cancers.

  1. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2008-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  2. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2009-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  3. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.

    PubMed

    Haricharan, Svasti; Brown, Powel

    2015-06-23

    Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.

  4. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth

    PubMed Central

    Haricharan, Svasti; Brown, Powel

    2015-01-01

    Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30–50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types. PMID:26063617

  5. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury

    PubMed Central

    Sun, Chun-Xiao; Zhong, Hongyan; Mohsenin, Amir; Morschl, Eva; Chunn, Janci L.; Molina, Jose G.; Belardinelli, Luiz; Zeng, Dewan; Blackburn, Michael R.

    2006-01-01

    Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase–deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883–treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy. PMID:16841096

  6. Autoantibodies against the Fibrinolytic Receptor, Annexin A2, in Cerebral Venous Thrombosis

    PubMed Central

    Cesarman-Maus, Gabriela; Cantú-Brito, Carlos; Barinagarrementeria, Fernando; Villa, Rosario; Reyes, Elba; Sanchez-Guerrero, Jorge; Hajjar, Katherine A; Latorre, Ethel Garcia

    2010-01-01

    Background and Purpose Cerebral venous thrombosis (CVT) may be a manifestation of underlying autoimmune disease. Antibodies against annexin A2 (anti-A2Ab) coincide with the antiphospholipid syndrome (APS), in which antiphospholipid antibodies (aPLA) are associated with thrombosis in any vascular bed. Annexin A2, a profibrinolytic receptor and binding site for β2-glycoprotein-I (β2-GPI), the main target for aPLA, is highly expressed on cerebral endothelium. Here we evaluate the prevalence of anti-A2Ab in CVT. Methods Forty individuals with objectively documented CVT (33 women and 7 men) and 145 healthy controls were prospectively studied for hereditary and acquired prothrombotic risk factors, classical aPLA, and anti-A2Ab. Results One or more prothrombotic risk factors were found in 85% of CVT subjects, (pregnancy/puerperium in 57.5%, classical aPLA in 22.5%, and hereditary procoagulant risk factors in 17.5%). Anti-A2Ab (titer >3SD) were significantly more prevalent in patients with CVT (12.5%) than in healthy individuals (2.1%, p<0.01, OR:5.9). Conclusions Anti-A2Ab are significantly associated with CVT, and may define a subset of individuals with immune-mediated cerebral thrombosis. PMID:21193750

  7. Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors.

    PubMed

    Sonkin, Dmitriy

    2015-10-22

    A number of TP53-MDM2 inhibitors are currently under investigation as therapeutic agents in a variety of clinical trials in patients with TP53 wild type tumors. Not all wild type TP53 tumors are sensitive to such inhibitors. In an attempt to improve selection of patients with TP53 wild type tumors, an mRNA expression signature based on 13 TP53 transcriptional target genes was recently developed (Jeay et al. 2015). Careful reanalysis of TP53 status in the study validation data set of cancer cell lines considered to be TP53 wild type detected TP53 inactivating alterations in 23% of cell lines. The subsequent reanalysis of the remaining TP53 wild type cell lines clearly demonstrated that unfortunately the 13-gene signature cannot predict response to TP53-MDM2 inhibitor in TP53 wild type tumors.

  8. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation.

    PubMed

    Seidah, Nabil G; Poirier, Steve; Denis, Maxime; Parker, Rex; Miao, Bowman; Mapelli, Claudio; Prat, Annik; Wassef, Hanny; Davignon, Jean; Hajjar, Katherine A; Mayer, Gaétan

    2012-01-01

    Proprotein convertase subtilisin/kexin-9 (PCSK9) enhances the degradation of hepatic low-density lipoprotein receptor (LDLR). Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2) as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/-) mice revealed: i) a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii) a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/-) tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.

  9. Analysis of Adenosine A2a Receptor Stability: Effects of Ligands and Disulfide Bonds

    PubMed Central

    O'Malley, Michelle A.; Naranjo, Andrea N.; Lazarova, Tzvetana; Robinson, Anne S.

    2010-01-01

    G protein-coupled receptors (GPCRs)1 constitute the largest family of integral membrane proteins present in all eukaryotic cells, yet relatively little information is known pertaining to their structure, folding, and stability. In this work, we describe several approaches to characterize conformational stability of the human adenosine A2a receptor (hA2aR). Thermal and chemical denaturation were not reversible, yet clear differences in the unfolding behavior were observed upon ligand binding via circular dichroism and fluorescence spectrometry. We found that the stability of hA2aR was increased upon incubation with the agonist N6-cyclohexyladenosine or the antagonist theophylline. When extracellular disulfide bonds were reduced with a chemical reducing agent, the ligand-binding activity decreased by ~40%, but reduction of these bonds did not compromise the unfolding transition observed via urea denaturation. Overall, these approaches offer a general strategy for characterizing the effect of surfactant and ligand effects on the stability of GPCRs. PMID:20853839

  10. Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice

    SciTech Connect

    Jarvis, M.F.; Williams, M.

    1988-07-01

    Two strains of inbred mice, CBA/J and SWR/J, have been identified which are, respectively, sensitive and insensitive to the behavioral and toxic effects of methylxanthines. Autoradiographic analyses of brain adenosine receptors were conducted with (/sup 3/H)CHA to label adenosine A-1 receptors and (/sup 3/H)NECA, in the presence of 50 nM CPA, to label adenosine A-2 receptors. For both mouse strains, adenosine A-1 receptors were most highly concentrated in the hippocampus and cerebellum whereas adenosine A-2 receptors were selectively localized in the striatum. CBA/J mice displayed a 30% greater density of adenosine A-1 receptors in the hippocampal CA-1 and CA-3 regions and in the cerebellum as compared to the SWR/J mice. The number of A-2 receptors (Bmax) was 40% greater in the striatum and olfactory tubercle of CBA/J as compared to SWR/J mice. No significant regional differences in A-1 or A-2 receptor affinities were observed between these inbred strains of mice. These results indicate that the differential sensitivity to methylxanthines between these mouse strains may reflect a genetically mediated difference in regional adenosine receptor densities.

  11. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  12. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    PubMed

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  13. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs.

  14. Identification of Novel Adenosine A2A Receptor Antagonists by Virtual Screening

    PubMed Central

    2012-01-01

    Virtual screening was performed against experimentally enabled homology models of the adenosine A2A receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11–13 from 5, pKI = 7.5–8.5, 13- to >100-fold selective versus adenosine A1; 14–16 from 1, pKI = 7.9–9.0, 19- to 59-fold selective). PMID:22250781

  15. Physical origins of remarkable thermostabilization by an octuple mutation for the adenosine A2a receptor

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yuta; Ogino, Takahiro; Yasuda, Satoshi; Takamuku, Yuuki; Murata, Takeshi; Kinoshita, Masahiro

    2016-07-01

    It was experimentally showed that the thermal stability of a membrane protein, the adenosine A2a receptor, was remarkably enhanced by an octuple mutation. Here we theoretically prove that the energy decrease arising from the formation of protein intramolecular hydrogen bonds and the solvent-entropy gain upon protein folding are made substantially larger by the mutation, leading to the remarkable enhancement. The solvent is formed by hydrocarbon groups constituting nonpolar chains of the lipid bilayer within a membrane. The mutation modifies geometric characteristics of the structure so that the solvent crowding can be reduced to a larger extent when the protein folds.

  16. FGF acts as a co-transmitter through Adenosine A2A receptor to regulate morphological and physiological synaptic plasticity

    PubMed Central

    Flajolet, Marc; Wang, Zhongfeng; Futter, Marie; Shen, Weixing; Nuangchamnong, Nina; Bendor, Jacob; Palaszewski, Iwona; Nairn, Angus C.; Surmeier, D. James; Greengard, Paul

    2009-01-01

    Summary Abnormalities of striatal function have been implicated in several major neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, and depression. Adenosine, by activation of A2A receptors, antagonizes dopamine signaling at D2 receptors and A2A receptor antagonists have been tested as therapeutic agents for Parkinson's disease. We report here a direct physical interaction between the G protein-coupled A2A receptor and the receptor tyrosine kinase FGF receptor. Concomitant activation of these two classes of receptors, but not individual activation of either one alone, causes a robust activation of the MAPK/ERK pathway, differentiation and neurite extension of PC12 cells, spine morphogenesis in primary neuronal cultures, and cortico-striatal plasticity induced by a novel A2AR/FGFR-dependent mechanism. The discovery of a direct physical interaction between the A2A and FGF receptors and the robust physiological consequences of this association shed light on the mechanism underlying FGF functions as a co-transmitter and open new avenues for therapeutic interventions. PMID:18953346

  17. The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo.

    PubMed

    Morató, Xavier; Luján, Rafael; López-Cano, Marc; Gandía, Jorge; Stagljar, Igor; Watanabe, Masahiko; Cunha, Rodrigo A; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2017-08-25

    G protein-coupled receptor 37 (GPR37) is an orphan receptor associated to Parkinson's disease (PD) neuropathology. Here, we identified GPR37 as an inhibitor of adenosine A2A receptor (A2AR) cell surface expression and function in vivo. In addition, we showed that GPR37 and A2AR do oligomerize in the striatum. Thus, a close proximity of GPR37 and A2AR at the postsynaptic level of striatal synapses was observed by double-labelling post-embedding immunogold detection. Indeed, the direct receptor-receptor interaction was further substantiated by proximity ligation in situ assay. Interestingly, GPR37 deletion promoted striatal A2AR cell surface expression that correlated well with an increased A2AR agonist-mediated cAMP accumulation, both in primary striatal neurons and nerve terminals. Furthermore, GPR37-/- mice showed enhanced A2AR agonist-induced catalepsy and an increased response to A2AR antagonist-mediated locomotor activity. Overall, these results revealed a key role for GPR37 controlling A2AR biology in the striatum, which may be relevant for PD management.

  18. Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

    PubMed Central

    Rau, Andrew R.; Ariwodola, Olusegun J.

    2015-01-01

    Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability. Results: Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells. PMID:25716780

  19. Behavioural and neurochemical characterization of the adenosine A2A receptor antagonist ST1535.

    PubMed

    Galluzzo, Mariangela; Pintor, Anita; Pèzzola, Antonella; Grieco, Rosa; Borsini, Franco; Popoli, Patrizia

    2008-01-28

    ST1535 (2-butyl-9-methyl-8-(2H-1,2,3-triazol 2-yl)-9 H-purin-6-ylamine) is a novel compound showing a preferential adenosine A(2A) receptor antagonist profile. To explore the potential neuroprotective profile of this compound, we evaluated whether ST1535 prevented quinolinic acid (QA)-induced glutamate outflow in the rat striatum (a reliable index of neuroprotective activity in vivo). Microdialysis experiments were performed in naive Wistar rats. In these experiments, a behaviourally active and inactive doses of ST1535 were used. Both doses significantly prevented QA-induced glutamate outflow in the striatum. These results show that ST1535 protects towards striatal excitotoxicity, even though its reduced A(2A)/A(1) selectivity might limit its actual neuroprotective potential.

  20. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

    PubMed Central

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions. PMID:24966910

  1. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development

    PubMed Central

    Stergiopoulos, Athanasios; Politis, Panagiotis K.

    2016-01-01

    The enormous complexity of mammalian central nervous system (CNS) is generated by highly synchronized actions of diverse factors and signalling molecules in neural stem/progenitor cells (NSCs). However, the molecular mechanisms that integrate extrinsic and intrinsic signals to control proliferation versus differentiation decisions of NSCs are not well-understood. Here we identify nuclear receptor NR5A2 as a central node in these regulatory networks and key player in neural development. Overexpression and loss-of-function experiments in primary NSCs and mouse embryos suggest that NR5A2 synchronizes cell-cycle exit with induction of neurogenesis and inhibition of astrogliogenesis by direct regulatory effects on Ink4/Arf locus, Prox1, a downstream target of proneural genes, as well as Notch1 and JAK/STAT signalling pathways. Upstream of NR5a2, proneural genes, as well as Notch1 and JAK/STAT pathways control NR5a2 endogenous expression. Collectively, these observations render NR5A2 a critical regulator of neural development and target gene for NSC-based treatments of CNS-related diseases. PMID:27447294

  2. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    PubMed Central

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  3. Agonist Dynamics and Conformational Selection during Microsecond Simulations of the A2A Adenosine Receptor

    PubMed Central

    Lee, Ji Young; Lyman, Edward

    2012-01-01

    The G-protein-coupled receptors (GPCRs) are a ubiquitous family of signaling proteins of exceptional pharmacological importance. The recent publication of structures of several GPCRs cocrystallized with ligands of differing activity offers a unique opportunity to gain insight into their function. To that end, we performed microsecond-timescale simulations of the A2A adenosine receptor bound to either of two agonists, adenosine or UK432097. Our data suggest that adenosine is highly dynamic when bound to A2A, in stark contrast to the case with UK432097. Remarkably, adenosine finds an alternate binding pose in which the ligand is inverted relative to the crystal structure, forming relatively stable interactions with helices I and II. Our observations suggest new experimental tests to validate our predictions and deepen our understanding of GPCR signaling. Overall, our data suggest an intriguing hypothesis: that the 100- to 1000-fold greater efficacy of UK432097 relative to adenosine arises because UK432097 stabilizes a much tighter neighborhood of active conformations, which manifests as a greater likelihood of G-protein activation per unit time. PMID:22824275

  4. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  5. Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions

    PubMed Central

    Chavent, Matthieu; Seiradake, Elena; Jones, E. Yvonne; Sansom, Mark S.P.

    2016-01-01

    Summary Ephs are transmembrane receptors that mediate cell-cell signaling. The N-terminal ectodomain binds ligands and enables receptor clustering, which activates the intracellular kinase. Relatively little is known about the function of the membrane-proximal fibronectin domain 2 (FN2) of the ectodomain. Multiscale molecular dynamics simulations reveal that FN2 interacts with lipid bilayers via a site comprising K441, R443, R465, Q462, S464, S491, W467, F490, and P459–461. FN2 preferentially binds anionic lipids, a preference that is reduced in the mutant K441E + R443E. We confirm these results by measuring the binding of wild-type and mutant FN2 domains to lipid vesicles. In simulations of the complete EphA2 ectodomain plus the transmembrane region, we show that FN2 anchors the otherwise flexible ectodomain at the surface of the bilayer. Altogether, our data suggest that FN2 serves a dual function of interacting with anionic lipids and constraining the structure of the EphA2 ectodomain to adopt membrane-proximal configurations. PMID:26724997

  6. In vitro metabolism studies of new adenosine A 2A receptor antagonists.

    PubMed

    Marucci, Gabriella; Finaurini, Sara; Buccioni, Michela; Lammi, Carmen; Kandhavelu, Meenakshisundaram; Volpini, Rosaria; Ricciutelli, Massimo; Angeli, Piero; Commandeur, Jan N M; Cristalli, Gloria

    2008-12-01

    Evidence, obtained in rodent and primate models of Parkinson's disease (PD) and in preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising non-dopaminergic therapeutic tool for the treatment of PD. Recently, we have reported the biological evaluation of 8-substituted 9-ethyladenines (ANR) as new A(2A) receptor antagonists, three of which (ANR 82, ANR 94, and ANR 152) showed high efficacy in in vivo models for Parkinson's. Understanding the metabolic pathways of new drug candidates is an important aspect of drug discovery. The ANR compounds have been investigated in order to clarify their activity on rat liver microsomes, and more specifically on recombinant human cytochrome P450 2D6 (CYP2D6). The metabolites of all three compounds were detected by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The results indicate that this class of 9-ethyladenines is metabolized only to a fraction of 1.5-5%. These compounds also act as potent mechanism-based inhibitors of CYP450 and in particular of human isoform CYP2D6. Kinetic-analysis of enzyme inactivation was used to describe the effect of these time-dependent inhibitors and to derive the inhibition parameters K(inact) and K(i) defined with respect to the O-demethylation of dextromethorphan.

  7. The Resistance of Vibrio cholerae O1 El Tor Strains to the Typing Phage 919TP, a Member of K139 Phage Family

    PubMed Central

    Shen, Xiaona; Zhang, Jingyun; Xu, Jialiang; Du, Pengcheng; Pang, Bo; Li, Jie; Kan, Biao

    2016-01-01

    Bacteriophage 919TP is a temperate phage of Vibrio cholerae serogroup O1 El Tor and is used as a subtyping phage in the phage-biotyping scheme in cholera surveillance in China. In this study, sequencing of the 919TP genome showed that it belonged to the Vibrio phage K139 family. The mechanisms conferring resistance to 919TP infection of El Tor strains were explored to help understand the subtyping basis of phage 919TP and mutations related to 919TP resistance. Among the test strains resistant to phage 919TP, most contained the temperate 919TP phage genome, which facilitated superinfection exclusion to 919TP. Our data suggested that this immunity to Vibrio phage 919TP occurred after absorption of the phage onto the bacteria. Other strains contained LPS receptor synthesis gene mutations that disable adsorption of phage 919TP. Several strains resistant to 919TP infection possessed unknown resistance mechanisms, since they did not contain LPS receptor mutations or temperate K139 phage genome. Further research is required to elucidate the phage infection steps involved in the resistance of these strains to phage infection. PMID:27242744

  8. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A2A Receptors

    PubMed Central

    Gomes, Catarina A.R.V.; Simões, Patrícia F.; Canas, Paula M.; Quiroz, César; Sebastião, Ana M.; Ferré, Sergi; Cunha, Rodrigo A.; Ribeiro, Joaquim A.

    2009-01-01

    Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson’s disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. Since motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret (rearranged during transfection) and GFRα1 (GDNF family receptor alpha 1) controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/ml) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈ 30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GFRα1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphoprylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors. PMID:19141075

  9. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease.

    PubMed

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E; Franco, Rafael

    2011-12-01

    Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.

  10. Probing biased/partial agonism at the G protein-coupled A(2B) adenosine receptor.

    PubMed

    Gao, Zhan-Guo; Balasubramanian, Ramachandran; Kiselev, Evgeny; Wei, Qiang; Jacobson, Kenneth A

    2014-08-01

    G protein-coupled A(2B) adenosine receptor (AR) regulates numerous important physiological functions, but its activation by diverse A(2B)AR agonists is poorly profiled. We probed potential partial and/or biased agonism in cell lines expressing variable levels of endogenous or recombinant A(2B)AR. In cAMP accumulation assays, both 5'-substituted NECA and C2-substituted MRS3997 are full agonists. However, only 5'-substituted adenosine analogs are full agonists in calcium mobilization, ERK1/2 phosphorylation and β-arrestin translocation. A(2B)AR overexpression in HEK293 cells markedly increased the agonist potency and maximum effect in cAMP accumulation, but less in calcium and ERK1/2. A(2B)AR siRNA silencing was more effective in reducing the maximum cAMP effect of non-nucleoside agonist BAY60-6583 than NECA's. A quantitative 'operational model' characterized C2-substituted MRS3997 as either balanced (cAMP accumulation, ERK1/2) or strongly biased agonist (against calcium, β-arrestin). N⁶-substitution biased against ERK1/2 (weakly) and calcium and β-arrestin (strongly) pathways. BAY60-6583 is ERK1/2-biased, suggesting a mechanism distinct from adenosine derivatives. BAY60-6583, as A(2B)AR antagonist in MIN-6 mouse pancreatic β cells expressing low A(2B)AR levels, induced insulin release. This is the first relatively systematic study of structure-efficacy relationships of this emerging drug target. Published by Elsevier Inc.

  11. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  12. TP63 — EDRN Public Portal

    Cancer.gov

    TP63 is a member of the p53 family of transcription factors. It acts as a sequence specific DNA binding transcriptional activator or repressor. Many transcripts encoding different proteins have been reported but the biological validity and the full-length nature of these variants have not been determined. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. TP63 may be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. It is involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis.

  13. Characterization of [125I]ZM 241385 binding to adenosine A2A receptors in the pineal of sheep brain.

    PubMed

    Yan, X; Koos, B J; Kruger, L; Linden, J; Murray, T F

    2006-06-22

    Adenosine is a ubiquitous neuromodulator and homeostatic regulator that exerts its physiologic actions through activation of A(1), A(2A), A(2B) and A(3) adenosine receptor subtypes. In the central nervous system, adenosine's action in neurons is manifested in its modulation of tonic inhibitory control. Adenosine released in the brain during hypoxia has critical depressant effects on breathing in fetal and newborn mammals, an action suggested to be mediated by A(2A) receptors in the posteromedial thalamus. In an effort to more accurately define the spatial distribution of adenosine A(2A) receptors in fetal sheep diencephalon, we have used a receptor autoradiographic technique utilizing an iodinated radioligand [(125)I]ZM 241385, which has greater sensitivity and resolution than the tritiated compound. The distribution of ligand binding sites in the fetal sheep diencephalon indicated that the highest levels of binding were in select thalamic nuclei, including those implicated in hypoxic depression of fetal breathing, and the pineal. Given the high density of labeled A(2A) receptors in the pineal, these sites were characterized more fully in homogenate radioligand binding assays. These data indicate that [(125)I]ZM 241385 binding sites display a pharmacological signature consistent with that of adenosine A(2A) receptors and are expressed at similar levels in fetal, lamb and adult ovine brain. The adenosine A(2A) receptor pharmacologic signature of the [(125)I]ZM 241385 binding site in pineal cell membranes generalized to the site characterized in membranes derived from other portions of the lamb thalamus, including the sector involved in hypoxic inhibition of fetal breathing. These results have important implications for the functional roles of adenosine A(2A) receptors in the thalamus and pineal of sheep brain.

  14. Cinnamophilin, a novel thromboxane A2 receptor antagonist, isolated from Cinnamomum philippinense.

    PubMed

    Yu, S M; Ko, F N; Wu, T S; Lee, J Y; Teng, C M

    1994-04-11

    The pharmacological activity of cinnamophilin ((8R,8'S)-4,4'-dihydroxy-3,3'-dimethoxy-7-oxo-8,8'-neolignan), isolated from Cinnamomum philippinense, was studied in isolated rat aorta, guinea-pig trachea and rabbit platelets. Cinnamophilin was found to be a thromboxane A2 receptor blocking agent in these tissues as revealed by its competitive antagonism of the U-46619 (9,11-dideoxymethanoepoxy-9 alpha,11 alpha-prostaglandin F2 alpha)-induced contraction of rat aorta and guinea-pig trachea and aggregation of rabbit platelets with pA2 values of 7.3 +/- 0.2, 5.2 +/- 0.1 and 6.3 +/- 0.3, respectively. Protection against the irreversible vasoconstriction of rat aorta caused by U-46619 (0.05 microM) was obtained by cinnamophilin (10 microM) but not by caffeine (25 mM). Cinnamophilin (1-15 microM) also possessed voltage-dependent Ca2+ channel blocking action, judging from its antagonism of the high K+ (60 mM)- and Bay K 8644 (0.1 microM)-induced contraction in rat thoracic aorta. Cinnamophilin (30 microM) produced a slight relaxation of noradrenaline (3 microM)-induced tonic contractions, and this relaxing effect was abolished in the presence of nifedipine (1 microM). Nifedipine (10 microM) sufficient to inhibit high K(+)-induced contractions failed to attenuate the contractile response to U-46619. A high concentration of cinnamophilin (100 microM) did not affect the aortic contraction induced by endothelin-1, angiotensin II, carbachol or serotonin. Neither cAMP nor cGMP in rat aorta was increased by cinnamophilin. These results indicate that cinnamophilin is a selective thromboxane A2 receptor antagonist especially in rat aorta, and also possesses voltage-dependent Ca2+ channel blocking properties.

  15. Habit Formation after Random Interval Training Is Associated with Increased Adenosine A2A Receptor and Dopamine D2 Receptor Heterodimers in the Striatum

    PubMed Central

    He, Yan; Li, Yan; Chen, Mozi; Pu, Zhilan; Zhang, Feiyang; Chen, Long; Ruan, Yang; Pan, Xinran; He, Chaoxiang; Chen, Xingjun; Li, Zhihui; Chen, Jiang-Fan

    2016-01-01

    Striatal adenosine A2A receptors (A2ARs) modulate striatal synaptic plasticity and instrumental learning, possibly by functional interaction with the dopamine D2 receptors (D2Rs) and metabotropic glutamate receptors 5 (mGluR5) through receptor-receptor heterodimers, but in vivo evidence for these interactions is lacking. Using in situ proximity ligation assay (PLA), we studied the subregional distribution of the A2AR-D2R and A2AR-mGluR5 heterodimer complexes in the striatum and their adaptive changes over the random interval and random ratio training of instrumental learning. After confirming the specificity of the PLA detection of the A2AR-D2R heterodimers with the A2AR knockout and D2R knockout mice, we detected a heterogeneous distribution of the A2AR-D2R heterodimer complexes in the striatum, being more abundant in the dorsolateral than the dorsomedial striatum. Importantly, habit formation after the random interval training was associated with the increased formation of the A2AR-D2R heterodimer complexes, with prominant increase in the dorsomedial striatum. Conversely, goal-directed behavior after the random ratio schedule was not associated with the adaptive change in the A2AR-D2R heterodimer complexes. In contrast to the A2AR-D2R heterodimers, the A2AR-mGluR5 heterodimers showed neither subregional variation in the striatum nor adaptive changes over either the random ratio (RR) or random interval (RI) training of instrumental learning. These findings suggest that development of habit formation is associated with increased formation of the A2AR-D2R heterodimer protein complexes which may lead to reduced dependence on D2R signaling in the striatum. PMID:28082865

  16. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example.

    PubMed

    Zeng, Lingxiao; Guan, Mengxin; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren

    2015-12-01

    Homology modeling has been applied to fill in the gap in experimental G protein-coupled receptors structure determination. However, achievement of G protein-coupled receptors homology models with ligand selectivity remains challenging due to structural diversity of G protein-coupled receptors. In this work, we propose a novel strategy by integrating pharmacophore and membrane molecular dynamics (MD) simulations to improve homology modeling of G protein-coupled receptors with ligand selectivity. To validate this integrated strategy, the A2A adenosine receptor (A2A AR), whose structures in both active and inactive states have been established, has been chosen as an example. We performed blind predictions of the active-state A2A AR structure based on the inactive-state structure and compared the performance of different refinement strategies. The blind prediction model combined with the integrated strategy identified ligand-receptor interactions and conformational changes of key structural elements related to the activation of A2 A AR, including (i) the movements of intracellular ends of TM3 and TM5/TM6; (ii) the opening of ionic lock; (iii) the movements of binding site residues. The integrated strategy of pharmacophore with molecular dynamics simulations can aid in the optimization in the identification of side chain conformations in receptor models. This strategy can be further investigated in homology modeling and expand its applicability to other G protein-coupled receptor modeling, which should aid in the discovery of more effective and selective G protein-coupled receptor ligands. © 2015 John Wiley & Sons A/S.

  17. Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors.

    PubMed

    Dias, Raquel B; Ribeiro, Joaquim A; Sebastião, Ana M

    2012-02-01

    Phosphorylation of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by Protein Kinase A (PKA) is known to regulate AMPA receptor (AMPAR) trafficking and stabilization at the postsynaptic membrane, which in turn is one of the key mechanisms by which synaptic transmission and plasticity are tuned. However, not much is known as to how Gs-coupled receptors contribute to endogenous PKA-mediated regulation of AMPA receptor function. Here we report that activation of the excitatory A(2A) adenosine receptor by 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, 1-30 nM) facilitates AMPA-evoked currents in CA1 pyramidal neurons, by a mechanism dependent on PKA activation, but not on protein synthesis. This modulation of AMPA currents was mimicked by forskolin (1 μM) and did not occur in stratum radiatum interneurons. Superfusion of the A(2A) receptor agonist also caused an increase in the amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as in the membrane levels of GluR1 subunits phosphorylated at the PKA site (Ser845). The impact of this increase on GluR1-containing AMPA receptor expression was evidenced by the potentiation of LTP at the CA3-CA1 synapse that followed brief activation of A(2A) receptors. We thus propose that in conditions of increased adenosine availability, A(2A) receptor activation is responsible for setting part of the endogenous GluR1 Ser-845 phosphorylation tonus and hence, the availability of the GluR1-containing AMPA receptor extrasynaptic pool for synaptic insertion and reinforcement of synaptic strength.

  18. TP53 dysfunction in diffuse large B-cell lymphoma.

    PubMed

    Lu, Ting-Xun; Young, Ken H; Xu, Wei; Li, Jian-Yong

    2016-01-01

    The aberrations of TP53 gene and dysregulation of the TP53 pathway are important in the pathogenesis of many human cancers, including malignant lymphomas, especially for diffuse large B cell lymphoma (DLBCL). By regulating many downstream target genes or molecules, TP53 governs major defenses against tumor growth and promotes cellular DNA repair, apoptosis, autophagy, cell cycle arrest, signaling, transcription, immune or inflammatory responses and metabolism. Dysfunction of TP53, including microRNA regulations, copy number alterations of TP53 pathway and TP53 itself, dysregulation of TP53 regulators, and somatic mutations by abnormal TP53 function modes, play an important role in lymphoma generation, progression and invasion. The role of TP53 in DLBCL has been widely explored recently. In this review, we summarized recent advances on different mechanisms of TP53 in DLBCL and new therapeutic approaches to overcome TP53 inactivation.

