Science.gov

Sample records for a20 decreases glioma

  1. Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma

    PubMed Central

    Shankar, Adarsh; Borin, Thaiz F; Iskander, Asm; Varma, Nadimpalli RS; Achyut, Bhagelu R; Jain, Meenu; Mikkelsen, Tom; Guo, Austin M; Chwang, Wilson B; Ewing, James R; Bagher-Ebadian, Hassan; Arbab, Ali S

    2016-01-01

    Background Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N′-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM. Methods U251 human glioma cells (4×105) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis. Results Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0–21 days treatment), tumor

  2. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression

    PubMed Central

    Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L.; Olenyuk, Bogdan Z.; Chen, Thomas C.; Hofman, Florence M.; Shih, Jean C.

    2016-01-01

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis. PMID:26871599

  3. Decreased Expression of miR-15b in Human Gliomas Is Associated with Poor Prognosis

    PubMed Central

    Sun, Guan; Yan, Shushan; Shi, Lei; Wan, Zhengqiang; Jiang, Nan; Li, Min

    2015-01-01

    Abstract MicroRNA-15b (miR-15b) has been demonstrated to suppress proliferation by arresting cell cycle progression and inducing apoptosis in glioma cells. However, the prognostic value of miR-15b expression in human gliomas remains unclear. In the present study, the authors examined the expression profile in glioma specimens and the prognostic value of miR-15b in patients with gliomas. Real-time polymerase chain reaction assay was employed to detect the expression levels of miR-15b in 92 glioma tissues categorized by World Health Organization (WHO) histopathological grades. However, the prognostic value of miR-15b in human glioma has not been evaluated yet. MiR-15b expression in human glioma tissues was distinctly lower than in normal brain tissues. Furthermore, the expression of miR-15b notably decreased with the ascending histopathological grade of gliomas. Additionally, Kaplan–Meier survival analysis showed that low miR-15b expression was associated with poor overall survival in patients with gliomas. Similarly, miR-15b reduction occurred with increasing frequency in glioma patients with lower Karnofsky performance scale (KPS) scores than in those with higher KPS scores. No significant difference was observed between miR-15b expression and gender, age, and tumor location. These findings revealed that a lower expression level of miR-15b was closely related to a shorter overall survival, suggesting that miR-15b could be an intrinsic factor that plays an important role in the malignant progression of gliomas. PMID:25811315

  4. Glioma

    MedlinePlus

    ... come from ependymal cells. Tumors that display a mixture of these different cells are called mixed gliomas. ... oligodendrocytes, and ependymal cells. Tumors that display a mixture of these cells are called mixed gliomas. Astrocytoma: ...

  5. Photodynamic therapy mediated by 5-aminolevulinic acid suppresses gliomas growth by decreasing the microvessels.

    PubMed

    Yi, Wei; Xu, Hai-tao; Tian, Dao-feng; Wu, Li-quan; Zhang, Shen-qi; Wang, Long; Ji, Bao-wei; Zhu, Xiao-nan; Okechi, Humphrey; Liu, Gang; Chen, Qian-xue

    2015-04-01

    Although 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) has been demonstrated to be a novel and effective therapeutic modality for some human malignancies, its effect and mechanism on glioma are still controversial. Previous studies have reported that 5-ALA-PDT induced necrosis of C6 rat glioma cells in vitro. The aim of this study was to further investigate the effect and mechanism of 5-ALA-PDT on C6 gliomas implanted in rats in vivo. Twenty-four rats bearing similar size of subcutaneously implanted C6 rat glioma were randomly divided into 3 groups: receiving 5-ALA-PDT (group A), laser irradiation (group B), and mock procedures but without any treatment (group C), respectively. The growth, histology, microvessel density (MVD), and apoptosis of the grafts in each group were determined after the treatments. As compared with groups B and C, the volume of tumor grafts was significantly reduced (P<0.05), MVD was significantly decreased (P<0.001), and the cellular necrosis was obviously increased in group A. There was no significant difference in apoptosis among the three groups. The in vivo studies confirmed that 5-ALA-PDT may be an effective treatment for gliomas by inhibiting the tumor growth. The mechanism underlying may involve increasing the cellular necrosis but not inducing the cellular apoptosis, which may result from the destruction of the tumor microvessels.

  6. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    PubMed

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. Copyright © 2015. Published by Elsevier Inc.

  7. Decreased expression of NDRG1 in glioma is related to tumor progression and survival of patients.

    PubMed

    Sun, Boqian; Chu, Dake; Li, Wei; Chu, Xiaodan; Li, Yunming; Wei, Dun; Li, Haiping

    2009-09-01

    The aim of the study was to examine the expression of NDRG1 gene in glioma samples with different WHO grades and its association with survival. About 168 glioma specimens and 21 normal control tissues were collected. Immunochemistry assay, quantitative real-time PCR and Western blot analysis were carried out to investigate the expression of NDRG1 and Myc. Kaplan-Meier method and Cox's proportional hazards model were used in survival analysis. Immunohistochemistry showed that Ndrg1 expression was reduced in glioma. NDRG1 mRNA and protein levels were lower in glioma compared to control on real-time PCR and Western blot analysis (P < 0.001). Its expression levels increase from grade IV to grade I glioma on real-time PCR, immunohistochemistry analysis (P < 0.001) and Western blot. On the contrary, the expression of Myc by real-time PCR and Western blot showed the opposite trend of NDRG1. The survival rate of Ndrg1-negative patients was lower than that of Ndrg1-positive patients. We confirmed that the loss of NDRG1 expression was a significant and independent prognostic indicator in glioma by multivariate analysis. NDRG1 may play an inhibitory role during the development of glioma and may be a potential prognosis predictor of glioma.

  8. Overexpression of TELO2 decreases survival in human high-grade gliomas

    PubMed Central

    Feng, Shao-Wei; Chen, Ying; Tsai, Wen-Chiuan; Chiou, Hsin-Ying Clair; Wu, Sheng-Tang; Huang, Li-Chun; Lin, Chin; Hsieh, Chih-Chuan; Yang, Yun-Ju; Hueng, Dueng-Yuan

    2016-01-01

    High-grade gliomas are characterized with poor prognosis. To improve the clinical outcome, biomarker is urgently needed for distinguishing oncotarget in high-grade gliomas. Telomere maintenance 2 (TELO2) regulates S-phase checkpoint in cell cycle, and is involved in DNA repair. However, the role of TELO2 in survival outcome of high-grade gliomas is still not yet clarified. This study aims to investigate the correlation between TELO2 mRNA expression and survival outcome of patients with high-grade gliomas. Based on bioinformatics study, we found that Kaplan-Meier analysis demonstrated shorter survival in patients with higher TELO2 mRNA levels than in those with lower TELO2 expression (median survival, 59 vs. 113 weeks, p=0.0017, by log-rank test, hazard ratio: 0.3505, 95% CI: 01824.-0.6735). TELO2 mRNA expression significantly higher in World Health Organization (WHO) grade IV than in non-tumor control (p=2.85 × 10−9). Moreover, TELO2 level was greater in WHO grade III than in non-tumor controls (p= 0.017) human gliomas. We further validated TELO2 mRNA expression and protein levels by using quantitative RT-PCR, Western blot, and immunohistochemical (IHC) stain of tissue microarray. Consistently, the TELO2 mRNA and protein expression were significantly elevated in human glioma cells in comparison with normal brain control. Additionally, IHC staining showed higher TELO2 immunostain score in high-grade gliomas than in low-grade gliomas, or normal brain control. Taken together, human high-grade gliomas increase TELO2 mRNA expression, and overexpression of TELO2 mRNA expression correlates with shorter survival outcome, supporting that TELO2 is an oncotarget in human gliomas. PMID:27329594

  9. Overexpression of TELO2 decreases survival in human high-grade gliomas.

    PubMed

    Feng, Shao-Wei; Chen, Ying; Tsai, Wen-Chiuan; Chiou, Hsin-Ying Clair; Wu, Sheng-Tang; Huang, Li-Chun; Lin, Chin; Hsieh, Chih-Chuan; Yang, Yun-Ju; Hueng, Dueng-Yuan

    2016-07-19

    High-grade gliomas are characterized with poor prognosis. To improve the clinical outcome, biomarker is urgently needed for distinguishing oncotarget in high-grade gliomas. Telomere maintenance 2 (TELO2) regulates S-phase checkpoint in cell cycle, and is involved in DNA repair. However, the role of TELO2 in survival outcome of high-grade gliomas is still not yet clarified. This study aims to investigate the correlation between TELO2 mRNA expression and survival outcome of patients with high-grade gliomas. Based on bioinformatics study, we found that Kaplan-Meier analysis demonstrated shorter survival in patients with higher TELO2 mRNA levels than in those with lower TELO2 expression (median survival, 59 vs. 113 weeks, p=0.0017, by log-rank test, hazard ratio: 0.3505, 95% CI: 01824.-0.6735). TELO2 mRNA expression significantly higher in World Health Organization (WHO) grade IV than in non-tumor control (p=2.85 x 10-9). Moreover, TELO2 level was greater in WHO grade III than in non-tumor controls (p= 0.017) human gliomas. We further validated TELO2 mRNA expression and protein levels by using quantitative RT-PCR, Western blot, and immunohistochemical (IHC) stain of tissue microarray. Consistently, the TELO2 mRNA and protein expression were significantly elevated in human glioma cells in comparison with normal brain control. Additionally, IHC staining showed higher TELO2 immunostain score in high-grade gliomas than in low-grade gliomas, or normal brain control. Taken together, human high-grade gliomas increase TELO2 mRNA expression, and overexpression of TELO2 mRNA expression correlates with shorter survival outcome, supporting that TELO2 is an oncotarget in human gliomas.

  10. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma

    NASA Astrophysics Data System (ADS)

    McNeeley, Kathleen M.; Annapragada, Ananth; Bellamkonda, Ravi V.

    2007-09-01

    Liposomal and other nanocarrier based drug delivery vehicles can localize to tumours through passive and/or active targeting. Passively targeted liposomal nanocarriers accumulate in tumours via 'leaky' vasculature through the enhanced permeability and retention (EPR) effect. Passive accumulation depends upon the circulation time and the degree of tumour vessel 'leakiness'. After extravasation, actively targeted liposomal nanocarriers efficiently deliver their payload by receptor-mediated uptake. However, incorporation of targeting moieties can compromise circulation time in the blood due to recognition and clearance by the reticuloendothelial system, decreasing passive accumulation. Here, we compare the efficacy of passively targeted doxorubicin-loaded PEGylated liposomal nanocarriers to that of actively targeted liposomal nanocarriers in a rat 9L brain tumour model. Although folate receptor (FR)-targeted liposomal nanocarriers had significantly reduced blood circulation time compared to PEGylated liposomal nanocarriers; intratumoural drug concentrations both at 20 and 50 h after administration were equal for both treatments. Both treatments significantly increased tumour inoculated animal survival by 60-80% compared to non-treated controls, but no difference in survival was observed between FR-targeted and passively targeted nanocarriers. Therefore, alternate approaches allowing for active targeting without compromising circulation time may be important for fully realizing the benefits of receptor-mediated active targeting of gliomas.

  11. Aberrations in the Iron Regulatory Gene Signature Are Associated with Decreased Survival in Diffuse Infiltrating Gliomas.

    PubMed

    Weston, Cody; Klobusicky, Joe; Weston, Jennifer; Connor, James; Toms, Steven A; Marko, Nicholas F

    2016-01-01

    Iron is a tightly regulated micronutrient with no physiologic means of elimination and is necessary for cell division in normal tissue. Recent evidence suggests that dysregulation of iron regulatory proteins may play a role in cancer pathophysiology. We use public data from The Cancer Genome Atlas (TCGA) to study the association between survival and expression levels of 61 genes coding for iron regulatory proteins in patients with World Health Organization Grade II-III gliomas. Using a feature selection algorithm we identified a novel, optimized subset of eight iron regulatory genes (STEAP3, HFE, TMPRSS6, SFXN1, TFRC, UROS, SLC11A2, and STEAP4) whose differential expression defines two phenotypic groups with median survival differences of 52.3 months for patients with grade II gliomas (25.9 vs. 78.2 months, p< 10-3), 43.5 months for patients with grade III gliomas (43.9 vs. 87.4 months, p = 0.025), and 54.0 months when considering both grade II and III gliomas (79.9 vs. 25.9 months, p < 10-5).

  12. Aberrations in the Iron Regulatory Gene Signature Are Associated with Decreased Survival in Diffuse Infiltrating Gliomas

    PubMed Central

    Weston, Cody; Weston, Jennifer; Connor, James; Toms, Steven A.; Marko, Nicholas F.

    2016-01-01

    Iron is a tightly regulated micronutrient with no physiologic means of elimination and is necessary for cell division in normal tissue. Recent evidence suggests that dysregulation of iron regulatory proteins may play a role in cancer pathophysiology. We use public data from The Cancer Genome Atlas (TCGA) to study the association between survival and expression levels of 61 genes coding for iron regulatory proteins in patients with World Health Organization Grade II-III gliomas. Using a feature selection algorithm we identified a novel, optimized subset of eight iron regulatory genes (STEAP3, HFE, TMPRSS6, SFXN1, TFRC, UROS, SLC11A2, and STEAP4) whose differential expression defines two phenotypic groups with median survival differences of 52.3 months for patients with grade II gliomas (25.9 vs. 78.2 months, p< 10−3), 43.5 months for patients with grade III gliomas (43.9 vs. 87.4 months, p = 0.025), and 54.0 months when considering both grade II and III gliomas (79.9 vs. 25.9 months, p < 10−5). PMID:27898674

  13. Decreased Expression of MiRNA-204-5p Contributes to Glioma Progression and Promotes Glioma Cell Growth, Migration and Invasion

    PubMed Central

    Xia, Zhiqiang; Liu, Fang; Zhang, Jian; Liu, Li

    2015-01-01

    Gliomas are the most common malignant primary brain tumors in adults and exhibit a spectrum of aberrantly aggressive phenotype. Although increasing evidence indicated that the deregulation of microRNAs (miRNAs) contributes to tumorigenesis and invasion, little is known about the roles of miR-204-5p in human gliomas. In the present study, the expression of miR-204-5p in clinical glioma tissues was measured by qRT-PCR. The effects of miR-204-5p on glioma cell growth and metastasis were examined by overexpressing or inhibiting miR-204-5p. We found that the expression level of miR-204-5p was significantly reduced in clinical glioma tissues compared with normal brain tissues. Moreover, we revealed that the introduction of miR-204-5p dramatically suppressed glioma cell growth, migration and invasion. Furthermore, mechanistic investigations revealed that RAB22A, a member of the RAS oncogene family, is a direct functional target of miR-204-5p in gliomas. In vivo, restoring miR-204-5p expression in glioma cells suppressed tumorigenesis and increased overall host survival. Our findings suggest that miR-204-5p is a cancer suppressor miRNA and overexpression of miR-204-5p is a novel glioma treatment strategy. PMID:26134825

  14. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    PubMed Central

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  15. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  16. β-Asarone promotes Temozolomide's entry into glioma cells and decreases the expression of P-glycoprotein and MDR1.

    PubMed

    Wang, Nanbu; Zhang, Qinxin; Ning, Baile; Luo, Laiyu; Fang, Yongqi

    2017-06-01

    Glioma is the most common primary brain tumor and has an undesirable prognosis due to the blood-brain barrier (BBB) and drug resistance. A thorough investigation of the changes in intracellular drug concentrations is important to observe therapeutic effects and cell resistance. P-glycoprotein (P-gp) is an essential protein of Multi-drug resistance 1 (MDR1). The over-expression of P-gp and MDR1 is associated with poor prognosis and drug-resistance in glioma. However, β-asarone can pass through the BBB easily and increase the drug concentration in the rat brain. Our aim is to study the effect of β-asarone on promoting the entry of temozolomide (TMZ) into human glioma U251 cells. The cells were divided into three groups: model group, TMZ group (300μM) and co-administration group (360μM β-asarone; 300μM TMZ). We further detected P-gp and MDR1 expression in U251 and rat glioma C6 cells in four groups: model group (U251/C6), TMZ group (U251 300μM, C6 420μM), β-asarone group (U251 360μM, C6 450μM) and co-administration group (β-asarone 360μM, TMZ 300μM for U251; β-asarone 450μM, TMZ 420μM for C6). Then, high performance liquid chromatography was used to determine the intracellular and extracellular levels of TMZ. Morphological changes in both cells were observed by the microscope. The Counting Kit-8 assay was used to measure the cell proliferation and toxicity. Cell immunohistochemistry/immunofluorescence, flowcytometry and western blot were synchronously used to examine the expression of P-gp. We also determined the levels of MDR1 mRNA by RT-PCR. The results showed that β-asarone could promote the entry of TMZ into U251 cells through the membrane. The co-administration of β-asarone and TMZ also decreased cell proliferation and the expression of P-gp and MDR1 better than single medication in U251 and C6 cells. All of the data suggest that β-asarone might contribute to treatment by promoting TMZ's entry into glioma cells, thereby contributing to anti

  17. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    SciTech Connect

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael . E-mail: michael.pollak@mcgill.ca

    2005-11-04

    PTEN is a tumor suppressor gene whose loss of function is observed in {approx}40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN.

  18. Decreasing expression of the interleukin-13 receptor IL-13Ralpha2 in treated recurrent malignant gliomas.

    PubMed

    Bozinov, Oliver; Kalk, Jens-Martin; Krayenbühl, Niklaus; Woernle, Christoph Michael; Sure, Ulrich; Bertalanffy, Helmut

    2010-01-01

    The IL-13Ralpha2 gene encodes for a 65 kDa protein that forms one of the subunits of the interleukin-13 (IL-13) receptor. This gene is highly expressed in various types of human tumors including malignant gliomas. The expression level of IL-13Ralpha2 was examined in a total of 45 tissue samples of anaplastic astrocytomas (AAs) World Health Organization (WHO) grade III, glioblastomas (GBMs) WHO grade IV, and first-recurrent glioblastomas (frGBMs) after treatment with radiation and chemotherapy. IL-13Ralpha2 expression was detected by semiquantitative reverse transcription real-time polymerase chain reaction (PCR) using ABI PRISM 7700 and Qiagen QuantiTect SYBR Green PCR kits. The expression level of IL-13Ralpha2 (15 fold) was significantly reduced in frGBMs compared to the primary GBMs (p = 0.014), and significantly reduced by more than 15 fold (p = 0.003) in all untreated malignant astrocytomas (AAs and GBMs) compared with treated frGBMs. Expression of IL-13Ralpha2 seems to be lower in frGBMs compared to GBMs. The promising antitumor effect of IL-13 cytotoxin could be greatly reduced in frGBM or only achievable with higher amounts of cytotoxin, due to the significantly lower expression of the cytotoxin's target structure.

