Sample records for a2 scenario results

  1. Comparison of the results of climate change impact assessment between RCP8.5 and SSP2 scenarios

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Park, J. H.; Park, C.; Kim, S.

    2017-12-01

    Climate change scenarios are mainly published by the Intergovernmental Panel on Climate Change (IPCC), and include SRES (Special Report on Emission Scenario) scenarios (IPCC Third Report), RCP (Representative Concentration Pathways) scenarios (IPCC 5th Report), and SSP (Shared Socioeconomic Pathways) scenarios. Currently widely used RCP scenarios are based on how future greenhouse gas concentrations will change. In contrast, SSP scenarios are that predict how climate change will change in response to socio-economic indicators such as population, economy, land use, and energy change. In this study, based on RCP 8.5 climate data, we developed a new Korean scenario using the future social and economic scenarios of SSP2. In the development of the scenario, not only Korea's emissions but also China and Japan's emissions were considered in terms of space. In addition, GHG emissions and air pollutant emissions were taken into consideration. Using the newly developed scenarios, the impacts assessments of the forest were evaluated and the impacts were evaluated using the RCP scenarios. The average precipitation is similar to the SSP2 scenario and the RCP8.5 scenario, but the SSP2 scenario shows the maximum value is lower than RCP8.5 scenario. This is because the SSP2 scenario simulates the summer precipitation weakly. The temperature distribution is similar for both scenarios, and it can be seen that the average temperature in the 2090s is higher than that in the 2050s. At present, forest net primary productivity of Korea is 693 tC/km2, and it is 679 tC/km2 when SSP2 scenario is applied. Also, the damage of forest by ozone is about 4.1-5.1%. On the other hand, when SSP2 scenario is applied, the forest net primary productivity of Korea is 607 tC/km2 and the forest net primary productivity of RCP8.5 scenario is 657 tC/km2. The analysis shows that the damage caused by climate change is reduced by 14.2% for the SSP2 scenario and 6.9% for the RCP8.5 scenario. The damage caused

  2. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    DOE PAGES

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; ...

    2016-05-17

    The Arctic temperature response to emissions of aerosols – specifically black carbon (BC), organic carbon (OC), and sulfate – depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions frommore » the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO 2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO 2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. As a result, a properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions – while simultaneously working toward longer-term goals of CO 2 mitigation – could potentially avoid some amount of short-term Arctic warming.« less

  3. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  4. Misrepresentation of the IPCC CO2 emission scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Martin; Edmonds, James A.; Emori, S.

    2010-06-01

    Estimates of recent fossil fuel CO2 emissions have been compared with the IPCC SRES (Special Report on Emission Scenarios) emission scenarios that had been developed for analysis of future climate change, impacts and mitigation. In some cases this comparison uses averages across subgroups of SRES scenarios and for one category of greenhouse gases (industrial sources of CO2). That approach can be misleading and cause confusion as it is inconsistent with many of the papers on future climate change projections that are based on a specific subset of closely scrutinized SRES scenarios, known as illustrative marker scenarios. Here, we show thatmore » comparison between recent estimates of fossil fuel emissions trends and the SRES illustrative marker scenarios leads to the conclusion that recent trends are not outside the SRES range. Furthermore, the recent economic downturn appears to have brought actual emission back toward the middle of the SRES illustrative marker scenarios. We also note that SRES emission scenarios are designed to reflect potential alternative long-term trends in a world without climate policy intervention and the trend in the resulting climate change is not sensitive to short-term fluctuations.« less

  5. Future reef decalcification under a business-as-usual CO2 emission scenario

    PubMed Central

    Dove, Sophie G.; Kline, David I.; Pantos, Olga; Angly, Florent E.; Tyson, Gene W.; Hoegh-Guldberg, Ove

    2013-01-01

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century. PMID:24003127

  6. Future reef decalcification under a business-as-usual CO2 emission scenario.

    PubMed

    Dove, Sophie G; Kline, David I; Pantos, Olga; Angly, Florent E; Tyson, Gene W; Hoegh-Guldberg, Ove

    2013-09-17

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.

  7. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050

    NASA Astrophysics Data System (ADS)

    Eyring, V.; KöHler, H. W.; Lauer, A.; Lemper, B.

    2005-09-01

    In this study the today's fleet-average emission factors of the most important ship exhausts are used to calculate emission scenarios for the future. To develop plausible future technology scenarios, first upcoming regulations and compliance with future regulations through technological improvements are discussed. We present geographically resolved emission inventory scenarios until 2050, based on a mid-term prognosis for 2020 and a long-term prognosis for 2050. The scenarios are based on some very strict assumptions on future ship traffic demands and technological improvements. The four future ship traffic demand scenarios are mainly determined by the economic growth, which follows the IPCC SRES storylines. The resulting fuel consumption is projected through extrapolations of historical trends in economic growth, total seaborne trade and number of ships, as well as the average installed power per ship. For the future technology scenarios we assume a diesel-only fleet in 2020 resulting in fuel consumption between 382 and 409 million metric tons (Mt). For 2050 one technology scenario assumes that 25% of the fuel consumed by a diesel-only fleet can be saved by applying future alternative propulsion plants, resulting in a fuel consumption that varies between 402 and 543 Mt. The other scenario is a business-as-usual scenario for a diesel-only fleet even in 2050 and gives an estimate between 536 and 725 Mt. Dependent on how rapid technology improvements for diesel engines are introduced, possible technology reduction factors are applied to the today's fleet-average emission factors of all important species to estimate future ship emissions. Combining the four traffic demand scenarios with the four technology scenarios, our results suggest emissions between 8.8 and 25.0 Tg (NO2) in 2020, and between 3.1 to 38.8 Tg (NO2) in 2050. The development of forecast scenarios for CO2, NOx, SOx, CO, hydrocarbons, and particulate matter is driven by the requirements for global model

  8. Using Formative Scenario Analysis approach for landslide risk analysis in a relatively scarce data environment: preliminary results

    NASA Astrophysics Data System (ADS)

    Zumpano, Veronica; Balteanu, Dan; Mazzorana, Bruno; Micu, Mihai

    2014-05-01

    literature these typical movements has been described as alunecare curgatoare. The Formative Scenario Analysis approach will be applied for each component of risk (H,V,and A) and then the acquired states will be combined in order to obtain for obtaining a series of alternatives scenarios for risk. The approach is structured in two main sections corresponding to a level of influence of conditioning factors and a response. In this latter are obtained the results of the formative scenario approach trained with the conditioning factors of the first level. These factors are divided in two subsets representing 2 levels of influences, k=1 comprises the global factors while in k=2 one finds local factors. In order to include uncertainty estimation within the analysis the method of knowledge representation type-1 fuzzy sets is introduced and hence decisions made by experts on certain events are expressed in terms of triangular fuzzy numbers.

  9. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures

    NASA Astrophysics Data System (ADS)

    Nativi, Stefano; Santoro, Mattia

    2010-05-01

    In the last years, scientific community is producing great efforts in order to study the effects of climate change on life on Earth. In this general framework, a key role is played by the impact of climate change on biodiversity. To assess this, several use scenarios require the modeling of climatological change impact on the regional distribution of biodiversity species. Designing and developing interoperability infrastructures which enable scientists to search, discover, access and use multi-disciplinary resources (i.e. datasets, services, models, etc.) is currently one of the main research fields for the Earth and Space Science Informatics. This presentation introduces and discusses an interoperability infrastructure which implements the discovery, access, and chaining of loosely-coupled resources in the climatology and biodiversity domains. This allows to set up and run forecast and processing models. The presented framework was successfully developed and experimented in the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2) Climate Change & Biodiversity thematic Working Group. This interoperability infrastructure is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components

  10. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Santoro, M.

    2009-12-01

    Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access

  11. Integrating Climate Change Scenarios and Co-developed Policy Scenarios to Inform Coastal Adaptation: Results from a Tillamook County, Oregon Knowledge to Action Network

    NASA Astrophysics Data System (ADS)

    Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.

    2014-12-01

    Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The

  12. TCL2 Ocean Scenario Replay

    NASA Technical Reports Server (NTRS)

    Mohlenbrink, Christoph P.; Omar, Faisal Gamal; Homola, Jeffrey R.

    2017-01-01

    This is a video replay of system data that was generated from the UAS Traffic Management (UTM) Technical Capability Level (TCL) 2 flight demonstration in Nevada and rendered in Google Earth. What is depicted in the replay is a particular set of flights conducted as part of what was referred to as the Ocean scenario. The test range and surrounding area are presented followed by an overview of operational volumes. System messaging is also displayed as well as a replay of all of the five test flights as they occurred.

  13. Assessing global fossil fuel availability in a scenario framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Nico; Hilaire, Jérôme; Brecha, Robert J.

    This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to includemore » alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.« less

  14. Dark matter scenarios with multiple spin-2 fields

    NASA Astrophysics Data System (ADS)

    González Albornoz, N. L.; Schmidt-May, Angnis; von Strauss, Mikael

    2018-01-01

    We study ghost-free multimetric theories for (N+1) tensor fields with a coupling to matter and maximal global symmetry group SN×(Z2)N. Their mass spectra contain a massless mode, the graviton, and N massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining (N‑1) massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case N=2. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.

  15. GRB 090423 IN the Fireshell Scenario: a Canonical GRB at Redshift 8.2

    NASA Astrophysics Data System (ADS)

    Izzo, Luca; Bernardini, Maria Grazia; Bianco, Carlo Luciano; Caito, Letizia; Patricelli, Barbara; Ruffini, Remo

    GRB 090423 is the farthest GRB up to date, with a redshift of about 8.1. We present within the Fireshell scenario a complete analysis of this GRB in the γ-ray band and a detailed analysis also in the X-rays, where we note the existence of a second component. We obtain that the FireShell model gives a good indication for the energetic emitted in the burst, Etot = 1:2x1053 ergs. Moreover we note that GRB 090423 is a long GRB with a relatively high bulk Lorentz Gamma factor at the transparency of the Fireshell. Finally we present a study of this extra component in the context of the synchrotron emission scenario, delineated in.8

  16. Cost-effectiveness of alternative smoking cessation scenarios in Spain: results from the EQUIPTMOD.

    PubMed

    Trapero-Bertran, Marta; Muñoz, Celia; Coyle, Kathryn; Coyle, Doug; Lester-George, Adam; Leidl, Reiner; Németh, Bertalan; Cheung, Kei-Long; Pokhrel, Subhash; Lopez-Nicolás, Ángel

    2018-03-13

    To assess the cost-effectiveness of alternative smoking cessation scenarios from the perspective of the Spanish National Health Service (NHS). We used the European study on Quantifying Utility of Investment in Protection from Tobacco model (EQUIPTMOD), a Markov-based state transition economic model, to estimate the return on investment (ROI) of: (a) the current provision of smoking cessation services (brief physician advice and printed self-helped material + smoking ban and tobacco duty at current levels); and (b) four alternative scenarios to complement the current provision: coverage of proactive telephone calls; nicotine replacement therapy (mono and combo) [prescription nicotine replacement therapy (Rx NRT)]; varenicline (standard duration); or bupropion. A rate of 3% was used to discount life-time costs and benefits. Spain. Adult smoking population (16+ years). Health-care costs associated with treatment of smoking attributable diseases (lung cancer, coronary heart disease, chronic obstructive pulmonary infection and stroke); intervention costs; quality-adjusted life years (QALYs). Costs and outcomes were summarized using various ROI estimates. The cost of implementing the current provision of smoking cessation services is approximately €61 million in the current year. This translates to 18 quitters per 1000 smokers and a life-time benefit-cost ratio of 5, compared with no such provision. All alternative scenarios were dominant (cost-saving: less expensive to run and generated more QALYs) from the life-time perspective, compared with the current provision. The life-time benefit-cost ratios were: 1.87 (proactive telephone calls); 1.17 (Rx NRT); 2.40 (varenicline-standard duration); and bupropion (2.18). The results remained robust in the sensitivity analysis. According to the EQUIPTMOD modelling tool it would be cost-effective for the Spanish authorities to expand the reach of existing GP brief interventions for smoking cessation, provide pro-active telephone

  17. Modeling Future Land Use Scenarios in South Korea: Applying the IPCC Special Report on Emissions Scenarios and the SLEUTH Model on a Local Scale

    NASA Astrophysics Data System (ADS)

    Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik

    2015-05-01

    This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.

  18. Modeling future land use scenarios in South Korea: applying the IPCC special report on emissions scenarios and the SLEUTH model on a local scale.

    PubMed

    Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik

    2015-05-01

    This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of 'best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.

  19. NPE 2010 results - Independent performance assessment by simulated CTBT violation scenarios

    NASA Astrophysics Data System (ADS)

    Ross, O.; Bönnemann, C.; Ceranna, L.; Gestermann, N.; Hartmann, G.; Plenefisch, T.

    2012-04-01

    earthquakes by seismological analysis. The remaining event at Black Thunder Mine, Wyoming, on 23 Oct at 21:15 UTC showed clear explosion characteristics. It caused also Infrasound detections at one station in Canada. An infrasonic one station localization algorithm led to event localization results comparable in precision to the teleseismic localization. However, the analysis of regional seismological stations gave the most accurate result giving an error ellipse of about 60 square kilometer. Finally a forward ATM simulation was performed with the candidate event as source in order to reproduce the original detection scenario. The ATM results showed a simulated station fingerprint in the IMS very similar to the fictitious detections given in the NPE 2010 scenario which is an additional confirmation that the event was correctly identified. The shown event analysis of the NPE 2010 serves as successful example for Data Fusion between the technology of radionuclide detection supported by ATM and seismological methodology as well as infrasound signal processing.

  20. Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data.

    PubMed

    Wang, Shaojian; Fang, Chuanglin; Li, Guangdong

    2015-01-01

    This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China's CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995-2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions.

  1. Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data

    PubMed Central

    Wang, Shaojian

    2015-01-01

    This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China’s CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995–2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions. PMID:26397373

  2. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  3. Future climate change under RCP emission scenarios with GISS ModelE2

    DOE PAGES

    Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; ...

    2015-02-24

    We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101–2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmosphericmore » version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5° C relative to 1850–1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 °C threshold at the end of the 21st century. For RCP8.5, the range is 3.5–4.5° C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO₂, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the

  4. Student experience of a scenario-centred curriculum

    NASA Astrophysics Data System (ADS)

    Bell, Sarah; Galilea, Patricia; Tolouei, Reza

    2010-06-01

    In 2006 UCL implemented new scenario-centred degree programmes in Civil and Environmental Engineering. The new curriculum can be characterised as a hybrid of problem-based, project-based and traditional approaches to learning. Four times a year students work in teams for one week on a scenario which aims to integrate learning from lecture and laboratory classes and to develop generic skills including team working and communication. Student experience of the first two years the old and new curricula were evaluated using a modified Course Experience Questionnaire. The results showed that students on the new programme were motivated by the scenarios and perceived better generic skills development, but had a lower perception of teaching quality and the development of design skills. The results of the survey support the implementation new curriculum but highlight the importance of strong integration between conventional teaching and scenarios, and the challenges of adapting teaching styles to suit.

  5. Spatial-temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 °C warming scenarios across China

    NASA Astrophysics Data System (ADS)

    Zhai, Ran; Tao, Fulu; Xu, Zhihui

    2018-06-01

    The Paris Agreement set a long-term temperature goal of holding the global average temperature increase to below 2.0 °C above pre-industrial levels, pursuing efforts to limit this to 1.5 °C; it is therefore important to understand the impacts of climate change under 1.5 and 2.0 °C warming scenarios for climate adaptation and mitigation. Here, climate scenarios from four global circulation models (GCMs) for the baseline (2006-2015), 1.5, and 2.0 °C warming scenarios (2106-2115) were used to drive the validated Variable Infiltration Capacity (VIC) hydrological model to investigate the impacts of global warming on runoff and terrestrial ecosystem water retention (TEWR) across China at a spatial resolution of 0.5°. This study applied ensemble projections from multiple GCMs to provide more comprehensive and robust results. The trends in annual mean temperature, precipitation, runoff, and TEWR were analyzed at the grid and basin scale. Results showed that median change in runoff ranged from 3.61 to 13.86 %, 4.20 to 17.89 %, and median change in TEWR ranged from -0.45 to 6.71 and -3.48 to 4.40 % in the 10 main basins in China under 1.5 and 2.0 °C warming scenarios, respectively, across all four GCMs. The interannual variability of runoff increased notably in areas where it was projected to increase, and the interannual variability increased notably from the 1.5 to the 2.0 °C warming scenario. In contrast, TEWR would remain relatively stable, the median change in standard deviation (SD) of TEWR ranged from -10 to 10 % in about 90 % grids under 1.5 and 2.0 °C warming scenarios, across all four GCMs. Both low and high runoff would increase under the two warming scenarios in most areas across China, with high runoff increasing more. The risks of low and high runoff events would be higher under the 2.0 than under the 1.5 °C warming scenario in terms of both extent and intensity. Runoff was significantly positively correlated to precipitation, while increase in maximum

  6. Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill.

    PubMed

    Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2017-01-01

    In this work different biorefinery scenarios were investigated, concerning the co-production of bioethanol and electricity from available lignocellulose at a typical sugar mill, as possible extensions to the current combustion of bagasse for steam and electricity production and burning trash on-filed. In scenario 1, the whole bagasse and brown leaves is utilized in a biorefinery and coal is burnt in the existing inefficient sugar mill boiler. Scenario 2 & 3 are assumed with a new centralized CHP unit without/with coal co-combustion, respectively. Also, through scenarios 4 & 5, the effect of water insoluble loading were studied. All scenarios provided energy for the sugarmill and the ethanol plant, with the export of surplus electricity. Economic analysis determined that scenario 1 was the most viable scenario due to less capital cost and economies-of scale. Based on Life Cycle Assessment (LCA) results, scenario 2 outperformed the other scenarios, while three scenarios showed lower contribution to environmental burdens than the current situation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Futures of elderly care in Iran: A protocol with scenario approach.

    PubMed

    Goharinezhad, Salime; Maleki, Mohammadreza; Baradaran, Hamid Reza; Ravaghi, Hamid

    2016-01-01

    Background: The number of people aged 60 and older is increasing faster than other age groups worldwide. Iran will experience a sharp aging population increase in the next decades, and this will pose new challenges to the healthcare system. Since providing high quality aged-care services would be the major concern of the policymakers, this question arises that what types of aged care services should be organized in the coming 10 years? This protocol has been designed to develop a set of scenarios for the future of elderly care in Iran. Methods: In this study, intuitive logics approach and Global Business Network (GBN) model were used to develop scenarios for elderly care in Iran. In terms of perspective, the scenarios in this approach are normative, qualitative with respect to methodology and deductive in constructing the process of scenarios. The three phases of GBN model are as follows: 1) Orientation: Identifying strategic levels, stakeholders, participants and time horizon; 2) Exploration: Identifying the driving forces and key uncertainties; 3) Synthesis: Defining the scenario logics and constructing scenario storyline. Results: Presently, two phases are completed and the results will be published in mid-2016. Conclusion: This study delivers a comprehensive framework for taking appropriate actions in providing care for the elderly in the future. Moreover, policy makers should specify and provide the full range of services for the elderly, and in doing so, the scenarios and key findings of this study could be of valuable help.

  8. Effect of Additional Incentives for Aviation Biofuels: Results from the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J; Newes, Emily K

    2017-12-05

    The National Renewable Energy Laboratory supported the Department of Energy, Bioenergy Technologies Office, with analysis of alternative jet fuels in collaboration with the U.S. Department of Transportation, Federal Aviation Administration. Airlines for America requested additional exploratory scenarios within FAA analytic framework. Airlines for America requested additional analysis using the same analytic framework, the Biomass Scenario Model. The results were presented at a public working meeting of the California Air Resources Board on including alternative jet fuel in the Low Carbon Fuel Standard on March 17, 2017 (https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/lcfs_meetings.htm). This presentation clarifies and annotates the slides from the public working meeting, andmore » provides a link to the full data set. NREL does not advocate for or against the policies analyzed in this study.« less

  9. Effect of Additional Incentives for Aviation Biofuels: Results from the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J; Newes, Emily K

    The National Renewable Energy Laboratory supported the Department of Energy, Bioenergy Technologies Office, with analysis of alternative jet fuels in collaboration with the U.S. Department of Transportation, Federal Aviation Administration. Airlines for America requested additional exploratory scenarios within FAA analytic framework. Airlines for America requested additional analysis using the same analytic framework, the Biomass Scenario Model. The results were presented at a public working meeting of the California Air Resources Board on including alternative jet fuel in the Low Carbon Fuel Standard on March 17, 2017 (https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/lcfs_meetings.htm). This presentation clarifies and annotates the slides from the public working meeting, andmore » provides a link to the full data set. NREL does not advocate for or against the policies analyzed in this study.« less

  10. 2016 Standard Scenarios Report: A U.S. Electricity Sector Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Mai, Trieu; Logan, Jeffrey

    The Standard Scenarios and this associated report, which are now in their second year, present an examination of some of the key aspects of the change occurring, or anticipated to occur, in the power sector over the next several decades. The Standard Scenarios consist of 18 power sector scenarios which have been projected using the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) long-term capacity expansion model and the dGen rooftop PV diffusion model. The purpose of the Standard Scenarios and this associated report is to provide context, discussion, and data to inform stakeholder decision-making regarding the futuremore » direction of U.S. power sector. As an extension to this report, the Standard Scenario outputs are presented in a downloadable format online using the Standard Scenarios' Results Viewer at http://en.openei.org/apps/reeds/. This report reflects high-level conclusions and analysis, whereas the Standard Scenarios' Results Viewer includes the scenario results that can be used for more in-depth analysis.« less

  11. Impacts on regional climate of an afforestation scenario under a +2°C global warming climate

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Noblet-Ducoudré Nathalie, de; Marc, Stéfanon

    2017-04-01

    Through surface-atmosphere interactions (SAI), land-use and land-cover changes (LULCCs) alter atmospheric conditions with effects on climate at different scales, from local/regional (a few ten kilometres) (Pielke et al., 2011) to global scales (a few hundred kilometres) (Mahmood et al., 2014). Focusing on the regional scale, in the context of climate change, LULCCs may either enhance or dampen climate impacts via changes in SAI they may initiate. Those LULCC-driven atmospheric impacts could in turn influence e.g. the functioning of terrestrial ecosystems, with consequences on mitigation and adaptation strategies. Despite LULCC impacts on regional climate are largely discussed in the literature, in Europe information is missing on LULCC impacts under future climate conditions on a country scale (Galos et al., 2015). The latest COPs have urged the scientific community to explore the impacts of reduced global warming (1.5°C to a +2°C) on the Earth system. LULCCs will be one major tool to achieve such targets. In this framework, we investigate impacts on regional climate of a modified landscape under a +2°C climatic scenario. To this purpose, we performed sensitivity studies over western Europe with a fully coupled land-atmosphere regional climate model, WRF-ORCHIDEE (Drobinski et al., 2012, Stefanon et al., 2014). A +2°C scenario was selected among those proposed by the "Impact2C" project (Vautard et al., 2014), and the afforested land-cover scenario proposed in the RCP4.5 is prescribed. We have chosen the maximum extent of forest RCP4.5 simulates for Europe at the end of the 21st century. WRF-ORCHIDEE is fed with boundary atmospheric conditions from the global climate model LMDZ for PD (1971-2000) and the +2°C warming period for the LMDZ model (2028-2057). Preliminary results over the target domain show that, under a +2°C global warming scenario, afforestation contributes by 2% to the total warming due to both climate change and LULCCs. During summer, the

  12. FTM-West Model Results for Selected Fuel Treatment Scenarios

    Treesearch

    Andrew D. Kramp; Peter J. Ince

    2006-01-01

    This paper evaluated potential forest product market impacts in the U.S. West of increases in the supply of wood from thinnings to reduce fire hazard. Evaluations are done using the Fuel Treatment Market-West model for a set of hypothetical fuel treatment scenarios, which include stand-density-index (SDI) and thin-from-below (TFB) treatment regimes at alternative...

  13. Interpreting energy scenarios

    NASA Astrophysics Data System (ADS)

    Iyer, Gokul; Edmonds, James

    2018-05-01

    Quantitative scenarios from energy-economic models inform decision-making about uncertain futures. Now, research shows the different ways these scenarios are subsequently used by users not involved in their initial development. In the absence of clear guidance from modellers, users may place too much or too little confidence in scenario assumptions and results.

  14. Flying into the future: aviation emissions scenarios to 2050.

    PubMed

    Owen, Bethan; Lee, David S; Lim, Ling

    2010-04-01

    This study describes the methodology and results for calculating future global aviation emissions of carbon dioxide and oxides of nitrogen from air traffic under four of the IPCC/SRES (Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker scenarios: A1B, A2, B1, and B2. In addition, a mitigation scenario has been calculated for the B1 scenario, requiring rapid and significant technology development and transition. A global model of aircraft movements and emissions (FAST) was used to calculate fuel use and emissions to 2050 with a further outlook to 2100. The aviation emission scenarios presented are designed to interpret the SRES and have been developed to aid in the quantification of the climate change impacts of aviation. Demand projections are made for each scenario, determined by SRES economic growth factors and the SRES storylines. Technology trends are examined in detail and developed for each scenario providing plausible projections for fuel efficiency and emissions control technology appropriate to the individual SRES storylines. The technology trends that are applied are calculated from bottom-up inventory calculations and industry technology trends and targets. Future emissions of carbon dioxide are projected to grow between 2000 and 2050 by a factor in the range of 2.0 and 3.6 depending on the scenario. Emissions of oxides of nitrogen associated with aviation over the same period are projected to grow by between a factor of 1.2 and 2.7.

  15. 2nd Generation Reusable Launch Vehicle Potential Commercial Development Scenarios

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Rogacki, John R. (Technical Monitor)

    2001-01-01

    The presentation will discuss potential commercial development scenarios for a Second Generation Reusable Launch Vehicle. The analysis of potential scenarios will include commercial rates of return, government return on investment, and market considerations. The presentation will include policy considerations in addition to analysis of Second Generation Reusable Launch Vehicle economics. The data discussed is being developed as a part of NASA's Second Generation Reusable Launch Vehicle Program, for consideration as potential scenarios for enabling a next generation system. Material will include potential scenarios not previously considered by NASA or presented at other conferences. Candidate paper has not been presented at a previous meeting, and conference attendance of the author has been approved by NASA.

  16. Dying scenarios improve recall as much as survival scenarios.

    PubMed

    Burns, Daniel J; Hart, Joshua; Kramer, Melanie E

    2014-01-01

    Merely contemplating one's death improves retention for entirely unrelated material learned subsequently. This "dying to remember" effect seems conceptually related to the survival processing effect, whereby processing items for their relevance to being stranded in the grasslands leads to recall superior to that of other deep processing control conditions. The present experiments directly compared survival processing scenarios with "death processing" scenarios. Results showed that when the survival and dying scenarios are closely matched on key dimensions, and possible congruency effects are controlled, the dying and survival scenarios produced equivalently high recall levels. We conclude that the available evidence (cf. Bell, Roer, & Buchner, 2013; Klein, 2012), while not definitive, is consistent with the possibility of overlapping mechanisms.

  17. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE PAGES

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; ...

    2016-09-28

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. Here, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide rangemore » of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. Furthermore, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. In order to serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit

  18. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.

    2016-09-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit

  19. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.

    2016-01-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate amore » wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially

  20. Adaptive memory: the survival scenario enhances item-specific processing relative to a moving scenario.

    PubMed

    Burns, Daniel J; Hart, Joshua; Griffith, Samantha E; Burns, Amy D

    2013-01-01

    Nairne, Thompson, and Pandeirada (2007) found that retention of words rated for their relevance to survival is superior to that of words encoded under numerous other deep processing conditions. They suggested that our memory systems might have evolved to confer an advantage for survival-relevant information. Burns, Burns, and Hwang (2011) suggested a two-process explanation of the proximate mechanisms responsible for the survival advantage. Whereas most control tasks encourage only one type of processing, the survival task encourages both item-specific and relational processing. They found that when control tasks encouraged both types of processing, the survival processing advantage was eliminated. However, none of their control conditions included non-survival scenarios (e.g., moving, vacation, etc.), so it is not clear how this two-process explanation would explain the survival advantage when scenarios are used as control conditions. The present experiments replicated the finding that the survival scenario improves recall relative to a moving scenario in both a between-lists and within-list design and also provided evidence that this difference was accompanied by an item-specific processing difference, not a difference in relational processing. The implications of these results for several existing accounts of the survival processing effect are discussed.

  1. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios.

    PubMed

    Chowdhury, Sourangsu; Dey, Sagnik; Smith, Kirk R

    2018-01-22

    Premature mortality from current ambient fine particulate (PM 2.5 ) exposure in India is large, but the trend under climate change is unclear. Here we estimate ambient PM 2.5 exposure up to 2100 by applying the relative changes in PM 2.5 from baseline period (2001-2005) derived from Coupled Model Inter-comparison Project 5 (CMIP5) models to the satellite-derived baseline PM 2.5 . We then project the mortality burden using socioeconomic and demographic projections in the Shared Socioeconomic Pathway (SSP) scenarios. Ambient PM 2.5 exposure is expected to peak in 2030 under the RCP4.5 and in 2040 under the RCP8.5 scenario. Premature mortality burden is expected to be 2.4-4 and 28.5-38.8% higher under RCP8.5 scenario relative to the RCP4.5 scenario in 2031-2040 and 2091-2100, respectively. Improved health conditions due to economic growth are expected to compensate for the impact of changes in population and age distribution, leading to a reduction in per capita health burden from PM 2.5 for all scenarios except the combination of RCP8.5 exposure and SSP3.

  2. "Beauty contest" indicator of cognitive ability and free riding strategies. Results from a scenario experiment about pandemic flu immunization.

    PubMed

    Rönnerstrand, Björn

    2017-03-01

    High immunization coverage rates are desirable in order to reduce total morbidity and mortality rates, but it may also provide an incentive for herd immunity free riding strategies. The aim of this paper was to investigate the link between cognitive ability and vaccination intention in a hypothetical scenario experiment about Avian Flu immunization. A between-subject scenario experiment was utilized to examine the willingness to undergo vaccination when the vaccination coverage was proclaimed to be 36, 62 and 88%. Respondents were later assigned to a "Beauty contest" experiment, an experimental game commonly used to investigate individual's cognitive ability. Results show that there was a significant negative effect of the proclaimed vaccination uptake among others on the vaccination intention. However, there were no significant association between the "Beauty contest" indicator of cognitive ability and the use of herd immunity free riding strategies.

  3. Stabilization of atmospheric carbon dioxide via zero emissions—An alternative way to a stable global environment. Part 2: A practical zero-emissions scenario

    PubMed Central

    MATSUNO, Taroh; MARUYAMA, Koki; TSUTSUI, Junichi

    2012-01-01

    Following Part 1, a comparison of CO2-emissions pathways between “zero-emissions stabilization (Z-stabilization)” and traditional stabilization is made under more realistic conditions that take into account the radiative forcings of other greenhouse gases and aerosols with the constraint that the temperature rise must not exceed 2 ℃ above the preindustrial level. It is shown that the findings in Part 1 on the merits of Z-stabilization hold under the more realistic conditions. The results clarify the scientific basis of the policy claim of 50% reduction of the world CO2 emissions by 2050. Since the highest greenhouse gas (GHG) concentration and temperature occur only temporarily in Z-stabilization pathways, we may slightly relax the upper limit of the temperature rise. We can then search for a scenario with larger emissions in the 21st century; such a scenario may have potential for practical application. It is suggested that in this Z-stabilization pathway, larger emissions in the near future may be important from a socioeconomic viewpoint. PMID:22850728

  4. Stabilization of atmospheric carbon dioxide via zero emissions--an alternative way to a stable global environment. Part 2: a practical zero-emissions scenario.

    PubMed

    Matsuno, Taroh; Maruyama, Koki; Tsutsui, Junichi

    2012-01-01

    Following Part 1, a comparison of CO(2)-emissions pathways between "zero-emissions stabilization (Z-stabilization)" and traditional stabilization is made under more realistic conditions that take into account the radiative forcings of other greenhouse gases and aerosols with the constraint that the temperature rise must not exceed 2 °C above the preindustrial level. It is shown that the findings in Part 1 on the merits of Z-stabilization hold under the more realistic conditions. The results clarify the scientific basis of the policy claim of 50% reduction of the world CO(2) emissions by 2050. Since the highest greenhouse gas (GHG) concentration and temperature occur only temporarily in Z-stabilization pathways, we may slightly relax the upper limit of the temperature rise. We can then search for a scenario with larger emissions in the 21st century; such a scenario may have potential for practical application. It is suggested that in this Z-stabilization pathway, larger emissions in the near future may be important from a socioeconomic viewpoint.

  5. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  6. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.

    PubMed

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-20

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  7. Optimizing Decision Preparedness by Adapting Scenario Complexity and Automating Scenario Generation

    NASA Technical Reports Server (NTRS)

    Dunne, Rob; Schatz, Sae; Flore, Stephen M.; Nicholson, Denise

    2011-01-01

    Klein's recognition-primed decision (RPD) framework proposes that experts make decisions by recognizing similarities between current decision situations and previous decision experiences. Unfortunately, military personnel arQ often presented with situations that they have not experienced before. Scenario-based training (S8T) can help mitigate this gap. However, SBT remains a challenging and inefficient training approach. To address these limitations, the authors present an innovative formulation of scenario complexity that contributes to the larger research goal of developing an automated scenario generation system. This system will enable trainees to effectively advance through a variety of increasingly complex decision situations and experiences. By adapting scenario complexities and automating generation, trainees will be provided with a greater variety of appropriately calibrated training events, thus broadening their repositories of experience. Preliminary results from empirical testing (N=24) of the proof-of-concept formula are presented, and future avenues of scenario complexity research are also discussed.

  8. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Bush, Brian; Penev, Michael

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  9. Creating a Scenario Suitable for Multiple Caregivers

    NASA Technical Reports Server (NTRS)

    Doerr, Harold; Bacal, Kira; Hurst, Victor

    2004-01-01

    The HPS can be utilized for the training of a wide variety of caregivers, ranging from physicians to laypeople. Methods: A single scenario was developed and adapted for a number of clinical scenarios and operational environments, ranging from in-flight to the immediate postflight timeline. In this way, different caregivers, from astronauts to search and rescue forces to specialty-boarded physicians, could make use of a single clinical situation. Five crew medical officer analogs and sixty anesthesia residents, serving as flight surgeon analogs, and, were briefed on space medicine and physiology, then were exposed to the scenario and asked to manage the patient as if they were part of the in-flight or recovery team. Results: Basic themes, such as crisis resource management, were standard across the student audiences. Discussion: A single clinical script can easily be adapted for multiple uses.

  10. The future of scenarios: issues in developing new climate change scenarios

    NASA Astrophysics Data System (ADS)

    Pitcher, Hugh M.

    2009-04-01

    In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.

  11. SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Max; Greenblatt, Jeffrey; Donovan, Sally

    2014-06-01

    This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken heremore » is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.« less

  12. Future water demand in California under a broad range of land use scenarios

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2016-12-01

    California continues to be gripped by the most severe drought on record. Most general circulation models agree the state will continue to warm this century and research suggests persistent, long-term droughts may become the new normal, exacerbating an already uncertain water supply future. Population increases and agricultural intensification will likely stress existing, highly variable inter-annual water supplies even further in coming decades. Using the Land Use and Carbon Scenario Simulator (LUCAS) model, we explore a wide range of potential water demand futures from 2012 to 2062 based on 8 alternative, spatially-explicit (1 km) land use scenarios and land-use related water demand. Scenarios include low and high rates for urbanization, agricultural expansion, and agricultural contraction as well as lowest and highest rates for the combined suite of anthropogenic land uses. Land change values were sampled from county-level historical (1991-2012) land change data and county-level average water use data for urban areas (i.e. municipal and industrial) and annual and perennial cropland. We modeled 100 Monte Carlo simulations for each scenario to better characterize and capture model uncertainty and a range of potential future outcomes. Results show water demand in Mediterranean California was lowest in the low anthropogenic change scenario, dropping an average 2.7 million acre feet (MAF) by 2062. The highest water demand was seen in the high urbanization (+3.2 MAF), high agricultural expansion (+4.1 MAF), and the high anthropogenic (+4.3 MAF) scenarios. Results provide water managers and policy makers with information on diverging land use and water use futures, based on observed land change and water use trends, helping better inform land and resource management decisions.

  13. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  14. Biogeophysical Impacts of Land‐Use Change on Climate Extremes in Low‐Emission Scenarios: Results From HAPPI‐Land

    PubMed Central

    Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon

    2018-01-01

    Abstract The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land‐use change (LUC). Land‐based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI‐Land: the half a degree additional warming, prognosis, and projected impacts—land‐use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI‐Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low‐emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.

  15. Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results From HAPPI-Land

    NASA Astrophysics Data System (ADS)

    Hirsch, Annette L.; Guillod, Benoit P.; Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon

    2018-03-01

    The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land-use change (LUC). Land-based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI-Land: the half a degree additional warming, prognosis, and projected impacts—land-use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI-Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low-emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.

  16. The Mediterranean surface wave climate inferred from future scenario simulations

    NASA Astrophysics Data System (ADS)

    Lionello, P.; Cogo, S.; Galati, M. B.; Sanna, A.

    2008-09-01

    This study is based on 30-year long simulations of the wind-wave field in the Mediterranean Sea carried out with the WAM model. Wave fields have been computed for the 2071-2100 period of the A2, B2 emission scenarios and for the 1961-1990 period of the present climate (REF). The wave model has been forced by the wind field computed by a regional climate model with 50 km resolution. The mean SWH (Significant Wave Height) field over large fraction of the Mediterranean sea is lower for the A2 scenario than for the present climate during winter, spring and autumn. During summer the A2 mean SWH field is also lower everywhere, except for two areas, those between Greece and Northern Africa and between Spain and Algeria, where it is significantly higher. All these changes are similar, though smaller and less significant, in the B2 scenario, except during winter in the north-western Mediterranean Sea, when the B2 mean SWH field is higher than in the REF simulation. Also extreme SWH values are smaller in future scenarios than in the present climate and such SWH change is larger for the A2 than for the B2 scenario. The only exception is the presence of higher SWH extremes in the central Mediterranean during summer for the A2 scenario. In general, changes of SWH, wind speed and atmospheric circulation are consistent, and results show milder marine storms in future scenarios than in the present climate.

  17. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    worked to bring the experience generated from over four decades of scenario development in other issue domains, including energy and security, to bear on environmental scenarios, and to bring into dialogue scenario practitioners, both producers and users, with social science scholars. The set of contributions to this focus issue of Environmental Research Letters arose out of this workshop and collectively examines key challenges facing the scenario community, synthesizes lessons, and offers recommendations for new research and practice in this field. One theme that emerged in many of the discussions at the workshop revolved around the distinction between two broad perspectives on the goals of scenario exercises: scenarios as products and scenarios as processes. Most global environmental change scenario exercises are product-oriented; the content of the scenarios developed is the main goal of many participants and those who commission or organize the scenario development process. Typically, what is of most interest are the environmental outcomes produced, how they relate to the various factors driving them, and what the results tell us about the prospects for future environmental change, for impacts, and for mitigation. A product-oriented perspective assumes that once produced, scenario products have lives of their own, divorced from the processes that generated them and able to serve multiple, often unspecified purposes. Thus, it is often assumed that the scenario products can be 'taken up' by a variety of users in a variety of fora. A contrasting scenario approach is process-oriented and self-consciously privileges the process of scenario development as the primary goal, for example as a means to motivate organizational learning, find commonalities across different perspectives, achieve consensus on goals, or come to a shared understanding of challenges. Focusing on scenarios as processes highlights the social contexts in which scenarios are created and used. Process

  18. Watershed Planning within a Quantitative Scenario Analysis Framework.

    PubMed

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-07-24

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation.

  19. Ecological scenarios analyzed and evaluated by a shallow lake model.

    PubMed

    Kardaetz, Sascha; Strube, Torsten; Brüggemann, Rainer; Nützmann, Gunnar

    2008-07-01

    We applied the complex ecosystem model EMMO, which was adopted to the shallow lake Müggelsee (Germany), in order to evaluate a large set of ecological scenarios. By means of EMMO, 33 scenarios and 17 indicators were defined to characterize their effects on the lake ecosystem. The indicators were based on model outputs of EMMO and can be separated into biological indicators, such as chlorophyll-a and cyanobacteria, and hydro-chemical indicators, such as phosphorus. The question to be solved was, what is the ranking of the scenarios based on their characterization by these 17 indicators? And how can we handle high quantities of complex data within evaluation procedures? The scenario evaluation was performed by partial order theory which, however, did not provide a clear result. By subsequently applying the hierarchical cluster analysis (complete linkage) it was possible to reduce the data matrix to indicator and scenario representatives. Even though this step implies losses of information, it simplifies the application of partial order theory and the post processing by METEOR. METEOR is derived from partial order theory and allows the stepwise aggregation of indicators, which subsequently leads to a distinct and clear decision. In the final evaluation result the best scenario was the one which defines a minimum nutrient input and no phosphorus release from the sediment while the worst scenario is characterized by a maximum nutrient input and extensive phosphorus release from the sediment. The reasonable and comprehensive results show that the combination of partial order, cluster analysis and METEOR can handle big amounts of data in a very clear and transparent way, and therefore is ideal in the context of complex ecosystem models, like that we applied.

  20. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    PubMed Central

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-01-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445

  1. Design Support of an Above Cap-rock Early Detection Monitoring System using Simulated Leakage Scenarios at the FutureGen2.0 Site

    DOE PAGES

    Williams, Mark D.; USA, Richland Washington; Vermuel, Vince R.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO 2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to evaluate CO 2 mass balance and detect any unforeseen loss in CO 2 containment. The monitoring program will include direct monitoring of the reservoir, and early-leak-detection monitoring directly above the primary confining zone. This preliminary modeling study described here focuses on hypotheticalmore » leakage scenarios into the first permeable unit above the primary confining zone (Ironton Sandstone) and is used to support assessment of early-leak detection capabilities. Future updates of the model will be used to assess potential impacts on the lowermost underground source of drinking water (Saint Peter Sandstone) for a range of theoretical leakage scenarios. This preliminary modeling evaluation considers both pressure response and geochemical signals in the overlying Ironton Sandstone. This model is independent of the FutureGen 2.0 reservoir model in that it does not simulate caprock discontinuities, faults, or failure scenarios. Instead this modeling effort is based on theoretical, volumetric-rate based leakage scenarios. The scenarios include leakage of 1% of the total injected CO 2 mass, but spread out over different time periods (20, 100, and 500 years) with each case yielding a different mass flux (i.e., smaller mass fluxes for longer duration leakage cases]. A brine leakage scenario using a volumetric leakage similar to the 20 year 1% CO 2 case was also considered. A framework for the comparison of the various cases was developed based on the exceedance of selected pressure and geochemical thresholds at different distances from the point of leakage and

  2. On the rapid and efficient divulgation of monitoring results in landslide emergency scenarios

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Allasia, Paolo; Manconi, Andrea; Bertolo, Davide

    2014-05-01

    In last decades, the availability of several technological systems to monitor different physical parameters that can be used to control a landslide evolution recorded an exponential growth. In particular, surficial and deep-seated displacements of an instable area, as well as meteorological or hydrological parameters can be nowadays acquired with high spatial and temporal resolutions. As a consequence, the application of complex monitoring systems produces large amounts of data. While this can be considered an important progress in the field of landslide monitoring applications, the availability of large volumes of high resolution and multiparametric information implies important challenges. In this context, two main criticalities are: i) the integrated management of dataset produced by different monitoring systems and ii) the correct divulgation of monitoring results. In this work, we present the results of a real case-study relevant to a complex emergency scenario, i.e. the Mont de La Saxe landslide, a large rockslide (with an estimated volume or more than 8 million of cubic meters) that threatens La Palud and Entrèves hamlets in the Courmayeur municipality (Aosta Valley, Italy). We developed a web-based system based on the ADVICE algorithm (Allasia et al., 2013) in order to manage several data sources. The system collects, analyzes and publishes the results obtained by monitoring instrumentations in near-real-time at each new measurement cycle. Moreover, by collecting all the data in an unique web-based platform reduces the problems of compatibility amongst different monitoring systems, which usually rely on customized software for the data processing, delaying the comparative analysis comparison amongst different data sources. This is indeed a crucial task for decision makers, in particular during the emergency phases. In addition, by using the developed web-based platform we aimed at coping with another important task, often not considered and

  3. Temperature Rise and Allowable Carbon Emissions for the RCP2.6 Scenario

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Huntingford, C.; Kawamiya, M.

    2012-12-01

    Climate research centres are running Earth System Models (ESMs) forced by Representative Concentration Pathway (RCP) scenarios. While these GCM studies increase process based knowledge, the number of simulations is small, making it difficult to interpret the resulting distribution of responses in a probabilistic way. We use a probabilistic framework to estimate the range of future temperature change and allowable emissions for a low mitigation CO2 concentration pathway RCP 2.6. Uncertainty is initially estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then further constrained by extensive use of contemporary measurements. Despite this, the resulting range of temperatures for RCP 2.6 remains large. The predicted peak global temperature increase, reached around 2100, from pre-industrial is 0.8 - 1.9 K and 1.0 - 1.9 K (95% range) for the unconstrained and the constrained cases, respectively. Allowable emissions at the time of peak emission period is projected as 6.0 - 10.8 PgC yr-1 and 7.4 - 10.2 PgC yr-1 for each case. After year 2100, negative net emissions are required with a probability of some 84 %, and related uncertainty in cumulative emissions is large.

  4. 3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2

    NASA Astrophysics Data System (ADS)

    Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Plewa, P. M.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Habibi, M.; Ott, T.; George, E. M.

    2018-06-01

    The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a "compact source" moving on the observed orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive (\\dot{M}_w=5× 10^{-7} M_{⊙} yr^{-1}) and slow (50 km s-1) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger (>100 AU) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2's dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.

  5. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.

    PubMed

    Lanzafame, Paola; Centi, Gabriele; Perathoner, Siglinda

    2014-11-21

    The use of biomass, bio-waste and CO2 derived raw materials, the latter synthesized using H2 produced using renewable energy sources, opens new scenarios to develop a sustainable and low carbon chemical production, particularly in regions such as Europe lacking in other resources. This tutorial review discusses first this new scenario with the aim to point out, between the different possible options, those more relevant to enable this new future scenario for the chemical production, commenting in particular the different drivers (economic, technological and strategic, environmental and sustainability and socio-political) which guide the selection. The case of the use of non-fossil fuel based raw materials for the sustainable production of light olefins is discussed in more detail, but the production of other olefins and polyolefins, of drop-in intermediates and other platform molecules are also analysed. The final part discusses the role of catalysis in establishing this new scenario, summarizing the development of catalysts with respect to industrial targets, for (i) the production of light olefins by catalytic dehydration of ethanol and by CO2 conversion via FTO process, (ii) the catalytic synthesis of butadiene from ethanol, butanol and butanediols, and (iii) the catalytic synthesis of HMF and its conversion to 2,5-FDCA, adipic acid, caprolactam and 1,6-hexanediol.

  6. Process-based evaluation of the ÖKS15 Austrian climate scenarios: First results

    NASA Astrophysics Data System (ADS)

    Mendlik, Thomas; Truhetz, Heimo; Jury, Martin; Maraun, Douglas

    2017-04-01

    The climate scenarios for Austria from the ÖKS15 project consists of 13 downscaled and bias-corrected RCMs from the EURO-CORDEX project. This dataset is meant for the broad public and is now available at the central national archive for climate data (CCCA Data Center). Because of this huge public outreach it is absolutely necessary to objectively discuss the limitations of this dataset and to publish these limitations, which should also be understood by a non-scientific audience. Even though systematical climatological biases have been accounted for by the Scaled-Distribution-Mapping (SDM) bias-correction method, it is not guaranteed that the model biases have been removed for the right reasons. If climate scenarios do not get the patterns of synoptic variability right, biases will still prevail in certain weather patterns. Ultimately this will have consequences for the projected climate change signals. In this study we derive typical weather types in the Alpine Region based on patterns from mean sea level pressure from ERA-INTERIM data and check the occurrence of these synoptic phenomena in EURO-CORDEX data and their corresponding driving GCMs. Based on these weather patterns we analyze the remaining biases of the downscaled and bias-corrected scenarios. We argue that such a process-based evaluation is not only necessary from a scientific point of view, but can also help the broader public to understand the limitations of downscaled climate scenarios, as model errors can be interpreted in terms of everyday observable weather.

  7. A medical digital library to support scenario and user-tailored information retrieval.

    PubMed

    Chu, W W; Johnson, D B; Kangarloo, H

    2000-06-01

    Current large-scale information sources are designed to support general queries and lack the ability to support scenario-specific information navigation, gathering, and presentation. As a result, users are often unable to obtain desired specific information within a well-defined subject area. Today's information systems do not provide efficient content navigation, incremental appropriate matching, or content correlation. We are developing the following innovative technologies to remedy these problems: 1) scenario-based proxies, enabling the gathering and filtering of information customized for users within a pre-defined domain; 2) context-sensitive navigation and matching, providing approximate matching and similarity links when an exact match to a user's request is unavailable; 3) content correlation of documents, creating semantic links between documents and information sources; and 4) user models for customizing retrieved information and result presentation. A digital medical library is currently being constructed using these technologies to provide customized information for the user. The technologies are general in nature and can provide custom and scenario-specific information in many other domains (e.g., crisis management).

  8. Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator.