  19. New adenosine A2A receptor antagonists: actions on Parkinson's disease models.

    PubMed

    Pinna, Annalisa; Volpini, Rosaria; Cristalli, Gloria; Morelli, Micaela

    2005-04-11

    The 8-substituted 9-ethyladenine derivatives: 8-bromo-9-ethyladenine (ANR 82), 8-ethoxy- 9-ethyladenine (ANR 94), and 8-furyl-9-ethyladenine (ANR 152) have been characterized in vitro as adenosine receptor antagonists. Adenosine is deeply involved in the control of motor behaviour and substantial evidences indicate that adenosine A(2A) receptor antagonists improve motor deficits in animal models of Parkinson's disease. On this basis, the efficacy of ANR 82, ANR 94, and ANR 152 in rat models of Parkinson's disease was evaluated. All compounds tested reversed the catalepsy induced by haloperidol. However, in unilaterally 6-hydroxydopamine-lesioned rats, only ANR 94 and ANR 152 potentiated l-dihydroxy-phenylalanine (l-DOPA) effect on turning behaviour and induced contralateral turning behaviour in rats sensitised to l-DOPA. Taken together the results of this study indicate that some 8-substituted 9-ethyladenine derivatives ameliorate motor deficits in rat models of Parkinson's disease, suggesting a potential therapeutic role of these compounds.

  20. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    PubMed Central

    2011-01-01

    Background Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI), reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK) 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours), these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the neuroprotective effects

  1. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways.

    PubMed

    Gsandtner, Ingrid; Freissmuth, Michael

    2006-08-01

    G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some forms of schizophrenia; A(2A) receptor agonists are candidate drugs for the treatment of schizophrenic symptoms. It is of obvious interest to explore a possible link.

  2. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice.

    PubMed

    Xie, Xiaona; Sun, Wanchun; Wang, Jun; Li, Xiaoou; Liu, Xiaofeng; Liu, Ning

    2017-01-01

    Diabetes is one of high-risk factors for cardiovascular disease. Improvement of endothelial dysfunction in diabetes reduces vascular complications. However, the underlying mechanism needs to be uncovered. This study was conducted to elucidate whether and how thromboxane A2 receptor (TPr) activation contributes to endothelial dysfunction in diabetes. Exposure of human umbilical vein endothelial cells (HUVECs) to either TPr agonists, two structurally related thromboxane A2 (TxA2) mimetics, significantly reduced phosphorylations of endothelial nitric oxide synthase (eNOS) at Ser(1177) and Akt at Ser(473). These effects were abolished by pharmacological or genetic inhibitors of TPr. TPr-induced suppression of eNOS and Akt phosphorylation was accompanied by upregulation of PTEN (phosphatase and tension homolog deleted on chromosome 10) and Ser(380)/Thr(382/383) PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation. The small GTPase, Rho, was also activated by TPr stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued TPr-impaired Akt-eNOS signaling. In mice, streptozotocin-induced diabetes was associated with aortic PTEN upregulation, PTEN-Ser(380)/Thr(382/383) phosphorylation, and dephosphorylation of Akt (at Ser(473)) and eNOS (at Ser(1177)). Importantly, administration of TPr antagonist blocked these changes. We conclude that TPr activation impairs endothelial function by selectively inactivating the ROCK-PTEN-Akt-eNOS pathway in diabetic mice.

  3. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats.

    PubMed

    Fronz, Ulrike; Deten, Alexander; Baumann, Frank; Kranz, Alexander; Weidlich, Sarah; Härtig, Wolfgang; Nieber, Karen; Boltze, Johannes; Wagner, Daniel-Christoph

    2014-02-01

    Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical.

  4. Modification of the response of olfactory receptors to acetophenone by CYP1a2.

    PubMed

    Asakawa, Masashi; Fukutani, Yosuke; Savangsuksa, Aulaphan; Noguchi, Keiich; Matsunami, Hiroaki; Yohda, Masafumi

    2017-08-31

    Olfaction is mediated by the binding of odorant molecules to olfactory receptors (ORs). There are numerous proteins in the nasal mucus, and they contribute to olfaction through various mechanisms. Cytochrome P450 (CYP) family members are known to be present in the olfactory epithelium and are thought to affect olfaction by enzymatic conversion of odorant molecules. In this study, we examined the effects of CYPs on the ligand responses of ORs in heterologous cells. Among the CYPs tested, co-expression of CYP1a2 significantly affected the responses of various ORs, including MOR161-2, to acetophenone. Conversion of acetophenone to methyl salicylate was observed in the medium of CYP1a2-expressing cells. MOR161-2-expressing cells exhibited significantly greater responses to methyl salicylate than to acetophenone. Finally, we analyzed the responses of olfactory neurons expressing MOR161-2 in vivo using the phosphorylated ribosomal protein S6 as a marker. MOR161-2 responded to both acetophenone and methyl salicylate in vivo. When the olfactory mucus was washed out by the injection of PBS to mouse nasal cavity, the response of MOR161-2 to acetophenone was reduced, while that to methyl salicylate did not change. Our data suggest that CYP1a2 affects OR activation by converting acetophenone to methyl salicylate.

  5. Phospholipase A2 receptor positive membranous nephropathy long after living donor kidney transplantation between identical twins.

    PubMed

    Saito, Hisako; Hamasaki, Yoshifumi; Tojo, Akihiro; Shintani, Yukako; Shimizu, Akira; Nangaku, Masaomi

    2015-07-01

    Although membranous nephropathy (MN) is a commonly observed cause of post-transplant glomerulonephritis, distinguishing de novo from recurrent MN in kidney allograft is often difficult. Phospholipase A2 receptor (PLA2R) staining is useful for diagnosing recurrent MN in allografts similarly to idiopathic MN in native kidney. No specific treatment strategy has been established for MN, especially when accompanied with HCV infection in kidney transplant recipients. This report describes a 66-year-old man who was diagnosed as having PLA2R positive membranous nephropathy accompanied with already-known IgA nephropathy and HCV infection 26 years after kidney transplantation conducted between identical twins. PLA2R was detected along capillary loops, implying that this patient is affected by the same pathogenic mechanism as idiopathic MN, not secondary MN associated with other disorders such as HCV infection. The patient successfully achieved clinical remission after steroid therapy.

  6. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy.

    PubMed

    Obrisca, Bogdan; Ismail, Gener; Jurubita, Roxana; Baston, Catalin; Andronesi, Andreea; Mircescu, Gabriel

    2015-01-01

    Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects.

  7. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy

    PubMed Central

    Obrisca, Bogdan; Ismail, Gener; Jurubita, Roxana; Baston, Catalin; Andronesi, Andreea; Mircescu, Gabriel

    2015-01-01

    Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects. PMID:26576418

  8. Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism.

    PubMed

    Zanos, Panos; Wright, Sherie R; Georgiou, Polymnia; Yoo, Ji Hoon; Ledent, Catherine; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2014-04-01

    There is mounting evidence that the neuropeptide oxytocin is a possible candidate for the treatment of drug addiction. Oxytocin was shown to reduce methamphetamine self-administration, conditioned place-preference, hyperactivity and reinstatement in rodents, highlighting its potential for the management of methamphetamine addiction. Thus, we hypothesised that the central endogenous oxytocinergic system is dysregulated following chronic methamphetamine administration. We tested this hypothesis by examining the effect of chronic methamphetamine administration on oxytocin receptor density in mice brains with the use of quantitative receptor autoradiographic binding. Saline (4ml/kg/day, i.p.) or methamphetamine (1mg/kg/day, i.p.) was administered daily for 10 days to male, CD1 mice. Quantitative autoradiographic mapping of oxytocin receptors was carried out with the use of [(125)I]-vasotocin in brain sections of these animals. Chronic methamphetamine administration induced a region specific upregulation of oxytocin receptor density in the amygdala and hypothalamus, but not in the nucleus accumbens and caudate putamen. As there is evidence suggesting an involvement of central adenosine A2A receptors on central endogenous oxytocinergic function, we investigated whether these methamphetamine-induced oxytocinergic neuroadaptations are mediated via an A2A receptor-dependent mechanism. To test this hypothesis, autoradiographic oxytocin receptor binding was carried out in brain sections of male CD1 mice lacking A2A receptors which were chronically treated with methamphetamine (1mg/kg/day, i.p. for 10 days) or saline. Similar to wild-type animals, chronic methamphetamine administration induced a region-specific upregulation of oxytocin receptor binding in the amygdala and hypothalamus of A2A receptor knockout mice and no genotype effect was observed. These results indicate that chronic methamphetamine use can induce profound neuroadaptations of the oxytocinergic receptor

  9. Adenosine A(2A)-cannabinoid CB(1) receptor interaction: an integrative mechanism in striatal glutamatergic neurotransmission.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Popoli, Patrizia

    2012-10-02

    The striatum is a subcortical area involved in sensorimotor, cognitive and emotional processes. Adenosine A(2A) receptors (A(2A)Rs) are highly expressed in the striatum, and their ability to establish functional and molecular interactions with many other receptors attributes to a pivotal role in the modulation and integration of striatal neurotransmission. This review will focus on the interaction between A(2A)Rs and cannabinoid CB(1) receptors (CB(1)Rs), taking it as a paradigmatic example of synaptic integration. Indeed, A(2A)Rs can exert an opposite (permissive vs. inhibitory) influence on CB1-dependent synaptic effect. These apparently irreconcilable functions could depend on a different role of pre- vs. postsynaptic A(2A)Rs, on their interaction with other receptors (namely adenosine A(1), metabotropic glutamate 5 and dopamine D2 receptors), and on whether A(2A)Rs form or not heteromers with CB(1)Rs. Besides providing a good example of the intricate pattern of events taking place in striatal synapses, the A(2A)/CB(1)R interaction proves very informative to understand the physiology of the basal ganglia and the mechanisms of related diseases. This article is part of a Special Issue entitled: Brain Integration.

  10. Polydeoxyribonucleotides (PDRNs) From Skin to Musculoskeletal Tissue Regeneration via Adenosine A2A Receptor Involvement.

    PubMed

    Veronesi, Francesca; Dallari, Dante; Sabbioni, Giacomo; Carubbi, Chiara; Martini, Lucia; Fini, Milena

    2017-09-01

    Polydeoxyribonucleotides (PDRNs) are low molecular weight DNA molecules of natural origin that stimulate cell migration and growth, extracellular matrix (ECM) protein production, and reduce inflammation. Most preclinical and clinical studies on tissue regeneration with PDRNs focused on skin, and only few are about musculoskeletal tissues. Starting from an overview on skin regeneration studies, through the analysis of in vitro, in vivo, and clinical studies (1990-2016), the present review aimed at defining the effects of PDRN and their mechanisms of action in the regeneration of musculoskeletal tissues. This would also help future researches in this area. A total of 29 studies were found by PubMed and www.webofknowledge.com searches: 20 were on skin (six in vitro, six in vivo, one vitro/vivo, seven clinical studies), while the other nine regarded bone (one in vitro, two in vivo, one clinical studies), cartilage (one in vitro, one vitro/vivo, two clinical studies), or tendon (one clinical study) tissues regeneration. PDRNs improved cell growth, tissue repair, ECM proteins, physical activity, and reduced pain and inflammation, through the activation of adenosine A2A receptor. PDRNs are currently used for bone, cartilage, and tendon diseases, with a great variability regarding the PDRN dosage to be used in clinical practice, while the dosage for skin regeneration is well established. PDRNs are usually administered from a minimum of three to a maximum of five times and they act trough the activation of A2A receptor. Further studies are advisable to confirm the effectiveness of PDRNs and to standardize the PDRN dose. J. Cell. Physiol. 232: 2299-2307, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket

    PubMed Central

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K.

    2017-01-01

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl d-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease. PMID:28167788

  12. Adenosine A2 receptor-mediated regulation of renal hemodynamics and glomerular filtration rate is abolished in diabetes.

    PubMed

    Persson, Patrik; Hansell, Peter; Palm, Fredrik

    2013-01-01

    Alterations in glomerular filtration rate (GFR) are one of the earliest indications of altered kidney function in diabetes. Adenosine regulates GFR through tubuloglomerular feedback mechanism acting on adenosine A1 receptor. In addition, adenosine can directly regulate vascular tone by acting on A1 and A2 receptors expressed in afferent and efferent arterioles. Opposite to A1 receptors, A2 receptors mediate vasorelaxation. This study investigates the involvement of adenosine A2 receptors in regulation of renal blood flow (RBF) and GFR in control and diabetic kidneys. GFR was measured by inulin clearance and RBF by a transonic flow probe placed around the renal artery. Measurements were performed in isoflurane-anesthetized normoglycemic and alloxan-diabetic C57BL/6 mice during baseline and after acute administration of 3,7-dimethyl-1-propargylxanthine (DMPX), a selective A2 receptor antagonist. GFR and RBF were lower in diabetic mice compared to control (258 ± 61 vs. 443 ± 33 μl min(-1) and 1,083 ± 51 vs. 1,405 ± 78 μl min(-1)). In control animals, DMPX decreased RBF by -6%, whereas GFR increased +44%. DMPX had no effects on GFR and RBF in diabetic mice. Sodium excretion increased in diabetic mice after A2 receptor blockade (+78%). In conclusion, adenosine acting on A2 receptors mediates an efferent arteriolar dilatation which reduces filtration fraction (FF) and maintains GFR within normal range in normoglycemic mice. However, this regulation is absent in diabetic mice, which may contribute to reduced oxygen availability in the diabetic kidney.

  13. Adenosine A1 and A2A receptors are not upstream of caffeine's dopamine D2 receptor-dependent aversive effects and dopamine-independent rewarding effects

    PubMed Central

    Sturgess, Jessica E; Ting-A-Kee, Ryan A; Podbielski, Dominik; Sellings, Laurie HL; Chen, Jiang-Fan; van der Kooy, Derek

    2010-01-01

    Caffeine is widely consumed throughout the world, yet little is known about the mechanisms underlying its rewarding and aversive properties. We show that pharmacological antagonism of dopamine not only blocks conditioned place aversions to caffeine, but reveals dopamine blockade-induced conditioned place preferences. These aversions are mediated by the dopamine D2 receptor since knockout mice showed conditioned place preferences to doses of caffeine that C57Bl/6 mice found aversive. Further, these aversions appear to be centrally-mediated since a quaternary analogue to caffeine failed to produce conditioned place aversions. While the adenosine A2A receptor is important for caffeine's physiological effects, this receptor seems only to modulate the appetitive and aversive effects of caffeine. A2A receptor knockout mice showed stronger dopamine-dependent aversions to caffeine than C57Bl/6 animals, which partially obscured the dopamine- and A2A receptor-independent preferences. Additionally, the A1 receptor, alone or in combination with the A2A receptor, does not seem to be important for caffeine's rewarding or aversive effects. Finally, excitotoxic lesions of the tegmental pedunculopontine nucleus revealed that this brain region is not involved in dopamine blockade-induced caffeine reward. This data provides surprising new information on the mechanism of action of caffeine, indicating that adenosine receptors do not mediate caffeine's appetitive and aversive effects. We show that caffeine has an atypical reward mechanism, independent of the dopaminergic system and the tegmental pedunculopontine nucleus and provide additional evidence in support of a role for the dopaminergic system in aversive learning. PMID:20576036

  14. TP53 Promoter Methylation in Primary Glioblastoma: Relationship with TP53 mRNA and Protein Expression and Mutation Status

    PubMed Central

    Szybka, Malgorzata; Malachowska, Beata; Fendler, Wojciech; Potemski, Piotr; Piaskowski, Sylwester; Jaskolski, Dariusz; Papierz, Wielislaw; Skowronski, Wieslaw; Och, Waldemar; Kordek, Radzislaw

    2014-01-01

    Reduced expression of TP53 by promoter methylation has been reported in several neoplasms. It remains unclear whether TP53 promoter methylation is associated with reduced transcriptional and protein expression in glioblastoma (GB). The aim of our work was to study the impact of TP53 methylation and mutations on TP53 mRNA level and protein expression in 42 molecularly characterized primary GB tumors. We also evaluate the impact of all molecular alterations on the overall patient survival. The frequency of TP53 promoter methylation was found in 21.4%. To the best of our knowledge, this is the first report showing such high frequency of TP53 promoter methylation in primary GB. There was no relation between TP53 promoter methylation and TP53 mRNA level (p=0.5722) and between TP53 promoter methylation and TP53 protein expression (p=0.2045). No significant associations were found between TP53 mRNA expression and mutation of TP53 gene (p=0.9076). However, significant association between TP53 mutation and TP53 protein expression was found (p=0.0016). Our data suggest that in primary GB TP53 promoter methylation does not play a role in silencing of TP53 transcriptional and protein expression and is probably regulated by other genetic and epigenetic mechanisms associated with genes involved in the TP53 pathway. PMID:24506545

  15. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption.

    PubMed

    Cornelis, Marilyn C; El-Sohemy, Ahmed; Campos, Hannia

    2007-07-01

    Caffeine is the most widely consumed stimulant in the world, and individual differences in response to its stimulating effects may explain some of the variability in caffeine consumption within a population. We examined whether genetic variability in caffeine metabolism [cytochrome P450 1A2 (CYP1A2) -163A-->C] or the main target of caffeine action in the nervous system [adenosine A(2A) receptor (ADORA2A) 1083C-->T] is associated with habitual caffeine consumption. Subjects (n=2735) were participants from a study of gene-diet interactions and risk of myocardial infarction who did not have a history of hypertension. Genotype frequencies were examined among persons who were categorized according to their self-reported daily caffeine intake, as assessed with a validated food-frequency questionnaire. The ADORA2A, but not the CYP1A2, genotype was associated with different amounts of caffeine intake. Compared with persons consuming <100 mg caffeine/d, the odds ratios for having the ADORA2A TT genotype were 0.74 (95% CI: 0.53, 1.03), 0.63 (95% CI: 0.48, 0.83), and 0.57 (95% CI: 0.42, 0.77) for those consuming 100-200, >200-400, and >400 mg caffeine/d, respectively. The association was more pronounced among current smokers than among nonsmokers (P for interaction = 0.07). Persons with the ADORA2A TT genotype also were significantly more likely to consume less caffeine (ie, <100 mg/d) than were carriers of the C allele [P=0.011 (nonsmokers), P=0.008 (smokers)]. Our findings show that the probability of having the ADORA2A 1083TT genotype decreases as habitual caffeine consumption increases. This observation provides a biologic basis for caffeine consumption behavior and suggests that persons with this genotype may be less vulnerable to caffeine dependence.

  16. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Lehmann-Che, Jacqueline; Kéri, György; Orfi, László; Iwamoto, Takayuki; Desmedt, Christine; Bianchini, Giampaolo; Turner, Nicholas C; de Thè, Hugues; André, Fabrice; Sotiriou, Christos; Hortobagyi, Gabriel N; Di Leo, Angelo; Pusztai, Lajos; Santarpia, Libero

    2014-05-01

    Breast cancers (BC) carry a complex set of gene mutations that can influence their gene expression and clinical behavior. We aimed to identify genes driven by the TP53 mutation status and assess their clinical relevance in estrogen receptor (ER)-positive and ER-negative BC, and their potential as targets for patients with TP53 mutated tumors. Separate ROC analyses of each gene expression according to TP53 mutation status were performed. The prognostic value of genes with the highest AUC were assessed in a large dataset of untreated, and neoadjuvant chemotherapy treated patients. The mitotic checkpoint gene MPS1 was the most significant gene correlated with TP53 status, and the most significant prognostic marker in all ER-positive BC datasets. MPS1 retained its prognostic value independently from the type of treatment administered. The biological functions of MPS1 were investigated in different BC cell lines. We also assessed the effects of a potent small molecule inhibitor of MPS1, SP600125, alone and in combination with chemotherapy. Consistent with the gene expression profiling and siRNA assays, the inhibition of MPS1 by SP600125 led to a reduction in cell viability and a significant increase in cell death, selectively in TP53-mutated BC cells. Furthermore, the chemical inhibition of MPS1 sensitized BC cells to conventional chemotherapy, particularly taxanes. Our results collectively demonstrate that TP53-correlated kinase MPS1, is a potential therapeutic target in BC patients with TP53 mutated tumors, and that SP600125 warrant further development in future clinical trials.

  17. Platelet-driven leukotriene C4-mediated airway inflammation in mice is aspirin-sensitive and depends on T prostanoid receptors.

    PubMed

    Liu, Tao; Garofalo, Denise; Feng, Chunli; Lai, Juying; Katz, Howard; Laidlaw, Tanya M; Boyce, Joshua A

    2015-06-01

    Cysteinyl leukotrienes (cysLTs) are bronchoconstricting lipid mediators that amplify eosinophilic airway inflammation by incompletely understood mechanisms. We recently found that LTC4, the parent cysLT, potently activates platelets in vitro and induces airway eosinophilia in allergen-sensitized and -challenged mice by a platelet- and type 2 cysLT receptor-dependent pathway. We now demonstrate that this pathway requires production of thromboxane A2 and signaling through both hematopoietic and lung tissue-associated T prostanoid (TP) receptors. Intranasal administration of LTC4 to OVA-sensitized C57BL/6 mice markedly increased the numbers of eosinophils in the bronchoalveolar lavage fluid, while simultaneously decreasing the percentages of eosinophils in the blood by a TP receptor-dependent mechanism. LTC4 upregulated the expressions of ICAM-1 and VCAM-1 in an aspirin-sensitive and TP receptor-dependent manner. Both hematopoietic and nonhematopoietic TP receptors were essential for LTC4 to induce eosinophil recruitment. Thus, the autocrine and paracrine functions of thromboxane A2 act downstream of LTC4/type 2 cysLT receptor signaling on platelets to markedly amplify eosinophil recruitment through pulmonary vascular adhesion pathways. The findings suggest applications for TP receptor antagonists in cases of asthma with high levels of cysLT production.

  18. Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM.

    PubMed

    Zhao, Yan; Chen, Shanshuang; Yoshioka, Craig; Baconguis, Isabelle; Gouaux, Eric

    2016-08-04

    Fast excitatory neurotransmission in the mammalian central nervous system is largely carried out by AMPA-sensitive ionotropic glutamate receptors. Localized within the postsynaptic density of glutamatergic spines, AMPA receptors are composed of heterotetrameric receptor assemblies associated with auxiliary subunits, the most common of which are transmembrane AMPA receptor regulatory proteins (TARPs). The association of TARPs with AMPA receptors modulates receptor trafficking and the kinetics of receptor gating and pharmacology. Here we report the cryo-electron microscopy (cryo-EM) structure of the homomeric rat GluA2 AMPA receptor saturated with TARP γ2 subunits, which shows how the TARPs are arranged with four-fold symmetry around the ion channel domain and make extensive interactions with the M1, M2 and M4 transmembrane helices. Poised like partially opened ‘hands’ underneath the two-fold symmetric ligand-binding domain (LBD) 'clamshells', one pair of TARPs is juxtaposed near the LBD dimer interface, whereas the other pair is near the LBD dimer-dimer interface. The extracellular ‘domains’ of TARP are positioned to not only modulate LBD clamshell closure, but also affect conformational rearrangements of the LBD layer associated with receptor activation and desensitization, while the TARP transmembrane domains buttress the ion channel pore.

  19. SCPS-TP: A Satellite-Enhanced TCP

    NASA Technical Reports Server (NTRS)

    Scott, Keith; Torgerson, Leigh

    2004-01-01

    This viewgraph presentation reviews the Space Communications Protocol Standard Transport Protocol (SCPS-TP) which is a satellite enhanced Transport Control Protocol (TCP). The contents include: 1) Purpose; 2) Background; 3) Stressed Communication Environments; 4) SCPS-TP Features; 5) SCPS-TP Performance; 6) Performance Enhancing Proxies (PEPs); and 7) Ongoing and Future SCPS-TP Work.

  20. Synthesis of [1,2,4]triazolo[1,5-a]pyrazines as adenosine A2A receptor antagonists.

    PubMed

    Dowling, James E; Vessels, Jeffrey T; Haque, Serajul; Chang, He Xi; van Vloten, Kurt; Kumaravel, Gnanasambandam; Engber, Thomas; Jin, Xiaowei; Phadke, Deepali; Wang, Joy; Ayyub, Eman; Petter, Russell C

    2005-11-01

    Potent and selective antagonists of the adenosine A2A receptor often contain a nitrogen-rich fused-ring heterocyclic core. Replacement of the core with an isomeric ring system has previously been shown to improve target affinity, selectivity, and in vivo activity. This paper describes the preparation, by a novel route, of A2A receptor antagonists containing the [1,2,4]triazolo[1,5-a]pyrazine nucleus, which is isomeric with the [1,2,4]triazolo[1,5-c]pyrimidine core of a series of known A2A antagonists with in vivo activity in animal models of Parkinson's disease.

  1. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  2. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed

    Wiener, H L; Thalody, G P; Maayani, S

    1993-06-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  3. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed Central

    Wiener, H. L.; Thalody, G. P.; Maayani, S.

    1993-01-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  4. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum.

    PubMed

    Tebano, Maria Teresa; Pintor, Annita; Frank, Claudio; Domenici, Maria Rosaria; Martire, Alberto; Pepponi, Rita; Potenza, Rosa Luisa; Grieco, Rosa; Popoli, Patrizia

    2004-07-01

    Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.

  5. A2A receptor antagonists do not induce dyskinesias in drug-naive or L-dopa sensitized rats.

    PubMed

    Jones, N; Bleickardt, C; Mullins, D; Parker, E; Hodgson, R

    2013-09-01

    L-dopa, the precursor to dopamine, is currently the gold standard treatment for Parkinson's disease (PD). However, chronic exposure is associated with L-dopa-induced dyskinesias (LIDs), a serious side effect characterized by involuntary movements. Adenosine A2A receptor antagonists have been studied as a novel non-dopaminergic PD treatment. Because A2A receptor antagonists do not act on dopamine receptors, it has been hypothesized that they will not induce dyskinesias characteristic of L-dopa. To test this hypothesis in a rodent model, the A2A receptor antagonists SCH 412348 (3 mg/kg), vipadenant (10 mg/kg), caffeine (30 mg/kg), or istradefylline (3 mg/kg) were chronically (19-22 days) administered to Sprague Dawley rats, and dyskinetic behaviors were scored across this chronic dosing paradigm. Unlike L-dopa, there was no evidence of dyskinetic activity resulting from any of the four A2A receptor antagonists tested. When delivered to animals previously sensitized with L-dopa (6 mg/kg), SCH 412348, vipadenant, caffeine or istradefylline treatment produced no dyskinesias. When administered in combination with L-dopa (6 mg/kg), SCH 412348 (3 mg/kg) neither exacerbated nor prevented the induction of LIDs over the course of 19 days of treatment. Collectively, our data indicate that A2A receptor antagonists are likely to have a reduced dyskinetic liability relative to L-dopa but do not block dyskinesias when coadministered with L-dopa. Clinical studies are required to fully understand the dyskinesia profiles of A2A receptor antagonists.

  6. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    SciTech Connect

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. )

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  7. Macrophage A2A Adenosinergic Receptor Modulates Oxygen-Induced Augmentation of Murine Lung Injury

    PubMed Central

    D’Alessio, Franco R.; Eto, Yoshiki; Chau, Eric; Avalos, Claudia; Waickman, Adam T.; Garibaldi, Brian T.; Mock, Jason R.; Files, Daniel C.; Sidhaye, Venkataramana; Polotsky, Vsevolod Y.; Powell, Jonathan; Horton, Maureen; King, Landon S.

    2013-01-01

    Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality. Exacerbating factors increasing the risk of ARDS remain unknown. Supplemental oxygen is often necessary in both mild and severe lung disease. The potential effects of supplemental oxygen may include augmentation of lung inflammation by inhibiting anti-inflammatory pathways in alveolar macrophages. We sought to determine oxygen-derived effects on the anti-inflammatory A2A adenosinergic (ADORA2A) receptor in macrophages, and the role of the ADORA2A receptor in lung injury. Wild-type (WT) and ADORA2A−/− mice received intratracheal lipopolysaccharide (IT LPS), followed 12 hours later by continuous exposure to 21% oxygen (control mice) or 60% oxygen for 1 to 3 days. We measured the phenotypic endpoints of lung injury and the alveolar macrophage inflammatory state. We tested an ADORA2A-specific agonist, CGS-21680 hydrochloride, in LPS plus oxygen-exposed WT and ADORA2A−/− mice. We determined the specific effects of myeloid ADORA2A, using chimera experiments. Compared with WT mice, ADORA2A−/− mice exposed to IT LPS and 60% oxygen demonstrated significantly more histologic lung injury, alveolar neutrophils, and protein. Macrophages from ADORA2A−/− mice exposed to LPS plus oxygen expressed higher concentrations of proinflammatory cytokines and cosignaling molecules. CGS-21680 prevented the oxygen-induced augmentation of lung injury after LPS only in WT mice. Chimera experiments demonstrated that the transfer of WT but not ADORA2A−/− bone marrow cells into irradiated ADORA2A−/− mice reduced lung injury after LPS plus oxygen, demonstrating myeloid ADORA2A protection. ADORA2A is protective against lung injury after LPS and oxygen. Oxygen after LPS increases macrophage activation to augment lung injury by inhibiting the ADORA2A pathway. PMID:23349051

  8. Binding of a thromboxane A2/prostaglandin H2 receptor antagonist to guinea-pig platelets.

    PubMed

    Halushka, P V; Mais, D E; Garvin, M

    1986-11-12

    The binding of [125I]9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxypheny l)-13,14- dihydro-13-aza-15 alpha beta-omega-tetranor-TXA2 [( 125I]PTA-OH), a thromboxane A2/prostaglandin H2 receptor antagonist, to washed guinea-pig platelets was studied. [125I]PTA-OH bound to guinea-pig platelets in a saturable and displaceable manner. The Kd for [125I]PTA-OH was 14.5 +/- 2 nM (n = 4) and the Bmax was 32 +/- 7 fmol/10(7) platelets or 1,927 +/- 422 binding sites/platelet. The IC50 value for a series of 13-azapinane TXA2 analogs to antagonize the TXA2/PGH2 mimetic U46619-induced platelet aggregation and displace [125I]PTA-OH from its binding site was determined. The IC50 values for the series of five antagonists were highly correlated (r = 0.99) in the binding assays and aggregation studies. The ability of a series of five agonists to displace [125I]PTA-OH from its binding site was compared to their ability to induce platelet aggregation. All the agonists completely displaced the ligand from its binding site but their rank order did not correlate well with their ability to induce aggregation (r = 0.37). Collectively, the data are consistent with the notion that [125I]PTA-OH binds to a putative TXA2/PGH2 receptor in guinea-pig platelets.