  19. Decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas.

    PubMed

    Wadajkar, Aniket S; Dancy, Jimena G; Roberts, Nathan B; Connolly, Nina P; Strickland, Dudley K; Winkles, Jeffrey A; Woodworth, Graeme F; Kim, Anthony J

    2017-09-05

    The most common and deadly form of primary brain cancer, glioblastoma (GBM), is characterized by significant intratumoral heterogeneity, microvascular proliferation, immune system suppression, and brain tissue invasion. Delivering effective and sustained treatments to the invasive GBM cells intermixed with functioning neural elements is a major goal of advanced therapeutic systems for brain cancer. Previously, we investigated the nanoparticle characteristics that enable targeting of invasive GBM cells. This revealed the importance of minimizing non-specific binding within the relatively adhesive, 'sticky' microenvironment of the brain and brain tumors in particular. We refer to such nanoformulations with decreased non-specific adhesivity and receptor targeting as 'DART' therapeutics. In this work, we applied this information toward the design and characterization of biodegradable nanocarriers, and in vivo testing in orthotopic experimental gliomas. We formulated particulate nanocarriers using poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG) polymers to generate sub-100nm nanoparticles with minimal binding to extracellular brain components and strong binding to the Fn14 receptor - an upregulated, conserved component in invasive GBM. Multiple particle tracking in brain tissue slices and in vivo testing in orthotopic murine malignant glioma revealed preserved nanoparticle diffusivity and increased uptake in brain tumor cells. These combined characteristics also resulted in longer retention of the DART nanoparticles within the orthotopic tumors compared to non-targeted versions. Taken together, these results and nanoparticle design considerations offer promising new methods to optimize therapeutic nanocarriers for improving drug delivery and treatment for invasive brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Decreasing Sports Activity with Increasing Age? Findings from a 20-Year Longitudinal and Cohort Sequence Analysis

    ERIC Educational Resources Information Center

    Breuer, Christoph; Wicker, Pamela

    2009-01-01

    According to cross-sectional studies in sport science literature, decreasing sports activity with increasing age is generally assumed. In this paper, the validity of this assumption is checked by applying more effective methods of analysis, such as longitudinal and cohort sequence analyses. With the help of 20 years' worth of data records from the…

  1. CDKN2A (p16) mRNA decreased expression is a marker of poor prognosis in malignant high-grade glioma.

    PubMed

    Sibin, M K; Bhat, Dhananjaya I; Narasingarao, K V L; Lavanya, Ch; Chetan, G K

    2015-09-01

    Human high-grade glioma is heterogeneous in nature based on pathological and genetic profiling. Various tumour suppressor gene alterations are considered as prognostic markers in high-grade glioma. Gene expression of CDKN2A (p16) is used in various cancers as a prognostic biomarker along with methylation and deletion status of this gene. Expression levels of p16 mRNA were not studied as a biomarker in gliomas before. In this study, we have performed mRNA quantification analysis on 48 high-grade glioma tissues and checked for a possible prognostic role. The decreased expression of p16 mRNA in majority of the tumour tissues (57.1 %) was observed when compared to control tissues (P = 0.02). mRNA expression level was correlated with clinical variables also. p16 deletion status and BMI1 mRNA expression were also considered for comparison. p16 mRNA was negatively correlated with the BMI1 mRNA (P = <0.0001) but not with p16 deletion. p16 mRNA expression, midline shift in MRI and tumour type were able to predict patient survival in overall survival (OS) and progression-free survival (PFS). p16 mRNA could independently predict prognosis of OS (P = 0.0146) and PFS (P = 0.0305) in multivariate analysis. We have shown that p16 mRNA expression can act as an independent prognostic biomarker in high-grade glioma.

  2. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells

    PubMed Central

    Fang, Kan; Liu, Peifeng; Dong, Suyan; Guo, Yanjie; Cui, Xinxin; Zhu, Xiaoying; Li, Xuan; Jiang, Lianghan; Liu, Te; Wu, Yuncheng

    2016-01-01

    Glioma stem cells (GSCs) are a special subpopulation of glioma cells that are key to the sensitivity of tumors to treatments and to the possibility of tumor recurrence. Identifying new strategies that inhibit the growth of GSCs are therefore important for developing novel therapies for glioblastoma multiforme (GBM). In this study, CD133+ human glioma stem cells were isolated and cultured. Magnetic nanoparticles were used to mediate the expression of siRNAs targeting the HOTAIR (si-HOTAIR) sequence in human gliomas. Effect of downregulation of HOTAIR expression on proliferation, invasion and in vivo tumorigenicity of human GSCs and underlying molecular mechanisms were further evaluated. The results of the MTT assay and flow cytometric analysis showed that downregulation of HOTAIR expression inhibited cell proliferation and induced cell cycle arrest. Transwell assays demonstrated that downregulation of HOTAIR expression resulted in a decrease in the invasive capability of GSCs. Moreover, magnetic nanoparticle-mediated low expression of HOTAIR effectively reduced the tumorigenic capacity of glioma stem cells in vivo. In addition, the results of qRT-PCR and western blot analysis demonstrated that downregulation of HOTAIR expression significantly increased the expression of PDCD4 in GSCs, in addition to reducing the expression of CCND1 and CDK4. An in-depth mechanistic analysis showed that downregulation of HOTAIR expression reduced the recruitment of downstream molecules, EZH2 and LSD1, thereby activating the expression of PDCD4 at the transcriptional level. In conclusion, downregulation of HOTAIR expression effectively promoted the expression of PDCD4, thereby inhibiting the proliferation, invasion and in vivo tumorigenicity of human GSCs. PMID:27277755

  3. Epidemiology of gliomas.

    PubMed

    Ostrom, Quinn T; Gittleman, Haley; Stetson, Lindsay; Virk, Selene M; Barnholtz-Sloan, Jill S

    2015-01-01

    Gliomas are the most common type of primary intracranial tumors. Some glioma subtypes cause significant mortality and morbidity that are disproportionate to their relatively rare incidence. A very small proportion of glioma cases can be attributed to inherited genetic disorders. Many potential risk factors for glioma have been studied to date, but few provide explanation for the number of brain tumors identified. The most significant of these factors includes increased risk due to exposure to ionizing radiation, and decreased risk with history of allergy or atopic disease. The potential effect of exposure to cellular phones has been studied extensively, but the results remain inconclusive. Recent genomic analyses, using the genome-wide association study (GWAS) design, have identified several inherited risk variants that are associated with increased glioma risk. The following chapter provides an overview of the current state of research in the epidemiology of intracranial glioma.

  4. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.

    PubMed

    Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian

    2013-10-14

    MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.

  5. Galectins and Gliomas

    PubMed Central

    Le Mercier, Marie; Fortin, Shannon; Mathieu, Véronique; Kiss, Robert; Lefranc, Florence

    2010-01-01

    Malignant gliomas, especially glioblastomas, are associated with a dismal prognosis. Despite advances in diagnosis and treatment, glioblastoma patients still have a median survival expectancy of only 14 months. This poor prognosis can be at least partly explained by the fact that glioma cells diffusely infiltrate the brain parenchyma and exhibit decreased levels of apoptosis, and thus resistance to cytotoxic drugs. Galectins are a family of mammalian beta-galactoside-binding proteins characterized by a shared characteristic amino acid sequence. They are expressed differentially in normal vs. neoplastic tissues and are known to play important roles in several biological processes such as cell proliferation, death and migration. This review focuses on the role played by galectins, especially galectin-1 and galectin-3, in glioma biology. The involvement of these galectins in different steps of glioma malignant progression such as migration, angiogenesis or chemoresistance makes them potentially good targets for the development of new drugs to combat these malignant tumors. PMID:19371355

  6. Decreased survival of glioma patients with astrocytoma grade IV (glioblastoma multiforme) associated with long-term use of mobile and cordless phones.

    PubMed

    Carlberg, Michael; Hardell, Lennart

    2014-10-16

    On 31 May 2011 the WHO International Agency for Research on Cancer (IARC) categorised radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e., a "possible", human carcinogen. A causal association would be strengthened if it could be shown that the use of wireless phones has an impact on the survival of glioma patients. We analysed survival of 1678 glioma patients in our 1997-2003 and 2007-2009 case-control studies. Use of wireless phones in the >20 years latency group (time since first use) yielded an increased hazard ratio (HR) = 1.7, 95% confidence interval (CI) = 1.2-2.3 for glioma. For astrocytoma grade IV (glioblastoma multiforme; n = 926) mobile phone use yielded HR = 2.0, 95% CI = 1.4-2.9 and cordless phone use HR = 3.4, 95% CI = 1.04-11 in the same latency category. The hazard ratio for astrocytoma grade IV increased statistically significant per year of latency for wireless phones, HR = 1.020, 95% CI = 1.007-1.033, but not per 100 h cumulative use, HR = 1.002, 95% CI = 0.999-1.005. HR was not statistically significant increased for other types of glioma. Due to the relationship with survival the classification of IARC is strengthened and RF-EMF should be regarded as human carcinogen requiring urgent revision of current exposure guidelines.

  7. Decreased Survival of Glioma Patients with Astrocytoma Grade IV (Glioblastoma Multiforme) Associated with Long-Term Use of Mobile and Cordless Phones

    PubMed Central

    Carlberg, Michael; Hardell, Lennart

    2014-01-01

    On 31 May 2011 the WHO International Agency for Research on Cancer (IARC) categorised radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e., a “possible”, human carcinogen. A causal association would be strengthened if it could be shown that the use of wireless phones has an impact on the survival of glioma patients. We analysed survival of 1678 glioma patients in our 1997–2003 and 2007–2009 case-control studies. Use of wireless phones in the >20 years latency group (time since first use) yielded an increased hazard ratio (HR) = 1.7, 95% confidence interval (CI) = 1.2–2.3 for glioma. For astrocytoma grade IV (glioblastoma multiforme; n = 926) mobile phone use yielded HR = 2.0, 95% CI = 1.4–2.9 and cordless phone use HR = 3.4, 95% CI = 1.04–11 in the same latency category. The hazard ratio for astrocytoma grade IV increased statistically significant per year of latency for wireless phones, HR = 1.020, 95% CI = 1.007–1.033, but not per 100 h cumulative use, HR = 1.002, 95% CI = 0.999–1.005. HR was not statistically significant increased for other types of glioma. Due to the relationship with survival the classification of IARC is strengthened and RF-EMF should be regarded as human carcinogen requiring urgent revision of current exposure guidelines. PMID:25325361

  8. Transcriptional repression of FOXO1 by KLF4 contributes to glioma progression

    PubMed Central

    Tang, Guodong; Liu, Dingyang; Xiao, Gelei; Liu, Qing; Yuan, Jian

    2016-01-01

    In this study, our findings indicated that FOXO1 expression frequently decreased in glioma tissues and cells. FOXO1 expression decrease correlated with glioma progression and predicted a worse overall survival of glioma patients. Restored FOXO1 expression inhibited glioma cells invasion and suppressed glioma cells proliferation in vitro and growth in vivo. Additionally, we found that KLF4 expression frequently increased in glioma tissues and negatively correlated with FOXO1 expression. Bioinformatics analysis and experimental results indicated that KLF4 transcriptionally repressed FOXO1 expression in glioma cells. Moreover, KLF4 expression increase correlated with glioma progression and predicted a poorer overall survival of glioma patients. KLF4 knockdown attenuated glioma cells invasion and growth. These data provide a rationale for targeted intervention on KLF4-FOXO1 signaling pathway to suppress glioma progression. PMID:27835585

  9. Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K+ channels.

    PubMed

    Ordaz, B; Vaca, L; Franco, R; Pasantes-Morales, H

    2004-06-01

    Volume changes and whole cell ionic currents activated by gradual osmolarity reductions (GOR) of 1.8 mosM/min were characterized in C6 glioma cells. Cells swell less in GOR than after sudden osmolarity reductions (SOR), the extent of swelling being partly Ca(2+) dependent. In nominally Ca(2+)-free conditions, GOR activated predominantly whole cell outward currents. Cells depolarized from the initial -79 mV to a steady state of -54 mV reached at 18% osmolarity reduction [hyposmolarity of -18% (H-18%)]. Recordings of Cl(-) and K(+) currents showed activation at H-3% of an outwardly rectifying Cl(-) current, with conductance of 1.6 nS, sensitive to niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid, followed at H-18% by an outwardly rectifying K(+) current with conductance of 4.1 nS, inhibited by clofilium but insensitive to the typical K(+) channel blockers. With 200 nM Ca(2+) in the patch pipette, whole cell currents activated at H-3% and at H-13% cells depolarized from -77 to -63 mV. A K(+) current activated at H-1%, showing a rapid increase in conductance, suppressed by charybdotoxin and insensitive to clofilium. These results show the operation of two different K(+) channels in response to GOR in the same cell type, activated by Ca(2+) and osmolarity and with different osmolarity activation thresholds. Taurine and glutamate efflux, monitored by labeled tracers, showed delayed osmolarity thresholds of H-39 and H-33%, respectively. This observation clearly separates the Cl(-) and amino acid osmosensitive pathways. The delayed amino acid efflux may contribute to counteract swelling at more stringent osmolarity reductions.

  10. Genetics of adult glioma.

    PubMed

    Goodenberger, McKinsey L; Jenkins, Robert B

    2012-12-01

    Gliomas make up approximately 30% of all brain and central nervous system tumors and 80% of all malignant brain tumors. Despite the frequency of gliomas, the etiology of these tumors remains largely unknown. Diffuse gliomas, including astrocytomas and oligodendrogliomas, belong to a single pathologic class but have very different histologies and molecular etiologies. Recent genomic studies have identified separate molecular subtypes within the glioma classification that appear to correlate with biological etiology, prognosis, and response to therapy. The discovery of these subtypes suggests that molecular genetic tests are and will be useful, beyond classical histology, for the clinical classification of gliomas. While a familial susceptibility to glioma has been identified, only a small percentage of gliomas are thought to be due to single-gene hereditary cancer syndromes. Through the use of linkage studies and genome-wide association studies, multiple germline variants have been identified that are beginning to define the genetic susceptibility to glioma.

  11. A mathematical model of pre-diagnostic glioma growth

    PubMed Central

    Sturrock, Marc; Hao, Wenrui; Schwartzbaum, Judith; Rempala, Grzegorz A.

    2015-01-01

    Due to their location, the malignant gliomas of the brain in humans are very difficult to treat in advanced stages. Blood-based biomarkers for glioma are needed for more accurate evaluation of treatment response as well as early diagnosis. However, biomarker research in primary brain tumors is challenging given their relative rarity and genetic diversity. It is further complicated by variations in the permeability of the blood brain barrier that affects the amount of marker released into the bloodstream. Inspired by recent temporal data indicating a possible decrease in serum glucose levels in patients with gliomas yet to be diagnosed, we present an ordinary differential equation model to capture early stage glioma growth. The model contains glioma-glucose-immune interactions and poses a potential mechanism by which this glucose drop can be explained. We present numerical simulations, parameter sensitivity analysis, linear stability analysis and a numerical experiment whereby we show how a dormant glioma can become malignant. PMID:26073722

  12. Focal brainstem gliomas

    PubMed Central

    Sabbagh, Abdulrahman J.; Alaqeel, Ahmed M.

    2015-01-01

    Improved neuronavigation guidance as well as intraoperative imaging and neurophysiologic monitoring technologies have enhanced the ability of neurosurgeons to resect focal brainstem gliomas. In contrast, diffuse brainstem gliomas are considered to be inoperable lesions. This article is a continuation of an article that discussed brainstem glioma diagnostics, imaging, and classification. Here, we address open surgical treatment of and approaches to focal, dorsally exophytic, and cervicomedullary brainstem gliomas. Intraoperative neuronavigation, intraoperative neurophysiologic monitoring, as well as intraoperative imaging are discussed as adjunctive measures to help render these procedures safer, more acute, and closer to achieving surgical goals. PMID:25864061

  13. IGFBP2 expression predicts IDH-mutant glioma patient survival.

    PubMed

    Huang, Lin Eric; Cohen, Adam L; Colman, Howard; Jensen, Randy L; Fults, Daniel W; Couldwell, William T

    2017-01-03

    Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes occur in ~80% of lower-grade (WHO grade II and grade III) gliomas. Mutant IDH produces (R)-2-hydroxyglutarate, which induces DNA hypermethylation and presumably drives tumorigenesis. Interestingly, IDH mutations are associated with improved survival in glioma patients, but the underlying mechanism for the difference in survival remains unclear. Through comparative analyses of 286 cases of IDH-wildtype and IDH-mutant lower-grade glioma from a TCGA data set, we report that IDH-mutant gliomas have increased expression of tumor-suppressor genes (NF1, PTEN, and PIK3R1) and decreased expression of oncogenes(AKT2, ARAF, ERBB2, FGFR3, and PDGFRB) and glioma progression genes (FOXM1, IGFBP2, and WWTR1) compared with IDH-wildtype gliomas. Furthermore, each of these genes is prognostic in overall gliomas; however, within the IDH-mutant group, none remains prognostic except IGFBP2 (encodinginsulin-like growth factor binding protein 2). Through validation in an independent cohort, we show that patients with low IGFBP2 expressiondisplay a clear advantage in overall and disease-free survival, whereas those with high IGFBP2 expressionhave worse median survival than IDH-wildtype patients. These observations hold true across different histological and molecular subtypes of lower-grade glioma. We propose therefore that an unexpected biological consequence of IDH mutations in glioma is to ameliorate patient survival by promoting tumor-suppressor signaling while inhibiting that of oncogenes, particularly IGFBP2.

  14. Molecular neuropathology of gliomas.

    PubMed

    Riemenschneider, Markus J; Reifenberger, Guido

    2009-01-01

    Gliomas are the most common primary human brain tumors. They comprise a heterogeneous group of benign and malignant neoplasms that are histologically classified according to the World Health Organization (WHO) classification of tumors of the nervous system. Over the past 20 years the cytogenetic and molecular genetic alterations associated with glioma formation and progression have been intensely studied and genetic profiles as additional aids to the definition of brain tumors have been incorporated in the WHO classification. In fact, first steps have been undertaken in supplementing classical histopathological diagnosis by the use of molecular tests, such as MGMT promoter hypermethylation in glioblastomas or detection of losses of chromosome arms 1p and 19q in oligodendroglial tumors. The tremendous progress that has been made in the use of array-based profiling techniques will likely contribute to a further molecular refinement of glioma classification and lead to the identification of glioma core pathways that can be specifically targeted by more individualized glioma therapies.

  15. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro

    PubMed Central

    Xiong, Jing; Zhou, Li; Yang, Miao; Lim, Yoon; Zhu, Yu-hong; Fu, Deng-li; Li, Zhi-wei; Zhong, Jin-hua; Xiao, Zhi-cheng; Zhou, Xin-Fu

    2013-01-01

    Background High-grade glioma is incurable, with a short survival time and poor prognosis. The increased expression of p75 neurotrophin receptor (NTR) is a characteristic of high-grade glioma, but the potential significance of increased p75NTR in this tumor is not fully understood. Since p75NTR is the receptor for the precursor of brain-derived neurotrophic factor (proBDNF), it is suggested that proBDNF may have an impact on glioma. Methods In this study we investigated the expression of proBDNF and its receptors p75NTR and sortilin in 52 cases of human glioma and 13 cases of controls by immunochemistry, quantitative real-time PCR, and Western blot methods. Using C6 glioma cells as a model, we investigated the roles of proBDNF on C6 glioma cell differentiation, growth, apoptosis, and migration in vitro. Results We found that the expression levels of proBDNF, p75NTR, and sortilin were significantly increased in high-grade glioma and were positively correlated with the malignancy of the tumor. We also observed that tumors expressed proBDNF, p75NTR, and sortilin in the same cells with different subcellular distributions, suggesting an autocrine or paracrine loop. The ratio of proBDNF to mature BDNF was decreased in high-grade glioma tissues and was negatively correlated with tumor grade. Using C6 glioma cells as a model, we found that proBDNF increased apoptosis and differentiation and decreased cell growth and migration in vitro via p75NTR. Conclusions Our data indicate that proBDNF and its receptors are upregulated in high-grade glioma and might play an inhibitory effect on glioma. PMID:23576602

  16. ME-09DYNAMIC EVIDENCE OF TUMOR INDUCED MICROGLIA ACTIVATION AT THE INFILTRATIVE MARGINS OF GLIOMA

    PubMed Central

    Juliano, Joseph; Gil, Orlando; Hawkins-Daarud, Andrea; Rockne, Russell; Gallaher, Jill; Massey, Susan; Anderson, Alexander; Bruce, Jeffrey; Canoll, Peter; Swanson, Kristin

    2014-01-01

    PURPOSE: Microglia are a major cellular component of malignant glioma, and in some cases, compose up to 40% of the mass of the tumor. Previous studies have shown that microglia can decrease T-cell response to glioma, and their abundance is correlated with increased histologic grade. These studies suggest that microglia facilitate the progression and infiltration of glioma, however the dynamics of the relationship between tumor cells and microglia are not well characterized. METHODS: In this work, we examined the dynamic migratory behavior of glioma and microglia cells using two-color time-lapse fluorescence microscopy of brain slices from a PDGF-driven rat model of glioma in which glioma cells and microglia were labeled with separate fluorescent markers. We quantified glioma cells and microglia motility through single cell tracking and particle image velocimetry. RESULTS: We found that microglia were predominately abundant within the tumor mass and that microglia motility was strongly correlated with the presence of glioma cells. This provides the first dynamic evidence that glioma induces microglial motility. We found that motility of glioma cells and microglia were variably correlated. Our results also show that microglia and glioma cells exhibit stark differences in migratory behavior. Microglia move by a simple random walk, while glioma cells exhibit highly persistent motion, characterized as super diffusion, within the same microenvironment indicating intrinsic differences in response to migratory cues. CONCLUSION: These results provide the first dynamic evidence of glioma cells stimulating the activation of microglia, by means of increasing motility and localization in and around the infiltrative edge of glioma. Further, these results show dynamic interactions between glioma and microglia and suggest that glioma cells and microglia are either responding to different migratory cues, or are responding to the same cues in different ways.