    PubMed

    Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2012-01-01

    This paper presents the results of a global sensitivity analysis (GSA) of a phenomenological model that generates dynamic wastewater treatment plant (WWTP) influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model (BSM) family and creates realistic dry/wet weather files describing diurnal, weekend and seasonal variations through the combination of different generic model blocks, i.e. households, industry, rainfall and infiltration. The GSA is carried out by combining Monte Carlo simulations and standardized regression coefficients (SRC). Cluster analysis is then applied, classifying the influence of the model parameters into strong, medium and weak. The results show that the method is able to decompose the variance of the model predictions (R(2)> 0.9) satisfactorily, thus identifying the model parameters with strongest impact on several flow rate descriptors calculated at different time resolutions. Catchment size (PE) and the production of wastewater per person equivalent (QperPE) are two parameters that strongly influence the yearly average dry weather flow rate and its variability. Wet weather conditions are mainly affected by three parameters: (1) the probability of occurrence of a rain event (Llrain); (2) the catchment size, incorporated in the model as a parameter representing the conversion from mm rain · day(-1) to m(3) · day(-1) (Qpermm); and, (3) the quantity of rain falling on permeable areas (aH). The case study also shows that in both dry and wet weather conditions the SRC ranking changes when the time scale of the analysis is modified, thus demonstrating the potential to identify the effect of the model parameters on the fast/medium/slow dynamics of the flow rate. The paper ends with a discussion on the interpretation of GSA results and of the advantages of using synthetic dynamic flow rate data for WWTP influent scenario generation. This section also includes general suggestions on how to use the proposed

  9. Emissions reduction scenarios in the Argentinean Energy Sector

    DOE PAGES

    Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; ...

    2016-04-14

    Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to

  10. A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities

    NASA Astrophysics Data System (ADS)

    Salvadori, G.; Durante, F.; De Michele, C.; Bernardi, M.; Petrella, L.

    2016-05-01

    This paper is of methodological nature, and deals with the foundations of Risk Assessment. Several international guidelines have recently recommended to select appropriate/relevant Hazard Scenarios in order to tame the consequences of (extreme) natural phenomena. In particular, the scenarios should be multivariate, i.e., they should take into account the fact that several variables, generally not independent, may be of interest. In this work, it is shown how a Hazard Scenario can be identified in terms of (i) a specific geometry and (ii) a suitable probability level. Several scenarios, as well as a Structural approach, are presented, and due comparisons are carried out. In addition, it is shown how the Hazard Scenario approach illustrated here is well suited to cope with the notion of Failure Probability, a tool traditionally used for design and risk assessment in engineering practice. All the results outlined throughout the work are based on the Copula Theory, which turns out to be a fundamental theoretical apparatus for doing multivariate risk assessment: formulas for the calculation of the probability of Hazard Scenarios in the general multidimensional case (d≥2) are derived, and worthy analytical relationships among the probabilities of occurrence of Hazard Scenarios are presented. In addition, the Extreme Value and Archimedean special cases are dealt with, relationships between dependence ordering and scenario levels are studied, and a counter-example concerning Tail Dependence is shown. Suitable indications for the practical application of the techniques outlined in the work are given, and two case studies illustrate the procedures discussed in the paper.

  11. Scenarios Based on Shared Socioeconomic Pathway Assumptions

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2013-12-01

    A set of new scenarios is being developed by the international scientific community as part of a larger program that was articulated in Moss, et al. (2009), published in Nature. A long series of meetings including climate researchers drawn from the climate modeling, impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities have led to the development of a set of five Shared Socioeconomic Pathways (SSPs), which define the state of human and natural societies at a macro scale over the course of the 21st century without regard to climate mitigation or change. SSPs were designed to explore a range of possible futures consistent with greater or lesser challenges to mitigation and challenges to adaptation. They include a narrative storyline and a set of quantified measures--e.g. demographic and economic profiles--that define the high-level state of society as it evolves over the 21st century under the assumption of no significant climate feedback. SSPs can be used to develop quantitative scenarios of human Earth systems using IAMs. IAMs produce information about greenhouse gas emissions, energy systems, the economy, agriculture and land use. Each set of SSPs will have a different human Earth system realization for each IAM. Five groups from the IAM community have begun to explore the implications of SSP assumptions for emissions, energy, economy, agriculture and land use. We report the quantitative results of initial experiments from those groups. A major goal of the Moss, et al. strategy was to enable the use of CMIP5 climate model ensemble products for IAV research. CMIP5 climate scenarios used four Representative Concentration Pathway (RCP) scenarios, defined in terms of radiative forcing in the year 2100: 2.6, 4.5, 6.0, and 8.5 Wm-2. There is no reason to believe that the SSPs will generate year 2100 levels of radiative forcing that correspond to the four RCP levels, though it is important that at least one SSP produce a

  12. Scenario analysis and path selection of low-carbon transformation in China based on a modified IPAT model.

    PubMed

    Chen, Liang; Yang, Zhifeng; Chen, Bin

    2013-01-01

    This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40-45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China's low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance.

  13. Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model

    PubMed Central

    Chen, Liang; Yang, Zhifeng; Chen, Bin

    2013-01-01

    This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40–45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China’s low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922

  14. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit

  15. Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting.

    PubMed

    Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh

    2018-05-08

    Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.

  16. Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C earth system model

    NASA Astrophysics Data System (ADS)

    Falloon, P. D.; Dankers, R.; Betts, R. A.; Jones, C. D.; Booth, B. B. B.; Lambert, F. H.

    2012-06-01

    The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios - the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20), allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario - one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C. In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in scrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during winter and spring); small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively) and increased global precipitation, with reductions in precipitation over

  17. Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C Earth system model

    NASA Astrophysics Data System (ADS)

    Falloon, P. D.; Dankers, R.; Betts, R. A.; Jones, C. D.; Booth, B. B. B.; Lambert, F. H.

    2012-11-01

    The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios - the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20), allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario - one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C. In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in shrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during December-January and March-May); small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively) and increased global precipitation, with reductions in

  18. Does the thought of death contribute to the memory benefit of encoding with a survival scenario?

    PubMed

    Bugaiska, Aurélia; Mermillod, Martial; Bonin, Patrick

    2015-01-01

    Four studies tested whether the thought of death contributes to the survival processing advantage found in memory tests (i.e., the survival effect). In the first study, we replicated the "Dying To Remember" (DTR) effect identified by Burns and colleagues whereby activation of death thoughts led to better retention than an aversive control situation. In Study 2, we compared an ancestral survival scenario, a modern survival scenario and a "life-after-death" scenario. The modern survival scenario and the dying scenario led to higher levels of recall than the ancestral scenario. In Study 3, we used a more salient death-thought scenario in which people imagine themselves on death row. Results showed that the "death-row" scenario yielded a level of recall similar to that of the ancestral survival condition. We also collected ratings of death-related thoughts (Studies 3 and 4) and of survival-related and planning thoughts (Study 4). The ratings indicated that death-related thoughts were induced more by the dying scenarios than by the survival scenarios, whereas the reverse was observed for both survival-related and planning thoughts. The findings are discussed in the light of two contrasting views of the influence of mortality salience in the survival effect.

  19. Scenario planning.

    PubMed

    Enzmann, Dieter R; Beauchamp, Norman J; Norbash, Alexander

    2011-03-01

    In facing future developments in health care, scenario planning offers a complementary approach to traditional strategic planning. Whereas traditional strategic planning typically consists of predicting the future at a single point on a chosen time horizon and mapping the preferred plans to address such a future, scenario planning creates stories about multiple likely potential futures on a given time horizon and maps the preferred plans to address the multiple described potential futures. Each scenario is purposefully different and specifically not a consensus worst-case, average, or best-case forecast; nor is scenario planning a process in probabilistic prediction. Scenario planning focuses on high-impact, uncertain driving forces that in the authors' example affect the field of radiology. Uncertainty is the key concept as these forces are mapped onto axes of uncertainty, the poles of which have opposed effects on radiology. One chosen axis was "market focus," with poles of centralized health care (government control) vs a decentralized private market. Another axis was "radiology's business model," with one pole being a unified, single specialty vs a splintered, disaggregated subspecialty. The third axis was "technology and science," with one pole representing technology enabling to radiology vs technology threatening to radiology. Selected poles of these axes were then combined to create 3 scenarios. One scenario, termed "entrepreneurialism," consisted of a decentralized private market, a disaggregated business model, and threatening technology and science. A second scenario, termed "socialized medicine," had a centralized market focus, a unified specialty business model, and enabling technology and science. A third scenario, termed "freefall," had a centralized market focus, a disaggregated business model, and threatening technology and science. These scenarios provide a range of futures that ultimately allow the identification of defined "signposts" that can

  20. Expert assessment concludes negative emissions scenarios may not deliver

    NASA Astrophysics Data System (ADS)

    Vaughan, Naomi E.; Gough, Clair

    2016-09-01

    Many integrated assessment models (IAMs) rely on the availability and extensive use of biomass energy with carbon capture and storage (BECCS) to deliver emissions scenarios consistent with limiting climate change to below 2 °C average temperature rise. BECCS has the potential to remove carbon dioxide (CO2) from the atmosphere, delivering ‘negative emissions’. The deployment of BECCS at the scale assumed in IAM scenarios is highly uncertain: biomass energy is commonly used but not at such a scale, and CCS technologies have been demonstrated but not commercially established. Here we present the results of an expert elicitation process that explores the explicit and implicit assumptions underpinning the feasibility of BECCS in IAM scenarios. Our results show that the assumptions are considered realistic regarding technical aspects of CCS but unrealistic regarding the extent of bioenergy deployment, and development of adequate societal support and governance structures for BECCS. The results highlight concerns about the assumed magnitude of carbon dioxide removal achieved across a full BECCS supply chain, with the greatest uncertainty in bioenergy production. Unrealistically optimistic assumptions regarding the future availability of BECCS in IAM scenarios could lead to the overshoot of critical warming limits and have significant impacts on near-term mitigation options.

  1. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    DOE PAGES

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  2. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.

  3. Exploring NASA Human Spaceflight and Pioneering Scenarios

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Wilhite, Alan

    2015-01-01

    The life cycle cost analysis of space exploration scenarios is explored via a merger of (1) scenario planning, separating context and (2) modeling and analysis of specific content. Numerous scenarios are presented, leading to cross-cutting recommendations addressing life cycle costs, productivity, and approaches applicable to any scenarios. Approaches address technical and non-technical factors.

  4. Evaluating Global Land-use Change Scenario: Carbon Emission in RCP Scenarios and its Effects on Climate Response

    NASA Astrophysics Data System (ADS)

    Kato, E.; Kawamiya, M.

    2011-12-01

    In CMIP5 experiments, new emissions scenarios for GCMs and Earth System Models (ESMs) have been constructed as Representative Concentration Pathways (RCPs) by a community effort of Integrated Assessment Modeling (IAM) groups. In RCP scenarios, regional land-use scenarios have been depicted based on the socio-economic assumption of IAMs, and also downscaled spatially explicit land-use maps from the regional scenarios are prepared. In the land-use harmonization project, integrated gridded land-use transition data for the past and future time period has been developed from the reconstruction based on HYDE 3 agricultural data and FAO wood harvest data, and the future land-use scenarios from IAMs. These gridded land-use dataset are used as a forcing of some ESMs participating to the CMIP5 experiments, to assess the biogeochemical and biogeophysical effects of land-use and land cover change in the climate change simulation. In this study, global net CO2 emissions from land-use change for RCP scenarios are evaluated with an offline terrestrial biogeochemical model, VISIT (Vegetation Integrative SImulation Tool). Also the emissions are evaluated with coupled ESM, MIROC-ESM following the LUCID-CMIP5 protocol to see the effect of land-use and land cover change on climate response. Using the model output, consistency of the land-use change CO2 emission scenarios provided by RCPs are evaluated in terms of effect of CO2 fertilization, climate change, and land-use transition itself including the effect of biomass crops production with CCS. We find that a land-use scenario with decreased agricultural land-use intensity such as RCP 6.0 shows possibility of further absorption of CO2 through the climate-carbon feedback, and cooling effect through both biogeochemical and biogeophysical effects.

  5. Development and evaluation of a critical care e-learning scenario.

    PubMed

    Tait, Michael; Tait, Desiree; Thornton, Frances; Edwards, Mark

    2008-11-01

    This paper describes the development and evaluation of a critical care e-learning scenario for student nurses. At present, there are insufficient opportunities in the United Kingdom (UK) for student nurses to experience clinical placements where their skills in care of the critically-ill can be developed. There is therefore a need for new learning materials that help learners recognise the signs of clinical deterioration and rehearse the management of critically-ill patients. One way of meeting this need is by using electronic care scenarios. Several electronic care scenarios have been developed at Swansea University as part of the eWARD project. This article describes the design and evaluation of a critical care scenario that follows the care of a road casualty (John Macadam) after admission to an intensive care unit. The scenario was designed by an advisory team comprising a clinical lecturer and e-learning specialists. After using the scenario, 144 nursing students completed a Web-based questionnaire that collected demographic and attitudinal data for analysis using SPSS. Nursing students had a strongly positive attitude to the scenario with median scores in excess of 20 compared to maxima of 25 for scales measuring ease-of-use, interactivity, realism and confidence. None of the demographic data collected had a significant effect on these attitudes. The positive attitude of student nurses to this scenario strongly supports its use to help learners to (1) acquire knowledge and awareness when real life placements in these settings are not available and (2) extend their knowledge after coming across similar situations in practice.

  6. Position coding effects in a 2D scenario: the case of musical notation.

    PubMed

    Perea, Manuel; García-Chamorro, Cristina; Centelles, Arnau; Jiménez, María

    2013-07-01

    How does the cognitive system encode the location of objects in a visual scene? In the past decade, this question has attracted much attention in the field of visual-word recognition (e.g., "jugde" is perceptually very close to "judge"). Letter transposition effects have been explained in terms of perceptual uncertainty or shared "open bigrams". In the present study, we focus on note position coding in music reading (i.e., a 2D scenario). The usual way to display music is the staff (i.e., a set of 5 horizontal lines and their resultant 4 spaces). When reading musical notation, it is critical to identify not only each note (temporal duration), but also its pitch (y-axis) and its temporal sequence (x-axis). To examine note position coding, we employed a same-different task in which two briefly and consecutively presented staves contained four notes. The experiment was conducted with experts (musicians) and non-experts (non-musicians). For the "different" trials, the critical conditions involved staves in which two internal notes that were switched vertically, horizontally, or fully transposed--as well as the appropriate control conditions. Results revealed that note position coding was only approximate at the early stages of processing and that this encoding process was modulated by expertise. We examine the implications of these findings for models of object position encoding. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Dark scenarios

    NASA Astrophysics Data System (ADS)

    Ahonen, Pasi; Alahuhta, Petteri; Daskala, Barbara; Delaitre, Sabine; Hert, Paul De; Lindner, Ralf; Maghiros, Ioannis; Moscibroda, Anna; Schreurs, Wim; Verlinden, Michiel

    In this chapter, we present four "dark scenarios" that highlight the key socio-economic, legal, technological and ethical risks to privacy, identity, trust, security and inclusiveness posed by new AmI technologies. We call them dark scenarios, because they show things that could go wrong in an AmI world, because they present visions of the future that we do not want to become reality. The scenarios expose threats and vulnerabilities as a way to inform policy-makers and planners about issues they need to take into account in developing new policies or updating existing legislation. Before presenting the four scenarios and our analysis of each, we describe the process of how we created the scenarios as well as the elements in our methodology for analysing the scenarios.

  8. Water use implications of biofuel scenarios

    NASA Astrophysics Data System (ADS)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  9. Scenario management and automated scenario generation

    NASA Astrophysics Data System (ADS)

    McKeever, William; Gilmour, Duane; Lehman, Lynn; Stirtzinger, Anthony; Krause, Lee

    2006-05-01

    The military planning process utilizes simulation to determine the appropriate course of action (COA) that will achieve a campaign end state. However, due to the difficulty in developing and generating simulation level COAs, only a few COAs are simulated. This may have been appropriate for traditional conflicts but the evolution of warfare from attrition based to effects based strategies, as well as the complexities of 4 th generation warfare and asymmetric adversaries have placed additional demands on military planners and simulation. To keep pace with this dynamic, changing environment, planners must be able to perform continuous, multiple, "what-if" COA analysis. Scenario management and generation are critical elements to achieving this goal. An effects based scenario generation research project demonstrated the feasibility of automated scenario generation techniques which support multiple stove-pipe and emerging broad scope simulations. This paper will discuss a case study in which the scenario generation capability was employed to support COA simulations to identify plan effectiveness. The study demonstrated the effectiveness of using multiple simulation runs to evaluate the effectiveness of alternate COAs in achieving the overall campaign (metrics-based) objectives. The paper will discuss how scenario generation technology can be employed to allow military commanders and mission planning staff to understand the impact of command decisions on the battlespace of tomorrow.

  10. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, B.; Penev, M.; Melaina, M.

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  11. A scenario analysis of the future residential requirements for people with mental health problems in Eindhoven

    PubMed Central

    2011-01-01

    Background Despite large-scale investments in mental health care in the community since the 1990 s, a trend towards reinstitutionalization has been visible since 2002. Since many mental health care providers regard this as an undesirable trend, the question arises: In the coming 5 years, what types of residence should be organized for people with mental health problems? The purpose of this article is to provide mental health care providers, public housing corporations, and local government with guidelines for planning organizational strategy concerning types of residence for people with mental health problems. Methods A scenario analysis was performed in four steps: 1) an exploration of the external environment; 2) the identification of key uncertainties; 3) the development of scenarios; 4) the translation of scenarios into guidelines for planning organizational strategy. To explore the external environment a document study was performed, and 15 semi-structured interviews were conducted. During a workshop, a panel of experts identified two key uncertainties in the external environment, and formulated four scenarios. Results The study resulted in four scenarios: 1) Integrated and independent living in the community with professional care; 2) Responsible healthcare supported by society; 3) Differentiated provision within the walls of the institution; 4) Residence in large-scale institutions but unmet need for care. From the range of aspects within the different scenarios, the panel was able to work out concrete guidelines for planning organizational strategy. Conclusions In the context of residence for people with mental health problems, the focus should be on investment in community care and their re-integration into society. A joint effort is needed to achieve this goal. This study shows that scenario analysis leads to useful guidelines for planning organizational strategy in mental health care. PMID:21211015

  12. Open Scenario Study: IDA Open Scenario Repository User’s Manual

    DTIC Science & Technology

    2010-01-01

    Thomason, Study Co-Lead Zachary S. Rabold, Sub-Task Lead Ylli Bajraktari Rachel D. Dubin Mary Catherine Flythe Open Scenario Study: IDA Open Scenario... Bajraktari Rachel D. Dubin Mary Catherine Flythe Open Scenario Study: IDA Open Scenario Repository User’s Manual iii Preface This document reports the...vii Appendices A. Identifying Scenario Components...........................................................A-1 B . Acronyms

  13. Aerosol effect on climate extremes in Europe under different future scenarios

    NASA Astrophysics Data System (ADS)

    Sillmann, J.; Pozzoli, L.; Vignati, E.; Kloster, S.; Feichter, J.

    2013-05-01

    This study investigates changes in extreme temperature and precipitation events under different future scenarios of anthropogenic aerosol emissions (i.e., SO2 and black and organic carbon) simulated with an aerosol-climate model (ECHAM5-HAM) with focus on Europe. The simulations include a maximum feasible aerosol reduction (MFR) scenario and a current legislation emission (CLEmod) scenario where Europe implements the MFR scenario, but the rest of the world follows the current legislation scenario and a greenhouse gas scenario. The strongest changes relative to the year 2000 are projected for the MFR scenario, in which the global aerosol reduction greatly enforces the general warming effect due to greenhouse gases and results in significant increases of temperature and precipitation extremes in Europe. Regional warming effects can also be identified from aerosol reductions under the CLEmodscenario. This becomes most obvious in the increase of the hottest summer daytime temperatures in Northern Europe.

  14. Emissions of indoor air pollutants from six user scenarios in a model room

    NASA Astrophysics Data System (ADS)

    Höllbacher, Eva; Ters, Thomas; Rieder-Gradinger, Cornelia; Srebotnik, Ewald

    2017-02-01

    In this study six common user scenarios putatively influencing indoor air quality were performed in a model room constructed according to the specifications of the European Reference Room given in the new horizontal prestandard prEN 16516 to gain further information about the influence of user activities on indoor air quality. These scenarios included the use of cleaning agent, an electric air freshener, an ethanol fireplace and cosmetics as well as cigarette smoking and peeling of oranges. Four common indoor air pollutants were monitored: volatile organic compounds (VOC), particulate matter (PM), carbonyl compounds and CO2. The development of all pollutants was determined during and after the test performance. For each measured pollutant, well-defined maximum values could be assigned to one or more of the individual user scenarios. The highest VOC concentration was measured during orange-peeling reaching a maximum value of 3547 μg m-3. Carbonyl compounds and PM were strongly elevated while cigarette smoking. Here, a maximum formaldehyde concentration of 76 μg m-3 and PM concentration of 378 μg m-3 were measured. CO2 was only slightly affected by most of the tests except the use of the ethanol fireplace where a maximum concentration of 1612 ppm was reached. Generally, the user scenarios resulted in a distinct increase of several indoor pollutants that usually decreased rapidly after the removal of the source.

  15. Data Assimilation Techniques for Ionospheric Reference Scenarios - project overview and first results

    NASA Astrophysics Data System (ADS)

    Gerzen, Tatjana; Mainul Hoque, M.; Wilken, Volker; Minkwitz, David; Schlüter, Stefan

    2015-04-01

    The European Geostationary Navigation Overlay Service (EGNOS) is the European Satellite Based Augmentation Service (SBAS) that provides value added services, in particular to Safety of Live (SoL) users of the Global Navigation Satellite Systems (GNSS). In the frame of the European GNSS Evolution Programme (EGEP), ESA has launched several activities, which are aiming to support the design, development and qualification of the future operational EGNOS infrastructure and associated services. The ionosphere is the part of the upper Earth's atmosphere between about 50 km and 1000 km above the Earth's surface, which contains sufficient free electrons to cause strong impact on radio signal propagation. Therefore, treatment of the ionosphere is a critical issue to guarantee the EGNOS system performance. In order to conduct the EGNOS end-to-end performance simulations and to assure the capability for maintaining integrity of the EGNOS system especially during ionospheric storm conditions, Ionospheric Reference Scenarios (IRSs) are introduced by ESA. The project Data Assimilation Techniques for Ionospheric Reference Scenarios (DAIS) - aims to generate improved EGNOS IRSs by combining space borne and ground based GNSS observations. The main focus of this project is to demonstrate that ionospheric radio occultation (IRO) measurements can significantly contribute to fill data gaps in GNSS ground networks (particularly in Africa and over the oceans) when generating the IRSs. The primary tasks are the calculation and validation of time series of IRSs (i.e. TEC maps) by a 3D assimilation approach that combines IRO and ground based GNSS measurements with an ionospheric background model in an optimal way. In the first phase of the project we selected appropriate test periods, one presenting perturbed and the other one - nominal ionospheric conditions, collected and filtered the corresponding data. We defined and developed an applicable technique for the 3D assimilation and applied

  16. A comparison between the example reference biosphere model ERB 2B and a process-based model: simulation of a natural release scenario.

    PubMed

    Almahayni, T

    2014-12-01

    The BIOMASS methodology was developed with the objective of constructing defensible assessment biospheres for assessing potential radiological impacts of radioactive waste repositories. To this end, a set of Example Reference Biospheres were developed to demonstrate the use of the methodology and to provide an international point of reference. In this paper, the performance of the Example Reference Biosphere model ERB 2B associated with the natural release scenario, discharge of contaminated groundwater to the surface environment, was evaluated by comparing its long-term projections of radionuclide dynamics and distribution in a soil-plant system to those of a process-based, transient advection-dispersion model (AD). The models were parametrised with data characteristic of a typical rainfed winter wheat crop grown on a sandy loam soil under temperate climate conditions. Three safety-relevant radionuclides, (99)Tc, (129)I and (237)Np with different degree of sorption were selected for the study. Although the models were driven by the same hydraulic (soil moisture content and water fluxes) and radiological (Kds) input data, their projections were remarkably different. On one hand, both models were able to capture short and long-term variation in activity concentration in the subsoil compartment. On the other hand, the Reference Biosphere model did not project any radionuclide accumulation in the topsoil and crop compartments. This behaviour would underestimate the radiological exposure under natural release scenarios. The results highlight the potential role deep roots play in soil-to-plant transfer under a natural release scenario where radionuclides are released into the subsoil. When considering the relative activity and root depth profiles within the soil column, much of the radioactivity was taken up into the crop from the subsoil compartment. Further improvements were suggested to address the limitations of the Reference Biosphere model presented in this paper

  17. 2% Yield Increase (HH2), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Maggie R.; Hellwinkel, Chad; Eaton, Laurence

    Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. Date the data set was last modified: 02/02/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought tomore » market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 2% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.« less

  18. Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment

    PubMed Central

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin

    2018-01-01

    As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security. PMID:29401747

  19. Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment.

    PubMed

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin

    2018-02-05

    As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8-61.1%, followed by SpoPerf (53.9-58.3%) and EcoPerf (42.3-45.4%), and the costs of the three scenarios were 3.74, 3.47, and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security.

  20. Developing a Scenario for widespread use: Best practices, lessons learned

    USGS Publications Warehouse

    Perry, S.; Jones, L.; Cox, D.

    2011-01-01

    The ShakeOut Scenario is probably the most widely known and used earthquake scenario created to date. Much of the credit for its widespread dissemination and application lies with scenario development criteria that focused on the needs and involvement of end users and with a suite of products that tailored communication of the results to varied end users, who ranged from emergency managers to the general public, from corporations to grassroots organizations. Products were most effective when they were highly visual, when they emphasized the findings of social scientists, and when they communicated the experience of living through the earthquake. This paper summarizes the development criteria and the products that made the ShakeOut Scenario so widely known and used, and it provides some suggestions for future improvements. ?? 2011, Earthquake Engineering Research Institute.

  1. Logistics of a Lunar Based Solar Power Satellite Scenario

    NASA Technical Reports Server (NTRS)

    Melissopoulos, Stefanos

    1995-01-01

    A logistics system comprised of two orbital stations for the support of a 500 GW space power satellite scenario in a geostationary orbit was investigated in this study. A subsystem mass model, a mass flow model and a life cycle cost model were developed. The results regarding logistics cost and burden rates show that the transportation cost contributed the most (96%) to the overall cost of the scenario. The orbital stations at a geostationary and at a lunar orbit contributed 4 % to that cost.

  2. Scenario Planning Provides a Framework for Climate Change Adaptation in the National Park Service

    NASA Astrophysics Data System (ADS)

    Welling, L. A.

    2012-12-01

    Resource management decisions must be based on future expectations. Abundant evidence suggests climate change will have highly consequential effects on the Nation's natural and cultural resources, but specific impacts are difficult to accurately predict. This situation of too much information but not enough specificity can often lead to either paralysis or denial for decision makers. Scenario planning is an emerging tool for climate change adaptation that provides a structured framework for identifying and exploring critical drivers of change and their uncertain outcomes. Since 2007, the National Park Service (NPS) has been working with its partners to develop and apply a scenario-based approach for adaptation planning that integrates quantitative, model-driven, climate change projections with qualitative, participatory exercises to explore management and policy options under a range of future conditions. Major outcomes of this work are (1) increased understanding of key scientific results and uncertainties, (2) incorporation of alternative perspectives into park and landscape level planning, (3) identification of "no brainer" and "no gainer" actions, (4) strengthening of regional science-management partnerships, and (5) overall improved capacity for flexible decision making. The basic approach employed by NPS for scenario planning follows a typical adaptive management process: define the focal question, assess the relevant science, explore plausible futures, identify effective strategies, prioritize and implement actions, and monitor results. Many science and management partners contributed to the process, including NOAA Regional Integrated Science and Assessment teams (RISAs) and Regional Climate Centers (RCCs), USGS Research Centers, and other university and government scientists. The Global Business Network, an internationally recognized leader in scenario development, provided expert facilitation and training techniques. Climate science input is provided

  3. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    NASA Technical Reports Server (NTRS)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  4. Supersymmetric SO(10)-inspired leptogenesis and a new N{sub 2}-dominated scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bari, Pasquale Di; Fiorentin, Michele Re, E-mail: pdb1d08@soton.ac.uk, E-mail: M.Re-Fiorentin@soton.ac.uk

    2016-03-01

    We study the supersymmetric extension of SO(10)-inspired thermal leptogenesis showing the constraints on neutrino parameters and on the reheat temperature T{sub RH} that derive from the condition of successful leptogenesis from next-to-lightest right handed (RH) neutrinos (N{sub 2}) decays and the more stringent ones when independence of the initial conditions (strong thermal leptogenesis) is superimposed. In the latter case, the increase of the lightest right-handed neutrino (N{sub 1}) decay parameters helps the wash-out of a pre-existing asymmetry and constraints relax compared to the non-supersymmetric case. We find significant changes especially in the case of large tanβ values (∼> 15). In particular,more » for normal ordering, the atmospheric mixing angle can now be also maximal. The lightest left-handed neutrino mass is still constrained within the range 010 ∼< m{sub 1}/meV ∼< 3 (corresponding to 075∼< ∑{sub i} m{sub i}/meV ∼< 12). Inverted ordering is still disfavoured, but an allowed region satisfying strong thermal leptogenesis opens up at large tanβ values. We also study in detail the lower bound on T{sub RH} finding T{sub RH}∼> 1 × 10{sup 10} GeV independently of the initial N{sub 2} abundance. Finally, we propose a new N{sub 2}-dominated scenario where the N{sub 1} mass is lower than the sphaleron freeze-out temperature. In this case there is no N{sub 1} wash-out and we find T{sub RH} ∼> 1× 10{sup 9} GeV . These results indicate that SO(10)-inspired thermal leptogenesis can be made compatible with the upper bound from the gravitino problem, an important result in light of the role often played by supersymmetry in the quest of a realistic model of fermion masses.« less

  5. Medical Scenarios Relevant to Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Hurs, Victor; Doerr, Harold

    2004-01-01

    The Medical Operational Support Team (MOST) was tasked by the JSC Space Medicine and Life Sciences Directorate (SLSD) to incorporate medical simulation into 1) medical training for astronaut-crew medical officers (CMO) and medical flight control teams and 2) evaluations of procedures and resources required for medical care aboard the International Space Station (ISS). Development of evidence-based medical scenarios that mimic the physiology observed during spaceflight will be needed for the MOST to complete these two tasks. The MOST used a human patient simulator, the ISS-like resources in the Medical Simulation Laboratory (MSL), and evidence from space operations, military operations and medical literature to develop space relevant medical scenarios. These scenarios include conditions concerning airway management, Advanced Cardiac Life Support (ACLS) and mitigating anaphylactic symptoms. The MOST has used these space relevant medical scenarios to develop a preliminary space medical training regimen for NASA flight surgeons, Biomedical Flight Controllers (Biomedical Engineers; BME) and CMO-analogs. This regimen is conducted by the MOST in the MSL. The MOST has the capability to develop evidence-based space-relevant medical scenarios that can help SLSD I) demonstrate the proficiency of medical flight control teams to mitigate space-relevant medical events and 2) validate nextgeneration medical equipment and procedures for space medicine applications.

  6. Natural gas network resiliency to a "shakeout scenario" earthquake.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, James F.; Corbet, Thomas Frank,; Brooks, Robert E.

    2013-06-01

    A natural gas network model was used to assess the likely impact of a scenario San Andreas Fault earthquake on the natural gas network. Two disruption scenarios were examined. The more extensive damage scenario assumes the disruption of all three major corridors bringing gas into southern California. If withdrawals from the Aliso Canyon storage facility are limited to keep the amount of stored gas within historical levels, the disruption reduces Los Angeles Basin gas supplies by 50%. If Aliso Canyon withdrawals are only constrained by the physical capacity of the storage system to withdraw gas, the shortfall is reduced tomore » 25%. This result suggests that it is important for stakeholders to put agreements in place facilitating the withdrawal of Aliso Canyon gas in the event of an emergency.« less

  7. A methodology for modeling barrier island storm-impact scenarios

    USGS Publications Warehouse

    Mickey, Rangley C.; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.; Dalyander, P. Soupy

    2017-02-16

    A methodology for developing a representative set of storm scenarios based on historical wave buoy and tide gauge data for a region at the Chandeleur Islands, Louisiana, was developed by the U.S. Geological Survey. The total water level was calculated for a 10-year period and analyzed against existing topographic data to identify when storm-induced wave action would affect island morphology. These events were categorized on the basis of the threshold of total water level and duration to create a set of storm scenarios that were simulated, using a high-fidelity, process-based, morphologic evolution model, on an idealized digital elevation model of the Chandeleur Islands. The simulated morphological changes resulting from these scenarios provide a range of impacts that can help coastal managers determine resiliency of proposed or existing coastal structures and identify vulnerable areas within those structures.

  8. Adaptive scenarios: a training model for today's public health workforce.

    PubMed

    Uden-Holman, Tanya; Bedet, Jennifer; Walkner, Laurie; Abd-Hamid, Nor Hashidah

    2014-01-01

    With the current economic climate, money for training is scarce. In addition, time is a major barrier to participation in trainings. To meet the public health workforce's rising demand for training, while struggling with less time and fewer resources, the Upper Midwest Preparedness and Emergency Response Learning Center has developed a model of online training that provides the public health workforce with individually customized, needs-based training experiences. Adaptive scenarios are rooted in case-based reasoning, a learning approach that focuses on the specific knowledge needed to solve a problem. Proponents of case-based reasoning argue that learners benefit from being able to remember previous similar situations and reusing information and knowledge from that situation. Adaptive scenarios based on true-to-life job performance provide an opportunity to assess skills by presenting the user with choices to make in a problem-solving context. A team approach was used to develop the adaptive scenarios. Storylines were developed that incorporated situations aligning with the knowledge, skills, and attitudes outlined in the Public Health Preparedness and Response Core Competency Model. This article examines 2 adaptive scenarios: "Ready or Not? A Family Preparedness Scenario" and "Responding to a Crisis: Managing Emotions and Stress Scenario." The scenarios are available on Upper Midwest Preparedness and Emergency Response Learning Center's Learning Management System, the Training Source (http://training-source.org). Evaluation data indicate that users' experiences have been positive. Integrating the assessment and training elements of the scenarios so that the training experience is uniquely adaptive to each user is one of the most efficient ways to provide training. The opportunity to provide individualized, needs-based training without having to administer separate assessments has the potential to save time and resources. These adaptive scenarios continue to be

  9. Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review.

    PubMed

    Tosoni, Edoardo; Salo, Ahti; Zio, Enrico

    2018-04-01

    A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties. © 2017 Society for Risk Analysis.

  10. Grassland production under global change scenarios for New Zealand pastoral agriculture

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-10-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re

  11. Grassland production under global change scenarios for New Zealand pastoral agriculture

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-05-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand (LURNZ) models to simulate pastoral agriculture and to make land-use change, intensification and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report (AR4) also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3% and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasize that CO2 fertilisation and N cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of Decoupled Land-Use Change Scenarios (DLUCS): the Biome-BGC data products at a national or regional level can be re

  12. 750 GeV diphoton resonance, 125 GeV Higgs and muon g - 2 anomaly in deflected anomaly mediation SUSY breaking scenarios

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Lei; Yang, Jin Min; Zhang, Mengchao

    2016-08-01

    We propose to interpret the 750 GeV diphoton excess in deflected anomaly mediation supersymmetry breaking scenarios, which can naturally predict couplings between a singlet field and vector-like messengers. The CP-even scalar component (S) of the singlet field can serve as the 750 GeV resonance. The messenger scale, which is of order the gravitino scale, can be as light as Fϕ ∼ O (10) TeV when the messenger species NF and the deflection parameter d are moderately large. Such messengers can induce the large loop decay process S → γγ. Our results show that such a scenario can successfully accommodate the 125 GeV Higgs boson, the 750 GeV diphoton excess and the muon g - 2 without conflicting with the LHC constraints. We also comment on the possible explanations in the gauge mediation supersymmetry breaking scenario.

  13. Creating pedestrian crash scenarios in a driving simulator environment.

    PubMed

    Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W

    2015-01-01

    In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to

  14. Expanded Capabilities for the Hydrogen Financial Analysis Scenario Tool (H2FAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian; Melaina, Marc; Penev, Michael

    This presentation describes how NREL expanded the capabilities for the Hydrogen Financial Analysis Scenario Tool (H2FAST) in FY16. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting on June 8, 2016, in Washington, D.C.

  15. A framework for modeling scenario-based barrier island storm impacts

    USGS Publications Warehouse

    Mickey, Rangley; Long, Joseph W.; Dalyander, P. Soupy; Plant, Nathaniel G.; Thompson, David M.

    2018-01-01

    Methods for investigating the vulnerability of existing or proposed coastal features to storm impacts often rely on simplified parametric models or one-dimensional process-based modeling studies that focus on changes to a profile across a dune or barrier island. These simple studies tend to neglect the impacts to curvilinear or alongshore varying island planforms, influence of non-uniform nearshore hydrodynamics and sediment transport, irregular morphology of the offshore bathymetry, and impacts from low magnitude wave events (e.g. cold fronts). Presented here is a framework for simulating regionally specific, low and high magnitude scenario-based storm impacts to assess the alongshore variable vulnerabilities of a coastal feature. Storm scenarios based on historic hydrodynamic conditions were derived and simulated using the process-based morphologic evolution model XBeach. Model results show that the scenarios predicted similar patterns of erosion and overwash when compared to observed qualitative morphologic changes from recent storm events that were not included in the dataset used to build the scenarios. The framework model simulations were capable of predicting specific areas of vulnerability in the existing feature and the results illustrate how this storm vulnerability simulation framework could be used as a tool to help inform the decision-making process for scientists, engineers, and stakeholders involved in coastal zone management or restoration projects.

  16. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  17. [Scenario analysis--a method for long-term planning].

    PubMed

    Stavem, K

    2000-01-10

    Scenarios are known from the film industry, as detailed descriptions of films. This has given name to scenario analysis, a method for long term planning using descriptions of composite future pictures. This article is an introduction to the scenario method. Scenarios describe plausible, not necessarily probable, developments. They focus on problems and questions that decision makers must be aware of and prepare to deal with, and the consequences of alternative decisions. Scenarios are used in corporate and governmental planning, and they can be useful and complementary to traditional planning and extrapolation of past experience. The method is particularly useful in a rapidly changing world with shifting external conditions.

  18. Scenario-based and scenario-neutral assessment of climate change impacts on operational performance of a multipurpose reservoir

    Treesearch

    Allison G. Danner; Mohammad Safeeq; Gordon E. Grant; Charlotte Wickham; Desirée Tullos; Mary V. Santelmann

    2017-01-01

    Scenario-based and scenario-neutral impacts assessment approaches provide complementary information about how climate change-driven effects on streamflow may change the operational performance of multipurpose dams. Examining a case study of Cougar Dam in Oregon, United States, we simulated current reservoir operations under scenarios of plausible future hydrology....

  19. An economic evaluation of alternative biofuel deployment scenarios in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oladosu, Gbadebo

    Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less

  20. An economic evaluation of alternative biofuel deployment scenarios in the USA

    DOE PAGES

    Oladosu, Gbadebo

    2017-05-03

    Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less

  1. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    PubMed

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Impact of the biorefinery size on the logistics of corn stover supply – A scenario analysis

    DOE PAGES

    Wang, Yu; Ebadian, Mahmood; Sokhansanj, Shahab; ...

    2017-03-23

    In this study, three scenarios are considered to quantify the impact of the biorefinery size on the required biomass logistical resources. The biorefinery scenarios include small scale (175 dt/day)-SS, medium scale (520 dt/day)-MS and large scale (860 dt/day)-LS. These scenarios are compared against the following logistical resources (1) harvest area and contracted fields, (2) logistics equipment fleet and the workforce to run this fleet and (3) intermediate storage sites and their biomass inventory levels. To this end, the IBSAL-MC simulation model is applied to a corn stover logistics system in Southwestern Ontario. The obtained results show (1) the harvest areamore » and the number of contracted fields increase by 65% and 78% from the SS scenario to the MS and LS scenarios, respectively, (2) the average biomass delivered costs are estimated to be $82.09, $87.49 and $93.75/dry tonne in the SS, MS and LS scenarios. The increase in the capital costs to develop a dedicated logistics equipment fleet are estimated to be far greater than the increase in the delivered costs as the size of the biorefinery increases. The upfront capital costs are estimated to be 6.72 dollars, 21.83 and 35.51 million in these scenarios. To run the logistics equipment fleet efficiently, 37, 136 and 235 well-trained operators are required in the SS, MS ad LS scenarios, respectively, and (3) the inventory level and the land requirement for storage in the MS and LS scenarios are estimated to be 225% and 425% greater than those of the SS scenario. The sensitivity analysis indicates that the logistical resources are highly sensitive to corn yield and farm participation rate. Overall, this study shows the importance of considering the size of the required logistical resources and the associated level of logistical complexity in evaluating the economic viability of a biorefinery project.« less

  3. Impact of the biorefinery size on the logistics of corn stover supply – A scenario analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu; Ebadian, Mahmood; Sokhansanj, Shahab

    In this study, three scenarios are considered to quantify the impact of the biorefinery size on the required biomass logistical resources. The biorefinery scenarios include small scale (175 dt/day)-SS, medium scale (520 dt/day)-MS and large scale (860 dt/day)-LS. These scenarios are compared against the following logistical resources (1) harvest area and contracted fields, (2) logistics equipment fleet and the workforce to run this fleet and (3) intermediate storage sites and their biomass inventory levels. To this end, the IBSAL-MC simulation model is applied to a corn stover logistics system in Southwestern Ontario. The obtained results show (1) the harvest areamore » and the number of contracted fields increase by 65% and 78% from the SS scenario to the MS and LS scenarios, respectively, (2) the average biomass delivered costs are estimated to be $82.09, $87.49 and $93.75/dry tonne in the SS, MS and LS scenarios. The increase in the capital costs to develop a dedicated logistics equipment fleet are estimated to be far greater than the increase in the delivered costs as the size of the biorefinery increases. The upfront capital costs are estimated to be 6.72 dollars, 21.83 and 35.51 million in these scenarios. To run the logistics equipment fleet efficiently, 37, 136 and 235 well-trained operators are required in the SS, MS ad LS scenarios, respectively, and (3) the inventory level and the land requirement for storage in the MS and LS scenarios are estimated to be 225% and 425% greater than those of the SS scenario. The sensitivity analysis indicates that the logistical resources are highly sensitive to corn yield and farm participation rate. Overall, this study shows the importance of considering the size of the required logistical resources and the associated level of logistical complexity in evaluating the economic viability of a biorefinery project.« less

  4. Scripting Scenarios for the Human Patient Simulator

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Miller, Robert; Doerr, Harold

    2004-01-01

    The Human Patient Simulator (HPS) is particularly useful in providing scenario-based learning which can be tailored to fit specific scenarios and which can be modified in realtime to enhance the teaching environment. Scripting these scenarios so as to maximize learning requires certain skills, in order to ensure that a change in student performance, understanding, critical thinking, and/or communication skills results. Methods: A "good" scenario can be defined in terms of applicability, learning opportunities, student interest, and clearly associated metrics. Obstacles to such a scenario include a lack of understanding of the applicable environment by the scenario author(s), a desire (common among novices) to cover too many topics, failure to define learning objectives, mutually exclusive or confusing learning objectives, unskilled instructors, poor preparation , disorganized approach, or an inappropriate teaching philosophy (such as "trial by fire" or education through humiliation). Results: Descriptions of several successful teaching programs, used in the military, civilian, and NASA medical environments , will be provided, along with sample scenarios. Discussion: Simulator-based lessons have proven to be a time- and cost-efficient manner by which to educate medical personnel. Particularly when training for medical care in austere environments (pre-hospital, aeromedical transport, International Space Station, military operations), the HPS can enhance the learning experience.

  5. Benzo[a]pyrene exposure under future ocean acidification scenarios weakens the immune responses of blood clam, Tegillarca granosa.

    PubMed

    Su, Wenhao; Zha, Shanjie; Wang, Yichen; Shi, Wei; Xiao, Guoqiang; Chai, Xueliang; Wu, Hongxi; Liu, Guangxu

    2017-04-01

    Persistent organic pollutants (POPs) are known to converge into the ocean and accumulate in the sediment, posing great threats to marine organisms such as the sessile bottom burrowing bivalves. However, the immune toxicity of POPs, such as B[a]P, under future ocean acidification scenarios remains poorly understood to date. Therefore, in the present study, the impacts of B[a]P exposure on the immune responses of a bivalve species, Tegillarca granosa, under present and future ocean acidification scenarios were investigated. Results obtained revealed an increased immune toxicity of B[a]P under future ocean acidification scenarios in terms of reduced THC, altered haemocyte composition, and hampered phagocytosis, which may attribute to the synergetic effects of B[a]P and ocean acidification. In addition, the gene expressions of pathogen pattern recognition receptors (TLR1, TLR2, TLR4, TLR6), pathway mediators (TRAF6, TAK1, TAB2, IKKα and Myd88), and effectors (NF-ĸB) of the important immune related pathways were significantly down-regulated upon exposure to B[a]P under future ocean acidification scenarios. Results of the present study suggested an increased immune toxicity of B[a]P under future ocean acidification scenarios, which will significantly hamper the immune responses of T. granosa and subsequently render individuals more susceptible to pathogens challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Value of CCS under Current Policy Scenarios: NDCs and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Dahowski, Robert T.; McJeon, Haewon C.

    This paper describes preliminary results of analysis using the Global Change Assessment Model (GCAM) to evaluate the potential role of CCS in addressing emissions reduction targets. Scenarios are modelled using the Paris-Increased Ambition (PIA) case developed by Fawcett et al. (2015), and a more aggressive Paris Two-Degree Ambition (P2A) case. Both cases are based upon nationally determined contributions (NDCs) agreed to at the UNFCCC Conference of Parties (COP-21) in December 2015, coupled with additional mitigation effort beyond the 2030 Paris timeframe, through the end of the century. Analysis of CCS deployment and abatement costs under both policy scenarios suggests that,more » as modelled, having CCS in the technological portfolio could reduce the global cost of addressing emissions reduction targets specified under the policy scenario by trillions of dollars, primarily by enabling a smoother and lower-cost transition to next-generation technologies. Through the end of the century, total global abatement costs associated with the PIA case – with five percent annual reduction in emission intensity and reaching 2.2 degrees by 2100 – are reduced by $15 trillion USD in the scenario where CCS is available to deploy by 2025 and remains available through 2100, reflecting a 47 percent savings in the cost of climate change abatement. Under the more ambitious P2A case, with 8 percent annual reduction in emission intensity and reaching 1.9 degrees by 2100, the availability of CCS reduces global abatement costs by $22 trillion USD through the end of the century, again nearly halving the costs of addressing the policy, relative to achieving the same target using an energy portfolio that does not include CCS. PIA and P2A scenarios with CCS result in 1,250 and 1,580 GtCO2 of global geologic storage by the end of the century, respectively.« less

  7. Simulation of future stream alkalinity under changing deposition and climate scenarios.

    PubMed

    Welsch, Daniel L; Cosby, B Jack; Hornberger, George M

    2006-08-31

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 microeq L-1) except where climate is gradually warming and becoming more moist (average increase of 13 microeq L-1). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions.

  8. Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada.

    PubMed

    Abalos, Diego; Smith, Ward N; Grant, Brian B; Drury, Craig F; MacKell, Sarah; Wagner-Riddle, Claudia

    2016-12-15

    Effective management of nitrogen (N) fertilizer application by farmers provides great potential for reducing emissions of the potent greenhouse gas nitrous oxide (N 2 O). However, such potential is rarely achieved because our understanding of what practices (or combination of practices) lead to N 2 O reductions without compromising crop yields remains far from complete. Using scenario analysis with the process-based model DNDC, this study explored the effects of nine fertilizer practices on N 2 O emissions and crop yields from two corn production systems in Canada. The scenarios differed in: timing of fertilizer application, fertilizer rate, number of applications, fertilizer type, method of application and use of nitrification/urease inhibitors. Statistical analysis showed that during the initial calibration and validation stages the simulated results had no significant total error or bias compared to measured values, yet grain yield estimations warrant further model improvement. Sidedress fertilizer applications reduced yield-scaled N 2 O emissions by c. 60% compared to fall fertilization. Nitrification inhibitors further reduced yield-scaled N 2 O emissions by c. 10%; urease inhibitors had no effect on either N 2 O emissions or crop productivity. The combined adoption of split fertilizer application with inhibitors at a rate 10% lower than the conventional application rate (i.e. 150kgNha -1 ) was successful, but the benefits were lower than those achieved with single fertilization at sidedress. Our study provides a comprehensive assessment of fertilizer management practices that enables policy development regarding N 2 O mitigation from agricultural soils in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A scenario elicitation methodology to identify the drivers of electricity infrastructure cost in South America

    NASA Astrophysics Data System (ADS)

    Moksnes, Nandi; Taliotis, Constantinos; Broad, Oliver; de Moura, Gustavo; Howells, Mark

    2017-04-01

    Developing a set of scenarios to assess a proposed policy or future development pathways requires a certain level of information, as well as establishing the socio-economic context. As the future is difficult to predict, great care in defining the selected scenarios is needed. Even so it can be difficult to assess if the selected scenario is covering the possible solution space. Instead, this paper's methodology develops a large set of scenarios (324) in OSeMOSYS using the SAMBA 2.0 (South America Model Base) model to assess long-term electricity supply scenarios and applies a scenario-discovery statistical data mining algorithm, Patient Rule Induction Method (PRIM). By creating a multidimensional space, regions related to high and low cost can be identified as well as their key driver. The six key drivers are defined a priori in three (high, medium, low) or two levers (high, low): 1) Demand projected from GDP, population, urbanization and transport, 2) Fossil fuel price, 3) Climate change impact on hydropower, 4) Renewable technology learning rate, 5) Discount rate, 6) CO2 emission targets.

  10. Multicriteria evaluation of simulated logging scenarios in a tropical rain forest.

    PubMed

    Huth, Andreas; Drechsler, Martin; Köhler, Peter

    2004-07-01

    Forest growth models are useful tools for investigating the long-term impacts of logging. In this paper, the results of the rain forest growth model FORMIND were assessed by a multicriteria decision analysis. The main processes covered by FORMIND include tree growth, mortality, regeneration and competition. Tree growth is calculated based on a carbon balance approach. Trees compete for light and space; dying large trees fall down and create gaps in the forest. Sixty-four different logging scenarios for an initially undisturbed forest stand at Deramakot (Malaysia) were simulated. The scenarios differ regarding the logging cycle, logging method, cutting limit and logging intensity. We characterise the impacts with four criteria describing the yield, canopy opening and changes in species composition. Multicriteria decision analysis was used for the first time to evaluate the scenarios and identify the efficient ones. Our results plainly show that reduced-impact logging scenarios are more 'efficient' than the others, since in these scenarios forest damage is minimised without significantly reducing yield. Nevertheless, there is a trade-off between yield and achieving a desired ecological state of logged forest; the ecological state of the logged forests can only be improved by reducing yields and enlarging the logging cycles. Our study also demonstrates that high cutting limits or low logging intensities cannot compensate for the high level of damage caused by conventional logging techniques.