  9. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine.

    PubMed

    Doré, Andrew S; Robertson, Nathan; Errey, James C; Ng, Irene; Hollenstein, Kaspar; Tehan, Ben; Hurrell, Edward; Bennett, Kirstie; Congreve, Miles; Magnani, Francesca; Tate, Christopher G; Weir, Malcolm; Marshall, Fiona H

    2011-09-07

    Methylxanthines, including caffeine and theophylline, are among the most widely consumed stimulant drugs in the world. These effects are mediated primarily via blockade of adenosine receptors. Xanthine analogs with improved properties have been developed as potential treatments for diseases such as Parkinson's disease. Here we report the structures of a thermostabilized adenosine A(2A) receptor in complex with the xanthines xanthine amine congener and caffeine, as well as the A(2A) selective inverse agonist ZM241385. The receptor is crystallized in the inactive state conformation as defined by the presence of a salt bridge known as the ionic lock. The complete third intracellular loop, responsible for G protein coupling, is visible consisting of extended helices 5 and 6. The structures provide new insight into the features that define the ligand binding pocket of the adenosine receptor for ligands of diverse chemotypes as well as the cytoplasmic regions that interact with signal transduction proteins.

  10. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats.

    PubMed

    Wen, Jiaming; Wang, Bohan; Du, Chuanjun; Xu, Gang; Zhang, Zhewei; Li, Yi; Zhang, Nan

    2015-10-01

    Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED.

  11. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma.

    PubMed

    Chan, E S L; Fernandez, P; Merchant, A A; Montesinos, M C; Trzaska, S; Desai, A; Tung, C F; Khoa, D N; Pillinger, M H; Reiss, A B; Tomic-Canic, M; Chen, J F; Schwarzschild, M A; Cronstein, B N

    2006-08-01

    Adenosine regulates inflammation and tissue repair, and adenosine A2A receptors promote wound healing by stimulating collagen matrix production. We therefore examined whether adenosine A2A receptors contribute to the pathogenesis of dermal fibrosis. Collagen production by primary human dermal fibroblasts was analyzed by real-time polymerase chain reaction, 14C-proline incorporation, and Sircol assay. Intracellular signaling for dermal collagen production was investigated using inhibitors of MEK-1 and by demonstration of ERK phosphorylation. In vivo effects were studied in a bleomycin-induced dermal fibrosis model using adenosine A2A receptor-deficient wild-type littermate mice, C57BL/6 mice, and mice treated with adenosine A2A receptor antagonist. Morphometric features and levels of hydroxyproline were determined as measures of dermal fibrosis. Adenosine A2A receptor occupancy promoted collagen production by primary human dermal fibroblasts, which was blocked by adenosine A2A, but not A1 or A2B, receptor antagonism. Adenosine A2A receptor ligation stimulated ERK phosphorylation, and A2A receptor-mediated collagen production by dermal fibroblasts was blocked by MEK-1 inhibitors. Adenosine A2A receptor-deficient and A2A receptor antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis. These results demonstrate that adenosine A2A receptors play an active role in the pathogenesis of dermal fibrosis and suggest a novel therapeutic target in the treatment and prevention of dermal fibrosis in diseases such as scleroderma.

  12. Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor.

    PubMed

    Bedford, Simon T; Benwell, Karen R; Brooks, Teresa; Chen, Ijen; Comer, Mike; Dugdale, Sarah; Haymes, Tim; Jordan, Allan M; Kennett, Guy A; Knight, Anthony R; Klenke, Burkhard; LeStrat, Loic; Merrett, Angela; Misra, Anil; Lightowler, Sean; Padfield, Anthony; Poullennec, Karine; Reece, Mark; Simmonite, Heather; Wong, Melanie; Yule, Ian A

    2009-10-15

    We herein report the discovery of a novel class of antagonists of the human adenosine A2B receptor. This low molecular weight scaffold has been optimized to offer derivatives with potential utility for the alleviation of conditions associated with this receptor subtype, such as nociception, diabetes, asthma and COPD. Furthermore, preliminary pharmacokinetic analysis has revealed compounds with profiles suitable for either inhaled or systemic routes of administration.

  13. Comparison of human recombinant adenosine A2B receptor function assessed by Fluo-3-AM fluorometry and microphysiometry.

    PubMed

    Patel, H; Porter, R H P; Palmer, A M; Croucher, M J

    2003-02-01

    1. The aim of this study was to establish the utility of a fluorometric imaging plate reader (FLIPR) assay to assess human adenosine A(2B) receptor function by characterizing its receptor pharmacology and comparing this profile to that obtained using a microphysiometer. 2. FLIPR was used, in conjunction with a Ca(2+)-sensitive dye (Fluo-3-AM), to measure rapid rises in intracellular calcium in a Chinese Hamster Ovary (CHO-K1) cell line stably transfected with both the human A(2B) receptor and a promiscuous G(alpha16) protein. Microphysiometry was used to measure rapid changes in the rate of extracellular acidification in a Human Embryonic Kidney (HEK-293) cell line also stably transfected with human A(2B) receptor. 3. Activation of A(2B) receptors by various ligands caused a concentration-dependent increase in both the intracellular calcium concentration and the extracellular acidification rate in the cells tested, with a similar rank order of potency for agonists: NECA > N(6)-Benzyl NECA > adenosine > or = R-PIA > CPA > S-PIA > CHA > CGS 21680. No comparable effects were observed in the non-transfected control cell lines. 4. The rank order of potency of the agonists examined was the same in all studies, whereas absolute potency and efficacy varied. Thus, all compounds exhibited greater potency in FLIPR than the microphysiometer and the efficacies obtained with CHO-K1 + G(alpha16) + A(2B) cell line and FLIPR were greater than those obtained with HEK-293 + A(2B) cell line in the microphysiometer. 5. ZM-241385 was the most potent of a range of adenosine antagonists tested with a pA(2) of 8.0 in both the FLIPR and microphysiometer assays. 6. In conclusion, the profile of the responses to both A(2B) receptor agonists and antagonists in FLIPR were similar to those obtained by the microphysiometer, although both potency and efficacy values were higher in the FLIPR assay. With this caveat in mind, this study shows that FLIPR coupled with a cell line transfected with both

  14. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  15. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  16. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington's disease mice.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Armida, Monica; Chiodi, Valentina; Pézzola, Antonella; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-04-06

    The effect of chronic treatment with the selective adenosine A(2A) receptor agonist CGS 21680 on N-Methyl-d-Aspartate (NMDA) receptor function and expression has been studied in the striatum and cortex of R6/2 mice, a genetic mouse model of Huntington's disease (HD). Starting from 8weeks of age, R6/2 and wild type (WT) mice were treated daily with CGS 21680 (0.5mg/kg i.p.) for 3weeks and the expression levels of NMDA receptor subunits were then evaluated. In addition, to study CGS 21680-induced changes in NMDA receptor function, NMDA-induced toxicity in corticostriatal slices from both R6/2 and WT mice was investigated. We found that CGS 21680 increased NR2A subunit expression and the NR2A/NR2B ratio in the cortex of R6/2 mice, having no effect in WT mice. In the striatum, CGS 21680 reduced NR1 expression in both R6/2 and WT mice while the effect on NR2A and NR2/NR2B expression was genotype-dependent, reducing and increasing their expression in WT and R6/2 mice, respectively. On the contrary, NMDA-induced toxicity in corticostriatal slices was not modified by the treatment in WT or HD mice. These results demonstrate that in vivo activation of A(2A) receptors modulates the subunit composition of NMDA receptors in the brain of HD mice.

  17. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined.

  18. Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice.

    PubMed

    Huang, Hang-Ning; Chan, Yi-Lin; Wu, Chang-Jer; Chen, Jyh-Yih

    2015-05-06

    Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune system. The aim of the present study was to characterize the role of TP4 in the regulation of wound closure in mice and proliferation of a keratinocyte cell line (HaCaT) and fibroblast cell line (Hs-68). In vitro, TP4 stimulated cell proliferation and activated collagen I, collagen III, and keratinocyte growth factor (KGF) gene expression in Hs-68 cells, which induces keratin production by HaCaT cells. This effect was detectable at TP4 concentrations of 6.25 µg/mL in both cell lines. In vivo, TP4 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that TP4 enhances the survival rate of mice infected with the bacterial pathogen MRSA through both antimicrobial and wound closure activities mediated by epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial growth factor (VEGF). The peptide is likely involved in antibacterial processes and regulation of tissue homeostasis in infected wounds in mice. Overall, these results suggest that TP4 may be suitable for development as a novel topical agent for wound dressing.

  19. Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice

    PubMed Central

    Huang, Hang-Ning; Chan, Yi-Lin; Wu, Chang-Jer; Chen, Jyh-Yih

    2015-01-01

    Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune system. The aim of the present study was to characterize the role of TP4 in the regulation of wound closure in mice and proliferation of a keratinocyte cell line (HaCaT) and fibroblast cell line (Hs-68). In vitro, TP4 stimulated cell proliferation and activated collagen I, collagen III, and keratinocyte growth factor (KGF) gene expression in Hs-68 cells, which induces keratin production by HaCaT cells. This effect was detectable at TP4 concentrations of 6.25 µg/mL in both cell lines. In vivo, TP4 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that TP4 enhances the survival rate of mice infected with the bacterial pathogen MRSA through both antimicrobial and wound closure activities mediated by epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial growth factor (VEGF). The peptide is likely involved in antibacterial processes and regulation of tissue homeostasis in infected wounds in mice. Overall, these results suggest that TP4 may be suitable for development as a novel topical agent for wound dressing. PMID:25955756

  20. The Sam Domain of EphA2 Receptor and its Relevance to Cancer: A Novel Challenge for Drug Discovery?

    PubMed

    Mercurio, Flavia A; Leone, Marilisa

    2016-01-01

    Eph receptors play important functions in developmental processes and diseases and among them EphA2 is well known for its controversial role in cancer. Drug discovery strategies are mainly centered on EphA2 extracellular ligand-binding domain however, the receptor also contains a largely unexplored cytosolic Sam (Sterile alpha motif) domain at the C-terminus. EphA2-Sam binds the Sam domain from the lipid phosphatase Ship2 and the first Sam domain of Odin. Sam-Sam interactions may be important to regulate ligand-induced receptor endocytosis and degradation i.e., processes that could be engaged against tumor malignancy. We critically analyzed literature related to a) Eph receptors with particular emphasis on EphA2 and its role in cancer, b) Sam domains, c) heterotypic Sam-Sam interactions involving EphA2-Sam. While literature data indicate that binding of EphA2-Sam to Ship2-Sam should largely generate pro-oncogenic effects in cancer cells, the correlation between EphA2- Sam/Odin-Sam1 complex and the disease is unclear. Recently a few linear peptides encompassing binding interfaces from either Ship2-Sam and Odin-Sam1 have been characterized but failed to efficiently block heterotypic Sam-Sam interactions involving EphA2-Sam due to the lack of a native like fold. Molecule antagonists of heterotypic EphA2-Sam associations could work as potential anticancer agents or be implemented as tools to further clarify receptor functions and eventually validate its role as a novel target in the field of anti-cancer drug discovery. Due to the failure of linear peptides there is a crucial need for novel approaches, based on cyclic or helical molecules, to target Sam-Sam interfaces.

  1. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice.

    PubMed

    Dall'Igna, Oscar P; Fett, Paulo; Gomes, Marcio W; Souza, Diogo O; Cunha, Rodrigo A; Lara, Diogo R

    2007-01-01

    Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimer's disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimer's disease.

  2. Phospholipase A2-modified low-density lipoprotein activates macrophage peroxisome proliferator-activated receptors.

    PubMed

    Namgaladze, Dmitry; Morbitzer, Daniel; von Knethen, Andreas; Brüne, Bernhard

    2010-02-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors modulating metabolic and inflammatory responses of phagocytes to stimuli such as fatty acids and their metabolites. We studied the role of PPARs in macrophages exposed to low-density lipoprotein (LDL) modified by secretory phospholipase A(2) (PLA). By analyzing PPAR ligand-binding domain luciferase reporter activation, we observed that PLA-LDL transactivates PPARalpha and PPARdelta, but not PPARgamma. We confirmed that PLA-LDL induced PPAR response element reporter activation by endogenous PPARalpha and PPARdelta in human THP-1 macrophages. By using THP-1 cells with a stable knockdown of PPARalpha and PPARdelta, we showed that PLA-LDL-activated PPARdelta altered macrophage gene expression related to lipid metabolism and lipid droplet formation. Although PPARalpha/delta silencing did not affect cholesterol and triglyceride accumulation in PLA-LDL-treated macrophages, PPARdelta activation by PLA-LDL attenuated macrophage inflammatory gene expression induced by interferon gamma and lipopolysaccharide. PPARdelta activation by PLA-LDL does not influence lipid accumulation in PLA-LDL-treated macrophages. However, it attenuates macrophage inflammatory responses, thus contributing to an anti-inflammatory cell phenotype.

  3. Enigma (partially) resolved: phospholipase A2 receptor is the cause of "idiopathic" membranous glomerulonephritis.

    PubMed

    Truong, Luan D; Seshan, Surya V

    2015-12-15

    Membranous glomerulonephritis (MGN) is a very significant kidney disease. It is one of the frequent causes of heavy protein excretion in urine. MGN is thought to be an immune-mediated disease caused by glomerular deposition of antigen-antibody complexes. The pathogenic antigen, however, has been an enigma until recently. It was discovered in 2009 that phospholipase A2 receptor (PLA2R), a normal transmembrane protein in podocyte plasma membrane, is the antigen causing MGN. Within 5 yr of its discovery, this seminal finding has leaded to novel insights into the treatment of this disease including diagnosis, therapy, and prediction of outcome. This finding also paves the way for fundamental studies on how and why autoimmunity against PLA2R develops. The discovery of PLA2A as the cause of "idiopathic" MGN after a half century of speculation, followed by further fundamental insights with such an expedient and successful application in patient care, embodies the elegance of science at its junction with society. This perspective traces the story of this remarkable discovery.

  4. The effects of long delay and transmission errors on the performance of TP-4 implementations

    NASA Technical Reports Server (NTRS)

    Durst, Robert C.; Evans, Eric L.; Mitchell, Randy C.

    1991-01-01

    A set of tools that allows us to measure and examine the effects of transmission delay and errors on the performance of TP-4 implementations has been developed. The tools give insight into both the large- and small-scale behaviors of an implementation. These tools have been systematically applied to a commercial implementation of TP-4. Measurements show, among other things, that a 2-second one-way transmission delay and an effective bit-error rate of 1 error per 100,000 bits can result in a 95 percent reduction in TP-4 throughput. The detailed statistics give insight into why transmission delay and errors affect this implementations so significantly and support a number of 'lessons learned' that could be applied to TP-4 implementations that operate more robustly across networks with long transmission delays and transmission errors.

  5. A differential role for the adenosine A2A receptor in opiate reinforcement vs opiate-seeking behavior.

    PubMed

    Brown, Robyn Mary; Short, Jennifer Lynn; Cowen, Michael Scott; Ledent, Catherine; Lawrence, Andrew John

    2009-03-01

    The adenosine A(2A) receptor is specifically enriched in the medium spiny neurons that make up the 'indirect' output pathway from the ventral striatum, a structure known to have a crucial, integrative role in processes such as reward, motivation, and drug-seeking behavior. In the present study we investigated the impact of adenosine A(2A) receptor deletion on behavioral responses to morphine in a number of reward-related paradigms. The acute, rewarding effects of morphine were evaluated using the conditioned place preference paradigm. Operant self-administration of morphine on both fixed and progressive ratio schedules as well as cue-induced drug-seeking was assessed. In addition, the acute locomotor response to morphine as well as sensitization to morphine was evaluated. Decreased morphine self-administration and breakpoint in A(2A) knockout mice was observed. These data support a decrease in motivation to consume the drug, perhaps reflecting diminished rewarding effects of morphine in A(2A) knockout mice. In support of this finding, a place preference to morphine was not observed in A(2A) knockout mice but was present in wild-type mice. In contrast, robust cue-induced morphine-seeking behavior was exhibited by both A(2A) knockout and wild-type mice after a period of withdrawal. The acute locomotor response to morphine in the A(2A) knockout was similar to wild-type mice, yet A(2A) knockout mice did not display tolerance to chronic morphine under the present paradigm. Both genotypes display locomotor sensitization to morphine, implying a lack of a role for the A(2A) receptor in the drug-induced plasticity necessary for the development or expression of sensitization. Collectively, these data suggest a differential role for adenosine A(2A) receptors in opiate reinforcement compared to opiate-seeking.

  6. The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone

    PubMed Central

    Khayat, Maan T.

    2017-01-01

    Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118

  7. TP53 mutations, expression and interaction networks in human cancers

    PubMed Central

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-01

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers. PMID:27880943

  8. TP53 mutations, expression and interaction networks in human cancers.

    PubMed

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  9. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    PubMed

    Vulfius, Catherine A; Kasheverov, Igor E; Starkov, Vladislav G; Osipov, Alexey V; Andreeva, Tatyana V; Filkin, Sergey Yu; Gorbacheva, Elena V; Astashev, Maxim E; Tsetlin, Victor I; Utkin, Yuri N

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  10. Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2

    PubMed Central

    Vulfius, Catherine A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Osipov, Alexey V.; Andreeva, Tatyana V.; Filkin, Sergey Yu.; Gorbacheva, Elena V.; Astashev, Maxim E.; Tsetlin, Victor I.; Utkin, Yuri N.

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes. PMID:25522251

  11. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.

  12. Binding and Function of Phosphotyrosines of the Ephrin A2 (EphA2) Receptor Using Synthetic Sterile α Motif (SAM) Domains*

    PubMed Central

    Borthakur, Susmita; Lee, HyeongJu; Kim, SoonJeung; Wang, Bing-Cheng; Buck, Matthias

    2014-01-01

    The sterile α motif (SAM) domain of the ephrin receptor tyrosine kinase, EphA2, undergoes tyrosine phosphorylation, but the effect of phosphorylation on the structure and interactions of the receptor is unknown. Studies to address these questions have been hindered by the difficulty of obtaining site-specifically phosphorylated proteins in adequate amounts. Here, we describe the use of chemically synthesized and specifically modified domain-length peptides to study the behavior of phosphorylated EphA2 SAM domains. We show that tyrosine phosphorylation of any of the three tyrosines, Tyr921, Tyr930, and Tyr960, has a surprisingly small effect on the EphA2 SAM structure and stability. However, phosphorylation at Tyr921 and Tyr930 enables differential binding to the Src homology 2 domain of the adaptor protein Grb7, which we propose will lead to distinct functional outcomes. Setting up different signaling platforms defined by selective interactions with adaptor proteins thus adds another level of regulation to EphA2 signaling. PMID:24825902

  13. Increased non-rapid eye movement sleep by cocaine withdrawal: possible involvement of A2A receptors.

    PubMed

    Yang, Shu-Long; Han, Jin-Yi; Kim, Yun-Bae; Nam, Sang-Yoon; Song, Sukgil; Hong, Jin Tae; Oh, Ki-Wan

    2011-02-01

    This study attempted to clarify whether cocaine withdrawal altered sleep architecture and the role of adenosine receptors in this process. Cocaine (20 mg/kg) was administered subcutaneously once per day for 7 days to rat implanted with sleep/wake recording electrode. Polygraphic signs of undisturbed sleep/wake activities were recorded for 24 h before cocaine administration (basal recording as control); withdrawal-day 1 (after 1 day of repeated cocaine administration), withdrawal-day 8 (after 8 days of repeated cocaine administration), and withdrawal-day 14 (after 14 days of repeated cocaine administration), respectively. On cocaine withdrawal-day 1, wakefulness was significantly increased, total sleep was decreased, non-rapid eye movement sleep was markedly reduced, and rapid eye movement sleep was enhanced. Sleep/wake cycles were also increased on cocaine withdrawal day 1. However, non-rapid eye movement sleep was increased on withdrawal-day 8 and 14, whereas rapid eye movement sleep was decreased and no significant changes were observed in the total sleep and sleep/wake cycles during these periods. Adenosine A(2A) receptors expression was increased on withdrawal-day 8 and 14, whereas A(1) receptors levels were reduced after 14 days of withdrawal and the A(2B) receptors remained unchanged. Our findings suggest that alterations of sleep and sleep architecture during cocaine subacute and subchronic withdrawals after repeated cocaine administration may be partially involved in A(2A) receptors over-expression in the rat hypothalamus.

  14. Human Adenosine A2A Receptor Binds Calmodulin with High Affinity in a Calcium-Dependent Manner

    PubMed Central

    Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka

    2015-01-01

    Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. PMID:25692595

  15. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6.

    PubMed

    Wilson, Jeffrey M; Kurtz, Courtney C; Black, Steven G; Ross, William G; Alam, Mohammed S; Linden, Joel; Ernst, Peter B

    2011-06-15

    Adenosine is an endogenous metabolite produced during hypoxia or inflammation. Previously implicated as an anti-inflammatory mediator in CD4(+) T cell regulation, we report that adenosine acts via dendritic cell (DC) A(2B) adenosine receptor (A(2B)AR) to promote the development of Th17 cells. Mouse naive CD4(+) T cells cocultured with DCs in the presence of adenosine or the stable adenosine mimetic 5'-(N-ethylcarboximado) adenosine resulted in the differentiation of IL-17- and IL-22-secreting cells and elevation of mRNA that encode signature Th17-associated molecules, such as IL-23R and RORγt. The observed response was similar when DCs were generated from bone marrow or isolated from small intestine lamina propria. Experiments using adenosine receptor antagonists and cells from A(2B)AR(-/-) or A(2A)AR(-/-)/A(2B)AR(-/-) mice indicated that the DC A(2B)AR promoted the effect. IL-6, stimulated in a cAMP-independent manner, is an important mediator in this pathway. Hence, in addition to previously noted direct effects of adenosine receptors on regulatory T cell development and function, these data indicated that adenosine also acts indirectly to modulate CD4(+) T cell differentiation and suggested a mechanism for putative proinflammatory effects of A(2B)AR.

  16. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids.

    PubMed

    Naranjo, Andrea N; McNeely, Patrick M; Katsaras, John; Robinson, Anne Skaja

    2016-08-01

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the protein's purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids

    DOE PAGES

    Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John; ...

    2016-05-27

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, ormore » DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less

  18. Expression, Purification and Crystallisation of the Adenosine A2A Receptor Bound to an Engineered Mini G Protein.

    PubMed

    Carpenter, Byron; Tate, Christopher G

    2017-04-20

    G protein-coupled receptors (GPCRs) promote cytoplasmic signalling by activating heterotrimeric G proteins in response to extracellular stimuli such as light, hormones and nucleosides. Structure determination of GPCR-G protein complexes is central to understanding the precise mechanism of signal transduction. However, these complexes are challenging targets for structural studies due to their conformationally dynamic and inherently transient nature. We recently developed an engineered G protein, mini-Gs, which addressed these problems and allowed the formation of a stable GPCR-G protein complex. Mini-Gs facilitated the structure determination of the human adenosine A2A receptor (A2AR) in its G protein-bound conformation at 3.4 Å resolution. Here, we describe a step by step protocol for the expression and purification of A2AR, and crystallisation of the A2AR-mini-Gs complex.

  19. Effect of phospholipid hydrolysis by phospholipase A2 on the kinetics of antagonist binding to cardiac muscarinic receptors.

    PubMed

    Rauch, B; Niroomand, F; Messineo, F C; Weis, A; Kübler, W; Hasselbach, W

    1994-09-15

    Activation of phospholipases during prolonged myocardial ischemia could contribute to the functional derangement of myocardial cells by altering the phospholipid environment of a number of membrane bound proteins including receptors. The present study examined the kinetics of muscarinic receptor antagonist [3H]quinuclidinyl benzilate binding ([3H]QNB) to muscarinic receptors of highly purified sarcolemmal membranes under control conditions and after treatment with phospholipase A2 (PLA2; EC 3.1.1.4). Initial binding rates of QNB exhibited saturation kinetics, when plotted against the ligand concentration in control and PLA2 treated sarcolemmal membranes. This kinetic behaviour of QNB-binding is consistent with at least a two step binding mechanism. According to this two step binding hypothesis an unstable intermediate receptor-QNB complex (R*QNB) forms rapidly, and this form undergoes a slow conversion to the high affinity ligand-receptor complex R-QNB. The Michaelis constant Km of R-QNB formation was 1.8 nM, whereas the dissociation constant Kd obtained from equilibrium measurements was 0.062 nM. After 5 min exposure of sarcolemmal membranes to PLA2QNB binding capacity (Bmax) was reduced by 62%, and the affinity of the remaining receptor sites was decreased by 47% (Kd = 0.116 nM). This PLA2-induced increase of Kd was accompanied by a corresponding increase of Km, whereas the rate constants k2 and k-2 of the hypothetical slow conversion step (second reaction step) remained unchanged. These results suggest that binding of QNB to cardiac muscarinic receptors induces a transition in the receptor-ligand configuration, which is necessary for the formation of the final high affinity R-QNB complex. PLA2-induced changes of the lipid environment result in the inability of a part of the receptor population to undergo this transition, thereby inhibiting high affinity QNB-binding.

  20. M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy

    PubMed Central

    Beck, Laurence H.; Bonegio, Ramon G.B.; Lambeau, Gérard; Beck, David M.; Powell, David W.; Cummins, Timothy D.; Klein, Jon B.; Salant, David J.

    2009-01-01

    BACKGROUND Idiopathic membranous nephropathy, a common form of the nephrotic syndrome, is an antibody-mediated autoimmune glomerular disease. Serologic diagnosis has been elusive because the target antigen is unknown. METHODS We performed Western blotting of protein extracts from normal human glomeruli with serum samples from patients with idiopathic or secondary membranous nephropathy or other proteinuric or autoimmune diseases and from normal controls. We used mass spectrometry to analyze the reactive protein bands and confirmed the identity and location of the target antigen with a monospecific antibody. RESULTS Serum samples from 26 of 37 patients (70%) with idiopathic but not secondary membranous nephropathy specifically identified a 185-kD glycoprotein in non-reduced glomerular extract. Mass spectrometry of the reactive protein band detected the M-type phospholipase A2 receptor (PLA2R). Reactive serum specimens recognized recombinant PLA2R and bound the same 185-kD glomerular protein as did the monospecific anti-PLA2R antibody. Anti-PLA2R autoantibodies in serum samples from patients with membranous nephropathy were mainly IgG4, the predominant immunoglobulin subclass in glomerular deposits. PLA2R was expressed in podocytes in normal human glomeruli and colocalized with IgG4 in immune deposits in glomeruli of patients with membranous nephropathy. IgG eluted from such deposits in patients with idiopathic membranous nephropathy, but not in those with lupus membranous or IgA nephropathy, recognized PLA2R. CONCLUSIONS A majority of patients with idiopathic membranous nephropathy have antibodies against a conformation-dependent epitope in PLA2R. PLA2R is present in normal podocytes and in immune deposits in patients with idiopathic membranous nephropathy, indicating that PLA2R is a major antigen in this disease. PMID:19571279

  1. Phospholipase A2 Receptor Autoantibodies and Clinical Outcome in Patients with Primary Membranous Nephropathy

    PubMed Central

    Hoxha, Elion; Thiele, Ina; Zahner, Gunther; Panzer, Ulf; Harendza, Sigrid

    2014-01-01

    Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in adults, with an uncertain clinical outcome. The characterization of the phospholipase A2 receptor (PLA2R) as the major target antigen in primary MN and the detection of circulating autoantibodies in these patients is a major advance in understanding this disease. To test whether PLA2R antibody levels reflect disease activity or clinical outcome, we performed a prospective multicenter study of 133 adult patients with primary MN and detectable serum PLA2R antibodies who had not received immunosuppressive therapy. Patients were followed ≤24 months. PLA2R antibody levels associated with clinical disease activity (proteinuria) in patients with immunosuppressive therapy (n=101) or supportive care (n=32). Within 3 months, immunosuppressive therapy led to a sustained 81% reduction in PLA2R antibody levels paralleled by a 39% reduction in proteinuria. Patients who experienced remission of proteinuria after 12 months had significantly lower PLA2R antibody levels at the time of study inclusion compared with patients with no remission. Patients with high PLA2R antibody levels achieved remission of proteinuria significantly later than patients with low PLA2R antibody levels. PLA2R antibody levels fell over time in patients with spontaneous remission but remained elevated in patients who did not show a reduction in proteinuria. Multivariable Cox regression analysis confirmed PLA2R antibody level as an independent risk factor for not achieving remission of proteinuria. We conclude that a decrease in PLA2R antibody level is associated with a decrease of proteinuria in patients with primary MN. PMID:24610926

  2. Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C

    PubMed Central

    Benoit, Roger M.; Schärer, Martin A.; Wieser, Mara M.; Li, Xiaodan; Frey, Daniel; Kammerer, Richard A.