  17. Histologic classification of gliomas.

    PubMed

    Perry, Arie; Wesseling, Pieter

    2016-01-01

    Gliomas form a heterogeneous group of tumors of the central nervous system (CNS) and are traditionally classified based on histologic type and malignancy grade. Most gliomas, the diffuse gliomas, show extensive infiltration in the CNS parenchyma. Diffuse gliomas can be further typed as astrocytic, oligodendroglial, or rare mixed oligodendroglial-astrocytic of World Health Organization (WHO) grade II (low grade), III (anaplastic), or IV (glioblastoma). Other gliomas generally have a more circumscribed growth pattern, with pilocytic astrocytomas (WHO grade I) and ependymal tumors (WHO grade I, II, or III) as the most frequent representatives. This chapter provides an overview of the histology of all glial neoplasms listed in the WHO 2016 classification, including the less frequent "nondiffuse" gliomas and mixed neuronal-glial tumors. For multiple decades the histologic diagnosis of these tumors formed a useful basis for assessment of prognosis and therapeutic management. However, it is now fully clear that information on the molecular underpinnings often allows for a more robust classification of (glial) neoplasms. Indeed, in the WHO 2016 classification, histologic and molecular findings are integrated in the definition of several gliomas. As such, this chapter and Chapter 6 are highly interrelated and neither should be considered in isolation.

  18. Pathophysiology of glioma cyst formation.

    PubMed

    Adn, Mahmoudreza; Saikali, Stephan; Guegan, Yvon; Hamlat, Abderrahmane

    2006-01-01

    Fluid filled cystic cavities are accompaniments of some cerebral gliomas. These tumoural cysts together with peritumoural vasogenic brain oedema add to the morbid effects of the gliomas in terms of mass effect and increased intracranial pressure. Although different mechanisms have been suggested as to the pathogenesis of glioma-associated cysts, it is still unclear why these cysts appear in only a limited number of cerebral gliomas while brain oedema, a probable precursor of glioma cysts, is a usual accompaniment of most gliomas. Here, the authors present a two-hit hypothesis of brain glioma cyst formation. We suggest that after the formation of vasogenic tumoural brain oedema, microvascular phenomena may lead to the formation of microcysts, which might later become confluent and grow to form macroscopic cysts. Progress in the understanding of pathogenesis of cerebral glioma cysts might set targets for treatment of brain edema and glioma cysts.

  19. Treatment of malignant glioma using hyperthermia.

    PubMed

    Sun, Jiahang; Guo, Mian; Pang, Hengyuan; Qi, Jingtao; Zhang, Jinwei; Ge, Yunlong

    2013-10-15

    Thirty pathologically diagnosed patients with grade III-IV primary or recurrent malignant glioma (tumor diameter 3-7 cm) were randomly divided into two groups. The control group underwent conventional radiotherapy and chemotherapy. In the hyperthermia group, primary cases received hyperthermia treatment, and patients with recurrent tumors were treated with hyperthermia in com-bination with radiotherapy and chemotherapy. Hyperthermia treatment was administered using a 13.56-MHz radio frequency hyperthermia device. Electrodes were inserted into the tumor with the aid of a CT-guided stereotactic apparatus and heat was applied for 1 hour. During 3 months after hyperthermia, patients were evaluated with head CT or MRI every month. Gliomas in the hyper-thermia group exhibited growth retardation or growth termination. Necrosis was evident in 80% of the heated tumor tissue and there was a decrease in tumor diameter. Our findings indicate that ra-dio frequency hyperthermia has a beneficial effect in the treatment of malignant glioma.

  20. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  1. Chemosensitivity of IDH1 mutant gliomas due to an impairment in PARP1-mediated DNA repair.

    PubMed

    Lu, Yanxin; Kwintkiewicz, Jakub; Liu, Yang; Tech, Katherine; Frady, Lauren N; Su, Yu-Ting; Bautista, Wendy; Moon, Seog In; MacDonald, Jeffrey; Edwend, Matthew G; Gilbert, Mark R; Yang, Chunzhang; Wu, Jing

    2017-02-15

    Mutations in isocitrate dehydrogenase (IDH) are the most prevalent genetic abnormalities in lower grade gliomas. The presence of these mutations in glioma is prognostic for better clinical outcomes with longer patient survival. In the present study, we found that defects in oxidative metabolism and 2-HG production confer chemosensitization in IDH1-mutated glioma cells. In addition, temozolomide (TMZ) treatment induced greater DNA damage and apoptotic changes in mutant glioma cells. The PARP1-associated DNA repair pathway was extensively compromised in mutant cells due to decreased NAD+ availability. Targeting the PARP DNA repair pathway extensively sensitized IDH1-mutated glioma cells to TMZ. Our findings demonstrate a novel molecular mechanism that defines chemosensitivity in IDH mutant gliomas. Targeting PARP-associated DNA repair may represent a novel therapeutic strategy for gliomas.

  2. Changing incidence and improved survival of gliomas.

    PubMed

    Ho, Vincent K Y; Reijneveld, Jaap C; Enting, Roelien H; Bienfait, Henri P; Robe, Pierre; Baumert, Brigitta G; Visser, Otto

    2014-09-01

    Tumours of the central nervous system (CNS) represent a relatively rare but serious health burden. This study provides insight into the incidence and survival patterns of gliomas in the Netherlands diagnosed in adult patients during the time period 1989-2010, with a focus on glioblastoma and low-grade gliomas. Data on 21,085 gliomas (excluding grade I tumours) were obtained from the Netherlands Cancer Registry, including tumours of the CNS without pathological confirmation. We calculated the age-standardised incidence rates and the estimated annual percentage change (EAPC) for all glioma subtypes. Crude and relative survival rates were estimated using information on the vital status obtained from the Dutch Municipal Personal Records Database. Incidence of gliomas in adults increased over time, from 4.9 per 100,000 in 1989 to 5.9 in 2010 (EAPC 0.7%, p<0.001). Two thirds were astrocytoma, 10% oligodendroglioma/oligoastrocytoma, 3% ependymoma and 21% were unspecified. Within the group of astrocytic tumours, the proportion of glioblastoma rose, while the proportion of anaplastic and unspecified astrocytoma decreased. Unspecified neoplasms also decreased, but this was significant only after 2005. Over the course of the study period, glioblastoma patients more often received multimodality treatment with chemotherapy concomitant and adjuvant to radiotherapy. The crude two-year survival rate of glioblastoma patients improved significantly, from 5% in the time period 1989-1994 to 15% in 2006-2010, with median survival increasing from 5.5 to 9 months. The incidence of low-grade gliomas did not change over time. Survival rates for low-grade oligodendroglial and mixed tumours show a modest improvement. The incidence rate for the total group of gliomas slightly increased, with a decrease of anaplastic and unspecified tumours and an increase of glioblastoma. Following the introduction of combined chemoradiation, two-year survival rates for glioblastoma significantly improved

  3. Immunotherapeutic Approaches for Glioma

    PubMed Central

    Okada, Hideho; Kohanbash, Gary; Zhu, Xinmei; Kastenhuber, Edward R.; Hoji, Aki; Ueda, Ryo; Fujita, Mitsugu

    2009-01-01

    The development of effective immunotherapy strategies for glioma requires adequate understanding of the unique immunological microenvironment in the central nervous system (CNS) and CNS tumors. Although the CNS is often considered to be an immunologically privileged site and poses unique challenges for the delivery of effector cells and molecules, recent advances in technology and discoveries in CNS immunology suggest novel mechanisms that may significantly improve the efficacy of immunotherapy against gliomas. In this review, we first summarize recent advances in the CNS and CNS tumor immunology. We address factors that may promote immune escape of gliomas. We also review advances in passive and active immunotherapy strategies for glioma, with an emphasis on lessons learned from recent early-phase clinical trials. We also discuss novel immunotherapy strategies that have been recently tested in non-CNS tumors and show great potential for application to gliomas. Finally, we discuss how each of these promising strategies can be combined to achieve clinical benefit for patients with gliomas. PMID:19348609

  4. An integrated transcriptomic and computational analysis for biomarker identification in human glioma.

    PubMed

    Xing, Wenli; Zeng, Chun

    2016-06-01

    Malignant glioma is one of the most common primary brain tumors and is among the deadliest of human cancers. The molecular mechanism for human glioma is poorly understood. Early prognosis of this disease and early treatment are vital. Thus, it is crucial to target the key genes controlling pathogenesis in the early stage of glioma. In this study, differentially expressed genes in human glioma and paired peritumoral tissues were detected by transcriptome microarray analysis. Following gene microarray analysis, the gene expression profile in the differential grade glioma was further validated by bioinformatic analyses, co-expression network construction. Microarray analysis revealed that 1725 genes were differentially expressed and classified into different glioma stage. The analysis revealed 14 genes that were significantly associated with survival with a false discovery rate. Among these genes, macrophage capping protein (CAPG), a member of the actin-regulatory protein, was the key gene in a 20-gene network that modulates cell motility by interacting with the cytoskeleton. Furthermore, the prognostic impact of CAPG was validated by use of quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry on human glioma tissue. CAPG protein was significantly upregulated in clinical high-grade glioblastoma as compared with normal brain tissues. Overexpression of CAPG levels also predict shorter overall survival of glioma patients. These data demonstrated CAPG protein expression in human glioma was associated with tumorigenesis and may be a biomarker for identification of the pathological grade of glioma.

  5. Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma

    PubMed Central

    Di, Kaijun; Lomeli, Naomi; Wood, Spencer D.; Vanderwal, Christopher D.; Bota, Daniela A.

    2016-01-01

    Mitochondrial dysfunction is a hallmark of cancer biology. Tumor mitochondrial metabolism is characterized by an abnormal ability to function in scarce oxygen conditions through glycolysis (the Warburg effect), and accumulation of mitochondrial DNA defects are present in both hereditary neoplasia and sporadic cancers. Mitochondrial Lon is a major regulator of mitochondrial metabolism and the mitochondrial response to free radical damage, and plays an essential role in the maintenance and repair of mitochondrial DNA. Despite these critical cellular functions of Lon, very little has been reported regarding its role in glioma. Lon expression in gliomas and its relevance with patient survival was examined using published databases and human tissue sections. The effect of Lon in glioma biology was investigated through siRNA targeting Lon. We also tested the in vitro antitumor activity of Lon inhibitor, CC4, in the glioma cell lines D-54 and U-251. High Lon expression was associated with high glioma tumor grade and poor patient survival. While Lon expression was elevated in response to a variety of stimuli, Lon knockdown in glioma cell lines decreased cell viability under normal conditions, and dramatically impaired glioma cell survival under hypoxic conditions. Furthermore, the Lon inhibitor, CC4, efficiently prohibited glioma cell proliferation and synergistically enhanced the therapeutic efficacy of the chemotherapeutic agents, temozolomide (TMZ) and cisplatin. We demonstrate that Lon plays a key role in glioma cell hypoxic survival and mitochondrial respiration, and propose Lon as a promising therapeutic target in the treatment of malignant gliomas. PMID:27764809

  6. Noscapine inhibits tumor growth in TMZ-resistant gliomas.

    PubMed

    Jhaveri, Niyati; Cho, Heeyeon; Torres, Shering; Wang, Weijun; Schönthal, Axel H; Petasis, Nicos A; Louie, Stan G; Hofman, Florence M; Chen, Thomas C

    2011-12-22

    Noscapine, a common oral antitussive agent, has been shown to have potent antitumor activity in a variety of cancers. Treatment of glioblastoma multiforme (GBM) with temozolomide (TMZ), its current standard of care, is problematic because the tumor generally recurs and is then resistant to this drug. We therefore investigated the effects of noscapine on human TMZ-resistant GBM tumors. We found that noscapine significantly decreased TMZ-resistant glioma cell growth and invasion. Using the intracranial xenograft model, we showed that noscapine increased survival of animals with TMZ-resistant gliomas. Thus noscapine can provide an alternative therapeutic approach for the treatment of TMZ-resistant gliomas.

  7. Smoking and Glioma Risk

    PubMed Central

    Shao, Chuan; Zhao, Wei; Qi, Zhenyu; He, Jiaquan

    2016-01-01

    Abstract To systematically assess the relationship between smoking and glioma risk. A dose–response meta-analysis of case–control and cohort studies was performed. Pertinent studies were identified by searching database and reference lists. Random-effects model was employed to pool the estimates of the relative risks (RRs) with corresponding 95% confidence intervals (CIs). A total of 19 case–control and 6 cohort studies were included. Overall, compared with those who never smoked, the pooled RR and 95% CI was 0.98 (0.92–1.05) for ever smoker. The subgroups were not significantly different regarding risk of glioma except the group of age at start smoking (RR = 1.17, 95% CI: 0.93–1.48 for age < 20; RR = 1.25, 95% CI: 1.02–1.52 for age ≥ 20). Dose–response analysis also suggested no significant association between smoking and the risk of glioma, although some evidence for a linear relationship between smoking and glioma risk was observed. In conclusion, this meta-analysis provides little support for a causal relationship between smoking and risk of glioma. PMID:26765433

  8. Molecular classification of gliomas.

    PubMed

    Masui, Kenta; Mischel, Paul S; Reifenberger, Guido

    2016-01-01

    The identification of distinct genetic and epigenetic profiles in different types of gliomas has revealed novel diagnostic, prognostic, and predictive molecular biomarkers for refinement of glioma classification and improved prediction of therapy response and outcome. Therefore, the new (2016) World Health Organization (WHO) classification of tumors of the central nervous system breaks with the traditional principle of diagnosis based on histologic criteria only and incorporates molecular markers. This will involve a multilayered approach combining histologic features and molecular information in an "integrated diagnosis". We review the current state of diagnostic molecular markers for gliomas, focusing on isocitrate dehydrogenase 1 or 2 (IDH1/IDH2) gene mutation, α-thalassemia/mental retardation syndrome X-linked (ATRX) gene mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation in adult tumors, as well as v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and H3 histone family 3A (H3F3A) aberrations in pediatric gliomas. We also outline prognostic and predictive molecular markers, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and discuss the potential clinical relevance of biologic glioblastoma subtypes defined by integration of multiomics data. Commonly used methods for individual marker detection as well as novel large-scale DNA methylation profiling and next-generation sequencing approaches are discussed. Finally, we illustrate how advances in molecular diagnostics affect novel strategies of targeted therapy, thereby raising new challenges and identifying new leads for personalized treatment of glioma patients.

  9. Hugl-1 inhibits glioma cell growth in intracranial model.

    PubMed

    Liu, Xuejiao; Lu, Dong; Ma, Peng; Liu, Huaqiang; Cao, Yuewen; Sang, Ben; Zhu, Xianlong; Shi, Qiong; Hu, Jinxia; Yu, Rutong; Zhou, Xiuping

    2015-10-01

    Drosophila lethal (2) giant larvae (lgl) has been reported as a tumor suppressor and could regulate the Drosophila hippo signaling. Human giant larvae-1(Hugl-1), one human homologue of Drosophila lgl, also has been reported to be involved in the development of some human cancers. However, whether Hugl-1 is associated with the pathogenesis of malignant gliomas remains poorly understood. In the present work, we examined the effect of Hugl-1 on glioma cell growth both in vitro and in vivo. Firstly, we found that Hugl-1 protein levels decreased in the human glioma tissues, suggesting that Hugl-1 is involved in glioma progression. Unfortunately, either stably or transiently over-expressing Hugl-1 did not affect glioma cell proliferation in vitro. In addition, Hugl-1 over-expression did not regulate hippo signaling pathway. Interestingly, over-expression of Hugl-1 not only inhibited gliomagenesis but also markedly inhibited cell proliferation and promoted the apoptosis of U251 cells in an orthotopic model of nude mice. Taken together, this study provides the evidence that Hugl-1 inhibits glioma cell growth in intracranial model of nude mice, suggesting that Hugl-1 might be a potential tumor target for glioma therapy.

  10. Optic nerve glioma: an update.

    PubMed

    Nair, Akshay Gopinathan; Pathak, Rima S; Iyer, Veena R; Gandhi, Rashmin A

    2014-08-01

    Optic nerve glioma is the most common optic nerve tumour. However, it has an unpredictable natural history. The treatment of optic nerve gliomas has changed considerably over the past few years. Chemotherapy and radiation therapy can now stabilize and in some cases improve the vision of patients with optic nerve gliomas. The treatment of optic nerve glioma requires a multi-disciplinary approach where all treatment options may have to be implemented in a highly individualized manner. The aim of this review article is to present current diagnostic and treatment protocols for optic nerve glioma.

  11. IGFBP2 expression predicts IDH-mutant glioma patient survival

    PubMed Central

    Huang, Lin Eric; Cohen, Adam L.; Colman, Howard; Jensen, Randy L.; Fults, Daniel W.; Couldwell, William T.

    2017-01-01

    Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes occur in ~80% of lower-grade (WHO grade II and grade III) gliomas. Mutant IDH produces (R)-2-hydroxyglutarate, which induces DNA hypermethylation and presumably drives tumorigenesis. Interestingly, IDH mutations are associated with improved survival in glioma patients, but the underlying mechanism for the difference in survival remains unclear. Through comparative analyses of 286 cases of IDH-wildtype and IDH-mutant lower-grade glioma from a TCGA data set, we report that IDH-mutant gliomas have increased expression of tumor-suppressor genes (NF1, PTEN, and PIK3R1) and decreased expression of oncogenes(AKT2, ARAF, ERBB2, FGFR3, and PDGFRB) and glioma progression genes (FOXM1, IGFBP2, and WWTR1) compared with IDH-wildtype gliomas. Furthermore, each of these genes is prognostic in overall gliomas; however, within the IDH-mutant group, none remains prognostic except IGFBP2 (encodinginsulin-like growth factor binding protein 2). Through validation in an independent cohort, we show that patients with low IGFBP2 expressiondisplay a clear advantage in overall and disease-free survival, whereas those with high IGFBP2 expressionhave worse median survival than IDH-wildtype patients. These observations hold true across different histological and molecular subtypes of lower-grade glioma. We propose therefore that an unexpected biological consequence of IDH mutations in glioma is to ameliorate patient survival by promoting tumor-suppressor signaling while inhibiting that of oncogenes, particularly IGFBP2. PMID:27852048

  12. A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas

    ClinicalTrials.gov

    2017-01-30

    Pilomyxoid Astrocytoma; Pilocytic Astrocytoma; Glioma, Astrocytic; Optic Nerve Glioma; Pleomorphic Xanthoastrocytoma; Glioblastoma Multiforme; Anaplastic Astrocytoma; Gliosarcoma; Diffuse Intrinsic Pontine Glioma; DIPG; Low-grade Glioma; Brainstem Glioma

  13. Pten signaling in gliomas.

    PubMed Central

    Knobbe, Christiane B.; Merlo, Adrian; Reifenberger, Guido

    2002-01-01

    In 1997, the PTEN gene (phosphatase and tensin homolog deleted on chromosome 10) was identified as a tumor suppressor gene on the long arm of chromosome 10. Since then, important progress has been made with respect to the understanding of the role of the Pten protein in the normal development of the brain as well as in the molecular pathogenesis of human gliomas. This review summarizes the current state of the art concerning the involvement of aberrant Pten function in the development of different biologic features of malignant gliomas, such as loss of cell-cycle control and uncontrolled cell proliferation, escape from apoptosis, brain invasion, and aberrant neoangiogenesis. Most of the tumor-suppressive properties of Pten are dependent on its lipid phosphatase activity, which inhibits the phosphatidylinositol-3'-kinase (PI3K)/Akt signaling pathway through dephosphorylation of phosphatidylinositol-(3,4,5)-triphosphate. The additional function of Pten as a dual-specificity protein phosphatase may also play a role in glioma pathogenesis. Besides the wealth of data elucidating the functional roles of Pten, recent studies suggest a diagnostic significance of PTEN gene alterations as a molecular marker for poor prognosis in anaplastic astrocytomas and anaplastic oligodendrogliomas. Furthermore, the possibility of selective targeting of PTEN mutant tumor cells by specific pharmacologic inhibitors of members of the Pten/PI3K/Akt pathway opens up new perspectives for a targeted molecular therapy of malignant gliomas. PMID:12084351

  14. [Management of gliomas].