  11. Effects of combined dredging-related stressors on sponges: a laboratory approach using realistic scenarios.

    PubMed

    Pineda, Mari-Carmen; Strehlow, Brian; Kamp, Jasmine; Duckworth, Alan; Jones, Ross; Webster, Nicole S

    2017-07-12

    Dredging can cause increased suspended sediment concentrations (SSCs), light attenuation and sedimentation in marine communities. In order to determine the combined effects of dredging-related pressures on adult sponges, three species spanning different nutritional modes and morphologies were exposed to 5 treatment levels representing realistic dredging scenarios. Most sponges survived under low to moderate turbidity scenarios (SSCs of ≤ 33 mg L -1 , and a daily light integral of ≥0.5 mol photons m -2 d -1 ) for up to 28 d. However, under the highest turbidity scenario (76 mg L -1 , 0.1 mol photons m -2 d -1 ) there was 20% and 90% mortality of the phototrophic sponges Cliona orientalis and Carteriospongia foliascens respectively, and tissue regression in the heterotrophic Ianthella basta. All three sponge species exhibited mechanisms to effectively tolerate dredging-related pressures in the short term (e.g. oscula closure, mucus production and tissue regression), although reduced lipids and deterioration of sponge health suggest that longer term exposure to similar conditions is likely to result in higher mortality. These results suggest that the combination of high SSCs and low light availability can accelerate mortality, increasing the probability of biological effects, although there is considerable interspecies variability in how adult sponges respond to dredging pressures.

  12. Mind Map Our Way into Effective Student Questioning: a Principle-Based Scenario

    NASA Astrophysics Data System (ADS)

    Stokhof, Harry; de Vries, Bregje; Bastiaens, Theo; Martens, Rob

    2017-07-01

    Student questioning is an important self-regulative strategy and has multiple benefits for teaching and learning science. Teachers, however, need support to align student questioning to curricular goals. This study tests a prototype of a principle-based scenario that supports teachers in guiding effective student questioning. In the scenario, mind mapping is used to provide both curricular structure as well as support for student questioning. The fidelity of structure and the process of implementation were verified by interviews, video data and a product collection. Results show that the scenario was relevant for teachers, practical in use and effective for guiding student questioning. Results also suggest that shared responsibility for classroom mind maps contributed to more intensive collective knowledge construction.

  13. Simulating Scenario Floods for Hazard Assessment on the Lower Bicol Floodplain, the Philippines

    NASA Astrophysics Data System (ADS)

    Usamah, Muhibuddin Bin; Alkema, Dinand

    This paper describes the first results from a study to the behavior of floods in the lower Bicol area, the Philippines. A 1D2D dynamic hydraulic model was applied to simulate a set of scenario floods through the complex topography of the city Naga and surrounding area. The simulation results are integrated into a multi-parameter hazard zonation for the five scenario floods.

  14. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade.

    PubMed

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-09-01

    The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1-SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Analysis of JT-60SA operational scenarios

    NASA Astrophysics Data System (ADS)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  16. Forecasts of swordfish (Xiphias gladius) and common sardine (Strangomera bentincki) off Chile under the A2 IPCC climate change scenario

    NASA Astrophysics Data System (ADS)

    Silva, Claudio; Yáñez, Eleuterio; Barbieri, María Angela; Bernal, Claudio; Aranis, Antonio

    2015-05-01

    Recent studies have demonstrated the effects of climate change on both oceanographic conditions and the relative abundance and distribution of fisheries resources. In this study, we investigated the impacts of climate change on swordfish (Xiphias gladius) and common sardine (Strangomera bentincki) fisheries using predictions of changes from global models (according to the NCAR model and IPCC emissions scenario A2), bioclimate envelope models and satellite-based sea surface temperature (SST) estimates from high-resolution regional models for the simulation period 2015-2065. Predictions of SST from global climate models were regionalised using the Delta statistical downscaling technique. The results show an SST trend of 0.0196 °C per year in the study area, equivalent to 0.98 °C for the simulation horizon and for a high CO2 emission scenario (A2). The bioclimate envelope models were developed using historical (2001-2011) monthly environmental and fisheries data. These data included the local relative abundance index of fish catch per unit effort (CPUE), corresponding to the total catch (kg) by 1000 hooks in a 1° latitude × 1° longitude fishing grid for swordfish and to the total catch (ton) by hold capacity (100 m3) in a 10‧ latitude × 10‧ longitude grid for common sardine. The environmental data included temporal (month), spatial (latitude) and thermal conditions (SST). In the first step of the bioclimate modelling performed in this study, generalised additive models (GAMs) were used as an exploratory tool to identify the functional relationships between the environmental variables and CPUE. These relationships were then parameterised using general linear models (GLMs) to provide a robust forecasting tool. With this modelling approach, environmental variables explained 58.7% of the variation in the CPUE of swordfish and 60.6% of the variation in the CPUE of common sardine in the final GLMs. Using IDRISI GIS, these GLMs simulated monthly changes in the

  17. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca Ann; Langholtz, Matthew H.; Johnson, Kristen

    With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report:more » Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO 2) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or

  18. Maximising the Effectiveness of a Scenario Planning Process: Tips for Scenario Planners in Higher Education

    ERIC Educational Resources Information Center

    Sayers, Nicola

    2011-01-01

    Scenario planning is a tool which can help organisations and people to think about, and plan for, the long-term future. In basic terms, it involves creating a number of in-depth scenarios (stories), each of which tells of a different possible future for an organisation or issue, and considering how each different future might influence…

  19. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, Frederic H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.; Wagner, Frederic H.

    2003-01-01

    Three procedures were used to develop a set of plausible scenarios of anthropogenic climate change by the year 2100 that could be posed to the sectors selected for assessment (Fig. 2.2). First, a workshop of climatologists with expertise in western North American climates was convened from September 10-12, 1998 at the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA to discuss and propose a set of scenarios for the Rocky Mountain/Great Basin (RMGB) region.Secondly, the 20th-century climate record was analyzed to determine what trends might have occurred during the period. Since CO2 and other greenhouse gases increased during the century, it was reasonable to examine whether the changes projected for the 21st century had begun to appear during the 20th, at least qualitatively though not quantitatively.Third, on the assumption of a two-fold increase in atmospheric CO2 by 2100, climate-change scenarios for the 21st century were projected with two, state-of-the-art computer models that simulate the complex interactions between earth, atmosphere, and ocean to produce the earth’s climate system. Each of the last two procedures has its strengths and weaknesses, and each can function to some degree as a check on the other. The historical analysis has the advantage of using empirical measurements of actual climate change taken over an extensive network of measuring stations. These make it possible to subdivide a large region like the RMGB into subreqions to assess the uniformity of climate and climate change over the region. And the historical measurements can to some degree serve as a check on the GCM simulations when the two are compared over the same time period.

  20. Climate Change Effects on Heat- and Cold-Related Mortality in the Netherlands: A Scenario-Based Integrated Environmental Health Impact Assessment

    PubMed Central

    Huynen, Maud M. T. E.; Martens, Pim

    2015-01-01

    Although people will most likely adjust to warmer temperatures, it is still difficult to assess what this adaptation will look like. This scenario-based integrated health impacts assessment explores baseline (1981–2010) and future (2050) population attributable fractions (PAF) of mortality due to heat (PAFheat) and cold (PAFcold), by combining observed temperature–mortality relationships with the Dutch KNMI’14 climate scenarios and three adaptation scenarios. The 2050 model results without adaptation reveal a decrease in PAFcold (8.90% at baseline; 6.56%–7.85% in 2050) that outweighs the increase in PAFheat (1.15% at baseline; 1.66%–2.52% in 2050). When the 2050 model runs applying the different adaptation scenarios are considered as well, however, the PAFheat ranges between 0.94% and 2.52% and the PAFcold between 6.56% and 9.85%. Hence, PAFheat and PAFcold can decrease as well as increase in view of climate change (depending on the adaptation scenario). The associated annual mortality burdens in 2050—accounting for both the increasing temperatures and mortality trend—show that heat-related deaths will range between 1879 and 5061 (1511 at baseline) and cold-related deaths between 13,149 and 19,753 (11,727 at baseline). Our results clearly illustrate that model outcomes are not only highly dependent on climate scenarios, but also on adaptation assumptions. Hence, a better understanding of (the impact of various) plausible adaptation scenarios is required to advance future integrated health impact assessments. PMID:26512680

  1. Climate change and growth scenarios for California wildfire

    Treesearch

    A.L. Westerling; B.P. Bryant; H.K. Preisler; T.P. Holmes; H.G. Hildalgo; T. Das; S.R. Shrestha

    2011-01-01

    Large wildfire occurrence and burned area are modeled using hydroclimate and landsurface characteristics under a range of future climate and development scenarios. The range of uncertainty for future wildfire regimes is analyzed over two emissions pathways (the Special Report on Emissions Scenarios [SRES] A2 and B1 scenarios); three global climate models (Centre...

  2. A generalized land-use scenario generator: a case study for the Congo basin.

    NASA Astrophysics Data System (ADS)

    Caporaso, Luca; Tompkins, Adrian Mark; Biondi, Riccardo; Bell, Jean Pierre

    2014-05-01

    The impact of deforestation on climate is often studied using highly idealized "instant deforestation" experiments due to the lack of generalized deforestation scenario generators coupled to climate model land-surface schemes. A new deforestation scenario generator has been therefore developed to fulfill this role known as the deforestation ScenArio GEnerator, or FOREST-SAGE. The model produces distributed maps of deforestation rates that account for local factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. The integrated deforestation risk is scaled to give the deforestation rate as specified by macro-region scenarios such as "business as usual" or "increased protection legislation" which are a function of future time. FOREST-SAGE was initialized and validated using the MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. Despite the high cloud coverage of Congo Basin over the year, we were able to validate the results with high confidence from 2001 to 2010 in a large forested area. Furthermore a set of scenarios has been used to provide a range of possible pathways for the evolution of land-use change over the Congo Basin for the period 2010-2030.

  3. Web Based Tool for Mission Operations Scenarios

    NASA Technical Reports Server (NTRS)

    Boyles, Carole A.; Bindschadler, Duane L.

    2008-01-01

    A conventional practice for spaceflight projects is to document scenarios in a monolithic Operations Concept document. Such documents can be hundreds of pages long and may require laborious updates. Software development practice utilizes scenarios in the form of smaller, individual use cases, which are often structured and managed using UML. We have developed a process and a web-based scenario tool that utilizes a similar philosophy of smaller, more compact scenarios (but avoids the formality of UML). The need for a scenario process and tool became apparent during the authors' work on a large astrophysics mission. It was noted that every phase of the Mission (e.g., formulation, design, verification and validation, and operations) looked back to scenarios to assess completeness of requirements and design. It was also noted that terminology needed to be clarified and structured to assure communication across all levels of the project. Attempts to manage, communicate, and evolve scenarios at all levels of a project using conventional tools (e.g., Excel) and methods (Scenario Working Group meetings) were not effective given limitations on budget and staffing. The objective of this paper is to document the scenario process and tool created to offer projects a low-cost capability to create, communicate, manage, and evolve scenarios throughout project development. The process and tool have the further benefit of allowing the association of requirements with particular scenarios, establishing and viewing relationships between higher- and lower-level scenarios, and the ability to place all scenarios in a shared context. The resulting structured set of scenarios is widely visible (using a web browser), easily updated, and can be searched according to various criteria including the level (e.g., Project, System, and Team) and Mission Phase. Scenarios are maintained in a web-accessible environment that provides a structured set of scenario fields and allows for maximum

  4. Role of future scenarios in understanding deep uncertainty in ...

    EPA Pesticide Factsheets

    The environment and its interactions with human systems, whether economic, social or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of deep uncertainty presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be “technological development” and “change in societal paradigms.” These drivers were used as a basis to develop four distinct scenario storylines. The energy and emission implications of each storyline were then modeled using the MARKAL energy system model. NOX and SO2 emissions were found to decrease for all scenarios, largely a response to existing air quality regulations. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition

  5. A real-time computer model to assess resident work-hours scenarios.

    PubMed

    McDonald, Furman S; Ramakrishna, Gautam; Schultz, Henry J

    2002-07-01

    To accurately model residents' work hours and assess options to forthrightly meet Residency Review Committee-Internal Medicine (RRC-IM) requirements. The requirements limiting residents' work hours are clearly defined by the Accreditation Council for Graduate Medical Education (ACGME) and the RRC-IM: "When averaged over any four-week rotation or assignment, residents must not spend more than 80 hours per week in patient care duties."(1) The call for the profession to realistically address work-hours violations is of paramount importance.(2) Unfortunately, work hours are hard to calculate. We developed an electronic model of residents' work-hours scenarios using Microsoft Excel 97. This model allows the input of multiple parameters (i.e., call frequency, call position, days off, short-call, weeks per rotation, outpatient weeks, clinic day of the week, additional time due to clinic) and start and stop times for post-call, non-call, short-call, and weekend days. For each resident on a rotation, the model graphically demonstrates call schedules, plots clinic days, and portrays all possible and preferred days off. We tested the model for accuracy in several scenarios. For example, the model predicted average work hours of 85.1 hours per week for fourth-night-call rotations. This was compared with logs of actual work hours of 84.6 hours per week. Model accuracy for this scenario was 99.4% (95% CI 96.2%-100%). The model prospectively predicted work hours of 89.9 hours/week in the cardiac intensive care unit (CCU). Subsequent surveys found mean CCU work hours of 88, 1 hours per week. Model accuracy for this scenario was 98% (95% CI 93.2-100%). Thus validated, we then used the model to test proposed scenarios for complying with RRC-IM limits. The flexibility of the model allowed demonstration of the full range of work-hours scenarios in every rotation of our 36-month program. Demonstrations of status-quo work-hours scenarios were presented to faculty as well as real

  6. Applying the global RCP-SSP-SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach.

    PubMed

    Kebede, Abiy S; Nicholls, Robert J; Allan, Andrew; Arto, Iñaki; Cazcarro, Ignacio; Fernandes, Jose A; Hill, Chris T; Hutton, Craig W; Kay, Susan; Lázár, Attila N; Macadam, Ian; Palmer, Matthew; Suckall, Natalie; Tompkins, Emma L; Vincent, Katharine; Whitehead, Paul W

    2018-09-01

    To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA 1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision

  7. Development of a Tsunami Scenario Database for Marmara Sea

    NASA Astrophysics Data System (ADS)

    Ozer Sozdinler, Ceren; Necmioglu, Ocal; Meral Ozel, Nurcan

    2016-04-01

    Due to the very short travel times in Marmara Sea, a Tsunami Early Warning System (TEWS) has to be strongly coupled with the earthquake early warning system and should be supported with a pre-computed tsunami scenario database to be queried in near real-time based on the initial earthquake parameters. To address this problem, 30 different composite earthquake scenarios with maximum credible Mw values based on 32 fault segments have been identified to produce a detailed scenario database for all possible earthquakes in the Marmara Sea with a tsunamigenic potential. The bathy/topo data of Marmara Sea was prepared using GEBCO and ASTER data, bathymetric measurements along Bosphorus, Istanbul and Dardanelle, Canakkale and the coastline digitized from satellite images. The coarser domain in 90m-grid size was divided into 11 sub-regions having 30m-grid size in order to increase the data resolution and precision of the calculation results. The analyses were performed in nested domains with numerical model NAMIDANCE using non-linear shallow water equations. In order to cover all the residential areas, industrial facilities and touristic locations, more than 1000 numerical gauge points were selected along the coasts of Marmara Sea, which are located at water depth of 5 to 10m in finer domain. The distributions of tsunami hydrodynamic parameters were investigated together with the change of water surface elevations, current velocities, momentum fluxes and other important parameters at the gauge points. This work is funded by the project MARsite - New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite (FP7-ENV.2012 6.4-2, Grant 308417 - see NH2.3/GMPV7.4/SM7.7) and supported by SATREPS-MarDim Project (Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey) and JICA (Japan International Cooperation Agency). The authors would like to acknowledge Ms. Basak Firat for her assistance in

  8. Scenario analysis of energy-based low-carbon development in China.

    PubMed

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.

  9. Assessment of 1.5°C and 2°C climate change scenarios impact on wheat production in Tunisia

    NASA Astrophysics Data System (ADS)

    Bergaoui, karim; Belhaj Fraj, Makram; Zaaboul, Rashyd; Allen, Myles; Mitchell, Dann; Schleussner, Carl-Friedrich; Saeed, Fahad; Mc Donnell, Rachael

    2017-04-01

    Wheat is the main staple crop in North Africa region and contributes the most to food security. It is almost entirely grown under rainfed conditions and its yield is highly impacted by the climate variability, e. g. dry winters, a late autumn or late spring. Irregular rainfall or drought events particularly at key stages of the growing season, lead to both early and terminal wheat stresses and high inter-year variation in yield. The goal of this study was to explore the impacts of future climate on wheat production in Tunisia using an ensemble of regional bias corrected climate models outputs for the 1.5°C and 2°C warming above the pre-industrial levels. By examining the outputs on wheat yield levels the study would help answer the question of whether the ambitious climate change mitigation efforts involved in stabilizing temperatures at 1.5°C would bring the cereal yields needed in North Africa. Tunisia was chosen as the focus country because its wheat systems are found across a wide diversity in biophysical and farming conditions so giving insight on more localized effects. Data availability across a wide range of wheat management systems from subsistence farming systems to highly mechanized agribusinesses also supported work here as model results could be readily validated for the historical period. Two scenarios were obtained using the RCP2.6 as boundary conditions for 1.5 scenario and a weighted combination of RCP2.6 and RCP4.5 for the 2°C scenario using their respective CO2 levels in the future. We calibrated and validated a dynamical crop model, DSSAT, to simulate the national wheat production and to understand the impact of drought on growth and development that causes yield variation. DSSAT simulations were driven by CHIRPS and ERA-Interim reanalysis data as daily climate forcings. The simulations were validated in a set of farmer fields which were representative of the dominant cropping systems in the country. Then, the model was validated with 10

  10. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca Ann; Langholtz, Matthew H.

    With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report:more » Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO2) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or other

  11. Alice’s Delirium: A Theatre-based Simulation Scenario for Nursing

    PubMed Central

    Posner, Glenn D

    2018-01-01

    As an educational methodology, simulation has been used by nursing education at the academic level for numerous years and has started to gain traction in the onboarding education and professional development of practicing nurses. Simulation allows the learner to apply knowledge and skills in a safe environment where mistakes and learning can happen without an impact on patient safety. The development of a simulation scenario to demonstrate the benefits of simulation education methodologies to a large group of nurse educators was requested by nursing education leadership at The Ottawa Hospital (TOH). Since the demonstration of this scenario in the fall of 2016, there has been significant uptake and adaptation of this particular scenario within the nursing education departments of TOH. Originally written to be used with a simulated patient (SP), “Alice” has since been adapted to be used with a hi-fidelity manikin within an inpatient surgery department continuing professional development (CPD) program for practicing nurses, orientation for nurses to a level 2 trauma unit and at the corporate level of nursing orientation using an SP. Therefore, this scenario is applicable to nurses practicing in an area of inpatient surgery at varying levels, from novice to expert. It could easily be adapted for use with medicine nursing education programs. The case presented in this technical report is of the simulation scenario used for the inpatient surgery CPD program. Varying adaptations of the case are included in the appendices. PMID:29872592

  12. Asian water futures - Multi scenarios, models and criteria assessment -

    NASA Astrophysics Data System (ADS)

    Satoh, Yusuke; Burek, Peter; Wada, Yoshihide; Flrörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Kahil, Taher; Tramberend, Sylvia; Fischer, Günther; Wiberg, David

    2016-04-01

    A better understanding of the current and future availability of water resources is essential for the implementation of the recently agreed Sustainable Development Goals (SDGs). Long-term/efficient strategies for coping with current and potential future water-related challenges are urgently required. Although Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) were develop for the impact assessment of climate change, very few assessments have yet used the SSPs to assess water resources. Then the IIASA Water Futures and Solutions Initiative (WFaS), developed a set of water use scenarios consistent with RCPs and SSPs and applying the latest climate changes scenarios. Here this study focuses on results for Asian countries for the period 2010-2050. We present three conceivable future pathways of Asian water resources, determined by feasible combinations of two RCPs and three SSPs. Such a scenario approach provides valuable insights towards identifying appropriate strategies as gaps between a "scenario world" and reality. In addition, for the assessment of future water resources a multi-criteria analysis is applied. A classification system for countries and watershed that consists of two broad dimensions: (i) economic and institutional adaptive capacity, (ii) hydrological complexity. The latter is composed of several sub-indexes including total renewable water resources per capita, the ratio of water demand to renewable water resource, variability of runoff and dependency ratio to external. Furthermore, this analysis uses a multi-model approach to estimate runoff and discharge using 5 GCMs and 5 global hydrological models (GHMs). Three of these GHMs calculate water use based on a consistent set of scenarios in addition to water availability. As a result, we have projected hot spots of water scarcity in Asia and their spatial and temporal change. For example, in a scenario based on SSP2 and RCP6.0, by 2050, in total 2.1 billion people

  13. Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario

    NASA Astrophysics Data System (ADS)

    Lehodey, P.; Senina, I.; Sibert, J.; Bopp, L.; Calmettes, B.; Hampton, J.; Murtugudde, R.

    2010-07-01

    An improved version of the spatial ecosystem and population dynamics model SEAPODYM was used to investigate the potential impacts of global warming on tuna populations. The model included an enhanced definition of habitat indices, movements, and accessibility of tuna predators to different vertically migrant and non-migrant micronekton functional groups. The simulations covered the Pacific basin (model domain) at a 2° × 2° geographic resolution. The structure of the model allows an evaluation from multiple data sources, and parameterization can be optimized by adjoint techniques and maximum likelihood using fishing data. A first such optimized parameterization was obtained for bigeye tuna ( Thunnus obesus) in the Pacific Ocean using historical catch data for the last 50 years and a hindcast from a coupled physical-biogeochemical model driven by the NCEP atmospheric reanalysis. The parameterization provided very plausible biological parameter values and a good fit to fishing data from the different fisheries, both within and outside the time period used for optimization. We then employed this model to forecast the future of bigeye tuna populations in the Pacific Ocean. The simulation was driven by the physical-biogeochemical fields predicted from a global marine biogeochemistry - climate simulation. This global simulation was performed with the IPSL climate model version 4 (IPSL-CM4) coupled to the oceanic biogeochemical model PISCES and forced by atmospheric CO 2, from historical records over 1860-2000, and under the SRES A2 IPCC scenario for the 21st century (i.e. atmospheric CO 2 concentration reaching 850 ppm in the year 2100). Potential future changes in distribution and abundance under the IPCC scenario are presented but without taking into account any fishing effort. The simulation showed an improvement in bigeye tuna spawning habitat both in subtropical latitudes and in the eastern tropical Pacific (ETP) where the surface temperature becomes optimal for

  14. Appendix 2. Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows, Version 2.3

    NASA Technical Reports Server (NTRS)

    Hudson, Nicholas; Ruane, Alexander Clark

    2013-01-01

    This Guide explains how to create climate series and climate change scenarios by using the AgMip Climate team's methodology as outlined in the AgMIP Guide for Regional Assessment: Handbook of Methods and Procedures. It details how to: install R and the required packages to run the AgMIP Climate Scenario Generation scripts, and create climate scenarios from CMIP5 GCMs using a 30-year baseline daily weather dataset. The Guide also outlines a workflow that can be modified for application to your own climate data.

  15. Using Multi-Scenario Tsunami Modelling Results combined with Probabilistic Analyses to provide Hazard Information for the South-WestCoast of Indonesia

    NASA Astrophysics Data System (ADS)

    Zosseder, K.; Post, J.; Steinmetz, T.; Wegscheider, S.; Strunz, G.

    2009-04-01

    Indonesia is located at one of the most active geological subduction zones in the world. Following the most recent seaquakes and their subsequent tsunamis in December 2004 and July 2006 it is expected that also in the near future tsunamis are likely to occur due to increased tectonic tensions leading to abrupt vertical seafloor alterations after a century of relative tectonic silence. To face this devastating threat tsunami hazard maps are very important as base for evacuation planning and mitigation strategies. In terms of a tsunami impact the hazard assessment is mostly covered by numerical modelling because the model results normally offer the most precise database for a hazard analysis as they include spatially distributed data and their influence to the hydraulic dynamics. Generally a model result gives a probability for the intensity distribution of a tsunami at the coast (or run up) and the spatial distribution of the maximum inundation area depending on the location and magnitude of the tsunami source used. The boundary condition of the source used for the model is mostly chosen by a worst case approach. Hence the location and magnitude which are likely to occur and which are assumed to generate the worst impact are used to predict the impact at a specific area. But for a tsunami hazard assessment covering a large coastal area, as it is demanded in the GITEWS (German Indonesian Tsunami Early Warning System) project in which the present work is embedded, this approach is not practicable because a lot of tsunami sources can cause an impact at the coast and must be considered. Thus a multi-scenario tsunami model approach is developed to provide a reliable hazard assessment covering large areas. For the Indonesian Early Warning System many tsunami scenarios were modelled by the Alfred Wegener Institute (AWI) at different probable tsunami sources and with different magnitudes along the Sunda Trench. Every modelled scenario delivers the spatial distribution of

  16. Future possible crop yield scenarios under multiple SSP and RCP scenarios.

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.

    2016-12-01

    Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.

  17. Scenario based approach for multiple source Tsunami Hazard assessment for Sines, Portugal

    NASA Astrophysics Data System (ADS)

    Wronna, M.; Omira, R.; Baptista, M. A.

    2015-08-01

    In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines - Portugal, one of the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING a Non-linear Shallow Water Model With Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water), MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawback, runup and inundation distance. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at Sines test site considering the single scenarios at mean sea level, the aggregate scenario and the influence of the tide on the aggregate scenario. The results confirm the composite of Horseshoe and Marques Pombal fault as the worst case scenario. It governs the aggregate scenario with about 60 % and inundates an area of 3.5 km2.

  18. Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.

    2015-05-15

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  19. Student Experience of a Scenario-Centred Curriculum

    ERIC Educational Resources Information Center

    Bell, Sarah; Galilea, Patricia; Tolouei, Reza

    2010-01-01

    In 2006 UCL implemented new scenario-centred degree programmes in Civil and Environmental Engineering. The new curriculum can be characterised as a hybrid of problem-based, project-based and traditional approaches to learning. Four times a year students work in teams for one week on a scenario which aims to integrate learning from lecture and…

  20. Interactive specification acquisition via scenarios: A proposal

    NASA Technical Reports Server (NTRS)

    Hall, Robert J.

    1992-01-01

    Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT.

  1. Conformal versus confining scenario in SU(2) with adjoint fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Debbio, L.; Pica, C.; Lucini, B.

    2009-10-01

    The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling {beta}=4/g{sub 0}{sup 2}=2.25 for values of the bare fermion mass m{sub 0} that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the massmore » of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near-)conformal and the confining scenario is outlined.« less

  2. Model-Simulated Northern Winter Cyclone and Anticyclone Activity under a Greenhouse Warming Scenario.

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Wei-Chyung

    1997-07-01

    Two 100-yr equilibrium simulations from the NCAR Community Climate Model coupled to a nondynamic slab ocean are used to investigate the activity of northern winter extratropical cyclones and anticyclones under a greenhouse warming scenario. The first simulation uses the 1990 observed CO2, CH4, N2O, CFC-11, and CFC-12 concentrations, and the second adopts the year 2050 concentrations according to the Intergovernmental Panel on Climate Change business-as-usual scenario. Variables that describe the characteristic properties of the cyclone-scale eddies, such as surface cyclone and anticyclone frequency and the bandpassed root-mean-square of 500-hPa geopotential height, along with the Eady growth rate maximum, form a framework for the analysis of the cyclone and anticyclone activity.Objective criteria are developed for identifying cyclone and anticyclone occurrences based on the 1000-hPa geopotential height and vorticity fields and tested using ECMWF analyses. The potential changes of the eddy activity under the greenhouse warming climate are then examined. Results indicate that the activity of cyclone-scale eddies decreases under the greenhouse warming scenario. This is not only reflected in the surface cyclone and anticyclone frequency and in the bandpassed rms of 500-hPa geopotential height, but is also discerned from the Eady growth rate maximum. Based on the analysis, three different physical mechanisms responsible for the decreased eddy activity are discussed: 1) a decrease of the extratropical meridional temperature gradient from the surface to the midtroposphere, 2) a reduction in the land-sea thermal contrast in the east coastal regions of the Asian and North American continents, and 3) an increase in the eddy meridional latent heat fluxes. Uncertainties in the results related to the limitations of the model and the model equilibrium simulations are discussed.

  3. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-07-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein, we propose a scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semimajor axis of 4Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the PKDGRAV package with a soft-sphere discrete element method to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best matching to the shape of Toutatis at an approaching distance rp = 1.4-1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  4. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  5. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons.

    PubMed

    Reyes-Nivia, Catalina; Diaz-Pulido, Guillermo; Kline, David; Guldberg, Ove-Hoegh; Dove, Sophie

    2013-06-01

    Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 μatm - 24 °C) and future pCO2 -temperature scenarios projected for the end of the century (Medium: +230 μatm - +2 °C; High: +610 μatm - +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2 -temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2 -temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2 -temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans. © 2013

  6. Molecular Diagnostic Analysis of Outbreak Scenarios

    ERIC Educational Resources Information Center

    Morsink, M. C.; Dekter, H. E.; Dirks-Mulder, A.; van Leeuwen, W. B.

    2012-01-01

    In the current laboratory assignment, technical aspects of the polymerase chain reaction (PCR) are integrated in the context of six different bacterial outbreak scenarios. The "Enterobacterial Repetitive Intergenic Consensus Sequence" (ERIC) PCR was used to analyze different outbreak scenarios. First, groups of 2-4 students determined optimal…

  7. Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990-2100

    NASA Astrophysics Data System (ADS)

    Pham, M.; Boucher, O.; Hauglustaine, D.

    2005-03-01

    Simulations of the global sulfur cycle under the IPCC SRES scenarios have been performed. Sulfur dioxide and sulfate burdens, as well as the direct and first indirect radiative forcing (RF) by sulfate aerosols only, are presented for the period 1990 to 2100. By 2100, global sulfur emission rates decline everywhere in all scenarios. At that time, the anthropogenic sulfate burden ranges from 0.34 to 1.03 times the 1990 value of 0.47 Tg S. Direct and indirect global and annually mean RFs relative to the year 1990 are near 0 or positive (range of -0.07 to 0.28 Wm-2 and 0.01 to 0.38 Wm-2 for the direct and indirect effects, respectively). For reference these forcings amount respectively to -0.42 and -0.79 Wm-2 in 1990 relative to preindustrial conditions (around 1750). Sulfur aerosols will therefore induce a smaller cooling effect in 2100 than in 1990 relative to preindustrial conditions. For the period 1990 to 2100, the forcing efficiencies (computed relatively to 1990) are fairly constant for the direct effect (around -160 W (g sulfate)-1). The forcing efficiencies for the indirect effect are around -200 and -100 W (g sulfate)-1 for negative and positive burden differences, respectively. This is due to a shift in regional patterns of emissions and a saturation in the indirect effect. The simulated annually averaged SO2 concentrations for A1B scenario in 2020 are close to air quality objectives for public health in some parts of Africa and exceed these objectives in some parts of China and Korea. Moreover, sulfate deposition rates are estimated to increase by 200% from the present level in East and Southeast Asia. This shows that Asia may experience in the future sulfur-related environmental and human health problems as important as Europe and the United States did in the 1970s.

  8. Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment

    PubMed Central

    Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Roberts, S. Craig; Tommasi, Luca

    2013-01-01

    Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global well-being). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions. PMID:24069291

  9. Technical Feasibility Assessment of Lunar Base Mission Scenarios

    NASA Astrophysics Data System (ADS)

    Magelssen, Trygve ``Spike''; Sadeh, Eligar

    2005-02-01

    Investigation of the literature pertaining to lunar base (LB) missions and the technologies required for LB development has revealed an information gap that hinders technical feasibility assessment. This information gap is the absence of technical readiness levels (TRL) (Mankins, 1995) and information pertaining to the criticality of the critical enabling technologies (CETs) that enable mission success. TRL is a means of identifying technical readiness stages of a technology. Criticality is defined as the level of influence the CET has on the mission scenario. The hypothesis of this research study is that technical feasibility is a function of technical readiness and technical readiness is a function of criticality. A newly developed research analysis method is used to identify the technical feasibility of LB mission scenarios. A Delphi is used to ascertain technical readiness levels and CET criticality-to-mission. The research analysis method is applied to the Delphi results to determine the technical feasibility of the LB mission scenarios that include: observatory, science research, lunar settlement, space exploration gateway, space resource utilization, and space tourism. The CETs identified encompasses four major system level technologies of: transportation, life support, structures, and power systems. Results of the technical feasibility assessment show the observatory and science research LB mission scenarios to be more technical ready out of all the scenarios, but all mission scenarios are in very close proximity to each other in regard to criticality and TRL and no one mission scenario stands out as being absolutely more technically ready than any of the other scenarios. What is significant and of value are the Delphi results concerning CET criticality-to-mission and the TRL values evidenced in the Tables that can be used by anyone assessing the technical feasibility of LB missions.

  10. High-Speed Civil Transport Forecast: Simulated Airlines Scenarios for Mach 1.6, Mach 2.0, and Mach 2.4 Configurations for Year 2015

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1996-01-01

    The report describes the development of a database of fuel burn and emissions from projected High Speed Civil Transport (HSCT) fleets that reflect actual airlines' networks, operational requirement, and traffic flow as operated by simulated world wide airlines for Mach 1.6, 2.0, and 2.4 HSCT configurations. For the year 2015, McDonnell Douglas Corporation created two supersonic commercial air traffic networks consisting of origin-destination city pair routes and associated traffic levels. The first scenario represented a manufacturing upper limit producible HSCT fleet availability by year 2015. The fleet projection of the Mach 2.4 configuration for this scenario was 1059 units with a traffic capture of 70 percent. The second scenario focused on the number of units that can minimally be produced by the year 2015. Using realistic production rates, the HSCT fleet projection amounts to 565 units. The traffic capture associated with this fleet was estimated at 40 percent. The airlines network was extracted from the actual networks of 21 major world airlines. All the routes were screened for suitability for HSCT operations. The route selection criteria included great circle distance, difference between flight path distance and great circle distance to avoid overland operations, and potential flight frequency.

  11. Scenario-Based Specification and Evaluation of Architectures for Health Monitoring of Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sundaram, P.

    2001-01-01

    HUMS systems have been an area of increased research in the recent times due to two main reasons: (a) increase in the occurrences of accidents in the aerospace, and (b) stricter FAA regulations on aircrafts maintenance [2]. There are several problems associated with the maintenance of aircrafts that the HUMS systems can solve through the use of several monitoring technologies.This paper documents our methodology of employing scenarios in the specification and evaluation of architecture for HUMS. Section 2 investigates related works that use scenarios in software development. Section 3 describes how we use scenarios in our work, which is followed by a demonstration of our methods in the development of KUMS in section 4. Conclusion summarizes results.

  12. A future without health? Health dimension in global scenario studies.

    PubMed Central

    Martens, Pim; Huynen, Maud

    2003-01-01

    This paper reviews the health dimension and sociocultural, economic, and ecological determinants of health in existing global scenario studies. Not even half of the 31 scenarios reviewed gave a good description of future health developments and the different scenario studies did not handle health in a consistent way. Most of the global driving forces of health are addressed adequately in the selected scenarios, however, and it therefore would have been possible to describe the future developments in health as an outcome of these multiple driving forces. To provide examples on how future health can be incorporated in existing scenarios, we linked the sociocultural, economic, and environmental developments described in three sets of scenarios (special report on emission scenarios (SRES), global environmental outlook-3 (GEO3), and world water scenarios (WWS)) to three potential, but imaginary, health futures ("age of emerging infectious diseases", "age of medical technology", and "age of sustained health"). This paper provides useful insights into how to deal with future health in scenarios and shows that a comprehensive picture of future health evolves when all important driving forces and pressures are taken into account. PMID:14997242

  13. Selecting climate change scenarios using impact-relevant sensitivities

    Treesearch

    Julie A. Vano; John B. Kim; David E. Rupp; Philip W. Mote

    2015-01-01

    Climate impact studies often require the selection of a small number of climate scenarios. Ideally, a subset would have simulations that both (1) appropriately represent the range of possible futures for the variable/s most important to the impact under investigation and (2) come from global climate models (GCMs) that provide plausible results for future climate in the...

  14. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    NASA Astrophysics Data System (ADS)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  15. Validation of Variations in Mental Workload as a Function of Scenario Difficulty: Traffic Density and Visibility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fluctuations in mental workload can be expected as a function of traffic density and visibility. The aim of the current investigation was to establish simulation scenarios that differed in attentional processing requirements. Four scenarios were created and tested representing two levels of traffic density (urban versus freeway) and two levels of visibility (clear versus foggy). An array of mental workload assessment measures were used to exam changes in attentional processing requirements in each scenario. The assessment array consisted of physiological (P300 amplitude and latency) and behavioral (RT and accuracy) indices. Preliminary results indicate that workload differs significantly as a function of traffic density in rural versus freeway scenarios. Workload also differs significantly in rural versus freeway scenarios as a function of visibility as observed by a significant interaction between the two variables of interest. Results are discussed in terms of their application for validating the difficulty level of simulation scenarios as a format for examining mental workload.

  16. Development and reliability of a Motivational Interviewing Scenarios Tool for Eating Disorders (MIST-ED) using a skills-based intervention among caregivers.

    PubMed

    Sepulveda, Ana R; Wise, Caroline; Zabala, Maria; Todd, Gill; Treasure, Janet

    2013-12-01

    The aims of this study were to develop an eating disorder scenarios tool to assess the motivational interviewing (MI) skills of caregivers and evaluate the coding reliability of the instrument, and to test the sensitivity to change through a pre/post/follow-up design. The resulting Motivational Interview Scenarios Tool for Eating Disorders (MIST-ED) was administered to caregivers (n = 66) who were asked to provide oral and written responses before and after a skills-based intervention, and at a 3-month follow-up. Raters achieved excellent inter-rater reliability (intra-class correlations of 91.8% on MI adherent and 86.1% for MI non-adherent statements for written scenarios and 89.2%, and 85.3% for oral scenarios). Following the intervention, MI adherent statements increased (baseline = 9.4%, post = 61.5% and follow-up 47.2%) and non-MI adherent statements decreased (baseline = 90.6%, post = 38.5% and follow-up = 52.8%). This instrument can be used as a simple method to measure the acquisition of MI skills to improve coping and both response methods are adequate. The tool shows good sensitivity to improved skills. © 2013.

  17. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    USGS Publications Warehouse

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  18. Biodiversity losses and conservation trade-offs: Assessing future urban growth scenarios for a North American trade corridor

    USGS Publications Warehouse

    Villarreal, Miguel; Norman, Laura M.; Wallace, Cynthia S.A.; Boykin, Kenneth

    2013-01-01

    The Sonoran Desert and Apache Highlands ecoregions of North America are areas of exceptionally high plant and vertebrate biodiversity. However, much of the vertebrate biodiversity is supported by only a few vegetation types with limited distributions, some of which are increasingly threatened by changing land uses. We assessed the impacts of two future urban growth scenarios on biodiversity in a binational watershed in Arizona, USA and Sonora, Mexico. We quantified and mapped terrestrial vertebrate species richness using Wildlife Habitat Relation models and validated the results with data from National Park Service biological inventories. Future urban growth, based on historical trends, was projected to the year 2050 for 1) a “Current Trends” scenario and, 2) a “Megalopolis” scenario that represented a transnational growth corridor with open-space conservation attributes. Based on Current Trends, 45% of existing riparian woodland (267 of 451species), and 34% of semi-desert grasslands (215 of 451 species) will be lost, whereas, in the Megalopolis scenario, these types would decline by 44% and 24% respectively. Outcomes of the two models suggest a trade-off at the taxonomic class level: Current Trends would reduce and fragment mammal and herpetofauna habitat, while Megalopolis would result in loss of avian-rich riparian habitat.

  19. Bridging Scales: Developing a Framework to Build a City-Scale Environmental Scenario for Japanese Municipalities

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Fujita, T.; Nakayama, T.; Xu, K.

    2007-12-01

    There is an ongoing project on establishing environmental scenarios in Japan to evaluate middle to long-term environmental policy and technology options toward low carbon society. In this project, the time horizon of the scenarios is set for 2050 on the ground that a large part of social infrastructure in Japan is likely to be renovated by that time, and cities are supposed to play important roles in building low carbon society in Japan. This belief is held because cities or local governments could implement various policies and programs, such as land use planning and promotion of new technologies with low GHG emissions, which produce an effect in an ununiform manner, taking local socio-economic conditions into account, while higher governments, either national or prefectural, could impose environmental tax on electricity and gas to alleviate ongoing GHG emissions, which uniformly covers their jurisdictions. In order for local governments to devise and implement concrete administrative actions equipped with rational policies and technologies, referring the environmental scenarios developed for the entire nation, we need to localize the national scenarios, both in terms of spatial and temporal extent, so that they could better reflect local socio-economic and institutional conditions. In localizing the national scenarios, the participation of stakeholders is significant because they play major roles in shaping future society. Stakeholder participation in the localization process would bring both creative and realistic inputs on how future unfolds on a city scale. In this research, 1) we reviewed recent efforts on international and domestic scenario development to set a practical time horizon for a city-scale environmental scenario, which would lead to concrete environmental policies and programs, 2) designed a participatory scenario development/localization process, drawing on the framework of the 'Story-and-Simulation' or SAS approach, which Alcamo(2001) proposed

  20. A White Paper on Global Wheat Health Based on Scenario Development and Analysis.

    PubMed

    Savary, S; Djurle, A; Yuen, J; Ficke, A; Rossi, V; Esker, P D; Fernandes, J M C; Del Ponte, E M; Kumar, J; Madden, L V; Paul, P; McRoberts, N; Singh, P K; Huber, L; Pope de Vallavielle, C; Saint-Jean, S; Willocquet, L

    2017-10-01

    Scenario analysis constitutes a useful approach to synthesize knowledge and derive hypotheses in the case of complex systems that are documented with mainly qualitative or very diverse information. In this article, a framework for scenario analysis is designed and then, applied to global wheat health within a timeframe from today to 2050. Scenario analysis entails the choice of settings, the definition of scenarios of change, and the analysis of outcomes of these scenarios in the chosen settings. Three idealized agrosystems, representing a large fraction of the global diversity of wheat-based agrosystems, are considered, which represent the settings of the analysis. Several components of global changes are considered in their consequences on global wheat health: climate change and climate variability, nitrogen fertilizer use, tillage, crop rotation, pesticide use, and the deployment of host plant resistances. Each idealized agrosystem is associated with a scenario of change that considers first, a production situation and its dynamics, and second, the impacts of the evolving production situation on the evolution of crop health. Crop health is represented by six functional groups of wheat pathogens: the pathogens associated with Fusarium head blight; biotrophic fungi, Septoria-like fungi, necrotrophic fungi, soilborne pathogens, and insect-transmitted viruses. The analysis of scenario outcomes is conducted along a risk-analytical pattern, which involves risk probabilities represented by categorized probability levels of disease epidemics, and risk magnitudes represented by categorized levels of crop losses resulting from these levels of epidemics within each production situation. The results from this scenario analysis suggest an overall increase of risk probabilities and magnitudes in the three idealized agrosystems. Changes in risk probability or magnitude however vary with the agrosystem and the functional groups of pathogens. We discuss the effects of global

  1. Projected SST trends across the Caribbean Sea based on PRECIS downscaling of ECHAM4, under the SRES A2 and B2 scenarios

    NASA Astrophysics Data System (ADS)

    Nurse, Leonard A.; Charlery, John L.

    2016-01-01

    The Caribbean Sea and adjacent land areas are highly sensitive to the projected impacts of global climate change. The countries bordering the Caribbean Sea depend heavily on coastal and marine assets as a major source of livelihood support. Rising sea surface temperatures (SSTs) are known to be associated with coral bleaching, ocean acidification, and other phenomena that threaten livelihoods in the region. The paucity of SST systematic observations in both the Caribbean Sea and adjoining Western Atlantic waters is a limiting factor in the projection of future climate change impacts on the region's marine resources. Remote sensing of SST by satellites began only within the last three decades and although the data collected so far might be insufficient to provide conclusive definitions of long-term SST variations in the Caribbean waters, these data along with the output from climate model simulations provide a useful basis for gaining further insights into plausible SST futures under IPCC SRES scenarios. In this paper, we examine the recent SST records from the NESDIS AVHRR satellite data and NOAA Optimum Interpolation (OI) sea surface temperature V2 and provide a comparative analysis of projected SST changes for the Caribbean Sea up to the end of the twenty-first century, under the SRES A2 and B2 scenarios' simulations of the sea surface skin temperatures (SSsT) using the Hadley Centre's regional model, PRECIS. The implications of these projected SST changes for bleaching of coral reefs, one of the region's most valuable marine resource, and for rainfall are also discussed.

  2. Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, Bethany; Keyser, David; Tegen, Suzanne

    Construction of the first offshore wind farm in the United States began in 2015, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) has commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical, large-scale deployment scenarios for California: 16more » GW of offshore wind by 2050 (Scenario A) and 10 GW of offshore wind by 2050 (Scenario B). The results of this analysis can be used to better understand the general scales of economic opportunities that could result from offshore wind development. Results show total state gross domestic product (GDP) impacts of $16.2 billion in Scenario B or $39.7 billion in Scenario A for construction; and $3.5 billion in Scenario B or $7.9 billion in Scenario A for the operations phases.« less

  3. Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buch, Jatan; Ralegankar, Pranjal; Rentala, Vikram, E-mail: jatan_buch@brown.edu, E-mail: pranjal6@illinois.edu, E-mail: rentala@phy.iitb.ac.in

    The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large 'boost factor' to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universemore » and decays to the lighter species over cosmological timescales. Consequently, the lighter species becomes the DM which populates the universe today. We show that annihilation of the lighter DM species with an enhanced cross-section, produced via such a non-thermal mechanism, can explain the observed AMS-02 positron flux while avoiding CMB constraints. The observed DM relic density can be correctly reproduced as well with simple s -wave annihilation cross-sections. We demonstrate that the scenario is safe from CMB constraints on late-time energy depositions during the cosmic 'dark ages'. Interestingly, structure formation constraints force us to consider small mass splittings between the two dark matter species. We explore possible cosmological and particle physics signatures in a toy model that realizes this scenario.« less

  4. The formation mechanism of 4179 Toutatis' elongated bi-lobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-04-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein we propose an scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semi-major axis of 4 Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the pkdgrav package with a soft-sphere discrete element method (SSDEM) to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best-matching to the shape of Toutatis at an approaching distance rp = 1.4 ˜ 1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  5. Effects of elevated nutrients and CO2 emission scenarios on three coral reef macroalgae.

    PubMed

    Bender-Champ, Dorothea; Diaz-Pulido, Guillermo; Dove, Sophie

    2017-05-01

    Coral reef macroalgae are expected to thrive in the future under conditions that are deleterious to the health of reef-building corals. Here we examined how macroalgae would be affected by exposure to future CO 2 emission scenarios (pCO 2 and temperature), enriched nutrients and combinations of both. The species tested, Laurencia intricata (Rhodophyta), Turbinaria ornata and Chnoospora implexa (both Phaeophyceae), have active carbon-concentrating mechanisms but responded differently to the treatments. L. intricata showed high mortality under nutrient enriched RCP4.5 ("reduced" CO 2 emission) and RCP8.5 ("business-as-usual" CO 2 emission) and grew best under pre-industrial (PI) conditions, where it could take up carbon using external carbonic anhydrase combined, potentially, with proton extrusion. T. ornata's growth rate showed a trend for reduction under RCP8.5 but was unaffected by nutrient enrichment. In C. implexa, highest growth was observed under PI conditions, but highest net photosynthesis occurred under RCP8.5, suggesting that under RCP8.5, carbon is stored and respired at greater rates while it is directed to growth under PI conditions. None of the species showed growth enhancement under future scenarios, nutrient enrichment or combinations of both. This leads to the conclusion that under such conditions these species are unlikely to pose an increasing threat to coral reefs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes.

    PubMed

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-08-21

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.

  7. Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050

    USGS Publications Warehouse

    Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.

    2009-01-01

    Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American

  8. The impact of traffic emissions on air quality in the Berlin-Brandenburg region - a case study on cycling scenarios

    NASA Astrophysics Data System (ADS)

    Kuik, F.; Lauer, A.; von Schneidemesser, E.; Butler, T. M.

    2016-12-01

    Many European cities continue to struggle with exceedances of NO2 limit values at measurement sites near roads, of which a large contribution is attributed to emissions from traffic. In this study, we explore how urban air quality can be improved with different traffic measures using the example of the Berlin-Brandenburg region. In order to simulate urban background air quality we use the Weather Research and Forecasting model with chemistry (WRF-Chem) at a horizontal resolution of 1km. We use emission input data at a horizontal resolution of 1km obtained by downscaling TNO-MACC III emissions based on local proxy data including population and traffic densities. In addition we use a statistical approach combining the simulated urban background concentrations with information on traffic densities to estimate NO2 at street level. This helps assessing whether the emission scenarios studied here can lead to significant reductions in NO2 concentrations at street level. The emission scenarios in this study represent a range of scenarios in which car traffic is replaced with bicycle traffic. Part of this study was an initial discussion phase with stakeholders, including policy makers and NGOs. The discussions have shown that the different stakeholders are interested in a scientific assessment of the impact of replacing car traffic with bicycle traffic in the Berlin-Brandenburg urban area. Local policy makers responsible for city planning and implementing traffic measures can make best use of scientific modeling results if input data and scenarios are as realistic as possible. For these reasons, the scenarios cover very idealized optimistic ("all passenger cars are replaced by bicycles") and pessimistic ("all cyclists are replaced by cars") scenarios to explore the sensitivity of simulated urban background air quality to these changes, as well as additional scenarios based on city-specific data to analyze more realistic situations. Of particular interest is how these impact

  9. Science for decision making: Transmitting hazard science using catastrophic scenarios

    NASA Astrophysics Data System (ADS)

    Wein, A.