    2017-01-01

    A detailed molecular understanding of botulinum neurotoxin (BoNT)/host-cell-receptor interactions is fundamental both for developing strategies against botulism and for generating improved BoNT variants for medical applications. The X-ray crystal structure of the receptor-binding domain (HC) of BoNT/A1 in complex with the luminal domain (LD) of its neuronal receptor SV2C revealed only few specific side-chain – side-chain interactions that are important for binding. Notably, two BoNT/A1 residues, Arg 1156 and Arg 1294, that are crucial for the interaction with SV2, are not conserved among subtypes. Because it has been suggested that differential receptor binding of subtypes might explain their differences in biological activity, we determined the crystal structure of BoNT/A2-HC in complex with SV2C-LD. Although only few side-chain interactions are conserved between the two BoNT/A subtypes, the overall binding mode of subtypes A1 and A2 is virtually identical. In the BoNT/A2-HC – SV2C complex structure, a missing cation-π stacking is compensated for by an additional salt bridge and an anion-π stacking interaction, which explains why the binding of BoNT/A subtypes to SV2C tolerates variable side chains. These findings suggest that motif extensions and a shallow binding cleft in BoNT/A-HC contribute to binding specificity. PMID:28252640

  3. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly

    PubMed Central

    Rodrigues, Lisa; Miranda, Isabel M.; Andrade, Geanne M.; Mota, Marta; Cortes, Luísa; Rodrigues, Acácio G.; Cunha, Rodrigo A.; Gonçalves, Teresa

    2016-01-01

    Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density. PMID:27590517

  4. Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers

    PubMed Central

    Ferré, Sergi; Woods, Amina S.; Navarro, Gemma; Aymerich, Marisol; Lluís, Carme; Franco, Rafael

    2009-01-01

    The adenosine A2A-dopamine D2 receptor heteromer is one of the most studied receptor heteromers. It has important implications for basal ganglia function and pathology. Recent studies using Bioluminescence and Sequential Resonance Energy Transfer techniques shed light on the role of Ca2+ in the modulation of the quaternary structure of the A2A-D2 receptor heteromer, which was found to depend on the binding of calmodulin (CaM) to the carboxy terminus of the A2A receptor in the A2A-D2 receptor heteromer. Importantly, the changes in quaternary structure correlate with changes in function. A Ca2+/CaM-dependent modulation of MAPK signaling upon agonist treatment could only be observed in cells expressing A2A-D2 receptor heteromers. These studies provide a first example of a Ca2+-mediated modulation of the quaternary structure and function of a receptor heteromer. PMID:19896897

  5. Solution structure of the first Sam domain of Odin and binding studies with the EphA2 receptor.

    PubMed

    Mercurio, Flavia Anna; Marasco, Daniela; Pirone, Luciano; Pedone, Emilia Maria; Pellecchia, Maurizio; Leone, Marilisa

    2012-03-13

    The EphA2 receptor plays key roles in many physiological and pathological events, including cancer. The process of receptor endocytosis and the consequent degradation have attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (sterile alpha motif) domains of Odin, a member of the ANKS (ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important for the regulation of EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and -Sam2). Herein, we report on the nuclear magnetic resonance (NMR) solution structure of Odin-Sam1; through a variety of assays (employing NMR, surface plasmon resonance, and isothermal titration calorimetry techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head-to-tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis.

  6. Nutlin-3a selects for cells harbouring TP53 mutations.

    PubMed

    Kucab, Jill E; Hollstein, Monica; Arlt, Volker M; Phillips, David H

    2017-02-15

    TP53 mutations occur in half of all human tumours. Mutagen-induced or spontaneous TP53 mutagenesis can be studied in vitro using the human TP53 knock-in (Hupki) mouse embryo fibroblast (HUF) immortalisation assay (HIMA). TP53 mutations arise in up to 30% of mutagen-treated, immortalised HUFs; however, mutants are not identified until TP53 sequence analysis following immortalisation (2-5 months) and much effort is expended maintaining TP53-WT cultures. In order to improve the selectivity of the HIMA for HUFs harbouring TP53 mutations, we explored the use of Nutlin-3a, an MDM2 inhibitor that leads to stabilisation and activation of wild-type (WT) p53. First, we treated previously established immortal HUF lines carrying WT or mutated TP53 with Nutlin-3a to examine the effect on cell growth and p53 activation. Nutlin-3a induced the p53 pathway in TP53-WT HUFs and inhibited cell growth, whereas most TP53-mutated HUFs were resistant to Nutlin-3a. We then assessed whether Nutlin-3a treatment could discriminate between TP53-WT and TP53-mutated cells during the HIMA (n = 72 cultures). As immortal clones emerged from senescent cultures, each was treated with 10 µM Nutlin-3a for 5 days and observed for sensitivity or resistance. TP53 was subsequently sequenced from all immortalised clones. We found that all Nutlin-3a-resistant clones harboured TP53 mutations, which were diverse in position and functional impact, while all but one of the Nutlin-3a-sensitive clones were TP53-WT. These data suggest that including a Nutlin-3a counter-screen significantly improves the specificity and efficiency of the HIMA, whereby TP53-mutated clones are selected prior to sequencing and TP53-WT clones can be discarded.

  7. Evaluation of Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio in patients with subclinical hypothyroidism.

    PubMed

    Gürdal, Ahmet; Eroğlu, Hatice; Helvaci, Füsun; Sümerkan, Mutlu Çağan; Kasali, Kamber; Çetin, Şükrü; Aksan, Gökhan; Kiliçkesmez, Kadriye

    2017-03-01

    Prolongation of the peak-to-end interval of the T wave (Tp-e) has been reported as associated with ventricular arrhythmias. The aim of this study was to investigate the ventricular repolarization by using the Tp-e interval, Tp-e/QT ratio and Tp-e/ QTc ratio in patients with subclinical hypothyroidism (SH). We studied 56 volunteers: These were 28 patients with SH (mean age 45 ± 11 years) and 28 healthy subjects (mean age 34 ± 8 years). All basic biochemical parameters were analyzed and electrocardiograms (ECGs) were recorded. RR and QT intervals, QTc, Tp-e intervals and the Tp-e/QT and Tp-e/QTc ratios were calculated. The categorical and numerical variables were compared using the chi-square test and independent t test, respectively. Correlations were analyzed using the Spearman and Pearson correlation tests. We found no difference between QT and QTc intervals between groups. In the subjects with SH, the Tp-e intervals (87 ± 5 ms, 66 ± 5 ms, p< 0.01), Tp-e/ QT ratio (0.23 ± 0.03, 0.18 ± 0.01, p< 0.01) and Tp-e/QTc ratio (0.21 ± 0.02, 0.16 ± 0.01, p< 0.01) were increased compared with healthy subjects. We also found positive correlations between levels of thyroid stimulating hormone (TSH) and Tp-e (r = 0.72, p< 0.01), Tp-e/ QT ratio (r = 0.67 p< 0.01), Tp-e/ QTc ratio (r = 0.68, p< 0.01). In the subjects with SH, Left Ventricular Myocardial Performance Index (LV-MPI) was increased compared with the healthy subjects (0.64 ± 0.08, 0.59 ± 0.09, p = 0.066) although it was not significant. Compared with healthy subjects, patients with SH demonstrated longer Tp-e intervals, and higher Tp-e/QT and Tp-e/QTc ratios. TSH levels were positively correlated with Tp-e interval, Tp-e/QT ratio, and Tp-e/QTc ratio.

  8. Evaluation of Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio in patients with subclinical hypothyroidism

    PubMed Central

    Gürdal, Ahmet; Eroğlu, Hatice; Helvaci, Füsun; Sümerkan, Mutlu Çağan; Kasali, Kamber; Çetin, Şükrü; Aksan, Gökhan; Kiliçkesmez, Kadriye

    2017-01-01

    Background: Prolongation of the peak-to-end interval of the T wave (Tp-e) has been reported as associated with ventricular arrhythmias. The aim of this study was to investigate the ventricular repolarization by using the Tp-e interval, Tp-e/QT ratio and Tp-e/ QTc ratio in patients with subclinical hypothyroidism (SH). Methods: We studied 56 volunteers: These were 28 patients with SH (mean age 45 ± 11 years) and 28 healthy subjects (mean age 34 ± 8 years). All basic biochemical parameters were analyzed and electrocardiograms (ECGs) were recorded. RR and QT intervals, QTc, Tp-e intervals and the Tp-e/QT and Tp-e/QTc ratios were calculated. The categorical and numerical variables were compared using the chi-square test and independent t test, respectively. Correlations were analyzed using the Spearman and Pearson correlation tests. Results: We found no difference between QT and QTc intervals between groups. In the subjects with SH, the Tp-e intervals (87 ± 5 ms, 66 ± 5 ms, p < 0.01), Tp-e/ QT ratio (0.23 ± 0.03, 0.18 ± 0.01, p < 0.01) and Tp-e/QTc ratio (0.21 ± 0.02, 0.16 ± 0.01, p < 0.01) were increased compared with healthy subjects. We also found positive correlations between levels of thyroid stimulating hormone (TSH) and Tp-e (r = 0.72, p < 0.01), Tp-e/ QT ratio (r = 0.67 p < 0.01), Tp-e/ QTc ratio (r = 0.68, p < 0.01). In the subjects with SH, Left Ventricular Myocardial Performance Index (LV-MPI) was increased compared with the healthy subjects (0.64 ± 0.08, 0.59 ± 0.09, p = 0.066) although it was not significant. Conclusions: Compared with healthy subjects, patients with SH demonstrated longer Tp-e intervals, and higher Tp-e/QT and Tp-e/QTc ratios. TSH levels were positively correlated with Tp-e interval, Tp-e/QT ratio, and Tp-e/QTc ratio.

  9. A new ethyladenine antagonist of adenosine A(2A) receptors: behavioral and biochemical characterization as an antiparkinsonian drug.

    PubMed

    Pinna, Annalisa; Tronci, Elisabetta; Schintu, Nicoletta; Simola, Nicola; Volpini, Rosaria; Pontis, Silvia; Cristalli, Gloria; Morelli, Micaela

    2010-03-01

    Adenosine A(2A) receptor antagonists have emerged as an attractive non-dopaminergic target in clinical trials aimed at evaluating improvement in motor deficits in Parkinson's disease (PD). Moreover, preclinical studies suggest that A(2A) receptor antagonists may slow the course of the underlying neurodegeneration of dopaminergic neurons. In this study, we evaluated the efficacy of the new adenosine A(2A) receptor antagonist 8-ethoxy-9-ethyladenine (ANR 94) in parkinsonian models of akinesia and tremor. In addition, induction of the immediate early gene zif-268, and neuroprotective and anti-inflammatory effects of ANR 94 were evaluated. ANR 94 was effective in reversing parkinsonian tremor induced by the administration of tacrine. ANR 94 also counteracted akinesia (stepping test) and sensorimotor deficits (vibrissae-elicited forelimb-placing test), as well as potentiating l-dopa-induced contralateral turning behavior in 6-hydroxydopamine (6-OHDA) lesion model of PD. Potentiation of motor behavior in 6-OHDA-lesioned rats was not associated with increased induction of the immediate early gene zif-268 in the striatum, suggesting that ANR 94 does not induce long-term plastic changes in this structure. Finally, in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, ANR 94 protected nigrostriatal dopaminergic neurons from degeneration and counteracted neuroinflammatory processes by contrasting astroglial (glial fibrillary acidic protein, GFAP) and microglial (CD11b) activation. A(2A) receptor antagonism represents a uniquely realistic opportunity for improving PD treatment, since A(2A) receptor antagonists offer substantial symptomatic benefits and possibly disease-modifying activity. The characterization of ANR 94 may represent a further therapeutic opportunity for the treatment of PD with this new class of drugs.

  10. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  11. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction

    PubMed Central

    Hurtado-Alvarado, Gabriela; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier

    2016-01-01

    Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and

  12. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    PubMed

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity.

  13. Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket.

    PubMed

    Sablin, Elena P; Blind, Raymond D; Uthayaruban, Rubatharshini; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Ingraham, Holly A; Fletterick, Robert J

    2015-12-01

    The nuclear receptor LRH-1 (Liver Receptor Homolog-1, NR5A2) is a transcription factor that regulates gene expression programs critical for many aspects of metabolism and reproduction. Although LRH-1 is able to bind phospholipids, it is still considered an orphan nuclear receptor (NR) with an unknown regulatory hormone. Our prior cellular and structural studies demonstrated that the signaling phosphatidylinositols PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind and regulate SF-1 (Steroidogenic Factor-1, NR5A1), a close homolog of LRH-1. Here, we describe the crystal structure of human LRH-1 ligand binding domain (LBD) bound by PIP3 - the first phospholipid with a head group endogenous to mammals. We show that the phospholipid hormone binds LRH-1 with high affinity, stabilizing the receptor LBD. While the hydrophobic PIP3 tails (C16/C16) are buried inside the LRH-1 ligand binding pocket, the negatively charged PIP3 head group is presented on the receptor surface, similar to the phosphatidylinositol binding mode observed in the PIP3-SF-1 structure. Thus, data presented in this work reinforce our earlier findings demonstrating that signaling phosphatidylinositols regulate the NR5A receptors LRH-1 and SF-1.

  14. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning.

    PubMed

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K

    2013-04-01

    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia.

  15. Prognostic and predictive effects of TP53 co-mutation in patients with EGFR-mutated non-small cell lung cancer (NSCLC).

    PubMed

    Labbé, Catherine; Cabanero, Michael; Korpanty, Grzegorz J; Tomasini, Pascale; Doherty, Mark K; Mascaux, Céline; Jao, Kevin; Pitcher, Bethany; Wang, Rick; Pintilie, Melania; Leighl, Natasha B; Feld, Ronald; Liu, Geoffrey; Bradbury, Penelope Ann; Kamel-Reid, Suzanne; Tsao, Ming-Sound; Shepherd, Frances A

    2017-09-01

    TP53 mutations are common in non-small cell lung cancer (NSCLC) and have been reported as prognostic of poor outcome. The impact of TP53 co-mutations in epidermal growth factor receptor (EGFR)-mutated NSCLC is unclear. Tissue from 105 patients with EGFR-mutated NSCLC at Princess Margaret Cancer Centre was analyzed by next-generation or Sanger sequencing to determine TP53 mutational status. Associations between TP53 status and baseline patient and tumor characteristics, treatments and outcomes (relapse-free survival [RFS] after surgical resection, overall survival [OS], overall response rate [ORR] and progression-free survival [PFS] on EGFR tyrosine kinase inhibitors [TKIs]), were investigated. Dual TP53/EGFR mutations were found in 43/105 patients (41%). Among 76 patients who underwent surgical resection, neither RFS (HR 0.99, CI 0.56-1.75, p=0.96) nor OS (HR 1.39, CI 0.70-2.77; p=0.35) was associated with TP53 status. Sixty patients (24 TP53 MUT; 36 TP53 WT) received first-generation EGFR TKIs for advanced disease. ORR was not significantly different (TP53 MUT 54%, WT 66%, p=0.42). There was a non-significant trend towards shorter PFS on EGFR TKIs with TP53 mutation (HR 1.74, CI 0.98-3.10, p=0.06). When limited to TP53 missense mutations (n=17), PFS was significantly shorter (HR 1.91, CI 1.01-3.60, p=0.04). Among 11 evaluable patients treated with T790M inhibitors, ORR was not significantly different (TP53 MUT 3/3 [100%], WT 7/8 [88%]). Patients with dual TP53/EGFR mutations, especially missense mutations, had marginally lower response rates and shorter PFS when treated with EGFR TKI therapy. Larger datasets are required to validate these observations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 2-Aralkynyl and 2-heteroalkynyl derivatives of adenosine-5'-N-ethyluronamide as selective A2a adenosine receptor agonists.

    PubMed

    Cristalli, G; Camaioni, E; Vittori, S; Volpini, R; Borea, P A; Conti, A; Dionisotti, S; Ongini, E; Monopoli, A

    1995-04-28

    A series of new 2-aralkynyl and 2-heteroaralkynyl derivatives of NECA were synthesized and studied in binding and functional assays to assess their potency for the A2a compared to A1 adenosine receptors. Compounds bearing an aromatic or heteroaromatic ring, conjugated to the triple bond, showed generally weaker activity at the A2a receptor and lower selectivity (A2a vs A1) than the alkylakynyl derivatives previously reported. However, the (4-formylphenyl)-ethynyl derivative 17 showed affinity in the low nanomolar range and high selectivity (about 160-fold) for the A2a receptor. The presence of heteroatoms improved vasorelaxant activity, the 2-thiazolylethynyl derivative 30 being the most potent in the series. Introduction of methylene groups between the triple bond and the phenyl ring favored the A2a binding affinity, and the 5-phenyl-1-pentynyl derivative 24 was found to be highly potent and selective (about 180-fold) at A2a receptors. With regard to antiplatelet activity, the presence of aromatic or heteroaromatic rings decreased potency in comparison with that of NECA and of N-ethyl-1'-deoxy-1'-(6-amino-2-hexynyl-9H-purin-9-yl)-beta-D-ribofura nuronamide (HENECA). Introduction of a methylene group was effective in increasing antiaggregatory potency only when this group is linked to a heteroatom (31-35). From these data and those previously reported, the structure-activity relationships derived for the 2-alkynyl-substituted ribose uronamides would indicate that potentiation of A2a receptor affinity could be obtained by aromatic rings not conjugated with the triple bond or by heteroaromatic groups. As for A2a receptors on platelets, the presence of aromatic rings, either conjugated or unconjugated to the triple bond, is detrimental for the antiaggregatory activity. However, the introduction of polar groups alpha to the triple bond strongly increases the potency when steric hindrance is avoided. Some of the compounds included in this series retain interesting

  17. TP508 accelerates fracture repair by promoting cell growth over cell death

    SciTech Connect

    Li Xinmin; Wang Hali; Touma, Edward; Qi Yuchen; Rousseau, Emma; Quigg, Richard J.; Ryaby, James T.

    2007-12-07

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD Clontech{sup TM} Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-{kappa}B, PDGF, PI3K/AKT, PTEN, and ERK/MAPK.

  18. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.

  19. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  20. Oppositional Effects of Serotonin Receptors 5-HT1a, 2, and 2c in the Regulation of Adult Hippocampal Neurogenesis

    PubMed Central

    Klempin, Friederike; Babu, Harish; Tonelli, Davide De Pietri; Alarcon, Edson; Fabel, Klaus; Kempermann, Gerd

    2009-01-01

    Serotonin (5-HT) appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lacked acute effects on adult neurogenesis in many studies, which suggested a surprisingly long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late-stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT receptors. PMID

  1. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids.

    PubMed

    Carriba, Paulina; Ortiz, Oskar; Patkar, Kshitij; Justinova, Zuzana; Stroik, Jessica; Themann, Andrea; Müller, Christa; Woods, Anima S; Hope, Bruce T; Ciruela, Francisco; Casadó, Vicent; Canela, Enric I; Lluis, Carme; Goldberg, Steven R; Moratalla, Rosario; Franco, Rafael; Ferré, Sergi

    2007-11-01

    The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation. Accordingly, blockade of A2A receptors counteracted the motor depressant effects produced by the intrastriatal administration of a cannabinoid CB1 receptor agonist. These biochemical and behavioral findings demonstrate that the profound motor effects of cannabinoids depend on physical and functional interactions between striatal A2A and CB1 receptors.

  2. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson's disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the antiparkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA.

  3. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias

    PubMed Central

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson’s disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the anti-parkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2 receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA. PMID:26639458

  4. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor.

    PubMed

    Ben Addi, Abduelhakem; Lefort, Anne; Hua, Xiaoyang; Libert, Frédérick; Communi, Didier; Ledent, Catherine; Macours, Pascale; Tilley, Stephen L; Boeynaems, Jean-Marie; Robaye, Bernard

    2008-06-01

    Adenosine triphosphate has previously been shown to induce semi-mature human monocyte-derived dendritic cells (DC). These are characterized by the up-regulation of co-stimulatory molecules, the inhibition of IL-12 and the up-regulation of some genes involved in immune tolerance, such as thrombospondin-1 and indoleamine 2,3-dioxygenase. The actions of adenosine triphosphate are mediated by the P2Y(11) receptor; since there is no functional P2Y(11) gene in the murine genome, we investigated the action of adenine nucleotides on murine DC. Adenosine 5'-(3-thiotriphosphate) and adenosine inhibited the production of IL-12p70 by bone marrow-derived DC (BMDC). These inhibitions were relieved by 8-p-sulfophenyltheophylline, an adenosine receptor antagonist. The use of selective ligands and A(2B) (-/-) BMDC indicated the involvement of the A(2B) receptor. A microarray experiment, confirmed by quantitative PCR, showed that, in presence of LPS, 5'-(N-ethylcarboxamido) adenosine (NECA, the most potent A(2B) receptor agonist) regulated the expression of several genes: arginase I and II, thrombospondin-1 and vascular endothelial growth factor were up-regulated whereas CCL2 and CCL12 were down-regulated. We further showed that NECA, in combination with LPS, increased the arginase I enzymatic activity. In conclusion, the described actions of adenine nucleotides on BMDC are mediated by their degradation product, adenosine, acting on the A(2B) receptor, and will possibly lead to an impairment of Th1 response or tolerance.

  5. Development of methodology for controlling the parameters of TP

    NASA Astrophysics Data System (ADS)

    Klochkova, K. V.; Petrovich, S. V.; Simonova, L. A.; Yusupov, L. R.

    2015-06-01

    This article describes TP control step of the intelligent system for predicting the properties of CGI, which includes three parts: the selection of parameters for comparison, the comparison with the simulation results, the change of the current TP. The list of parameters under which control in the production is carried out has been determined, the adjustment algorithm of TP is designed.

  6. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function

    PubMed Central

    Batalha, Vânia L.; Ferreira, Diana G.; Coelho, Joana E.; Valadas, Jorge S.; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E.; Hamdane, Malika; Outeiro, Tiago F.; Bader, Michael; Meijsing, Sebastiaan H.; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V.

    2016-01-01

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer’s disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer’s and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  7. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function.

    PubMed

    Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Valadas, Jorge S; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E; Hamdane, Malika; Outeiro, Tiago F; Bader, Michael; Meijsing, Sebastiaan H; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V

    2016-08-11

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer's and age-related cognitive impairments may rely on its ability to modulate GR actions.

  8. Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; Bajorath, Jürgen

    2016-06-01

    We report an investigation designed to explore alternative approaches for ranking of docking poses in the search for antagonists of the adenosine A2A receptor, an attractive target for structure-based virtual screening. Calculation of 3D similarity of docking poses to crystallographic ligand(s) as well as similarity of receptor-ligand interaction patterns was consistently superior to conventional scoring functions for prioritizing antagonists over decoys. Moreover, the use of crystallographic antagonists and agonists, a core fragment of an antagonist, and a model of an agonist placed into the binding site of an antagonist-bound form of the receptor resulted in a significant early enrichment of antagonists in compound rankings. Taken together, these findings showed that the use of binding modes of agonists and/or antagonists, even if they were only approximate, for similarity assessment of docking poses or comparison of interaction patterns increased the odds of identifying new active compounds over conventional scoring.

  9. Thromboxane prostanoid receptors enhance contractions, endothelin-1, and oxidative stress in microvessels from mice with chronic kidney disease.

    PubMed

    Wang, Cheng; Luo, Zaiming; Kohan, Donald; Wellstein, Anton; Jose, Pedro A; Welch, William J; Wilcox, Christopher S; Wang, Dan

    2015-05-01

    Cardiovascular disease is frequent in chronic kidney disease and has been related to angiotensin II, endothelin-1 (ET-1), thromboxane A2, and reactive oxygen species (ROS). Because activation of thromboxane prostanoid receptors (TP-Rs) can generate ROS, which can generate ET-1, we tested the hypothesis that chronic kidney disease induces cyclooxygenase-2 whose products activate TP-Rs to enhance ET-1 and ROS generation and contractions. Mesenteric resistance arterioles were isolated from C57/BL6 or TP-R+/+ and TP-R-/- mice 3 months after SHAM-operation (SHAM) or surgical reduced renal mass (RRM, n=6/group). Microvascular contractions were studied on a wire myograph. Cellular (ethidium: dihydroethidium) and mitochondrial (mitoSOX) ROS were measured by fluorescence microscopy. Mice with RRM had increased excretion of markers of oxidative stress, thromboxane, and microalbumin; increased plasma ET-1; and increased microvascular expression of p22(phox), cyclooxygenase-2, TP-Rs, preproendothelin and endothelin-A receptors, and increased arteriolar remodeling. They had increased contractions to U-46,619 (118 ± 3 versus 87 ± 6, P<0.05) and ET-1 (108 ± 5 versus 89 ± 4, P<0.05), which were dependent on cellular and mitochondrial ROS, cyclooxygenase-2, and TP-Rs. RRM doubled the ET-1-induced cellular and mitochondrial ROS generation (P<0.05). TP-R-/- mice with RRM lacked these abnormal structural and functional microvascular responses and lacked the increased systemic and the increased microvascular oxidative stress and circulating ET-1. In conclusion, RRM leads to microvascular remodeling and enhanced ET-1-induced cellular and mitochondrial ROS and contractions that are mediated by cyclooxygenase-2 products activating TP-Rs. Thus, TP-Rs can be upstream from enhanced ROS, ET-1, microvascular remodeling, and contractility and may thereby coordinate vascular dysfunction in chronic kidney disease.

  10. Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala.

    PubMed

    López-Cruz, Laura; Carbó-Gas, Maria; Pardo, Marta; Bayarri, Pilar; Valverde, Olga; Ledent, Catherine; Salamone, John D; Correa, Mercè

    2017-03-15

    Blockade of adenosine A2A receptors can potentiate motivation to work for natural reinforcers such as food. Conspecific interaction is a potent natural reinforcer in social animals that can be manifested as preference for social exploration versus other sources of novel stimulation. Deficiencies in this type of motivated behavior (social withdrawal) have been seen in several pathologies such as autism and depression. However, the role of A2A receptors in motivation for social interaction has not been widely explored. Social interaction paradigms evaluate the natural preference of animals for exploring other conspecifics, and the ability to differentiate between familiar versus novel ones. Anxiety is one of the factors that can induce avoidance of social interaction. In the present study, adenosine A2A knockout (A2AKO) and wild-type (WT) mice were assessed for social and anxiety-related behaviors. c-Fos immunoreactivity was evaluated as a measure of neuronal activation in brain areas involved in different aspects of motivation and emotional processes. Although A2AKO mice showed an anxious profile, they displayed higher levels of sociability and were less sensitive to social novelty. WT mice displayed a typical pattern of social recognition 24h later, but not A2AKO mice, which explored equally both conspecifics. There were no differences between strains in aggressiveness, perseverance or social odor preferences. c-Fos immunoreactivity in A2AKO mice was higher in anterior cingulate and amygdala compared to WT mice. Thus, A2A receptors appear to be potential targets for the improvement of pathologies related to social function.

  11. ( sup 3 H)CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain

    SciTech Connect

    Jarvis, M.F.; Schulz, R.; Hutchison, A.J.; Do, U.H.; Sills, M.A.; Williams, M. )

    1989-12-01

    In the present study, the binding of a highly A2-selective agonist radioligand, (3H)CGS 21680 (2-(p-(2-carboxyethyl)-phenethylamino)-5'-N-ethylcarboxamido adenosine) is described. (3H)CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that (3H)CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. (3H)CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM (3H)CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of (3H)CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine.

  12. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  13. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  14. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    PubMed

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  15. Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder.

    PubMed

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Pomierny, Bartosz; Wydra, Karolina; Zaniewska, Magdalena; Filip, Malgorzata; Fuxe, Kjell

    2016-05-01

    In the current study behavioral and biochemical experiments were performed to study changes in the allosteric A2AR-D2R interactions in the ventral and dorsal striatum after cocaine self-administration versus corresponding yoked saline control. By using ex vivo [(3)H]-raclopride/quinpirole competition experiments, the effects of the A2AR agonist CGS 21680 (100 nM) on the KiH and KiL values of the D2-like receptor (D2-likeR) were determined. One major result was a significant reduction in the D2-likeR agonist high affinity state observed with CGS 21680 after cocaine self-administration in the ventral striatum compared with the yoked saline group. The results therefore support the hypothesis that A2AR agonists can at least in part counteract the motivational actions of cocaine. This action is mediated via the D2-likeR by targeting the A2AR protomer of A2AR-D2-like R heteroreceptor complexes in the ventral striatum, which leads to the reduction of D2-likeR protomer recognition through the allosteric receptor-receptor interaction. In contrast, in the dorsal striatum the CGS 21680-induced antagonistic modulation in the D2-likeR agonist high affinity state was abolished after cocaine self-administration versus the yoked saline group probably due to a local dysfunction/disruption of the A2AR-D2-like R heteroreceptor complexes. Such a change in the dorsal striatum in cocaine self-administration can contribute to the development of either locomotor sensitization, habit-forming learning and/or the compulsive drug seeking by enhanced D2-likeR protomer signaling. Potential differences in the composition and stoichiometry of the A2AR-D2R heteroreceptor complexes, including differential recruitment of sigma 1 receptor, in the ventral and dorsal striatum may explain the differential regional changes observed in the A2A-D2-likeR interactions after cocaine self-administration. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Prolonged Tp-e Interval and Tp-e/QT Ratio in Children with Mitral Valve Prolapse.