    PubMed

    Lévy, S; Chapet, S; Mazeron, J-J

    2014-10-01

    Gliomas are the most frequent primary brain tumors. Their care is difficult because of the proximity of organs at risk. The treatment of glioblastoma includes surgery followed by chemoradiation with the protocol of Stupp et al. The addition of bevacizumab allows an increase in progression-free survival by 4 months but it does not improve overall survival. This treatment is reserved for clinical trials. Intensity modulation radiotherapy may be useful to reduce the neurocognitive late effects in different types of gliomas. In elderly patients an accelerated radiotherapy 40 Gy in 15 fractions allows a similar survival to standard radiotherapy. O(6)-methylguanine-DNA methyltransferase (MGMT) status may help to choose between chemotherapy and radiotherapy. There is no standard for the treatment of recurrent gliomas. Re-irradiation in stereotactic conditions allows a median survival of 8 to 12.4 months. Anaplastic gliomas with 1p19q mutation have a greater sensibility to chemotherapy by procarbazine, lomustine and vincristine. Chemoradiotherapy in these patients has become the standard treatment. Many studies are underway testing targeted therapies, their place in the therapeutic management and new radiotherapy techniques. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes.

    PubMed

    Zhang, Chao; Chen, Wenliang; Zhang, Xin; Huang, Bin; Chen, Aanjing; He, Ying; Wang, Jian; Li, Xingang

    2016-03-15

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic mimicry. With suspension microarray technology and in vitro tube formation assays, we identified that astrocytes relied on TGF-β1 to enhance vasculogenic mimicry. We also found that vasculogenic mimicry was inhibited by galunisertib, a promising TGF-β1 inhibitor currently being studied in an ongoing trial in glioma patients. The inhibition was partially attributed to a decrease in autophagy after galunisertib treatment. Moreover, we observed a decrease in VE-cadherin and smooth muscle actin-α expression, as well as down-regulation of Akt and Flk phosphorylation in galunisertib-treated glioma cells. By comparing tumor weight and volume in a xenograft model, we acquired promising results to support our theory. This study expands our understanding of the role of astrocytes in gliomas and demonstrates that galunisertib inhibits glioma vasculogenic mimicry induced by astrocytes.

  16. Light-controlled inhibition of malignant glioma by opsin gene transfer

    PubMed Central

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  17. The inflammatory cytokine IL-22 promotes murine gliomas via proliferation.

    PubMed

    Liu, Xiguo; Yang, Junjing; Deng, Wankai

    2017-03-01

    Interleukin (IL)-22 is newly identified proinflammatory cytokine involved in the T helper (Th)17 and Th22 response. However, the possible role of IL-22 in glioma remains uncertain. The results of the present study demonstrated higher expression levels of IL-22 and the receptor IL-22BP in the brain of GL261 glioma-inoculation mice, suggesting the regulatory role of IL-22 in glioma. Injection of IL-22 increased the severity of glioma in vivo and higher expression levels of IL-6, IL-1β and tumor necrosis factor (TNF)-α were detected in the brain using ELISA following IL-22 injection. To elucidate the mechanism underlying the effects of IL-22, the present study aimed firstly to determine the expression levels of IL-22 receptor in a glioma cell line via reverse transcription quantitative polymerase chain reaction. IL-22 treatment significantly increased the expression levels of signal transducer and activator of transcription (STAT)3 and the mRNA expression levels of STAT6 compared with the vehicle control. These results suggested that IL-22 may activate the Janus kinase (JAK)/STAT signaling pathway in glioma. Furthermore, IL-22 positively regulated the proliferation of glioma, consistent with its role in vivo. Conversely, IL-22-deficient mice exhibited prolonged survival compared with wild-type (WT) mice, and the expression levels of inflammatory cytokines were decreased in the brain of IL-22 knock-out (KO) mice compared with WT mice. Concordant with these results, it was observed that IL-22-neutralising antibody was able to increase the survival of mice with glioma and attenuate the disease by significantly reducing the cytokine levels in the brain. In conclusion, the results of the present study demonstrated that expression levels of IL-22 in the brain of mice with glioma may enhance symptoms due to the increased cytokine production of IL-6, IL-1β and TNF-α; this is consistent with IL-6/JAK/STAT signalling activation in vitro. Decreasing the expression levels of

  18. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal.

    PubMed

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Bucris, Efrat; Ziv-Av, Amotz; Xiang, Cunli; Bobbitt, Kevin; Rempel, Sandra A; Hasselbach, Laura; Mikkelsen, Tom; Slavin, Shimon; Brodie, Chaya

    2013-02-01

    MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived from bone marrow, adipose tissue, placenta and umbilical cord to deliver synthetic miRNA mimics to glioma cells and glioma stem cells (GSCs). We examined the delivery of miR-124 and miR-145 mimics as glioma cells and GSCs express very low levels of these miRNAs. Using fluorescently labeled miRNA mimics and in situ hybridization, we demonstrated that all the MSCs examined delivered miR-124 and miR-145 mimics to co-cultured glioma cells and GSCs via gap junction- dependent and independent processes. The delivered miR-124 and miR-145 mimics significantly decreased the luciferase activity of their respected reporter target genes, SCP-1 and Sox2, and decreased the migration of glioma cells and the self-renewal of GSCs. Moreover, MSCs delivered Cy3-miR-124 mimic to glioma xenografts when administered intracranially. These results suggest that MSCs can deliver synthetic exogenous miRNA mimics to glioma cells and GSCs and may provide an efficient route of therapeutic miRNA delivery in vivo.

  19. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Bucris, Efrat; Ziv-Av, Amotz; Xiang, Cunli; Bobbitt, Kevin; Rempel, Sandra A.; Hasselbach, Laura; Mikkelsen, Tom; Slavin, Shimon; Brodie, Chaya

    2013-01-01

    MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived from bone marrow, adipose tissue, placenta and umbilical cord to deliver synthetic miRNA mimics to glioma cells and glioma stem cells (GSCs). We examined the delivery of miR-124 and miR-145 mimics as glioma cells and GSCs express very low levels of these miRNAs. Using fluorescently labeled miRNA mimics and in situ hybridization, we demonstrated that all the MSCs examined delivered miR-124 and miR-145 mimics to co-cultured glioma cells and GSCs via gap junction–dependent and independent processes. The delivered miR-124 and miR-145 mimics significantly decreased the luciferase activity of their respected reporter target genes, SCP-1 and Sox2, and decreased the migration of glioma cells and the self-renewal of GSCs. Moreover, MSCs delivered Cy3-miR-124 mimic to glioma xenografts when administered intracranially. These results suggest that MSCs can deliver synthetic exogenous miRNA mimics to glioma cells and GSCs and may provide an efficient route of therapeutic miRNA delivery in vivo. PMID:23548312

  20. Fluorescence-Guided Resection of Malignant Glioma with 5-ALA

    PubMed Central

    Kaneko, Sadahiro

    2016-01-01

    Malignant gliomas are extremely difficult to treat with no specific curative treatment. On the other hand, photodynamic medicine represents a promising technique for neurosurgeons in the treatment of malignant glioma. The resection rate of malignant glioma has increased from 40% to 80% owing to 5-aminolevulinic acid-photodynamic diagnosis (ALA-PDD). Furthermore, ALA is very useful because it has no serious complications. Based on previous research, it is apparent that protoporphyrin IX (PpIX) accumulates abundantly in malignant glioma tissues after ALA administration. Moreover, it is evident that the mechanism underlying PpIX accumulation in malignant glioma tissues involves an abnormality in porphyrin-heme metabolism, specifically decreased ferrochelatase enzyme activity. During resection surgery, the macroscopic fluorescence of PpIX to the naked eye is more sensitive than magnetic resonance imaging, and the alert real time spectrum of PpIX is the most sensitive method. In the future, chemotherapy with new anticancer agents, immunotherapy, and new methods of radiotherapy and gene therapy will be developed; however, ALA will play a key role in malignant glioma treatment before the development of these new treatments. In this paper, we provide an overview and present the results of our clinical research on ALA-PDD. PMID:27429612

  1. Plexin-B2 promotes invasive growth of malignant glioma.

    PubMed

    Le, Audrey P; Huang, Yong; Pingle, Sandeep C; Kesari, Santosh; Wang, Huaien; Yong, Raymund L; Zou, Hongyan; Friedel, Roland H

    2015-03-30

    Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma.

  2. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  3. Mechanism of SEMA3B gene silencing and clinical significance in glioma.

    PubMed

    Pang, C H; Du, W; Long, J; Song, L J

    2016-03-18

    The aim of the current study was to explore mechanisms of SEMA3B gene expression and its clinical significance in glioma, and provide a theoretical foundation for investigating individualized treatment in glioma. Paraffin-embedded tissues from 43 patients with a confirmed clinical diagnosis of glioma following neurosurgery at the First Affiliated Hospital of Zhengzhou University from December 2013 to April 2014 were selected randomly. An additional three normal brain tissues were obtained following encephalic decompression excision due to acute craniocerebral injury in the same period, which were used as the control group. Immunohistochemical staining for vascular endothelial growth factor was performed on the glioma tissues from the 43 patients. Genomic DNA was extracted for bisulfate conversion and sequencing. SEMA3B was fully expressed in the three normal brain tissues, and incompletely expressed in the 43 glioma tissues, with a lack of expression in 48.8% (21/43) of samples. Moreover, 58% of high-grade gliomas (grade III and IV) lacked SEMA3B expression, which was significantly more than those that lacked expression (20%) in low-grade gliomas (grade I and II), indicating that, as the clinical pathological grade increased, SEMA3B expression decreased. The occurrence and development of malignant tumors is a product of multiple genes and other factors. Here, we provide theoretical basis for glioma development and prognosis involving DNA-methylation driven silencing of SEMA3B, and thus, SEMA3B is a potential target for directed treatments against glioma.

  4. Canine spinal cord glioma.

    PubMed

    Rissi, Daniel R; Barber, Renee; Burnum, Annabelle; Miller, Andrew D

    2017-01-01

    Spinal cord glioma is uncommonly reported in dogs. We describe the clinicopathologic and diagnostic features of 7 cases of canine spinal cord glioma and briefly review the veterinary literature on this topic. The median age at presentation was 7.2 y. Six females and 1 male were affected and 4 dogs were brachycephalic. The clinical course lasted from 3 d to 12 wk, and clinical signs were progressive and associated with multiple suspected neuroanatomic locations in the spinal cord. Magnetic resonance imaging of 6 cases revealed T2-weighted hyperintense lesions with variable contrast enhancement in the spinal cord. All dogs had a presumptive clinical diagnosis of intraparenchymal neoplasia or myelitis based on history, advanced imaging, and cerebrospinal fluid analysis. Euthanasia was elected in all cases because of poor outcome despite anti-inflammatory or immunosuppressive treatment or because of poor prognosis at the time of diagnosis. Tumor location during autopsy ranged from C1 to L6, with no clear predilection for a specific spinal cord segment. The diagnosis was based on histopathology and the immunohistochemistry expression of glial fibrillary acidic protein, oligodendrocyte lineage transcription factor 2, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, neuron-specific enolase, synaptophysin, and Ki-67. Diagnoses consisted of 4 cases of oligodendroglioma, 2 cases of gliomatosis cerebri, and 1 astrocytoma. This case series further defines the clinicopathologic features of canine spinal glioma and highlights the need for comprehensive immunohistochemistry in addition to routine histopathology to confirm the diagnosis of these tumors.

  5. Inherited predisposition to glioma

    PubMed Central

    Kyritsis, Athanassios P.; Bondy, Melissa L.; Rao, Jasti S.; Sioka, Chrissa

    2010-01-01

    In gliomas, germline gene alterations play a significant role during malignant transformation of progenitor glial cells, at least for families with occurrence of multiple cancers or with specific hereditary cancer syndromes. Scientific evidence during the last few years has revealed several constitutive genetic abnormalities that may influence glioma formation. These germline abnormalities are manifested as either gene polymorphisms or hemizygous mutations of key regulatory genes that are involved either in DNA repair or in apoptosis. Such changes, among others, include hemizygous alterations of the neurofibromatosis 1 (NF1) and p53 genes that are involved in apoptotic pathways, and alterations in multiple DNA repair genes such as mismatch repair (MMR) genes, x-ray cross-complementary genes (XRCC), and O6-methylguanine-DNA methyltransferase (MGMT) genes. Subsequent cellular changes include somatic mutations in cell cycle regulatory genes and genes involved in angiogenesis and invasion, leading eventually to tumor formation in various stages. Future molecular diagnosis may identify new genomic regions that could harbor genes important for glioma predisposition and aid in the early diagnosis of these patients and genetic counseling of their families. PMID:20150373

  6. Two Unique Glioma Subtypes Revealed.

    PubMed

    Poh, Alissa

    2016-04-01

    A comprehensive analysis of 1,122 diffuse glioma samples from The Cancer Genome Atlas has revealed two new subtypes of this common brain cancer, with molecular and clinical features that diverge from the norm. The study findings also support the use of DNA methylation profiles to improve glioma classification and treatment.

  7. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance.

    PubMed

    Shahi, M H; Farheen, S; Mariyath, M P M; Castresana, J S

    2016-11-01

    Chemoresistance is a common hurdle for the proper treatment of gliomas. The role of Shh-Gli1 signaling in glioma progression has been reported. However, its role in glioma chemoresistance has not been well studied yet. In this work, we found that Shh-Gli1 signaling regulates the expression of one stem cell marker, BMI1 (B cell-specific Moloney murine leukemia virus), in glioma. Interestingly, we also demonstrated high expression of MRP1 (multi-drug resistance protein 1) in glioma. MRP1 expression was decreased by BMI1 siRNA and Shh-Gli1 cell signaling specific inhibitor GANT61 in our experiments. GANT61 very efficiently inhibited cell colony growth in glioma cell lines, compared to temozolomide. Moreover, a synergic effect of GANT61 and temozolomide drastically decreased the LD50 of temozolomide in the cell colony experiments. Therefore, our results suggest that there is a potential nexus of Shh-Gli1-BMI1 cell signaling to regulate MRP1 and to promote chemoresistance in glioma. Henceforth, our study opens the possibility of facing new targets, Gli1 and BMI1, for the effective treatment of glioma suppression of chemoresistance with adjuvant therapy of GANT61 and temozolomide.

  8. Treatment of malignant glioma using hyperthermia

    PubMed Central

    Sun, Jiahang; Guo, Mian; Pang, Hengyuan; Qi, Jingtao; Zhang, Jinwei; Ge, Yunlong

    2013-01-01

    Thirty pathologically diagnosed patients with grade III–IV primary or recurrent malignant glioma (tumor diameter 3–7 cm) were randomly divided into two groups. The control group underwent conventional radiotherapy and chemotherapy. In the hyperthermia group, primary cases received hyperthermia treatment, and patients with recurrent tumors were treated with hyperthermia in com-bination with radiotherapy and chemotherapy. Hyperthermia treatment was administered using a 13.56-MHz radio frequency hyperthermia device. Electrodes were inserted into the tumor with the aid of a CT-guided stereotactic apparatus and heat was applied for 1 hour. During 3 months after hyperthermia, patients were evaluated with head CT or MRI every month. Gliomas in the hyper-thermia group exhibited growth retardation or growth termination. Necrosis was evident in 80% of the heated tumor tissue and there was a decrease in tumor diameter. Our findings indicate that ra-dio frequency hyperthermia has a beneficial effect in the treatment of malignant glioma. PMID:25206588

  9. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation.

    PubMed

    Hou, Xu; Liu, Yaohua; Liu, Huailei; Chen, Xin; Liu, Min; Che, Hui; Guo, Fei; Wang, Chunlei; Zhang, Daming; Wu, Jianing; Chen, Xiaofeng; Shen, Chen; Li, Chenguang; Peng, Fei; Bi, Yunke; Yang, Zhuowen; Yang, Guang; Ai, Jing; Gao, Xin; Zhao, Shiguang

    2015-03-12

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  10. Altered Resting-State Functional Connectivity in the Hand Motor Network in Glioma Patients.

    PubMed

    Mallela, Arka N; Peck, Kyung K; Petrovich-Brennan, Nicole M; Zhang, Zhigang; Lou, William; Holodny, Andrei I

    2016-08-22

    To examine the functional connectivity of the primary and supplementary motor areas (SMA) in glioma patients using resting-state functional MRI (rfMRI). To correlate rfMRI data with tumor characteristics and clinical information to characterize functional reorganization of resting-state networks (RSN) and the limitations of this method. This study was IRB approved and in compliance with Health Insurance Portability and Accountability Act. Informed consent was waived in this retrospective study. We analyzed rfMRI in 24 glioma patients and 12 age- and sex-matched controls. We compared global activation, interhemispheric connectivity, and functional connectivity in the hand motor RSNs using hemispheric voxel counts, pairwise Pearson correlation, and pairwise total spectral coherence. We explored the relationship between tumor grade, volume, location, and the patient's clinical status to functional connectivity. Global network activation and interhemispheric connectivity were reduced in gliomas (p < 0.05). Functional connectivity between the bilateral motor cortices and the SMA was reduced in gliomas (p < 0.01). High-grade gliomas had lower functional connectivity than low-grade gliomas (p < 0.05). Tumor volume and distance to ipsilateral motor cortex demonstrated no association with functional connectivity loss. Functional connectivity loss is associated with motor deficits in low-grade gliomas, but not in high-grade gliomas. Global reduction in resting-state connectivity in areas distal to tumor suggests that radiological tumor boundaries underestimate areas affected by glioma. Association between motor deficits and rfMRI suggests that rfMRI may accurately reflect functional changes in low-grade gliomas. Lack of association between rfMRI and clinical motor deficits implies decreased sensitivity of rfMRI in high-grade gliomas, possibly due to neurovascular uncoupling.

  11. Glioma sensitive or chemoresistant to temozolomide differentially modulate macrophage protumor activities.

    PubMed

    Azambuja, Juliana H; da Silveira, Elita F; de Carvalho, Taíse R; Oliveira, Pathise S; Pacheco, Simone; do Couto, Carlus T; Beira, Fátima T; Stefanello, Francieli M; Spanevello, Rosélia M; Braganhol, Elizandra

    2017-11-01

    Glioblastomas are the most devastating brain tumor characterized by chemoresistance development and poor prognosis. Macrophages are a component of tumor microenvironment related to glioma malignancy. The relation among inflammation, innate immunity and cancer is accepted; however, molecular and cellular mechanisms mediating this relation and chemoresistance remain unresolved. Here we evaluated whether glioma sensitive or resistant to temozolomide (TMZ) modulate macrophage polarization and inflammatory pathways associated. The impact of glioma-macrophage crosstalk on glioma proliferation was also investigated. GL261 glioma chemoresistance was developed by exposing cells to increasing TMZ concentrations over a period of 6months. Mouse peritoneal macrophages were exposed to glioma-conditioned medium or co-cultured directly with glioma sensitive (GL) or chemoresistant (GLTMZ). Macrophage polarization, in vitro and in vivo glioma proliferation, redox parameters, ectonucleotidase activity and ATP cytotoxicity were performed. GLTMZ cells were more effective than GL in induce M2-like macrophage polarization and in promote a strong immunosuppressive environment characterized by high IL-10 release and increased antioxidant potential, which may contribute to glioma chemoresistance and proliferation. Interestingly, macrophage-GLTMZ crosstalk enhanced in vitro and in vivo proliferation of chemoresistant cells, decreased ectonucleotidase activities, which was followed by increased macrophage sensitivity to ATP induced death. Results suggest a differential macrophage modulation by GLTMZ cells, which may favor the maintenance of immunosuppressive tumor microenvironment and glioma proliferation. The induction of immunosuppressive environment and macrophage education by chemoresistant gliomas may be important for tumor recovery after chemotherapy and could be considered to overcome chemoresistance development. Copyright © 2017. Published by Elsevier B.V.