    2010-12-01

    The ShakeOut and ARkStorm scenarios are scientifically-based, multi-disciplinary efforts to describe the damages and consequences of large, but plausible, natural disasters for use in emergency management and other planning. The ShakeOut earthquake scenario, completed in 2008, posits the occurrence of a major earthquake on the southern San Andreas Fault. It was used by more than 5,000 emergency personnel in a California statewide exercise, and it underpins the Federal Emergency Management Agency’s (FEMA) Catastrophic Plan for Southern California. The ARkStorm winter storm scenario, to be completed in 2010, posits the occurrence of a statewide disaster like the storm that occurred during 1861-1862. The ARkStorm scenario will culminate with two planning summits comprised of federal and state agencies, because such an event would exceed local response and recovery capabilities. This talk will address the following questions that are critical to transmitting science for decision making with examples and observations from the two scenarios: 1) Who are the end users of the scenarios, what types of decisions can scenarios inform, and how are stakeholders engaged? 2) What forms of information and processes work best to communicate and apply the hazard science? 3) What are the challenges of using science in decision making? 4) What future directions shall we pursue? From my perspective as coordinator of economic consequences analyses for the two scenarios, I will share insights to these questions. Framing stakeholder decisions in terms of scale (e.g., household to State) and disaster phase (e.g., emergency response, recovery, and mitigation) allows us to align methods of stakeholder engagement with stakeholder decision making. For these regional-scale scenarios, the methods of engagement included stakeholder participation in project vision, scenario construction workshops, presentations, conferences, and emergency response and recovery exercises. Champions (self

  10. The SAFRR Tsunami Scenario

    USGS Publications Warehouse

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.; Ostbo, Bruce I.; Oates, Don

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  11. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henline, P.A.

    1995-12-31

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DIII-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape controlmore » due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described.« less

  12. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henline, P.A.

    1995-10-01

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DRI-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape controlmore » due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described.« less

  13. Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone.

    PubMed

    Melo, Davi C D; Wendland, Edson

    2017-05-01

    Water availability restrictions are already a reality in several countries. This issue is likely to worsen due to climate change, predicted for the upcoming decades. This study aims to estimate the impacts of climate change on groundwater system in the Guarani Aquifer outcrop zone. Global Climate Models (GCM) outputs were used as inputs to a water balance model, which produced recharge estimates for the groundwater model. Recharge was estimated across different land use types considering a control period from 2004 to 2014, and a future period from 2081 to 2099. Major changes in monthly rainfall means are expected to take place in dry seasons. Most of the analysed scenarios predict increase of more than 2 ºC in monthly mean temperatures. Comparing the control and future runs, our results showed a mean recharge change among scenarios that ranged from ~-80 to ~+60%, depending on the land use type. As a result of such decrease in recharge rates, the response given by the groundwater model indicates a lowering of the water table under most scenarios.

  14. Development and Validation of Videotaped Scenarios

    PubMed Central

    Noel, Nora E.; Maisto, Stephen A.; Johnson, James D.; Jackson, Lee A.; Goings, Christopher D.; Hagman, Brett T.

    2013-01-01

    Researchers using scenarios often neglect to validate perceived content and salience of embedded stimuli specifically with intended participants, even when such meaning is integral to the study. For example, sex and aggression stimuli are heavily influenced by culture, so participants may not perceive what researchers intended in sexual aggression scenarios. Using four studies, the authors describe the method of scenario validation to produce two videos assessing alcohol-related sexual aggression. Both videos are identical except for the presence in one video of antiforce cues that are extremely salient to the young heterosexual men. Focus groups and questionnaires validate these men's perceptions that (a) the woman was sexually interested, (b) the sexual cues were salient, (c) the antiforce cues were salient (antiaggression video only), and (e) these antiforce cues inhibited acceptance of forced sex. Results show the value of carefully selecting and validating content when assessing socially volatile variables and provide a useful template for developing culturally valid scenarios. PMID:18252938

  15. Designing a Methodology for Future Air Travel Scenarios

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.

    1992-01-01

    The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all

  16. Scenario planning: a tool for academic health sciences libraries.

    PubMed

    Ludwig, Logan; Giesecke, Joan; Walton, Linda

    2010-03-01

    Review the International Campaign to Revitalise Academic Medicine (ICRAM) Future Scenarios as a potential starting point for developing scenarios to envisage plausible futures for health sciences libraries. At an educational workshop, 15 groups, each composed of four to seven Association of Academic Health Sciences Libraries (AAHSL) directors and AAHSL/NLM Fellows, created plausible stories using the five ICRAM scenarios. Participants created 15 plausible stories regarding roles played by health sciences librarians, how libraries are used and their physical properties in response to technology, scholarly communication, learning environments and health care economic changes. Libraries are affected by many forces, including economic pressures, curriculum and changes in technology, health care delivery and scholarly communications business models. The future is likely to contain ICRAM scenario elements, although not all, and each, if they come to pass, will impact health sciences libraries. The AAHSL groups identified common features in their scenarios to learn lessons for now. The hope is that other groups find the scenarios useful in thinking about academic health science library futures.

  17. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  18. Beyond Inflation:. A Cyclic Universe Scenario

    NASA Astrophysics Data System (ADS)

    Turok, Neil; Steinhardt, Paul J.

    2005-08-01

    Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful 'cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe [1], in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.

  19. Beyond Inflation: A Cyclic Universe Scenario

    NASA Astrophysics Data System (ADS)

    Turok, Neil; Steinhardt, Paul J.

    2005-01-01

    Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful `cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe, in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.

  20. A formal framework for scenario development in support of environmental decision-making

    USGS Publications Warehouse

    Mahmoud, M.; Liu, Yajing; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.; Dominguez, D.; Dominguez, F.; Hulse, D.; Letcher, R.; Rashleigh, Brenda; Smith, C.; Street, R.; Ticehurst, J.; Twery, M.; van, Delden H.; Waldick, R.; White, D.; Winter, L.

    2009-01-01

    Scenarios are possible future states of the world that represent alternative plausible conditions under different assumptions. Often, scenarios are developed in a context relevant to stakeholders involved in their applications since the evaluation of scenario outcomes and implications can enhance decision-making activities. This paper reviews the state-of-the-art of scenario development and proposes a formal approach to scenario development in environmental decision-making. The discussion of current issues in scenario studies includes advantages and obstacles in utilizing a formal scenario development framework, and the different forms of uncertainty inherent in scenario development, as well as how they should be treated. An appendix for common scenario terminology has been attached for clarity. Major recommendations for future research in this area include proper consideration of uncertainty in scenario studies in particular in relation to stakeholder relevant information, construction of scenarios that are more diverse in nature, and sharing of information and resources among the scenario development research community. ?? 2008 Elsevier Ltd.

  1. ImmunoScenarios: A Game for the Immune System.

    ERIC Educational Resources Information Center

    Taylor, Mark F.; Jackson, Sally W.

    1996-01-01

    Describes a board game, ImmunoScenarios, which was developed to reinforce the ideas about the immune system discussed in lecture classes. Emphasizes important characteristics of the body's specific defense system including specificity, cooperation among various cells, and memory. Includes directions for playing, student handouts, and scenarios.…

  2. From scenarios to domain models: processes and representations

    NASA Astrophysics Data System (ADS)

    Haddock, Gail; Harbison, Karan

    1994-03-01

    The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.

  3. Modulus stabilization in a non-flat warped braneworld scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; SenGupta, Soumitra

    2017-05-01

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.

  4. Dual Mission Scenarios for the Human Lunar Campaign - Performance, Cost and Risk Benefits

    NASA Technical Reports Server (NTRS)

    Saucillo, Rudolph J.; Reeves, David M.; Chrone, Jonathan D.; Stromgren, Chel; Reeves, John D.; North, David D.

    2008-01-01

    Scenarios for human lunar operations with capabilities significantly beyond Constellation Program baseline missions are potentially feasible based on the concept of dual, sequential missions utilizing a common crew and a single Ares I/CEV (Crew Exploration Vehicle). For example, scenarios possible within the scope of baseline technology planning include outpost-based sortie missions and dual sortie missions. Top level cost benefits of these dual sortie scenarios may be estimated by comparison to the Constellation Program reference two-mission-per-year lunar campaign. The primary cost benefit is the accomplishment of Mission B with a "single launch solution" since no Ares I launch is required. Cumulative risk to the crew is lowered since crew exposure to launch risks and Earth return risks are reduced versus comparable Constellation Program reference two-mission-per-year scenarios. Payload-to-the-lunar-surface capability is substantially increased in the Mission B sortie as a result of additional propellant available for Lunar Lander #2 descent. This additional propellant is a result of EDS #2 transferring a smaller stack through trans-lunar injection and using remaining propellant to perform a portion of the lunar orbit insertion (LOI) maneuver. This paper describes these dual mission concepts, including cost, risk and performance benefits per lunar sortie site, and provides an initial feasibility assessment.

  5. Long-term sequential monitoring of controlled graves representing common burial scenarios with ground penetrating radar: Years 2 and 3

    NASA Astrophysics Data System (ADS)

    Schultz, John J.; Walter, Brittany S.; Healy, Carrie

    2016-09-01

    Geophysical techniques such as ground-penetrating radar (GPR) have been successfully used for forensic searches to locate clandestine graves and physical evidence. However, additional controlled research is needed to fully understand the applicability of this technology when searching for clandestine graves in various environments, soil types, and for longer periods of time post-burial. The purpose of this study was to determine the applicability of GPR for detecting controlled graves in a Spodosol representing multiple burial scenarios for Years 2 and 3 of a three-year monitoring period. Objectives included determining how different burial scenarios are factors in producing a distinctive anomalous response; determining how different GPR imagery options (2D reflection profiles and horizontal time slices) can provide increased visibility of the burials; and comparing GPR imagery between 500 MHz and 250 MHz dominant frequency antennae. The research site contained a grid with eight graves representing common forensic burial scenarios in a Spodosol, a common soil type of Florida, with six graves containing a pig carcass (Sus scrofa). Burial scenarios with grave items (a deep grave with a layer of rocks over the carcass and a carcass wrapped in a tarpaulin) produced a more distinctive response with clearer target reflections over the duration of the monitoring period compared to naked carcasses. Months with increased precipitation were also found to produce clearer target reflections than drier months, particularly during Year 3 when many grave scenarios that were not previously visible became visible after increased seasonal rainfall. Overall, the 250 MHz dominant frequency antenna imagery was more favorable than the 500 MHz. While detection of a simulated grave may be difficult to detect over time, long term detection of a grave in a Spodosol may be possible if the disturbed spodic horizon is detected. Furthermore, while grave visibility increased with the 2D

  6. Possible climate change over Eurasia under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Sokolov, A. P.; Monier, E.; Scott, J. R.; Forest, C. E.; Schlosser, C. A.

    2011-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  7. Possible climate change over Eurasia under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  8. Evaluating Potential for Large Releases from CO2 StorageReservoirs: Analogs, Scenarios, and Modeling Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer

    2005-09-19

    While the purpose of geologic storage of CO{sub 2} in deep saline formations is to trap greenhouse gases underground, the potential exists for CO{sub 2} to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO{sub 2} is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO{sub 2} were to occur at the land surface, especially where CO{sub 2} could accumulate. Inmore » this paper, we develop possible scenarios for large CO{sub 2} fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies.« less

  9. Participative Spatial Scenario Analysis for Alpine Ecosystems

    NASA Astrophysics Data System (ADS)

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  10. Participative Spatial Scenario Analysis for Alpine Ecosystems.

    PubMed

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  11. Measuring Workload Differences Between Short-term Memory and Long-term Memory Scenarios in a Simulated Flight Environment

    NASA Technical Reports Server (NTRS)

    Berg, S. L.; Sheridan, T. B.

    1984-01-01

    Four highly experienced Air Force pilots each flew four simulated flight scenarios. Two scenarios required a great deal of aircraft maneuvering. The other two scenarios involved less maneuvering, but required remembering a number of items. All scenarios were designed to be equaly challenging. Pilot's Subjective Ratings for Activity-level, Complexity, Difficulty, Stress, and Workload were higher for the manuevering scenarios than the memory scenarios. At a moderate workload level, keeping the pilots active resulted in better aircraft control. When required to monitor and remember items, aircraft control tended to decrease. Pilots tended to weigh information about the spatial positioning and performance of their aircraft more heavily than other items.

  12. Towards the new CH2018 climate scenarios for Switzerland

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Schär, Christoph; Croci-Maspoli, Mischa; Knutti, Reto; Liniger, Mark; Strassmann, Kuno

    2017-04-01

    There is a growing demand for regional assessments of future climate change and its impacts on society and ecosystems to inform and facilitate appropriate adaptation strategies. The basis for such assessments are consistent and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). Since then, new climate model simulations have become available and the scientific understanding has improved. It is hence desirable to update these national scenarios. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS), a network consisting of several federal offices and academic partners. The CH2018 scenarios will build primarily upon the latest Euro-CORDEX regional climate model simulations assuming different pathways of future greenhouse gas concentrations. Compared to CH2011, more emphasis will be put on changes in extremes and in putting the projected changes in the context of observed variability. Results of a recently conducted survey on end-user needs in Switzerland will guide the development process toward the CH2018 scenarios. It ensures that the scenarios are presented and communicated in a user-oriented format and find a wide applicability across different sectors in Switzerland. In the presentation we will show the full methodological setup to generate the CH2018 scenarios and how consistency across the methods and products is maximized. First results on mean changes and selected indices will be presented. In terms of dissemination, the results of the user survey show the necessity to address all different user types of climate scenarios, especially the non-experts. Compared to CH2011, this implies a stronger focus on consulting, condensing complex information and providing tutorials. In the presentation, we will outline our plans on dissemination in order to adequately

  13. Carbon footprint of four different wastewater treatment scenarios

    NASA Astrophysics Data System (ADS)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  14. A multinational randomised study comparing didactic lectures with case scenario in a severe sepsis medical simulation course.

    PubMed

    Li, Chih-Huang; Kuan, Win-Sen; Mahadevan, Malcolm; Daniel-Underwood, Lynda; Chiu, Te-Fa; Nguyen, H Bryant

    2012-07-01

    Medical simulation has been used to teach critical illness in a variety of settings. This study examined the effect of didactic lectures compared with simulated case scenario in a medical simulation course on the early management of severe sepsis. A prospective multicentre randomised study was performed enrolling resident physicians in emergency medicine from four hospitals in Asia. Participants were randomly assigned to a course that included didactic lectures followed by a skills workshop and simulated case scenario (lecture-first) or to a course that included a skills workshop and simulated case scenario followed by didactic lectures (simulation-first). A pre-test was given to the participants at the beginning of the course, post-test 1 was given after the didactic lectures or simulated case scenario depending on the study group assignment, then a final post-test 2 was given at the end of the course. Performance on the simulated case scenario was evaluated with a performance task checklist. 98 participants were enrolled in the study. Post-test 2 scores were significantly higher than pre-test scores in all participants (80.8 ± 12.0% vs 65.4 ± 12.2%, p<0.01). There was no difference in pre-test scores between the two study groups. The lecture-first group had significantly higher post-test 1 scores than the simulation-first group (78.8 ± 10.6% vs 71.6 ± 12.6%, p<0.01). There was no difference in post-test 2 scores between the two groups. The simulated case scenario task performance completion was 90.8% (95% CI 86.6% to 95.0%) in the lecture-first group compared with 83.8% (95% CI 79.5% to 88.1%) in the simulation-first group (p=0.02). A medical simulation course can improve resident physician knowledge in the early management of severe sepsis. Such a course should include a comprehensive curriculum that includes didactic lectures followed by simulation experience.

  15. User needs for climate change scenarios in Switzerland

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Liniger, Mark; Flückiger Knutti, Jacqueline

    2017-04-01

    In the framework of the recently founded National Center for Climate Services (NCCS) new climate change scenarios for Switzerland are currently under development that will be released in 2018 ("CH2018 scenarios"). An important component herein is the consideration of user needs in order to ensure that the new scenarios are user tailored and hence find a wide applicability in different sectors in Switzerland. A comprehensive market research was conducted to get a better overview of who the users of climate scenarios are and what they need. The survey targeted the most climate relevant sectors, and involved representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, a written questionaire, answered by more than one hundred users and two specific workshops gathering the needs in dissemination. Additionally, the survey results were consolidated at a national symposium with around 150 participants from research, administration and practice. The results of the survey show the necessity to classify the users of climate scenarios according to their level of usage and according to the different sectors. It turns out that the less intensive the usage of the climate scenarios is, the more important becomes the need of comprehensibility, clarity and support when disseminating new climate scenarios. According to the survey it is especially the non-experts that should be better addressed in the new cycle of national climate scenarios. In terms of content, the survey reveals strongest needs for quantitative information on changes in extremes, an aspect that was handled in a qualitative way only in the predecessor climate scenario suite CH2011. Another cross-sectoral need are physically consistent data in time, space and between several variables. For instance, in agriculture the combination of heat and dryness is an important aspect, while the same is true in the energy

  16. Economic Analysis of Different Electric Vehicle Charging Scenarios

    NASA Astrophysics Data System (ADS)

    Ying, Li; Haiming, Zhou; Xiufan, Ma; Hao, Wang

    2017-05-01

    Influence of electric vehicles (EV) to grid cannot be ignored. Research on the economy analysis of different charging scenarios is helpful to guide the user to charge or discharge orderly. EV charging models are built such as disordered charging, valley charging, intelligent charging, and V2G (Vehicle to Grid), by which changes of charging load in different scenarios can be seen to analyze the influence to initial load curve, and comparison can be done about user’s average cost. Monte Carlo method is used to simulate the electric vehicle charging behavior, cost in different charging scenarios are compared, social cost is introduced in V2G scene, and the relationship between user’s average cost and social cost is analyzed. By test, it is proved that user’s cost is the lowest in V2G scenario, and the larger the scale of vehicles is, the more the social cost can save.

  17. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    PubMed

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  18. 10 CFR 63.322 - Human intrusion scenario.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Human intrusion scenario. 63.322 Section 63.322 Energy... REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards Human Intrusion Standard § 63.322 Human intrusion scenario. For the purposes of the analysis of human intrusion, DOE must...

  19. Project Icarus: Stakeholder Scenarios for an Interstellar Exploration Program

    NASA Astrophysics Data System (ADS)

    Hein, A. M.; Tziolas, A. C.; Osborne, R.

    The Project Icarus Study Group's objective is to design a mainly fusion-propelled interstellar probe. The starting point are the results of the Daedalus study, which was conducted by the British Interplanetary Society during the 1970's. As the Daedalus study already indicated, interstellar probes will be the result of a large scale, decade-long development program. To sustain a program over such long periods, the commitment of key stakeholders is vital. Although previous publications identified political and societal preconditions to an interstellar exploration program, there is a lack of more specific scientific and political stakeholder scenarios. This paper develops stakeholder scenarios which allow for a more detailed sustainability assessment of future programs. For this purpose, key stakeholder groups and their needs are identified and scientific and political scenarios derived. Political scenarios are based on patterns of past space programs but unprecedented scenarios are considered as well. Although it is very difficult to sustain an interstellar exploration program, there are scenarios in which this seems to be possible, e.g. the discovery of life within the solar system and on an exoplanet, a global technology development program, and dual-use of technologies for defence and security purposes. This is a submission of the Project Icarus Study Group.

  20. Multilingual and Multicultural Task-Based Learning Scenarios: A Pilot Study from the MAGICC Project

    ERIC Educational Resources Information Center

    Álvarez, Inma; Pérez-Cavana, María Luisa

    2015-01-01

    In this article we report on the results of a pilot study on the use of task-based multilingual and multicultural professional scenarios for higher education teachers and learners at BA and MA level. The scenarios reflect new learning outcomes and assessment criteria for the presently under-conceptualised domain of communication in multilingual…

  1. Climate and health implications of future aerosol emission scenarios

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Landry, Jean-Sébastien; Damon Matthews, H.

    2018-02-01

    Anthropogenic aerosols have a net cooling effect on climate and also cause adverse health effects by degrading air quality. In this global-scale sensitivity study, we used a combination of the aerosol-climate model ECHAM-HAMMOZ and the University of Victoria Earth System Climate Model to assess the climate and health effects of aerosols emissions from three Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and two new (LOW and HIGH) aerosol emission scenarios derived from RCP4.5, but that span a wider spectrum of possible future aerosol emissions. All simulations had CO2 emissions and greenhouse gas forcings from RCP4.5. Aerosol forcing declined similarly in the standard RCP aerosol emission scenarios: the aerosol effective radiative forcing (ERF) decreased from -1.3 W m-2 in 2005 to between -0.1 W m-2 and -0.4 W m-2 in 2100. The differences in ERF were substantially larger between LOW (-0.02 W m-2 in 2100) and HIGH (-0.8 W m-2) scenarios. The global mean temperature difference between the simulations with standard RCP aerosol emissions was less than 0.18 °C, whereas the difference between LOW and HIGH reached 0.86 °C in 2061. In LOW, the rate of warming peaked at 0.48 °C per decade in the 2030s, whereas in HIGH it was the lowest of all simulations and never exceeded 0.23 °C per decade. Using present-day population density and baseline mortality rates for all scenarios, PM2.5-induced premature mortality was 2 371 800 deaths per year in 2010 and 525 700 in 2100 with RCP4.5 aerosol emissions; in HIGH, the premature mortality reached its maximum value of 2 780 800 deaths per year in 2030, whereas in LOW the premature mortality at 2030 was below 299 900 deaths per year. Our results show potential trade-offs in aerosol mitigation with respect to climate change and public health as ambitious reduction of aerosol emissions considerably increased warming while decreasing mortality.

  2. Forced Imbibition in Porous Media: A Fourfold Scenario

    NASA Astrophysics Data System (ADS)

    Odier, Céleste; Levaché, Bertrand; Santanach-Carreras, Enric; Bartolo, Denis

    2017-11-01

    We establish a comprehensive description of the patterns formed when a wetting liquid displaces a viscous fluid confined in a porous medium. Building on model microfluidic experiments, we evidence four imbibition scenarios all yielding different large-scale morphologies. Combining high-resolution imaging and confocal microscopy, we show that they originate from two liquid-entrainment transitions and a Rayleigh-Plateau instability at the pore scale. Finally, we demonstrate and explain the long-time coarsening of the resulting patterns.

  3. Generating Scenarios When Data Are Missing

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan

    2007-01-01

    The Hypothetical Scenario Generator (HSG) is being developed in conjunction with other components of artificial-intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. The HSG accepts, as input, possibly incomplete data on the current state of a system (see figure). The HSG models a potential fault scenario as an ordered disjunctive tree of conjunctive consequences, wherein the ordering is based upon the likelihood that a particular conjunctive path will be taken for the given set of inputs. The computation of likelihood is based partly on a numerical ranking of the degree of completeness of data with respect to satisfaction of the antecedent conditions of prognostic rules. The results from the HSG are then used by a model-based artificial- intelligence subsystem to predict realistic scenarios and states.

  4. Simulation of groundwater flow in the "1,500-foot" sand and "2,000-foot" sand, with scenarios to mitigate saltwater migration in the "2,000-foot" sand of the Baton Rouge area, Louisiana

    USGS Publications Warehouse

    Heywood, Charles E.; Griffith, Jason M.; Lovelace, John K.

    2014-01-01

    Groundwater withdrawals have caused saltwater to encroach into freshwater-bearing aquifers beneath Baton Rouge, Louisiana. Groundwater investigations in the 1960s identified a freshwater-saltwater interface located at the Baton Rouge Fault, across which abrupt changes in water levels occur. Aquifers south of the fault generally contain saltwater, and aquifers north of the fault contain freshwater, though limited saltwater encroachment has been detected within 7 of the 10 aquifers north of the fault. The 10 aquifers beneath the Baton Rouge area, which includes East and West Baton Rouge Parishes, Pointe Coupee Parish, and East and West Feliciana Parishes, provided about 167 million gallons per day (Mgal/d) for public supply and industrial use in 2010. Groundwater withdrawals from the “2,000-foot” sand in East Baton Rouge Parish have caused water-level drawdown as great as 356 feet (ft) and induced saltwater movement northward across the fault. Saltwater encroachment threatens industrial wells that are located about 3 miles north of the fault. Constant and variable-density groundwater models were developed with the MODFLOW and SEAWAT groundwater modeling codes to evaluate strategies to control saltwater migration, including changes in the distribution of groundwater withdrawals and installation of “scavenger” wells to intercept saltwater before it reaches existing production wells. Six hypothetical scenarios simulated the effects of different groundwater withdrawal options on groundwater levels within the “1,500-foot” sand and the “2,000-foot” sand and the transport of saltwater within the “2,000-foot” sand during 2008–47. Scenario 1 is considered a base case for comparison to the other five scenarios and simulates continuation of 2007 reported groundwater withdrawals. Scenario 2 simulates discontinuation of withdrawals from seven selected industrial wells located in the northwest corner of East Baton Rouge Parish and predicts that water levels

  5. Future scenarios of land change based on empirical data and demographic trends

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Wilson, Tamara; Sharygin, Ethan; Sherba, Jason

    2017-01-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001–2100. Land use histories and demographic trends were used to project a “business-as-usual” (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr−1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40–90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  6. Future Scenarios of Land Change Based on Empirical Data and Demographic Trends

    NASA Astrophysics Data System (ADS)

    Sleeter, Benjamin M.; Wilson, Tamara S.; Sharygin, Ethan; Sherba, Jason T.

    2017-11-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001-2100. Land use histories and demographic trends were used to project a "business-as-usual" (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr-1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40-90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  7. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    NASA Technical Reports Server (NTRS)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  8. Combination of Face Regions in Forensic Scenarios.

    PubMed

    Tome, Pedro; Fierrez, Julian; Vera-Rodriguez, Ruben; Ortega-Garcia, Javier

    2015-07-01

    This article presents an experimental analysis of the combination of different regions of the human face on various forensic scenarios to generate scientific knowledge useful for the forensic experts. Three scenarios of interest at different distances are considered comparing mugshot and CCTV face images using MORPH and SC face databases. One of the main findings is that inner facial regions combine better in mugshot and close CCTV scenarios and outer facial regions combine better in far CCTV scenarios. This means, that depending of the acquisition distance, the discriminative power of the facial regions change, having in some cases better performance than the full face. This effect can be exploited by considering the fusion of facial regions which results in a very significant improvement of the discriminative performance compared to just using the full face. © 2015 American Academy of Forensic Sciences.

  9. Projecting the environmental profile of Singapore's landfill activities: Comparisons of present and future scenarios based on LCA.

    PubMed

    Khoo, Hsien H; Tan, Lester L Z; Tan, Reginald B H

    2012-05-01

    This article aims to generate the environmental profile of Singapore's Semakau landfill by comparing three different operational options associated with the life cycle stages of landfilling activities, against a 'business as usual' scenario. Before life cycle assessment or LCA is used to quantify the potential impacts from landfilling activities, an attempt to incorporate localized and empirical information into the amounts of ash and MSW sent to the landfill was made. A linear regression representation of the relationship between the mass of waste disposed and the mass of incineration ash generated was modeled from waste statistics between years 2004 and 2009. Next, the mass of individual MSW components was projected from 2010 to 2030. The LCA results highlighted that in a 'business as usual' scenario the normalized total impacts of global warming, acidification and human toxicity increased by about 2% annually from 2011 to 2030. By replacing the 8000-tonne barge with a 10000-tonne coastal bulk carrier or freighter (in scenario 2) a grand total reduction of 48% of both global warming potential and acidification can be realized by year 2030. Scenario 3 explored the importance of having a Waste Water Treatment Plant in place to reduce human toxicity levels - however, the overall long-term benefits were not as significant as scenario 2. It is shown in scenario 4 that the option of increased recycling championed over all other three scenarios in the long run, resulting in a total 58% reduction in year 2030 for the total normalized results. A separate comparison of scenarios 1-4 is also carried out for energy utilization and land use in terms of volume of waste occupied. Along with the predicted reductions in environmental burdens, an additional bonus is found in the expanded lifespan of Semakau landfill from year 2032 (base case) to year 2039. Model limitations and suggestions for improvements were also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Economic and financial viability of small-scale dairy systems in central Mexico: economic scenario 2010-2018.

    PubMed

    Posadas-Domínguez, R R; Callejas-Juárez, N; Arriaga-Jordán, C M; Martínez-Castañeda, F E

    2016-12-01

    A simulation Monte Carlo model was used to assess the economic and financial viability of 130 small-scale dairy farms in central Mexico, through a Representative Small-Scale Dairy Farm. Net yields were calculated for a 9-year planning horizon by means of simulated values for the distribution of input and product prices taking 2010 as base year and considering four scenarios which were compared against the scenario of actual production. The other scenarios were (1) total hiring in of needed labour; (2) external purchase of 100 % of inputs and (3) withdrawal of subsidies to production. A stochastic modelling approach was followed to determine the scenario with the highest economic and financial viability. Results show a viable economic and financial situation for the real production scenario, as well as the scenarios for total hiring of labour and of withdrawal of subsidies, but the scenario when 100 % of feed inputs for the herd are bought-in was not viable.

  11. Using Rapid-Response Scenario-Building Methodology for Climate Change Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Stoepler, T. M.; Schuster, R.

    2015-12-01

    Rapid-response scenario-building methodology can be modified to develop scenarios for slow-onset disasters associated with climate change such as drought. Results of a collaboration between the Department of the Interior (DOI) Strategic Sciences Group (SSG) and the Southwest Colorado Social-Ecological Climate Resilience Project are presented in which SSG scenario-building methods were revised and applied to climate change adaptation planning in Colorado's Gunnison Basin, United States. The SSG provides the DOI with the capacity to rapidly assemble multidisciplinary teams of experts to develop scenarios of the potential environmental, social, and economic cascading consequences of environmental crises, and to analyze these chains to determine actionable intervention points. By design, the SSG responds to acute events of a relatively defined duration. As a capacity-building exercise, the SSG explored how its scenario-building methodology could be applied to outlining the cascading consequences of slow-onset events related to climate change. SSG staff facilitated two workshops to analyze the impacts of drought, wildfire, and insect outbreak in the sagebrush and spruce-fir ecosystems. Participants included local land managers, natural and social scientists, ranchers, and other stakeholders. Key findings were: 1) scenario framing must be adjusted to accommodate the multiple, synergistic components and longer time frames of slow-onset events; 2) the development of slow-onset event scenarios is likely influenced by participants having had more time to consider potential consequences, relative to acute events; 3) participants who are from the affected area may have a more vested interest in the outcome and/or may be able to directly implement interventions.

  12. Climate change scenarios and key climate indices in the Swiss Alpine region

    NASA Astrophysics Data System (ADS)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  13. Spectral analysis of the binary nucleus of the planetary nebula Hen 2-428 - first results

    NASA Astrophysics Data System (ADS)

    Finch, Nicolle L.; Reindl, Nicole; Barstow, Martin A.; Casewell, Sarah L.; Geier, Stephan; Bertolami, Marcelo M. Miller; Taubenberger, Stefan

    2018-04-01

    Identifying progenitor systems for the double-degenerate scenario is crucial to check the reliability of type Ia supernovae as cosmological standard candles. Santander-Garcia et al. (2015) claimed that Hen 2-428 has a doubledegenerate core whose combined mass significantly exceeds the Chandrasekhar limit. Together with the short orbital period (4.2 hours), the authors concluded that the system should merge within a Hubble time triggering a type Ia supernova event. Garcia-Berro et al. (2016) explored alternative scenarios to explain the observational evidence, as the high mass conclusion is highly unlikely within predictions from stellar evolution theory. They conclude that the evidence supporting the supernova progenitor status of the system is premature. Here we present the first quantitative spectral analysis of Hen 2-428which allows us to derive the effective temperatures, surface gravities and helium abundance of the two CSPNe based on state-of-the-art, non-LTE model atmospheres. These results provide constrains for further studies of this particularly interesting system.

  14. USGS Multi-Hazards Winter Storm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Jones, L. M.; Perry, S. C.

    2008-12-01

    The USGS began an inter-disciplinary effort, the Multi Hazards Demonstration Project (MHDP), in 2007 to demonstrate how hazards science can improve a community's resiliency to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages the user community in setting research goals and directs efforts towards research products that can be applied to loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. It detailed the realistic outcomes of a hypothetical, but plausible, magnitude 7.8 earthquake on the San Andreas Fault in southern California. Over 300 scientist and experts contributed to designing the earthquake and understanding the impacts of such a disaster, including the geotechnical, engineering, social, cultural, environmental, and economic consequences. The scenario advanced scientific understanding and exposed numerous vulnerabilities related to emergency response and lifeline continuity management. The ShakeOut Scenario was the centerpiece of the Nation's largest-ever emergency response exercise in November 2008, dubbed "The Great Southern California ShakeOut" (www.shakeout.org). USGS Multi-Hazards is now preparing for its next major public project, a Winter Storm Scenario. Like the earthquake scenario, experts will be brought together to examine in detail the possibility, cost and consequences of a winter storm disaster including floods, landslides, coastal erosion and inundation; debris flows; biologic consequences like extirpation of endangered species; physical damages like bridge scour, road closures, dam failure, property loss, and water system collapse. Consideration will be given to the vulnerabilities associated with a catastrophic disruption to the water supply to southern California; the resulting impacts on ground water pumping, seawater intrusion, water supply degradation, and land subsidence; and a

  15. Clustering of Global Climate Models outputs as a tool for scenario-based risk assessment

    NASA Astrophysics Data System (ADS)

    R Pereira, V.; Zullo, J., Jr.; Avila, A. M. H. D.

    2016-12-01

    The choice of the Global Climate Models (GCMs) future projections outputs for the scenario based risk assessment studies is a challenge for the non-climate models scientists. This study presents a method to select a range of the GCMs scenarios for regional/continental agriculture studies. The technique proposed here is based on grouping the surface air temperature (tas) anomalies in a continental /regional scale - in Brazil-South America - projected by the AR5-CMIP5-GCMs. We run the k-means cluster algorithm and the silhouette method to identify the optimal number and to group the GCMs tas outputs under the rcp 8.5. We applied the delta method to calculate the near future climate change. This method is based on the difference between the future and the baseline in a 30 year running mean periods basis. The future considered here is the 2021-2050 [2030s] and the baseline is the period of 1976-2005 (1980s). As expected, all the models projections showed increases in tas in the near future, ranging from ≅ 3.6 to 0.2 oC. The k-means clustering clearly indicates 5 groups of GCMs tas deltas. The majority of GCMs indicated an intermediate future temperature changes. There is a group of 12 GCMs that is indicating an average change of ≅ 2 oC and another group of 16 indicating ≅ 1 oC. The other two groups with 3 GCMs each indicated a most extreme tas scenario - 0.2 and 3.6 oC respectively. The results were in agreement with previous studies with the AR4 GCMs in which the Miroc5 and HADGEM ES predecessors were classified in different groups of models. The results also allowed us to gradually access the optimist - pessimist groups of 34 GCMs that is a good reference to guide the public policy demands for agriculture under climate change conditions.

  16. Global Health Impacts of Future Aviation Emissions Under Alternative Control Scenarios

    PubMed Central

    2015-01-01

    There is strong evidence of an association between fine particulate matter less than 2.5 μm (PM2.5) in aerodynamic diameter and adverse health outcomes. This study analyzes the global excess mortality attributable to the aviation sector in the present (2006) and in the future (three 2050 scenarios) using the integrated exposure response model that was also used in the 2010 Global Burden of Disease assessment. The PM2.5 concentrations for the present and future scenarios were calculated using aviation emission inventories developed by the Volpe National Transportation Systems Center and a global chemistry-climate model. We found that while excess mortality due to the aviation sector emissions is greater in 2050 compared to 2006, improved fuel policies (technology and operations improvements yielding smaller increases in fuel burn compared to 2006, and conversion to fully sustainable fuels) in 2050 could lead to 72% fewer deaths for adults 25 years and older than a 2050 scenario with no fuel improvements. Among the four health outcomes examined, ischemic heart disease was the greatest cause of death. Our results suggest that implementation of improved fuel policies can have substantial human health benefits. PMID:25412200

  17. Global health impacts of future aviation emissions under alternative control scenarios.

    PubMed

    Morita, Haruka; Yang, Suijia; Unger, Nadine; Kinney, Patrick L

    2014-12-16

    There is strong evidence of an association between fine particulate matter less than 2.5 μm (PM2.5) in aerodynamic diameter and adverse health outcomes. This study analyzes the global excess mortality attributable to the aviation sector in the present (2006) and in the future (three 2050 scenarios) using the integrated exposure response model that was also used in the 2010 Global Burden of Disease assessment. The PM2.5 concentrations for the present and future scenarios were calculated using aviation emission inventories developed by the Volpe National Transportation Systems Center and a global chemistry-climate model. We found that while excess mortality due to the aviation sector emissions is greater in 2050 compared to 2006, improved fuel policies (technology and operations improvements yielding smaller increases in fuel burn compared to 2006, and conversion to fully sustainable fuels) in 2050 could lead to 72% fewer deaths for adults 25 years and older than a 2050 scenario with no fuel improvements. Among the four health outcomes examined, ischemic heart disease was the greatest cause of death. Our results suggest that implementation of improved fuel policies can have substantial human health benefits.

  18. Characteristics of hybrid scenarios in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Youngho; Byun, Cheol-Sik; Na, Yong-Su; Kstar Team

    2017-10-01

    We report the characteristics of hybrid scenarios under development in KSTAR. Firstly, detailed definition of the hybrid scenario in KSTAR is described and categorized according to the MHD activities. The discharges exhibiting H89 >1.9, betaN >2.2 sustained more than 5*tauE at q95 <6.5 without or mild sawtooth are classified into the hybrid regime. Fishbones and neoclassical tearing modes are usually observed in this regime. Improved confinement in this regime is also confirmed with comparing general H-mode in KSTAR. Secondly, several experimental approaches are presented to access the hybrid regime. Here, four different recipes are described. Thirdly, the origin of the confinement enhancement is discussed. The role of the plasma rotation is found to be small in experiments where electron cyclotron heating is applied to reduce the toroidal rotation. The pedestal enhancement is thought to be the main reason for the confinement improvement in KSTAR hybrid scenarios.

  19. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    NASA Technical Reports Server (NTRS)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  20. Photon and a preferred frame scenario

    NASA Astrophysics Data System (ADS)

    Rembieliński, Jakub; Ciborowski, Jacek

    2018-06-01

    Structure of the space of photonic states is discussed in the context of a working hypothesis of existence of a preferred frame for photons. Two polarization experiments are proposed to test the preferred frame scenario.

  1. Space resources. Volume 1: Scenarios

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    A number of possible future paths for space exploration and development are presented. The topics covered include the following: (1) the baseline program; (2) alternative scenarios utilizing nonterrestrial resources; (3) impacts of sociopolitical conditions; (4) common technologies; and issues for further study.

  2. Decadal application of WRF/chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 2: Current vs. future simulations

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; Campbell, Patrick; Zhang, Yang

    2017-03-01

    Following a comprehensive model evaluation, this Part II paper presents projected changes in future (2046-2055) climate, air quality, and their interactions under the RCP4.5 and RCP8.5 scenarios using the Weather, Research and Forecasting model with Chemistry (WRF/Chem). In general, both WRF/Chem RCP4.5 and RCP8.5 simulations predict similar increases on average (∼2 °C) for 2-m temperature (T2) but different spatial distributions of the projected changes in T2, 2-m relative humidity, 10-m wind speed, precipitation, and planetary boundary layer height, due to differences in the spatial distributions of projected emissions, and their feedbacks into climate. Future O3 mixing ratios will decrease for most parts of the U.S. under the RCP4.5 scenario but increase for all areas under the RCP8.5 scenario due to higher projected temperature, greenhouse gas concentrations and biogenic volatile organic compounds (VOC) emissions, higher O3 values for boundary conditions, and disbenefit of NOx reduction and decreased NO titration over VOC-limited O3 chemistry regions. Future PM2.5 concentrations will decrease for both RCP4.5 and RCP8.5 scenarios with different trends in projected concentrations of individual PM species. Total cloud amounts decrease under both scenarios in the future due to decreases in PM and cloud droplet number concentration thus increased radiation. Those results illustrate the impacts of carbon policies with different degrees of emission reductions on future climate and air quality. The WRF/Chem and WRF simulations show different spatial patterns for projected changes in T2 for future decade, indicating different impacts of prognostic and prescribed gas/aerosol concentrations, respectively, on climate change.

  3. Nonlocal correlations in a macroscopic measurement scenario

    NASA Astrophysics Data System (ADS)

    Kunkri, Samir; Banik, Manik; Ghosh, Sibasish

    2017-02-01

    Nonlocality is one of the main characteristic features of quantum systems involving more than one spatially separated subsystem. It is manifested theoretically as well as experimentally through violation of some local realistic inequality. On the other hand, classical behavior of all physical phenomena in the macroscopic limit gives a general intuition that any physical theory for describing microscopic phenomena should resemble classical physics in the macroscopic regime, the so-called macrorealism. In the 2-2-2 scenario (two parties, with each performing two measurements and each measurement having two outcomes), contemplating all the no-signaling correlations, we characterize which of them would exhibit classical (local realistic) behavior in the macroscopic limit. Interestingly, we find correlations which at the single-copy level violate the Bell-Clauser-Horne-Shimony-Holt inequality by an amount less than the optimal quantum violation (i.e., Cirel'son bound 2 √{2 } ), but in the macroscopic limit gives rise to a value which is higher than 2 √{2 } . Such correlations are therefore not considered physical. Our study thus provides a sufficient criterion to identify some of unphysical correlations.

  4. Hydrological projections of climate change scenarios over the 3H region of China: A VIC model assessment

    NASA Astrophysics Data System (ADS)

    Dan, Li; Ji, Jinjun; Xie, Zhenghui; Chen, Feng; Wen, Gang; Richey, Jeffrey E.

    2012-06-01

    To examine the potential sensitivity of the Huang-Huai-Hai Plain (3H) region of China to potential changes in future precipitation and temperature, a hydrological evaluation using the VIC hydrological model under different climate scenarios was carried out. The broader perspective is providing a scientific background for the adaptation in water resource management and rural development to climate change. Twelve climate scenarios were designed to account for possible variations in the future with respect to the baseline of historic climate patterns. Results from the six representative types of climate scenarios (+2°C and +5°C warming, and 0%, +15%, -15% change in precipitation) show that rising temperatures for normal precipitation and for wet scenarios (+15% precipitation) yield greater increased evapotranspiration in the south than in the north, which is confirmed by the remaining six scenarios described below. For a 15% change in precipitation, the largest increase or decrease of evapotranspiration occurs between 33 and 36°N and west of 118°E, a region where evapotranspiration is sensitive to precipitation variation and is affected by the amount of water available for evaporation. Rising temperatures can lead to a south-to-north decreasing gradient of surface runoff. The six scenarios yield a large variation of runoff in the southern end of the 3H, which means that this zone is sensitive to climate change through surface runoff change. The Jiangsu province in the southeastern part of the 3H region shows an obvious sensitivity in soil moisture to climate change. On a regional mean scale, the hydrological change induced by the increasing precipitation from 15% to 30% is more obvious than that induced by greater warming of +5°C relative to +2°C. These simulations identify key regions of sensitivity in hydrological variation to climate change in the provinces of 3H, which can be used as guides in implementing adaptation.

  5. Europa Explorer Operational Scenarios Development

    NASA Technical Reports Server (NTRS)

    Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.

    2008-01-01

    In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.

  6. Including the temporal change in PM{sub 2.5} concentration in the assessment of human health impact: Illustration with renewable energy scenarios to 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschwind, Benoit, E-mail: benoit.gschwind@mines-paristech.fr; Lefevre, Mireille, E-mail: mireille.lefevre@mines-paristech.fr; Blanc, Isabelle, E-mail: isabelle.blanc@mines-paristech.fr

    This article proposes a new method to assess the health impact of populations exposed to fine particles (PM{sub 2.5}) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and themore » Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM{sub 2.5} concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM{sub 2.5} concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios. - Highlights: • A new method to assess health impact of PM{sub 2.5} for energy scenarios is proposed. • An algorithm to compute Loss of Life Expectancy attributable to exposure to PM{sub 2.5} is depicted. • Its capabilities are demonstrated for two pathways of European energy system development up to 2050. • Integrating the temporal evolution of PM{sub 2.5} is of great interest for assessing the potential impacts of energy scenarios.« less

  7. Development of a new methodology for the creation of water temperature scenarios using frequency analysis tool.

    PubMed

    Val, Jonatan; Pino, María Rosa; Chinarro, David

    2018-03-15

    Thermal quality in river ecosystems is a fundamental property for the development of biological processes and many of the human activities linked to the aquatic environment. In the future, this property is going to be threatened due to global change impacts, and basin managers will need useful tools to evaluate these impacts. Currently, future projections in temperature modelling are based on the historical data for air and water temperatures, and the relationship with past temperature scenarios; however, this represents a problem when evaluating future scenarios with new thermal impacts. Here, we analysed the thermal impacts produced by several human activities, and linked them with the decoupling degree of the thermal transfer mechanism from natural systems measured with frequency analysis tools (wavelet coherence). Once this relationship has been established we develop a new methodology for simulating different thermal impacts scenarios in order to project them into future. Finally, we validate this methodology using a site that changed its thermal quality during the studied period due to human impacts. Results showed a high correlation (r 2 =0.84) between the decoupling degree of the thermal transfer mechanisms and the quantified human impacts, obtaining 3 thermal impact scenarios. Furthermore, the graphic representation of these thermal scenarios with its wavelet coherence spectrums showed the impacts of an extreme drought period and the agricultural management. The inter-conversion between the scenarios gave high morphological similarities in the obtained wavelet coherence spectrums, and the validation process clearly showed high efficiency of the developed model against old methodologies when comparing with Nash-Stucliffe criterion. Although there is need for further investigation with different climatic and anthropic management conditions, the developed frequency models could be useful in decision-making processes by managers when faced with future global

  8. Scenario for Hollow Cathode End-Of-Life

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    2000-01-01

    Recent successful hollow cathode life tests have demonstrated that lifetimes can meet the requirements of several space applications. However, there are no methods for assessing cathode lifetime short of demonstrating the requirement. Previous attempts to estimate or predict cathode lifetime were based on relatively simple chemical depletion models derived from the dispenser cathode community. To address this lack of predicative capability, a scenario for hollow cathode lifetime under steady-state operating conditions is proposed. This scenario has been derived primarily from the operating behavior and post-test condition of a hollow cathode that was operated for 28,000 hours. In this scenario, the insert chemistry evolves through three relatively distinct phases over the course of the cathode lifetime. These phases are believed to correspond to demonstrable changes in cathode operation. The implications for cathode lifetime limits resulting from this scenario are examined, including methods to assess cathode lifetime without operating to End-of- Life and methods to extend the cathode lifetime.

  9. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  10. Development of a Prototype Automation Simulation Scenario Generator for Air Traffic Management Software Simulations

    NASA Technical Reports Server (NTRS)

    Khambatta, Cyrus F.

    2007-01-01

    A technique for automated development of scenarios for use in the Multi-Center Traffic Management Advisor (McTMA) software simulations is described. The resulting software is designed and implemented to automate the generation of simulation scenarios with the intent of reducing the time it currently takes using an observational approach. The software program is effective in achieving this goal. The scenarios created for use in the McTMA simulations are based on data taken from data files from the McTMA system, and were manually edited before incorporation into the simulations to ensure accuracy. Despite the software s overall favorable performance, several key software issues are identified. Proposed solutions to these issues are discussed. Future enhancements to the scenario generator software may address the limitations identified in this paper.

  11. A passive cold storage device economic model to evaluate selected immunization location scenarios.

    PubMed

    Norman, Bryan A; Nourollahi, Sevnaz; Chen, Sheng-I; Brown, Shawn T; Claypool, Erin G; Connor, Diana L; Schmitz, Michelle M; Rajgopal, Jayant; Wateska, Angela R; Lee, Bruce Y

    2013-10-25

    The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility. We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule). For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country. This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios

  12. Ship accessibility predictions for the Arctic Ocean based on IPCC CO2 emission scenarios

    NASA Astrophysics Data System (ADS)

    Oh, Jai-Ho; Woo, Sumin; Yang, Sin-Il

    2017-02-01

    Changes in the extent of Arctic sea ice, which have resulted from climate change, offer new opportunities to use the Northern Sea Route (NSR) and Northwest Passage (NWP) for shipping. However, choosing to navigate the Arctic Ocean remains challenging due to the limited accessibility of ships and the balance between economic gain and potential risk. As a result, more precise and detailed information on both weather and sea ice change in the Arctic are required. In this study, a high-resolution global AGCM was used to provide detailed information on the extent and thickness of Arctic sea ice. For this simulation, we have simulated the AMIP-type simulation for the present-day climate during 31 years from 1979 to 2009 with observed SST and Sea Ice concentration. For the future climate projection, we have performed the historical climate during 1979-2005 and subsequently the future climate projection during 2010-2099 with mean of four CMIP5 models due to the two Representative Concentration Pathway scenarios (RCP 8.5 and RCP 4.5). First, the AMIP-type simulation was evaluated by comparison with observations from the Hadley Centre sea-ice and Sea Surface Temperature (HadlSST) dataset. The model reflects the maximum (in March) and minimum (in September) sea ice extent and annual cycle. Based on this validation, the future sea ice extents show the decreasing trend for both the maximum and minimum seasons and RCP 8.5 shows more sharply decreasing patterns of sea ice than RCP 4.5. Under both scenarios, ships classified as Polar Class (PC) 3 and Open-Water (OW) were predicted to have the largest and smallest number of ship-accessible days (in any given year) for the NSR and NWP, respectively. Based on the RCP 8.5 scenario, the projections suggest that after 2070, PC3 and PC6 vessels will have year-round access across to the Arctic Ocean. In contrast, OW vessels will continue to have a seasonal handicap, inhibiting their ability to pass through the NSR and NWP.