    PubMed

    Demirol, Mustafa; Karadeniz, Cem; Ozdemir, Rahmi; Çoban, Şenay; Katipoğlu, Nagehan; Yozgat, Yılmaz; Meşe, Timur; Unal, Nurettin

    2016-08-01

    Although it is considered to be a benign condition, previous studies have shown that a subset of patients with mitral valve prolapse (MVP) may be at risk of ventricular arrhythmia and sudden cardiac death (SCD). Previous studies have suggested that the interval between the peak and the end of the T wave (Tp-e) can be used as a marker for the transmural dispersion of repolarization. Increased Tp-e interval and Tp-e/QT ratio are associated with ventricular arrhythmias and SCD. The aim of this study was to assess alterations in ventricular repolarization by using the Tp-e interval and Tp-e/QT ratio in children with MVP and to investigate their relationships with the degree of valvular regurgitation. This study prospectively investigated 110 children with MVP and 107 age- and sex-matched healthy control subjects. Tp-e interval, Tp-e/QT ratio, and QT and QTc dispersions were measured from a 12-lead electrocardiogram and compared between groups. QT and QTc dispersions, Tp-e interval, and Tp-e/QTc ratio were found to be significantly higher in patients with MVP. A positive correlation was found between Tp-e/QTc ratio and increase in the degree of mitral regurgitation (MR) (p < 0.05; r = 0.2). However, the degree of MR was not associated with QT, QTc, or Tp-e intervals; QT, QTc, or Tp-e dispersions; or Tp-e/QT ratio (all p values >0.05). Individuals with MVP may be more prone to ventricular arrhythmias due to prolonged QTd, QTcd, and Tp-e interval and increased Tp-e/QT and Tp-e/QTc ratios. Therefore, due to their longer life expectancy, children with MVP should be followed up on regarding life-threatening arrhythmias.

  17. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  18. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress

    PubMed Central

    Kaster, Manuella P.; Machado, Nuno J.; Silva, Henrique B.; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E.; Rodrigues, Ana Lúcia S.; Porciúncula, Lisiane O.; Chen, Jiang Fan; Tomé, Ângelo R.; Agostinho, Paula; Canas, Paula M.; Cunha, Rodrigo A.

    2015-01-01

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  19. The orphan nuclear receptor NR4A2 is part of a p53–microRNA-34 network

    PubMed Central

    Beard, Jordan A.; Tenga, Alexa; Hills, Justin; Hoyer, Jessica D.; Cherian, Milu T.; Wang, Yong-Dong; Chen, Taosheng

    2016-01-01

    Nuclear receptor subfamily 4 group A member 2 (NR4A2) is an orphan nuclear receptor that is over-expressed in cancer and promotes cell proliferation, migration, transformation, and chemoresistance. Increased expression and function of NR4A2 have been attributed to various signaling pathways, but little is known about microRNA (miRNA) regulation of NR4A2 in cancer. To investigate the posttranscriptional regulation of NR4A2, we used a 3′ untranslated region (UTR) reporter screen and identified miR-34 as a putative regulator of NR4A2. By using computer predictions, we identified and confirmed an miRNA recognition element in the 3′ UTR of NR4A2 that was responsible for miR-34–mediated suppression. We next demonstrated that overexpression of exogenous miR-34 or activation of the p53 pathway, which regulates endogenous miR-34 expression, decreased NR4A2 expression. Consistent with previous reports, overexpression of NR4A2 blocked the induction of p53 target genes, including mir-34a. This was a phenotypic effect, as NR4A2 overexpression could rescue cells from p53-induced inhibition of proliferation. In summary, our results are the first characterization of a cancer-related miRNA capable of regulating NR4A2 and suggest a network and possible feedback mechanism involving p53, miR-34, and NR4A2. PMID:27121375

  20. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open and desensitized states

    PubMed Central

    Dürr, Katharina L.; Chen, Lei; Stein, Richard A.; De Zorzi, Rita; MihaelaFolea, I.; Walz, Thomas; Mchaourab, Hassane S.; Gouaux, Eric

    2014-01-01

    Summary Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs in the nervous system, little is known about the structures and dynamics of intact receptors in distinct functional states. Here we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with the partial agonists and a positive allosteric modulator and in a desensitized/closed state in complex with FW alone. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryo-electron microscopy studies. We show how agonist binding modulates the conformation of the ligand binding domain 'layer' of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation and desensitization in AMPA iGluRs. PMID:25109876

  1. Reconstitution of homomeric GluA2(flop) receptors in supported lipid membranes: functional and structural properties.

    PubMed

    Baranovic, Jelena; Ramanujan, Chandra S; Kasai, Nahoko; Midgett, Charles R; Madden, Dean R; Torimitsu, Keiichi; Ryan, John F

    2013-03-22

    AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2(flop) receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain.

  2. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A1, A2A, A2B, and A3 receptor antagonists

    NASA Astrophysics Data System (ADS)

    Sirci, Francesco; Goracci, Laura; Rodríguez, David; van Muijlwijk-Koezen, Jacqueline; Gutiérrez-de-Terán, Hugo; Mannhold, Raimund

    2012-11-01

    FLAP fingerprints are applied in the ligand-, structure- and pharmacophore-based mode in a case study on antagonists of all four adenosine receptor (AR) subtypes. Structurally diverse antagonist collections with respect to the different ARs were constructed by including binding data to human species only. FLAP models well discriminate "active" (=highly potent) from "inactive" (=weakly potent) AR antagonists, as indicated by enrichment curves, numbers of false positives, and AUC values. For all FLAP modes, model predictivity slightly decreases as follows: A2BR > A2AR > A3R > A1R antagonists. General performance of FLAP modes in this study is: ligand- > structure- > pharmacophore- based mode. We also compared the FLAP performance with other common ligand- and structure-based fingerprints. Concerning the ligand-based mode, FLAP model performance is superior to ECFP4 and ROCS for all AR subtypes. Although focusing on the early first part of the A2A, A2B and A3 enrichment curves, ECFP4 and ROCS still retain a satisfactory retrieval of actives. FLAP is also superior when comparing the structure-based mode with PLANTS and GOLD. In this study we applied for the first time the novel FLAPPharm tool for pharmacophore generation. Pharmacophore hypotheses, generated with this tool, convincingly match with formerly published data. Finally, we could demonstrate the capability of FLAP models to uncover selectivity aspects although single AR subtype models were not trained for this purpose.

  3. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor

    NASA Astrophysics Data System (ADS)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-01

    Water molecules inside G-protein coupled receptor have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal waters in GPCR activity, we studied A$_{\\text{2A}}$ adenosine receptor using $\\mu$sec-molecular dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times slower than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from $\\sim\\mathcal{O}(10^2)$ psec to $\\sim\\mathcal{O}(10^2)$ nsec. Especially, water molecules, exhibiting ultraslow relaxation ($\\sim\\mathcal{O}(10^2)$ nsec) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow waters in the GPCR activation.

  4. Involvement of TP53 and TP16 expression in human papillomavirus-associated non-small cell lung cancer

    PubMed Central

    Li, Ming; Zhang, Xiao-Lei; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Shan, Wu-Lin; Wang, Bao-Long

    2016-01-01

    Human papilloma virus (HPV) infection has previously been reported to be associated with TP53 and TP16 expression in Japanese and Taiwanese patients with lung cancer, but data for advanced non-small cell lung cancer (NSCLC) patients is limited. The present study examined the association between HPV infection and TP53 and TP16 expression in Chinese patients with advanced NSCLC. HPV DNA was detected in 20 out of 83 (24%) lung tumors, and was observed more frequently in non-smokers, patients with lymph node metastasis, and patients with poorly differentiated tumors (P=0.048, P=0.044 and P=0.024, respectively). Thirteen (65%) out of 20 HPV-infected tumors were positive for TP53 expression while eight (40%) were positive for TP16 expression. Multivariate analysis revealed that poor differentiation alone (OR=0.163) was an independent predictive factor of HPV infection in NSCLC. TP16-positive patients had a significantly longer survival time when compared with TP16-negative patients (P<0.001, log-rank test), a trend a not observed for TP53. Our results suggest that TP53 and TP16 protein expression is not associated with the expression of HPV DNA, but that TP16 expression may be an independent prognostic factor of long survival in advanced NSCLC. PMID:27900000

  5. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.

    PubMed

    Bouaoun, Liacine; Sonkin, Dmitriy; Ardin, Maude; Hollstein, Monica; Byrnes, Graham; Zavadil, Jiri; Olivier, Magali

    2016-09-01

    TP53 gene mutations are one of the most frequent somatic events in cancer. The IARC TP53 Database (http://p53.iarc.fr) is a popular resource that compiles occurrence and phenotype data on TP53 germline and somatic variations linked to human cancer. The deluge of data coming from cancer genomic studies generates new data on TP53 variations and attracts a growing number of database users for the interpretation of TP53 variants. Here, we present the current contents and functionalities of the IARC TP53 Database and perform a systematic analysis of TP53 somatic mutation data extracted from this database and from genomic data repositories. This analysis showed that IARC has more TP53 somatic mutation data than genomic repositories (29,000 vs. 4,000). However, the more complete screening achieved by genomic studies highlighted some overlooked facts about TP53 mutations, such as the presence of a significant number of mutations occurring outside the DNA-binding domain in specific cancer types. We also provide an update on TP53 inherited variants including the ones that should be considered as neutral frequent variations. We thus provide an update of current knowledge on TP53 variations in human cancer as well as inform users on the efficient use of the IARC TP53 Database.

  6. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens

    PubMed Central

    Lazarus, Michael; Shen, Hai-Ying; Cherasse, Yoan; Qu, Wei-Min; Huang, Zhi-Li; Bass, Caroline E.; Winsky-Sommerer, Raphaelle; Semba, Kazue; Fredholm, Bertil B.; Boison, Detlev; Hayaishi, Osamu; Urade, Yoshihiro; Chen, Jiang-Fan

    2011-01-01

    Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A2A receptors (A2ARs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A2ARs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A2ARs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A2ARs were focally removed from the NAc core or other A2AR-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain. PMID:21734299

  7. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  8. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  9. TP53 dysfunction in CLL: Implications for prognosis and treatment.

    PubMed

    Te Raa, Gera D; Kater, Arnon P

    2016-03-01

    Despite the availability of novel targeted agents, TP53 defects remain the most important adverse prognostic factor in chronic lymphocytic leukemia (CLL). Detection of deletion of TP53 locus (17p deletion) by fluorescent in situ hybridization (FISH) has become standard and performed prior to every line of treatment as the incidence dramatically increases as relapses occur. As monoallelic mutations of TP53 equally affect outcome, novel methods are being developed to improve detection of TP53 defects and include next-generation sequencing (NGS) and functional assays. TP53 defects highly affect outcome of immunochemotherapy but also alter response durations of tyrosine kinase inhibitors. Although BCR-targeting agents and Bcl-2-inhibitos have achieved durable responses in some patients with TP53 defects, long-term follow-up is currently lacking. In this review biological and clinical consequences of TP53 dysfunction as well as applicability of currently available methods to detect TP53 defects are described. In addition, proposed novel therapeutic strategies specifically for patients with TP53 dysfunction are discussed. In summary, the only curative treatment option for TP53-defective CLL is still allogeneic hematopoietic stem cell transplantation. Other treatment strategies such as rationale combinations of agents with different (TP53 independent) targets, including kinase inhibitors and inhibitors of anti-apoptotic molecules but also immunomodulatory agents need to be further explored.

  10. Secreted phospholipase A2 inhibitors are also potent blockers of binding to the M-type receptor.

    PubMed

    Boilard, Eric; Rouault, Morgane; Surrel, Fanny; Le Calvez, Catherine; Bezzine, Sofiane; Singer, Alan; Gelb, Michael H; Lambeau, Gérard

    2006-11-07

    Mammalian secreted phospholipases A(2) (sPLA(2)s) constitute a family of structurally related enzymes that are likely to play numerous biological roles because of their phospholipid hydrolyzing activity and binding to soluble and membrane-bound proteins, including the M-type receptor. Over the past decade, a number of competitive inhibitors have been developed against the inflammatory-type human group IIA (hGIIA) sPLA(2) with the aim of specifically blocking its catalytic activity and pathophysiological functions. The fact that many of these inhibitors, including the indole analogue Me-Indoxam, inhibit several other sPLA(2)s that bind to the M-type receptor prompted us to investigate the impact of Me-Indoxam and other inhibitors on the sPLA(2)-receptor interaction. By using a Ca(2+) loop mutant derived from a venom sPLA(2) which is insensitive to hGIIA inhibitors but still binds to the M-type receptor, we demonstrate that Me-Indoxam dramatically decreases the affinity of various sPLA(2)s for the receptor, yet an sPLA(2)-Me-Indoxam-receptor complex can form at very high sPLA(2) concentrations. Me-Indoxam inhibits the binding of iodinated mouse sPLA(2)s to the mouse M-type receptor expressed on live cells but also enhances binding of sPLA(2) to phospholipids. Because Me-Indoxam and other competitive inhibitors protrude out of the sPLA(2) catalytic groove, it is likely that the inhibitors interfere with the sPLA(2)-receptor interaction by steric hindrance and to different extents that depend on the type of sPLA(2) and inhibitor. Our finding suggests that the various anti-inflammatory therapeutic effects of sPLA(2) inhibitors may be due not only to inhibition of enzymatic activity but also to modulation of binding of sPLA(2) to the M-type receptor or other as yet unknown protein targets.

  11. TP53 Gene Status Affects Survival in Advanced Mycosis Fungoides

    PubMed Central

    Wooler, Gitte; Melchior, Linea; Ralfkiaer, Elisabeth; Rahbek Gjerdrum, Lise Mette; Gniadecki, Robert

    2016-01-01

    TP53 is frequently mutated in different types of neoplasms including leukemia and lymphomas. Mutations of TP53 have also been reported in mycosis fungoides (MF), the most common type of cutaneous lymphoma. However, little is known about the frequency, spectrum of mutations, and their prognostic significance in MF. In this study, we have optimized the protocol for Sanger sequencing of TP53 using DNA extracted from archival paraffin-embedded biopsies. Of 19 samples from patients with stage IIB MF or higher, 31% harbored mutations in TP53. Overall survival of the patients with mutated TP53 was significantly shorter than median survival in the age- and stage-matched patients treated in our Institution. Distribution of mutations was heterogenous in TP53 exons; however, C > T transitions were common suggesting the causal role of ultraviolet radiation. We propose that TP53 mutation status would be useful for risk stratification of patients with advanced MF. PMID:27891503

  12. Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum.

    PubMed

    Singh, Seema; Singh, Kavita; Gupta, Satya Prakash; Patel, Devendra Kumar; Singh, Vinod Kumar; Singh, Raj Kumar; Singh, Mahendra Pratap

    2009-08-04

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by the selective loss of dopaminergic neurons of the nigrostriatal pathway. Epidemiological studies have shown an inverse relationship between coffee consumption and susceptibility to PD. Cytochrome P450 1A2 (CYP1A2) is involved in caffeine metabolism and its clearance. Caffeine, on the other hand, antagonizes adenosine A(2A) receptor and regulates dopamine signaling through dopamine transporter (DAT). The present study was undertaken to investigate the expression of CYP1A2, adenosine A(2A) receptor and DAT in mouse striatum and to assess their levels in 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropryridine (MPTP) treated mouse striatum with and without caffeine treatment. The animals were treated intraperitoneally daily with caffeine (20 mg/kg) for 8 weeks, followed by MPTP (20 mg/kg)+caffeine (20 mg/kg) for 4 weeks or vice versa, along with respective controls. Tyrosine hydroxylase immunoreactivity, levels of dopamine and 1-methyl 4-phenylpyridinium ion (MPP(+)), expressions of CYP1A2, adenosine A(2A) receptor and DAT and CYP1A2 catalytic activity were measured in control and treated mouse brain. Caffeine partially protected MPTP-induced neurodegenerative changes and modulated MPTP-mediated alterations in the expression and catalytic activity of CYP1A2, expression of adenosine A(2A) receptor and DAT. The results demonstrate that caffeine alters the striatal CYP1A2, adenosine A(2A) receptor and DAT expressions in mice exposed to MPTP.

  13. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts.

    PubMed

    Zhou, Zhichao; Rajamani, Uthra; Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Teng, Bunyen; Mustafa, S Jamal

    2015-06-01

    Adenosine increases coronary flow mainly through the activation of A2A and A2B adenosine receptors (ARs). However, the mechanisms for the regulation of coronary flow are not fully understood. We previously demonstrated that adenosine-induced increase in coronary flow is in part through NADPH oxidase (Nox) activation, which is independent of activation of either A1 or A3ARs. In this study, we hypothesize that adenosine-mediated increase in coronary flow through Nox activation depends on A2A but not A2BARs. Functional studies were conducted using isolated Langendorff-perfused mouse hearts. Hydrogen peroxide (H2O2) production was measured in isolated coronary arteries from WT, A2AAR knockout (KO), and A2BAR KO mice using dichlorofluorescein immunofluorescence. Adenosine-induced concentration-dependent increase in coronary flow was attenuated by the specific Nox2 inhibitor gp91 ds-tat or reactive oxygen species (ROS) scavenger EUK134 in both WT and A2B but not A2AAR KO isolated hearts. Similarly, the A2AAR selective agonist CGS-21680-induced increase in coronary flow was significantly blunted by Nox2 inhibition in both WT and A2BAR KO, while the A2BAR selective agonist BAY 60-6583-induced increase in coronary flow was not affected by Nox2 inhibition in WT. In intact isolated coronary arteries, adenosine-induced (10 μM) increase in H2O2 formation in both WT and A2BAR KO mice was attenuated by Nox2 inhibition, whereas adenosine failed to increase H2O2 production in A2AAR KO mice. In conclusion, adenosine-induced increase in coronary flow is partially mediated by Nox2-derived H2O2, which critically depends upon the presence of A2AAR.

  14. Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor-receptor interactions after amphetamine challenge: Relevance for schizophrenia.

    PubMed

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Lai, Terence K Y; Liu, Fang; Fuxe, Kjell

    2016-10-29

    Striatal dopamine D2R homodimerization is increased in the dorsal striatum after acute amphetamine challenge and in the amphetamine-induced sensitized state, a well-known animal model of schizophrenia. Therefore, it was tested if the increase in D2R homoreceptor complexes found after acute amphetamine challenge in the saline or the amphetamine sensitized state leads to changes in the antagonistic adenosine A2AR-D2R interactions in the striatum. [(3)H]-raclopride binding was performed in membrane preparations from the ventral and dorsal striatum involving competition with the D2R like agonist quinpirole. In the ventral striatum CGS 21680 produced a significant increase of the KiH values (p<0.05) in the amphetamine sensitized group when expressed in percent versus the corresponding values in saline sensitized rats after amphetamine challenge. However, in the dorsal striatum a significant change did not develop in the KiH values when expressed in percent of the corresponding values in saline sensitized rats after amphetamine challenge. In fact, the non-significant change was in the opposite direction towards a reduction of the KiH values. Taken together, a reduced affinity of the high affinity D2 agonist binding site (KiH value) developed in the ventral but not in the dorsal striatum as a result of increased antagonistic allosteric A2AR-D2R interactions in the amphetamine-induced sensitized state versus the saline sensitized state after an acute amphetamine challenge. The selective reappearance of antagonistic A2AR-D2R receptor-receptor interactions in the ventral striatum after amphetamine challenge in the amphetamine sensitized rat may give one possible mechanism for the atypical antipsychotic-like actions of A2AR receptor agonists.

  15. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    PubMed

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  16. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    PubMed Central

    Fathalla, Ahmed M.; Soliman, Amira M.; Ali, Mohamed H.; Moustafa, Ahmed A.

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  17. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor.

    PubMed

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos

    2015-11-01

    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  18. The GS Protein-coupled A2a Adenosine Receptor Controls T Cell Help in the Germinal Center.

    PubMed

    Abbott, Robert K; Silva, Murillo; Labuda, Jasmine; Thayer, Molly; Cain, Derek W; Philbrook, Phaethon; Sethumadhavan, Shalini; Hatfield, Stephen; Ohta, Akio; Sitkovsky, Michail

    2017-01-27

    T follicular helper (TFH) cells have been shown to be critically required for the germinal center (GC) reaction where B cells undergo class switch recombination and clonal selection to generate high affinity neutralizing antibodies. However, detailed knowledge of the physiological cues within the GC microenvironment that regulate T cell help is limited. The cAMP-elevating, Gs protein-coupled A2a adenosine receptor (A2aR) is an evolutionarily conserved receptor that limits and redirects cellular immunity. However, the role of A2aR in humoral immunity and B cell differentiation is unknown. We hypothesized that the hypoxic microenvironment within the GC facilitates an extracellular adenosine-rich milieu, which serves to limit TFH frequency and function, and also promotes immunosuppressive T follicular regulatory cells (TFR). In support of this hypothesis, we found that following immunization, mice lacking A2aR (A2aRKO) exhibited a significant expansion of T follicular cells, as well as increases in TFH to TFR ratio, GC T cell frequency, GC B cell frequency, and class switching of GC B cells to IgG1. Transfer of CD4 T cells from A2aRKO or wild type donors into T cell-deficient hosts revealed that these increases were largely T cell-intrinsic. Finally, injection of A2aR agonist, CGS21680, following immunization suppressed T follicular differentiation, GC B cell frequency, and class switching of GC B cells to IgG1. Taken together, these observations point to a previously unappreciated role of GS protein-coupled A2aR in regulating humoral immunity, which may be pharmacologically targeted during vaccination or pathological states in which GC-derived autoantibodies contribute to the pathology.

  19. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development

    PubMed Central

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram

    2016-01-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396

  20. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development.

    PubMed

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C; Hedgepeth, John W; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E; Amacher, Sharon L; Goessling, Wolfram

    2016-10-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. Copyright © 2016

  1. Histamine H3 Receptor Activation Counteracts Adenosine A2A Receptor-Mediated Enhancement of Depolarization-Evoked [3H]-GABA Release from Rat Globus Pallidus Synaptosomes

    PubMed Central

    2014-01-01

    High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [3H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [3H]-GABA release induced by high K+ (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM). The presence of presynaptic H3Rs was confirmed by the specific binding of N-α-[methyl-3H]-histamine to membranes from GP synaptosomes (maximum binding, Bmax, 1327 ± 79 fmol/mg protein; dissociation constant, Kd, 0.74 nM), which was inhibited by the H3R ligands immepip, clobenpropit, and A-331440 (inhibition constants, Ki, 0.28, 8.53, and 316 nM, respectively). Perfusion of synaptosomes with the H3R agonist immepip (100 nM) had no effect on K+-evoked [3H]-GABA release, but inhibited the stimulatory action of A2AR activation. In turn, the effect of immepip was blocked by the H3R antagonist clobenpropit, which had no significant effect of its own on K+-induced [3H]-GABA release. These data indicate that H3R activation selectively counteracts the facilitatory action of A2AR stimulation on GABA release from striato-pallidal projections. PMID:24884070

  2. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    PubMed

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  3. Expression of prostanoid receptors in human ductus arteriosus

    PubMed Central

    Leonhardt, Andreas; Glaser, Alexander; Wegmann, Markus; Schranz, Dietmar; Seyberth, Hannsjörg; Nüsing, Rolf

    2003-01-01

    Prostaglandins play a major role in maintaining ductal patency in utero. Ductal tone is regulated by both locally released and circulating vasodilatory prostaglandins. In infants with ductus arteriosus-dependent congenital heart disease, ductal patency is maintained by intravenous administration of prostaglandin (PG) E1. Little information is available regarding the expression of prostaglandin receptors in man. By means of RT–PCR and immunohistochemistry we studied the expression of the PGI2 receptor (IP), the four different PGE2 receptors (EP1, EP2, EP3 and EP4), and the receptors for thromboxane (Tx) A2 (TP), PGD2 (DP) and PGF2α (FP) in the ductus arteriosus of three newborn infants with ductus arteriosus-dependent congenital heart disease and intravenous infusion of PGE1 and of one 8 month old child with a patent ductus arteriosus. The EP3, EP4, FP, IP and TP receptor were markedly expressed at the mRNA and protein level, whereas the EP2 receptor was weakly expressed and the EP1 receptor was detected in two out of four tissue specimens only. The DP receptor was not detected in any of the samples. The most pronounced expression, which was located in the media of the ductus arteriosus, was observed for the EP4 and TP receptors followed by IP and FP receptor protein. These data indicate that ductal patency during the infusion of PGE1 in infants with ductus arteriosus-dependent congenital heart disease might be mediated by the EP4 and IP receptor. The data further suggest that a heterogeneous population of prostanoid receptors may contribute to the regulation of ductus arteriosus tone in humans. PMID:12598419

  4. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor

    PubMed Central

    Watson, Michael J.; Lee, Shernita L.; Marklew, Abigail J.; Gilmore, Rodney C.; Gentzsch, Martina; Sassano, Maria F.; Gray, Michael A.; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR’s function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR’s PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  5. The role of the plexin-A2 receptor in Sema3A and Sema3B signal transduction.

    PubMed

    Sabag, Adi D; Smolkin, Tatyana; Mumblat, Yelena; Ueffing, Marius; Kessler, Ofra; Gloeckner, Christian Johannes; Neufeld, Gera

    2014-12-15

    Class 3 semaphorins are anti-angiogenic and anti-tumorigenic guidance factors that bind to neuropilins, which, in turn, associate with class A plexins to transduce semaphorin signals. To study the role of the plexin-A2 receptor in semaphorin signaling, we silenced its expression in endothelial cells and in glioblastoma cells. The silencing did not affect Sema3A signaling, which depended on neuropilin-1, plexin-A1 and plexin-A4, but completely abolished Sema3B signaling, which also required plexin-A4 and one of the two neuropilins. Interestingly, overexpression of plexin-A2 in plexin-A1- or plexin-A4-silenced cells restored responses to both semaphorins, although it nullified their ability to differentiate between them, suggesting that, when overexpressed, plexin-A2 can functionally replace other class A plexins. By contrast, although plexin-A4 overexpression restored Sema3A signaling in plexin-A1-silenced cells, it failed to restore Sema3B signaling in plexin-A2-silenced cells. It follows that the identity of plexins in functional semaphorin receptors can be flexible depending on their expression level. Our results suggest that changes in the expression of plexins induced by microenvironmental cues can trigger differential responses of different populations of migrating cells to encountered gradients of semaphorins.

  6. Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics

    PubMed Central

    Hothersall, J. Daniel; Guo, Dong; Sarda, Sunil; Sheppard, Robert J.; Chen, Hongming; Keur, Wesley; Waring, Michael J.; IJzerman, Adriaan P.; Hill, Stephen J.; Dale, Ian L.

    2017-01-01

    The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy. PMID:27803241

  7. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  8. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    PubMed

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  9. Mutant TP53 Posttranslational Modifications: Challenges and Opportunities

    PubMed Central

    Nguyen, Thuy-Ai; Menendez, Daniel; Resnick, Michael A.; Anderson, Carl W.

    2014-01-01

    The wild-type human p53 (TP53) tumor suppressor can be posttranslationally modified at over 60 of its 393 residues. These modifications contribute to changes in TP53 stability and in its activity as a transcription factor in response to a wide variety of intrinsic and extrinsic stresses in part through regulation of protein-protein and protein-DNA interactions. The TP53 gene frequently is mutated in cancers, and in contrast to most other tumor suppressors the mutations are mostly missense often resulting in the accumulation of mutant protein, which may have novel or altered functions. Most mutant TP53s can be posttranslationally modified at the same residues as in wild-type TP53. Strikingly, however, codons for modified residues are rarely mutated in human tumors, suggesting that TP53 modifications are not essential for tumor suppression activity. Nevertheless, these modifications might alter mutant TP53 activity and contribute to a gain-of-function leading to increased metastasis and tumor progression. Furthermore, many of the signal transduction pathways that result in TP53 modifications are altered or disrupted in cancers. Understanding the signaling pathways that result in TP53 modification and the functions of these modifications in both wild-type TP53 and its many mutant forms may contribute to more effective cancer therapies. PMID:24395704

  10. Mutant TP53 posttranslational modifications: challenges and opportunities.

    PubMed

    Nguyen, Thuy-Ai; Menendez, Daniel; Resnick, Michael A; Anderson, Carl W

    2014-06-01

    The wild-type (WT) human p53 (TP53) tumor suppressor can be posttranslationally modified at over 60 of its 393 residues. These modifications contribute to changes in TP53 stability and in its activity as a transcription factor in response to a wide variety of intrinsic and extrinsic stresses in part through regulation of protein-protein and protein-DNA interactions. The TP53 gene frequently is mutated in cancers, and in contrast to most other tumor suppressors, the mutations are mostly missense often resulting in the accumulation of mutant (MUT) protein, which may have novel or altered functions. Most MUT TP53s can be posttranslationally modified at the same residues as in WT TP53. Strikingly, however, codons for modified residues are rarely mutated in human tumors, suggesting that TP53 modifications are not essential for tumor suppression activity. Nevertheless, these modifications might alter MUT TP53 activity and contribute to a gain-of-function leading to increased metastasis and tumor progression. Furthermore, many of the signal transduction pathways that result in TP53 modifications are altered or disrupted in cancers. Understanding the signaling pathways that result in TP53 modification and the functions of these modifications in both WT TP53 and its many MUT forms may contribute to more effective cancer therapies. Published 2014. Wiley Periodicals, Inc. **This article is a U.S. Government work and is in the public domain in the USA.