  12. Carboxyl terminus of Hsp70-interacting protein (CHIP) contributes to human glioma oncogenesis.

    PubMed

    Xu, Tao; Zhou, Quan; Zhou, Jingxu; Huang, Yan; Yan, Yong; Li, Weiqing; Wang, Chunlin; Hu, Guohan; Lu, Yicheng; Chen, Juxiang

    2011-05-01

    Malignant glioma is the most common adult primary brain tumor, and the mechanism of its oncogenesis is poorly understood. Growing evidence has shown that E3 ubiquitin ligases can promote tumorgenesis of glioma. CHIP is an E3 ubiquitin ligase that can induce ubiquitylation and degradation of many tumor-related proteins, and it has been reported to act as an upstream regulator in breast cancer; however, its role in human gliomas has not been evaluated yet. In this study, the expression of CHIP in glioma tissues was studied using immunohistochemistry. CHIP expression in glioma cells was studied by real-time RT-PCR, western blot and double immunofluorescence staining. The role of CHIP in glioma oncogenesis was investigated by lentivirus-mediated RNA interference (RNAi) and overexpression in vitro and in vivo. We showed CHIP expression in glioma samples was related to tumor grades, with stronger staining in high-grade gliomas than in low-grade gliomas. Knocking down of CHIP suppressed proliferation, colony formation of U251 and U87 glioma cells, while overexpression of CHIP resulted in enhanced proliferation and colony formation in vitro. In a nude mouse xenograft model, intratumoral injection of CHIP RNAi lentivirus significantly delayed tumor growth. In contrast, overexpression of CHIP resulted in enhanced tumor growth in vivo. After CHIP RNAi, both survivin mRNA and protein were decreased, while CHIP overexpression induced increased mRNA and protein levels of survivin. This is the first study demonstrating CHIP contributes to oncogenesis of glioma. © 2011 Japanese Cancer Association.

  13. Restoring Soluble Guanylyl Cyclase Expression and Function Blocks the Aggressive Course of GliomaS⃞

    PubMed Central

    Zhu, Haifeng; Li, Jessica Tao; Zheng, Fang; Martin, Emil; Kots, Alexander Y.; Krumenacker, Joshua S.; Choi, Byung-Kwon; McCutcheon, Ian E.; Weisbrodt, Norman; Bögler, Oliver; Murad, Ferid

    2011-01-01

    The NO and cGMP signaling pathways are of broad physiological and pathological significance. We compared the NO/soluble guanylyl cyclase (sGC)/cGMP pathway in human glioma tissues and cell lines with that of healthy control samples and demonstrated that sGC expression is significantly lower in glioma preparations. Our analysis of GEO databases (National Cancer Institute) further revealed a statistically significant reduction of sGC transcript levels in human glioma specimens. On the other hand, the expression levels of particulate (membrane) guanylyl cyclases (pGC) and cGMP-specific phosphodiesterase (PDE) were intact in the glioma cells that we have tested. Pharmacologically manipulating endogenous cGMP generation in glioma cells through either stimulating pGC by ANP/BNP, or blocking PDE by 3-isobutyl-1-methylxanthine/zaprinast caused significant inhibition of proliferation and colony formation of glioma cells. Genetically restoring sGC expression also correlated inversely with glioma cells growth. Orthotopic implantation of glioma cells transfected with an active mutant form of sGC (sGCα1β1Cys105) in athymic mice increased the survival time by 4-fold over the control. Histological analysis of xenografts overexpressing α1β1Cys105 sGC revealed changes in cellular architecture that resemble the morphology of normal cells. In addition, a decrease in angiogenesis contributed to glioma inhibition by sGC/cGMP therapy. Our study proposes the new concept that suppressed expression of sGC, a key enzyme in the NO/cGMP pathway, may be associated with an aggressive course of glioma. The sGC/cGMP signaling-targeted therapy may be a favorable alternative to chemotherapy and radiotherapy for glioma and perhaps other tumors. PMID:21908708

  14. The role of drebrin in glioma migration and invasion

    SciTech Connect

    Terakawa, Yuzo; Agnihotri, Sameer; Golbourn, Brian; Nadi, Mustafa; Sabha, Nesrin; Smith, Christian A.; Croul, Sidney E.; Rutka, James T.

    2013-02-15

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.

  15. Reproductive factors and risk of glioma in women.

    PubMed

    Huang, Kui; Whelan, Elizabeth A; Ruder, Avima M; Ward, Elizabeth M; Deddens, James A; Davis-King, Karen E; Carreón, Tania; Waters, Martha A; Butler, Mary Ann; Calvert, Geoffrey M; Schulte, Paul A; Zivkovich, Zachary; Heineman, Ellen F; Mandel, Jack S; Morton, Roscoe F; Reding, Douglas J; Rosenman, Kenneth D

    2004-10-01

    Glioma is the most common primary malignant brain tumor in adults, responsible for 75% of adult primary malignant brain tumors, yet aside from its association with ionizing radiation, its etiology is poorly understood. Sex differences in brain tumor incidence suggest that hormonal factors may play a role in the etiology of these tumors, but few studies have examined this association in detail. The objective of this study was to explore the role of reproductive factors in the etiology of glioma in women. As part of a population-based case-control study, histologically confirmed primary glioma cases (n = 341 women) diagnosed between January 1, 1995 and January 31, 1997 were identified through clinics and hospitals in four Midwest U.S. states. Controls (n = 527 women) were randomly selected from lists of licensed drivers and Health Care Finance Administration enrollees. In-person interviews with subjects (81%) or their proxies (19%) collected reproductive history and other exposure information. Glioma risk increased with older age at menarche (P for trend = 0.009) but only among postmenopausal women. Compared with women who never breast-fed, women who breast-fed >18 months over their lifetime were at increased risk of glioma (odds ratio, 1.8; 95% confidence interval, 1.1-2.9). Women who reported using hormones for symptoms of menopause had a decreased risk of glioma compared with women who never used such hormones (odds ratio, 0.7; 95% confidence interval, 0.5-1.1). These results support the hypothesis that reproductive hormones play a role in the etiology of glioma among women.

  16. Silencing of WNK2 is associated with upregulation of MMP2 and JNK in gliomas

    PubMed Central

    Costa, Angela Margarida; Pinto, Filipe; Martinho, Olga; Oliveira, Maria José; Jordan, Peter; Reis, Rui Manuel

    2015-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade extracellular matrix (ECM), thus assisting invasion. Upregulation of MMPs, frequently reported in gliomas, is associated with aggressive behavior. WNK2 is a tumor suppressor gene expressed in normal brain, and silenced by promoter methylation in gliomas. Patients without WNK2 exhibited poor prognosis, and its downregulation was associated with increased glioma cell invasion. Here we showed that MMP2 expression and activity are increased in glioma cell lines that do not express WNK2. Also, WNK2 inhibited JNK, a process associated with decreasing levels of MMP2. Thus, WNK2 promoter methylation and silencing in gliomas is associated with increased JNK activation and MMP2 expression and activity, thus explaining in part tumor cell invasion potential. PMID:25596741

  17. Smoothened is a poor prognosis factor and a potential therapeutic target in glioma

    PubMed Central

    Tu, Yiming; Niu, Mingshan; Xie, Peng; Yue, Chenglong; Liu, Ning; Qi, Zhenglei; Gao, Shangfeng; Liu, Hongmei; Shi, Qiong; Yu, Rutong; Liu, Xuejiao

    2017-01-01

    Malignant gliomas are associated with a high mortality rate. Thus, there is an urgent need for the development of novel targeted therapeutics. Aberrant Hedgehog signaling has been directly linked to glioma. GDC-0449 is a novel small molecule inhibitor of Hedgehog signaling that blocks the activity of smoothened (Smo). In this study, we evaluated the in vitro and in vivo effects of the smoothened inhibitor GDC-0449 on cell proliferation in human gliomas. We found that high expression of smoothened in glioma is a predictor of short overall survival and poor patient outcome. Our data suggest that GDC-0449 significantly inhibits the proliferation of glioma cells by inducing cell cycle arrest at the G1 phase. Our results demonstrate that GDC-0449 can effectively inhibit the migration and invasion of glioma cells. Furthermore, GDC-0449 treatment significantly suppressed glioma cell xenograft tumorigenesis. Mechanistically, GDC-0449 treatment markedly decreases the expression levels of key Hedgehog pathway component genes (Shh, Patched-1, Patched-2, smoothened, Gli1 and Gli2). These results indicate that GDC-0449 works through targeting the Hedgehog pathway. Taken together, our study suggests that smoothened could be used as a prognostic marker and molecular therapeutic target for glioma. PMID:28195165

  18. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma.

    PubMed

    Qin, Elizabeth Y; Cooper, Dominique D; Abbott, Keene L; Lennon, James; Nagaraja, Surya; Mackay, Alan; Jones, Chris; Vogel, Hannes; Jackson, Peter K; Monje, Michelle

    2017-08-24

    The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The epidemiology of glioma in adults: a “state of the science” review

    PubMed Central

    Ostrom, Quinn T.; Bauchet, Luc; Davis, Faith G.; Deltour, Isabelle; Fisher, James L.; Langer, Chelsea Eastman; Pekmezci, Melike; Schwartzbaum, Judith A.; Turner, Michelle C.; Walsh, Kyle M.; Wrensch, Margaret R.; Barnholtz-Sloan, Jill S.

    2014-01-01

    Gliomas are the most common primary intracranial tumor, representing 81% of malignant brain tumors. Although relatively rare, they cause significant mortality and morbidity. Glioblastoma, the most common glioma histology (∼45% of all gliomas), has a 5-year relative survival of ∼5%. A small portion of these tumors are caused by Mendelian disorders, including neurofibromatosis, tuberous sclerosis, and Li-Fraumeni syndrome. Genomic analyses of glioma have also produced new evidence about risk and prognosis. Recently discovered biomarkers that indicate improved survival include O6-methylguanine-DNA methyltransferase methylation, isocitrate dehydrogenase mutation, and a glioma cytosine–phosphate–guanine island methylator phenotype. Genome-wide association studies have identified heritable risk alleles within 7 genes that are associated with increased risk of glioma. Many risk factors have been examined as potential contributors to glioma risk. Most significantly, these include an increase in risk by exposure to ionizing radiation and a decrease in risk by history of allergies or atopic disease(s). The potential influence of occupational exposures and cellular phones has also been examined, with inconclusive results. We provide a “state of the science” review of current research into causes and risk factors for gliomas in adults. PMID:24842956

  20. O6.09PROSTAGLANDIN E RECEPTOR-4 ACTIVATION REGULATES TRYPTOPHAN METABOLISM IN HUMAN MALIGNANT GLIOMAS

    PubMed Central

    Ochs, K.; Ott, M.; Rauschenbach, K.J.; Sahm, F.; Opitz, C.A.; von Deimling, A.; Wick, W.; Platten, M.

    2014-01-01

    Malignant gliomas generate a local immunosuppressive microenvironment as well as systemic immunosuppression. Tryptophan-2,3-dioxygenase (TDO)-mediated tryptophan metabolism and the production of immunosuppressive prostaglandins relevantly contribute to this inhibition of anti-glioma immune responses. We now connect these two critical immunosuppressive pathways by demonstrating that prostaglandins enhance TDO expression and enzymatic activity in malignant gliomas via activation of prostaglandin E receptor-4 (EP4). Stimulation with prostaglandin E2 (PGE2) concentration-dependently upregulates TDO-mediated kynurenine release in human glioma cell lines, while knockdown of the PGE2 receptor EP4 inhibits TDO expression and activity. In tissue of human malignant gliomas expression of the PGE2-producing enzyme cyclooxygenase-2 (COX-2) and its receptor EP4 are associated with TDO expression both on transcript and protein level. Of clinical relevance, high expression of EP4 correlates with poor survival in patients with gliomas of the WHO grades III and IV. Importantly, treatment of glioma cells with an EP4 inhibitor decreased TDO expression and activity. In summary targeting EP4 may inhibit both immunosuppressive COX-2 signaling as well as tryptophan degradation and thus could provide a novel immunotherapeutic avenue for the treatment of malignant gliomas.

  1. The epidemiology of glioma in adults: a "state of the science" review.

    PubMed

    Ostrom, Quinn T; Bauchet, Luc; Davis, Faith G; Deltour, Isabelle; Fisher, James L; Langer, Chelsea Eastman; Pekmezci, Melike; Schwartzbaum, Judith A; Turner, Michelle C; Walsh, Kyle M; Wrensch, Margaret R; Barnholtz-Sloan, Jill S

    2014-07-01

    Gliomas are the most common primary intracranial tumor, representing 81% of malignant brain tumors. Although relatively rare, they cause significant mortality and morbidity. Glioblastoma, the most common glioma histology (∼45% of all gliomas), has a 5-year relative survival of ∼5%. A small portion of these tumors are caused by Mendelian disorders, including neurofibromatosis, tuberous sclerosis, and Li-Fraumeni syndrome. Genomic analyses of glioma have also produced new evidence about risk and prognosis. Recently discovered biomarkers that indicate improved survival include O⁶-methylguanine-DNA methyltransferase methylation, isocitrate dehydrogenase mutation, and a glioma cytosine-phosphate-guanine island methylator phenotype. Genome-wide association studies have identified heritable risk alleles within 7 genes that are associated with increased risk of glioma. Many risk factors have been examined as potential contributors to glioma risk. Most significantly, these include an increase in risk by exposure to ionizing radiation and a decrease in risk by history of allergies or atopic disease(s). The potential influence of occupational exposures and cellular phones has also been examined, with inconclusive results. We provide a “state of the science” review of current research into causes and risk factors for gliomas in adults.

  2. Smoothened is a poor prognosis factor and a potential therapeutic target in glioma.

    PubMed

    Tu, Yiming; Niu, Mingshan; Xie, Peng; Yue, Chenglong; Liu, Ning; Qi, Zhenglei; Gao, Shangfeng; Liu, Hongmei; Shi, Qiong; Yu, Rutong; Liu, Xuejiao

    2017-02-14

    Malignant gliomas are associated with a high mortality rate. Thus, there is an urgent need for the development of novel targeted therapeutics. Aberrant Hedgehog signaling has been directly linked to glioma. GDC-0449 is a novel small molecule inhibitor of Hedgehog signaling that blocks the activity of smoothened (Smo). In this study, we evaluated the in vitro and in vivo effects of the smoothened inhibitor GDC-0449 on cell proliferation in human gliomas. We found that high expression of smoothened in glioma is a predictor of short overall survival and poor patient outcome. Our data suggest that GDC-0449 significantly inhibits the proliferation of glioma cells by inducing cell cycle arrest at the G1 phase. Our results demonstrate that GDC-0449 can effectively inhibit the migration and invasion of glioma cells. Furthermore, GDC-0449 treatment significantly suppressed glioma cell xenograft tumorigenesis. Mechanistically, GDC-0449 treatment markedly decreases the expression levels of key Hedgehog pathway component genes (Shh, Patched-1, Patched-2, smoothened, Gli1 and Gli2). These results indicate that GDC-0449 works through targeting the Hedgehog pathway. Taken together, our study suggests that smoothened could be used as a prognostic marker and molecular therapeutic target for glioma.

  3. Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas.

    PubMed

    Bomben, Valerie C; Turner, Kathryn L; Barclay, Tia-Tabitha C; Sontheimer, Harald

    2011-07-01

    The majority of malignant primary brain tumors are gliomas, derived from glial cells. Grade IV gliomas, Glioblastoma multiforme, are extremely invasive and the clinical prognosis for patients is dismal. Gliomas utilize a number of proteins and pathways to infiltrate the brain parenchyma including ion channels and calcium signaling pathways. In this study, we investigated the localization and functional relevance of transient receptor potential canonical (TRPC) channels in glioma migration. We show that gliomas are attracted in a chemotactic manner to epidermal growth factor (EGF). Stimulation with EGF results in TRPC1 channel localization to the leading edge of migrating D54MG glioma cells. Additionally, TRPC1 channels co-localize with the lipid raft proteins, caveolin-1 and β-cholera toxin, and biochemical assays show TRPC1 in the caveolar raft fraction of the membrane. Chemotaxis toward EGF was lost when TRPC channels were pharmacologically inhibited or by shRNA knockdown of TRPC1 channels, yet without affecting unstimulated cell motility. Moreover, lipid raft integrity was required for gliomas chemotaxis. Disruption of lipid rafts not only impaired chemotaxis but also impaired TRPC currents in whole cell recordings and decreased store-operated calcium entry as revealed by ratiomeric calcium imaging. These data indicated that TRPC1 channel association with lipid rafts is essential for glioma chemotaxis in response to stimuli, such as EGF.

  4. MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT

    SciTech Connect

    Li, Zhen; Liu, Yun-hui; Diao, Hong-yu; Ma, Jun; Yao, Yi-long

    2015-12-25

    In this study, we analyzed the functional role of miR-661 in glioma cell proliferation, migration and invasion. We found that overexpression of miR-661 obviously suppressed the proliferation, migration and invasion of glioma cells. MiRNA target prediction algorithms implied that hTERT is a candidate target gene for miR-661. A fluorescent reporter assay confirmed that miR-661 could lead to hTERT gene silencing by recognizing and specifically binding to the predicted site of the hTERT mRNA 3′ untranslated region (3′UTR) specifically. Furthermore, hTERT knockdown significantly decreased the growth and viability of glioma cells. These results indicate that miR-661 can inhibit glioma cell proliferation, migration and invasion by targeting hTERT. - Highlights: • MiR-661 was downregulated in glioma tissues and functional as a tumor suppressor. • MiR-661 modulates cell proliferation, invasion and migration of glioma cells. • MiR-661 directly target hTERT in glioma cells. • MiR-661 inhibits glioma cell tumorgenesis by targeting hTERT.

  5. Glutamine Metabolism in Gliomas.

    PubMed

    Szeliga, Monika; Albrecht, Jan

    2016-01-01

    By histological, morphological criteria, and malignancy, brain tumors are classified by WHO into grades I (most benign) to IV (highly malignant), and gliomas are the most frequently occurring class throughout the grades. Similar to peripheral tumors, the growth of glia-derived tumor cells largely depends on glutamine (Gln), which is vividly taken up by the cells, using mostly ASCT2 and SN1 as Gln carriers. Tumor growth-promoting effects of Gln are associated with its phosphate-activated glutaminase (GA) (specifically KGA)-mediated degradation to glutamate (Glu) and/or with its entry to the energy- and intermediate metabolite-generating pathways related to the tricarboxylic acid cycle. However, a subclass of liver-type GA are absent in glioma cells, a circumstance which allows phenotype manipulations upon their transfection to the cells. Gln-derived Glu plays a major role in promoting tumor proliferation and invasion. Glu is relatively inefficiently recycled to Gln and readily leaves the cells by exchange with the extracellular pool of the glutathione (GSH) precursor Cys mediated by xc- transporter. This results in (a) cell invasion-fostering interaction of Glu with ionotropic Glu receptors in the surrounding tissue, (b) intracellular accumulation of GSH which increases tumor resistance to radio- and chemotherapy.