  13. Resource Demand Scenarios for the Major Metals.

    PubMed

    Elshkaki, Ayman; Graedel, T E; Ciacci, Luca; Reck, Barbara K

    2018-03-06

    The growth in metal use in the past few decades raises concern that supplies may be insufficient to meet demands in the future. From the perspective of historical and current use data for seven major metals-iron, manganese, aluminum, copper, nickel, zinc, and lead-we have generated several scenarios of potential metal demand from 2010 to 2050 under alternative patterns of global development. We have also compared those demands with various assessments of potential supply to midcentury. Five conclusions emerge: (1) The calculated demand for each of the seven metals doubles or triples relative to 2010 levels by midcentury; (2) The largest demand increases relate to a scenario in which increasingly equitable values and institutions prevail throughout the world; (3) The metal recycling flows in the scenarios meet only a modest fraction of future metals demand for the next few decades; (4) In the case of copper, zinc, and perhaps lead, supply may be unlikely to meet demand by about midcentury under the current use patterns of the respective metals; (5) Increased rates of demand for metals imply substantial new energy provisioning, leading to increases in overall global energy demand of 21-37%. These results imply that extensive technological transformations and governmental initiatives could be needed over the next several decades in order that regional and global development and associated metal demand are not to be constrained by limited metal supply.

  14. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study

    PubMed Central

    Monsivais, Pablo; Jones, Nicholas RV; Brand, Christian; Woodcock, James

    2017-01-01

    Objective To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. Design For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1–5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Setting Working age population for England. Participants Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Primary outcomes measured Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Results Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO2e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO2e/year for the diet scenarios. Conclusions Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. PMID:28399514

  15. Hydropower and water supply: competing water uses under a future drier climate modeling scenarios for the Tagus River basin, Portugal

    NASA Astrophysics Data System (ADS)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Carmona Rodrigues, António; João Cruz, Maria; Grosso, Nuno

    2014-05-01

    Climate change in the Mediterranean region is expected to affect existing water resources, both in quantity and quality, as decreased mean annual precipitation and more frequent extreme precipitation events are likely to occur. Also, energy needs tend to increase, together with growing awareness that fossil fuels emissions are determinately responsible for global temperature rise, enhancing renewable energy use and reinforcing the importance of hydropower. When considered together, these facts represent a relevant threat to multipurpose reservoir operations. Great Lisbon main water supply (for c.a. 3 million people), managed by EPAL, is located in Castelo de Bode Reservoir, in the Tagus River affluent designated as Zêzere River. Castelo de Bode is a multipurpose infrastructure as it is also part of the hydropower network system of EDP, the main power company in Portugal. Facing the risk of potential climate change impacts on water resources availability, and as part of a wider project promoted by EPAL (designated as ADAPTACLIMA), climate change impacts on the Zêzere watershed where evaluated based on climate change scenarios for the XXI century. A sequential modeling approach was used and included downscaling climate data methodologies, hydrological modeling, volume reservoir simulations and water quality modeling. The hydrological model SWAT was used to predict the impacts of the A2 and B2 scenarios in 2010-2100, combined with changes in socio-economic drivers such as land use and water demands. Reservoir storage simulations where performed according to hydrological modeling results, water supply needs and dam operational requirements, such as minimum and maximum operational pool levels and turbine capacity. The Ce-Qual-W2 water quality model was used to assess water quality impacts. According to climate scenarios A2 and B2, rainfall decreases between 10 and 18% are expected by 2100, leading to drier climatic conditions and increased frequency and magnitude of

  16. Probabilistic forecast of long-term climate changes under different RCP scenarios.

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrei; Libardoni, Alex; Forest, Chris; Monier, Erwan

    2014-05-01

    RCP4.5 scenario increases from 2.5% at the end of 21st century to 32% and 50% at the end of 23rd and 25th centuries, respectively. For the RCP2.6 scenario, in which radiative forcing peaks in the year 2070 before decreasing back to the 1990s level by the year 2300, the ensemble mean surface air temperature is still about 0.5oC above present at the end of the simulation. Obtained results show that in spite of large differences in radiative forcing between different RCP scenarios, uncertainties in the climate system characteristics defining climate system response make a significant contribution into overall uncertainty in possible climate change during the next few centuries. Comparison with simulations carried under SRES scenarios also will be presented.

  17. FHWA scenario planning guidebook

    DOT National Transportation Integrated Search

    2011-02-01

    The purpose of this guidebook is to assist transportation agencies with carrying out a scenario planning process from start to finish. Transportation agencies can use the guidebook as a framework to develop a scenario planning approach tailored to th...

  18. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  19. Attractor scenarios and superluminal signals in k-essence cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jin U; Arnold Sommerfeld Center, Department of Physics, Ludwig-Maximilians University, Theresienstrasse 37, 80333 Munich; Vanchurin, Vitaly

    Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the Universe. These scenarios avoid the need for fine-tuned initial conditions (the 'coincidence problem') because of the attractorlike dynamics of the k-essence field {phi}. It was recently shown that all k-essence scenarios with Lagrangians p=L(X){phi}{sup -2}, where X{identical_to}(1/2){phi}{sub ,{mu}}{phi}{sup ,{mu}}, necessarily involve an epoch where perturbations of {phi} propagate faster than light (the 'no-go theorem'). We carry out a comprehensive study of attractorlike cosmological solutions ('trackers') involving a k-essence scalar field {phi} and another matter component. The result of this study is a complete classificationmore » of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K({phi})L(X). Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. An analogous 'no-go theorem' still holds for this class of models, indicating the existence of a superluminal epoch. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories.« less

  20. [The effect of a scenario-based simulation communication course on improving the communication skills of nurses].

    PubMed

    Huang, Ya-Hsuan; Hsieh, Suh-Ing; Hsu, Li-Ling

    2014-04-01

    Limited disease knowledge is frequently the cause of disease-related anxiety in myocardial infarction patients. The ability to communicate effectively serves multiple purposes in the professional nursing practice. By communicating effectively with myocardial infarction patients, nurses may help reduce their anxiety by keeping them well informed about their disease and teaching them self-care strategies. This research evaluates the communication skills of nurses following scenario-based simulation education in the context of communication with myocardial infarction patients. This study used an experimental design and an educational intervention. The target population comprised nurses of medicine (clinical qualified level N to N2 for nursing) working at a municipal hospital in Taipei City, Taiwan. A total 122 participants were enrolled. Stratified block randomization divided participants into an experimental group and a control group. The experimental group received clinical scenario-based simulation education for communication. The control group received traditional class-based education for communication. Both groups received a pre-test and a Communication Skills Checklist post-test assessment. Results were analyzed using SPSS 17.0 for Windows software. A t-test showed significant increases in communication skills (p < .001) in the experimental group and ANCOVA results identified significant between-group differences (p < .001) in communication skills following the education intervention. The results indicate that clinical scenario-based simulation education for communication is significantly more effective than traditional class-based education in enhancing the ability of nurses to communicate effectively with myocardial infarction patients.

  1. Medication administration errors from a nursing viewpoint: a formal consensus of definition and scenarios using a Delphi technique.

    PubMed

    Shawahna, Ramzi; Masri, Dina; Al-Gharabeh, Rawan; Deek, Rawan; Al-Thayba, Lama; Halaweh, Masa

    2016-02-01

    To develop and achieve formal consensus on a definition of medication administration errors and scenarios that should or should not be considered as medication administration errors in hospitalised patient settings. Medication administration errors occur frequently in hospitalised patient settings. Currently, there is no formal consensus on a definition of medication administration errors or scenarios that should or should not be considered as medication administration errors. This was a descriptive study using Delphi technique. A panel of experts (n = 50) recruited from major hospitals, nursing schools and universities in Palestine took part in the study. Three Delphi rounds were followed to achieve consensus on a proposed definition of medication administration errors and a series of 61 scenarios representing potential medication administration error situations formulated into a questionnaire. In the first Delphi round, key contact nurses' views on medication administration errors were explored. In the second Delphi round, consensus was achieved to accept the proposed definition of medication administration errors and to include 36 (59%) scenarios and exclude 1 (1·6%) as medication administration errors. In the third Delphi round, consensus was achieved to consider further 14 (23%) and exclude 2 (3·3%) as medication administration errors while the remaining eight (13·1%) were considered equivocal. Of the 61 scenarios included in the Delphi process, experts decided to include 50 scenarios as medication administration errors, exclude three scenarios and include or exclude eight scenarios depending on the individual clinical situation. Consensus on a definition and scenarios representing medication administration errors can be achieved using formal consensus techniques. Researchers should be aware that using different definitions of medication administration errors, inclusion or exclusion of medication administration error situations could significantly affect

  2. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. This report describes the scenarios and models used to generate national-scale housing density scenarios for the con...

  3. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-10-01

    This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow), aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams) by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  4. Virtual screening applications: a study of ligand-based methods and different structure representations in four different scenarios.

    PubMed

    Hristozov, Dimitar P; Oprea, Tudor I; Gasteiger, Johann

    2007-01-01

    Four different ligand-based virtual screening scenarios are studied: (1) prioritizing compounds for subsequent high-throughput screening (HTS); (2) selecting a predefined (small) number of potentially active compounds from a large chemical database; (3) assessing the probability that a given structure will exhibit a given activity; (4) selecting the most active structure(s) for a biological assay. Each of the four scenarios is exemplified by performing retrospective ligand-based virtual screening for eight different biological targets using two large databases--MDDR and WOMBAT. A comparison between the chemical spaces covered by these two databases is presented. The performance of two techniques for ligand--based virtual screening--similarity search with subsequent data fusion (SSDF) and novelty detection with Self-Organizing Maps (ndSOM) is investigated. Three different structure representations--2,048-dimensional Daylight fingerprints, topological autocorrelation weighted by atomic physicochemical properties (sigma electronegativity, polarizability, partial charge, and identity) and radial distribution functions weighted by the same atomic physicochemical properties--are compared. Both methods were found applicable in scenario one. The similarity search was found to perform slightly better in scenario two while the SOM novelty detection is preferred in scenario three. No method/descriptor combination achieved significant success in scenario four.

  5. The SAFRR Tsunami Scenario: from Publication to Implementation

    NASA Astrophysics Data System (ADS)

    Ross, S.; Jones, L.; Miller, K.; Wilson, R. I.; Burkett, E. R.; Bwarie, J.; Campbell, N. M.; Johnson, L. A.; Long, K.; Lynett, P. J.; Perry, S. C.; Plumlee, G. S.; Porter, K.; Real, C. R.; Ritchie, L. A.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2014-12-01

    The SAFRR Tsunami Scenario modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We presented the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. The Tsunami Scenario process is being evaluated by the University of Colorado's Natural Hazards Center; this is the first time that a USGS scenario of this scale has been formally and systematically evaluated by an external party. The SAFRR Tsunami Scenario was publicly introduced in September, 2013, through a series of regional workshops in California that brought together emergency managers, maritime authorities, first responders, elected officials and staffers, the business sector, state agencies, local media, scientific partners, and special districts such as utilities (http://pubs.usgs.gov/of/2013/1170/). In March, 2014, NOAA's annual tsunami warning exercise, PACIFEX, was based on the SAFRR Tsunami Scenario. Many groups conducted exercises associated with PACIFEX including the State of Washington and several counties in California. San Francisco had the most comprehensive exercise with a 3-day functional exercise based on the SAFRR Tsunami Scenario. In addition, the National Institutes of Health ran an exercise at the Ports of Los Angeles and Long Beach in April, 2014, building on the Tsunami Scenario, focusing on the recovery phase and adding a refinery fire. The benefits and lessons learned include: 1) stimulating dialogue among practitioners to solve problems; 2) seeing groups add extra components to their exercises that best address their

  6. Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data.

    PubMed

    Flores-Alsina, Xavier; Saagi, Ramesh; Lindblom, Erik; Thirsing, Carsten; Thornberg, Dines; Gernaey, Krist V; Jeppsson, Ulf

    2014-03-15

    The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM2). In this study, the influent characteristics of two large Scandinavian treatment facilities are studied for a period of two years. A step-wise procedure based on adjusting the most sensitive parameters at different time scales is followed to calibrate/validate the DIPDSG model blocks for: 1) flow rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles. Furthermore, additional phenomena such as size and accumulation/flush of particulates of/in the upstream catchment and sewer system are incorporated in the simulated time series. Finally, this study is complemented with: 1) the generation of additional future scenarios showing the effects of different rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented results balancing model structure/calibration procedure complexity and prediction capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Emissions Scenarios and Fossil-fuel Peaking

    NASA Astrophysics Data System (ADS)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  8. Contrasting Impact of Future CO2 Emission Scenarios on the Extent of CaCO3 Mineral Undersaturation in the Humboldt Current System

    NASA Astrophysics Data System (ADS)

    Franco, A. C.; Gruber, N.; Frölicher, T. L.; Kropuenske Artman, L.

    2018-03-01

    The eastern boundary upwelling systems are among those regions that are most vulnerable to an ocean acidification-induced transition toward undersaturated conditions with respect to mineral CaCO3, but no assessment exists yet for the Humboldt Current System. Here we use a high-resolution (˜7.5 km) regional ocean model to investigate past and future changes in ocean pH and CaCO3 saturation state in this system. We find that within the next few decades, the nearshore waters off Peru are projected to become corrosive year round with regard to aragonite, the more soluble form of CaCO3. The volume of aragonite undersaturated water off Peru will continue to increase in the future irrespective of the amount of CO2 emitted to the atmosphere. In contrast, the development of the saturation state with regard to calcite, a less soluble form of carbonate, depends strongly on the scenario followed. By 2050, calcite undersaturation appears in the nearshore waters off Peru occasionally, but by 2090 in a high-emission scenario (RCP8.5), ˜60% of the water in the euphotic zone will become permanently calcite undersaturated. Most of this calcite undersaturation off Peru can likely be avoided if a low emission scenario (RCP2.6) consistent with the Paris Agreement is followed. The progression of ocean acidification off Chile follows a similar pattern, except that the saturation states are overall higher. But also here, calcite undersaturated waters will become common in the subsurface waters under the RCP8.5 scenario by the end of this century, while this can be avoided under the RCP2.6 scenario.

  9. Long-lived stops in MSSM scenarios with a neutralino LSP

    NASA Astrophysics Data System (ADS)

    Johansen, M.; Edsjö, J.; Hellman, S.; Milstead, D.

    2010-08-01

    This work investigates the possibility of a long-lived stop squark in supersymmetric models with the neutralino as the lightest supersymmetric particle (LSP). We study the implications of meta-stable stops on the sparticle mass spectra and the dark matter density. We find that in order to obtain a sufficiently long stop lifetime so as to be observable as a stable R-hadron at an LHC experiment, we need to fine tune the mass degeneracy between the stop and the LSP considerably. This increases the stop-neutralino co-anihilation cross section, leaving the neutralino relic density lower than what is expected from the WMAP results for stop masses ≲1.5 TeV/ c 2. However, if such scenarios are realised in nature we demonstrate that the long-lived stops will be produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c2 can be detected after one year of running at design luminosity.

  10. Global Food Demand Scenarios for the 21st Century

    PubMed Central

    Biewald, Anne; Weindl, Isabelle; Popp, Alexander; Lotze-Campen, Hermann

    2015-01-01

    Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries. PMID:26536124

  11. Global Food Demand Scenarios for the 21st Century.

    PubMed

    Bodirsky, Benjamin Leon; Rolinski, Susanne; Biewald, Anne; Weindl, Isabelle; Popp, Alexander; Lotze-Campen, Hermann

    2015-01-01

    Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries.

  12. Simulation of groundwater withdrawal scenarios for the Redwall-Muav and Coconino Aquifer Systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2016-09-23

    The Northern Arizona Regional Groundwater Flow Model was used to estimate the hydrologic changes, including water-level change and groundwater discharge to streams and springs, that may result from future changes in groundwater withdrawals in and near the Coconino Plateau Water Advisory Council study area, Coconino and Navajo Counties, Arizona. Three future groundwater withdrawal scenarios for tribal and nontribal uses were developed by the Coconino Plateau Water Advisory Council and were simulated for the period representing the years from 2006 through 2105. Scenario 1 assumes no major changes in groundwater use except for increased demand based on population projections. Scenario 2 assumes that a pipeline will provide a source of surface water from Lake Powell to areas near Cameron and Moenkopi that would replace local groundwater withdrawals. Scenario 3 assumes that the pipeline extends to the Flagstaff and Williams areas, and would replace groundwater demands for water in the area.The Coconino Plateau Water Advisory Council withdrawal scenarios primarily influence water levels and groundwater discharge in the Coconino Plateau basin, near the western margin of the Little Colorado River Plateau basin, and the Verde Valley subbasin. Simulated effects of the withdrawal scenarios are superimposed on effects of previous variations in groundwater withdrawals and artificial and incidental recharge. Pre-scenario variations include changes in water-levels in wells; groundwater storage; discharge to streams and springs; and evapotranspiration by plants that use groundwater. Future variations in groundwater discharge and water-levels in wells will continue to occur as a result of both the past and any future changes.Water-level variations resulting from post-2005 stresses, including groundwater withdrawals and incidental and artificial recharge, in the area of the withdrawal scenarios are primarily localized and superimposed on the regional changes caused by variations in

  13. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  14. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, Etsushi; Yamagata, Yoshiki

    2014-09-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socioeconomic scenarios that aim to keep mean global temperature rise below 2°C above preindustrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high-fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full postprocess combustion CO2 capture is deployed with a high-fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required; however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise, a conflict of land use with food production is inevitable.

  15. Biomass Scenario Model Documentation: Data and References

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.; Newes, E.; Bush, B.

    2013-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documentsmore » data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.« less

  16. Long-term prospects for developments in space: A scenario approach

    NASA Technical Reports Server (NTRS)

    Brown, W. M.; Kahn, H. D.

    1977-01-01

    Long-term plans for future NASA programs are reported, and some of the following topics are discussed in detail: (1) systematic formulation of space scenarios; (2) the basic international context; (3) potential 21st century space developments; (4) space vehicle developments; and (5) future exploration.

  17. Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; Lobell, David

    2018-06-01

    The availability of climate model experiments under three alternative scenarios stabilizing at warming targets inspired by the COP21 agreements (a 1.5 °C not exceed, a 1.5 °C with overshoot and a 2.0 °C) makes it possible to assess future expected changes in global yields for two staple crops, wheat and maize. In this study an empirical model of the relation between crop yield anomalies and temperature and precipitation changes, with or without the inclusion of CO2 fertilization effects, is used to produce ensembles of time series of yield outcomes on a yearly basis over the course of the 21st century, for each scenario. The 21st century is divided into 10 year windows starting from 2020, within which the statistical significance and the magnitude of the differences in yield changes between pairs of scenarios are assessed, thus evaluating if and when benefits of mitigations appear, and how substantial they are. Additionally, a metric of extreme heat tailored to the individual crops (number of days during the growing season above a crop-specific threshold) is used to measure exposure to harmful temperatures under the different scenarios. If CO2 effects are not included, statistically significant differences in yields of both crops appear as early as the 2030s but the magnitude of the differences remains below 3% of the historical baseline in all cases until the second part of the century. In the later decades of the 21st century, differences remain small and eventually stop being statistically significant between the two scenarios stabilizing at 1.5 °C, while differences between these two lower scenarios and the 2.0 °C scenario grow to about 4%. The inclusion of CO2 effects erases all significant benefits of mitigation for wheat, while the significance of differences is maintained for maize yields between the higher and the two lower scenarios, albeit with smaller benefits in magnitude. Changes in extremes are significant within each of the scenarios

  18. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    PubMed

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. SAFRR (Science Application for Risk Reduction) Tsunami Scenario--Executive Summary and Introduction: Chapter A in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Ross, Stephanie L.; Jones, Lucile M.; Miller, Kevin H.; Porter, Keith A.; Wein, Anne; Wilson, Rick I.; Bahng, Bohyun; Barberopoulou, Aggeliki; Borrero, Jose C.; Brosnan, Deborah M.; Bwarie, John T.; Geist, Eric L.; Johnson, Laurie A.; Kirby, Stephen H.; Knight, William R.; Long, Kate; Lynett, Patrick; Mortensen, Carl E.; Nicolsky, Dmitry J.; Perry, Suzanne C.; Plumlee, Geoffrey S.; Real, Charles R.; Ryan, Kenneth; Suleimani, Elena; Thio, Hong Kie; Titov, Vasily V.; Whitmore, Paul M.; Wood, Nathan J.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey, the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  20. A progenitor model of SN 1987A based on the slow-merger scenario

    NASA Astrophysics Data System (ADS)

    Urushibata, Takaki; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi

    2018-01-01

    Even after elaborate investigations spanning 30 years, it is still not understand how the progenitor of SN 1987A has evolved. In order to explain the unusual red-to-blue evolution, previous studies have suggested that in the red giant stage an increase either in the surface helium abundance or in the envelope mass was necessary. It is usually supposed that the helium enhancement is caused by rotational mixing, and that the mass increase is the result of a binary merger. We have thus investigated these scenarios thoroughly. We found that rotating single-star models do not satisfy all the observational constraints and that the enhancement of the envelope mass alone does not explain the observations. Here, we consider a slow-merger scenario in which both the helium abundance and the envelope mass enhancements are expected to occur. We show that most of the observational constraints, such as the red-to-blue evolution, lifetime, total mass and position in the Hertzsprung-Russell diagram at collapse, and the chemical anomalies are well reproduced by a merger model with 14 and 9 M⊙ stars. We also discuss the effects of the added envelope spin in the merger scenarios.

  1. Future Scenarios of Livestock and Land Use in Brazil

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Abrahão, G. M.

    2016-12-01

    Brazil currently has about 213 M cattle heads in 151 M ha of pastures. In the last 40 years, both the top 5% and the average stocking rate are increasing exponentially in Brazil, while the relative yield gap has been constant. Using these historical relationships, we estimate future scenarios of livestock and land use in Brazil. We assume a reference scenario for the top 5%, in which pasturelands are adequately fertilized, soil is not compacted and well drained, grasses are never burned, pastures are divided in 8 subdivisions of regular area, are cattle is rotated through the subdivisions. The reference scenario does not consider irrigation or feed supplementation. We calibrate a computer model and run it for the pasturelands throughout the entire country. We conclude that current pastures have about 20% efficiency to raise cattle compared to the reference scenario. Considering the reference scenario, we predict an equilibrium will be reached in about 100 years, with top 5% with about 9.3 heads per ha and the average 4.3 heads per ha, or 600 M heads of livestock. Considering a more pessimistic scenario, which considers an inflection of the curve in present times, we predict an equilibrium will be reached in about 60 years, with the top 5% stocking rate equal to 4.3 heads per ha and the average equal to 2.2 heads per ha, or 300 M heads of livestock. Both cases represent a considerable expansion of the livestock, maybe even higher than the growth of the global demands for beef. These scenarios indicate that not all existing pasturelands need to be used in the future - a significant part of them may be converted to croplands, which will also contribute to the reduction of deforestation.

  2. Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne

    2010-01-01

    This paper will describe an overview of the Constellation Architecture Team Lunar Scenario 12.0 (LS-12) surface habitation approach and concept performed during the study definition. The Lunar Scenario 12 architecture study focused on two primary habitation approaches: a horizontally-oriented habitation module (LS-12.0) and a vertically-oriented habitation module (LS-12.1). This paper will provide an overview of the 12.0 lunar surface campaign, the associated outpost architecture, habitation functionality, concept description, system integration strategy, mass and power resource estimates. The Scenario 12 architecture resulted from combining three previous scenario attributes from Scenario 4 "Optimized Exploration", Scenario 5 "Fission Surface Power System" and Scenario 8 "Initial Extensive Mobility" into Scenario 12 along with an added emphasis on defining the excursion ConOps while the crew is away from the outpost location. This paper will describe an overview of the CxAT-Lunar Scenario 12.0 habitation concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suitlock function such as suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as enhanced life support systems hardware, consumable stowage, spares stowage, interconnection to the other habitation elements, a common interface mechanism for future growth, and mating to a pressurized rover or Pressurized Logistics Module (PLM). The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, medical operations, and exercise equipment.

  3. Evaluation of introduction scenarios for a broadband access network

    NASA Astrophysics Data System (ADS)

    Bocker, Geert-Jan; Cuthbert, Laurie; Gobbi, Roberta; Inch, Robert; Sara, Lini

    1995-02-01

    The provision of broadband services at a reasonable cost to residential and small business customers is one of the major challenges facing operators. The introduction of cost-effective systems considering the existing infrastructure is an important study. Within the RACE project 2024 Broadband Access Facilities, the economic and evolution aspects of different introduction scenarios of a broadband access system suitable for providing these services are investigated. This paper presents the final results of this study.

  4. How much can we save? Impact of different emission scenarios on future snow cover in the Alps

    NASA Astrophysics Data System (ADS)

    Marty, Christoph; Schlögl, Sebastian; Bavay, Mathias; Lehning, Michael

    2017-02-01

    This study focuses on an assessment of the future snow depth for two larger Alpine catchments. Automatic weather station data from two diverse regions in the Swiss Alps have been used as input for the Alpine3D surface process model to compute the snow cover at a 200 m horizontal resolution for the reference period (1999-2012). Future temperature and precipitation changes have been computed from 20 downscaled GCM-RCM chains for three different emission scenarios, including one intervention scenario (2 °C target) and for three future time periods (2020-2049, 2045-2074, 2070-2099). By applying simple daily change values to measured time series of temperature and precipitation, small-scale climate scenarios have been calculated for the median estimate and extreme changes. The projections reveal a decrease in snow depth for all elevations, time periods and emission scenarios. The non-intervention scenarios demonstrate a decrease of about 50 % even for elevations above 3000 m. The most affected elevation zone for climate change is located below 1200 m, where the simulations show almost no snow towards the end of the century. Depending on the emission scenario and elevation zone the winter season starts half a month to 1 month later and ends 1 to 3 months earlier in this last scenario period. The resulting snow cover changes may be roughly equivalent to an elevation shift of 500-800 or 700-1000 m for the two non-intervention emission scenarios. At the end of the century the number of snow days may be more than halved at an elevation of around 1500 m and only 0-2 snow days are predicted in the lowlands. The results for the intervention scenario reveal no differences for the first scenario period but clearly demonstrate a stabilization thereafter, comprising much lower snow cover reductions towards the end of the century (ca. 30 % instead of 70 %).

  5. A climate-change scenario for the Columbia River Basin.

    Treesearch

    Sue A. Ferguson

    1997-01-01

    This work describes the method used to generate a climate-change scenario for the Columbia River basin. The scenario considers climate patterns that may change if the atmospheric concentration of carbon dioxide (C02), or its greenhouse gas equivalent, were to double over pre-Industrial Revolution values. Given the current rate of increase in...

  6. Clinical Scenarios for Discordant Anti-Xa

    PubMed Central

    Vera-Aguilera, Jesus; Yousef, Hindi; Beltran-Melgarejo, Diego; Teng, Teng Hugh; Jan, Ramos; Mok, Mary; Vera-Aguilera, Carlos; Moreno-Aguilera, Eduardo

    2016-01-01

    Anti-Xa test measures the activity of heparin against the activity of activated coagulation factor X; significant variability of anti-Xa levels in common clinical scenarios has been observed. Objective. To review the most common clinical settings in which anti-Xa results can be bias. Evidence Review. Guidelines and current literature search: we used PubMed, Medline, Embase, and MEDION, from 2000 to October 2013. Results. Anti-Xa test is widely used; however the assay underestimates heparin concentration in the presence of significant AT deficiency, pregnancy, end stage renal disease, and postthrombolysis and in patients with hyperbilirubinemia; limited published data evaluating the safety and effectiveness of anti-Xa assays for managing UH therapy is available. Conclusions and Relevance. To our knowledge this is the first paper that summarizes the most common causes in which this assay can be affected, several “day to day” clinical scenarios can modify the outcomes, and we concur that these rarely recognized scenarios can be affected by negative outcomes in the daily practice. PMID:27293440

  7. 2016 Billion-Ton Report: Environmental Sustainability Effects of Select Scenarios from Volume 1 (Volume 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, R. A.; Langholtz, M. H.; Johnson, K. E.

    On behalf of all the authors and contributors, it is a great privilege to present the 2016 Billion-Ton Report (BT16), volume 2: Environmental Sustainability Effects of Select Scenarios from volume 1. This report represents the culmination of several years of collaborative effort among national laboratories, government agencies, academic institutions, and industry. BT16 was developed to support the U.S. Department of Energy’s efforts towards national goals of energy security and associated quality of life.

  8. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    PubMed

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  9. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China

    PubMed Central

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P.

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928

  10. Scenario Development for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Mahmoud, M.; Gupta, H.; Stewart, S.; Liu, Y.; Hartmann, H.; Wagener, T.

    2006-12-01

    The primary goal of employing a scenario development approach for the U.S. southwest is to inform regional policy by examining future possibilities related to regional vegetation change, water-leasing, and riparian restoration. This approach is necessary due to a lack of existing explicit water resources application of scenarios to the entire southwest region. A formal approach for scenario development is adopted and applied towards water resources issues within the arid and semi-arid regions of the U.S. southwest following five progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. In the scenario definition phase, the inputs of scientists, modelers, and stakeholders were collected in order to define and construct relevant scenarios to the southwest and its water sustainability needs. From stakeholder-driven scenario workshops and breakout sessions, the three main axes of principal change were identified to be climate change, population development patterns, and quality of information monitoring technology. Based on the extreme and varying conditions of these three main axes, eight scenario narratives were drafted to describe the state of each scenario's respective future and the events which led to it. Events and situations are described within each scenario narrative with respect to key variables; variables that are both important to regional water resources (as distinguished by scientists and modelers), and are good tracking and monitoring indicators of change. The current phase consists of scenario construction, where the drafted scenarios are re-presented to regional scientists and modelers to verify that proper key variables are included (or excluded) from the eight narratives. The next step is to construct the data sets necessary to implement the eight scenarios on the respective computational models of modelers investigating vegetation change, water-leasing, and riparian

  11. Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario

    NASA Technical Reports Server (NTRS)

    Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell

    2010-01-01

    Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.

  12. Valuating Indonesian upstream oil management scenario through system dynamics modelling

    NASA Astrophysics Data System (ADS)

    Ketut Gunarta, I.; Putri, F. A.

    2018-04-01

    Under the existing regulation in Constitution Number 22 Year 2001 (UU No 22 Tahun 2001), Production Sharing Contract (PSC) continues to be the scenario in conducting oil and gas upstream mining activities as the previous regulation (UU No. 8 Tahun 1971). Because of the high costs and risks in upstream mining activities, the contractors are dominated by foreign companies, meanwhile National Oil Company (NOC) doesn’t act much. The domination of foreign contractor companies also warned Indonesia in several issues addressing to energy independence and energy security. Therefore, to achieve the goals of energy which is independence and security, there need to be a revision in upstream oil activities regulating scenario. The scenarios will be comparing the current scenario, which is PSC, with the “full concession” scenario for National Oil Company (NOC) in managing oil upstream mining activities. Both scenario will be modelled using System Dynamics methodology and assessed furthermore using financial valuation method of income approach. Under the 2 scenarios, the author will compare which scenario is better for upstream oil management in reaching the goals mentioned before and more profitable in financial aspect. From the simulation, it is gathered that concession scenario offers better option than PSC in reaching energy independence and energy security.

  13. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Attema, Jisk

    2015-08-01

    Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.

  14. Emergency Physician Risk Estimates and Admission Decisions for Chest Pain: A Web-Based Scenario Study.

    PubMed

    Schriger, David L; Menchine, Michael; Wiechmann, Warren; Carmelli, Guy

    2018-04-20

    We conducted this study to better understand how emergency physicians estimate risk and make admission decisions for patients with low-risk chest pain. We created a Web-based survey consisting of 5 chest pain scenarios that included history, physical examination, ECG findings, and basic laboratory studies, including a negative initial troponin-level result. We administered the scenarios in random order to emergency medicine residents and faculty at 11 US emergency medicine residency programs. We randomized respondents to receive questions about 1 of 2 endpoints, acute coronary syndrome or serious complication (death, dysrhythmia, or congestive heart failure within 30 days). For each scenario, the respondent provided a quantitative estimate of the probability of the endpoint, a qualitative estimate of the risk of the endpoint (very low, low, moderate, high, or very high), and an admission decision. Respondents also provided demographic information and completed a 3-item Fear of Malpractice scale. Two hundred eight (65%) of 320 eligible physicians completed the survey, 73% of whom were residents. Ninety-five percent of respondents were wholly consistent (no admitted patient was assigned a lower probability than a discharged patient). For individual scenarios, probability estimates covered at least 4 orders of magnitude; admission rates for scenarios varied from 16% to 99%. The majority of respondents (>72%) had admission thresholds at or below a 1% probability of acute coronary syndrome. Respondents did not fully differentiate the probability of acute coronary syndrome and serious outcome; for each scenario, estimates for the two were quite similar despite a serious outcome being far less likely. Raters used the terms "very low risk" and "low risk" only when their probability estimates were less than 1%. The majority of respondents considered any probability greater than 1% for acute coronary syndrome or serious outcome to be at least moderate risk and warranting

  15. Simulation of water-use conservation scenarios for the Mississippi Delta using an existing regional groundwater flow model

    USGS Publications Warehouse

    Barlow, Jeannie R.B.; Clark, Brian R.

    2011-01-01

    The Mississippi River alluvial plain in northwestern Mississippi (referred to as the Delta), once a floodplain to the Mississippi River covered with hardwoods and marshland, is now a highly productive agricultural region of large economic importance to Mississippi. Water for irrigation is supplied primarily by the Mississippi River Valley alluvial aquifer, and although the alluvial aquifer has a large reserve, there is evidence that the current rate of water use from the alluvial aquifer is not sustainable. Using an existing regional groundwater flow model, conservation scenarios were developed for the alluvial aquifer underlying the Delta region in northwestern Mississippi to assess where the implementation of water-use conservation efforts would have the greatest effect on future water availability-either uniformly throughout the Delta, or focused on a cone of depression in the alluvial aquifer underlying the central part of the Delta. Five scenarios were simulated with the Mississippi Embayment Regional Aquifer Study groundwater flow model: (1) a base scenario in which water use remained constant at 2007 rates throughout the entire simulation; (2) a 5-percent 'Delta-wide' conservation scenario in which water use across the Delta was decreased by 5 percent; (3) a 5-percent 'cone-equivalent' conservation scenario in which water use within the area of the cone of depression was decreased by 11 percent (a volume equivalent to the 5-percent Delta-wide conservation scenario); (4) a 25-percent Delta-wide conservation scenario in which water use across the Delta was decreased by 25 percent; and (5) a 25-percent cone-equivalent conservation scenario in which water use within the area of the cone of depression was decreased by 55 percent (a volume equivalent to the 25-percent Delta-wide conservation scenario). The Delta-wide scenarios result in greater average water-level improvements (relative to the base scenario) for the entire Delta area than the cone

  16. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  17. Assessing Threat Detection Scenarios through Hypothesis Generation and Testing

    DTIC Science & Technology

    2015-12-01

    Dog Day scenario .............................................................................................................. 9...Figure 1. Rankings of priority threats identified in the Dog Day scenario ............................... 9 Figure 2. Rankings of priority...making in uncertain environments relies heavily on pattern matching. Cohen, Freeman, and Wolf (1996) reported that features of the decision problem

  18. Scenarios for Ultrafast Gamma-Ray Variability in AGN

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Barkov, M. V.; Khangulyan, D.

    2017-05-01

    We analyze three scenarios to address the challenge of ultrafast gamma-ray variability reported from active galactic nuclei. We focus on the energy requirements imposed by these scenarios: (I) external cloud in the jet, (II) relativistic blob propagating through the jet material, and (III) production of high-energy gamma-rays in the magnetosphere gaps. We show that while the first two scenarios are not constrained by the flare luminosity, there is a robust upper limit on the luminosity of flares generated in the black hole magnetosphere. This limit depends weakly on the mass of the central black hole and is determined by the accretion disk magnetization, viewing angle, and the pair multiplicity. For the most favorable values of these parameters, the luminosity for 5-minute flares is limited by 2× {10}43 {erg} {{{s}}}-1, which excludes a black hole magnetosphere origin of the flare detected from IC 310. In the scopes of scenarios (I) and (II), the jet power, which is required to explain the IC 310 flare, exceeds the jet power estimated based on the radio data. To resolve this discrepancy in the framework of scenario (II), it is sufficient to assume that the relativistic blobs are not distributed isotropically in the jet reference frame. A realization of scenario (I) demands that the jet power during the flare exceeds by a factor 102 the power of the radio jet relevant to a timescale of 108 years.

  19. Mars base buildup scenarios

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.

    1986-01-01

    Two Mars surface based build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second senario, Earth development of an infrastructure to exploit the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first in this scenario relative to the first, but once begun develops rapidly, aided by the presence of a permanently manned orbital station.

  20. Public acceptance of management methods under different human-wildlife conflict scenarios.

    PubMed

    Liordos, Vasilios; Kontsiotis, Vasileios J; Georgari, Marina; Baltzi, Kerasia; Baltzi, Ioanna

    2017-02-01

    Wildlife management seeks to minimise public controversy for successful application of wildlife control methods. Human dimensions research in wildlife seeks a better understanding of public preferences for effective human-wildlife conflict resolution. In face to face interviews, 630 adults in Greece were asked to rate on a 5-point Likert-like scale their acceptance of 3 management methods, i.e., do nothing, non-lethal control, and lethal control, in the context of 5 human-wildlife conflict scenarios: 1) corvids damage crops; 2) starlings damage crops; 3) starlings foul urban structures; 4) coypus damage crops; and 5) coypus transfer disease. Univariate GLMs determined occupation, hunting membership and their interaction as the stronger predictors of public acceptance, generating 4 stakeholder groups: the general public, farmers, hunters, and farmers-hunters. Differences in acceptance and consensus among stakeholder groups were assessed using the Potential for Conflict Index 2 (PCI 2 ). All 4 stakeholder groups agreed that doing nothing was unacceptable and non-lethal control acceptable in all 5 scenarios, with generally high consensus within and between groups. The lethal control method was more controversial and became increasingly more acceptable as the severity of scenarios was increased and between non-native and native species. Lethal control was unacceptable for the general public in all scenarios. Farmers accepted lethal methods in the corvids and starlings scenarios, were neutral in the coypus damage crops scenario, whereas they accepted lethal control when coypus transfer disease. Hunters' opinion was neutral in the corvids, starlings and coypus damage crops and starlings foul urban structures scenarios, but they accepted lethal methods in the coypus transfer disease scenario. Farmers-hunters considered lethal control acceptable in all 5 scenarios. Implications from this study could be used for designing a socio-ecological approach which incorporates

  1. Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns

    NASA Astrophysics Data System (ADS)

    Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Giang, Amanda; Selin, Noelle E.; Zhong, Hui; Zhao, Yu; Olivier, Jos G. J.; Guizzardi, Diego; Crippa, Monica; Schaaf, Edwin; Dentener, Frank

    2018-07-01

    Speciated mercury gridded emissions inventories together with chemical transport models and concentration measurements are essential when investigating both the effectiveness of mitigation measures and the mercury cycle in the environment. Since different mercury species have contrasting behaviour in the atmosphere, their proportion in anthropogenic emissions could determine the spatial impacts. In this study, the time series from 1970 to 2012 of the EDGARv4.tox2 global mercury emissions inventory are described; the total global mercury emission in 2010 is 1772 tonnes. Global grid-maps with geospatial distribution of mercury emissions at a 0.1° × 0.1° resolution are provided for each year. Compared to the previous tox1 version, tox2 provides updates for more recent years and improved emissions in particular for agricultural waste burning, power generation and artisanal and small-scale gold mining (ASGM) sectors. We have also developed three retrospective emissions scenarios based on different hypotheses related to the proportion of mercury species in the total mercury emissions for each activity sector; improvements in emissions speciation are seen when using information primarily from field measurements. We evaluated them using the GEOS-Chem 3-D mercury model in order to explore the influence of speciation shifts, to reactive mercury forms in particular, on regional wet deposition patterns. The reference scenario S1 (EDGARv4.tox2_S1) uses speciation factors from the Arctic Monitoring and Assessment Programme (AMAP); scenario S2 ("EPA_power") uses factors from EPA's Information Collection Request (ICR); and scenario S3 ("Asia_filedM") factors from recent scientific publications. In the reference scenario, the sum of reactive mercury emissions (Hg-P and Hg2+) accounted for 25.3% of the total global emissions; the regions/countries that have shares of reactive mercury emissions higher than 6% in total global reactive mercury are China+ (30.9%), India+ (12.5%) and

  2. Modified natural cycle versus controlled ovarian hyperstimulation IVF: a cost-effectiveness evaluation of three simulated treatment scenarios.

    PubMed

    Groen, Henk; Tonch, Nino; Simons, Arnold H M; van der Veen, Fulco; Hoek, Annemieke; Land, Jolande A

    2013-12-01

    difference in LBR. Live birth was the primary outcome measure and was defined as the birth of at least one living child after a gestation of ≥25 weeks. In the baseline data, MNC was not cost-effective, as COH dominated MNC with a higher cumulative LBR (27.0 versus 24.0%) and lower cost per patient (€3694 versus €5254). The simulations showed that in scenario 1 three instead of six cycles lowered the costs of MNC to below the level of COH (€3390 versus €3694, respectively), but also lowered the LBR per patient (from 24.0 to 16.2%, respectively); Scenario 2: COH with strict SET was less effective than six cycles MNC (LBR 17.5 versus 24.0%, respectively), but also less expensive per patient (€2908) than MNC (€5254); Scenario 3: improved the cost-effectiveness of MNC but COH still dominated MNC when medication was minimized in terms of costs, i.e. €855 difference in favor of COH and 3% difference in LBR in favor of COH (ICER: €855/-3.0%). Owing to the retrospective nature of the study, the analyses required some assumptions, for example regarding the costs of pregnancy and delivery, which had to be based on the literature rather than on individual data. Furthermore, costs of IVF treatment were based on tariffs and not on actual costs. Although this may limit the external generalizability of the results, the limitations will influence both treatments equally, and would therefore not bias the comparison of MNC versus COH. The combined results suggest that MNC with minimized medication might be a cost-effective alternative for COH with strict SET. The scenarios reflect realistic alternatives for daily clinical practice. A preference for MNC depends on the willingness to trade off effectiveness in terms of LBR against the benefits of a milder stimulation regimen, including a very low rate of multiple pregnancies and hyperstimulation syndrome and ensuing lower costs per live birth. The study was supported by research grants from Merck Serono and Ferring

  3. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen

  4. The development of English primary care group governance. A scenario analysis.

    PubMed

    Sheaff, R

    1999-01-01

    At present there is a policy vacuum about what English Primary Care Groups' (PCGs) governance will be when they develop into Primary Care Trusts (PCTs). Draft legislation leaves many options open, so PCT governance is likely to 'emerge' as PCTs are created. It also remains uncertain how general practitioners (GPs) will react to the formation of PCTs and how the UK government will then respond in turn. A scenario analysis suggests three possible lines of development. The base (likeliest) scenario predicts a mainly networked form of PCT governance. An alternative scenario is of PCT governance resembling the former National Health Service internal market. A third scenario predicts 'franchise model' PCTs employing some GPs and subcontracting others. To different degrees all three scenarios predict that PCTs will retain elements of networked governance. If it fails to make GPs as accountable to NHS management as the UK government wishes, networked governance may prove only a transitional stage before English PCTs adopt either quasi-market or hierarchical governance.

  5. Afstemming Questa-Factoren en Scenario Verkenner 1.2 : deel 3, vervoerprestaties personenvervoer.

    DOT National Transportation Integrated Search

    1999-09-01

    The Questa project is an activity of the Ministry of Transport and Public Works and aims to develop a long term view on developments in society and their impacts on the traffic and transport system. Four scenarios are evaluated for a timescale up to ...

  6. Inventories and scenarios of nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Kanter, David

    2014-10-01

    Effective mitigation for N2O emissions, now the third most important anthropogenic greenhouse gas and the largest remaining anthropogenic source of stratospheric ozone depleting substances, requires understanding of the sources and how they may increase this century. Here we update estimates and their uncertainties for current anthropogenic and natural N2O emissions and for emissions scenarios to 2050. Although major uncertainties remain, ‘bottom-up’ inventories and ‘top-down’ atmospheric modeling yield estimates that are in broad agreement. Global natural N2O emissions are most likely between 10 and 12 Tg N2O-N yr-1. Net anthropogenic N2O emissions are now about 5.3 Tg N2O-N yr-1. Gross anthropogenic emissions by sector are 66% from agriculture, 15% from energy and transport sectors, 11% from biomass burning, and 8% from other sources. A decrease in natural emissions from tropical soils due to deforestation reduces gross anthropogenic emissions by about 14%. Business-as-usual emission scenarios project almost a doubling of anthropogenic N2O emissions by 2050. In contrast, concerted mitigation scenarios project an average decline of 22% relative to 2005, which would lead to a near stabilization of atmospheric concentration of N2O at about 350 ppb. The impact of growing demand for biofuels on future projections of N2O emissions is highly uncertain; N2O emissions from second and third generation biofuels could remain trivial or could become the most significant source to date. It will not be possible to completely eliminate anthropogenic N2O emissions from agriculture, but better matching of crop N needs and N supply offers significant opportunities for emission reductions.

  7. An exploration of scenarios to support sustainable land management using integrated environmental socio-economic models.

    PubMed

    Fleskens, L; Nainggolan, D; Stringer, L C

    2014-11-01

    Scenario analysis constitutes a valuable deployment method for scientific models to inform environmental decision-making, particularly for evaluating land degradation mitigation options, which are rarely based on formal analysis. In this paper we demonstrate such an assessment using the PESERA-DESMICE modeling framework with various scenarios for 13 global land degradation hotspots. Starting with an initial assessment representing land degradation and productivity under current conditions, options to combat instances of land degradation are explored by determining: (1) Which technologies are most biophysically appropriate and most financially viable in which locations; we term these the "technology scenarios"; (2) how policy instruments such as subsidies influence upfront investment requirements and financial viability and how they lead to reduced levels of land degradation; we term these the "policy scenarios"; and (3) how technology adoption affects development issues such as food production and livelihoods; we term these the "global scenarios". Technology scenarios help choose the best technology for a given area in biophysical and financial terms, thereby outlining where policy support may be needed to promote adoption; policy scenarios assess whether a policy alternative leads to a greater extent of technology adoption; while global scenarios demonstrate how implementing technologies may serve wider sustainable development goals. Scenarios are applied to assess spatial variation within study sites as well as to compare across different sites. Our results show significant scope to combat land degradation and raise agricultural productivity at moderate cost. We conclude that scenario assessment can provide informative input to multi-level land management decision-making processes.

  8. An Exploration of Scenarios to Support Sustainable Land Management Using Integrated Environmental Socio-economic Models

    NASA Astrophysics Data System (ADS)

    Fleskens, L.; Nainggolan, D.; Stringer, L. C.

    2014-11-01

    Scenario analysis constitutes a valuable deployment method for scientific models to inform environmental decision-making, particularly for evaluating land degradation mitigation options, which are rarely based on formal analysis. In this paper we demonstrate such an assessment using the PESERA-DESMICE modeling framework with various scenarios for 13 global land degradation hotspots. Starting with an initial assessment representing land degradation and productivity under current conditions, options to combat instances of land degradation are explored by determining: (1) Which technologies are most biophysically appropriate and most financially viable in which locations; we term these the "technology scenarios"; (2) how policy instruments such as subsidies influence upfront investment requirements and financial viability and how they lead to reduced levels of land degradation; we term these the "policy scenarios"; and (3) how technology adoption affects development issues such as food production and livelihoods; we term these the "global scenarios". Technology scenarios help choose the best technology for a given area in biophysical and financial terms, thereby outlining where policy support may be needed to promote adoption; policy scenarios assess whether a policy alternative leads to a greater extent of technology adoption; while global scenarios demonstrate how implementing technologies may serve wider sustainable development goals. Scenarios are applied to assess spatial variation within study sites as well as to compare across different sites. Our results show significant scope to combat land degradation and raise agricultural productivity at moderate cost. We conclude that scenario assessment can provide informative input to multi-level land management decision-making processes.

  9. Combinatorial structure of genome rearrangements scenarios.

    PubMed

    Ouangraoua, Aïda; Bergeron, Anne

    2010-09-01

    In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios between two genomes. We also construct effective bijections between the set of scenarios that sort a component as well studied combinatorial objects such as parking functions, labeled trees, and prüfer codes.

  10. The ShakeOut Earthquake Scenario - A Story That Southern Californians Are Writing

    USGS Publications Warehouse

    Perry, Suzanne; Cox, Dale; Jones, Lucile; Bernknopf, Richard; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    resulting losses are one realistic outcome, deliberately not a worst-case scenario, rather one worth preparing for and mitigating against. Decades of improving the life-safety requirements in building codes have greatly reduced the risk of death in earthquakes, yet southern California's economic and social systems are still vulnerable to large-scale disruptions. Because of this, the ShakeOut Scenario earthquake would dramatically alter the nature of the southern California community. Fortunately, steps can be taken now that can change that outcome and repay any costs many times over. The ShakeOut Scenario is the first public product of the USGS Multi-Hazards Demonstration Project, created to show how hazards science can increase a community's resiliency to natural disasters through improved planning, mitigation, and response.

  11. About the Need of Combining Power Market and Power Grid Model Results for Future Energy System Scenarios

    NASA Astrophysics Data System (ADS)

    Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian

    2018-02-01

    The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.

  12. Climate Change Scenarios in the Yucatan Peninsula to the year 2020

    NASA Astrophysics Data System (ADS)

    Orellana, R.; Espadas, C.; Conde, C.; Gay, C.