  11. NMDA receptor surface mobility depends on NR2A-2B subunits

    PubMed Central

    Groc, Laurent; Heine, Martin; Cousins, Sarah L.; Stephenson, F. Anne; Lounis, Brahim; Cognet, Laurent; Choquet, Daniel

    2006-01-01

    The NR2 subunit composition of NMDA receptors (NMDARs) varies during development, and this change is important in NMDAR-dependent signaling. In particular, synaptic NMDAR switch from containing mostly NR2B subunit to a mixture of NR2B and NR2A subunits. The pathways by which neurons differentially traffic NR2A- and NR2B-containing NMDARs are poorly understood. Using single-particle and -molecule approaches and specific antibodies directed against NR2A and NR2B extracellular epitopes, we investigated the surface mobility of native NR2A and NR2B subunits at the surface of cultured neurons. The surface mobility of NMDARs depends on the NR2 subunit subtype, with NR2A-containing NMDARs being more stable than NR2B-containing ones, and NR2A subunit overexpression stabilizes surface NR2B-containing NMDARs. The developmental change in the synaptic surface content of NR2A and NR2B subunits was correlated with a developmental change in the time spent by the subunits within synapses. This suggests that the switch in synaptic NMDAR subtypes depends on the regulation of the receptor surface trafficking. PMID:17124177

  12. Prolonged Tp-e Interval, Tp-e/QT Ratio and Tp-e/QTc Ratio in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Tokatli, Alptug; Kiliçaslan, Fethi; Alis, Metin; Yiginer, Omer; Uzun, Mehmet

    2016-03-01

    Type 2 diabetes mellitus (T2DM) is associated with increased risk of malignant ventricular arrhythmias. Cardiac electrical inhomogeneity may be the leading cause of the increased arrhythmic risk in patients with T2DM. The peak and the end of the T wave (Tp-e) interval and associated Tp-e/QT ratio are promising measures of ventricular repolarization indicating transmural dispersion of repolarization. The aim of this study was to assess ventricular repolarization in patients with T2DM by using Tp-e interval, Tp-e/QT ratio and Tp-e/corrected QT interval (QTc) ratio. Forty-three patients with T2DM and 43 healthy control subjects, matched by gender and age, were studied. All participants underwent electrocardiography (ECG) recording. PR, RR and QT intervals represents the ECG intervals. These are not abbreviations. In all literature these ECG intervals are written like in this text. Tp-e intervals were measured from 12-lead ECG. Rate QTc was calculated by using the Bazett's formula. Tp-e/QT ratio and Tp-e/QTc ratio were also calculated. Mean Tp-e interval was significantly prolonged in patients with T2DM compared to controls (79.4±10.3, 66.4±8.1 ms, respectively; P<0.001). We also found significantly higher values of Tp-e/QT ratio and Tp-e/QTc ratio in patients with diabetes than controls (0.21±0.03, 0.17±0.02 and 0.19±0.02, 0.16±0.02, respectively; P<0.001). There was no difference in terms of the other ECG parameters between the groups. Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio were prolonged in patients with T2DM. We concluded that T2DM leads to augmentation of transmural dispersion of repolarization suggesting increased risk for ventricular arrhythmogenesis.

  13. Attenuation of gastric mucosal inflammation induced by indomethacin through activation of the A2A adenosine receptor in rats

    PubMed Central

    Koizumi, Shigeto; Otaka, Michiro; Jin, Mario; Linden, Joel; Watanabe, Sumio; Ohnishi, Hirohide

    2010-01-01

    Background Nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin induce gastric mucosal lesions in part by the activation of inflammatory cells and the production of proinflammatory cytokines. The activation of adenosine A2A receptors inhibits inflammation by increasing cyclic AMP in leukocytes and reducing both the production of various proinflammatory cytokines and neutrophil chemotaxis. The aim of present study was to determine whether administration of an orally active adenosine A2A receptor agonist (4-[3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-piperidine-1-carboxylic acid methyl ester; ATL-313) ameliorated indomethacin-induced gastric mucosal lesions in rats. Methods Gastric lesions were produced by oral gavage of indomethacin (30 mg/kg). ATL-313 (1–10 μg/kg) was given orally just before the indomethacin administration. Results The ulcer index induced by indomethacin was significantly (>50%) reduced by pretreatment with ATL-313 and this effect was blocked completely by the addition of equimolar ZM241385, a selective A2A receptor antagonist. The gastric content of myeloperoxidase (MPO) and proinflammatory cytokines was significantly reduced by 10 μg/kg ATL-313, but gastric mucosal prostaglandin 2 (PGE2) was not affected. Conclusion We conclude that ATL-313 does not inhibit the mucosal damaging effect of indomethacin, but it does block secondary injury due to stomach inflammation. A2A agonists may represent a class of new therapeutic drugs for NSAID-induced gastric ulcers. PMID:19333545

  14. Toll-like receptors, NF-κB, and IL-27 mediate adenosine A2A receptor signaling in BTBR T(+) Itpr3(tf)/J mice.

    PubMed

    Ahmad, Sheikh F; Ansari, Mushtaq A; Nadeem, Ahmed; Bakheet, Saleh A; Al-Ayadhi, Laila Yousef; Attia, Sabry M

    2017-10-03

    Autism is a predominant neurodevelopmental disorder characterized by impaired communication, social deficits, and repetitive behaviors. Recent research has proposed that the impairment of innate immunity may play an important role in autism. Toll-like receptors (TLRs) are potential therapeutic targets against neuroinflammation. The BTBR T(+) Itpr3(tf/)J (BTBR) mouse is a well-known model of autism, showing repetitive behaviors such as cognitive inflexibility and increased grooming as compared to C57BL/6 (B6) mice. Adenosine A2A receptor (A2AR) signaling is involved in inflammation, brain injury, and lymphocyte infiltration into the CNS, but the role of A2AR in autism remains unknown. We investigated the effect of A2AR antagonist SCH 5826 (SCH) and agonist CGS 21680 (CGS) on the expression levels of TLRs, IL-27, NF-κB p65, and IκBα in BTBR mice. Treatment of BTBR mice with SCH increased the percentage of splenic CD14(+)TLR2(+) cells, CD14(+)TLR3(+) cells, CD14(+)TLR4(+) cells, and decreased the percentage of CD14(+)IL-27(+) cells, as compared to the untreated BTBR mice. Our results reveal that BTBR mice treated with CGS had reversal of SCH-induced immunological responses. Moreover, mRNA and protein expression analyses confirmed increased expression of TLR2, TLR3, TLR4, and NF-κB p65 in brain tissue, and decreased IL-27 and IκBα expression following SCH treatment, as compared to the untreated-BTBR and CGS-treated BTBR mice. Together, these results suggest that the A2AR agonist corrects neuroimmune dysfunction observed in BTBR mice, and thus has the potential as a therapeutic approach in autism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer.

    PubMed

    Fagerholm, Rainer; Khan, Sofia; Schmidt, Marjanka K; García-Closas, Montserrat; Heikkilä, Päivi; Saarela, Jani; Beesley, Jonathan; Jamshidi, Maral; Aittomäki, Kristiina; Liu, Jianjun; Ali, H Raza; Andrulis, Irene L; Beckmann, Matthias W; Behrens, Sabine; Blows, Fiona M; Brenner, Hermann; Chang-Claude, Jenny; Couch, Fergus J; Czene, Kamila; Fasching, Peter A; Figueroa, Jonine; Floris, Giuseppe; Glendon, Gord; Guo, Qi; Hall, Per; Hallberg, Emily; Hamann, Ute; Holleczek, Bernd; Hooning, Maartje J; Hopper, John L; Jager, Agnes; Kabisch, Maria; Keeman, Renske; Kosma, Veli-Matti; Lambrechts, Diether; Lindblom, Annika; Mannermaa, Arto; Margolin, Sara; Provenzano, Elena; Shah, Mitul; Southey, Melissa C; Dennis, Joe; Lush, Michael; Michailidou, Kyriaki; Wang, Qin; Bolla, Manjeet K; Dunning, Alison M; Easton, Douglas F; Pharoah, Paul D P; Chenevix-Trench, Georgia; Blomqvist, Carl; Nevanlinna, Heli

    2017-02-05

    TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes.In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 × 10-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 × 10-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines.If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer.

  16. GPCR 3D homology models for Ligand Screening: Lessons Learned from Blind Predictions of Adenosine A2a Receptor complex

    PubMed Central

    Katritch, Vsevolod; Rueda, Manuel; Lam, Polo Chun-Hung; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    Proteins of the G-protein coupled receptor (GPCR) family present numerous attractive targets for rational drug design, but also a formidable challenge for identification and conformational modeling of their 3D structure. A recently performed assessment of blind predictions of adenosine A2a receptor (AA2AR) structure in complex with ZM241385 (ZMA) antagonist provided a first example of unbiased evaluation of the current modeling algorithms on a GPCR target with ~30% sequence identity to the closest structural template. Several of the 29 groups participating in this assessment exercise (Michino et al., doi:10.1038/nrd2877) successfully predicted the overall position of the ligand ZMA in the AA2AR ligand binding pocket, however models from only three groups captured more than 40% of the ligand-receptor contacts. Here we describe two of these top performing approaches, in which all-atom models of the AA2AR were generated by homology modeling followed by ligand guided backbone ensemble receptor optimization (LiBERO). The resulting AA2AR-ZMA models, along with the best models from other groups are assessed here for their virtual ligand screening (VLS) performance on a large set of GPCR ligands. We show that ligand guided optimization was critical for improvement of both ligand-receptor contacts and VLS performance as compared to the initial raw homology models. The best blindly predicted models performed on par with the crystal structure of AA2AR in selecting known antagonists from decoys, as well as from antagonists for other adenosine subtypes and AA2AR agonists. These results suggest that despite certain inaccuracies, the optimized homology models can be useful in the drug discovery process. PMID:20063437

  17. Up-regulation of striatal adenosine A2A receptors with iron deficiency in rats. Effects on locomotion and cortico-striatal neurotransmission

    PubMed Central

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-01-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A2A receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A2A receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A2A receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A2A receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A2A receptors was found in rats fed during three weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A2A receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A2A receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A2A receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A2A receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. PMID:20385128

  18. Up-regulation of striatal adenosine A(2A) receptors with iron deficiency in rats: effects on locomotion and cortico-striatal neurotransmission.

    PubMed

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-07-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A(2A) receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A(2A) receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A(2A) receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A(2A) receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A(2A) receptors was found in rats fed during 3 weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A(2A) receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A(2A) receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A(2A) receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A(2A) receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS.

  19. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice.

    PubMed

    Belikoff, Bryan G; Hatfield, Stephen; Georgiev, Peter; Ohta, Akio; Lukashev, Dmitriy; Buras, Jon A; Remick, Daniel G; Sitkovsky, Michail

    2011-02-15

    Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.

  20. FGFR4 polymorphism, TP53 mutation, and their combinations are prognostic factors for oral squamous cell carcinoma.

    PubMed

    Tanuma, Jun-Ichi; Izumo, Toshiyuki; Hirano, Masato; Oyazato, Yoshitaka; Hori, Fumiya; Umemura, Eri; Shisa, Hayase; Hiai, Hiroshi; Kitano, Motoo

    2010-03-01

    The genotype of the fibroblast growth factor receptor 4 (FGFR4) gene and TP53 mutation have been reported as prognostic factors for cancers of the head and neck, bladder, breast and colon. To determine whether they are applicable for oral squamous cell carcinoma (OSCC), we investigated these two genes in OSCC samples from 150 patients who had undergone radical surgery and in 100 cancer-free individuals. In OSCC, the FGFR4 Gly388Arg polymorphism and the presence or absence of mutation in TP53 did not show a significant association with the clinicopathological features of the tumors at surgery. However, the FGFR4 Arg388 allele, as well as mutations in TP53, was found to be closely associated with poor prognosis. Moreover, these two parameters synergistically affected the survival of OSCC patients. During 60 months of observation after radical surgery, a majority of patients with homozygous Arg388 FGFR4 plus mutated TP53 died of cancer, whereas >90% patients carrying homozygous Gly388 FGFR4 plus wild-type TP53 survived. Therefore, the FGFR4 Gly388Arg polymorphism and TP53 mutations, as well as their combinations, are excellent predictors of the prognosis for OSCC patients.

  1. Dynamics of Fat Mass in DUhTP Mice Selected for Running Performance - Fat Mobilization in a Walk.

    PubMed

    Brenmoehl, Julia; Ohde, Daniela; Walz, Christina; Schultz, Julia; Tuchscherer, Armin; Rieder, Florian; Renne, Ulla; Hoeflich, Andreas

    2015-01-01

    Reduction of body fat can be achieved by dietary programs and/or aerobic exercise training. More convenient methods to rid the body of excess fat are needed. However, it is unclear whether it is possible to more easily lose body weight at all. DUhTP mice bred through phenotype selection for high treadmill performance and unselected controls were voluntarily physically active in a running wheel over a period of 3 weeks. Phenotypical data were collected, and subcutaneous fat was analyzed for expression of mitochondria-relevant proteins. Voluntary physical activity over 3 weeks exclusively in DUhTP mice severely reduced subcutaneous (-38%; p < 0.05) and epididymal (-32%; p < 0.05) fat. Following mild physical activity, subcutaneous fat derived from DUhTP mice showed increased levels of long chain acyl dehydrogenase (LCAD; +230%; p < 0.05) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α; p < 0.01). Mitochondrial transcription factor A (Tfam) expression was similar in both sedentary genotypes but physical activity increased Tfam levels exclusively in DUhTP (p < 0.05). Our findings indicate that the mitochondrial mass is highly active in DUhTP mice and responsive even to mild physical activity. While genetic predisposition could not prevent fat accretion in DUhTP mice, voluntary activity was sufficient to reduce excess body fat almost completely. © 2015 S. Karger GmbH, Freiburg.

  2. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.

  3. Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy.

    PubMed

    Hu, Qidi; Ren, Xiangpeng; Liu, Ya; Li, Zhihui; Zhang, Liping; Chen, Xingjun; He, Chaoxiang; Chen, Jiang-Fan

    2016-09-01

    Synucleinopathy is characterized by abnormal accumulation of misfolded α-synuclein (α-Syn)-positive cytoplasmic inclusions and by neurodegeneration and cognitive impairments, but the pathogenesis mechanism of synucleinopathy remains to be defined. Using a transmission model of synucleinopathy by intracerebral injection of preformed A53T α-Syn fibrils, we investigated whether aberrant adenosine A2A receptor (A2AR) signaling contributed to pathogenesis of synucleinopathy. We demonstrated that intra-hippocampal injection of preformed mutant α-Syn fibrils triggered a striking and selective induction of A2AR expression which was closely co-localized with pSer129 α-Syn-rich inclusions in neurons and glial cells of hippocampus. Importantly, by abolishing aberrant A2AR signaling triggered by mutant α-Syn, genetic deletion of A2ARs blunted a cascade of pathological events leading to synucleinopathy, including pSer129 α-Syn-rich and p62-positive aggregates, NF-κB activation and astrogliosis, apoptotic neuronal cell death and working memory deficits without affecting motor activity. These findings define α-Syn-triggered aberrant A2AR signaling as a critical pathogenesis mechanism of synucleinopathy with dual controls of cognition and neurodegeneration by modulating α-Syn aggregates. Thus, aberrant A2AR signaling represents a useful biomarker as well as a therapeutic target of synucleinopathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Adenosine A(2A) receptor activation prevents progressive kidney fibrosis in a model of immune-associated chronic inflammation.

    PubMed

    Garcia, Gabriela E; Truong, Luan D; Chen, Jiang-Fan; Johnson, Richard J; Feng, Lili

    2011-08-01

    Crescentic glomerulonephritis (GN) in Wistar-Kyoto rats progresses to lethal kidney failure by macrophage (Mφ)-mediated mechanisms. Mφs in nephritic glomeruli express adenosine A(2A) receptors (A(2A)Rs), the activation of which suppresses inflammation. Here, we pharmacologically activated the A(2A)Rs with a selective agonist, CGS 21680, and inactivated them with a selective antagonist, ZM241385, to test the effects on established GN. When activation was delayed until antiglomerular basement membrane GN and extracellular matrix deposition were established, glomerular Mφ infiltration was reduced by 83%. There was also a marked improvement in glomerular lesion histology, as well as decreased proteinuria. A(2A)R activation significantly reduced type I, III, and IV collagen deposition, and E-cadherin expression was restored in association with a reduction of α-smooth muscle actin-positive myofibroblasts in the interstitium and glomeruli. In contrast, pharmacological inactivation of A(2A)Rs increased glomerular crescent formation, type I, III, and IV collagen expression, and enhanced E-cadherin loss. Activation of A(2A)Rs suppressed the expression of the Mφ-linked glomerular damage mediators, transforming growth factor-β, osteopontin-1, thrombospondin-1, and tissue inhibitor of metalloproteinase-1. Thus, A(2A)R activation can arrest GN and prevent progressive fibrosis in established pathological lesions.

  5. Dependence of P2-nucleotide receptor agonist-mediated endothelium-independent relaxation on ectonucleotidase activity and A2A-receptors in rat portal vein

    PubMed Central

    Guibert, Christelle; Loirand, Gervaise; Vigne, Paul; Savineau, Jean-Pierre; Pacaud, Pierre

    1998-01-01

    The mechanism of action of P2 nucleotide receptor agonists that produce endothelium-independent relaxation and the influence of ecto-ATPase activity on this relaxing effect have been investigated in rat portal vein smooth muscle.At 25°C, ATP, 2-methylthioATP (2-MeSATP) and 2-chloroATP (2-ClATP), dose-dependently inhibited spontaneous contractile activity of endothelium-denuded muscular strips from rat portal vein. The rank order of agonist potency defined from the half-inhibitory concentrations was 2-ClATP (2.7±0.5 μM, n=7)>ATP (12.9±1.1 μM, n=9)⩾2-MeSATP (21.9±4.8 μM, n=4). In the presence of αβ-methylene ATP (αβ-MeATP, 200 μM) which itself produced a transient contractile effect, the relaxing action of ATP and 2-MeSATP was completely abolished and that of 2-ClATP strongly inhibited.The non-selective P2-receptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS, 100 μM) did not affect the relaxation induced by ATP, 2-MeSATP, and 2-ClATP.The A2A-adenosine receptor antagonist ZM 241385 inhibited the ATP-induced relaxation in a concentration-dependent manner (1–100 nM). In the presence of 100 nM ZM 241385, the relaxing effects of 2-MeSATP and 2-ClATP were also inhibited.ADP, AMP and adenosine also produced concentration-dependent inhibition of spontaneous contractions. The relaxing effects of AMP and adenosine were insensitive to αβ-MeATP (200 μM) but were inhibited by ZM 241385 (100 nM).Simultaneous measurements of contraction and ecto-ATPase activity estimated by the degradation of [γ-32P]-ATP showed that muscular strips rapidly (10–60 s) hydrolyzed ATP. This ecto-ATPase activity was abolished in the presence of EDTA and was inhibited by 57±11% (n=3) by 200 μM αβ-MeATP.These results suggest that ATP and other P2-receptor agonists are relaxant in rat portal vein smooth muscle, because ectonucleotidase activity leads to the formation of adenosine which activates A2A-receptors. PMID

  6. Nutlin‐3a selects for cells harbouring TP 53 mutations

    PubMed Central

    Hollstein, Monica; Arlt, Volker M.; Phillips, David H.

    2016-01-01

    TP53 mutations occur in half of all human tumours. Mutagen‐induced or spontaneous TP53 mutagenesis can be studied in vitro using the human TP53 knock‐in (Hupki) mouse embryo fibroblast (HUF) immortalisation assay (HIMA). TP53 mutations arise in up to 30% of mutagen‐treated, immortalised HUFs; however, mutants are not identified until TP53 sequence analysis following immortalisation (2–5 months) and much effort is expended maintaining TP53‐WT cultures. In order to improve the selectivity of the HIMA for HUFs harbouring TP53 mutations, we explored the use of Nutlin‐3a, an MDM2 inhibitor that leads to stabilisation and activation of wild‐type (WT) p53. First, we treated previously established immortal HUF lines carrying WT or mutated TP53 with Nutlin‐3a to examine the effect on cell growth and p53 activation. Nutlin‐3a induced the p53 pathway in TP53‐WT HUFs and inhibited cell growth, whereas most TP53‐mutated HUFs were resistant to Nutlin‐3a. We then assessed whether Nutlin‐3a treatment could discriminate between TP53‐WT and TP53‐mutated cells during the HIMA (n = 72 cultures). As immortal clones emerged from senescent cultures, each was treated with 10 µM Nutlin‐3a for 5 days and observed for sensitivity or resistance. TP53 was subsequently sequenced from all immortalised clones. We found that all Nutlin‐3a‐resistant clones harboured TP53 mutations, which were diverse in position and functional impact, while all but one of the Nutlin‐3a‐sensitive clones were TP53‐WT. These data suggest that including a Nutlin‐3a counter‐screen significantly improves the specificity and efficiency of the HIMA, whereby TP53‐mutated clones are selected prior to sequencing and TP53‐WT clones can be discarded. PMID:27813088

  7. TP53 mutations in astrocytic gliomas: an association with histological grade, TP53 codon 72 polymorphism and p53 expression.

    PubMed

    Faria, Mario H G; Neves Filho, Eduardo H C; Alves, Markenia K S; Burbano, Rommel M R; de Moraes Filho, Manoel O; Rabenhorst, Silvia H B

    2012-11-01

    TP53 mutations and polymorphisms have been widely related to many cancers as long as these alterations may impair its capacity to induce cell cycle arrest, DNA repair mechanisms, and apoptosis. Although TP53 alterations have been studied in astrocytic tumors, there is a lack of analysis considering specific TP53 mutations and their associations with p53 immunostainning, polymorphisms and their significance among the histological grades. Thus, we analyzed TP53 alterations in exons 2-11, including the codon 72 polymorphism, using DNA sequencing in 96 astrocytic gliomas (18 grade I, 20 grade II, 14 grade III, and 44 grade IV). Also, immunohistochemistry was assessed to evaluate the p53 protein expression. In this study, we found that the higher histological grades were statistically associated with TP53 mutations. Some of these mutations, such as TP53 P98T and TP53 G244S, seemed to be a specific marker for the higher grades, and the TP53 E286K mutation appears to be a World Health Organization grade III-IV progression marker. Also, the TP53 P98T mutation, in exon 4, is very likely to be important on the stabilization of the p53 protein, leading to its immunopositivity and it is potentially associated with the TP53 72Pro/Pro genotype.

  8. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor.

    PubMed

    Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P

    2014-06-23

    A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.

  9. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control.

    PubMed

    El-Mas, Mahmoud M; El-Gowilly, Sahar M; Fouda, Mohamed A; Saad, Evan I

    2011-08-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100μg/kg i.v.) dose-dependently reduced BRS(SNP) in contrast to no effect on BRS(PE). BRS(SNP) was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS(SNP) were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS(SNP) was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A(2A) antagonist), or VUF5574 (A(3) antagonist). In contrast, BRS(SNP) was preserved after blockade of A(1) (DPCPX) or A(2B) (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS(SNP) depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A(2A) receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms.

  10. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats.

    PubMed

    Rahimian, Reza; Fakhfouri, Gohar; Daneshmand, Ali; Mohammadi, Hamed; Bahremand, Arash; Rasouli, Mohammad Reza; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2010-12-15

    Inflammatory bowel disease comprises chronic recurrent inflammation of gastrointestinal tract. This study was conducted to investigate inosine, a potent immunomodulator, in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced chronic model of experimental colitis, and contribution of adenosine A(2A) receptors and the metabolite uric acid as possible underlying mechanisms. Experimental colitis was rendered in rats by a single colonic administration of 10 mg of TNBS. Inosine, potassium oxonate (a hepatic uricase inhibitor), SCH-442416 (a selective adenosine A(2A) receptor antagonist), inosine+potassium oxonate, or inosine+SCH-442416 were given twice daily for 7 successive days. At the end of experiment, macroscopic and histopathologic scores, colonic malondialdehyde (MDA), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-1beta (IL-1β) levels, and myeloperoxidase (MPO) activity were assessed. Plasma uric acid level was measured throughout the experiment. Both macroscopic and histological features of colonic injury were markedly ameliorated by either inosine, oxonate or inosine+oxonate. Likewise, the elevated amounts of MPO and MDA abated as well as those of TNF-α and IL-1β (P<0.05). SCH-442416 partially reversed the effect of inosine on theses markers, while inosine+oxonate showed a higher degree of protection than each treatment alone (P<.0.05). No significant difference was observed between TNBS and SCH-442416 groups. Uric acid levels were significantly higher in inosine or oxonate groups compared to control. Inosine+oxonate resulted in an even more elvelated uric acid level than each treatment alone (P<0.05). Inosine elicits notable anti-inflammatory effects on TNBS-induced colitis in rats. Uric acid and adenosine A(2A) receptors contribute to these salutary properties.

  11. METABOTROPIC GLUTAMATE TYPE 5, DOPAMINE D2 AND ADENOSINE A2A RECEPTORS FORM HIGHER-ORDER OLIGOMERS IN LIVING CELLS

    PubMed Central

    Cabello, Nuria; Gandía, Jorge; Bertarelli, Daniela C. G.; Watanabe, Masahiko; Lluís, Carme; Franco, Rafael; Ferré, Sergi; Luján, Rafael; Ciruela, Francisco

    2009-01-01

    G protein-coupled receptors are known to form homo- and heteromers at the plasma membrane, but the stoichiometry of these receptor oligomers are relatively unknown. Here, by using bimolecular fluorescence complementation, we visualized for the first time the occurrence of heterodimers of metabotropic glutamate mGlu5 receptors (mGlu5R) and dopamine D2 receptors (D2R) in living cells. Furthermore, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques, as well as the sequential resonance energy transfer (SRET) technique, allowed us to detect the occurrence receptor oligomers containing more than two protomers, mGlu5R, D2R and adenosine A2A receptor (A2AR). Interestingly, by using high-resolution immunoelectron microscopy we could confirm that the three receptors co-distribute within the extrasynaptic plasma membrane of the same dendritic spines of asymmetrical, putative glutamatergic, striatal synapses. Also, co-immunoprecipitation experiments in native tissue demonstrated the existence of an association of mGlu5R, D2R and A2AR in rat striatum homogenates. Overall, these results provide new insights into the molecular composition of G protein-coupled receptor oligomers in general and the mGlu5R/D2R/A2AR oligomer in particular, a receptor oligomer that might constitute an important target for the treatment of some neuropsychiatric disorders. PMID:19344374

  12. TP53 Mutational Spectrum in Endometrioid and Serous Endometrial Cancers.

    PubMed

    Schultheis, Anne M; Martelotto, Luciano G; De Filippo, Maria R; Piscuglio, Salvatore; Ng, Charlotte K Y; Hussein, Yaser R; Reis-Filho, Jorge S; Soslow, Robert A; Weigelt, Britta

    2016-07-01

    Endometrial carcinomas (ECs) are heterogeneous at the genetic level. Although TP53 mutations are highly recurrent in serous endometrial carcinomas (SECs), these are also present in a subset of endometrioid endometrial carcinomas (EECs). Here, we sought to define the frequency, pattern, distribution, and type of TP53 somatic mutations in ECs by performing a reanalysis of the publicly available data from The Cancer Genome Atlas (TCGA). A total of 228 EECs (n=186) and SECs (n=42) from the TCGA data set, for which an integrated genomic characterization was performed, were interrogated for the presence and type of TP53 mutations, and for mutations in genes frequently mutated in ECs. TP53 mutations were found in 15% of EECs and 88% of SECs, and in 91% of copy-number-high and 35% of polymerase (DNA directed), epsilon, catalytic subunit (POLE) integrative genomic subtypes. In addition to differences in prevalence, variations in the type and pattern of TP53 mutations were observed between histologic types and between integrative genomic subtypes. TP53 hotspot mutations were significantly more frequently found in SECs (46%) than in EECs (15%). TP53-mutant EECs significantly more frequently harbored a co-occurring PTEN mutation than TP53-mutant SECs. Finally, a subset of TP53-mutant ECs (22%) was found to harbor frameshift or nonsense mutations. Given that nonsense and frameshift TP53 mutations result in distinct p53 immunohistochemical results that require careful interpretation, and that EECs and SECs display different patterns, types, and distributions of TP53 mutations, the use of the TP53/p53 status alone for the differential diagnosis of EECs and SECs may not be sufficient.

  13. IFN-γ prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response

    PubMed Central

    Cohen, Heather B.; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M.