  6. Occupation and adult gliomas.

    PubMed

    Carozza, S E; Wrensch, M; Miike, R; Newman, B; Olshan, A F; Savitz, D A; Yost, M; Lee, M

    2000-11-01

    Lifetime job histories from a population-based, case-control study of gliomas diagnosed among adults in the San Francisco Bay area between August 1991 and April 1994 were evaluated to assess occupational risk factors. Occupational data for 476 cases and 462 controls were analyzed, with adjustment for age, gender, education, and race. Imprecise increased risks were observed for physicians and surgeons (odds ratio (OR) = 3.5, 95% confidence interval (CI): 0.7, 17.6), artists (OR = 1.9, 95% CI: 0.5, 6.5), foundry and smelter workers (OR = 2.6, 95% CI: 0.5, 13.1), petroleum and gas workers (OR = 4.9, 95% CI: 0.6, 42.2), and painters (OR = 1.6, 95% CI: 0.5, 4.9). Legal and social service workers, shippers, janitors, motor vehicle operators, and aircraft operators had increased odds ratios only with longer duration of employment. Physicians and surgeons, foundry and smelter workers, petroleum and gas workers, and painters showed increased risk for both astrocytic and nonastrocytic tumors. Artists and firemen had increased risk for astrocytic tumors only, while messengers, textile workers, aircraft operators, and vehicle manufacturing workers showed increased risk only for nonastrocytic tumors. Despite study limitations, including small numbers for many of the occupational groups, a high percentage of proxy respondents among cases, and lack of specific exposure information, associations were observed for several occupations previously reported to be at higher risk for brain tumors generally and gliomas specifically.

  7. Boldine: a potential new antiproliferative drug against glioma cell lines.

    PubMed

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent.

  8. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  9. Imaging of adult brainstem gliomas.

    PubMed

    Purohit, Bela; Kamli, Ali A; Kollias, Spyros S

    2015-04-01

    Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as 18F-fluoro-ethyl-tyrosine positron emission tomography (18F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. [Controversy on treatments for gliomas].

    PubMed

    Nomura, K

    1998-09-01

    Gliomas are representative primary malignant brain tumors, and with such tumors it is difficult to define the advanced stage. If the advanced stage indicates no curability by surgery alone, most gliomas would belong to this criterion because of their poor prognosis without any completely effective treatment. In this sense, no one could show a standard therapy to treat these unfortunate patients, for example, patients with glioblastoma, they could permit only 1 year survived even they had any applicable treatments to the lesions, these days. Treatment for low-grade gliomas has been most controversial for a long time, and no standard treatments have been determined so far. In this paper, as the treatment of low-grade gliomas it was intended to report what must be done for this patient and the present results of opinion survey for the treatment of gliomas which was done to professors of 80 institutes, from schools of medicine at all universities and medical colleges in Japan. For high-grade gliomas, some effectiveness of radiation therapy was disclosed as well as chemotherapy from recent papers. Gene therapy was also discussed briefly, its present status and future.

  11. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    SciTech Connect

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-07-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  12. Melatonergic system-based two-gene index is prognostic in human gliomas.

    PubMed

    Kinker, Gabriela S; Oba-Shinjo, Sueli M; Carvalho-Sousa, Claudia E; Muxel, Sandra M; Marie, Suely K N; Markus, Regina P; Fernandes, Pedro A

    2016-01-01

    Gliomas, the most common primary brain tumors in adults, are classified into four malignancy grades according to morphological features. Recent studies have shown that melatonin treatment induces cytotoxicity in glioma-initiating cells and reduces the invasion and migration of glioma cell lines, inhibiting the nuclear factor κB (NFκB) oncopathway. Given that C6 rat glioma cells produce melatonin, we investigated the correlation between the capacity of gliomas to synthesize/metabolize melatonin and their overall malignancy. We first characterized the melatonergic system of human gliomas cell lines with different grades of aggressiveness (HOG, T98G, and U87MG) and demonstrated that glioma-synthesized melatonin exerts an autocrine antiproliferative effect. Accordingly, the sensitivity to exogenous melatonin was higher for the most aggressive cell line, U87MG, which synthesized/accumulated less melatonin. Using The Cancer Genome Atlas RNAseq data of 351 glioma patients, we designed a predictive model of the content of melatonin in the tumor microenvironment, the ASMT:CYP1B1 index, combining the gene expression levels of melatonin synthesis and metabolism enzymes. The ASMT:CYP1B1 index negatively correlated with tumor grade, as well as with the expression of pro-proliferation and anti-apoptotic NFκB target genes. More importantly, the index was a grade- and histological type-independent prognostic factor. Even when considering only high-grade glioma patients, a low ASMT:CYP1B1 value, which suggests decreased melatonin and enhanced aggressiveness, was strongly associated with poor survival. Overall, our data reveal the prognostic value of the melatonergic system of gliomas and provide insights into the therapeutic role of melatonin.

  13. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma

    SciTech Connect

    Chen, Xin; Hao, Bin; Liu, Ying; Dai, Dongwei; Han, Guosheng; Li, Yanan; Wu, Xi; Zhou, Xiaoping; Yue, Zhijian; Wang, Laixing; Cao, Yiqun Liu, Jianmin

    2014-03-28

    Highlights: • PCBP2 expression is over-expressed in human glioma tissues and cell lines. • SIRT6 is decreased in glioma and correlated with PCBP2. • SIRT6 inhibits PCBP2 expression by deacetylating H3K9. • SIRT6 inhibits glioma growth in vitro and in vivo. - Abstract: More than 80% of tumors that occur in the brain are malignant gliomas. The prognosis of glioma patients is still poor, which makes glioma an urgent subject of cancer research. Previous evidence and our present data show that PCBP2 is over-expressed in human glioma tissues and predicts poor outcome. However, the mechanism by which PCBP2 is regulated in glioma remains elusive. We find that SIRT6, one of the NAD{sup +}-dependent class III deacetylase SIRTUINs, is down-regulated in human glioma tissues and that the level of SIRT6 is negatively correlated with PCBP2 level while H3K9ac enrichment on the promoter of PCBP2 is positively correlated with PCBP2 expression. Furthermore, we identify PCBP2 as a target of SIRT6. We demonstrate that PCBP2 expression is inhibited by SIRT6, which depends upon deacetylating H3K9ac. Finally, our results reveal that SIRT6 inhibits glioma cell proliferation and colony formation in vitro and glioma cell growth in vivo in a PCBP2 dependent manner. In summary, our findings implicate that SIRT6 inhibits PCBP2 expression through deacetylating H3K9ac and SIRT6 acts as a tumor suppressor in human glioma.

  14. Introduction of novel semiquantitative evaluation of (99m)Tc-MIBI SPECT before and after treatment of glioma.

    PubMed

    Deltuva, Vytenis Pranas; Jurkienė, Nemira; Kulakienė, Ilona; Bunevičius, Adomas; Matukevičius, Algimantas; Tamašauskas, Arimantas

    2012-01-01

    BACKGROUND AND OBJECTIVE. There is a need for objective semiquantitative indexes for the evaluation of results of single-photon emission tomography (SPECT) in patients with brain glioma. The aim of this study was to validate the total size index (TSI) and total intensity index (TII) based on technetium-99m-methoxyisobutylisonitrile ((99m)Tc-MIBI) SPECT scans to discriminate the patients with high-grade glioma versus low-grade glioma and to evaluate the changes of viable glioma tissue by the means of TSI and TII after surgery and after radiation treatment. MATERIAL AND METHODS. Thirty-two patients (mean age, 55 years [SD, 18]; 20 men) underwent a (99m)Tc-MIBI-SPECT scan before surgery. Of these patients, 27 underwent a postoperative (99m)Tc-MIBI-SPECT scan and 7 patients with grade IV glioma underwent a third (99m)Tc-MIBI-SPECT scan after radiation treatment. TII that corresponds to the area and intensity of tracer uptake and TSI that corresponds to the area of tracer uptake were calculated before surgery, after surgery, and after radiation treatment. RESULTS. The TII and TSI were found to be valid in discriminating the patients with high-grade versus low-grade glioma with optimal cutoff values of 3.0 and 2.5, respectively. Glioma grade correlated with the preoperative TSI score (r=0.76, P<0.001) and preoperative TII score (r=0.64, P<0.001). There was a significant decrease in the TII and TSI after surgery in patients with grade IV glioma. After radiation treatment, there was a significant increase in the TII in patients with grade IV glioma. CONCLUSIONS. TSI and TII were found to be reliable in discriminating the patients with high-grade versus low-grade glioma and allowed for the semiquantitative evaluation of change in viable glioma tissue after surgery and after radiation treatment in patients with grade IV glioma.

  15. Overexpression of TIP30 inhibits the growth and invasion of glioma cells

    PubMed Central

    HU, YINGYING; CHEN, FENGSHENG; LIU, FEIYE; LIU, XINHUI; HUANG, NA; CAI, XIAOLI; SUN, YI; LI, AIMIN; LUO, RONGCHENG

    2016-01-01

    Glioma is an aggressive malignancy with limited effective treatment and poor prognosis. Therefore, the identification of novel prognostic markers and effective therapeutic targets is important for the treatment of human glioma. TIP30 is a tumor suppressor involved in the regulation of numerous cellular processes, including tumor cell growth, metastasis, and angiogenesis in various human cancers. The present study investigated whether Tat-interacting protein (TIP)30 was able to regulate tumorigenesis and predict the clinical outcome of patients with glioma. A total of 92 human glioma tissue samples and 10 normal brain tissue samples were examined by immunostaining. The results indicated that the expression levels of TIP30 significantly decreased in glioma tissue samples. as compared with normal brain tissue samples. Furthermore, TIP30 expression was inversely correlated with tumor histological classification, pathological grade, tumor size, and epidermal growth factor receptor (EGFR) expression; however, no association was detected between TIP30 expression and patient age and gender. In addition, patients with positive TIP30 expression exhibited significantly longer median overall survival rates, as compared with those with negative TIP30 expression. In vitro experiments revealed that upregulation of TIP30 expression by lentiviral vector transfection inhibited cell growth and induced cell apoptosis, as determined by MTT assay and Annexin V-fluorescein isothiocyanate staining, respectively. In addition, TIP30 expression markedly attenuated cell migration and invasion, as determined by wound healing and transwell assays. Upregulation of TIP30 expression in glioma cells decreased the expression levels of EGFR and its associated downstream molecules phosphorylated extracellular signal-regulated kinases (ERK) and phosphorylated AKT, as determined by western blot analysis. The results of the present study indicated that TIP30 may suppress oncogenesis and glioma

  16. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    NASA Astrophysics Data System (ADS)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-01

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixed in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  17. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    SciTech Connect

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixed in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  18. Rehabilitation of patients with glioma.

    PubMed

    Vargo, Mary; Henriksson, Roger; Salander, Pär

    2016-01-01

    Disabling sequelae occur in a majority of patients diagnosed with brain tumor, including glioma, such as cognitive deficits, weakness, and visual perceptual changes. Often, multiple impairments are present concurrently. Healthcare staff must be aware of the "biographic disruption" the patient with glioma has experienced. While prognostic considerations factor into rehabilitation goals and expectations, regardless of prognosis the treatment team must offer cohesive support, facilitating hope, function, and quality of life. Awareness of family and caregiver concerns plays an important role in the overall care. Inpatient rehabilitation, especially after surgical resection, has been shown to result in functional improvement and homegoing rates on a par with individuals with other neurologic conditions, such as stroke or traumatic brain injury. Community integration comprises a significant element of life satisfaction, as has been shown in childhood glioma survivors. Employment is often affected by the glioma diagnosis, but may be ameliorated, when appropriate, by addressing modifiable factors such as depression, fatigue, or sleep disturbance, or by workplace accommodations. Further research is needed into many facets of rehabilitation in the setting of glioma, including establishing better care models for consistently identifying and addressing functional limitations in this population, measuring outcomes of various levels of rehabilitation care, identifying optimal physical activity strategies, delineating the long-term effects of rehabilitation interventions, and exploring impact of rehabilitation interventions on caregiver burden. The effective elements of cognitive rehabilitation, including transition of cognitive strategies to everyday living, need to be better defined.

  19. Isocitrate dehydrogenase mutations in gliomas

    PubMed Central

    Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  20. Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation

    PubMed Central

    Ma, Ji-wei; Zhang, Yong; Ye, Ji-cheng; Li, Ru; Wen, Yu-Lin; Huang, Jian-xian; Zhong, Xue-yun

    2017-01-01

    Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase. PMID:27829269

  1. Oncolytic virotherapy for malignant glioma: translating laboratory insights into clinical practice.

    PubMed

    Auffinger, Brenda; Ahmed, Atique U; Lesniak, Maciej S

    2013-01-01

    Glioblastoma multiforme, one of the most common and aggressive brain tumors in adults, is highly resistant to currently available therapies and often recurs. Due to its poor prognosis and difficult management, there is an urgent need for the development and translation of new anti-glioma therapeutic approaches into the clinic. In this context, oncolytic virotherapy arises as an exciting treatment option for glioma patients. These natural or genetically engineered viruses are able to effectively infect cancer cells, inducing a specific anti-tumor cytotoxic effect. In addition, some viruses have been redesigned to modulate glioma microenvironment, to express cytokines to boost a systemic anti-glioma immune response and to incorporate angiostatic genes to decrease glioma vasculature. Although recent clinical trials have confirmed the safety of oncolytic virotherapies in the brain, their moderate clinical efficacy has not yet matched the encouraging preclinical laboratory results. In this review, we will discuss the leading anti-glioma virotherapy approaches that are presently under preclinical and clinical evaluation. We will also review different delivery methods, in vivo virus behavior, fate, replication, intratumoral spread, activation of anti-tumor immune response, and targeting of glioma stem cells. We will focus on the advantages and limitations of each therapeutic approach and how to overcome these hurdles to effectively translate exciting laboratory results into promising clinical trials.

  2. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  3. Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth

    PubMed Central

    Wang, Zhihao; Yang, Chunxu; Ouyang, Wen; Zhou, Fuxiang; Zhou, Yunfeng; Xie, Conghua

    2016-01-01

    β-catenin is a crucial signal transduction molecule in the Wnt/β-catenin signal pathway, and increased β-catenin expression has consistently been found in high grade gliomas. However, the mechanisms responsible for β-catenin overexpression have remained elusive. Here we show that the deubiquitinase USP9X stabilizes β-catenin and thereby promotes high grade glioma cell growth. USP9X binds β-catenin and removes the Lys 48-linked polyubiquitin chains that normally mark β-catenin for proteasomal degradation. Increased USP9X expression correlates with increased β-catenin protein in high grade glioma tissues. Moreover, patients with high grade glioma overexpressing USP9X have a poor prognosis. Knockdown of USP9X suppresses cell proliferation, inhibits G1/S phase conversion, and induces apoptosis in U251 and A172 cells. Interestingly, c-Myc and cyclinD1, which are important downstream target genes in the Wnt/β-catenin signal pathway, also show decreased expression in cells with siRNA-mediated down-regulation of USP9X. Down-regulation of USP9X also consistently inhibits the tumorigenicity of primary glioma cells in vivo. In summary, these results indicate that USP9X stabilizes β-catenin and activates Wnt/β-catenin signal pathway to promote glioma cell proliferation and survival. USP9X could also potentially be a novel therapeutic target for high grade gliomas. PMID:27783990

  4. Dobesilate diminishes activation of the mitogen - activated protein kinase ERK1/2 in glioma cells

    PubMed Central

    Cuevas, P; Diaz-González, Diana; Garcia-Martin-Córdova, C; Sánchez, I; Lozano, Rosa Maria; Giménez-Gallego, G; Dujovny, M

    2006-01-01

    Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management. PMID:16563234

  5. MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells.

    PubMed

    Li, Ping; Lu, Xiaoming; Wang, Yingyi; Sun, Lihua; Qian, Chunfa; Yan, Wei; Liu, Ning; You, Yongping; Fu, Zhen

    2010-11-01

    MicroRNAs regulate self renewal and differentiation of cancer stem cells. There, we sought to identify the expression of miR-181b in glioma stem cells and investigate the biological effect of miR-181b on glioma stem cells in this study. MiR-181b expression was measured by real-time PCR in glioma stem cells isolated from U87 cells by FACS sorting. After miR-181b was overexpressed in U87 glioma stem cells by miR-181b lentiviral expression vector and/or treatment of temozolomide, secondary neurosphere assay, soft agar colony assay and MTT assay were performed. Compared with U87 cells, the expression of miR-181b was significantly decreased in U87 glioma stem cells. Overexpression of miR-181b decreased neurosphere formation by U87 glioma stem cells in vitro and suppressed colony formation in soft agar, and the cell growth inhibition rates increased in a time-dependent manner in U87 glioma stem cells infected with miR-181b lentivirus. Furthermore, miR-181b had a synergistic effect on temozolomide-induced inhibition of secondary neurosphere and soft agar colony, and on cell growth inhibition rates. MiR-181b functions as a tumor suppressor that suppresses proliferation and reduces chemoresistance to temozolomide in glioma stem cells.

  6. Microscopic DTI accurately identifies early glioma cell migration: correlation with multimodal imaging in a new glioma stem cell model.

    PubMed

    Gimenez, Ulysse; Perles-Barbacaru, Adriana-T; Millet, Arnaud; Appaix, Florence; El-Atifi, Michele; Pernet-Gallay, Karin; van der Sanden, Boudewijn; Berger, François; Lahrech, Hana

    2016-11-01

    Monitoring glioma cell infiltration in the brain is critical for diagnosis and therapy. Using a new glioma Glio6 mouse model derived from human stem cells we show how diffusion tensor imaging (DTI) may predict glioma cell migration/invasion. In vivo multiparametric MRI was performed at one, two and three months of Glio6 glioma growth (Glio6 (n = 6), sham (n = 3)). This longitudinal study reveals the existence of a time window to study glioma cell/migration/invasion selectively. Indeed, at two months only Glio6 cell invasion was detected, while tumor mass formation, edema, blood-brain barrier leakage and tumor angiogenesis were detected later, at three months. To robustly confirm the potential of DTI for detecting glioma cell migration/invasion, a microscopic 3D-DTI (80 μm isotropic spatial resolution) technique was developed and applied to fixed mouse brains (Glio6 (n = 6), sham (n = 3)). DTI changes were predominant in the corpus callosum (CC), a known path of cell migration. Fractional anisotropy (FA) and perpendicular diffusivity (D⊥ ) changes derived from ex vivo microscopic 3D-DTI were significant at two months of tumor growth. In the caudate putamen an FA increase of +38% (p < 0.001) was observed, while in the CC a - 28% decrease in FA (p < 0.005) and a + 95% increase in D⊥ (p < 0.005) were observed. In the CC, DTI changes and fluorescent Glio6 cell density obtained by two-photon microscopy in the same brains were correlated (p < 0.001, r = 0.69), validating FA and D⊥ as early quantitative biomarkers to detect glioma cell migration/invasion. The origin of DTI changes was assessed by electron microscopy of the same tract, showing axon bundle disorganization. During the first two months, Glio6 cells display a migratory phenotype without being associated with the constitution of a brain tumor mass. This offers a unique opportunity to apply microscopic 3D-DTI and to validate DTI parameters FA and D⊥ as biomarkers for glioma cell

  7. [Genetics and brain gliomas].

    PubMed

    Alentorn, Agusti; Labussière, Marianne; Sanson, Marc; Delattre, Jean-Yves; Hoang-Xuan, Khê; Idbaih, Ahmed

    2013-05-01

    Chromosome arms 1p and 19q codeletion, corresponding to an unbalanced reciprocal translocation t(1;19)(q10;p10), is seen in oligodendroglial tumours and is associated with better prognosis and better chemosensitivity. BRAF abnormalities are observed in pilocytic astrocytomas (tandem duplication-rearrangement) and in pleomorphic xanthoastrocytomas (BRAF V600E mutation). The vast majority of primary or de novo glioblastomas exhibit genetic abnormalities disrupting the intracellular signaling pathways of: transmembrane tyrosine kinase receptors to growth factors and their downstream signaling pathways (i.e. NF1-RAS-RAF-MAPK and PTEN-PI3K-AKT-TSC-mTOR); RB and; TP53. IDH1 and IDH2 mutations are frequent in diffuse grade II and grade III gliomas and in secondary glioblastomas. They are diagnostic and favorable independent prognostic biomarkers. In contrast, they are rare in primary or de novo glioblastomas and not reported in pilocytic astrocytomas. Germlin mutations in MSH2/MLH1/PMS2/MSH6, CDKN2A, TSC1/TSC2, PTEN, TP53 and NF1/NF2 predispose to glial tumors in the setting of hereditary cancer predisposition syndromes. Single nucleotide polymorphisms in TERT,CCDC26, CDKN2A/CDKN2B, RTEL, EGFR and PHLDB1 confer an inherited susceptibility to glial tumors.