    2010-03-01

    A topic that has not been sufficiently analyzed is that the global warming is already affecting, and that it will have worst consequences in those regions with transitional climates, which have more sensibility to changes. This is the case of the Yucatan Peninsula which is semi-arid in their northern portion, and toward the south is subhumid, with a tendency to be more rainy toward the south. To have an estimation of what could happen in the future, the Intergovernmental Panel of Climatic Change (IPCC) has promoted the use of General Circulation Models (GCM), as well as the construction of possible emission scenarios that integrate different global and regional socioeconomic and demographic conditions, which project then a possible increase of emissions of greenhouse gases. These conditions are recognized as the decisive forces that will determine the variations of temperature and of precipitation. These projections are useful for the analysis of climatic change, and in particular for the assessments of the possible impacts and of the initiatives of adaptation and of mitigation that should be implemented in every country or region. In Mexico, most of those evaluations of climate change have been carried out generally at country level. For that reason, it is necessary to direct the research at regional level. In this work, we evaluated the potential climatic changes on the Yucatan Peninsula, considering the different changes of temperature and precipitation as a consequence for different emission scenarios and for the horizon 2020. To project the environmental responses of the region, we used as a base scenario the available temperature and precipitation information of the period 1961-1990, registered in 85 meteorological stations of the peninsula. With these data, we generated climate change scenarios using the outputs of four General Circulation Models: HADLEY, ECHAM, GFDL and CGCM, and the emission scenarios A1FI, A2, B1 and B2. The outputs of these models were

  13. Experimental study of heat pump thermodynamic cycles using CO2 based mixtures - Methodology and first results

    NASA Astrophysics Data System (ADS)

    Bouteiller, Paul; Terrier, Marie-France; Tobaly, Pascal

    2017-02-01

    The aim of this work is to study heat pump cycles, using CO2 based mixtures as working fluids. Since adding other chemicals to CO2 moves the critical point and generally equilibrium lines, it is expected that lower operating pressures as well as higher global efficiencies may be reached. A simple stage pure CO2 cycle is used as reference, with fixed external conditions. Two scenarios are considered: water is heated from 10 °C to 65 °C for Domestic Hot Water scenario and from 30 °C to 35 °C for Central Heating scenario. In both cases, water at the evaporator inlet is set at 7 °C to account for such outdoor temperature conditions. In order to understand the dynamic behaviour of thermodynamic cycles with mixtures, it is essential to measure the fluid circulating composition. To this end, we have developed a non intrusive method. Online optical flow cells allow the recording of infrared spectra by means of a Fourier Transform Infra Red spectrometer. A careful calibration is performed by measuring a statistically significant number of spectra for samples of known composition. Then, a statistical model is constructed to relate spectra to compositions. After calibration, compositions are obtained by recording the spectrum in few seconds, thus allowing for a dynamic analysis. This article will describe the experimental setup and the composition measurement techniques. Then a first account of results with pure CO2, and with the addition of propane or R-1234yf will be given.

  14. Identifying optimal agricultural countermeasure strategies for a hypothetical contamination scenario using the strategy model.

    PubMed

    Cox, G; Beresford, N A; Alvarez-Farizo, B; Oughton, D; Kis, Z; Eged, K; Thørring, H; Hunt, J; Wright, S; Barnett, C L; Gil, J M; Howard, B J; Crout, N M J

    2005-01-01

    A spatially implemented model designed to assist the identification of optimal countermeasure strategies for radioactively contaminated regions is described. Collective and individual ingestion doses for people within the affected area are estimated together with collective exported ingestion dose. A range of countermeasures are incorporated within the model, and environmental restrictions have been included as appropriate. The model evaluates the effectiveness of a given combination of countermeasures through a cost function which balances the benefit obtained through the reduction in dose with the cost of implementation. The optimal countermeasure strategy is the combination of individual countermeasures (and when and where they are implemented) which gives the lowest value of the cost function. The model outputs should not be considered as definitive solutions, rather as interactive inputs to the decision making process. As a demonstration the model has been applied to a hypothetical scenario in Cumbria (UK). This scenario considered a published nuclear power plant accident scenario with a total deposition of 1.7x10(14), 1.2x10(13), 2.8x10(10) and 5.3x10(9)Bq for Cs-137, Sr-90, Pu-239/240 and Am-241, respectively. The model predicts that if no remediation measures were implemented the resulting collective dose would be approximately 36 000 person-Sv (predominantly from 137Cs) over a 10-year period post-deposition. The optimal countermeasure strategy is predicted to avert approximately 33 000 person-Sv at a cost of approximately 160 million pounds. The optimal strategy comprises a mixture of ploughing, AFCF (ammonium-ferric hexacyano-ferrate) administration, potassium fertiliser application, clean feeding of livestock and food restrictions. The model recommends specific areas within the contaminated area and time periods where these measures should be implemented.

  15. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    PubMed

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  16. TEMPERATURE SCENARIO DEVELOPMENT USING REGRESSION METHODS

    EPA Science Inventory

    A method of developing scenarios of future temperature conditions resulting from climatic change is presented. he method is straightforward and can be used to provide information about daily temperature variations and diurnal ranges, monthly average high, and low temperatures, an...

  17. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  18. Hypothetical Scenario Generator for Fault-Tolerant Diagnosis

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.

  19. DEVELOPMENT OF IMPACT ORIENTED CLIMATE SCENARIOS

    EPA Science Inventory

    Appropriate scenarios of future climate must be developed prior to any assessment of the impacts of climate change. he information needed by impact assessors was examined in consultation with those having experience in scenario use. ost assessors require regional scenarios with a...

  20. Simulation of groundwater flow and chloride transport in the “1,200-foot” sand with scenarios to mitigate saltwater migration in the “2,000-foot” sand in the Baton Rouge area, Louisiana

    USGS Publications Warehouse

    Heywood, Charles E.; Lovelace, John K.; Griffith, Jason M.

    2015-07-16

    Seven hypothetical scenarios predict the effects of different groundwater withdrawal options on groundwater levels and the transport of chloride within the “1,200-foot” sand and the “2,000-foot” sand during 2015–2112. The predicted water levels and concentrations for all scenarios are depicted in maps for the years 2047 and 2112. The first scenario is a base case for comparison to the six other scenarios and simulates continuation of 2012 reported groundwater withdrawals through 2112 (100 years). The second scenario that simulates increased withdrawals from industrial wells in the “1,200-foot” sand predicts that water levels will be 12–25 ft lower by 2047 and that there will be a negligible difference in chloride concentrations within the “1,200-foot” sand. The five other scenarios simulate the effects of various withdrawal schemes on water levels and chloride concentrations within the “2,000-foot” sand. Amongst these five other scenarios, three of the scenarios simulate only various withdrawal reductions, whereas the two others also incorporate withdrawals from a scavenger well that is designed to extract salty water from the base of the “2,000-foot” sand. Two alternative pumping rates (2.5 Mgal/d and 1.25 Mgal/d) are simulated in each of the scavenger-well scenarios. For the “2,000-foot” sand scenarios, comparison of the predicted effects of the scenarios is facilitated by graphs of predicted chloride concentrations through time at selected observation wells, plots of salt mass in the aquifer through time, and a summary of the predicted plume area and average concentration. In all scenarios, water levels essentially equilibrate by 2047, after 30 years of simulated constant withdrawal rates. Although predicted water-level recovery within the “2,000-foot” sand is greatest for the scenario with the greatest reduction in groundwater withdrawal from that aquifer, the scavenger-well scenarios are most effective in mitigating the

  1. The HayWired Earthquake Scenario

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    interconnectedness of infrastructure, society, and our economy. How would this earthquake scenario, striking close to Silicon Valley, impact our interconnected world in ways and at a scale we have not experienced in any previous domestic earthquake?The area of present-day Contra Costa, Alameda, and Santa Clara Counties contended with a magnitude-6.8 earthquake in 1868 on the Hayward Fault. Although sparsely populated then, about 30 people were killed and extensive property damage resulted. The question of what an earthquake like that would do today has been examined before and is now revisited in the HayWired scenario. Scientists have documented a series of prehistoric earthquakes on the Hayward Fault and are confident that the threat of a future earthquake, like that modeled in the HayWired scenario, is real and could happen at any time. The team assembled to build this scenario has brought innovative new approaches to examining the natural hazards, impacts, and consequences of such an event. Such an earthquake would also be accompanied by widespread liquefaction and landslides, which are treated in greater detail than ever before. The team also considers how the now-prototype ShakeAlert earthquake early warning system could provide useful public alerts and automatic actions.Scientific Investigations Report 2017–5013 and accompanying data releases are the products of an effort led by the USGS, but this body of work was created through the combined efforts of a large team including partners who have come together to form the HayWired Coalition (see chapter A). Use of the HayWired scenario has already begun. More than a full year of intensive partner engagement, beginning in April 2017, is being directed toward producing the most in-depth look ever at the impacts and consequences of a large earthquake on the Hayward Fault. With the HayWired scenario, our hope is to encourage and support the active ongoing engagement of the entire community of the San Francisco Bay region by

  2. A formal framework of scenario creation and analysis of extreme hydrological events

    NASA Astrophysics Data System (ADS)

    Lohmann, D.

    2007-12-01

    We are presenting a formal framework for a hydrological risk analysis. Different measures of risk will be introduced, such as average annual loss or occurrence exceedance probability. These are important measures for e.g. insurance companies to determine the cost of insurance. One key aspect of investigating the potential consequences of extreme hydrological events (floods and draughts) is the creation of meteorological scenarios that reflect realistic spatial and temporal patterns of precipitation that also have correct local statistics. 100,000 years of these meteorological scenarios are used in a calibrated rainfall-runoff-flood-loss-risk model to produce flood and draught events that have never been observed. The results of this hazard model are statistically analyzed and linked to socio-economic data and vulnerability functions to show the impact of severe flood events. We are showing results from the Risk Management Solutions (RMS) Europe Flood Model to introduce this formal framework.

  3. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes

    PubMed Central

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-01-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for. PMID:27067389

  4. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    PubMed

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-12

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  5. Development scenario for laser fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniscalco, J.A.; Hovingh, J.; Buntzen, R.R.

    1976-03-30

    This scenario proposes establishment of test and engineering facilities to (1) investigate the technological problems associated with laser fusion, (2) demonstrate fissile fuel production, and (3) demonstrate competitive electrical power production. Such facilities would be major milestones along the road to a laser-fusion power economy. The relevant engineering and economic aspects of each of these research and development facilities are discussed. Pellet design and gain predictions corresponding to the most promising laser systems are presented for each plant. The results show that laser fusion has the potential to make a significant contribution to our energy needs. Beginning in the earlymore » 1990's, this new technology could be used to produce fissile fuel, and after the turn of the century it could be used to generate electrical power.« less

  6. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    NASA Astrophysics Data System (ADS)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective

  7. Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century.

    PubMed

    Nicholls, Robert J; Tol, Richard S J

    2006-04-15

    Taking the Special Report on Emission Scenarios (SRES) climate and socio-economic scenarios (A1FI, A2, B1 and B2 'future worlds'), the potential impacts of sea-level rise through the twenty-first century are explored using complementary impact and economic analysis methods at the global scale. These methods have never been explored together previously. In all scenarios, the exposure and hence the impact potential due to increased flooding by sea-level rise increases significantly compared to the base year (1990). While mitigation reduces impacts, due to the lagged response of sea-level rise to atmospheric temperature rise, impacts cannot be avoided during the twenty-first century by this response alone. Cost-benefit analyses suggest that widespread protection will be an economically rational response to land loss due to sea-level rise in the four SRES futures that are considered. The most vulnerable future worlds to sea-level rise appear to be the A2 and B2 scenarios, which primarily reflects differences in the socio-economic situation (coastal population, Gross Domestic Product (GDP) and GDP/capita), rather than the magnitude of sea-level rise. Small islands and deltaic settings stand out as being more vulnerable as shown in many earlier analyses. Collectively, these results suggest that human societies will have more choice in how they respond to sea-level rise than is often assumed. However, this conclusion needs to be tempered by recognition that we still do not understand these choices and significant impacts remain possible. Future worlds which experience larger rises in sea-level than considered here (above 35 cm), more extreme events, a reactive rather than proactive approach to adaptation, and where GDP growth is slower or more unequal than in the SRES futures remain a concern. There is considerable scope for further research to better understand these diverse issues.

  8. Assessement of user needs for climate change scenarios in Switzerland

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  9. The Extent to Which Different 100% Clean, Renewable Energy Transition Scenarios can Reduce World Carbon Dioxide Levels to 350-400 ppmv by 2100

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.; Byrne, J. M.

    2016-12-01

    Future levels of atmospheric carbon dioxide (CO2) depend on CO2's natural and anthropogenic emission rates and its removal rates by primarily water dissolution, photosysnthesis, and weathering. We compare modeled past CO2 from 1750 to 2015 with data then model projected future changes in CO2 under different energy emission scenarios, including two where 100% of the world's all-purpose energy (electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing) is electrified, and the electricity is powered by wind, water, and sunlight (WWS). The scenarios are derived from country-by-country energy roadmaps found at http://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html. In one 100% scenario, 80% of the conversion is assumed to occur by 2030 and 100%, by 2050. In the second, 80% is assumed to occur by 2050, and the rest by 2100. We also compare with an unrealistic but best-case 100% conversion scenario starting in 2015 and IPCC scenarios A1B, A2, B1, B2, and A1F1. Results will be shown, and conclusions, drawn about the practicality of reducing CO2 to 350-400 ppmv by 2100. These results have significant impact on current and future energy policy.

  10. A Scenario-Based Dieting Self-Efficacy Scale: The DIET-SE

    ERIC Educational Resources Information Center

    Stich, Christine; Knauper, Barbel; Tint, Ami

    2009-01-01

    The article discusses a scenario-based dieting self-efficacy scale, the DIET-SE, developed from dieter's inventory of eating temptations (DIET). The DIET-SE consists of items that describe scenarios of eating temptations for a range of dieting situations, including high-caloric food temptations. Four studies assessed the psychometric properties of…

  11. Projections of temperature-related excess mortality under climate change scenarios.

    PubMed

    Gasparrini, Antonio; Guo, Yuming; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Huber, Veronika; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J K; Ryti, Niilo R I; Pascal, Mathilde; Goodman, Patrick G; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cesar Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Iñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S; Guo, Yue Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L; Dang, Tran Ngoc; Van, Dung Do; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben

    2017-12-01

    Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat

  12. The ShakeOut Scenario

    USGS Publications Warehouse

    Jones, Lucile M.; Bernknopf, Richard; Cox, Dale; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Perry, Suzanne; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    This is the initial publication of the results of a cooperative project to examine the implications of a major earthquake in southern California. The study comprised eight counties: Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura. Its results will be used as the basis of an emergency response and preparedness exercise, the Great Southern California ShakeOut, and for this purpose we defined our earthquake as occurring at 10:00 a.m. on November 13, 2008. As members of the southern California community use the ShakeOut Scenario to plan and execute the exercise, we anticipate discussion and feedback. This community input will be used to refine our assessment and will lead to a formal publication in early 2009. Our goal in the ShakeOut Scenario is to identify the physical, social and economic consequences of a major earthquake in southern California and in so doing, enable the users of our results to identify what they can change now?before the earthquake?to avoid catastrophic impact after the inevitable earthquake occurs. To do so, we had to determine the physical damages (casualties and losses) caused by the earthquake and the impact of those damages on the region?s social and economic systems. To do this, we needed to know about the earthquake ground shaking and fault rupture. So we first constructed an earthquake, taking all available earthquake research information, from trenching and exposed evidence of prehistoric earthquakes, to analysis of instrumental recordings of large earthquakes and the latest theory in earthquake source physics. We modeled a magnitude (M) 7.8 earthquake on the southern San Andreas Fault, a plausible event on the fault most likely to produce a major earthquake. This information was then fed forward into the rest of the ShakeOut Scenario. The damage impacts of the scenario earthquake were estimated using both HAZUS-MH and expert opinion through 13 special studies and 6 expert panels, and fall into four

  13. Scenarios for gluino coannihilation

    DOE PAGES

    Ellis, John; Evans, Jason L.; Luo, Feng; ...

    2016-02-11

    In this article, we study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parametermore » space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses m X ≲ 8TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly-mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.« less

  14. Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments

    DOE Data Explorer

    Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK

    2003-01-01

    One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (<15 Tg C y–1), but greater potential through extensification of agriculture (~40 Tg C y–1) or through the afforestation of surplus arable land (~50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.

  15. Model and Scenario Variations in Predicted Number of Generations of Spodoptera litura Fab. on Peanut during Future Climate Change Scenario

    PubMed Central

    Srinivasa Rao, Mathukumalli; Swathi, Pettem; Rama Rao, Chitiprolu Anantha; Rao, K. V.; Raju, B. M. K.; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)—2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1–2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18–22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods. PMID:25671564

  16. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model

    NASA Astrophysics Data System (ADS)

    Alatorre, L. C.; Beguería, S.; Lana-Renault, N.; Navas, A.; García-Ruiz, J. M.

    2012-05-01

    Soil erosion and sediment yield are strongly affected by land use/land cover (LULC). Spatially distributed erosion models are of great interest to assess the expected effect of LULC changes on soil erosion and sediment yield. However, they can only be applied if spatially distributed data is available for their calibration. In this study the soil erosion and sediment delivery model WATEM/SEDEM was applied to a small (2.84 km2) experimental catchment in the Central Spanish Pyrenees. Model calibration was performed based on a dataset of soil redistribution rates derived from point 137Cs inventories, allowing capture differences per land use in the main model parameters. Model calibration showed a good convergence to a global optimum in the parameter space, which was not possible to attain if only external (not spatially distributed) sediment yield data were available. Validation of the model results against seven years of recorded sediment yield at the catchment outlet was satisfactory. Two LULC scenarios were then modeled to reproduce land use at the beginning of the twentieth century and a hypothetic future scenario, and to compare the simulation results to the current LULC situation. The results show a reduction of about one order of magnitude in gross erosion (3180 to 350 Mg yr-1) and sediment delivery (11.2 to 1.2 Mg yr-1 ha-1) during the last decades as a result of the abandonment of traditional land uses (mostly agriculture) and subsequent vegetation recolonization. The simulation also allowed assessing differences in the sediment sources and sinks within the catchment.

  17. Climate scenarios for the Truckee-Carson River system

    USGS Publications Warehouse

    Dettinger, Michael; Sterle, Kelley; Simpson, Karen; Singletary, Loretta; Fitzgerald, Kelsey; McCarthy, Maureen

    2017-01-01

    In this study, the scenarios ultimately take the form of gridded, daily (maximum and minimum) temperatures and precipitation totals spanning the entire Truckee-Carson River System, from which meteorological inputs to various hydrologic, water-balance and watermanagement models can be extracted by other parts of the Water for the Seasons project and by other studies and stakeholders. Climate scenarios are constructed using: 1) survey data from interviews with 66 Truckee-Carson River System water-management and water-interest organizations to identify plausible drought and high-flow events that could stress the system irreparably; 2) input from the Stakeholder Affiliate Group and other modelers on the Water for the Seasons team to gain additional key stakeholder input with regard to organizational survey results and to identify the most pressing water-management issues being faced in the system; and 3) historical climate datasets used to simulate possible future conditions.

  18. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    PubMed

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Comparison of teen and adult driver crash scenarios in a nationally representative sample of serious crashes.

    PubMed

    McDonald, Catherine C; Curry, Allison E; Kandadai, Venk; Sommers, Marilyn S; Winston, Flaura K

    2014-11-01

    Motor vehicle crashes are the leading cause of death and acquired disability during the first four decades of life. While teen drivers have the highest crash risk, few studies examine the similarities and differences in teen and adult driver crashes. We aimed to: (1) identify and compare the most frequent crash scenarios-integrated information on a vehicle's movement prior to crash, immediate pre-crash event, and crash configuration-for teen and adult drivers involved in serious crashes, and (2) for the most frequent scenarios, explore whether the distribution of driver critical errors differed for teens and adult drivers. We analyzed data from the National Motor Vehicle Crash Causation Survey, a nationally representative study of serious crashes conducted by the U.S. National Highway Traffic Safety Administration from 2005 to 2007. Our sample included 642 16- to 19-year-old and 1167 35- to 54-year-old crash-involved drivers (weighted n=296,482 and 439,356, respectively) who made a critical error that led to their crash's critical pre-crash event (i.e., event that made the crash inevitable). We estimated prevalence ratios (PR) and 95% confidence intervals (CI) to compare the relative frequency of crash scenarios and driver critical errors. The top five crash scenarios among teen drivers, accounting for 37.3% of their crashes, included: (1) going straight, other vehicle stopped, rear end; (2) stopped in traffic lane, turning left at intersection, turn into path of other vehicle; (3) negotiating curve, off right edge of road, right roadside departure; (4) going straight, off right edge of road, right roadside departure; and (5) stopped in lane, turning left at intersection, turn across path of other vehicle. The top five crash scenarios among adult drivers, accounting for 33.9% of their crashes, included the same scenarios as the teen drivers with the exception of scenario (3) and the addition of going straight, crossing over an intersection, and continuing on a

  20. Impact of passenger car NOX emissions on urban NO2 pollution - Scenario analysis for 8 European cities

    NASA Astrophysics Data System (ADS)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2017-12-01

    Residents of large European cities are exposed to NO2 concentrations that often exceed the established air quality standards. Diesel cars have been identified as a major contributor to this situation; yet, it remains unclear to which levels the NOX emissions of diesel cars have to decrease to effectively mitigate urban NO2 pollution across Europe. Here, we take a continental perspective and model urban NO2 pollution in a generic street canyon of 8 major European cities for various NOX emission scenarios. We find that a reduction in the on-road NOX emissions of diesel cars to the Euro 6 level can in general decrease the regional and urban NO2 concentrations and thereby the frequency of exceedances of the NO2 air quality standard. High NO2 fractions in the NOX emissions of diesel cars tend to increase the urban NO2 concentrations only in proximity of intense road traffic typically found on artery roads in large cities like Paris and London. In cities with a low share of diesel cars in the vehicle fleet such as Athens or a high contribution from the NO2 background to the urban NO2 pollution such as Krakow, measures addressing heavy-duty vehicles, and the manufacturing, energy, and mining industry are necessary to decrease urban air pollution. We regard our model results as robust albeit subject to uncertainty resulting from the application of a generic street layout. With small modifications in the input parameters, our model could be used to assess the impact of NOX emissions from road transport on NO2 air pollution in any European city.

  1. Integrated Modeling and Participatory Scenario Planning for Climate Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.; Brewington, L.

    2014-12-01

    For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales

  2. Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.

    2013-04-01

    The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc

  3. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  4. Predicting bird response to alternative management scenarios on a ranch in Campeche, Mexico

    USGS Publications Warehouse

    Wood, P.A.; Dawson, D.K.; Sauer, J.R.; Wilson, M.H.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    We developed models to predict the potential response of wintering Neotropical migrant and resident bird species to alternative management scenarios, using data from point counts of birds along with habitat variables measured or estimated from remotely sensed data in a Geographic Information System. Expected numbers of occurrences at points were calculated for 100 species of birds, under current habitat conditions and under habitat conditions that would result from seven alternative management scenarios for Rancho Sandoval, a cattle ranch and private nature reserve in Campeche, Mexico. Most bird species of conservation concern would benefit from management scenarios that increase the amount of forest, but the highest priority resident species would not. To balance the somewhat conflicting habitat needs of these species and the concerns of ranch managers, we recommend that forest area and connectivity be increased, and pastures be maintained but more efficiently managed to support cattle and the priority resident and migrant birds that require open habitats.

  5. What Factors Moderate Self-Other Discrepancies in Decision Making? Results from a Vaccination Scenario.

    PubMed

    Petrova, Dafina; Garcia-Retamero, Rocio; van der Pligt, Joop

    2016-09-20

    When we make risky decisions for others, we tend to follow social norms about risks. This often results in making different decisions for others than we would make for ourselves in a similar situation (i.e., self-other discrepancies). In an experiment, we investigated self-other discrepancies in young adults' decisions to purchase a vaccine against a sexually-transmitted virus for themselves or for another person (i.e., the target of the decision). When the target's preferences were in line with social norms, surrogates showed large self-other discrepancies in line with these norms. When the target's preferences were contrary to social norms, surrogates did not show self-other discrepancies in line with these preferences; instead they still followed social norms, F(1, 140) = 21.45, p < .001, η p 2 = .13. Surrogates with lower numeracy, F(2, 128) = 3.44, p = .035, η p 2 = .05, and higher empathy, F(2, 128) = 3.72, p = .027, η p 2 = .06, showed self-other discrepancies more in line with the target's preferences, even when these were contrary to the norm. Surrogates whose own risk attitudes were contrary to social norms showed larger self-other discrepancies, F(1, 128) = 5.38, p = .022, η p 2 = .04. These results demonstrate that perceived social norms about risk can predict self-other discrepancies in risky decisions, even when the target's preferences are known and at odds with the social norm. Further, the surrogates' numeracy, empathy, and propensity to take risks influence the extent to which risky decisions for others resemble risky decisions for oneself.

  6. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.

    PubMed

    Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G

    2018-01-01

    Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive

  7. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to

  8. Scenario-based design: A method for connecting information system design with public health operations and emergency management

    PubMed Central

    Reeder, Blaine; Turner, Anne M

    2011-01-01

    Responding to public health emergencies requires rapid and accurate assessment of workforce availability under adverse and changing circumstances. However, public health information systems to support resource management during both routine and emergency operations are currently lacking. We applied scenario-based design as an approach to engage public health practitioners in the creation and validation of an information design to support routine and emergency public health activities. Methods: Using semi-structured interviews we identified the information needs and activities of senior public health managers of a large municipal health department during routine and emergency operations. Results: Interview analysis identified twenty-five information needs for public health operations management. The identified information needs were used in conjunction with scenario-based design to create twenty-five scenarios of use and a public health manager persona. Scenarios of use and persona were validated and modified based on follow-up surveys with study participants. Scenarios were used to test and gain feedback on a pilot information system. Conclusion: The method of scenario-based design was applied to represent the resource management needs of senior-level public health managers under routine and disaster settings. Scenario-based design can be a useful tool for engaging public health practitioners in the design process and to validate an information system design. PMID:21807120

  9. Fertilizer Emission Scenario Tool for crop management system scenarios

    EPA Pesticide Factsheets

    The Fertilizer Emission Scenario Tool for CMAQ is a high-end computer interface that simulates daily fertilizer application information for any gridded domain. It integrates the Weather Research and Forecasting model and CMAQ.

  10. MisTec - A software application for supporting space exploration scenario options and technology development analysis and planning

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1992-01-01

    This structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this kind of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.

  11. MisTec: A software application for supporting space exploration scenario options and technology development analysis and planning

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1991-01-01

    The structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this king of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.

  12. Does extreme precipitation intensity depend on the emissions scenario?

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang

    2016-04-01

    The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.

  13. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios.

    PubMed

    Campeau, Audrey; Del Giorgio, Paul A

    2014-04-01

    It is now widely accepted that boreal rivers and streams are regionally significant sources of carbon dioxide (CO2), yet their role as methane (CH4) emitters, as well as the sensitivity of these greenhouse gas (GHG) emissions to climate change, are still largely undefined. In this study, we explore the large-scale patterns of fluvial CO2 and CH4 partial pressure (pCO2 , pCH4) and gas exchange (k) relative to a set of key, climate-sensitive river variables across 46 streams and rivers in two distinct boreal landscapes of Northern Québec. We use the resulting models to determine the direction and magnitude of C-gas emissions from these boreal fluvial networks under scenarios of climate change. River pCO2 and pCH4 were positively correlated, although the latter was two orders of magnitude more variable. We provide evidence that in-stream metabolism strongly influences the dynamics of surface water pCO2 and pCH4 , but whereas pCO2 is not influenced by temperature in the surveyed streams and rivers, pCH4 appears to be strongly temperature-dependent. The major predictors of ambient gas concentrations and exchange were water temperature, velocity, and DOC, and the resulting models indicate that total GHG emissions (C-CO2 equivalent) from the entire network may increase between by 13 to 68% under plausible scenarios of climate change over the next 50 years. These predicted increases in fluvial GHG emissions are mostly driven by a steep increase in the contribution of CH4 (from 36 to over 50% of total CO2 -equivalents). The current role of boreal fluvial networks as major landscape sources of C is thus likely to expand, mainly driven by large increases in fluvial CH4 emissions. © 2013 John Wiley & Sons Ltd.

  14. Pre-crash scenarios at road junctions: A clustering method for car crash data.

    PubMed

    Nitsche, Philippe; Thomas, Pete; Stuetz, Rainer; Welsh, Ruth

    2017-10-01

    Given the recent advancements in autonomous driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual simulation environments or on real-world test tracks. This paper presents a novel data analysis method including the preparation, analysis and visualization of car crash data, to identify the critical pre-crash scenarios at T- and four-legged junctions as a basis for testing the safety of automated driving systems. The presented method employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1056 junction crashes in the UK, which were exported from the in-depth "On-the-Spot" database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. The results support existing findings on road junction accidents and provide benchmark situations for safety performance tests in order to reduce the possible number parameter combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Temperature - Emissivity Separation Assessment in a Sub-Urban Scenario

    NASA Astrophysics Data System (ADS)

    Moscadelli, M.; Diani, M.; Corsini, G.

    2017-10-01

    In this paper, a methodology that aims at evaluating the effectiveness of different TES strategies is presented. The methodology takes into account the specific material of interest in the monitored scenario, sensor characteristics, and errors in the atmospheric compensation step. The methodology is proposed in order to predict and analyse algorithms performances during the planning of a remote sensing mission, aimed to discover specific materials of interest in the monitored scenario. As case study, the proposed methodology is applied to a real airborne data set of a suburban scenario. In order to perform the TES problem, three state-of-the-art algorithms, and a recently proposed one, are investigated: Temperature-Emissivity Separation '98 (TES-98) algorithm, Stepwise Refining TES (SRTES) algorithm, Linear piecewise TES (LTES) algorithm, and Optimized Smoothing TES (OSTES) algorithm. At the end, the accuracy obtained with real data, and the ones predicted by means of the proposed methodology are compared and discussed.

  16. Scenarios of global mercury emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.

    2013-11-01

    This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.

  17. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    PubMed

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  18. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  19. ARkStorm: A West Coast Storm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Jones, L. M.; Ralph, F. M.; Dettinger, M. D.; Porter, K.; Perry, S. C.; Barnard, P. L.; Hoover, D.; Wills, C. J.; Stock, J. D.; Croyle, W.; Ferris, J. C.; Plumlee, G. S.; Alpers, C. N.; Miller, M.; Wein, A.; Rose, A.; Done, J.; Topping, K.

    2009-12-01

    The United Stated Geological Survey (USGS) Multi-Hazards Demonstration Project (MHDP) is preparing a new emergency-preparedness scenario, called ARkStorm, to address massive U.S. West Coast storms analogous to those that devastated California in 1861-62. Storms of this magnitude are projected to become more frequent and intense as a result of climate change. The MHDP has assembled experts from the National Oceanic and Atmospheric Administration (NOAA), USGS, Scripps Institute of Oceanography, the State of California, California Geological Survey, the University of Colorado, the National Center for Atmospheric Research, and other organizations to design the large, but scientifically plausible, hypothetical scenario storm that would provide emergency responders, resource managers, and the public a realistic assessment of what is historically possible. The ARkStorm patterns the 1861 - 1862 historical events but uses modern modeling methods and data from large storms in 1969 and 1986. The ARkStorm draws heat and moisture from the tropical Pacific, forming Atmospheric Rivers (ARs) that grow in size, gain speed, and with a ferocity equal to hurricanes, slam into the U.S. West Coast for several weeks. Using sophisticated weather models and expert analysis, precipitation, snowlines, wind, and pressure data the modelers will characterize the resulting floods, landslides, and coastal erosion and inundation. These hazards will then be translated into the infrastructural, environmental, agricultural, social, and economic impacts. Consideration will be given to catastrophic disruptions to water supplies resulting from impacts on groundwater pumping, seawater intrusion, water supply degradation, and land subsidence. Possible climate-change forces that could exacerbate the problems will also be evaluated. In contrast to the recent U.S. East and Gulf Coast hurricanes, only recently have scientific and technological advances documented the ferocity and strength of possible future

  20. Coupling a glacier evolution model and a hydrological model to simulate future runoff scenarios in the Oetztal Alps, Austria

    NASA Astrophysics Data System (ADS)

    Stoll, Elena; Oesterle, Felix; Hanzer, Florian; Nemec, Johanna; Berlin, Stefan; Schöber, Johannes; Huttenlau, Matthias; Strasser, Ulrich; Achleitner, Stefan; Förster, Kristian

    2017-04-01

    Fluctuations of glacier and snow runoff play a key role in water management of alpine catchments. Consequently, the catchment water balance is strongly influenced by the variability of the seasonal snow cover and the glacier melt. The huge water storages enable a shift of the hydrological response of glaciers across time scales, leading to response times in the range of decades. In the future, an initial increase of water availability connected to higher temperatures and respective melt rates is expected to turn into a decrease as the glaciers dwindle. One key question is to predict the "moment of peak discharge" when water availability will start to decrease as a consequence of the reduction of glacierized areas. To assess the influence of a warming climate on runoff regimes of glaciated catchments, we couple a simple glacier evolution model (GEM), based on a statistical approach, with a semi-distributed hydrological model (HQsim). Climate scenarios are taken from downscaled EURO-CORDEX data for the scenarios RCP2.6, RCP4.5, and RCP8.5, respectively. The results indicate that the impact of the glaciers on runoff regimes will very likely change towards the second half of the 21st century. Given the scenarios in which most glaciers will attain their minimum extent and sustain only at high elevation levels, the resulting runoff regime is dominated by precipitation and seasonal snow cover, since the "moment of peak discharge" is assumed to occur in the first half of the 21st century.

  1. Research on response spectrum of dam based on scenario earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Zhang, Yushan

    2017-10-01

    Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.

  2. 2017 Standard Scenarios Report: A U.S. Electricity Sector Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Mai, Trieu; Richards, James

    This report summarizes the results of 26 forward-looking “standard scenarios” of the U.S. power sector simulated by the National Renewable Energy Laboratory (NREL) using the Regional Energy Deployment System (ReEDS) and Distributed Generation (dGen) capacity expansion models. The annual Standard Scenarios, which are now in their third year, have been designed to capture a range of possible power system futures considering a variety of factors that impact power sector evolution.

  3. Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills.

    PubMed

    Cagiltay, Nergiz Ercil; Ozcelik, Erol; Sengul, Gokhan; Berker, Mustafa

    2017-11-01

    In neurosurgery education, there is a paradigm shift from time-based training to criterion-based model for which competency and assessment becomes very critical. Even virtual reality simulators provide alternatives to improve education and assessment in neurosurgery programs and allow for several objective assessment measures, there are not many tools for assessing the overall performance of trainees. This study aims to develop and validate a tool for assessing the overall performance of participants in a simulation-based endoneurosurgery training environment. A training program was developed in two levels: endoscopy practice and beginning surgical practice based on four scenarios. Then, three experiments were conducted with three corresponding groups of participants (Experiment 1, 45 (32 beginners, 13 experienced), Experiment 2, 53 (40 beginners, 13 experienced), and Experiment 3, 26 (14 novices, 12 intermediate) participants). The results analyzed to understand the common factors among the performance measurements of these experiments. Then, a factor capable of assessing the overall skill levels of surgical residents was extracted. Afterwards, the proposed measure was tested to estimate the experience levels of the participants. Finally, the level of realism of these educational scenarios was assessed. The factor formed by time, distance, and accuracy on simulated tasks provided an overall performance indicator. The prediction correctness was very high for the beginners than the one for experienced surgeons in Experiments 1 and 2. When non-dominant hand is used in a surgical procedure-based scenario, skill levels of surgeons can be better predicted. The results indicate that the scenarios in Experiments 1 and 2 can be used as an assessment tool for the beginners, and scenario-2 in Experiment 3 can be used as an assessment tool for intermediate and novice levels. It can be concluded that forming the balance between perceived action capacities and skills is

  4. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Sohl, Terry L.; Bouchard, Michelle A.; Reker, Ryan R.; Soulard, Christopher E.; Acevedo, William; Griffith, Glenn E.; Sleeter, Rachel R.; Auch, Roger F.; Sayler, Kristi L.; Prisley, Stephen; Zhu, Zhi-Liang

    2012-01-01

    Global environmental change scenarios have typically provided projections of land use and land cover for a relatively small number of regions or using a relatively coarse resolution spatial grid, and for only a few major sectors. The coarseness of global projections, in both spatial and thematic dimensions, often limits their direct utility at scales useful for environmental management. This paper describes methods to downscale projections of land-use and land-cover change from the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios to ecological regions of the conterminous United States, using an integrated assessment model, land-use histories, and expert knowledge. Downscaled projections span a wide range of future potential conditions across sixteen land use/land cover sectors and 84 ecological regions, and are logically consistent with both historical measurements and SRES characteristics. Results appear to provide a credible solution for connecting regionalized projections of land use and land cover with existing downscaled climate scenarios, under a common set of scenario-based socioeconomic assumptions.

  5. The Emissions Scenarios Portal: Visualizing Low-Carbon Pathways for the 21st Century

    NASA Astrophysics Data System (ADS)

    Hennig, R. J.; Friedrich, J.; Ge, M.; Mountford, H.; Fransen, T.; Altamirano, J. C.; Thanawala, Z.; Arcipowska, A.

    2017-12-01

    The Emissions Scenarios Portal (ESP) is a newly developed exploration tool for 21st century low-carbon pathways and investigation of the Nationally Determined Contributions (NDC's) that countries have put forward under the Paris Agreement. It is open to the public and aims to help achieve the goal of limiting global temperature increase to well below 2 degrees Celsius above pre-industrial levels by enhancing access to high-quality, up-to-date scenario information. It can guide users to set ambitious, realistic emission mitigation goals and understand what these goals imply for different sectors of the economy. Data will be integrated from a wide variety of economic and energy-system models with results from both national models as well as globally integrated assessment models (IAM's) and countries biennial update reports (BUR's). This information can support policy and investment decision making that will lead to a low carbon future. It is designed to help find answers to questions such as "Are the NDC's enough to put the world on a 2DC track?", "What do NDC's imply for different sectors of the economy under different assumptions?" or "What are good ways to increase ambition beyond NDC's?". The portal strives to achieve both inter-comparability across a wide range of different models and nationally reported scenarios, as well as flexibility to allow modelers to bring out the strengths and purpose of their model on the platform. Furthermore, it aims to enhance standardized and transparent reporting of emissions scenarios and relevant metadata, assumptions and results to improve understanding, accessibility and impact of the scenarios. On the data side, these rivaling objectives present interesting challenges for both the collection and communication of the data and in this presentation we will present some of our ideas for tackling these. This project will be part of Climate Watch, a new data platform developed jointly by the World Resources Institute and the NDC

  6. Preventive health services implemented by family physicians in Portugal—a cross-sectional study based on two clinical scenarios

    PubMed Central

    Martins, Carlos; Azevedo, Luís Filipe; Santos, Cristina; Sá, Luísa; Santos, Paulo; Couto, Maria; Pereira, Altamiro; Hespanhol, Alberto

    2014-01-01

    Objectives To assess whether Portuguese family physicians perform preventive health services in accordance with scientific evidence, based on the recommendations of the United States Preventive Services Task Force (USPSTF). Design Cross-sectional study. Setting Primary healthcare, Portuguese National Health Service. Participants 255 Portuguese family physicians selected by a stratified cluster sampling design were invited to participate in a computer-assisted telephone survey. Outcomes Prevalence of compliance with USPSTF recommendations for screening, given a male and female clinical scenario and a set of proposed medical interventions, including frequency of the intervention and performance in their own daily practice. Results A response rate of 95.7% was obtained (n=244). 98–100% of family physicians answered according to the USPSTF recommendations in most interventions. In the male scenario, the lowest concordance was observed in the evaluation of prostate-specific antigen with 37% of family physicians answering according to the USPSTF recommendations. In the female scenario, the lowest concordance was for cholesterol testing with 2% of family physicians complying. Family physicians younger than 50 years had significantly better compliance scores than older ones (mean 77% vs 72%; p<0.001). Conclusions We found a high degree of agreement with USPSTF recommendations among Portuguese family physicians. However, we also found results suggesting excessive use of some medical interventions, raising concerns related to possible harm associated with overdiagnosis and overtreatment. PMID:24861550

  7. Mise en Scene: Conversion of Scenarios to CSP Traces for the Requirements-to-Design-to-Code Project

    NASA Technical Reports Server (NTRS)

    Carter. John D.; Gardner, William B.; Rash, James L.; Hinchey, Michael G.

    2007-01-01

    The "Requirements-to-Design-to-Code" (R2D2C) project at NASA's Goddard Space Flight Center is based on deriving a formal specification expressed in Communicating Sequential Processes (CSP) notation from system requirements supplied in the form of CSP traces. The traces, in turn, are to be extracted from scenarios, a user-friendly medium often used to describe the required behavior of computer systems under development. This work, called Mise en Scene, defines a new scenario medium (Scenario Notation Language, SNL) suitable for control-dominated systems, coupled with a two-stage process for automatic translation of scenarios to a new trace medium (Trace Notation Language, TNL) that encompasses CSP traces. Mise en Scene is offered as an initial solution to the problem of the scenarios-to-traces "D2" phase of R2D2C. A survey of the "scenario" concept and some case studies are also provided.

  8. Stakeholder engagement in scenario development process - bioenergy production and biodiversity conservation in eastern Finland.

    PubMed

    Haatanen, Anniina; den Herder, Michael; Leskinen, Pekka; Lindner, Marcus; Kurttila, Mikko; Salminen, Olli

    2014-03-15

    In this study participatory approaches were used to develop alternative forest resource management scenarios with particular respect to the effects on increased use of forest bioenergy and its effect on biodiversity in Eastern Finland. As technical planning tools, we utilized a forest management planning system (MELA) and the Tool for Sustainability Impact Assessment (ToSIA) to visualize the impacts of the scenarios. We organized a stakeholder workshop where group discussions were used as a participatory method to get the stakeholder preferences and insights concerning forest resource use in the year 2030. Feedback from the workshop was then complemented with a questionnaire. Based on the results of the workshop and a questionnaire we developed three alternative forest resource scenarios: (1) bioenergy 2030 - in which energy production is more centralized and efficient; (2) biodiversity 2030 - in which harvesting methods are more nature friendly and protected forests make up 10% of the total forest area; and (3) mixed bioenergy + biodiversity 2030 scenario - in which wood production, recreation and nature protection are assigned to the most suitable areas. The study showed that stakeholder engagement combined with the MELA and ToSIA tools can be a useful approach in scenario development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Multi-hazard Assessment and Scenario Toolbox (MhAST): A Framework for Analyzing Compounding Effects of Multiple Hazards

    NASA Astrophysics Data System (ADS)

    Sadegh, M.; Moftakhari, H.; AghaKouchak, A.

    2017-12-01

    Many natural hazards are driven by multiple forcing variables, and concurrence/consecutive extreme events significantly increases risk of infrastructure/system failure. It is a common practice to use univariate analysis based upon a perceived ruling driver to estimate design quantiles and/or return periods of extreme events. A multivariate analysis, however, permits modeling simultaneous occurrence of multiple forcing variables. In this presentation, we introduce the Multi-hazard Assessment and Scenario Toolbox (MhAST) that comprehensively analyzes marginal and joint probability distributions of natural hazards. MhAST also offers a wide range of scenarios of return period and design levels and their likelihoods. Contribution of this study is four-fold: 1. comprehensive analysis of marginal and joint probability of multiple drivers through 17 continuous distributions and 26 copulas, 2. multiple scenario analysis of concurrent extremes based upon the most likely joint occurrence, one ruling variable, and weighted random sampling of joint occurrences with similar exceedance probabilities, 3. weighted average scenario analysis based on a expected event, and 4. uncertainty analysis of the most likely joint occurrence scenario using a Bayesian framework.

  10. Water within the Shared Socioeconomic Pathways: Constraints and the Impact on Future Global Change Scenarios

    NASA Astrophysics Data System (ADS)

    Graham, N. T.; Hejazi, M. I.; Davies, E. G.; Calvin, K. V.; Kim, S. H.; Miralles-Wilhelm, F.

    2017-12-01

    The Shared Socioeconomic Pathways (SSPs) represent the next generation of future global change scenarios and their inclusion in the Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios reinforces the importance of a complete understanding of the SSPs. This study uses the Global Change Assessment Model (GCAM) to investigate the effects of limited water supplies on future withdrawals at regional and water basin scales across all SSPs in combination with various climate mitigation scenarios. Water supply is calculated using a global hydrologic model and water data from five ISI-MIP models across the four RCP scenarios. When water constraints are incorporated, our results show that water withdrawals are reduced by as much as 40% across all SSP scenarios without climate policies. As climate policies are imposed and become more stringent, water withdrawals increase in regions already affected by water stress in order to allow for greater biomass production. The results of this research show the importance of including water resource constraints within the SSP scenarios for establishing water withdrawal scenarios under a wide range of scenarios including different climate policies. The results will also provide data products - such as gridded land use and water demand estimates - of potential interest to the impact, adaptation, and vulnerability community following the SSP scenarios.

  11. Innovations in science and scenarios for assessment.

    PubMed

    Kunkel, Kenneth E; Moss, Richard; Parris, Adam

    Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scales and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.

  12. Generating moment matching scenarios using optimization techniques

    DOE PAGES

    Mehrotra, Sanjay; Papp, Dávid

    2013-05-16

    An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less

  13. 40 CFR 68.28 - Alternative release scenario analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Alternative release scenario analysis... scenario analysis. (a) The number of scenarios. The owner or operator shall identify and analyze at least... release scenario under § 68.25; and (ii) That will reach an endpoint offsite, unless no such scenario...

  14. 2017 Standard Scenarios Report: A U.S. Electricity Sector Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Mai, Trieu T.; Richards, James

    The 2017 Standard Scenarios includes a suite of U.S. electricity sector scenarios. The report explores four power sector storylines, including the growth in natural gas and renewable energy, the relative competitiveness of wind and solar PV, the potential impact of low-cost battery storage, and the impact of nuclear lifetimes on the capacity expansion of the power sector.

  15. Decommissioning of offshore oil and gas facilities: a comparative assessment of different scenarios.

    PubMed

    Ekins, Paul; Vanner, Robin; Firebrace, James

    2006-06-01

    A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.

  16. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meng, Jing

    2017-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012‒2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of- pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  17. Reliable Freestanding Position-Based Routing in Highway Scenarios

    PubMed Central

    Galaviz-Mosqueda, Gabriel A.; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-01-01

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model. PMID:23202159

  18. Reliable freestanding position-based routing in highway scenarios.

    PubMed

    Galaviz-Mosqueda, Gabriel A; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-10-24

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model.

  19. Scenarios for Chemistry Teacher Training and Practice in Romania in 2030: Views of Chemistry Students

    ERIC Educational Resources Information Center

    Timofte, Roxana S.; Cozma, Danut G.

    2017-01-01

    Four scenarios regarding Chemistry teacher training and practice in Romania in 2030 were developed by using the 2x2 matrix design for scenario writing. The two driving forces taken in account for the design of scenarios were migration and consumerism. In two of the proposed scenarios teachers are trained to teach socioscientific courses at class.…

  20. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: A scenario analysis

    USGS Publications Warehouse

    Arriana, Brand L.; Stromberg, J.C.; Goodrich, D.C.; Dixon, M.D.; Lansey, K.; Kang, D.; Brookshire, D.S.; Cerasale, D.J.

    2011-01-01

    Groundwater is a key driver of riparian condition on dryland rivers but is in high demand for municipal, industrial, and agricultural uses. Approaches are needed to guide decisions that balance human water needs while conserving riparian ecosystems. We developed a space-for-time substitution model that links groundwater change scenarios implemented within a Decision Support System (DSS) with proportions of floodplain vegetation types and abundances of breeding and migratory birds along the upper San Pedro River, AZ, USA. We investigated nine scenarios ranging from groundwater depletion to recharge. In groundwater decline scenarios, relative proportions of tall-canopied obligate phreatophytes (Populus/Salix, cottonwood/willow) on the floodplain progressively decline, and shrubbier species less dependent on permanent water sources (e.g. Tamarix spp., saltcedar) increase. These scenarios result in broad shifts in the composition of the breeding bird community, with canopy-nesting and water-obligate birds declining but midstory nesting birds increasing in abundance as groundwater declines. For the most extreme draw-down scenario where all reaches undergo groundwater declines, models project that only 10% of the upper San Pedro floodplain would be comprised of cottonwood/willow (73% saltcedar and 18% mesquite), and abundances of canopy-nesting, water-obligate, and spring migrant birds would decline 48%, 72%, and 40%, respectively. Groundwater recharge scenarios were associated with increases in canopy-nesting birds particularly given the extreme recharge scenario (all reaches regain shallow water tables and perennial streamflow). Model outputs serve to assess the sensitivity of biotic groups to potential changes in groundwater and thus to rank scenarios based on their expected ecological impacts. ?? 2010 John Wiley & Sons, Ltd.

  1. Practical Applications for Earthquake Scenarios Using ShakeMap

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Worden, B.; Quitoriano, V.; Goltz, J.