    2015-01-01

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. Here, we demonstrate that following TLR stimulation, macrophages up regulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This up-regulation of A2bR leads to the induction of a macrophage with an immunoregulatory phenotype and the down regulation of inflammation. IFN-γ priming of macrophages, selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNFα and IL-12 in response to TLR ligation. The pharmacological inhibition or the genetic deletion of the A2bR results in a hyper-inflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense, by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the anti-microbial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  14. Sinomenine Protects against Lipopolysaccharide-Induced Acute Lung Injury in Mice via Adenosine A2A Receptor Signaling

    PubMed Central

    Li, Jun; Zhao, Li; He, Xie; Zeng, Yi-Jun; Dai, Shuang-Shuang

    2013-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A2A receptor (A2AR) expression, and the protective effect of SIN was abolished in A2AR knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A2AR by SIN and showed that A2AR-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A2AR-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI. PMID:23555007

  15. Sinomenine protects against lipopolysaccharide-induced acute lung injury in mice via adenosine A(2A) receptor signaling.

    PubMed

    Li, Jun; Zhao, Li; He, Xie; Zeng, Yi-Jun; Dai, Shuang-Shuang

    2013-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A(2A) receptor (A(2A)R) expression, and the protective effect of SIN was abolished in A(2A)R knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A(2A)R by SIN and showed that A(2A)R-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A(2A)R-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI.

  16. RGD-dependent binding of TP508 to integrin αvβ3 mediates cell adhesion and induction of nitric oxide

    PubMed Central

    Derkach, Dmitry N.; Wadekar, Subhagya A.; Perkins, Kim B.; Rousseau, Emma; Dreiza, Catherine M.; Cheung-Flynn, Joyce; Ramos, Heidi C.; Ugarova, Tatiana P.; Sheller, Michael R.

    2015-01-01

    Summary TP508, a 23-amino acid RGD-containing synthetic peptide representing residues 508 to 530 of human prothrombin, mitigates the effects of endothelial dysfunction in ischaemic reperfusion injury. The objective of this study was to investigate whether TP508 binds to members of the integrin family of transmembrane receptors leading to nitric oxide synthesis. Immobilised TP508 supported adhesion of endothelial cells and αvβ3-expressing human embryonic kidney cells in a dose- and RGD-dependent manner. Soluble TP508 also inhibited cell adhesion to immobilised fibrinogen. The involvement of αvβ3 was verified with function-blocking antibodies and surface plasmon resonance studies. Adhesion of the cells to immobilised TP508 resulted in an induction of phosphorylated FAK and ERK1/2. In endothelial cells, TP508 treatment resulted in an induction of nitric oxide that could be inhibited by LM609, an αvβ3-specific, function-blocking monoclonal antibody. Finally, TP508 treatment of isolated rat aorta segments enhanced carbachol-induced vasorelaxation. These results suggest that TP508 elicits a potentially therapeutic effect through an RGD-dependent interaction with integrin αvβ3. PMID:20508901

  17. Telomere status in chronic lymphocytic leukemia with TP53 disruption.

    PubMed

    Guièze, Romain; Pages, Mélanie; Véronèse, Lauren; Combes, Patricia; Lemal, Richard; Gay-Bellile, Mathilde; Chauvet, Martine; Callanan, Mary; Kwiatkowski, Fabrice; Pereira, Bruno; Vago, Philippe; Bay, Jacques-Olivier; Tournilhac, Olivier; Tchirkov, Andreï

    2016-08-30

    In chronic lymphocytic leukemia (CLL), telomere dysfunction is associated with poor outcomes. TP53 is involved in cellular responses to dysfunctional telomeres, and its inactivation is the strongest adverse prognostic factor for CLL. Given the biological relationship between TP53 and telomeres, and their prognostic value, it is important to improve our understanding of the impact of TP53 alterations on telomeres. We performed a comprehensive study of the deletions and mutations of the TP53 gene and telomere parameters, including hTERT and the shelterin complex, in 115 CLL patients. We found that any type of TP53 alteration was associated with very short telomeres and high hTERT expression, independently of other biological CLL features. Patients with disrupted TP53 showed telomere deletions and chromosomal end-to-end fusions in cells with complex karyotypes. TP53 disruption was characterized by downregulation of shelterin genes. Interestingly, low expression of POT1, TPP1 and TIN2 was also found in some patients with wild-type TP53 and had an adverse impact on progression-free survival after standard genotoxic therapy. In conclusion, we have demonstrated that patients with disrupted TP53 have severe telomere dysfunction and high genomic instability. Thus, the telomeric profile could be tested as a biomarker in CLL patients treated with new therapeutic agents.

  18. Telomere status in chronic lymphocytic leukemia with TP53 disruption

    PubMed Central

    Guièze, Romain; Pages, Mélanie; Véronèse, Lauren; Combes, Patricia; Lemal, Richard; Gay-bellile, Mathilde; Chauvet, Martine; Callanan, Mary; Kwiatkowski, Fabrice; Pereira, Bruno; Vago, Philippe; Bay, Jacques-Olivier; Tournilhac, Olivier; Tchirkov, Andreï

    2016-01-01

    In chronic lymphocytic leukemia (CLL), telomere dysfunction is associated with poor outcomes. TP53 is involved in cellular responses to dysfunctional telomeres, and its inactivation is the strongest adverse prognostic factor for CLL. Given the biological relationship between TP53 and telomeres, and their prognostic value, it is important to improve our understanding of the impact of TP53 alterations on telomeres. We performed a comprehensive study of the deletions and mutations of the TP53 gene and telomere parameters, including hTERT and the shelterin complex, in 115 CLL patients. We found that any type of TP53 alteration was associated with very short telomeres and high hTERT expression, independently of other biological CLL features. Patients with disrupted TP53 showed telomere deletions and chromosomal end-to-end fusions in cells with complex karyotypes. TP53 disruption was characterized by downregulation of shelterin genes. Interestingly, low expression of POT1, TPP1 and TIN2 was also found in some patients with wild-type TP53 and had an adverse impact on progression-free survival after standard genotoxic therapy. In conclusion, we have demonstrated that patients with disrupted TP53 have severe telomere dysfunction and high genomic instability. Thus, the telomeric profile could be tested as a biomarker in CLL patients treated with new therapeutic agents. PMID:27486974

  19. Binding of an ( sup 125 I) labelled thromboxane A2/prostaglandin H2 receptor agonist to baboon platelets

    SciTech Connect

    Dorn, G.W. II; De Jesus, A. )

    1989-12-01

    To characterize the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor on baboon platelets the binding of (125I)BOP was studied. (125I)BOP bound to washed baboon platelets in a saturable manner. Scatchard analysis of binding isotherms revealed a Kd of 1.12 +/- 0.08 nM and a binding capacity of 54 +/- 5 fmoles/10(8) platelets (326 sites/platelet). Several TXA2/PGH2 agonists and antagonists displaced (125I)BOP from its baboon platelet binding site with a rank order of potency similar to human platelets: I-BOP greater than SQ29548 greater than U46619 = I-PTA-OH greater than PTA-OH. I-BOP aggregated washed baboon platelets with an EC50 of 10 +/- 4 nM. The results indicate that (125I)BOP binds to the TXA2/PGH2 receptor on baboon platelets and that this receptor is similar to its human counterpart.

  20. Targeting Thromboxane A2 Receptor for Anti-Metastasis Therapy of Breast Cancer

    DTIC Science & Technology

    2011-09-01

    breast cancer metastasis. 2) Inhibition of thromboxane A2 production , either using TX synthase inhibitor or aspirin or other cyclooxygenase inhibitors...spectra reflected aberrant repair of 6-4 photoproducts and oxidative DNA damage. The 3’-5’ exonuclease was the principal enzymatic activity required...families of proteins: GEFs, guanine nucleotide exchange factors catalyze nucleotide exchange when activated by upstream signals; GAPs, GTPase-activating

  1. 5′-AMP impacts lymphocyte recirculation through activation of A2B receptors

    PubMed Central

    Bouma, Hjalmar R.; Mandl, Judith N.; Strijkstra, Arjen M.; Boerema, Ate S.; Kok, Jan-Willem; van Dam, Annie; IJzerman, Ad; Kroese, Frans G. M.; Henning, Robert H.

    2013-01-01

    Natural hibernation consists of torpid phases with metabolic suppression alternating with euthermic periods. Induction of torpor holds substantial promise in various medical conditions, including trauma, major surgery, and transplantation. Torpor in mice can be induced pharmacologically by 5′-AMP. Previously, we showed that during natural torpor, the reduction in body temperature results in lymphopenia via a reduction in plasma S1P. Here, we show that during torpor induced by 5′-AMP, there is a similar reduction in the number of circulating lymphocytes that is a result of their retention in secondary lymphoid organs. This lymphopenia could be mimicked by engagement of A2BRs by a selective A2BR agonist (LUF6210) in the absence of changes in temperature and prevented by A2BR antagonists during 5′-AMP-induced torpor. In addition, forced cooling of mice led to peripheral blood lymphopenia, independent of A2BR signaling. The induction of torpor using 5′-AMP impacted the migration of lymphocytes within and between secondary lymphoid organs. During torpor, the homing into LNs was impaired, and two-photon intravital microscopy revealed that cell motility was decreased significantly and rapidly upon 5′-AMP administration. Furthermore, the S1P plasma concentration was reduced by 5′-AMP but not by LUF6210. S1P plasma levels restored upon arousal. Likely, the reduced migration in LNs combined with the reduced S1P plasma level substantially reduces lymphocyte egress after injection of 5′-AMP. In conclusion, 5′-AMP induces a state of pharmacological torpor in mice, during which, lymphopenia is governed primarily by body temperature-independent suppression of lymphocyte egress from LNs. PMID:23682128

  2. Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia

    PubMed Central

    Napolitano, Francesco; Pasqualetti, Massimo; Usiello, Alessandro; Santini, Emanuela; Pacini, Giulia; Sciamanna, Giuseppe; Errico, Francesco; Tassone, Annalisa; Di Dato, Valeria; Martella, Giuseppina; Cuomo, Dario; Fisone, Gilberto; Bernardi, Giorgio; Mandolesi, Georgia; Mercuri, Nicola B.; Standaert, David G.; Pisani, Antonio

    2014-01-01

    DYT1 dystonia is an inherited disease linked to mutation in the TOR1A gene encoding for the protein torsinA. Although the mechanism by which this genetic alteration leads to dystonia is unclear, multiple lines of clinical evidence suggest a link between dystonia and a reduced dopamine D2 receptor (D2R) availability. Based on this evidence, herein we carried out a comprehensive analysis of electrophysiological, behavioral and signaling correlates of D2R transmission in transgenic mice with the DYT1 dystonia mutation. Electrophysiological recordings from nigral dopaminergic neurons showed a normal responsiveness to D2-autoreceptor function. Conversely, postsynaptic D2R function in hMT mice was impaired, as suggested by the inability of a D2R agonist to re-establish normal corticostriatal synaptic plasticity and supported by the reduced sensitivity to haloperidol-induced catalepsy. Although an in situ hybridization analysis showed normal D1R and D2R mRNA expression levels in the striata of hMT mice, we found a significant decrease of D2R protein, coupled to a reduced ability of D2Rs to activate their cognate Go/i proteins. Of relevance, we found that pharmacological blockade of adenosine A2A receptors (A2ARs) fully restored the impairment of synaptic plasticity observed in hMT mice. Together, our findings demonstrate an important link between torsinA mutation and D2R dysfunction and suggest that A2AR antagonism is able to counteract the deficit in D2R-mediated transmission observed in mutant mice, opening new perspectives for the treatment of this movement disorder. PMID:20227500

  3. Adenosine A2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE).

    PubMed

    Barros-Barbosa, Aurora R; Ferreirinha, Fátima; Oliveira, Ângela; Mendes, Marina; Lobo, M Graça; Santos, Agostinho; Rangel, Rui; Pelletier, Julie; Sévigny, Jean; Cordeiro, J Miguel; Correia-de-Sá, Paulo

    2016-12-01

    Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5'-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5'-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.

  4. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2.

    PubMed

    Mediero, Aránzazu; Wilder, Tuere; Perez-Aso, Miguel; Cronstein, Bruce N

    2015-04-01

    Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration. © FASEB.

  5. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels.

    PubMed

    Mayer, Gaétan; Poirier, Steve; Seidah, Nabil G

    2008-11-14

    The proprotein convertase subtilisin/kexin-type 9 (PCSK9), which promotes degradation of the hepatic low density lipoprotein receptor (LDLR), is now recognized as a major player in plasma cholesterol metabolism. Several gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, and thus, inhibition of PCSK9-induced degradation of the LDLR may be used to treat this deadly disease. Herein, we discovered an endogenous PCSK9 binding partner by Far Western blotting, co-immunoprecipitation, and pull-down assays. Following two-dimensional gel electrophoresis and mass spectrometry analysis, we demonstrated that PCSK9 binds to a approximately 33-kDa protein identified as annexin A2 (AnxA2) but not to the closely related annexin A1. Furthermore, our functional LDLR assays and small hairpin RNA studies show that AnxA2 and the AnxA2.p11 complex could prevent PCSK9-directed LDLR degradation in HuH7, HepG2, and Chinese hamster ovary cells. Immunocytochemistry revealed that PCSK9 and AnxA2 co-localize at the cell surface, indicating a possible competition with the LDLR. Structure-function analyses demonstrated that the C-terminal cysteine-histidine-rich domain of PCSK9 interacts specifically with the N-terminal repeat R1 of AnxA2. Mutational analysis of this 70-amino acid-long repeat indicated that the RRTKK81 sequence of AnxA2 is implicated in this binding because its mutation to AATAA81 prevents its interaction with PCSK9. To our knowledge, this work constitutes the first to show that PCSK9 activity on LDLR can be regulated by an endogenous inhibitor. The identification of the minimal inhibitory sequence of AnxA2 should pave the way toward the development of PCSK9 inhibitory lead molecules for the treatment of hypercholesterolemia.

  6. A2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway.

    PubMed

    Merighi, Stefania; Bencivenni, Serena; Vincenzi, Fabrizio; Varani, Katia; Borea, Pier Andrea; Gessi, Stefania

    2017-03-01

    The hallmark of neuroinflammation is the activation of microglia, the immunocompetent cells of the CNS, releasing a number of proinflammatory mediators implicated in the pathogenesis of neuronal diseases. Adenosine is an ubiquitous autacoid regulating several microglia functions through four receptor subtypes named A1, A2A, A2B and A3 (ARs), that represent good targets to suppress inflammation occurring in CNS. Here we investigated the potential role of ARs in the modulation of IL-6 secretion and cell proliferation in primary microglial cells. The A2BAR agonist 2-[[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (BAY60-6583) stimulated IL-6 increase under normoxia and hypoxia, in a dose- and time-dependent way. In cells incubated with the blockers of phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and PKC delta (PKC-δ) the IL-6 increase due to A2BAR activation was strongly reduced, whilst it was not affected by the inhibitor of adenylyl cyclase (AC). Investigation of cellular signalling involved in the A2BAR effect revealed that only the inhibitor of p38 mitogen activated protein kinase (MAPK) was able to block the agonist's effect on IL-6 secretion, whilst inhibitors of pERK1/2, JNK1/2 MAPKs and Akt were not. Stimulation of p38 by BAY60-6583 was A2BAR-dependent, through a pathway affecting PLC, PKC-ε and PKC-δ but not AC, in both normoxia and hypoxia. Finally, BAY60-6583 increased microglial cell proliferation involving A2BAR, PLC, PKC-ε, PKC-δ and p38 signalling. In conclusion, A2BARs activation increased IL-6 secretion and cell proliferation in murine primary microglial cells, through PLC, PKC-ε, PKC-δ and p38 pathways, thus suggesting their involvement in microglial activation and neuroinflammation.

  7. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    SciTech Connect

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  8. Nuclear receptor expression atlas in BMDCs: Nr4a2 restricts immunogenicity of BMDCs and impedes EAE.

    PubMed

    Saini, Ankita; Mahajan, Sahil; Gupta, Pawan

    2016-08-01

    The nuclear receptor (NR) superfamily of transcription factors regulates various key aspects of physiological processes; however, their role(s) in immune cells' function are just beginning to unravel. Although few NRs have been shown to be critical for dendritic cell (DC) function, a lack of knowledge about their complete representation in DCs has limited the ability to harness their full potential. Here, we performed a comprehensive NR expression profiling and identified the key members of NR superfamily being expressed in immature, immunogenic, and tolerogenic DCs. Comparative analysis revealed discrete changes in the expression of various NRs among the studied DC subtypes, indicating a likely role in the modulation of DC functionality. Next, we characterized Nr4a2, a member of orphan NR family, and found that it suppresses the activation of bone marrow derived dendritic cells triggered by LPS. Overexpression and knockdown of Nr4a2 demonstrated that Nr4a2 orchestrates the expression of immunoregulatory genes, hence inducing a tolerogenic phenotype in bone marrow derived dendritic cells. Furthermore, we also found that Nr4a2 provides protection from EAE by promoting an increase in Treg cells, while limiting effector T cells. Our findings suggest a previously unidentified role for Nr4a2 as a regulator of DC tolerogenicity and demonstrate its potential as therapeutic target in DC-associated pathophysiologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Adenosine A2A receptor activation stimulates collagen production in sclerodermic dermal fibroblasts either directly and through a cross-talk with the cannabinoid system.

    PubMed

    Lazzerini, Pietro Enea; Natale, Mariarita; Gianchecchi, Elena; Capecchi, Pier Leopoldo; Montilli, Cinzia; Zimbone, Stefania; Castrichini, Monica; Balistreri, Epifania; Ricci, Gianluca; Selvi, Enrico; Garcia-Gonzalez, Estrella; Galeazzi, Mauro; Laghi-Pasini, Franco

    2012-03-01

    Systemic sclerosis (SSc) is a connective tissue disease characterised by exaggerated collagen deposition in the skin and visceral organs. Adenosine A2A receptor stimulation (A2Ar) promotes dermal fibrosis, while the cannabinoid system modulates fibrogenesis in vitro and in animal models of SSc. Moreover, evidence in central nervous system suggests that A2A and cannabinoid (CB1) receptors may physically and functionally interact. On this basis, we investigated A2Ar expression and function in modulating collagen biosynthesis from SSc dermal fibroblasts and analysed the cross-talk with cannabinoid receptors. In sclerodermic cells, A2Ar expression (RT-PCR, Western blotting) was evaluated together with the effects of A2A agonists and/or antagonists on collagen biosynthesis (EIA, Western blotting). Putative physical and functional interactions between the A2A and cannabinoid receptors were respectively assessed by co-immuno-precipitation and co-incubating the cells with the unselective cannabinoid agonist WIN55,212-2, and the selective A2A antagonist ZM-241385. In SSc fibroblasts, (1) the A2Ar is overexpressed and its occupancy with the selective agonist CGS-21680 increases collagen production, myofibroblast trans-differentiation, and ERK-1/2 phosphorylation; (2) the A2Ar forms an heteromer with the cannabinoid CB1 receptor; and (3) unselective cannabinoid receptor stimulation with a per se ineffective dose of WIN55,212-2, results in a marked anti-fibrotic effect after A2Ar blockage. In conclusion, A2Ar stimulation induces a pro-fibrotic phenotype in SSc dermal fibroblasts, either directly, and indirectly, by activating the CB1 cannabinoid receptor. These findings increase our knowledge of the pathophysiology of sclerodermic fibrosis also further suggesting a new therapeutic approach to the disease.

  10. Transactivation of the Receptor-tyrosine Kinase Ephrin Receptor A2 Is Required for the Low Molecular Weight Hyaluronan-mediated Angiogenesis That Is implicated in Tumor Progression*

    PubMed Central

    Lennon, Frances E; Mirzapoiazova, Tamara; Mambetsariev, Nurbek; Mambetsariev, Bolot; Salgia, Ravi; Singleton, Patrick A.

    2014-01-01

    Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression. PMID:25023279

  11. Leishmania amazonensis impairs DC function by inhibiting CD40 expression via A2B adenosine receptor activation.

    PubMed

    Figueiredo, Amanda B; Serafim, Tiago D; Marques-da-Silva, Eduardo A; Meyer-Fernandes, José R; Afonso, Luís C C

    2012-05-01

    Dendritic cells (DCs) play an essential role in the modulation of immune responses and several studies have evaluated the interactions between Leishmania parasites and DCs. While extracellular ATP exhibits proinflammatory properties, adenosine is an important anti-inflammatory mediator. Here we investigated the effects of Leishmania infection on DC responses and the participation of purinergic signalling in this process. Bone marrow-derived dendritic cells (BMDCs) from C57BL/6J mice infected with Leishmania amazonensis, Leishmania braziliensis or Leishmania major metacyclic promastigotes showed decreased major histocompatibility complex (MHC) class II and CD86 expression and increased ectonucleotidase expression as compared with uninfected cells. In addition, L. amazonensis-infected DCs, which had lower CD40 expression, exhibited a decreased ability to induce T-cell proliferation. The presence of MRS1754, a highly selective A(2B) adenosine receptor antagonist at the time of infection increased MHC class II, CD86 and CD40 expression in L. amazonensis-infected DCs and restored the ability of the infected DCs to induce T-cell proliferation. Similar results were obtained through the inhibition of extracellular ATP hydrolysis using suramin. In conclusion, we propose that A(2B) receptor activation may be used by L. amazonensis to inhibit DC function and evade the immune response. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    PubMed

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  13. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine.

    PubMed

    van der Walt, M M; Terre'Blanche, G

    2017-01-05

    Recent research exploring C8 substitution on the caffeine core identified 8-(2-phenylethyl)-1,3,7-trimethylxanthine as a non-selective adenosine receptor antagonist. To elaborate further, we included various C8 two-chain-length linkers to enhance adenosine receptor affinity. The results indicated that the unsubstituted benzyloxy linker (1e A1Ki = 1.52 μM) displayed the highest affinity for the A1 adenosine receptor and the para-chloro-substituted phenoxymethyl (1d A2AKi = 1.33 μM) linker the best A2A adenosine receptor affinity. The position of the oxygen revealed that the phenoxymethyl linker favoured A1 adenosine receptor selectivity over the benzyloxy linker and, by introducing a para-chloro substituent, A2A adenosine receptor selectivity was obtained. Selected compounds (1c, 1e) behaved as A1 adenosine receptor antagonists in GTP shift assays and therefore represent selective and non-selective A1 and A2A adenosine receptor antagonists that may have potential for treating neurological disorders.

  14. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons.

    PubMed

    Hernández-González, O; Hernández-Flores, T; Prieto, G A; Pérez-Burgos, A; Arias-García, M A; Galarraga, E; Bargas, J

    2014-01-01

    D(1)- and D(2)-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A(1)-type receptors are located in both neuron classes, and adenosine A(2A)-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca(2+)-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D(1)-type receptors increase, while D(2)-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca(2+)-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A(1)- and A(2A)-receptors have not been compared observing their actions on Ca(2+)-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca(2+)-currents by A(1)-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A(1)- and A2A-receptors. We demonstrate that A(1)-type receptors reduced Ca(2+)-currents in all SPNs tested. However, A(2A)-type receptors enhanced Ca(2+)-currents only in half tested neurons. Intriguingly, to observe the actions of A(2A)-type receptors, occupation of A(1)-type receptors had to occur first. However, A(1)-receptors decreased Ca(V)2 Ca(2+)-currents, while A(2A)-type receptors enhanced current through Ca(V)1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.

  15. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    PubMed

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca(2+) in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca(2+)-independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca(2+) complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca(2+)-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca(2+) on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca(2+) influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca(2+), a fact that might power agonist-mediated receptor internalization and function.

  16. Thromboxane A2 Regulates CXCL1 and CXCL8 Chemokine Expression in the Nasal Mucosa–Derived Fibroblasts of Chronic Rhinosinusitis Patients

    PubMed Central

    Tsai, Yih-Jeng; Hao, Sheng-Po; Chen, Chih-Li; Wu, Wen-Bin

    2016-01-01

    Background Chronic rhinosinusitis without nasal polyps (CRSsNP) is a common chronic disease and the etiology remains unclear. Thromboxane A2 (TXA2) participates in platelet aggregation and tissue inflammation. In this study, the CXCL1/8 chemokine and TXA2-TP receptor expression in the CRSsNP mucosa was investigated. Experimental Approach Immunohistochemistry, chemokine release assay by ELISA, RT-PCR, Real-time PCR, Western blotting, pharmacological and siRNA knockdown analysis were applied in the CRSsNP tissue specimen and cultured nasal mucosa-derived fibroblasts. Results The immunohistochemistry results indicated that CXCL1 and CXCL8 were highly expressed in the CRSsNP mucosa compared with the controls; however, the TP receptors were expressed in both mucosa. Therefore, U46619 and IBOP, a TXA2 analog and TP agonist, were used to explore the role of TP activation in CXCL1/8 expression; both of these induced CXCL1/8 mRNA and protein expression in CRSsNP mucosa-derived fibroblasts. U46619 phosphorylated PI-3K, cyclic AMP (cAMP)/PKA, PKC, and cAMP response element (CREB). Activation of cAMP/PKA, PKC, and CREB was the major pathway for cxcl1/8 gene transcription. Pharmacological and siRNA knockdown analyses revealed that activation of cAMP/PKA and PKCμ/PKD pathways were required for CREB phosphorylation and PKA/C crosstalked with the PI-3K pathway. Conclusion and Implications Our study provides the first evidence for abundant TP receptor and CXCL1/8 expression in human CRSsNP mucosa and for TXA2 stimulation inducing CXCL1/8 expression in nasal fibroblasts primarily through TP receptor, cAMP/PKA, PKCμ/PKD, and CREB-related pathways. PMID:27351369

  17. Blocking Synaptic Removal of GluA2-Containing AMPA Receptors Prevents the Natural Forgetting of Long-Term Memories.

    PubMed

    Migues, Paola Virginia; Liu, Lidong; Archbold, Georgina E B; Einarsson, Einar Ö; Wong, Jacinda; Bonasia, Kyra; Ko, Seung Hyun; Wang, Yu Tian; Hardt, Oliver

    2016-03-23

    The neurobiological processes underpinning the natural forgetting of long-term memories are poorly understood. Based on the critical role of GluA2-containing AMPA receptors (GluA2/AMPARs) in long-term memory persistence, we tested in rats whether their synaptic removal underpins time-dependent memory loss. We found that blocking GluA2/AMPAR removal with the interference peptides GluA23Y or G2CT in the dorsal hippocampus during a memory retention interval prevented the normal forgetting of established, long-term object location memories, but did not affect their acquisition. The same intervention also preserved associative memories of food-reward conditioned place preference that would otherwise be lost over time. We then explored whether this forgetting process could play a part in behavioral phenomena involving time-dependent memory change. We found that infusing GluA23Y into the dorsal hippocampus during a 2 week retention interval blocked generalization of contextual fear expression, whereas infusing it into the infralimbic cortex after extinction of auditory fear prevented spontaneous recovery of the conditioned response. Exploring possible physiological mechanisms that could be involved in this form of memory decay, we found that bath application of GluA23Y prevented depotentiation, but not induction of long-term potentiation, in a hippocampal slice preparation. Together, these findings suggest that a decay-like forgetting process that involves the synaptic removal of GluA2/AMPARs erases consolidated long-term memories in the hippocampus and other brain structures over time. This well regulated forgetting process may critically contribute to establishing adaptive behavior, whereas its dysregulation could promote the decline of memory and cognition in neuropathological disorders. The neurobiological mechanisms involved in the natural forgetting of long-term memory and its possible functions are not fully understood. Based on our previous work describing the

  18. TP53 mutation and survival in aggressive B cell lymphoma.

    PubMed

    Zenz, Thorsten; Kreuz, Markus; Fuge, Maxi; Klapper, Wolfram; Horn, Heike; Staiger, Annette M; Winter, Doris; Helfrich, Hanne; Huellein, Jennifer; Hansmann, Martin-Leo; Stein, Harald; Feller, Alfred; Möller, Peter; Schmitz, Norbert; Trümper, Lorenz; Loeffler, Markus; Siebert, Reiner; Rosenwald, Andreas; Ott, German; Pfreundschuh, Michael; Stilgenbauer, Stephan

    2017-10-01

    TP53 is mutated in 20-25% of aggressive B-cell lymphoma (B-NHL). To date, no studies have addressed the impact of TP53 mutations in prospective clinical trial cohorts. To evaluate the impact of TP53 mutation to current risk models in aggressive B-NHL, we investigated TP53 gene mutations within the RICOVER-60 trial. Of 1,222 elderly patients (aged 61-80 years) enrolled in the study and randomized to six or eight cycles of CHOP-14 with or without Rituximab (NCT00052936), 265 patients were analyzed for TP53 mutations. TP53 mutations were demonstrated in 63 of 265 patients (23.8%). TP53 mutation was associated with higher LDH (65% vs. 37%; p < 0.001), higher international prognostic index-Scores (IPI 4/5 27% vs. 12%; p = 0.025) and B-symptoms (41% vs. 24%; p = 0.011). Patients with TP53 mutation were less likely to obtain a complete remission CR/CRu (CR unconfirmed) 61.9% (mut) vs. 79.7% (wt) (p = 0.007). TP53 mutations were associated with decreased event-free (EFS), progression-free (PFS) and overall survival (OS) (median observation time of 40.2 months): the 3 year EFS, PFS and OS were 42% (vs. 60%; p = 0.012), 42% (vs. 67.5%; p < 0.001) and 50% (vs. 76%; p < 0.001) for the TP53 mutation group. In a Cox proportional hazard analysis adjusting for IPI-factors and treatment arms, TP53 mutation was shown to be an independent predictor of EFS (HR 1.5), PFS (HR 2.0) and OS (HR 2.3; p < 0.001). TP53 mutations are independent predictors of survival in untreated patients with aggressive CD20+ lymphoma. TP53 mutations should be considered for risk models in DLBCL and strategies to improve outcome for patients with mutant TP53 must be developed. © 2017 UICC.