  8. Glutamine Addiction In Gliomas.

    PubMed

    Márquez, Javier; Alonso, Francisco J; Matés, José M; Segura, Juan A; Martín-Rufián, Mercedes; Campos-Sandoval, José A

    2017-03-09

    Cancer cells develop and succeed by shifting to different metabolic programs compared with their normal cell counterparts. One of the classical hallmarks of cancer cells is their higher glycolysis rate and lactate production even in the presence of abundant O2 (Warburg effect). Another common metabolic feature of cancer cells is a high rate of glutamine (Gln) consumption normally exceeding their biosynthetic and energetic needs. The term Gln addiction is now widely used to reflect the strong dependence shown by most cancer cells for this essential nitrogen substrate after metabolic reprogramming. A Gln/glutamate (Glu) cycle occurs between host tissues and the tumor in order to maximize its growth and proliferation rates. The mechanistic basis for this deregulated tumor metabolism and how these changes are connected to oncogenic and tumor suppressor pathways are becoming increasingly understood. Based on these advances, new avenues of research have been initiated to find novel therapeutic targets and to explore strategies that interfere with glutamine metabolism as anticancer therapies. In this review, we provided an updated overview of glutamine addiction in glioma, the most prevalent type of brain tumor.

  9. Notch Promotes Radioresistance of Glioma Stem Cells

    PubMed Central

    Wang, Jialiang; Wakeman, Timothy P.; Latha, Justin D.; Hjelmeland, Anita B.; Wang, Xiao-Fan; White, Rebekah R.; Rich, Jeremy N.; Sullenger, Bruce A.

    2009-01-01

    Radiotherapy represents the most effective nonsurgical treatments for gliomas. Yet, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we showed that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) rendered the glioma stem cells more sensitive to radiation at clinically relevant doses. GSIs enhanced radiation-induced cell death and impaired clonogenic survival of glioma stem cells, but not non-stem glioma cells. Similarly, knockdown of Notch1 or Notch2 increased radiosensitivity of glioma stem cells. The specificity of the radiosensitizing effects of GSIs was confirmed by expression of the constitutively active intracellular domains of Notch1 or Notch2 that protected glioma stem cells against radiation. Notch inhibition with GSIs did not alter the DNA damage response of glioma stem cells following radiation, but rather impaired radiation-induced Akt activation and upregulated levels of the truncated apoptotic isoform of Mcl-1 (Mcl-1s). Taken together, our results suggest a critical role of Notch to promote radioresistance of glioma stem cells. Inhibition of Notch signaling holds promise to improve the efficiency of current radiotherapy in glioma treatment. PMID:19921751

  10. Frequent Nek1 overexpression in human gliomas

    SciTech Connect

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  11. [Expression and significance of ABCG2 in human malignant glioma].

    PubMed

    Chu, Liang; Huang, Qiang; Zhai, De-Zhong; Zhu, Qing; Huo, Hong-Mei; Dong, Jun; Qian, Zhi-Yuan; Wang, Ai-Dong; Lan, Qing; Gao, Yi-Lu

    2007-10-01

    ATP-binding cassette transporter protein ABCG2 is a marker derived from hematopoietic stem cells. However, its role in tumorigenesis and malignant progression of glioma is unclear. This study was to investigate the expression and significance of ABCG2 in gliomas of different malignant grades. A microarray chip containing glioma tissues of different malignant grades, implanted glioma xenografts in nude mice, spheroids of glioma cell lines and glioma stem cells was prepared and examined for the expression of ABCG2 with immunohistochemical staining. The positive rate of ABCG2 was 26.8% in the 71 specimens of human glioma tissues, with 11.1% in grade I gliomas, 8% in grade II gliomas, 43.5% in grade III gliomas, and 42.9% in grade IV gliomas; it was significantly higher in grade III-IV gliomas than in grade I-II gliomas (chi2=10.710, P=0.001). The positive rate of ABCG2 was 100% in implanted glioma xenografts in nude mice, gliomas stem cells, and neural stem cells. It was also expressed in some normal tissues. The positive cells surrounded and invaded into vessels in glioma tissues. ABCG2 is overexpressed in glioma stem cells, glioma tissues of higher grades, and implanted glioma xenografts. The positive cells distribute around vessels in glioma tissues.

  12. Molecular signalling pathways in canine gliomas.

    PubMed

    Boudreau, C E; York, D; Higgins, R J; LeCouteur, R A; Dickinson, P J

    2017-03-01

    In this study, we determined the expression of key signalling pathway proteins TP53, MDM2, P21, AKT, PTEN, RB1, P16, MTOR and MAPK in canine gliomas using western blotting. Protein expression was defined in three canine astrocytic glioma cell lines treated with CCNU, temozolamide or CPT-11 and was further evaluated in 22 spontaneous gliomas including high and low grade astrocytomas, high grade oligodendrogliomas and mixed oligoastrocytomas. Response to chemotherapeutic agents and cell survival were similar to that reported in human glioma cell lines. Alterations in expression of key human gliomagenesis pathway proteins were common in canine glioma tumour samples and segregated between oligodendroglial and astrocytic tumour types for some pathways. Both similarities and differences in protein expression were defined for canine gliomas compared to those reported in human tumour counterparts. The findings may inform more defined assessment of specific signalling pathways for targeted therapy of canine gliomas.

  13. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    PubMed

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P < 0.05). In addition, tumors with high MTA3 expression were more likely to be of low WHO grade (P = 0.005) and reserve of body function (P = 0.014). Survival analysis showed that decreased MTA3 expression was independently associated with unfavorable overall survival of patients (P < 0.001). These results provide the first evidence that MTA3 expression was decreased in human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  14. Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenicity of glioma.

    PubMed

    Pan, Jun; Zhao, Xiaoyong; Lin, Chunnan; Xu, Hongchao; Yin, Zhilin; Liu, Tianzhu; Zhang, Shizhong

    2014-11-01

    Immune responsive gene 1 (IRG1) is highly expressed in mammalian macrophages during inflammation. However, the role of IRG1 in tumorigenesis remains unclear. In the present study, we aimed to clarify the epigenetic regulation and biological functions of IRG1 in glioma. We found that the expression level of IRG1 influenced the WHO stage in 140 glioma patients. Overexpression of IRG1 increased the growth, invasion, and tumorigenesis in U251 and SHG-44 glioma cells both in vitro and in vivo. Suppression of IRG1 expression by si-IRG1 decreased the levels of cell cycle regulatory proteins, namely, E2F1, p21, CDK4, CDK6 and cyclin D1. Knockdown of IRG1 expression by RNA interference increased E-cadherin expression and decreased the amounts of snail and vimentin. Furthermore, the suppression of IRG1 expression inhibited the expression of NF-κB and STAT3, suggesting a role of IRG1 in regulating the genes associated with these factors and thereby contributing to a decrease in glioma cell proliferation, migration and invasion. Collectively, our findings revealed that IRG1 is a candidate oncogene that is amplified in glioma and is involved in novel mechanisms that influence glioma pathogenesis.

  15. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth

    PubMed Central

    Kaul, Aparna; Toonen, Joseph A.; Cimino, Patrick J.; Gianino, Scott M.; Gutmann, David H.

    2015-01-01

    Background Children with neurofibromatosis type 1 (NF1) develop optic pathway gliomas, which result from impaired NF1 protein regulation of Ras activity. One obstacle to the implementation of biologically targeted therapies is an incomplete understanding of the individual contributions of the downstream Ras effectors (mitogen-activated protein kinase kinase [MEK], Akt) to optic glioma maintenance. This study was designed to address the importance of MEK and Akt signaling to Nf1 optic glioma growth. Methods Primary neonatal mouse astrocyte cultures were employed to determine the consequence of phosphatidylinositol-3 kinase (PI3K)/Akt and MEK inhibition on Nf1-deficient astrocyte growth. Nf1 optic glioma–bearing mice were used to assess the effect of Akt and MEK inhibition on tumor volume, proliferation, and retinal ganglion cell dysfunction. Results Both MEK and Akt were hyperactivated in Nf1-deficient astrocytes in vitro and in Nf1 murine optic gliomas in vivo. Pharmacologic PI3K or Akt inhibition reduced Nf1-deficient astrocyte proliferation to wild-type levels, while PI3K inhibition decreased Nf1 optic glioma volume and proliferation. Akt inhibition of Nf1-deficient astrocyte and optic glioma growth reflected Akt-dependent activation of mammalian target of rapamycin (mTOR). Sustained MEK pharmacologic blockade also attenuated Nf1-deficient astrocytes as well as Nf1 optic glioma volume and proliferation. Importantly, these MEK inhibitory effects resulted from p90RSK-mediated, Akt-independent mTOR activation. Finally, both PI3K and MEK inhibition reduced optic glioma–associated retinal ganglion cell loss and nerve fiber layer thinning. Conclusion These findings establish that the convergence of 2 distinct Ras effector pathways on mTOR signaling maintains Nf1 mouse optic glioma growth, supporting the evaluation of pharmacologic inhibitors that target mTOR function in future human NF1–optic pathway glioma clinical trials. PMID:25534823

  16. Assessment of type of allergy and antihistamine use in the development of glioma

    PubMed Central

    McCarthy, Bridget J.; Rankin, Kristin; Il'yasova, Dora; Erdal, Serap; Vick, Nicholas; Ali-Osman, Francis; Bigner, Darell D.; Davis, Faith

    2010-01-01

    Background Allergies have been associated with decreased risk of glioma, but associations between duration and timing of allergies, and antihistamine use and glioma risk have been less consistent. The objective was to investigate this association by analyzing types, number, years since diagnosis, and age at diagnosis of allergies, and information on antihistamine usage, including type, duration, and frequency of exposure. Methods Self-report data on medically-diagnosed allergies and antihistamine use were obtained for 419 glioma cases and 612 hospital-based controls from Duke University and NorthShore University HealthSystem. Results High- and low-grade glioma cases were statistically significantly less likely to report any allergy than controls (OR= 0.66, 95% CI: 0.49–0.87 and 0.44, 95% CI: 0.25–0.76, respectively). The number of types of allergies (seasonal, medication, pet, food, and other) was inversely associated with glioma risk in a dose-response manner (p-value for trend <0.05). Age at diagnosis and years since diagnosis of allergies were not associated with glioma risk. Oral antihistamine use was statistically significantly inversely associated with glioma risk, but when stratified by allergy status, remained significant only for those with high-grade glioma and no medically-diagnosed allergy. Conclusions All types of allergies appear to be protective with reduced risk for those with more types of allergies. Antihistamine use, other than in relationship with allergy status, may not influence glioma risk. Impact A comprehensive study of allergies and antihistamine use using standardized questions and biological markers will be essential to further delineate the biological mechanism that may be involved in brain tumor development. PMID:21300619

  17. miR-142 inhibits the migration and invasion of glioma by targeting Rac1.

    PubMed

    Qin, Wenyi; Rong, Xiaofeng; Dong, Jiangchuan; Yu, Chao; Yang, Juan

    2017-09-01

    Increasing evidence has shown that aberrant microRNAs (miRNAs) are implicated in tumorigenesis and tumor progression by regulating oncogenes or tumor suppressors. Dysregulation of miR-142 has been reported in multiple tumors. However, its clinical roles and underlying mechanism in glioma remain to be elucidated. In the present study, we found that the expression of miR-142 was significantly downregulated in both glioma tissues and cell lines by qRT-PCR. Clinical analysis revealed that decreased miR-142 was markedly associated with advanced World Health Organization (WHO) grade. Moreover, we disclosed that miR-142 was a novel independent prognostic marker in the prediction of the 5-year survival of glioma patients. The ectopic overexpression of miR-142 inhibited cell migration, invasion and invasion‑related gene expression. Notably, miR-142 modulated Rac1 by directly binding to its 3'-untranslated (3'-UTR) region, leading to the suppression of the expression of matrix metalloproteinases (MMPs). In glioma clinical samples, miR-142 was inversely correlated with Rac1 expression, and played positive roles in glioma migration and invasion. Alteration of Rac1 expression at least partially abolished the migration, invasion and MMP expression of miR-142 in glioma cells. In the present study, we identified Rac1 as a functional target of miR-142 in glioma. In conclusion, our data indicated that miR-142 inhibited the migration, invasion and MMP expression of glioma by targeting Rac1, and may represent a novel potential therapeutic target and prognostic marker for glioma.

  18. Body mass index, physical activity, and risk of adult meningioma and glioma: A meta-analysis.

    PubMed

    Niedermaier, Tobias; Behrens, Gundula; Schmid, Daniela; Schlecht, Inga; Fischer, Beate; Leitzmann, Michael F

    2015-10-13

    Whether adiposity and lack of physical activity affect the risk for developing meningioma and glioma is poorly understood. Our objective was to characterize these associations in detail. We conducted a systematic review and meta-analysis of adiposity and physical activity in relation to meningioma and glioma using cohort and case-control studies published through February 2015. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We identified 12 eligible studies of body mass index (BMI) and 6 studies of physical activity, comprising up to 2,982 meningioma cases and 3,057 glioma cases. Using normal weight as the reference group, overweight (summary relative risk [RR] = 1.21, 95% confidence interval [CI] = 1.01-1.43) and obesity (RR = 1.54, 95% CI = 1.32-1.79) were associated with increased risk of meningioma. In contrast, overweight (RR = 1.06, 95% CI = 0.94-1.20) and obesity (RR = 1.11, 95% CI = 0.98-1.27) were unrelated to glioma. Similarly, dose-response meta-analyses revealed a statistically significant positive association of BMI with meningioma, but not glioma. High vs low physical activity levels showed a modest inverse relation to meningioma (RR = 0.73, 95% CI = 0.61-0.88) and a weak inverse association with glioma (RR = 0.86, 95% CI = 0.76-0.97). Relations persisted when the data were restricted to prospective studies, except for the association between physical activity and glioma, which was rendered statistically nonsignificant (RR = 0.91, 95% CI = 0.77-1.07). Adiposity is related to enhanced risk for meningioma but is unassociated with risk for glioma. Based on a limited body of evidence, physical activity is related to decreased risk of meningioma but shows little association with risk of glioma. © 2015 American Academy of Neurology.

  19. Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration.

    PubMed

    Dong, Weijiang; Gong, Huilin; Zhang, Guanjun; Vuletic, Simona; Albers, John; Zhang, Jiaojiao; Liang, Hua; Sui, Yanxia; Zheng, Jin

    2017-01-01

    Glioma is one of the common tumors in brain. The expression level of lipoprotein lipase (LPL) or phospholipid transfer protein (PLTP) may influence glioma progression and its relationship with clinical and pathological parameters. The clinical significance of LPL or PLTP expression in glioma has not been established. In the present study, the LPL and PLTP levels in glioma tumors were investigated and the relationship between the LPL and PLTP level and the grade of malignant glioma was analyzed, with the aim to provide new ideas for the diagnosis and treatment of gliomas in clinical and basic research settings. LPL and PLTP mRNA and protein levels were significantly higher in Grade IV glioma than those in the lower grade tumors (P < 0.01). Double immunofluorescent staining showed that the levels of LPL and PLTP were significantly associated with the pathological grade of glioma (P = 0.005). The levels of LPL and PLTP were increased with the shortened survival of glioma patients (P < 0.001). Knockdown of LPL and PLTP led to decreased cell growth and migration but increased apoptosis in vitro Additionally, cell cycle-related cyclins and their partners were found to be down-regulated while cyclin-dependent kinase inhibitors p16, p21, and Rb were up-regulated. Furthermore, knockdown of LPL or PLTP resulted in the up-regulation of pro-apoptotic molecules and the down-regulation of anti-apoptotic molecules. Ablation of LPL or PLTP in U251 cells resulted in the down-regulation of epithelial mesenchymal transition markers and invasion molecules matrix metalloproteinases. LPL and PLTP appear to be novel glioma-associated proteins and play a role in the progression of human glioma.

  20. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I

    2017-02-08

    Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.

  1. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma

    PubMed Central

    Bhat, Krishna P.L.; Salazar, Katrina L.; Balasubramaniyan, Veerakumar; Wani, Khalida; Heathcock, Lindsey; Hollingsworth, Faith; James, Johanna D.; Gumin, Joy; Diefes, Kristin L.; Kim, Se Hoon; Turski, Alice; Azodi, Yasaman; Yang, Yuhui; Doucette, Tiffany; Colman, Howard; Sulman, Erik P.; Lang, Frederick F.; Rao, Ganesh; Copray, Sjef; Vaillant, Brian D.; Aldape, Kenneth D.

    2011-01-01

    Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma. PMID:22190458

  2. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma.

    PubMed

    Bhat, Krishna P L; Salazar, Katrina L; Balasubramaniyan, Veerakumar; Wani, Khalida; Heathcock, Lindsey; Hollingsworth, Faith; James, Johanna D; Gumin, Joy; Diefes, Kristin L; Kim, Se Hoon; Turski, Alice; Azodi, Yasaman; Yang, Yuhui; Doucette, Tiffany; Colman, Howard; Sulman, Erik P; Lang, Frederick F; Rao, Ganesh; Copray, Sjef; Vaillant, Brian D; Aldape, Kenneth D

    2011-12-15

    Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.

  3. Interrelationship between differentiation and malignancy-associated properties in glioma.

    PubMed

    Frame, M C; Freshney, R I; Vaughan, P F; Graham, D I; Shaw, R

    1984-03-01

    The phenotypic expression of cells derived from human anaplastic astrocytomas, rat glioma, normal human adult and foetal brain tissue have been examined for differentiated and malignancy-associated properties. Glial fibrillary acidic protein (GFAP), high affinity glutamate and gamma-amino butyric acid (GABA) uptake and glutamine synthetase were used as indicators of astroglial differentiation. Plasminogen activator and tumour angiogenesis factor were the malignancy-associated markers. The normal adult brain-derived lines showed some differentiated astroglial features and expressed low levels of the malignancy-associated properties. The foetal cultures contained highly differentiated astroglia while the glioma lines showed considerable phenotypic heterogeneity from highly differentiated to undifferentiated. The least differentiated glioma cells exhibited the highest plasminogen activator activities. The density-dependent control of phenotypic expression was also investigated. High affinity GABA uptake, and GFAP in rat C6 glioma cultures, increased with increasing monolayer cell density, events probably mediated by an increase in the formation of cell-cell contacts at confluence. Plasminogen activator activity decreased with increasing cell density.

  4. Interrelationship between differentiation and malignancy-associated properties in glioma.

    PubMed Central

    Frame, M. C.; Freshney, R. I.; Vaughan, P. F.; Graham, D. I.; Shaw, R.