    2001-12-01

    In planning and coordinating emergency response, utilities, local government, and other organizations are best served by conducting training exercises based on realistic earthquake situations-ones that they are most likely to face. Scenario earthquakes can fill this role; they can be generated for any geologically plausible earthquake or for actual historic earthquakes. ShakeMap Web pages now display selected earthquake scenarios (www.trinet.org/shake/archive/scenario/html) and more events will be added as they are requested and produced. We will discuss the methodology and provide practical examples where these scenarios are used directly for risk reduction. Given a selected event, we have developed tools to make it relatively easy to generate a ShakeMap earthquake scenario using the following steps: 1) Assume a particular fault or fault segment will (or did) rupture over a certain length, 2) Determine the magnitude of the earthquake based on assumed rupture dimensions, 3) Estimate the ground shaking at all locations in the chosen area around the fault, and 4) Represent these motions visually by producing ShakeMaps and generating ground motion input for loss estimation modeling (e.g., FEMA's HAZUS). At present, ground motions are estimated using empirical attenuation relationships to estimate peak ground motions on rock conditions. We then correct the amplitude at that location based on the local site soil (NEHRP) conditions as we do in the general ShakeMap interpolation scheme. Finiteness is included explicitly, but directivity enters only through the empirical relations. Although current ShakeMap earthquake scenarios are empirically based, substantial improvements in numerical ground motion modeling have been made in recent years. However, loss estimation tools, HAZUS for example, typically require relatively high frequency (3 Hz) input for predicting losses, above the range of frequencies successfully modeled to date. Achieving full-synthetic ground motion

  2. Understanding Land System Change Through Scenario-Based Simulations: A Case Study from the Drylands in Northern China

    NASA Astrophysics Data System (ADS)

    Liu, Zhifeng; Verburg, Peter H.; Wu, Jianguo; He, Chunyang

    2017-03-01

    The drylands in northern China are expected to face dramatic land system change in the context of socioeconomic development and environmental conservation. Recent studies have addressed changes of land cover with socioeconomic development in the drylands in northern China. However, the changes in land use intensity and the potential role of environmental conservation measures have yet to be adequately examined. Given the importance of land management intensity to the ecological conditions and regional sustainability, our study projected land system change in Hohhot city in the drylands in northern China from 2013 to 2030. Here, land systems are defined as combinations of land cover and land use intensity. Using the CLUMondo model, we simulated land system change in Hohhot under three scenarios: a scenario following historical trends, a scenario with strong socioeconomic and land use planning, and a scenario focused on achieving environmental conservation targets. Our results showed that Hohhot is likely to experience agricultural intensification and urban growth under all three scenarios. The agricultural intensity and the urban growth rate were much higher under the historical trend scenario compared to those with more planning interventions. The dynamics of grasslands depend strongly on projections of livestock and other claims on land resources. In the historical trend scenario, intensively grazed grasslands increase whereas a large amount of the current area of grasslands with livestock converts to forest under the scenario with strong planning. Strong conversion from grasslands with livestock and extensive cropland to semi-natural grasslands was estimated under the conservation scenario. The findings provide an input into discussions about environmental management, planning and sustainable land system design for Hohhot.

  3. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  4. Impact of multi-professional, scenario-based training on postpartum hemorrhage in Tanzania: a quasi-experimental, pre- vs. post-intervention study.

    PubMed

    Egenberg, Signe; Masenga, Gileard; Bru, Lars Edvin; Eggebø, Torbjørn Moe; Mushi, Cecilia; Massay, Deodatus; Øian, Pål

    2017-09-05

    Tanzania has a relatively high maternal mortality ratio of 410 per 100,000 live births. Severe postpartum hemorrhage (PPH) is a major cause of maternal deaths, but in most cases, it is preventable. However, most pregnant women that develop PPH, have no known risk factors. Therefore, preventive measures must be offered to all pregnant women. This study investigated the effects of multi-professional, scenario-based training on the prevention and management of PPH at a Tanzanian zonal consultant hospital. We hypothesized that scenario-based training could contribute to improved competence on PPH-management, which would result in improved team efficiency and patient outcome. This quasi-experimental, pre-vs. post-interventional study involved on-site multi-professional, scenario-based PPH training, conducted in a two-week period in October 2013 and another 2 weeks in November 2014. Training teams included nurses, midwives, doctors, and medical attendants in the Department of Obstetrics and Gynecology. After technical skill training on the birthing simulator MamaNatalie®, the teams practiced in realistic scenarios on PPH. Each scenario was followed by debriefing and repeated scenario. Afterwards, the group swapped roles and the observers became the participants. To evaluate the effects of training, we measured patient outcomes by determining blood transfusion rates. Patient data were collected by randomly sampling Medical birth registry files from the pre-training and post-training study periods (n = 1667 and 1641 files, respectively). Data were analyzed with the Chi-square test, Mann-Whitney U-test, and binary logistic regression. The random patient samples (n = 3308) showed that, compared to pre-training, post-training patients had a 47% drop in whole blood transfusion rates and significant increases in cesarean section rates, birth weights, and vacuum deliveries. The logistic regression analysis showed that transfusion rates were significantly associated with

  5. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.

  6. The use of engineering design scenarios to assess student knowledge of global, societal, economic, and environmental contexts

    NASA Astrophysics Data System (ADS)

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-07-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on student attitudes and perceptions about engineering and abilities to extend and refine knowledge about broader contexts. Two design scenarios were created: one related to dental hygiene and one related to vaccination delivery. Design scenarios were used to (1) assess knowledge of broader contexts, and (2) test variability of student responses across different contextual situations. Results from pre- to post-surveying revealed improved student perceptions of knowledge of broader contexts. Significant differences were observed between the two design scenarios. The findings support the assumption that different design scenarios elicit consideration of different contexts and design scenarios can be constructed to target specific contextual considerations.

  7. Role of future scenarios in understanding deep uncertainty in long-term air quality management.

    PubMed

    Gamas, Julia; Dodder, Rebecca; Loughlin, Dan; Gage, Cynthia

    2015-11-01

    The environment and its interactions with human systems, whether economic, social, or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of "deep uncertainty" presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be "technological development" and "change in societal paradigms." These drivers were used as a basis to develop four distinct scenario storylines. The energy and emissions implications of each storyline were then modeled using the MARKAL energy system model. NOx emissions were found to decrease for all scenarios, largely a response to existing air quality regulations, whereas SO2 emissions ranged from 12% greater to 7% lower than 2015 emissions levels. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition to cleaner fuels and energy demand reductions. Application of scenarios in air quality management provides a structured means of sifting through and understanding the dynamics of the many complex driving forces affecting future air quality. Further, scenarios provide a means to identify opportunities and challenges for future air quality management, as well as a platform for testing the efficacy and robustness of particular management

  8. The Potential Impacts of a Scenario of C02-Induced Climatic Change on Ontafio, Canada.

    NASA Astrophysics Data System (ADS)

    Cohen, S. J.; Allsopp, T. R.

    1988-07-01

    In 1984, Environment Canada, Ontario Region, with financial and expert support from the Canadian Climate Program, initiated an interdisciplinary pilot study to investigate the potential impact, on Ontario, of a climate scenario which might be anticipated under doubling of atmospheric C02 conditions.There were many uncertainties involved in the climate scenario development and the impacts modeling. Time and resource constraints restricted this study to one climate scenario and to the selection of several available models that could be adapted to these impact studies. The pilot study emphasized the approach and process required to investigate potential regional impacts in an interdisciplinary manner, rather than to produce a forecast of the future.The climate scenario chosen was adapted from experimental model results produced by the Goddard Institute for Space Studies (GISS), coupled with current climate normals. Gridded monthly mean temperatures and precipitation were then used to develop projected biophysical effects. For example, existing physical and/or statistical models were adapted to determine impacts on the Great Lakes net basin supplies, levels and outflows, streamflow subbasin, snowfall and length of snow season.The second phase of the study addressed the impacts of the climate system scenario on natural resources and resource dependent activities. For example, the impacts of projected decreased lake levels and outflows on commercial navigation and hydroelectric generation were assessed. The impacts of the climate scenario on municipal water use, residential beating and cooling energy requirements opportunities and constraints for food production and tourism and recreation were determined quantitatively where models and methodologies were available, otherwise, qualitatively.First order interdependencies of the biophysical effects of the climate scenario and resource dependent activities were evaluated qualitatively in a workshop format culminating in a

  9. High water-stressed population estimated by world water resources assessment including human activities under SRES scenarios

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Shen, Y.; Kanae, S.; Oki, T.

    2009-04-01

    In an argument of the reduction and the adaptation for the climate change, the evaluation of the influence by the climate change is important. When we argue in adaptation plan from a damage scale and balance with the cost, it is particularly important. Parry et al (2001) evaluated the risks in shortage of water, malaria, food, the risk of the coast flood by temperature function and clarified the level of critical climate change. According to their evaluation, the population to be affected by the shortage of water suddenly increases in the range where temperature increases from 1.5 to 2.0 degree in 2080s. They showed how much we need to reduce emissions in order to draw-down significantly the number at risk. This evaluation of critical climate change threats and targets of water shortage did not include the water withdrawal divided by water availability. Shen et al (2008a) estimated the water withdrawal of projection of future world water resources according to socio-economic driving factors predicted for scenarios A1b, A2, B1, and B2 of the Special Report on Emission Scenarios (SRES). However, these results were in function of not temperature but time. The assessment of the highly water-stressed population considered the socioeconomic development is necessary for a function of the temperature. Because of it is easy to understand to need to reduce emission. We present a multi-GCM analysis of the global and regional populations lived in highly water-stressed basin for a function of the temperature using the socioeconomic data and the outputs of GCMs. In scenario A2, the population increases gradually with warming. On the other hand, the future projection population in scenario A1b and B1 increase gradually until the temperature anomaly exceeds around from +1 to +1.5 degree. After that the population is almost constant. From Shen et al (2008b), we evaluated the HWSP and its ratio in the world with temperature function for scenarios A1B, A2, and B1 by the index of W

  10. Emissions implications of downscaled electricity generation scenarios for the western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsanzineza, Rene; O’Connell, Matthew; Brinkman, Gregory

    This study explores how emissions from electricity generation in the Western Interconnection region of the U.S. might respond in circa 2030 to contrasting scenarios for fuel prices and greenhouse gas (GHG) emissions fees. We examine spatial and temporal variations in generation mix across the region and year using the PLEXOS unit commitment and dispatch model with a production cost model database adapted from the Western Electricity Coordinating Council. Emissions estimates are computed by combining the dispatch model results with unit-specific, emissions-load relationships. Wind energy displaces natural gas and coal in scenarios with relatively expensive natural gas or with GHG fees.more » Correspondingly, annual emissions of NOx, SO2, and CO2 are reduced by 20-40% in these cases. NOx emissions, which are a concern as a precursor of ground-level ozone, are relatively high and consistent across scenarios during summer, when peak electricity loads occur and wind resources in the region are comparatively weak. Accounting for the difference in start-up versus stabilized NOx emissions rates for natural gas plants had little impact on region-wide emissions estimates due to the dominant contribution from coal-fired plants, but would be more important in the vicinity of the natural gas units.« less

  11. Innovations in science and scenarios for assessment

    DOE PAGES

    Kunkel, Kenneth E.; Moss, Richard; Parris, Adam

    2015-08-29

    Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scalesmore » and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.« less

  12. Two alternative solar energy scenarios for Western Europe

    NASA Astrophysics Data System (ADS)

    Nakicenovic, N.

    1982-11-01

    Two limiting scenarios that lead to a sustainable energy system in Western Europe toward the end of the next century are described. The scenarios consider exclusively solar energy futures: one based on centralized solar technologies (hard scenario) and the other on decentralized user-oriented technologies (soft scenario). While both scenarios eliminate Western Europe's dependence on domestic and foreign fossil energy sources, the hard solar scenario requires substantial imports of solar produced hydrogen. Fundamental but different changes of the whole energy system, economic structure and lifestyles are necessary in order to achieve sustainable solar energy futures in the scenarios.

  13. Do environmental dynamics matter in fate models? Exploring scenario dynamics for a terrestrial and an aquatic system.

    PubMed

    Morselli, Melissa; Terzaghi, Elisa; Di Guardo, Antonio

    2018-01-24

    Nowadays, there is growing interest in inserting more ecological realism into risk assessment of chemicals. On the exposure evaluation side, this can be done by studying the complexity of exposure in the ecosystem, niche partitioning, e.g. variation of the exposure scenario. Current regulatory predictive approaches, to ensure simplicity and predictive ability, generally keep the scenario as static as possible. This could lead to under or overprediction of chemical exposure depending on the chemical and scenario simulated. To account for more realistic exposure conditions, varying temporally and spatially, additional scenario complexity should be included in currently used models to improve their predictive ability. This study presents two case studies (a terrestrial and an aquatic one) in which some polychlorinated biphenyls (PCBs) were simulated with the SoilPlusVeg and ChimERA models to show the importance of scenario variation in time (biotic and abiotic compartments). The results outlined the importance of accounting for planetary boundary layer variation and vegetation dynamics to accurately predict air concentration changes and the timing of chemical dispersion from the source in terrestrial systems. For the aquatic exercise, the results indicated the need to account for organic carbon forms (particulate and dissolved organic carbon) and vegetation biomass dynamics. In both cases the range of variation was up to two orders of magnitude depending on the congener and scenario, reinforcing the need for incorporating such knowledge into exposure assessment.

  14. Extreme scenarios for nuclear waste repositories.

    PubMed

    Brown, M J; Crouch, E

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km2 of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the water are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  15. Running of the spectral index in deformed matter bounce scenarios with Hubble-rate-dependent dark energy

    NASA Astrophysics Data System (ADS)

    Arab, M.; Khodam-Mohammadi, A.

    2018-03-01

    As a deformed matter bounce scenario with a dark energy component, we propose a deformed one with running vacuum model (RVM) in which the dark energy density ρ _{Λ } is written as a power series of H^2 and \\dot{H} with a constant equation of state parameter, same as the cosmological constant, w=-1. Our results in analytical and numerical point of views show that in some cases same as Λ CDM bounce scenario, although the spectral index may achieve a good consistency with observations, a positive value of running of spectral index (α _s) is obtained which is not compatible with inflationary paradigm where it predicts a small negative value for α _s. However, by extending the power series up to H^4, ρ _{Λ }=n_0+n_2 H^2+n_4 H^4, and estimating a set of consistent parameters, we obtain the spectral index n_s, a small negative value of running α _s and tensor to scalar ratio r, which these reveal a degeneracy between deformed matter bounce scenario with RVM-DE and inflationary cosmology.

  16. Large Ensemble Analytic Framework for Consequence-Driven Discovery of Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Lamontagne, Jonathan R.; Reed, Patrick M.; Link, Robert; Calvin, Katherine V.; Clarke, Leon E.; Edmonds, James A.

    2018-03-01

    An analytic scenario generation framework is developed based on the idea that the same climate outcome can result from very different socioeconomic and policy drivers. The framework builds on the Scenario Matrix Framework's abstraction of "challenges to mitigation" and "challenges to adaptation" to facilitate the flexible discovery of diverse and consequential scenarios. We combine visual and statistical techniques for interrogating a large factorial data set of 33,750 scenarios generated using the Global Change Assessment Model. We demonstrate how the analytic framework can aid in identifying which scenario assumptions are most tied to user-specified measures for policy relevant outcomes of interest, specifically for our example high or low mitigation costs. We show that the current approach for selecting reference scenarios can miss policy relevant scenario narratives that often emerge as hybrids of optimistic and pessimistic scenario assumptions. We also show that the same scenario assumption can be associated with both high and low mitigation costs depending on the climate outcome of interest and the mitigation policy context. In the illustrative example, we show how agricultural productivity, population growth, and economic growth are most predictive of the level of mitigation costs. Formulating policy relevant scenarios of deeply and broadly uncertain futures benefits from large ensemble-based exploration of quantitative measures of consequences. To this end, we have contributed a large database of climate change futures that can support "bottom-up" scenario generation techniques that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.

  17. New land use scenarios for the Brazilian Amazonia: how to reach a sustainable future?

    NASA Astrophysics Data System (ADS)

    Aguiar, A. P. D.; Vieira, I.; Toledo, P.; Araujo, R.; Coelho, A.; Pinho, P.; Assis, T.; Dalla-Nora, E. L.; Kawakami Savaget, E.; Batistella, M.

    2014-12-01

    Following an intense deforestation process initiated in the 1960s, clear-cut deforestation rates in the Brazilian Amazon have decreased significantly since 2004. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring and control systems, and credit restriction mechanisms. Although regional social indicators have also slightly improved, society remains unequal and violent, both in urban and rural areas. Furthermore, the combined results of the fall of deforestation and the increased economic importance of the agribusiness sector have led to the political weakening of the so-called socio-environmental model. Thus, the current situation indicates a future of low (clear-cut) carbon emissions and low social conditions. On the other hand, other threats remain, including forest degradation derived from illegal logging and forest fires. There is also considerable uncertainty about the fate of the remaining forest areas as multiple forces can contribute to the return of high deforestation, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We present the results of a participatory scenario process, in which we discussed the future of the region until 2050 combining normative and exploratory approaches. We include an ideal "Sustainability" scenario (Scenario A) in which we envision major socioeconomic, institutional and environmental achievements. Scenario B stays in the "Middle of the road", in which the society maintains some of the positive environmental trends of the last decade, but not reversing the structural situation of social inequities. Scenario C is a pessimistic vision, named "Fragmentation" with high deforestation rates and low social development. The goal of the work was twofold: (a) to propose a method to enrich the discussion among different private and governmental stakeholders

  18. [Results of 2 years of activity].

    PubMed

    Panigazzi, M

    2010-01-01

    Work-related injuries and occupational diseases are a scourge of modern, western societies, which, although technologically advanced, have difficulty in preventing, treating and rehabilitating victims with speed and efficiency. The current hospital neuromotor rehabilitation centres, whether public or accredited private structures, have notable difficulty in meeting the demand, which despite annual fluctuations and variable needs, does not, overall, seem to be decreasing. We present the results of an organization model developed at the "Fondazione Maugeri" Scientific Institute (Pavia, Italy), the criteria used for the activity, the technological innovations employed to determine ability, and the prospects for further development. This model is effective from a health care-rehabilitative point of view, also in the light of the new legislative scenarios, and is sustainable from an economic points of view; overall it is, therefore, efficient.

  19. Futures Scenario in Science Learning

    ERIC Educational Resources Information Center

    Lloyd, David; Vanderhout, Annastasia; Lloyd, Lisa; Atkins, David

    2010-01-01

    In this article we describe our experiences in developing futures scenarios in two science contexts, space science and atmospheric science/climate change. Futures scenario writing can develop scientific literacy by connecting science learning to students' lifeworlds--past, present and future. They also provide a synthesising mechanism for…

  20. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    PubMed Central

    Carbajo, Aníbal E; Vera, Carolina; González, Paula LM

    2009-01-01

    Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent

  1. Performance Evaluation of LoRa Considering Scenario Conditions.

    PubMed

    Sanchez-Iborra, Ramon; Sanchez-Gomez, Jesus; Ballesta-Viñas, Juan; Cano, Maria-Dolores; Skarmeta, Antonio F

    2018-03-03

    New verticals within the Internet of Things (IoT) paradigm such as smart cities, smart farming, or goods monitoring, among many others, are demanding strong requirements to the Radio Access Network (RAN) in terms of coverage, end-node's power consumption, and scalability. The technologies employed so far to provide IoT scenarios with connectivity, e.g., wireless sensor network and cellular technologies, are not able to simultaneously cope with these three requirements. Thus, a novel solution known as Low Power - Wide Area Network (LP-WAN) has emerged as a promising alternative to provide with low-cost and low-power-consumption connectivity to end-nodes spread in a wide area. Concretely, the Long-Range Wide Area Network (LoRaWAN) technology is one of the LP-WAN platforms that is receiving greater attention from both the industry and the academia. For that reason, in this work, a comprehensive performance evaluation of LoRaWAN under different environmental conditions is presented. The results are obtained from three real scenarios, namely, urban, suburban, and rural, considering both dynamic and static conditions, hence a discussion about the most proper LoRaWAN physical-layer configuration for each scenario is provided. Besides, a theoretical coverage study is also conducted by the use of a radio planning tool considering topographic maps and a precise propagation model. From the attained results, it can be concluded that it is necessary to evaluate the propagation conditions of the deployment scenario prior to the system implantation in order to reach a compromise between the robustness of the network and the transmission data-rate.

  2. Downscaling of sea level and fluxes in the Malacca and Singapore Straits using A2 scenario projections of AR4 GCMs

    NASA Astrophysics Data System (ADS)

    Tkalich, Pavel; Koshebutsky, Volodymyr; Maderich, Vladimir; Thompson, Bijoy

    2013-04-01

    IPCC-coordinated work has been completed within Fourth Assessment Report (AR4) to project climate and ocean variables for the 21st century using coupled atmospheric-ocean General Circulation Models (GCMs). Resolution of the GCMs is not sufficient to resolve local features of narrow Malacca and Singapore Straits, having complex coastal line and bathymetry; therefore, dynamical downscaling of ocean variables from the global grid to the regional scale is advisable using ocean models, such as Regional Ocean Modeling System (ROMS). ROMS is customized for the domain centered on the Singapore and Malacca Straits, extending from 98°E to 109°E and 6°S to 14°N. Following IPCC methodology, the modelling is done for the past reference period 1961-1990, and then for the 21st century projections; subsequently, established past and projected trends and variability of ocean parameters are inter-compared. Boundary conditions for the past reference period are extracted from Simple Ocean Data Assimilation (SODA), while the projections are made using A2 scenario runs of ECHAM5 and CCSM3 GCMs. Atmospheric forcing for ROMS is downscaled with WRF using ERA-40 dataset for the past period, and outputs of atmospheric variables of respective GCMs for the projections. ROMS-downscaled regional sea level change during 1961-1990, corrected for the global thermosteric effect, land-ice melting and Global Isostatic Adjustment (GIA) effect, corresponds to a mean total trend of 1.52 mm/year, which is higher than the global estimate 1.25 mm/year and observed global sea-level rise (1.44 mm/year) for the same period. Local linear trend in the Singapore Strait (0.9 mm/year) corresponds to the observed trend at Victoria Dock tide gauge (1.1 mm/year) for the past period. Mean discharges through the Karimata, Malacca and Singapore Straits are 0.9, 0.21 and 0.12 Sv, respectively, fall in the range of observations and recent model estimates. A2 scenario projections using ROMS-ECHAM5 and ROMS-CCSM3 for

  3. Convoy Protection under Multi-Threat Scenario

    DTIC Science & Technology

    2017-06-01

    14. SUBJECT TERMS antisubmarine warfare, convoy protection, screening, design of experiments, agent-based simulation 15. NUMBER OF...46 5. Scenarios 33–36 (Red Submarine Tactic-2) ...............................46 IV. DESIGN OF EXPERIMENT...47 C. NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGN ............51 V. DATA ANALYSIS

  4. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand

  5. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  6. Developing scenarios to assess future landslide risks: a model-based approach applied to mountainous regions

    NASA Astrophysics Data System (ADS)

    Vacquie, Laure; Houet, Thomas

    2016-04-01

    In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging

  7. Scenarios for optimizing potato productivity in a lunar CELSS

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Morrow, R. C.; Tibbitts, T. W.; Bula, R. J.

    1992-01-01

    The use of controlled ecological life support system (CELSS) in the development and growth of large-scale bases on the Moon will reduce the expense of supplying life support materials from Earth. Such systems would use plants to produce food and oxygen, remove carbon dioxide, and recycle water and minerals. In a lunar CELSS, several factors are likely to be limiting to plant productivity, including the availability of growing area, electrical power, and lamp/ballast weight for lighting systems. Several management scenarios are outlined in this discussion for the production of potatoes based on their response to irradiance, photoperiod, and carbon dioxide concentration. Management scenarios that use 12-hr photoperiods, high carbon dioxide concentrations, and movable lamp banks to alternately irradiate halves of the growing area appear to be the most efficient in terms of growing area, electrical power, and lamp weights. However, the optimal scenario will be dependent upon the relative 'costs' of each factor.

  8. Assessment of Drought Scenario in Western Nepal

    NASA Astrophysics Data System (ADS)

    Pandey, V. P.; Khatiwada, K. R.

    2017-12-01

    Drought is a frequent phenomenon in relatively drier western Nepal. Lack of hydro-climatic information with wider spatial coverage is hindering effective assessment of the drought events. Furthermore, drought assessment is not getting adequate attention in Nepal. This study aims to develop drought scenario for Western Nepal by evaluating various types of drought indices in Karnali River Basin (area = 4,6150 km2) and recommend the most suited set of indices for data-poor regions. On the climatic data at ten stations, drought indices were calculated from following seven selected indices: Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), (self-calibrating) Palmer Drought Severity Index (scPDSI), Reconnaissance Drought Index (RDI), Standardized Streamflow Index (SSFI), and Palmer Hydrological Drought Index (PHDI). Initial results reflect that the basin is affected by severe meteorological drought. Most of the indices show the extreme dryness scenario during the years 1984-85, 1992-93, 1995, 2000, 20002, 2008-09, and 2012. The results from the stations with long-term temperature and precipitation data sets showed a higher (up to 0.9) correlation between SPI and RDI than for SPEI and other Palmer Drought Indices, which ranged from 0.6 to 0.8 only. This suggests ability of SPI to represent magnitude and duration of the drought events fairly well in the study basin, and therefore, has potential to represent drought dynamics in data-poor regions. Keywords: Drought; Karnali River Basin; Nepal Himalaya

  9. Development of nonproliferation and assessment scenarios.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Melissa; Barnett, Natalie Beth

    2005-10-01

    The overall objective of the Nonproliferation and Assessments Scenario Development project is to create and analyze potential and plausible scenarios that would lead to an adversary's ability to acquire and use a biological weapon. The initial three months of funding was intended to be used to develop a scenario to demonstrate the efficacy of this analysis methodology; however, it was determined that a substantial amount of preliminary data collection would be needed before a proof of concept scenario could be developed. We have dedicated substantial effort to determine the acquisition pathways for Foot and Mouth Disease Virus, and similar processesmore » will be applied to all pathogens of interest. We have developed a biosecurity assessments database to capture information on adversary skill locales, available skill sets in specific regions, pathogen sources and regulations involved in pathogen acquisition from legitimate facilities. FY06 funding, once released, will be dedicated to data collection on acquisition, production and dissemination requirements on a pathogen basis. Once pathogen data has been collected, scenarios will be developed and scored.« less

  10. Scenario drafting to anticipate future developments in technology assessment

    PubMed Central

    2012-01-01

    Background Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. Methods To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake) were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs) was compared to clinical guidelines, calculated from the past (2005) until the future (2020). Results In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY), meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. Conclusions When optimal diffusion of a technology is sought, incorporating process-uncertainty by means of

  11. 2016 Standard Scenarios Report: A U.S. Electricity Sector Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Mai, Trieu; Logan, Jeffrey

    This is the webinar presentation deck used to present the 2016 Standard Scenarios work. It discusses the Annual Technology Baseline (ATB) detailed cost and performance projections for electricity-generating technologies and the standard scenarios of the power sector modeling using ATB inputs.

  12. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  13. Stars with relativistic speeds in the Hills scenario

    NASA Astrophysics Data System (ADS)

    Dremova, G. N.; Dremov, V. V.; Tutukov, A. V.

    2017-07-01

    The dynamical capture of a binary system consisting of a supermassive black hole (SMBH) and an ordinary star in the gravitational field of a central (more massive) SMBH is considered in the three-body problem in the framework of a modified Hills scenario. The results of numerical simulations predict the existence of objects whose spatial speeds are comparable to the speed of light. The conditions for and constraints imposed on the ejection speeds realized in a classical scenario and the modified Hills scenario are analyzed. The star is modeled using an N-body approach, making it possible to treat it as a structured object, enabling estimation of the probability that the object survives when it is ejected with relativistic speed as a function of the mass of the star, the masses of both SMBHs, and the pericenter distance. It is possible that the modern kinematic classification for stars with anomalously high spatial velocities will be augmented with a new class—stars with relativistic speeds.

  14. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    NASA Astrophysics Data System (ADS)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input

  15. Development of a database-driven system for simulating water temperature in the lower Yakima River main stem, Washington, for various climate scenarios

    USGS Publications Warehouse

    Voss, Frank; Maule, Alec

    2013-01-01

    A model for simulating daily maximum and mean water temperatures was developed by linking two existing models: one developed by the U.S. Geological Survey and one developed by the Bureau of Reclamation. The study area included the lower Yakima River main stem between the Roza Dam and West Richland, Washington. To automate execution of the labor-intensive models, a database-driven model automation program was developed to decrease operation costs, to reduce user error, and to provide the capability to perform simulations quickly for multiple management and climate change scenarios. Microsoft© SQL Server 2008 R2 Integration Services packages were developed to (1) integrate climate, flow, and stream geometry data from diverse sources (such as weather stations, a hydrologic model, and field measurements) into a single relational database; (2) programmatically generate heavily formatted model input files; (3) iteratively run water temperature simulations; (4) process simulation results for export to other models; and (5) create a database-driven infrastructure that facilitated experimentation with a variety of scenarios, node permutations, weather data, and hydrologic conditions while minimizing costs of running the model with various model configurations. As a proof-of-concept exercise, water temperatures were simulated for a "Current Conditions" scenario, where local weather data from 1980 through 2005 were used as input, and for "Plus 1" and "Plus 2" climate warming scenarios, where the average annual air temperatures used in the Current Conditions scenario were increased by 1degree Celsius (°C) and by 2°C, respectively. Average monthly mean daily water temperatures simulated for the Current Conditions scenario were compared to measured values at the Bureau of Reclamation Hydromet gage at Kiona, Washington, for 2002-05. Differences ranged between 1.9° and 1.1°C for February, March, May, and June, and were less than 0.8°C for the remaining months of the year

  16. ARAMIS project: a comprehensive methodology for the identification of reference accident scenarios in process industries.

    PubMed

    Delvosalle, Christian; Fievez, Cécile; Pipart, Aurore; Debray, Bruno

    2006-03-31

    In the frame of the Accidental Risk Assessment Methodology for Industries (ARAMIS) project, this paper aims at presenting the work carried out in the part of the project devoted to the definition of accident scenarios. This topic is a key-point in risk assessment and serves as basis for the whole risk quantification. The first result of the work is the building of a methodology for the identification of major accident hazards (MIMAH), which is carried out with the development of generic fault and event trees based on a typology of equipment and substances. The term "major accidents" must be understood as the worst accidents likely to occur on the equipment, assuming that no safety systems are installed. A second methodology, called methodology for the identification of reference accident scenarios (MIRAS) takes into account the influence of safety systems on both the frequencies and possible consequences of accidents. This methodology leads to identify more realistic accident scenarios. The reference accident scenarios are chosen with the help of a tool called "risk matrix", crossing the frequency and the consequences of accidents. This paper presents both methodologies and an application on an ethylene oxide storage.

  17. [Forest fire risk assessment for China under different climate scenarios.

    PubMed

    Tian, Xiao Rui; Dai, Xuan; Wang, Ming Yu; Zhao, Feng Jun; Shu, Li Fu

    2016-03-01

    Forest fire risk depends on the hazard factors, affected body, and hazard prevention and reduction ability. The integrated risk assessment is the foundation for developing scientific fire mana-gement policies and carrying out the forest fire prevention measures. A forest fire risk assessment model and index system were established based on the classic natural disaster risk model and available data, and the model was used to assess the forest fire risks in past and future. The future climate scenario data included outputs from five global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M) for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively. Each component index of Fire Weather Index (FWI) system was calculated daily for each grid in 1987-2050 for the historical observations and future climate scenarios according to the maximum temperature, minimum relative humidity, wind speed and daily precipitation. The results showed that areas with high and very high fire danger ratings in 1987-2010 accounted for 21.2% and 6.2%, respectively, which were distributed in Greater Xing'an Mountains and the Changbai Mountain area, most parts of Yunnan, and many fragment areas in southern China. The areas with high and very high burn possibilities were mainly distributed in the northeast and southwest region, accounting for 13.1% and 4.0%, respectively. Compared with the observation period, the areas with high and very high fire danger ratings in 2021-2050 would increase by 0.6%, 5.5%, 2.3%, and 3.5% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 respectively, and North China would show significant increase. The regions with high-risk forest fires would also increase due to climate change, with the most significant increase under RCP 8.5 scenario (+1.6%).

  18. 10 CFR 63.322 - Human intrusion scenario.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Human intrusion scenario. 63.322 Section 63.322 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards Human Intrusion...

  19. 10 CFR 63.322 - Human intrusion scenario.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Human intrusion scenario. 63.322 Section 63.322 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards Human Intrusion...

  20. 10 CFR 63.322 - Human intrusion scenario.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Human intrusion scenario. 63.322 Section 63.322 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards Human Intrusion...

  1. 10 CFR 63.322 - Human intrusion scenario.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Human intrusion scenario. 63.322 Section 63.322 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards Human Intrusion...

  2. Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir.

    PubMed

    Nunes, João Pedro; Jacinto, Rita; Keizer, Jan Jacob

    2017-04-15

    The impacts of climate and associated socio-economic changes on water availability, including supply and demand, quality, and storage volume, were evaluated for the Vale do Gaio reservoir in southern Portugal, located in a dry Mediterranean climate and already under drought stress. The SWAT model was applied with 6 scenarios for 2071-2100, involving two storylines (A1B and B1) with individual changes in climate (-9% rainfall, increasing in winter by +28 to +30%), socio-economic conditions (an increase in irrigation demand by 11%, and a replacement of cereals and pastures by sunflower), and a combination of both. Most future scenarios resulted in lower water availability, due to lower supply (-19 to -27%) combined with higher irrigation demand (+3 to +21%). This resulted in more years with limited irrigation supplies (presently: 28%; scenarios: 37 to 43%), although limitations were mitigated by lower losses to excess discharge. Land-use changes also decreased quality by increasing P concentrations (+29 to +93%). Impacts were more severe in scenario A1B than in B1, and in combined changes than in climate or socio-economic changes only. Water availability was resilient to climate change, as impacts led only to a moderate aggravation of present-day conditions. Lower future water availability could be addressed by supply and demand management strategies and, in the most extreme scenario, by water transfers from regional water reserves; water quality issues could be addressed through land-use policies. Results also highlighted the importance of taking the characteristics of water supply systems into account when designing adaptation measures for future changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2) (External Review Draft)

    EPA Science Inventory

    EPA announced the availability of the draft report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) for a 30-day public comment period. The ICLUS version 2 (v2) modeling tool furthered land change mod...

  4. A Flexible Socioeconomic Scenarios Framework for the Study of Plausible Arctic Futures

    NASA Astrophysics Data System (ADS)

    Reissell, A. K.; Peters, G. P.; Riahi, K.; Kroglund, M.; Lovecraft, A. L.; Nilsson, A. E.; Preston, B. L.; van Ruijven, B. J.

    2016-12-01

    Future developments of the Arctic region are associated with different drivers of change - climate, environmental, and socio-economic - and their interactions, and are highly uncertain. The uncertainty poses challenges for decision-making, calling for development of new analytical frameworks. Scenarios - coherent narratives describing potential futures, pathways to futures, and drivers of change along the way - can be used to explore the consequences of the key uncertainties, particularly in the long-term. In a participatory scenarios workshop, we used both top-down and bottom-up approaches for the development of a flexible socioeconomic scenarios framework. The top-down approach was linked to the global Integrated Assessment Modeling framework and its Shared Socio-Economic Pathways (SSPs), developing an Arctic extension of the set of five storylines on the main socioeconomic uncertainties in global climate change research. The bottom-up approach included participatory development of narratives originating from within the Arctic region. For extension of global SSPs to the regional level, we compared the key elements in the global SSPs (Population, Human Development, Economy & Lifestyle, Policies & Institutions, Technology, and Environment & Natural Resources) and key elements in the Arctic. Additional key elements for the Arctic scenarios include, for example, seasonal migration, the large role of traditional knowledge and culture, mixed economy, nested governance structure, human and environmental security, quality of infrastructure. The bottom-up derived results suggested that the scenarios developed independent of the SSPs could be mapped back to the SSPs to demonstrate consistency with respect to representing similar boundary conditions. The two approaches are complimentary, as the top-down approach can be used to set the global socio-economic and climate boundary conditions, and the bottom-up approach providing the regional context. One key uncertainty and

  5. A Scenario for the Future of Museums

    ERIC Educational Resources Information Center

    Cunningham, Mary Kay

    2009-01-01

    More than any other staff member, museum educators' knowledge and experience working with visitors make them uniquely qualified to take on leadership roles as museums transform themselves into lifelong learning organizations. The article encourages museum educators to initiate discussions about change by offering a fictional scenario of future…

  6. Lunar Outpost Life Support Architecture Study Based on a High-Mobility Exploration Scenario

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Anderson, Molly S.

    2010-01-01

    This paper presents results of a life support architecture study based on a 2009 NASA lunar surface exploration scenario known as Scenario 12. The study focuses on the assembly complete outpost configuration and includes pressurized rovers as part of a distributed outpost architecture in both stand-alone and integrated configurations. A range of life support architectures are examined reflecting different levels of closure and distributed functionality. Monte Carlo simulations are used to assess the sensitivity of results to volatile high-impact mission variables, including the quantity of residual Lander oxygen and hydrogen propellants available for scavenging, the fraction of crew time away from the outpost on excursions, total extravehicular activity hours, and habitat leakage. Surpluses or deficits of water and oxygen are reported for each architecture, along with fixed and 10-year total equivalent system mass estimates relative to a reference case. System robustness is discussed in terms of the probability of no water or oxygen resupply as determined from the Monte Carlo simulations.

  7. Simulation of groundwater flow and pumping scenarios for 1900–2050 near Mount Pleasant, South Carolina

    USGS Publications Warehouse

    Fine, Jason M.; Petkewich, Matthew D.; Campbell, Bruce G.

    2017-10-31

    Groundwater withdrawals from the Upper Cretaceous-age Middendorf aquifer in South Carolina have created a large, regional cone of depression in the potentiometric surface of the Middendorf aquifer in Charleston and Berkeley Counties, South Carolina. Groundwater-level declines of as much as 249 feet have been observed in wells over the past 125 years and are a result of groundwater use for public water supply, irrigation, and private industry. To address the concerns of users of the Middendorf aquifer, the U.S. Geological Survey, in cooperation with Mount Pleasant Waterworks (MPW), recalibrated an existing groundwater-flow model to incorporate additional groundwater-use and water-level data since 2008. This recalibration process consisted of a technique of parameter estimation that uses regularized inversion and employs “pilot points” for spatial hydraulic property characterization. The groundwater-flow system of the Coastal Plain physiographic province of South Carolina and parts of Georgia and North Carolina was simulated using the U.S. Geological Survey finite-difference computer code MODFLOW-2000.After the model recalibration, the following six predictive water-management scenarios were created to simulate potential changes in groundwater flow and groundwater-level conditions in the Mount Pleasant, South Carolina, area: Scenario 1—maximize MPW reverse-osmosis plant capacity by increasing groundwater withdrawals from the Middendorf aquifer from 3.9 million gallons per day (Mgal/d), which was the amount withdrawn in 2015, to 8.58 Mgal/d; Scenario 2—same as Scenario 1, but with the addition of a 0.5 Mgal/d supply well in the Middendorf aquifer near Moncks Corner, South Carolina; Scenario 3—same as Scenario 1, but with the addition of a 1.5 Mgal/d supply well in the Middendorf aquifer near Moncks Corner, South Carolina; Scenario 4—maximize MPW well capacity by increasing withdrawals from the Middendorf aquifer from 3.9 Mgal/d (in 2015) to 10.16 Mgal

  8. IMPLICATIONS OF CLIMATE CHANCE SCENARIOS ON SOIL EROSION POTENTIAL IN THE UNITED STATES

    EPA Science Inventory

    Atmospheric general circulation models (GCMS) project that rising atmospheric concentrations of CO, and other greenhouse gases may result in lobal changes in temperature and precipitation over the next 50-100 years. quilibrium climate scenarios from 4 GCMs run under doubled CO2 c...

  9. Community Solar Scenario Tool | Integrated Energy Solutions | NREL

    Science.gov Websites

    Community Solar Scenario Tool Community Solar Scenario Tool The Community Solar Scenario Tool (CSST ) provides a "first cut" analysis of different community or shared solar program options. NREL sponsoring utility. Community Solar Scenario Tool -Beta Version Available as a Microsoft Excel file, which

  10. A socio-technical model to explore urban water systems scenarios.

    PubMed

    de Haan, Fjalar J; Ferguson, Briony C; Deletic, Ana; Brown, Rebekah R

    2013-01-01

    This article reports on the ongoing work and research involved in the development of a socio-technical model of urban water systems. Socio-technical means the model is not so much concerned with the technical or biophysical aspects of urban water systems, but rather with the social and institutional implications of the urban water infrastructure and vice versa. A socio-technical model, in the view purported in this article, produces scenarios of different urban water servicing solutions gaining or losing influence in meeting water-related societal needs, like potable water, drainage, environmental health and amenity. The urban water system is parameterised with vectors of the relative influence of each servicing solution. The model is a software implementation of the Multi-Pattern Approach, a theory on societal systems, like urban water systems, and how these develop and go through transitions under various internal and external conditions. Acknowledging that social dynamics comes with severe and non-reducible uncertainties, the model is set up to be exploratory, meaning that for any initial condition several possible future scenarios are produced. This article gives a concise overview of the necessary theoretical background, the model architecture and some initial test results using a drainage example.

  11. Ranking landscape development scenarios affecting natterjack toad (Bufo calamita) population dynamics in Central Poland.

    PubMed

    Franz, Kamila W; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios.

  12. LHC benchmark scenarios for the real Higgs singlet extension of the standard model

    DOE PAGES

    Robens, Tania; Stefaniak, Tim

    2016-05-13

    Here, we present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they ful ll all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low mass and high mass region, i.e. the mass range where the additional Higgsmore » state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group.« less

  13. Water footprint scenarios for 2050: a global analysis.

    PubMed

    Ercin, A Ertug; Hoekstra, Arjen Y

    2014-03-01

    This study develops water footprint scenarios for 2050 based on a number of drivers of change: population growth, economic growth, production/trade pattern, consumption pattern (dietary change, bioenergy use) and technological development. The objective the study is to understand the changes in the water footprint (WF) of production and consumption for possible futures by region and to elaborate the main drivers of this change. In addition, we assess virtual water flows between the regions of the world to show dependencies of regions on water resources in other regions under different possible futures. We constructed four scenarios, along two axes, representing two key dimensions of uncertainty: globalization versus regional selfsufficiency, and economy-driven development versus development driven by social and environmental objectives. The study shows how different drivers will change the level of water consumption and pollution globally in 2050. The presented scenarios can form a basis for a further assessment of how humanity can mitigate future freshwater scarcity. We showed with this study that reducing humanity's water footprint to sustainable levels is possible even with increasing populations, provided that consumption patterns change. This study can help to guide corrective policies at both national and international levels, and to set priorities for the years ahead in order to achieve sustainable and equitable use of the world's fresh water resources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

    2013-12-01

    . A comparison of two watersheds - Alameda Creek, an urbanized watershed, and Upper Stony Creek, impacted by intensified agriculture, demonstrates the relative contribution of urbanization and climate change to water supply. In Upper Stony Creek, where 24% of grassland is converted to agriculture in the A1B scenario, a hotter, dryer 4-year time period could lead to a 40% reduction in streamflow compared to present day. In Alameda Creek, for the same scenario, 47% of grassland is converted to urbanized lands and streamflow may increase by 11%, resulting in a recharge:runoff ratio of 0.26; though if urbanization does not take place, streamflow could decrease by 64% and the recharge:runoff ratio would be 1.2. Model outputs quantify the impact of urbanization on water supply and show the importance of soil storage capacity. Scenarios have applications for climate-smart conservation and land use planning by identifying outcomes associated with coupled future land use scenarios and more variable and extreme potential future climates.

  15. High-resolution interpolation of climate scenarios for Canada derived from general circulation model simulations

    Treesearch

    D. T. Price; D. W. McKenney; L. A. Joyce; R. M. Siltanen; P. Papadopol; K. Lawrence

    2011-01-01

    Projections of future climate were selected for four well-established general circulation models (GCMs) forced by each of three greenhouse gas (GHG) emissions scenarios recommended by the Intergovernmental Panel on Climate Change (IPCC), namely scenarios A2, A1B, and B1 of the IPCC Special Report on Emissions Scenarios. Monthly data for the period 1961-2100 were...

  16. Scenario prediction of emerging coastal city using CA modeling under different environmental conditions: a case study of Lingang New City, China.

    PubMed

    Feng, Yongjiu; Liu, Yan

    2016-09-01

    The world's coastal regions are experiencing rapid urbanization coupled with increased risk of ecological damage and storm surge related to global climate and sea level rising. This urban development issue is particularly important in China, where many emerging coastal cities are being developed. Lingang New City, southeast of Shanghai, is an excellent example of a coastal city that is increasingly vulnerable to environmental change. Sustainable urban development requires planning that classifies and allocates coastal lands using objective procedures that incorporate changing environmental conditions. In this paper, we applied cellular automata (CA) modeling based on self-adaptive genetic algorithm (SAGA) to predict future scenarios and explore sustainable urban development options for Lingang. The CA model was calibrated using the 2005 initial status, 2015 final status, and a set of spatial variables. We implemented specific ecological and environmental conditions as spatial constraints for the model and predicted four 2030 scenarios: (a) an urban planning-oriented Plan Scenario; (b) an ecosystem protection-oriented Eco Scenario; (c) a storm surge-affected Storm Scenario; and (d) a scenario incorporating both ecosystem protection and the effects of storm surge, called the Ecostorm Scenario. The Plan Scenario has been taken as the baseline, with the Lingang urban area increasing from 45.8 km(2) in 2015 to 66.8 km(2) in 2030, accounting for 23.9 % of the entire study area. The simulated urban land size of the Plan Scenario in 2030 was taken as the target to accommodate the projected population increase in this city, which was then applied in the remaining three development scenarios. We used CA modeling to reallocate the urban cells to other unconstrained areas in response to changing spatial constraints. Our predictions should be helpful not only in assessing and adjusting the urban planning schemes for Lingang but also for evaluating urban planning in coastal

  17. Neo-deterministic definition of earthquake hazard scenarios: a multiscale application to India

    NASA Astrophysics Data System (ADS)

    Peresan, Antonella; Magrin, Andrea; Parvez, Imtiyaz A.; Rastogi, Bal K.; Vaccari, Franco; Cozzini, Stefano; Bisignano, Davide; Romanelli, Fabio; Panza, Giuliano F.; Ashish, Mr; Mir, Ramees R.

    2014-05-01

    The development of effective mitigation strategies requires scientifically consistent estimates of seismic ground motion; recent analysis, however, showed that the performances of the classical probabilistic approach to seismic hazard assessment (PSHA) are very unsatisfactory in anticipating ground shaking from future large earthquakes. Moreover, due to their basic heuristic limitations, the standard PSHA estimates are by far unsuitable when dealing with the protection of critical structures (e.g. nuclear power plants) and cultural heritage, where it is necessary to consider extremely long time intervals. Nonetheless, the persistence in resorting to PSHA is often explained by the need to deal with uncertainties related with ground shaking and earthquakes recurrence. We show that current computational resources and physical knowledge of the seismic waves generation and propagation processes, along with the improving quantity and quality of geophysical data, allow nowadays for viable numerical and analytical alternatives to the use of PSHA. The advanced approach considered in this study, namely the NDSHA (neo-deterministic seismic hazard assessment), is based on the physically sound definition of a wide set of credible scenario events and accounts for uncertainties and earthquakes recurrence in a substantially different way. The expected ground shaking due to a wide set of potential earthquakes is defined by means of full waveforms modelling, based on the possibility to efficiently compute synthetic seismograms in complex laterally heterogeneous anelastic media. In this way a set of scenarios of ground motion can be defined, either at national and local scale, the latter considering the 2D and 3D heterogeneities of the medium travelled by the seismic waves. The efficiency of the NDSHA computational codes allows for the fast generation of hazard maps at the regional scale even on a modern laptop computer. At the scenario scale, quick parametric studies can be easily

  18. Evaluating different scenarios for Tradable Green Certificates by game theory approaches

    NASA Astrophysics Data System (ADS)

    Ghaffari, Meysam; Hafezalkotob, Ashkan

    2018-06-01

    Right now employment of polices and tools to decrease the carbon emission through electricity generation from renewable resources is one of the most important problem in energy policy. Tradable Green Certificate (TGC) is an economics mechanism to support green power generation. Any country has the challenge to choose an appropriate policy and mechanism for design and implementation of TGC. The purpose of this study is to help policy makers to design and choose the best scenario of TGC by evaluating six scenarios, based on game theory approach. This study will be useful for increasing the effectiveness of TGC system in interaction with electricity market. Particularly, the competition between thermal and renewable power plants is modeled by mathematical modeling tools such as cooperative games like Nash and Stackelberg. Each game is modeled by taking into account of the two following policies. The results of the six scenarios and the sensitivity analysis of some key parameters have been evaluated by numerical studies. Finally, in order to evaluate the scenarios we calculated the level of social welfare in the all scenarios. The results of all models demonstrate that when the green electricity share (minimum requirement) increases the TGC price decreases. Moreover, in all scenarios when the minimum requirement is 100% then the maximum level of social welfare is not met. Also when the minimum requirement is less than 50%, the scenarios with the market TGC price policy have more social welfare in comparison with the scenarios with fixed TGC price policy.

  19. Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change

    USGS Publications Warehouse

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2017-01-01

    With growing demand and highly variable inter-annual water supplies, California’s water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992–2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.

  20. Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change

    PubMed Central

    Sleeter, Benjamin M.; Cameron, D. Richard

    2017-01-01

    With growing demand and highly variable inter-annual water supplies, California’s water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992–2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories. PMID:29088254

  1. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century

    DOE PAGES

    Kriegler, Elmar; Bauer, Nico; Popp, Alexander; ...

    2016-08-18

    Here, this paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, markingmore » the upper end of the scenario literature in several dimensions. The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5), and represents currently the only socio-economic scenario family that can be combined with climate model projections based on RCP8.5. This paper further investigates the direct impact of mitigation policies on the energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. Finally, the SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.« less

  2. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Bauer, Nico; Popp, Alexander

    Here, this paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, markingmore » the upper end of the scenario literature in several dimensions. The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5), and represents currently the only socio-economic scenario family that can be combined with climate model projections based on RCP8.5. This paper further investigates the direct impact of mitigation policies on the energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. Finally, the SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.« less

  3. Rates and delay times of Type Ia supernovae in the helium-enriched main-sequence donor scenario

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Stancliffe, Richard J.