  19. Binding of the novel nonxanthine A2A adenosine receptor antagonist [3H]SCH58261 to coronary artery membranes.

    PubMed

    Belardinelli, L; Shryock, J C; Ruble, J; Monopoli, A; Dionisotti, S; Ongini, E; Dennis, D M; Baker, S P

    1996-12-01

    This study demonstrates quantification of A2A adenosine receptors (A2AAdoRs) in membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells. Radioligand binding assays were performed using the new selective A2AAdoR antagonist radioligand [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo [4,3-epsilon]-1,2,4-triazolo[1,5-c)pyrimidine ([3H]SCH58261). Binding of the radioligand to membranes was rapid, reversible, and saturable. The densities of A2AAdoRs in membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells were 900 +/- 61, 892 +/- 35, and 959 +/- 76 fmol/mg protein, respectively. Equilibrium dissociation constants (Kd values) calculated from results of saturation binding assays were 2.19, 1.20, and 0.81 nmol/L, and Kd values calculated from results of association and dissociation assays were 2.42, 1.01, and 0.40 nmol/L for [3H]SCH58261 binding to membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells, respectively. The specific binding of [3H]SCH58261 as a percentage of total binding at a radioligand concentration equal to the Kd value was 65% to 90% in the three membrane preparations. The order of ligand potencies determined by assay of competition binding to sites in porcine coronary membranes using [3H]SCH58261, unlabeled antagonists (SCH58261, 8-(3-chlorostyryl)caffeine [CSC], and xanthine amine congener [XAC]), and unlabeled agonists ([3H]2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoaden osine [CGS 21680], 2-hexynyl-5'-N-ethylcarboxamidoadenosine [HE-NECA], [3H]5'-N-ethylcarboxamidoadenosine [NECA], and R(-)N6-(2-phenylisopropyl)adenosine [R-PIA]) was SCH58261 > HE-NECA = CSC = CGS 21680 = XAC > NECA = R-PIA. The Hill coefficients of displacement by A2AAdoR ligands of [3H]SCH58261 binding were not significantly different from unity, indicating that [3H]SCH58261 bound to a group of homogeneous noninteracting sites in all membrane preparations. The order of ligand

  20. Ex vivo Perfusion with Adenosine A2A Receptor Agonist Enhances Rehabilitation of Murine Donor Lungs after Circulatory Death

    PubMed Central

    Stone, Mathew L.; Sharma, Ashish K.; Mas, Valeria. R.; Gehrau, Ricardo C.; Mulloy, Daniel P.; Zhao, Yunge; Lau, Christine L.; Kron, Irving L.; Laubach, Victor E.

    2015-01-01

    Background Ex vivo lung perfusion (EVLP) enables assessment and rehabilitation of marginal donor lungs prior to transplantation. We previously demonstrated that adenosine A2A receptor (A2AR) agonism attenuates lung ischemia-reperfusion injury. The current study utilizes a novel murine EVLP model to test the hypothesis that A2AR agonist enhances EVLP-mediated rehabilitation of donation after circulatory death (DCD) lungs. Methods Mice underwent euthanasia and 60 min warm ischemia, and lungs were flushed with Perfadex and underwent cold static preservation (CSP, 60 min). Three groups were studied: no EVLP (CSP), EVLP with Steen solution for 60 min (EVLP), and EVLP with Steen solution supplemented with ATL1223, a selective A2AR agonist (EVLP+ATL1223). Lung function, wet/dry weight, cytokines and neutrophil numbers were measured. Microarrays were performed using the Affymetrix GeneChip Mouse Genome 430A 2.0 Array. Results EVLP significantly improved lung function versus CSP, which was further, significantly improved by EVLP+ATL1223. Lung edema, cytokines and neutrophil counts were reduced after EVLP and further, significantly reduced after EVLP+ATL1223. Gene array analysis revealed differential expression of 1,594 genes after EVLP, which comprise canonical pathways involved in inflammation and innate immunity including IL-1, IL-8, IL-6 and IL-17 signaling. Several pathways were uniquely regulated by EVLP+ATL1223 including the downregulation of genes involved in IL-1 signaling such as ADCY9, ECSIT, IRAK1, MAPK12 and TOLLIP. Conclusion EVLP modulates pro-inflammatory genes and reduces pulmonary dysfunction, edema and inflammation in DCD lungs, which are further reduced by A2AR agonism. This murine EVLP model provides a novel platform to study rehabilitative mechanisms of DCD lungs. PMID:26262504

  1. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia.

  2. Ex Vivo Perfusion With Adenosine A2A Receptor Agonist Enhances Rehabilitation of Murine Donor Lungs After Circulatory Death.

    PubMed

    Stone, Matthew L; Sharma, Ashish K; Mas, Valeria R; Gehrau, Ricardo C; Mulloy, Daniel P; Zhao, Yunge; Lau, Christine L; Kron, Irving L; Huerter, Mary E; Laubach, Victor E

    2015-12-01

    Ex vivo lung perfusion (EVLP) enables assessment and rehabilitation of marginal donor lungs before transplantation. We previously demonstrated that adenosine A2A receptor (A2AR) agonism attenuates lung ischemia-reperfusion injury. The current study utilizes a novel murine EVLP model to test the hypothesis that A2AR agonist enhances EVLP-mediated rehabilitation of donation after circulatory death (DCD) lungs. Mice underwent euthanasia and 60 minutes warm ischemia, and lungs were flushed with Perfadex and underwent cold static preservation (CSP, 60 minutes). Three groups were studied: no EVLP (CSP), EVLP with Steen solution for 60 minutes (EVLP), and EVLP with Steen solution supplemented with ATL1223, a selective A2AR agonist (EVLP + ATL1223). Lung function, wet/dry weight, cytokines and neutrophil numbers were measured. Microarrays were performed using the Affymetrix GeneChip Mouse Genome 430A 2.0 Array. Ex vivo lung perfusion significantly improved lung function versus CSP, which was further, significantly improved by EVLP + ATL1223. Lung edema, cytokines, and neutrophil counts were reduced after EVLP and further, significantly reduced after EVLP + ATL1223. Gene array analysis revealed differential expression of 1594 genes after EVLP, which comprise canonical pathways involved in inflammation and innate immunity including IL-1, IL-8, IL-6, and IL-17 signaling. Several pathways were uniquely regulated by EVLP + ATL1223 including the downregulation of genes involved in IL-1 signaling, such as ADCY9, ECSIT, IRAK1, MAPK12, and TOLLIP. Ex vivo lung perfusion modulates proinflammatory genes and reduces pulmonary dysfunction, edema, and inflammation in DCD lungs, which are further reduced by A2AR agonism. This murine EVLP model provides a novel platform to study rehabilitative mechanisms of DCD lungs.

  3. Activation of cytokine production by secreted phospholipase A2 in human lung macrophages expressing the M-type receptor.

    PubMed

    Granata, Francescopaolo; Petraroli, Angelica; Boilard, Eric; Bezzine, Sofiane; Bollinger, James; Del Vecchio, Luigi; Gelb, Michael H; Lambeau, Gerard; Marone, Gianni; Triggiani, Massimo

    2005-01-01

    Secreted phospholipases A(2) (sPLA(2)) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA(2)s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA(2)s induced TNF-alpha and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA(2)s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA(2) (bromophenacyl bromide-inactivated human sPLA(2) and the H48Q mutant of the porcine sPLA(2)) were as effective as the catalytically active sPLA(2)s in inducing cytokine production. HLM expressed the M-type receptor for sPLA(2)s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA(2) activity as well as binding to the M-type receptor, suppressed sPLA(2)-induced cytokine production. Incubation of HLM with the sPLA(2)s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA(2)s. In conclusion, two distinct sPLA(2)s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.

  4. Persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A2A receptors during extinction training in rats

    PubMed Central

    O’Neill, Casey E.; Hobson, Benjamin D.; Levis, Sophia C.; Bachtell, Ryan K.

    2014-01-01

    Rationale Adenosine receptor stimulation and blockade has been shown to modulate a variety of cocaine related behaviors. Objectives These studies identify the direct effects of adenosine receptor stimulation on cocaine seeking during extinction training and the persistent effects on subsequent reinstatement to cocaine seeking. Methods Rats self-administered cocaine on a fixed-ratio 1 schedule in daily sessions over 3 weeks. Following 1 week withdrawal, the direct effects of adenosine receptor modulation were tested by administering the adenosine A1 receptor agonist, CPA (0.03 mg/kg and 0.1 mg/kg), the adenosine A2A agonist, CGS 21680 (0.03 mg/kg and 0.1 mg/kg), the presynaptic adenosine A2A receptor antagonist, SCH 442416 (0.3 mg/kg, 1 mg/kg, and 3 mg/kg), or vehicle prior to each of 6 daily extinction sessions. The persistent effects of adenosine receptor modulation during extinction training were subsequently tested on reinstatement to cocaine seeking induced by cues, cocaine, and the dopamine D2 receptor agonist, quinpirole. Results All doses of CPA and CGS 21680 impaired initial extinction responding, however only CPA treatment during extinction produced persistent impairment in subsequent cocaine- and quinpirole-induced seeking. Dissociating CPA treatment from extinction did not alter extinction responding or subsequent reinstatement. Administration of SCH 442416 had no direct effects on extinction responding, but produced dose-dependent persistent impairment of cocaine- and quinpirole-induced seeking. Conclusions These findings demonstrate that adenosine A1 or A2A receptor stimulation directly impair extinction responding. Interestingly, adenosine A1 receptor stimulation or presynaptic adenosine A2A receptor blockade during extinction produces lasting changes in relapse susceptibility. PMID:24562064

  5. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis

    PubMed Central

    Aherne, CM; Saeedi, B; Collins, CB; Masterson, JC; McNamee, EN; Perrenoud, L; Rapp, CR; Curtis, VF; Bayless, A; Fletcher, A; Glover, LE; Evans, CM; Jedlicka, P; Furuta, GT; de Zoeten, EF; Colgan, SP; Eltzschig, HK

    2015-01-01

    Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b−/− mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre+) or intestinal epithelia (Adora2bfl/flVillinCre+) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses. PMID:25850656

  6. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S; Molina, Jose G; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-03-05

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.

  7. Synthesis of Ir(III) complexes with Tp(Me2) and acac ligands and their reactivity with electrophiles.

    PubMed

    Morales-Cerón, Judith P; Salazar-Pereda, Verónica; Mendoza-Espinosa, Daniel; Alvarado-Rodríguez, José G; Cruz-Borbolla, Julián; Andrade-López, Noemí; Vásquez-Pérez, José M

    2015-08-21

    The reaction of the bis(ethylene) complex [Tp(Me2)Ir(C2H4)2] () (Tp(Me2) = hydrotris(3,5-dimethylpyrazolyl)borate) with an excess of 2,4-pentanedione (acetylacetone, Hacac) at 70 °C produced a mixture of the Ir(iii) complex [Tp(Me2)Ir(acac)(C2H5)] () as a major product (67% yield) and two other side complexes [Tp(Me2)Ir(acac)(H)] () and [Tp(Me2)Ir(C9H14O2)] () in 20 and 13% yields, respectively. According to the proposed reaction mechanism and DFT calculations, complexes and are generated from an 18e(-) intermediate [Tp(Me2)Ir(C2H4)(acac)(C2H3)] () which undergoes either hydrogen insertion or β-hydride elimination followed by the subsequent loss of a molecule of ethylene. The lowest yielding complex which features a 2-iridafuran is presumably generated from an unusual thermal coupling between one vinylic and one acac moiety. The availability of the acidic α-proton of the acac ligand was tested by the treatment of complex with Br2 and Cu(NO3)2 rendering the substitution complexes [Tp(3-Br,Me2)Ir(3-Br-acac)Br] () and [Tp(Me2)Ir(3-NO2-acac)(C2H5)] () in good yields. The series of heteroleptic iridium(iii) compounds display air and moisture stability and have been characterized by NMR, IR, and elemental analyses, and, in the case of , and , by single-crystal X-ray diffraction analyses.

  8. TP53 — EDRN Public Portal

    Cancer.gov

    TP53, also widely known as p53, acts as a tumor suppressor in many tumor types, responding to diverse cellular stresses to regulate target genes that induce cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. It is involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. p53 protein is expressed at low level in normal cells and at a high level in a variety of transformed cell lines, where it's believed to contribute to transformation and malignancy. p53 is a DNA-binding protein containing transcription activation, DNA-binding, and oligomerization domains. It is postulated to bind to a p53-binding site and activate expression of downstream genes that inhibit growth and/or invasion, and thus function as a tumor suppressor. Mutants of p53 that frequently occur in a number of different human cancers fail to bind the consensus DNA binding site, and hence cause the loss of tumor suppressor activity. Multiple p53 variants due to alternative promoters and multiple alternative splicing have been found. These variants encode distinct isoforms, which can regulate p53 transcriptional activity.

  9. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway.

    PubMed

    Huang, Xiaoying; Zou, Lizhen; Yu, Xiaoming; Chen, Mayun; Guo, Rui; Cai, Hui; Yao, Dan; Xu, Xiaomei; Chen, Yanfan; Ding, Cheng; Cai, Xueding; Wang, Liangxing

    2015-05-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Salidroside, an active ingredient isolated from Rhodiola rosea is proposed to exert protective effects against PAH. However, the function of salidroside in PAH has not been investigated systematically and the underlying mechanisms are not clear. To investigate the effects of salidroside on PAH, the mice in chronic hypoxia model of PAH were given by an increasing concentration of salidroside (0, 16 mg/kg, 32 mg/kg, and 64 mg/kg). After salidroside treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary arterial remodeling were attenuated, suggesting a protective role played by salidroside in PAH. To explore the potential mechanisms, the apoptosis of PASMCs after salidroside treatment under hypoxia conditions were determined in vivo and in vitro, and also the mitochondria-dependent apoptosis factors, Bax, Bcl-2, cytochrome C, and caspase 9 were examined. The results revealed that salidroside reversed hypoxia-induced cell apoptosis resistance at least partially via a mitochondria-dependent pathway. In addition, salidroside upregulated the expression of adenosine A2a receptor (A2aR) in lung tissues of mice and in PASMCs in vitro after hypoxia exposure. Combined the evidence above, we conclude that salidroside can attenuate chronic hypoxia-induced PAH by promoting PASMCs apoptosis via an A2aR related mitochondria dependent pathway.

  10. Activation of Presynaptic GABAB(1a,2) Receptors Inhibits Synaptic Transmission at Mammalian Inhibitory Cholinergic Olivocochlear–Hair Cell Synapses

    PubMed Central

    Wedemeyer, Carolina; Zorrilla de San Martín, Javier; Ballestero, Jimena; Gómez-Casati, María Eugenia; Torbidoni, Ana Vanesa; Fuchs, Paul A.; Bettler, Bernhard; Elgoyhen, Ana Belén

    2013-01-01

    The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca2+-permeable postsynaptic α9α10 nicotinic receptors coupled to the opening of hyperpolarizing Ca2+-activated small-conductance type 2 (SK2)K+ channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs). Although the OC synapse is cholinergic, an abundant OC GABA innervation is present along the mammalian cochlea. The role of this neurotransmitter at the OC efferent innervation, however, is for the most part unknown. We show that GABA fails to evoke fast postsynaptic inhibitory currents in apical developing inner and outer hair cells. However, electrical stimulation of OC efferent fibers activates presynaptic GABAB(1a,2) receptors [GABAB(1a,2)Rs] that downregulate the amount of ACh released at the OC–hair cell synapse, by inhibiting P/Q-type VGCCs. We confirmed the expression of GABABRs at OC terminals contacting the hair cells by coimmunostaining for GFP and synaptophysin in transgenic mice expressing GABAB1–GFP fusion proteins. Moreover, coimmunostaining with antibodies against the GABA synthetic enzyme glutamic acid decarboxylase and synaptophysin support the idea that GABA is directly synthesized at OC terminals contacting the hair cells during development. Thus, we demonstrate for the first time a physiological role for GABA in cochlear synaptic function. In addition, our data suggest that the GABAB1a isoform selectively inhibits release at efferent cholinergic synapses. PMID:24068816

  11. A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists.

    PubMed

    Cristalli, G; Lambertucci, C; Marucci, G; Volpini, R; Dal Ben, D

    2008-01-01

    Since the discovery of the biological effects of adenosine, the development of potent and selective agonists and antagonists of adenosine receptors has been the subject of medicinal chemistry research for several decades, even if their clinical evaluation has been discontinued. Main problems include side effects due to the ubiquity of the receptors and the possibility of side effects, or to low brain penetration (in particular for the targeting of CNS diseases), short half-life of compounds, lack of effects. Furthermore, species differences in the affinity of ligands make difficult preclinical testing in animal models. Nevertheless, adenosine receptors continue to represent promising drug targets. A(2A) receptor has proved to be a promising pharmacological target for small synthetic ligands, and while A(2A) agonists are undergoing clinical trials for myocardial perfusion imaging and as anti-inflammatory agents, A(2A) antagonists represent an attractive field of research to discover new drugs for the treatment of neurodegenerative disorders, such as Parkinson's disease. Furthermore, the information coming from bioinformatics and molecular modeling studies for the A(2A) receptor has made easier the understanding of ligand-target interaction and the rational design of agonists and antagonists for this subtype. The aim of this review is to show an overview of the most significant steps and progresses in developing A(2A) adenosine receptor agonists and antagonists.

  12. A Pathogenic Mosaic TP53 Mutation in Two Germ Layers Detected by Next Generation Sequencing

    PubMed Central

    Williams, Richard D.; Side, Lucy; Hubank, Mike; West, Rebecca; Pearson, Katie; Sebire, Neil; Tarpey, Patrick; Futreal, Andrew; Brooks, Tony; Stratton, Michael R.; Anderson, John

    2014-01-01

    Background Li-Fraumeni syndrome is caused by germline TP53 mutations and is clinically characterized by a predisposition to a range of cancers, most commonly sarcoma, brain tumours and leukemia. Pathogenic mosaic TP53 mutations have only rarely been described. Methods and Findings We describe a 2 years old child presenting with three separate cancers over a 6 month period; two soft tissue mesenchymal tumors and an aggressive metastatic neuroblastoma. As conventional testing of blood DNA by Sanger sequencing for mutations in TP53, ALK, and SDH was negative, whole exome sequencing of the blood DNA of the patient and both parents was performed to screen more widely for cancer predisposing mutations. In the patient's but not the parents' DNA we found a c.743 G>A, p.Arg248Gln (CCDS11118.1) TP53 mutation in 3–20% of sequencing reads, a level that would not generally be detectable by Sanger sequencing. Homozygosity for this mutation was detected in all tumor samples analyzed, and germline mosaicism was demonstrated by analysis of the child's newborn blood spot DNA. The occurrence of separate tumors derived from different germ layers suggests that this de novo mutation occurred early in embryogenesis, prior to gastrulation. Conclusion The case demonstrates pathogenic mosaicim, detected by next generation deep sequencing, that arose in the early stages of embryogenesis. PMID:24810334

  13. Chronic oral administration of MPEP, an antagonist of mGlu5 receptor, during gestation and lactation alters mGlu5 and A2A receptors in maternal and neonatal brain.

    PubMed

    López-Zapata, Antonio; León-Navarro, David Agustín; Crespo, María; Albasanz, José Luis; Martín, Mairena

    2017-03-06

    Antidepressant and anxiolytic drugs are widely consumed even by pregnant and lactating women. The metabotropic glutamate receptor 5 (mGlu5) antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) exerts antidepressant- and anxiolytic-like actions. Given that treatment for anxiety and depression use to be prolonged in time, it is conceivable a possible modulation of metabotropic glutamate receptors (mGlu receptors) after prolonged MPEP exposure, which could also modify adenosine A2A receptors (A2AR) since functional cross-talk between them has been reported. Here we report that MPEP crosses placental barrier and reaches neonatal brain through maternal milk using LC-MS/MS methods. Therefore, we analyzed mGlu receptors, mainly mGlu5, and A2AR in both maternal and fetal brain after chronic maternal consumption of MPEP during gestation and/or lactation using radioligand binding, Western-blotting, real-time PCR and phospholipase C (PLC) activity assays. In maternal brain, chronic MPEP consumption caused a significant loss of mGlu, including mGlu5, and A2AR receptors level in plasma membrane. PLC activity assays showed that mGlu5 signaling pathway was desensitized. No variations on mRNA level coding A2AR, A1R and mGlu5 were found after MPEP treatments. In female neonatal brain, maternal consumption of MPEP caused a significant increase in mGlu, including mGlu5, and A2AR receptors level. Neither mGlu receptors nor A2AR were modified in male neonatal brain after maternal MPEP intake. Finally, neither molecular nor behavioral changes (anxiety- and depression-like behavior) were observed in 3-month-old female offspring. In summary, mGlu5 and A2AR are altered in both maternal and female neonatal brain after chronic maternal consumption of MPEP during gestation and/or lactation.

  14. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  15. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats.

    PubMed

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Todorov, Mihail Ivilinov; Kékesi, Katalin A; Juhász, Gábor; Aleksza, Magdolna; Kovács, Zsolt

    2016-06-01

    The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system.

  16. TP53 mutations in older adults with acute myeloid leukemia.

    PubMed

    Yanada, Masamitsu; Yamamoto, Yukiya; Iba, Sachiko; Okamoto, Akinao; Inaguma, Yoko; Tokuda, Masutaka; Morishima, Satoko; Kanie, Tadaharu; Mizuta, Shuichi; Akatsuka, Yoshiki; Okamoto, Masataka; Emi, Nobuhiko

    2016-04-01

    The net benefits of induction therapy for older adults with acute myeloid leukemia (AML) remain controversial. Because AML in older adults is a heterogeneous disease, it is important to identify those who are unlikely to benefit from induction therapy based on information available at the initial assessment. We used next-generation sequencing to analyze TP53 mutation status in AML patients aged 60 years or older, and evaluated its effects on outcomes. TP53 mutations were detected in 12 of 77 patients (16 %), and there was a significant association between TP53 mutations and monosomal karyotype. Patients with TP53 mutations had significantly worse survival than those without (P = 0.009), and multivariate analysis identified TP53 mutation status as the most significant prognostic factor for survival. Neverthelsess, TP53-mutated patients had a 42 % chance of complete remission and a median survival of 8.0 months, which compares favorably with those who did not undergo induction therapy, even in the short term. These results suggest that screening for TP53 mutations at diagnosis is useful for identifying older adults with AML who are least likely to respond to chemotherapy, although the presence of this mutation alone does not seem to justify rejecting induction therapy.

  17. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors.

    PubMed

    Seibt, Benjamin F; Schiedel, Anke C; Thimm, Dominik; Hinz, Sonja; Sherbiny, Farag F; Müller, Christa E

    2013-05-01

    The second extracellular loop (EL2) of G protein-coupled receptors (GPCRs), which represent important drug targets, may be involved in ligand recognition and receptor activation. We studied the closely related adenosine receptor (AR) subtypes A2A and A2B by exchanging the complete EL2 of the human A2BAR for the EL2 of the A2AAR. Furthermore, single amino acid residues (Asp148(45.27), Ser149(45.28), Thr151(45.30), Glu164(45.43), Ser165(45.44), and Val169(45.48)) in the EL2 of the A2BAR were exchanged for alanine. The single mutations did not lead to any major effects, except for the T151A mutant, at which NECA showed considerably increased efficacy. The loop exchange entailed significant effects: The A2A-selective agonist CGS21680, while being completely inactive at A2BARs, showed high affinity for the mutant A2B(EL2-A2A)AR, and was able to fully activate the receptor. Most strikingly, all agonists investigated (adenosine, NECA, BAY60-6583, CGS21680) showed strongly increased efficacies at the mutant A2B(EL2-A2A) as compared to the wt AR. Thus, the EL2 of the A2BAR appears to have multiple functions: besides its involvement in ligand binding and subtype selectivity it modulates agonist-bound receptor conformations thereby controlling signalling efficacy. This role of the EL2 is likely to extend to other members of the GPCR family, and the EL2 of GPCRs appears to be an attractive target structure for drugs.

  18. High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases.

    PubMed

    Nayeem, Mohammed A; Ponnoth, Dovenia S; Boegehold, Matthew A; Zeldin, Darryl C; Falck, John R; Mustafa, S Jamal

    2009-03-01

    We hypothesize that A(2A) adenosine receptors (A(2A) AR) promote aortic relaxation in mice through cytochrome P450 (CYP)-epoxygenases and help to avoid salt sensitivity. Aortas from male mice maintained on a high-salt (HS; 7% NaCl) or normal-salt (NS; 0.45% NaCl) diet for 4-5 wks were used. Concentration-response curves (10(-11)-10(-5) M) for 5'-N-ethylcarboxamidoadenosine (NECA; a nonselective adenosine analog) and CGS 21680 (A(2A) AR agonist) were obtained with different antagonists including ZM 241385 (A(2A) AR antagonist; 10(-6) M), SCH 58261 (A(2A) AR antagonist; 10(-6) M), N(omega)-nitro-l-arginine methyl ester (l-NAME; endothelial nitric oxide synthase inhibitor; 10(-4) M) and inhibitors including methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; CYP epoxygenases inhibitor; 10(-5)M), 14,15-epoxyeicosa-5(z)-enoic acid (14,15-EEZE; EET antagonist; 10(-5)M), dibromo-dodecenyl-methylsulfimide (DDMS; CYP4A inhibitor; 10(-5)M), and HET0016 (20-HETE inhibitor; 10(-5)M). At 10(-7) M of NECA, significant relaxation in HS (+22.58 +/- 3.12%) was observed compared with contraction in NS (-10.62 +/- 6.27%, P < 0.05). ZM 241385 changed the NECA response to contraction (P < 0.05) in HS. At 10(-7) M of CGS 21680, significant relaxation in HS (+32.04 +/- 3.08%) was observed compared with NS (+10.45 +/- 1.34%, P < 0.05). SCH 58261, l-NAME, MS-PPOH, and 14,15-EEZE changed the CGS 21680-induced relaxation to contraction (P < 0.05) in HS. Interestingly, DDMS and HET0016 changed CGS 21680 response to relaxation (P < 0.05) in NS; however, there was no significant difference found between DDMS, HET0016-treated HS and NS vs. nontreated HS group (P > 0.05). CYP2C29 protein was 55% and 74% upregulated in HS vs. NS (P < 0.05) mice aorta and kidney, respectively. CYP4A protein was 30.30% and 35.70% upregulated in NS vs. HS (P < 0.05) mice aorta and kidneys, respectively. A(1) AR was downregulated, whereas A(2A) AR was upregulated in HS compared with NS. These data suggest that HS

  19. High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases

    PubMed Central

    Nayeem, Mohammed A.; Ponnoth, Dovenia S.; Boegehold, Matthew A.; Zeldin, Darryl C.; Falck, John R.; Mustafa, S. Jamal

    2009-01-01

    We hypothesize that A2A adenosine receptors (A2A AR) promote aortic relaxation in mice through cytochrome P450 (CYP)-epoxygenases and help to avoid salt sensitivity. Aortas from male mice maintained on a high-salt (HS; 7% NaCl) or normal-salt (NS; 0.45% NaCl) diet for 4–5 wks were used. Concentration-response curves (10−11–10−5 M) for 5′-N-ethylcarboxamidoadenosine (NECA; a nonselective adenosine analog) and CGS 21680 (A2A AR agonist) were obtained with different antagonists including ZM 241385 (A2A AR antagonist; 10−6 M), SCH 58261 (A2A AR antagonist; 10−6 M), Nω-nitro-l-arginine methyl ester (l-NAME; endothelial nitric oxide synthase inhibitor; 10−4 M) and inhibitors including methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; CYP epoxygenases inhibitor; 10−5M), 14,15-epoxyeicosa-5(z)-enoic acid (14,15-EEZE; EET antagonist; 10−5M), dibromo-dodecenyl-methylsulfimide (DDMS; CYP4A inhibitor; 10−5M), and HET0016 (20-HETE inhibitor; 10−5M). At 10−7 M of NECA, significant relaxation in HS (+22.58 ± 3.12%) was observed compared with contraction in NS (−10.62 ± 6.27%, P < 0.05). ZM 241385 changed the NECA response to contraction (P < 0.05) in HS. At 10−7 M of CGS 21680, significant relaxation in HS (+32.04 ± 3.08%) was observed compared with NS (+10.45 ± 1.34%, P < 0.05). SCH 58261, l-NAME, MS-PPOH, and 14,15-EEZE changed the CGS 21680-induced relaxation to contraction (P < 0.05) in HS. Interestingly, DDMS and HET0016 changed CGS 21680 response to relaxation (P < 0.05) in NS; however, there was no significant difference found between DDMS, HET0016-treated HS and NS vs. nontreated HS group (P > 0.05). CYP2C29 protein was 55% and 74% upregulated in HS vs. NS (P < 0.05) mice aorta and kidney, respectively. CYP4A protein was 30.30% and 35.70% upregulated in NS vs. HS (P < 0.05) mice aorta and kidneys, respectively. A1 AR was downregulated, whereas A2A AR was upregulated in HS compared with NS. These data suggest that HS may activate CYP2

  20. Wound healing effects of noni (Morinda citrifolia L.) leaves: a mechanism involving its PDGF/A2A receptor ligand binding and promotion of wound closure.