    2018-04-01

    The nature of the progenitors of Type Ia supernovae (SNe Ia) remains a mystery. Comparing theoretical rates and delay-time distributions of SNe Ia with those inferred observationally can constrain their progenitor models. In this work, taking thermohaline mixing into account in the helium-enriched main-sequence (HEMS) donor scenario, we address rates and delay times of SNe Ia in this channel by combining the results of self-consistent binary evolution calculations with population synthesis models. We find that the Galactic SN Ia rate from the HEMS donor scenario is around 0.6-1.2 × 10-3 yr-1, which is about 30 per cent of the observed rate. Delay times of SNe Ia in this scenario cover a wide range of 0.1-1.0 Gyr. We also present the pre-explosion properties of companion stars in the HEMS donor scenario, which will be helpful for placing constraints on SN Ia progenitors through analysing their pre-explosion images.

  4. Deep pulse fractional CO2 laser combined with a radiofrequency system: results of a case series.

    PubMed

    Cannarozzo, Giovanni; Sannino, Mario; Tamburi, Federica; Chiricozzi, Andrea; Saraceno, Rosita; Morini, Cristiano; Nisticò, Steven

    2014-07-01

    The purpose of this study was evaluation of the safety and efficacy of this new combined technology that adds deep ablation to thermal stimulation. Minimally ablative or subablative lasers, such as fractional CO2 lasers, have been developed in an attempt to achieve the same clinical results observed with traditional ablative lasers, but with fewer side effects. Despite being an ablative laser, the system used in this study is able to produce a fractional supply of the beam of light. Fractional ablation of skin is performed through the development of microscopic vertical columns surrounded by spared areas of epidermis and dermis, ensuring rapid wound healing and minimum down time. Simultaneous synchronized delivery of a radiofrequency (RF) current to the deeper layers of the skin completes the therapeutic scenario, ensuring an effective skin tightening effect over the entire treated area. Nine adult patients were treated for wrinkles and acne scars using this new laser technology. An independent observer evaluated the improvement using a five point scale. All patients had good results in terms of improvement of skin texture, with mild and transitory side effects. This novel combined system produced improvement in wrinkles and acne scars, with progressive enhancement of skin tone and elasticity.

  5. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  6. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial polar regions is reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  7. R modes and neutron star recycling scenario

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Gusakov, M. E.; Kantor, E. M.

    2017-06-01

    To put new constraints on the r-mode instability window, we analyse the formation of millisecond pulsars (MSPs) within the recycling scenario, making use of three sets of observations: (a) X-ray observations of neutron stars (NSs) in low-mass X-ray binaries; (b) timing of MSPs and (c) X-ray and UV observations of MSPs. As shown in previous works, r-mode dissipation by shear viscosity is not sufficient to explain observational set (a), and enhanced r-mode dissipation at the redshifted internal temperatures T ∞ ˜ 108 K is required to stabilize the observed NSs. Here, we argue that models with enhanced bulk viscosity can hardly lead to a self-consistent explanation of observational set (a) due to strong neutrino emission, which is typical for these models (unrealistically powerful energy source is required to keep NSs at the observed temperatures.). We also demonstrate that the observational set (b), combined with the theory of internal heating and NS cooling, provides evidence of enhanced r-mode dissipation at low temperatures, T ∞ ˜ 2 × 107 K. Observational set (c) allows us to set an upper limit on the internal temperatures of MSPs, T ∞ < 2 × 107 K (assuming a canonical NS with the accreted crust). Recycling scenario can produce MSPs at these temperatures only if r-mode instability is suppressed in the whole MSP spin frequency range (ν ≲ 750 Hz) at temperatures 2 × 107 ≲ T ∞ ≲ 3 × 107 K, providing thus a new constraint on the r-mode instability window. These observational constraints are analysed in more details in application to the resonance uplift scenario of Gusakov et al.

  8. Useful global-change scenarios: current issues and challenges

    NASA Astrophysics Data System (ADS)

    Parson, E. A.

    2008-10-01

    Scenarios are increasingly used to inform global-change debates, but their connection to decisions has been weak and indirect. This reflects the greater number and variety of potential users and scenario needs, relative to other decision domains where scenario use is more established. Global-change scenario needs include common elements, e.g., model-generated projections of emissions and climate change, needed by many users but in different ways and with different assumptions. For these common elements, the limited ability to engage diverse global-change users in scenario development requires extreme transparency in communicating underlying reasoning and assumptions, including probability judgments. Other scenario needs are specific to users, requiring a decentralized network of scenario and assessment organizations to disseminate and interpret common elements and add elements requiring local context or expertise. Such an approach will make global-change scenarios more useful for decisions, but not less controversial. Despite predictable attacks, scenario-based reasoning is necessary for responsible global-change decisions because decision-relevant uncertainties cannot be specified scientifically. The purpose of scenarios is not to avoid speculation, but to make the required speculation more disciplined, more anchored in relevant scientific knowledge when available, and more transparent.

  9. Susceptibility and triggering scenarios at a regional scale for shallow landslides

    NASA Astrophysics Data System (ADS)

    Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.

    2008-07-01

    The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been

  10. Scenario generation for stochastic optimization problems via the sparse grid method

    DOE PAGES

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid methodmore » can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.« less

  11. Views from Within a Narrative: Evaluating Long-Term Human-Robot Interaction in a Naturalistic Environment Using Open-Ended Scenarios.

    PubMed

    Syrdal, Dag Sverre; Dautenhahn, Kerstin; Koay, Kheng Lee; Ho, Wan Ching

    2014-01-01

    This article describes the prototyping of human-robot interactions in the University of Hertfordshire (UH) Robot House. Twelve participants took part in a long-term study in which they interacted with robots in the UH Robot House once a week for a period of 10 weeks. A prototyping method using the narrative framing technique allowed participants to engage with the robots in episodic interactions that were framed using narrative to convey the impression of a continuous long-term interaction. The goal was to examine how participants responded to the scenarios and the robots as well as specific robot behaviours, such as agent migration and expressive behaviours. Evaluation of the robots and the scenarios were elicited using several measures, including the standardised System Usability Scale, an ad hoc Scenario Acceptance Scale, as well as single-item Likert scales, open-ended questionnaire items and a debriefing interview. Results suggest that participants felt that the use of this prototyping technique allowed them insight into the use of the robot, and that they accepted the use of the robot within the scenario.

  12. Characteristics and Scenarios Projection of Climate Change on the Tibetan Plateau

    PubMed Central

    Hao, Zhenchun; Ju, Qin; Jiang, Weijuan; Zhu, Changjun

    2013-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) presents twenty-two global climate models (GCMs). In this paper, we evaluate the ability of 22 GCMs to reproduce temperature and precipitation over the Tibetan Plateau by comparing with ground observations for 1961~1900. The results suggest that all the GCMs underestimate surface air temperature and most models overestimate precipitation in most regions on the Tibetan Plateau. Only a few models (each 5 models for precipitation and temperature) appear roughly consistent with the observations in annual temperature and precipitation variations. Comparatively, GFCM21 and CGMR are able to better reproduce the observed annual temperature and precipitation variability over the Tibetan Plateau. Although the scenarios predicted by the GCMs vary greatly, all the models predict consistently increasing trends in temperature and precipitation in most regions in the Tibetan Plateau in the next 90 years. The results suggest that the temperature and precipitation will both increase in all three periods under different scenarios, with scenario A1 increasing the most and scenario A1B increasing the least. PMID:23970827

  13. A few scenarios still do not fit all

    NASA Astrophysics Data System (ADS)

    Schweizer, Vanessa

    2018-05-01

    For integrated climate change research, the Scenario Matrix Architecture provides a tractable menu of possible emissions trajectories, socio-economic futures and policy environments. However, the future of decision support may lie in searchable databases.

  14. Olive production systems on sloping land: prospects and scenarios.

    PubMed

    de Graaff, Jan; Duran Zuazo, Victor-Hugo; Jones, Nádia; Fleskens, Luuk

    2008-11-01

    The ultimate objective of the EU Olivero project was to improve the quality of life of the rural population and to assure the sustainable use of the natural resources of land and water in the sloping and mountainous olive production systems (SMOPS) areas in Southern Europe. One specific objective was to develop, with end-users, alternative future scenarios for olive orchards in the five Olivero target areas. This paper discusses the development of these scenarios, and their socio-economic and environmental effects. After presenting the different production systems (SMOPS) and their strengths, weaknesses, opportunities and threats, a general overview is given of the medium- and long-term prospects. These have been validated by experts from the olive sector and foresee changes towards abandonment, intensification and organic production. On balance, the changes could lead to lower production of some target areas in future. An analysis of major external factors affecting the future development of SMOPS indicates there will be labour shortages and increased wage rates, reduced subsidies and constant or rising olive oil prices. On the basis of these assumptions, four future scenarios are developed for the five target areas, with the help of a Linear Programming simulation model. The results are presented for two target areas. For the Trás-os-Montes target area in Portugal, three of the four tested scenarios point to a high level of abandonment, while in the most positive scenario the areas under semi-intensive low input and organic SMOPS increase. In the Granada and Jaen target area in Spain, all scenarios hint at intensification, and only the orchards on the steepest slopes are likely to be abandoned. The direction and extent of environmental effects (erosion, fire risk, pollution, water use and biodiversity) differ per scenario, as do the extent of cross-compliance and agri-environmental measures.

  15. Simulation of Lunar Surface Communications Network Exploration Scenarios

    NASA Technical Reports Server (NTRS)

    Linsky, Thomas W.; Bhasin, Kul B.; White, Alex; Palangala, Srihari

    2006-01-01

    Simulations and modeling of surface-based communications networks provides a rapid and cost effective means of requirement analysis, protocol assessments, and tradeoff studies. Robust testing in especially important for exploration systems, where the cost of deployment is high and systems cannot be easily replaced or repaired. However, simulation of the envisioned exploration networks cannot be achieved using commercial off the shelf network simulation software. Models for the nonstandard, non-COTS protocols used aboard space systems are not readily available. This paper will address the simulation of realistic scenarios representative of the activities which will take place on the surface of the Moon, including selection of candidate network architectures, and the development of an integrated simulation tool using OPNET modeler capable of faithfully modeling those communications scenarios in the variable delay, dynamic surface environments. Scenarios for exploration missions, OPNET development, limitations, and simulations results will be provided and discussed.

  16. Performance Evaluation of LoRa Considering Scenario Conditions

    PubMed Central

    Sanchez-Gomez, Jesus; Ballesta-Viñas, Juan

    2018-01-01

    New verticals within the Internet of Things (IoT) paradigm such as smart cities, smart farming, or goods monitoring, among many others, are demanding strong requirements to the Radio Access Network (RAN) in terms of coverage, end-node’s power consumption, and scalability. The technologies employed so far to provide IoT scenarios with connectivity, e.g., wireless sensor network and cellular technologies, are not able to simultaneously cope with these three requirements. Thus, a novel solution known as Low Power - Wide Area Network (LP-WAN) has emerged as a promising alternative to provide with low-cost and low-power-consumption connectivity to end-nodes spread in a wide area. Concretely, the Long-Range Wide Area Network (LoRaWAN) technology is one of the LP-WAN platforms that is receiving greater attention from both the industry and the academia. For that reason, in this work, a comprehensive performance evaluation of LoRaWAN under different environmental conditions is presented. The results are obtained from three real scenarios, namely, urban, suburban, and rural, considering both dynamic and static conditions, hence a discussion about the most proper LoRaWAN physical-layer configuration for each scenario is provided. Besides, a theoretical coverage study is also conducted by the use of a radio planning tool considering topographic maps and a precise propagation model. From the attained results, it can be concluded that it is necessary to evaluate the propagation conditions of the deployment scenario prior to the system implantation in order to reach a compromise between the robustness of the network and the transmission data-rate. PMID:29510524

  17. Nuclear Security Futures Scenarios.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Elizabeth James Kistin; Warren, Drake Edward; Hayden, Nancy Kay

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  18. Scenario analysis of the future of medicines.

    PubMed Central

    Leufkens, H.; Haaijer-Ruskamp, F.; Bakker, A.; Dukes, G.

    1994-01-01

    Planning future policy for medicines poses difficult problems. The main players in the drug business have their own views as to how the world around them functions and how the future of medicines should be shaped. In this paper we show how a scenario analysis can provide a powerful teaching device to readjust peoples' preconceptions. Scenarios are plausible, not probable or preferable, portraits of alternative futures. A series of four of alternative scenarios were constructed: "sobriety in sufficiency," "risk avoidance," "technology on demand," and "free market unfettered." Each scenario was drawn as a narrative, documented quantitatively wherever possible, that described the world as it might be if particular trends were to dominate development. The medical community and health policy markers may use scenarios to take a long term view in order to be prepared adequately for the future. PMID:7987110

  19. Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral

    NASA Astrophysics Data System (ADS)

    Lionello, P.; Galati, M. B.; Elvini, E.

    Scenario climate projections for extreme marine storms producing storm surges and wind waves are very important for the northern flat coast of the Adriatic Sea, where the area at risk includes a unique cultural and environmental heritage, and important economic activities. This study uses a shallow water model and a spectral wave model for computing the storm surge and the wind wave field, respectively, from the sea level pressure and wind fields that have been computed by the RegCM regional climate model. Simulations cover the period 1961-1990 for the present climate (control simulations) and the period 2071-2100 for the A2 and B2 scenarios. Generalized Extreme Value analysis is used for estimating values for the 10 and 100 year return times. The adequacy of these modeling tools for a reliable estimation of the climate change signal, without needing further downscaling is shown. However, this study has mainly a methodological value, because issues such as interdecadal variability and intermodel variability cannot be addressed, since the analysis is based on single model 30-year long simulations. The control simulation looks reasonably accurate for extreme value analysis, though it overestimates/underestimates the frequency of high/low surge and wind wave events with respect to observations. Scenario simulations suggest higher frequency of intense storms for the B2 scenario, but not for the A2. Likely, these differences are not the effect of climate change, but of climate multidecadal variability. Extreme storms are stronger in future scenarios, but differences are not statistically significant. Therefore this study does not provide convincing evidence for more stormy conditions in future scenarios.

  20. Diminished Wastewater Treatment: Evaluation of Septic System Performance Under a Climate Change Scenario

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2015-12-01

    The effects of climate change are expected to reduce the ability of soil-based onsite wastewater treatment systems (OWTS), to treat domestic wastewater. In the northeastern U.S., the projected increase in atmospheric temperature, elevation of water tables from rising sea levels, and heightened precipitation will reduce the volume of unsaturated soil and oxygen available for treatment. Incomplete removal of contaminants may lead to transport of pathogens, nutrients, and biochemical oxygen demand (BOD) to groundwater, increasing the risk to public health and likelihood of eutrophying aquatic ecosystems. Advanced OWTS, which include pre-treatment steps and provide unsaturated drainfields of greater volume relative to conventional OWTS, are expected to be more resilient to climate change. We used intact soil mesocosms to quantify water quality functions for two advanced shallow narrow drainfield types and a conventional drainfield under a current climate scenario and a moderate climate change scenario of 30 cm rise in water table and 5°C increase in soil temperature. While no fecal coliform bacteria (FCB) was released under the current climate scenario, up to 109 CFU FCB/mL (conventional) and up to 20 CFU FCB/mL (shallow narrow) were released under the climate change scenario. Total P removal rates dropped from 100% to 54% (conventional) and 71% (shallow narrow) under the climate change scenario. Total N removal averaged 17% under both climate scenarios in the conventional, but dropped from 5.4% to 0% in the shallow narrow under the climate change scenario, with additional leaching of N in excess of inputs indicating release of previously held N. No significant difference was observed between scenarios for BOD removal. The initial data indicate that while advanced OWTS retain more function under the climate change scenario, all three drainfield types experience some diminished treatment capacity.

  1. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    USGS Publications Warehouse

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  2. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 2: Stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2012-08-01

    The prospective future adoption of hydrogen to power the road transportation sector could greatly improve tropospheric air quality but also raises the question whether the adoption would have adverse effects on stratospheric ozone. The possibility of these undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050) H2-based road transportation sector on stratospheric composition and chemistry, especially on stratospheric ozone, with the MOZART chemical transport model. Since future growth is highly uncertain we evaluate the impact for two world evolution scenarios, one based on a high emitting scenario (IPCC A1FI) and the other on a low emitting scenario (IPCC B1), as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario the world evolves and which H2 technology option is applied. For the same world evolution scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two scenarios fall between the above two bounding scenarios. However, the magnitude of these changes is

  3. Simulation and Particle-Tracking Analysis of Selected Ground-Water Pumping Scenarios at Vogtle Electric Generation Plant, Burke County, Georgia

    USGS Publications Warehouse

    Cherry, Gregory S.; Clarke, John S.

    2007-01-01

    The source of ground water to production wells at Vogtle Electric Generation Plant (VEGP), a nuclear power plant in Burke County, Georgia, was simulated under existing (2002) and potential future pumping conditions using an existing U.S. Geological Survey (USGS) MODFLOW ground-water flow model of a 4,455-square-mile area in the Coastal Plain of Georgia and South Carolina. Simulation results for three steady-state pumping scenarios were compared to each other and to a 2002 Base Case condition. The pumping scenarios focused on pumping increases at VEGP resulting from projected future demands and the addition of two electrical-generating reactor units. Scenarios simulated pumping increases at VEGP ranging from 1.09 to 3.42 million gallons per day (Mgal/d), with one of the scenarios simulating the elimination of 5.3 Mgal/d of pumping at the Savannah River Site (SRS), a U.S. Department of Energy facility located across the Savannah River from VEGP. The largest simulated water-level changes at VEGP were for the scenario whereby pumping at the facility was more than tripled, resulting in drawdown exceeding 4-8 feet (ft) in the aquifers screened in the production wells. For the scenario that eliminated pumping at SRS, water-level rises of as much as 4-8 ft were simulated in the same aquifers at SRS. Results of MODFLOW simulations were analyzed using the USGS particle-tracking code MODPATH to determine the source of water and associated time of travel to VEGP production wells. For each of the scenarios, most of the recharge to VEGP wells originated in an upland area near the county line between Burke and Jefferson Counties, Georgia, with none of the recharge originating on SRS or elsewhere in South Carolina. An exception occurs for the scenario whereby pumping at VEGP was more than tripled. For this scenario, some of the recharge originates in an upland area in eastern Barnwell County, South Carolina. Simulated mean time of travel from recharge areas to VEGP wells for the

  4. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study.

    PubMed

    Tainio, Marko; Monsivais, Pablo; Jones, Nicholas Rv; Brand, Christian; Woodcock, James

    2017-02-22

    To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1-5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Working age population for England. Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO 2 e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO 2 e/year for the diet scenarios. Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. The Norwegian Earth System Model, NorESM1-M - Part 2: Climate response and scenario projections

    NASA Astrophysics Data System (ADS)

    Iversen, T.; Bentsen, M.; Bethke, I.; Debernard, J. B.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Kristjánsson, J. E.; Medhaug, I.; Sand, M.; Seierstad, I. A.

    2012-09-01

    The NorESM1-M simulation results for CMIP5 (<a href="http://cmip-pcmdi.llnl.gov/cmip5/index.html" align=_blank>http://cmip-pcmdi.llnl.gov/cmip5/index.htmla>) are described and discussed. Together with the accompanying paper by Bentsen et al. (2012), this paper documents that NorESM1-M is a valuable global climate model for research and for providing complementary results to the evaluation of possible man made climate change. NorESM is based on the model CCSM4 operated at NCAR on behalf of many contributors in USA. The ocean model is replaced by a developed version of MICOM and the atmospheric model is extended with on-line calculations of aerosols, their direct effect, and their indirect effect on warm clouds. Model validation is presented in a companion paper (Bentsen et al., 2012). NorESM1-M is estimated to have equilibrium climate sensitivity slightly smaller than 2.9 K, a transient climate response just below 1.4 K, and is less sensitive than most other models. Cloud feedbacks damp the response, and a strong AMOC reduces the heat fraction available for increasing near surface temperatures, for evaporation, and for melting ice. The future projections based on RCP scenarios yield global surface air temperature increase almost one standard deviation lower than a 15-model average. Summer sea-ice is projected to decrease considerably by 2100, and completely for RCP8.5. The AMOC is projected to reduce by 12%, 15-17%, and 32% for the RCP2.6, 4.5, 6.0 and 8.5 respectively. Precipitation is projected to increase in the tropics, decrease in the subtropics and in southern parts of the northern extra-tropics during summer, and otherwise increase in most of the extra-tropics. Changes in the atmospheric water cycle indicate that precipitation events over continents will become more intense and dry spells more frequent. Extra-tropical storminess in the Northern Hemisphere is projected to shift northwards. There are indications of more frequent spring and summer blocking in

  6. A multi-sensor scenario for coastal surveillance

    NASA Astrophysics Data System (ADS)

    van den Broek, A. C.; van den Broek, S. P.; van den Heuvel, J. C.; Schwering, P. B. W.; van Heijningen, A. W. P.

    2007-10-01

    Maritime borders and coastal zones are susceptible to threats such as drug trafficking, piracy, undermining economical activities. At TNO Defence, Security and Safety various studies aim at improving situational awareness in a coastal zone. In this study we focus on multi-sensor surveillance of the coastal environment. We present a study on improving classification results for small sea surface targets using an advanced sensor suite and a scenario in which a small boat is approaching the coast. A next generation sensor suite mounted on a tower has been defined consisting of a maritime surveillance and tracking radar system, capable of producing range profiles and ISAR imagery of ships, an advanced infrared camera and a laser range profiler. For this suite we have developed a multi-sensor classification procedure, which is used to evaluate the capabilities for recognizing and identifying non-cooperative ships in coastal waters. We have found that the different sensors give complementary information. Each sensor has its own specific distance range in which it contributes most. A multi-sensor approach reduces the number of misclassifications and reliable classification results are obtained earlier compared to a single sensor approach.

  7. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-04-01

    The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon - a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams). The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  8. Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shmatov, M. L.

    The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.

  9. Scenarios towards limiting global mean temperature increase below 1.5 °C

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; Popp, Alexander; Calvin, Katherine V.; Luderer, Gunnar; Emmerling, Johannes; Gernaat, David; Fujimori, Shinichiro; Strefler, Jessica; Hasegawa, Tomoko; Marangoni, Giacomo; Krey, Volker; Kriegler, Elmar; Riahi, Keywan; van Vuuren, Detlef P.; Doelman, Jonathan; Drouet, Laurent; Edmonds, Jae; Fricko, Oliver; Harmsen, Mathijs; Havlík, Petr; Humpenöder, Florian; Stehfest, Elke; Tavoni, Massimo

    2018-04-01

    The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m-2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m-2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m-2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.

  10. Scenario-Based Spoken Interaction with Virtual Agents

    ERIC Educational Resources Information Center

    Morton, Hazel; Jack, Mervyn A.

    2005-01-01

    This paper describes a CALL approach which integrates software for speaker independent continuous speech recognition with embodied virtual agents and virtual worlds to create an immersive environment in which learners can converse in the target language in contextualised scenarios. The result is a self-access learning package: SPELL (Spoken…

  11. The Johnson Space Center Management Information Systems (JSCMIS). 1: Requirements Definition and Design Specifications for Versions 2.1 and 2.1.1. 2: Documented Test Scenario Environments. 3: Security Design and Specifications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at NASA Johnson which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. This issue gives requirements definition and design specifications for versions 2.1 and 2.1.1, along with documented test scenario environments, and security object design and specifications.

  12. Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Brewington, L.; Finucane, M.

    2015-12-01

    For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.

  13. Implications of alternative assumptions regarding future air pollution control in RCP-like scenarios

    NASA Astrophysics Data System (ADS)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Mendoza Beltran, Angelica; van Vliet, Jasper

    2013-04-01

    Estimation of future emissions of short-lived trace gases and aerosols from human activities is a main source of uncertainty in projections of future air quality and climate forcing. The Representative Concentration Pathways (RCPs), however, all assume that worldwide ambitious air pollution control policies will be implemented in the coming decades. In this study, we therefore explore the consequences of four alternative emission scenarios generated using the IMAGE integrated assessment model following the methods used to generate the RCPs. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W/m2 and 6.0 W/m2 (the high air pollution variants assume no improvement in emission factors, representing a hypothetical upper end of emission levels). Analysis using the global atmospheric chemistry and transport model TM5 shows that climate mitigation and air pollution control policy variants studied here have similar large-scale effects on the concentrations of ozone and black carbon; the impact of climate policy, however, has a stronger impact on sulphate concentrations. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate already in 2020, and on the longer term contribute to enhanced warming by methane. These effects tend to cancel each other at the global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W/m2 in the 6.0 W/m2 scenario and -0.16 W/m2 in the 2.6 W/m2 scenario.

  14. Land-Use Scenarios: National-Scale Housing-Density ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. This report describes the scenarios and models used to generate national-scale housing density scenarios for the conterminous US to the year 2100 as part of the Integrated Climate and Land Use Scenarios (ICLUS) project. The report was prepared by the Global Change Research Program (GCRP) in the National Center for Environmental Assessment (NCEA) of the Office of Research and Development (ORD) at the U.S. Environmental Protection Agency (EPA). The ICLUS report describes the methods used to develop land-use scenarios by decade from the year 2000 to 2100 that are consistent with these storylines.

  15. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers.

    PubMed

    Liu, Wei; Liao, Zhongxing; Schild, Steven E; Liu, Zhong; Li, Heng; Li, Yupeng; Park, Peter C; Li, Xiaoqiang; Stoker, Joshua; Shen, Jiajian; Keole, Sameer; Anand, Aman; Fatyga, Mirek; Dong, Lei; Sahoo, Narayan; Vora, Sujay; Wong, William; Zhu, X Ronald; Bues, Martin; Mohan, Radhe

    2015-01-01

    We compared conventionally optimized intensity modulated proton therapy (IMPT) treatment plans against worst-case scenario optimized treatment plans for lung cancer. The comparison of the 2 IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient setup, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. For each of the 9 lung cancer cases, 2 treatment plans were created that accounted for treatment uncertainties in 2 different ways. The first used the conventional method: delivery of prescribed dose to the planning target volume that is geometrically expanded from the internal target volume (ITV). The second used a worst-case scenario optimization scheme that addressed setup and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of changes in patient anatomy attributable to respiratory motion were investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the 2 groups were compared with 2-sided paired Student t tests. Without respiratory motion considered, we affirmed that worst-case scenario optimization is superior to planning target volume-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, worst-case scenario optimization still achieved more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality (D95% ITV, 96.6% vs 96.1% [P = .26]; D5%- D95% ITV, 10.0% vs 12.3% [P = .082]; D1% spinal cord, 31.8% vs 36.5% [P = .035]). Worst-case scenario optimization led to superior solutions for lung IMPT. Despite the fact that worst-case scenario optimization did not explicitly account for

  16. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 2: Stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-07-01

    The prospective future adoption of molecular hydrogen (H2) to power the road transportation sector could greatly improve tropospheric air quality but also raises the question of whether the adoption would have adverse effects on the stratospheric ozone. The possibility of undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050) H2-based road transportation sector on stratospheric composition and chemistry, especially on the stratospheric ozone, with the MOZART (Model for OZone And Related chemical Tracers) model. Since future growth is highly uncertain, we evaluate the impact of two world evolution scenarios, one based on an IPCC (Intergovernmental Panel on Climate Change) high-emitting scenario (A1FI) and the other on an IPCC low-emitting scenario (B1), as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario evolves and which H2 technology option is applied. For the evolution growth scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two scenarios fall

  17. Leaching behaviour of incineration bottom ash in a reuse scenario: 12years-field data vs. lab test results.

    PubMed

    Di Gianfilippo, Martina; Hyks, Jiri; Verginelli, Iason; Costa, Giulia; Hjelmar, Ole; Lombardi, Francesco

    2018-03-01

    Several types of standardized laboratory leaching tests have been developed during the past few decades to evaluate the leaching behaviour of waste materials as a function of different parameters, such as the pH of the eluate and the liquid to solid ratio. However, the link between the results of these tests and leaching data collected from the field (e.g. in disposal or reuse scenarios) is not always straightforward. In this work, we compare data obtained from an on-going large scale field trial, in which municipal solid waste incineration bottom ash is being tested as road sub-base material, with the results obtained from percolation column and pH-dependence laboratory leaching tests carried out on the bottom ash at the beginning of the test. The comparisons reported in this paper show that for soluble substances (e.g. Cl, K and SO 4 ), percolation column tests can provide a good indication of the release expected in the field with deviations usually within a factor of 3. For metals characterized by a solubility-controlled release, i.e. that depends more on eluate pH than the liquid to solid ratio applied, the results of pH-dependence tests describe more accurately the eluate concentration trends observed in the field with deviations that in most cases (around 80%) are within one order of magnitude (see e.g. Al and Cd). The differences between field and lab-scale data might be in part ascribed to the occurrence in the field of weathering reactions (e.g. carbonation) but also to microbial decomposition of organic matter that modifying leachate pH affect the solubility of several constituents (e.g. Ca, Ba and Cr). Besides, weathering reactions can result in enhanced adsorption of fulvic acids to iron/aluminum (hydr)oxides, leading to a decrease in the leaching of fulvic acids and hence of elements such as Cu, Ni and Pb that strongly depend on DOC leaching. Overall, this comparison shows that percolation column tests and pH-dependence tests can represent a reliable

  18. The role of the uncertainty in assessing future scenarios of water shortage in alluvial aquifers

    NASA Astrophysics Data System (ADS)

    Romano, Emanuele; Camici, Stefania; Brocca, Luca; Moramarco, Tommaso; Guyennon, Nicolas; Preziosi, Elisabetta

    2015-04-01

    There are many evidences that the combined effects of variations in precipitation and temperature due to climate change can result in a significant change of the recharge to groundwater at different time scales. A possible reduction of effective infiltration can result in a significant decrease, temporary or permanent, of the availability of the resource and, consequently, the sustainable pumping rate should be reassessed. In addition to this, one should also consider the so called indirect impacts of climate change, resulting from human intervention (e.g. augmentation of abstractions) which are feared to be even more important than the direct ones in the medium term: thus, a possible increase of episodes of shortage (i.e. the inability of the groundwater system to completely supply the water demand) can result both from change in the climate forcing and change in the demand. In order to assess future scenarios of water shortage a modelling chain is often used. It includes: 1) the use of General Circulation Models to estimate changes in temperature and precipitation; 2) downscaling procedures to match modeling scenarios to the observed meteorological time series; 3) soil-atmosphere modelling to estimate the time variation of the recharge to the aquifer; 4) groundwater flow models to simulate the water budget and piezometric head evolution; 5) future scenarios of groundwater quantitative status that include scenarios of demand variation. It is well known that each of these processing steps is affected by an intrinsic uncertainty that propagates through the whole chain leading to a final uncertainty on the piezometric head scenarios. The estimate of such an uncertainty is a key point for a correct management of groundwater resources, in case of water shortage due to prolonged droughts as well as for planning purposes. This study analyzes the uncertainty of the processing chain from GCM scenarios to its impact on an alluvial aquifer in terms of exploitation

  19. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios

    NASA Astrophysics Data System (ADS)

    Vaughan, Naomi E.; Gough, Clair; Mander, Sarah; Littleton, Emma W.; Welfle, Andrew; Gernaat, David E. H. J.; van Vuuren, Detlef P.

    2018-04-01

    Biomass Energy with Carbon Capture and Storage (BECCS) is heavily relied upon in scenarios of future emissions that are consistent with limiting global mean temperature increase to 1.5 °C or 2 °C above pre-industrial. These temperature limits are defined in the Paris Agreement in order to reduce the risks and impacts of climate change. Here, we explore the use of BECCS technologies in a reference scenario and three low emission scenarios generated by an integrated assessment model (IMAGE). Using these scenarios we investigate the feasibility of key implicit and explicit assumptions about these BECCS technologies, including biomass resource, land use, CO2 storage capacity and carbon capture and storage (CCS) deployment rate. In these scenarios, we find that half of all global CO2 storage required by 2100 occurs in USA, Western Europe, China and India, which is compatible with current estimates of regional CO2 storage capacity. CCS deployment rates in the scenarios are very challenging compared to historical rates of fossil, renewable or nuclear technologies and are entirely dependent on stringent policy action to incentivise CCS. In the scenarios, half of the biomass resource is derived from agricultural and forestry residues and half from dedicated bioenergy crops grown on abandoned agricultural land and expansion into grasslands (i.e. land for forests and food production is protected). Poor governance of the sustainability of bioenergy crop production can significantly limit the amount of CO2 removed by BECCS, through soil carbon loss from direct and indirect land use change. Only one-third of the bioenergy crops are grown in regions associated with more developed governance frameworks. Overall, the scenarios in IMAGE are ambitious but consistent with current relevant literature with respect to assumed biomass resource, land use and CO2 storage capacity.

  20. Dry forest resilience varies under simulated climate‐management scenarios in a central Oregon, USA landscape.

    PubMed

    Halofsky, Joshua S; Halofsky, Jessica E; Burcsu, Theresa; Hemstrom, Miles A

    Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate-informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active management scenario characterized by light to moderate thinning from below and some prescribed fire, planting, and salvage logging. Without climate change, area in dry province forest types remained constant. With climate change, dry mixed-conifer forests increased in area (by an average of 21–26% by 2100), and moist mixed-conifer forests decreased in area (by an average of 36–60% by 2100), under both management scenarios. Average area in dry mixed-conifer forests varied little by management scenario, but potential decreases in the moist mixed-conifer forest were lower with active management. With changing climate in the dry province of central Oregon, our results suggest the likelihood of sustaining current levels of dense, moist mixed-conifer forests with large-diameter, old trees is low (less than a 10% chance) irrespective of management scenario; an opposite trend was observed under no climate change simulations. However, results also suggest active management within the dry and moist mixed-conifer forests that creates less dense forest conditions can increase the persistence of larger-diameter, older trees across the landscape. Owing to projected increases in wildfire, our results also suggest future distributions of tree structures will differ from the present. Overall, our projections indicate proactive management can increase forest resilience and sustain some societal

  1. Scenario driven data modelling: a method for integrating diverse sources of data and data streams

    DOEpatents

    Brettin, Thomas S.; Cottingham, Robert W.; Griffith, Shelton D.; Quest, Daniel J.

    2015-09-08

    A system and method of integrating diverse sources of data and data streams is presented. The method can include selecting a scenario based on a topic, creating a multi-relational directed graph based on the scenario, identifying and converting resources in accordance with the scenario and updating the multi-directed graph based on the resources, identifying data feeds in accordance with the scenario and updating the multi-directed graph based on the data feeds, identifying analytical routines in accordance with the scenario and updating the multi-directed graph using the analytical routines and identifying data outputs in accordance with the scenario and defining queries to produce the data outputs from the multi-directed graph.

  2. Self-consistent modeling of CFETR baseline scenarios for steady-state operation

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team

    2017-07-01

    Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.

  3. Effects of working memory load and repeated scenario exposure on emergency braking performance.

    PubMed

    Engström, Johan; Aust, Mikael Ljung; Viström, Matias

    2010-10-01

    The objective of the present study was to examine the effect of working memory load on drivers' responses to a suddenly braking lead vehicle and whether this effect (if any) is moderated by repeated scenario exposure. Several experimental studies have found delayed braking responses to lead vehicle braking events during concurrent performance of nonvisual, working memory-loading tasks, such as hands-free phone conversation. However, the common use of repeated, and hence somewhat expected, braking events may undermine the generalizability of these results to naturalistic, unexpected, emergency braking scenarios. A critical lead vehicle braking scenario was implemented in a fixed-based simulator.The effects of working memory load and repeated scenario exposure on braking performance were examined. Brake response time was decomposed into accelerator pedal release time and accelerator-to-brake pedal movement time. Accelerator pedal release times were strongly reduced with repeated scenario exposure and were delayed by working memory load with a small but significant amount (178 ms).The two factors did not interact. There were no effects on accelerator-to-brake pedal movement time. The results suggest that effects of working memory load on response performance obtained from repeated critical lead vehicle braking scenarios may be validly generalized to real world unexpected events. The results have important implications for the interpretation of braking performance in experimental settings, in particular in the context of safety-related evaluation of in-vehicle information and communication technologies.

  4. What does the 2°C target imply for a global climate agreement in 2020? The limits study on Durban Platform scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIEGLER, ELMAR; TAVONI, MASSIMO; ABOUMAHBOUB, TINO

    This paper provides a novel and comprehensive model-based assessment of possible outcomes of the Durban Platform negotiations with a focus on emissions reduction requirements, the consistency with the 2°C target and global economic impacts. The Durban Platform scenarios investigated in the LIMITS study — all assuming the implementation of comprehensive global emission reductions after 2020, but assuming different 2020 emission reduction levels as well as different long-term concentration targets — exhibit a probability of exceeding the 2°C limit of 22–41% when reaching 450 (450–480) ppm CO 2e, and 35–59% when reaching 500 (480–520) ppm CO 2e in 2100. Forcing andmore » temperature show a peak and decline pattern for both targets. Consistency of the resulting temperature trajectory with the 2°C target is a societal choice, and may be based on the maximum exceedance probability at the time of the peak and the long run exceedance probability, e.g., in the year 2100. The challenges of implementing a long-term target after a period of fragmented near-term climate policy can be significant as reflected in steep reductions of emissions intensity and transitional and long-term economic impacts. In particular, the challenges of adopting the target are significantly higher in 2030 than in 2020, both in terms of required emissions intensity decline rates and economic impacts. Finally, we conclude that an agreement on comprehensive emissions reductions to be implemented from 2020 onwards has particular significance for meeting long-term climate policy objectives.« less

  5. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  6. Land-use impacts on water resources and protected areas: applications of state-and-transition simulation modeling of future scenarios

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Sherba, J.; Cameron, D.

    2014-12-01

    Human land use will increasingly contribute to habitat losses and water shortages in California, given future population projections and associated demand for agricultural land. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within the Mediterranean California ecoregion. Historical land use change estimates were derived from the Farmland Mapping and Monitoring Program (FMMP) dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources (CDWR). Six future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) A2 and B1 scenarios. Resulting spatial land-use scenario outputs were combined based on scenario agreement and a land conversion threat index developed to evaluate vulnerability of existing protected areas. Modeled scenario output of county-level agricultural water use data were also summarized, enabling examination of alternative water use futures. We present results of two separate applications of STSM of land-use change, demonstrating the utility of STSM in analyzing land-use related impacts on water resources as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, land-use change impacts will help to better inform resource management and mitigation strategies.

  7. Toward a Framework for Benefit-Risk Assessment in Diagnostic Imaging: Identifying Scenario-specific Criteria.

    PubMed

    Agapova, Maria; Bresnahan, Brian W; Linnau, Ken F; Garrison, Louis P; Higashi, Mitchell; Kessler, Larry; Devine, Beth

    2017-05-01

    Diagnostic imaging has many effects and there is no common definition of value in diagnostic radiology. As benefit-risk trade-offs are rarely made explicit, it is not clear which framework is used in clinical guideline development. We describe initial steps toward the creation of a benefit-risk framework for diagnostic radiology. We performed a literature search and an online survey of physicians to identify and collect benefit-risk criteria (BRC) relevant to diagnostic imaging tests. We operationalized a process for selection of BRC with the use of four clinical use case scenarios that vary by diagnostic alternatives and clinical indication. Respondent BRC selections were compared across clinical scenarios and between radiologists and nonradiologists. Thirty-six BRC were identified and organized into three domains: (1) those that account for differences attributable only to the test or device (n = 17); (2) those that account for clinical management and provider experiences (n = 12); and (3) those that capture patient experience (n = 7). Forty-eight survey participants selected 22 criteria from the initial list in the survey (9-11 per case). Engaging ordering physicians increased the number of criteria selected in each of the four clinical scenarios presented. We developed a process for standardizing selection of BRC in guideline development. These results suggest that a process relying on elements of comparative effectiveness and the use of standardized BRC may ensure consistent examination of differences among alternatives by way of making explicit implicit trade-offs that otherwise enter the decision-making space and detract from consistency and transparency. These findings also highlight the need for multidisciplinary teams that include input from ordering physicians. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Real-time determination of the worst tsunami scenario based on Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Furuya, Takashi; Koshimura, Shunichi; Hino, Ryota; Ohta, Yusaku; Inoue, Takuya

    2016-04-01

    In recent years, real-time tsunami inundation forecasting has been developed with the advances of dense seismic monitoring, GPS Earth observation, offshore tsunami observation networks, and high-performance computing infrastructure (Koshimura et al., 2014). Several uncertainties are involved in tsunami inundation modeling and it is believed that tsunami generation model is one of the great uncertain sources. Uncertain tsunami source model has risk to underestimate tsunami height, extent of inundation zone, and damage. Tsunami source inversion using observed seismic, geodetic and tsunami data is the most effective to avoid underestimation of tsunami, but needs to expect more time to acquire the observed data and this limitation makes difficult to terminate real-time tsunami inundation forecasting within sufficient time. Not waiting for the precise tsunami observation information, but from disaster management point of view, we aim to determine the worst tsunami source scenario, for the use of real-time tsunami inundation forecasting and mapping, using the seismic information of Earthquake Early Warning (EEW) that can be obtained immediately after the event triggered. After an earthquake occurs, JMA's EEW estimates magnitude and hypocenter. With the constraints of earthquake magnitude, hypocenter and scaling law, we determine possible multi tsunami source scenarios and start searching the worst one by the superposition of pre-computed tsunami Green's functions, i.e. time series of tsunami height at offshore points corresponding to 2-dimensional Gaussian unit source, e.g. Tsushima et al., 2014. Scenario analysis of our method consists of following 2 steps. (1) Searching the worst scenario range by calculating 90 scenarios with various strike and fault-position. From maximum tsunami height of 90 scenarios, we determine a narrower strike range which causes high tsunami height in the area of concern. (2) Calculating 900 scenarios that have different strike, dip, length

  9. Development of Future Scenario Emission Inventories for East Asia in Support of Multiple Modeling Studies

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Choi, K. C.; Lee, J. B.; Song, C. K.; Kim, S. K.; Hong, J.; Hong, S. C.; Zhang, Q.; Hong, C.; Tong, D.

    2015-12-01

    Future emission scenarios based on up-to-date regional socio-economic and control policy information were developed in support of climate-air quality integrated modeling research over East Asia. Two IPCC-participated Integrated Assessment Models(IAMs) were used to developed those scenario pathways. The two emission processing systems, KU-EPS and SMOKE-Asia, were used to convert these future scenario emissions to comprehensive chemical transport model-ready form. The NIER/KU-CREATE (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment) served as the regional base-year emission inventory. For anthropogenic emissions, it has 54 fuel classes, 201 sub-sectors and 13 pollutants, including CO2, CH4, N2O, SO2, NOx, CO, NMVOC, NH3, OC, BC, PM10, PM2.5, and mercury. Fast energy growth and aggressive penetration of the control measures make emissions projection very active for East Asia. Despite of more stringent air pollution control policies by the governments, however, air quality over the region seems not been improved as much - even worse in many cases. The needs of more scientific understanding of inter-relationship among emissions, transport, chemistry over the region are very high to effectively protect public health and ecosystems against ozone, fine particles, and other toxic pollutants in the air. After developing these long-term future emissions, therefore, we also tried to apply our future scenarios to develop the present emissions inventory for chemical weather forecasting and aircraft field campaign. On site, we will present; 1) the future scenario development framework and process methodologies, 2) initial development results of the future emission pathways, 3) present emission inventories from short-term projection, and 4) air quality modeling performance improvements over the region.

  10. Managing uncertainty: a review of food system scenario analysis and modelling

    PubMed Central

    Reilly, Michael; Willenbockel, Dirk

    2010-01-01

    Complex socio-ecological systems like the food system are unpredictable, especially to long-term horizons such as 2050. In order to manage this uncertainty, scenario analysis has been used in conjunction with food system models to explore plausible future outcomes. Food system scenarios use a diversity of scenario types and modelling approaches determined by the purpose of the exercise and by technical, methodological and epistemological constraints. Our case studies do not suggest Malthusian futures for a projected global population of 9 billion in 2050; but international trade will be a crucial determinant of outcomes; and the concept of sustainability across the dimensions of the food system has been inadequately explored so far. The impact of scenario analysis at a global scale could be strengthened with participatory processes involving key actors at other geographical scales. Food system models are valuable in managing existing knowledge on system behaviour and ensuring the credibility of qualitative stories but they are limited by current datasets for global crop production and trade, land use and hydrology. Climate change is likely to challenge the adaptive capacity of agricultural production and there are important knowledge gaps for modelling research to address. PMID:20713402

  11. A novel method for energy harvesting simulation based on scenario generation

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min

    2018-06-01

    Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.

  12. Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouratiadou, I.; Bevione, M.; Bijl, D. L.

    This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures onmore » the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.« less

  13. Action versus Result-Oriented Schemes in a Grassland Agroecosystem: A Dynamic Modelling Approach

    PubMed Central

    Sabatier, Rodolphe; Doyen, Luc; Tichit, Muriel

    2012-01-01

    Effects of agri-environment schemes (AES) on biodiversity remain controversial. While most AES are action-oriented, result-oriented and habitat-oriented schemes have recently been proposed as a solution to improve AES efficiency. The objective of this study was to compare action-oriented, habitat-oriented and result-oriented schemes in terms of ecological and productive performance as well as in terms of management flexibility. We developed a dynamic modelling approach based on the viable control framework to carry out a long term assessment of the three schemes in a grassland agroecosystem. The model explicitly links grazed grassland dynamics to bird population dynamics. It is applied to lapwing conservation in wet grasslands in France. We ran the model to assess the three AES scenarios. The model revealed the grazing strategies respecting ecological and productive constraints specific to each scheme. Grazing strategies were assessed by both their ecological and productive performance. The viable control approach made it possible to obtain the whole set of viable grazing strategies and therefore to quantify the management flexibility of the grassland agroecosystem. Our results showed that habitat and result-oriented scenarios led to much higher ecological performance than the action-oriented one. Differences in both ecological and productive performance between the habitat and result-oriented scenarios were limited. Flexibility of the grassland agroecosystem in the result-oriented scenario was much higher than in that of habitat-oriented scenario. Our model confirms the higher flexibility as well as the better ecological and productive performance of result-oriented schemes. A larger use of result-oriented schemes in conservation may also allow farmers to adapt their management to local conditions and to climatic variations. PMID:22496746

  14. Scenarios use to engage scientists and decision-makers in a changing Arctic

    NASA Astrophysics Data System (ADS)

    Lee, O. A.; Eicken, H.; Payne, J. F.

    2015-12-01

    Scenarios provide a framework to develop more adaptive Arctic policies that allow decision makers to consider the best available science to address complex relationships and key uncertainties in drivers of change. These drivers may encompass biophysical factors such as climate change, socioeconomic drivers, and wild-cards that represent low likelihood but influential events such as major environmental disasters. We outline some of the lessons learned from the North Slope Science Initiative (NSSI) scenarios project that could help in the development of adaptive science-based policies. Three spatially explicit development scenarios were identified corresponding to low, medium and high resource extraction activities on the North Slope and adjacent seas. In the case of the high energy development scenario science needs were focused on new technology, oil spill response, and the effects of offshore activities on marine mammals important for subsistence. Science needs related to community culture, erosion, permafrost degradation and hunting and trapping on land were also identified for all three scenarios. The NSSI science needs will guide recommendations for future observing efforts, and data from these observing activities could subsequently improve policy guidance for emergency response, subsistence management and other issues. Scenarios at pan-Arctic scales may help improve the development of international policies for resilient northern communities and encourage the use of science to reduce uncertainties in plans for adapting to change in the Arctic.

  15. Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Giruzzi, G.; Ide, S.; Kessel, C.; Luce, T. C.; Snipes, J. A.; Stober, J. K.

    2015-02-01

    -mode operation in helium may be possible at input powers above 35 MW at a toroidal field of 2.65 T, for studying H-modes and ELM mitigation. In hydrogen, H-mode operation is expected to be marginal, even at 2.65 T with 60 MW of input power. Simulation code benchmark studies using hybrid and steady state scenario parameters have proved to be a very challenging and lengthy task of testing suites of codes, consisting of tens of sophisticated modules. Nevertheless, the general basis of the modelling appears sound, with substantial consistency among codes developed by different groups. For a hybrid scenario at 12 MA, the code simulations give a range for Q = 6.5-8.3, using 30 MW neutral beam injection and 20 MW ICRH. For non-inductive operation at 7-9 MA, the simulation results show more variation. At high edge pedestal pressure (Tped ˜ 7 keV), the codes predict Q = 3.3-3.8 using 33 MW NB, 20 MW EC, and 20 MW ion cyclotron to demonstrate the feasibility of steady-state operation with the day-1 heating systems in ITER. Simulations using a lower edge pedestal temperature (˜3 keV) but improved core confinement obtain Q = 5-6.5, when ECCD is concentrated at mid-radius and ˜20 MW off-axis current drive (ECCD or LHCD) is added. Several issues remain to be studied, including plasmas with dominant electron heating, mitigation of transient heat loads integrated in scenario demonstrations and (burn) control simulations in ITER scenarios.

  16. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  17. Changes in land-uses and ecosystem services under multi-scenarios simulation.

    PubMed

    Liu, Jingya; Li, Jing; Qin, Keyu; Zhou, Zixiang; Yang, Xiaonan; Li, Ting

    2017-05-15

    Social economy of China has been rapidly developing for more than 30years with efficient reforms and policies being issued. Societal developments have resulted in a greater use of many natural resources to the extent that the ecosystem can no longer self-regulate, thus severely damaging the balance of the ecosystem itself. This in turn has led to a deterioration in people's living environments. Our research is based on a combination of climate scenarios presented in the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and policy scenarios, including the one-child policy and carbon tax policy. We adopted Land Change Modeler of IDRISI software to simulate and analyze land-use change under 16 future scenarios in 2050. Carbon sequestration, soil conservation and water yields were quantified, based on those land-use maps and different ecosystem models. We also analyzed trade-offs and synergy among each ecosystem service and discussed why those interactions happened. The results show that: (1) Global climate change has a strong influence on future changes in land-use. (2) Carbon sequestration, water yield and soil conservation have a mutual relationship in the Guanzhong-Tianshui economic region. (3) Climate change and implementation of policy have a conspicuous impact on the changes in ecosystem services in the Guanzhong-Tianshui economic region. This paper can be used as a reference for further related research, and provide a reliable basis for achieving the sustainable development of the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  19. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  20. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    NASA Astrophysics Data System (ADS)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to