    1984-01-01

    The phenotypic expression of cells derived from human anaplastic astrocytomas, rat glioma, normal human adult and foetal brain tissue have been examined for differentiated and malignancy-associated properties. Glial fibrillary acidic protein (GFAP), high affinity glutamate and gamma-amino butyric acid (GABA) uptake and glutamine synthetase were used as indicators of astroglial differentiation. Plasminogen activator and tumour angiogenesis factor were the malignancy-associated markers. The normal adult brain-derived lines showed some differentiated astroglial features and expressed low levels of the malignancy-associated properties. The foetal cultures contained highly differentiated astroglia while the glioma lines showed considerable phenotypic heterogeneity from highly differentiated to undifferentiated. The least differentiated glioma cells exhibited the highest plasminogen activator activities. The density-dependent control of phenotypic expression was also investigated. High affinity GABA uptake, and GFAP in rat C6 glioma cultures, increased with increasing monolayer cell density, events probably mediated by an increase in the formation of cell-cell contacts at confluence. Plasminogen activator activity decreased with increasing cell density. Images Figure 2 Figure 6 PMID:6200130

  5. Golgi Phosphoprotein 3 Inhibits the Apoptosis of Human Glioma Cells in Part by Downregulating N-myc Downstream Regulated Gene 1

    PubMed Central

    Li, Xin; Li, Mengyou; Tian, Xiuli; Li, QingZhe; Lu, Qingyang; Yan, Jinqiang; Jia, Qingbin; Zhang, Lianqun; Li, Xueyuan; Li, Xingang

    2016-01-01

    Background Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human cancers. Our previous study showed that GOLPH3 expression in glioma tissues was related to the severity of the malignancy of the cancer. However, the mechanism by which GOLPH3 affects cell apoptosis is largely unknown. The present study was designed to explore the possible mechanism of GOLPH3 in cell apoptosis. Material/Methods To analyze the biological role of GOLPH3 in glioma cells, we used GOLPH3 small interference RNA in apoptosis of glioma cells. The apoptosis of glioma cells was detected by flow cytometry. The expression level of GOLPH3 and NDRG1 protein was determined by Western blot analyses and immunohistochemical staining, respectively, to evaluate their association with glioma. Tumor tissues were collected from patients with glioma. Normal cerebral tissues were acquired from cerebral trauma patients undergoing internal decompression surgery. Results We confirm that the decrease of GOLPH3 that promotes the apoptosis of glioma cells may be regulated by the activation of NDRG1 and cleaved capcase 3. There was a inverse association between GOLPH3 and NDRG1 in glioma samples. Conclusions Our findings indicate that GOLPH3 and NDRG1 both play an important role in glioma etiology. Either GOLPH3 or NDRG1 might be a potential candidate for malignant glioma therapy. PMID:27698340

  6. KIAA0247 suppresses the proliferation, angiogenesis and promote apoptosis of human glioma through inactivation of the AKT and Stat3 signaling pathway

    PubMed Central

    Tan, Ying; Huang, Ning; Zhang, Xiang; Hu, Jiangang; Cheng, Si; Pi, Li; Cheng, Yuan

    2016-01-01

    Gliomas are the most common and aggressive type of primary adult brain tumors. Although KIAA0247 previously is a speculated target of the tumor suppressor gene, little is known about the association between KIAA0247 and glioma. In this study, we clearly demonstrate that KIAA0247 expression is decreased in glioma and was negatively correlated with the histologic grade. Overexpression of KIAA0247 in glioma cells inhibits proliferation, angiogenesis and promoted apoptosis of human glioma cells in vitro. In contrast, knockdown of KIAA0247 increases the proliferation, angiogenesis and decreases apoptosis of these cells. In a tumor xenograft model, overexpression of KIAA0247 suppresses tumor growth of glioma cells in vivo, while KIAA0247 knockdown promotes the tumor growth. Mechanistically, overexpression of KIAA0247 is able to inhibit phosphorylation of AKT and Stat3 in glioma cells, resulting in inactivation of the AKT and Stat3 signaling pathways, this ultimately decreases the expression of PCNA, CyclinD1, Bcl2 and VEGF. Collectively, these data indicate that KIAA0247 may work as a tumor suppressor gene in glioma and a promising therapeutic target for gliomas. PMID:27893430

  7. The expression of miRNA-221 and miRNA-222 in gliomas patients and their prognosis.

    PubMed

    Xue, Liang; Wang, Yi; Yue, Shuyuan; Zhang, Jianning

    2017-01-01

    The aim of this study is to explore the expression of microRNA (miRNA)-221 and miRNA-222 in human glioma cells and tissues. The expression of miRNA-221 and miRNA-222 in human glioma cell line U87, U251, A172, LN229 and surgery resected glioma tissues were measured. The survival rate of X-ray (2 Gy) irradiated glioma cells were calculated. 165 cases of glioma patients were recruited successfully; the expression of miRNA-221 and miRNA-222 in their resected tissues were measured. The expression of miRNA-221 and miRNA-222 in cancer tissues were obviously higher than control tissues (normal brain tissue) and control cell (gastric mucosal epithelial cell, GES) (p < 0.05). The highly malignant glioma tissues expressed significantly higher miRNA-221 and miRNA-222 than low malignant glioma tissues. Patients with highly expressed miRNA-221 and miRNA-222 have shorter survival time. Survival rate of glioma cells was significantly higher than GES cell after irradiation (p < 0.05); miRNA-221 in glioma cells. The expressions of miRNA-221 and miRNA-222 in irritated glioma cells were positively correlated with the survival rate of glioma cells (r = 0.629, 0.712, both p < 0.01). For the 165 glioma patients, the expressions of miRNA-221 and miRNA-222 increased with the increasing of pathological grades (χ (2) = 42.85, p < 0.01); and their survival time decreased when miRNA-221 expression elevated (χ (2) = 57.12, p < 0.01). MiRNA-221 and miRNA-222 express highly in human glioma cells and tissues. Expression of miRNA-221 and miRNA-222 are closely related to pathological grading and prognosis of glioma; they could be used as independent prognostic factor for glioma.

  8. Precocious puberty associated with neurofibromatosis and optic gliomas. Treatment with luteinizing hormone releasing hormone analogue.

    PubMed

    Laue, L; Comite, F; Hench, K; Loriaux, D L; Cutler, G B; Pescovitz, O H

    1985-11-01

    Seven children with central precocious puberty and either neurofibromatosis and/or optic gliomas were referred to the National Institutes of Health, Bethesda, Md, for evaluation and treatment with the long-acting luteinizing hormone releasing hormone analogue (LHRHa) D-Trp6-Pro9-NEt-LHRH. Only six of the seven children chose to receive treatment. Four children presented with neurofibromatosis, three of whom also had optic gliomas; the remaining three children had isolated optic gliomas, without other neurocutaneous stigmas. All had central precocious puberty mediated by activation of the hypothalamic-pituitary-gonadal axis. Six months of LHRHa therapy caused suppression of gonadotropin and sex steroid levels, stabilization or regression of secondary sexual characteristics, and decreases in growth velocity and the rate of bone age maturation. We conclude that LHRHa therapy is effective in the treatment of central precocious puberty secondary to neurofibromatosis and/or optic gliomas.

  9. PinX1 inhibits cell proliferation, migration and invasion in glioma cells.

    PubMed

    Mei, Peng-Jin; Chen, Yan-Su; Du, Ying; Bai, Jin; Zheng, Jun-Nian

    2015-03-01

    PinX1 induces apoptosis and suppresses cell proliferation in some cancer cells, and the expression of PinX1 is frequently decreased in some cancer and negatively associated with metastasis and prognosis. However, the precise roles of PinX1 in gliomas have not been studied. In this study, we found that PinX1 obviously reduced the gliomas cell proliferation through regulating the expressions of cell cycle-relative molecules to arrest cell at G1 phase and down-regulating the expression of component telomerase reverse transcriptase (hTERT in human), which is the hardcore of telomerase. Moreover, PinX1 could suppress the abilities of gliomas cell wound healing, migration and invasion via suppressing MMP-2 expression and increasing TIMP-2 expression. In conclusion, our results suggested that PinX1 may be a potential suppressive gene in the progression of gliomas.

  10. Emerging targeted therapies for glioma.

    PubMed

    Miller, Julie J; Wen, Patrick Y

    2016-12-01

    Gliomas are the most common malignant primary brain tumors in adults. Despite aggressive treatment with surgery, radiation and chemotherapy, these tumors are incurable and invariably recur. Molecular characterization of these tumors in recent years has advanced our understanding of gliomagenesis and offered an array of pathways that can be specifically targeted. Areas covered: The most commonly dysregulated signaling pathways found in gliomas will be discussed, as well as the biologic importance of these disrupted pathways and how each may contribute to tumor development. Our knowledge regarding these pathways are most relevant to Grade IV glioma/glioblastoma, but we will also discuss genomic categorization of low grade glioma. Further, drugs targeting single pathways, which have undergone early phase clinical trials will be reviewed, followed by an in depth discussion of emerging treatments on the horizon, which will include inhibitors of Epidermal Growth Factor Receptor (EGFR) and receptor tyrosine kinases, Phosphoinositide-3-Kinase (PI3K), angiogenesis, cell cycle and mutant Isocitrate Dehydrogenase (IDH) mutations. Expert opinion: Results from single agent targeted therapy trials have been modest. Lack of efficacy may stem from a combination of poor blood brain barrier penetration, the genetically heterogeneous make-up of the tumors and the emergence of resistance mechanisms. These factors can be overcome by rational drug design that capitalizes on ways to target critical pathways and limits upregulation of redundant pathways.

  11. Nimotuzumab treatment of malignant gliomas.

    PubMed

    Bode, Udo; Massimino, Maura; Bach, Ferdinand; Zimmermann, Martina; Khuhlaeva, Elena; Westphal, Manfred; Fleischhack, Gudrun

    2012-12-01

    In spite of new alkylating medication and recently accumulated knowledge about genomics, the prognosis of malignant gliomas remains poor. The introduction of single substances interfering with tumour proliferation dynamics has been disappointing and the lessons learned indicate that a complicated network of proliferation needs time consuming, in-depth analysis in order to more specifically treat now distinguishable subgroups of a disease, which too long was thought of as a uniform entity. The clinical trials using the EGFR antibody nimotuzumab in the treatment of malignant gliomas are reviewed. Pending conformation in future studies the antibody might be part of the treatment of MGMT-negative, EGFR-amplified, not completely resected gliomas of adulthood and juvenile DIPG (pontine gliomas). Upcoming genomic results of the different tumour entities may suggest certain combination partners of the antibody. Recent studies of nimotuzumab indicate the reason for the lack of toxicity, which is the most attractive argument for its clinical use besides modest efficacy. We await the final results on the use of the antibody together with vinorelbine and radiation therapy for the therapy of DIPG. Adult patients with MGMT-negative, EGFR amplified, not totally resected GBM may also profit from this combination therapy. TK-inhibitors combined with the antibody and irradiation may be an option for a therapeutic trial in paediatric patients.

  12. Postirradiation cerebellar glioma. Case report

    SciTech Connect

    Raffel, C.; Edwards, M.S.; Davis, R.L.; Ablin, A.R.

    1985-02-01

    A 13-year-old girl developed an anaplastic astrocytoma of the cerebellum 7 years after irradiation of the central nervous system and prophylactic chemotherapy for acute lymphocytic leukemia. The fact that the astrocytoma was anaplastic and infiltrative was unusual for astroglial tumors at this site. It is proposed that this is a radiation-induced glioma.

  13. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    SciTech Connect

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan; Li, Qiuping; Yang, Zhiyuan; Wu, Guoqiang; Sun, Shuhui; Gu, Jianxin; Wei, Yuanyan; Jiang, Jianhai

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  14. Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation.

    PubMed

    Ma, Ji-wei; Zhang, Yong; Li, Ru; Ye, Jie-cheng; Li, Hai-ying; Zhang, Yi-kai; Ma, Zheng-lai; Li, Jin-ying; Zhong, Xue-yun; Yang, Xuesong

    2015-10-05

    Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to possess anti-tumour activity. However, its effects on human glioma remain unknown. In this study, we demonstrated that Tet inhibited human glioma cell growth in vitro and in vivo. It has been hypothesised that Tet inhibits glioma growth by affecting glioma cell survival, proliferation and vasculature in and around the xenograft tumour in the chick CAM model and signal transducer and activator of transcription 3 (STAT3) mediated these activities. Therefore, we conducted a detailed analysis of the inhibitory effects of Tet on cell survival using a TUNEL assay and flow cytometric analysis; on cell proliferation based on the expression of proliferating cell nuclear antigen; and on angiogenesis using a CAM anti-angiogenesis assay. We used western blotting to investigate the role of STAT3 on the anti-glioma activities of Tet. The results revealed that Tet inhibited survival and proliferation in human glioma cells, impaired tumour angiogenesis and decreased the expression of phosphorylated STAT3 and its downstream proteins. In sum, our data indicate that STAT3 is involved in Tet-induced the regression of glioma growth by activating tumour cell apoptosis, inhibiting glioma cell proliferation and inhibiting angiogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Nuclear Overhauser Enhancement-Mediated Magnetization Transfer Imaging in Glioma with Different Progression at 7 T.

    PubMed

    Tang, Xiangyong; Dai, Zhuozhi; Xiao, Gang; Yan, Gen; Shen, Zhiwei; Zhang, Tao; Zhang, Guishan; Zhuang, Zerui; Shen, Yuanyu; Zhang, Zhiyan; Hu, Wei; Wu, Renhua

    2017-01-18

    Glioma is a malignant neoplasm affecting the central nervous system. The conventional approaches to diagnosis, such as T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and contrast-enhanced T1WI, give an oversimplified representation of anatomic structures. Nuclear Overhauser enhancement (NOE) imaging is a special form of magnetization transfer (MT) that provides a new way to detect small solute pools through indirect measurement of attenuated water signals, and makes it possible to probe semisolid macromolecular protons. In this study, we investigated the correlation between the effect of NOE-mediated imaging and progression of glioma in a rat tumor model. We found that the NOE signal decreased in tumor region, and signal of tumor center and peritumoral normal tissue markedly decreased with growth of the glioma. At the same time, NOE signal in contralateral normal tissue dropped relatively late (at about day 16-20 after implanting the glioma cells). NOE imaging is a new contrast method that may provide helpful insights into the pathophysiology of glioma with regard to mobile proteins, lipids, and other metabolites. Further, NOE images differentiate normal brain tissue from glioma tissue at a molecular level. Our study indicates that NOE-mediated imaging is a new and promising approach for estimation of tumor progression.

  16. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma

    PubMed Central

    McFarland, Braden C.; Marks, Margaret P.; Rowse, Amber L.; Fehling, Samuel C.; Gerigk, Magda; Qin, Hongwei; Benveniste, Etty N.

    2016-01-01

    In glioma, microglia and macrophages are the largest population of tumor-infiltrating cells, referred to as glioma associated macrophages (GAMs). Herein, we sought to determine the role of Suppressor of Cytokine Signaling 3 (SOCS3), a negative regulator of Signal Transducer and Activator of Transcription 3 (STAT3), in GAM functionality in glioma. We utilized a conditional model in which SOCS3 deletion is restricted to the myeloid cell population. We found that SOCS3-deficient bone marrow-derived macrophages display enhanced and prolonged expression of pro-inflammatory M1 cytokines when exposed to glioma tumor cell conditioned medium in vitro. Moreover, we found that deletion of SOCS3 in the myeloid cell population delays intracranial tumor growth and increases survival of mice bearing orthotopic glioma tumors in vivo. Although intracranial tumors from mice with SOCS3-deficient myeloid cells appear histologically similar to control mice, we observed that loss of SOCS3 in myeloid cells results in decreased M2 polarized macrophage infiltration in the tumors. Furthermore, loss of SOCS3 in myeloid cells results in increased CD8+ T-cell and decreased regulatory T-cell infiltration in the tumors. These findings demonstrate a beneficial effect of M1 polarized macrophages on suppressing glioma tumor growth, and highlight the importance of immune cells in the tumor microenvironment. PMID:26967393

  17. Mutant IDH1 and thrombosis in gliomas.

    PubMed

    Unruh, Dusten; Schwarze, Steven R; Khoury, Laith; Thomas, Cheddhi; Wu, Meijing; Chen, Li; Chen, Rui; Liu, Yinxing; Schwartz, Margaret A; Amidei, Christina; Kumthekar, Priya; Benjamin, Carolina G; Song, Kristine; Dawson, Caleb; Rispoli, Joanne M; Fatterpekar, Girish; Golfinos, John G; Kondziolka, Douglas; Karajannis, Matthias; Pacione, Donato; Zagzag, David; McIntyre, Thomas; Snuderl, Matija; Horbinski, Craig

    2016-12-01

    Mutant isocitrate dehydrogenase 1 (IDH1) is common in gliomas, and produces D-2-hydroxyglutarate (D-2-HG). The full effects of IDH1 mutations on glioma biology and tumor microenvironment are unknown. We analyzed a discovery cohort of 169 World Health Organization (WHO) grade II-IV gliomas, followed by a validation cohort of 148 cases, for IDH1 mutations, intratumoral microthrombi, and venous thromboemboli (VTE). 430 gliomas from The Cancer Genome Atlas were analyzed for mRNAs associated with coagulation, and 95 gliomas in a tissue microarray were assessed for tissue factor (TF) protein. In vitro and in vivo assays evaluated platelet aggregation and clotting time in the presence of mutant IDH1 or D-2-HG. VTE occurred in 26-30 % of patients with wild-type IDH1 gliomas, but not in patients with mutant IDH1 gliomas (0 %). IDH1 mutation status was the most powerful predictive marker for VTE, independent of variables such as GBM diagnosis and prolonged hospital stay. Microthrombi were far less common within mutant IDH1 gliomas regardless of WHO grade (85-90 % in wild-type versus 2-6 % in mutant), and were an independent predictor of IDH1 wild-type status. Among all 35 coagulation-associated genes, F3 mRNA, encoding TF, showed the strongest inverse relationship with IDH1 mutations. Mutant IDH1 gliomas had F3 gene promoter hypermethylation, with lower TF protein expression. D-2-HG rapidly inhibited platelet aggregation and blood clotting via a novel calcium-dependent, methylation-independent mechanism. Mutant IDH1 glioma engraftment in mice significantly prolonged bleeding time. Our data suggest that mutant IDH1 has potent antithrombotic activity within gliomas and throughout the peripheral circulation. These findings have implications for the pathologic evaluation of gliomas, the effect of altered isocitrate metabolism on tumor microenvironment, and risk assessment of glioma patients for VTE.

  18. Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, or Hypermutated Brain Tumors

    ClinicalTrials.gov

    2017-09-12

    Constitutional Mismatch Repair Deficiency Syndrome; Lynch Syndrome; Malignant Glioma; Recurrent Brain Neoplasm; Recurrent Diffuse Intrinsic Pontine Glioma; Refractory Brain Neoplasm; Refractory Diffuse Intrinsic Pontine Glioma

  19. MicroRNA-181b inhibits cellular proliferation and invasion of glioma cells via targeting Sal-like protein 4.

    PubMed

    Zhou, Yu; Peng, Yong; Liu, Min; Jiang, Yugang

    2016-11-17

    MicroRNAs (miRs), a class of 18-25 nucleotides in length non-coding RNAs, are able to suppress gene expression by targeting complementary regions of mRNAs and inhibiting protein translation Recently, miR-181b was found to playa suppressive role in glioma, but the regulatory mechanism of miR-181b in the malignant phenotypes of glioma cells remains largely unclear. Here we found that miR-181b was significantly downregulated in glioma tissues when compared with normal brain tissues, and decreased miR-181b levels were significantly associated with high pathology grade and poor prognosis of patients with glioma. Moreover, miR-181b was also downregulated in glioma cell lines (U87, SHG44, U373, and U251) compared to normal astrocytes. Overexpression of miR-181b significantly decreased the proliferation, migration, and invasion of glioma U251 cells. Sal-like protein 4 (SALL4) was identified as a novel target gene of miR-181b in U251 cells. The expression of SALL4 was significantly upregulated in glioma tissues and cell lines, and an inverse correlation was observed between the miR-181b and SALL4 expression levels in glioma. Further investigation showed that the protein expression of SALL4 was negatively regulated by miR-181b in U251 cells. Knockdown of SALL4 significantly inhibited the proliferation, migration and invasion of U251 cells, while overexpression of SALL4 effectively reversed the suppressive effects of miR-181b on these malignant phenotypes of U251 cells. In conclusion, our study demonstrates that miR-181b has suppressive effects on the malignant phenotypes of glioma cells, partly at least, via directly targeting SALL4. Therefore, the miR-181b/SALL4 axis may become a potential therapeutic target for glioma.

  20. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    SciTech Connect

    Li, Ya’nan; Dai, Dongwei; Lu, Qiong; Fei, Mingyu; Li, Mengmeng; Wu, Xi

    2013-11-22

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD{sup +}-dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We found that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy.

  1. Thyroid hormone transport in a human glioma cell line.

    PubMed

    Goncalves, E; Lakshmanan, M; Pontecorvi, A; Robbins, J

    1990-03-05

    The uptake of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) was studied in human glioma cells (Hs 683) and compared with that in several other neural cell lines. At 25 degrees C or 37 degrees C, total cell uptake rose rapidly and reached equilibrium within 60 min. The glioma cells had the highest uptake: 47.6 fmol of L-T3 and 43.4 fmol of L-T4 per 10(6) cells at 37 degrees C. These were inhibited 77% and 72%, respectively, by excess unlabeled hormone. Uptake in the nuclei reached equilibrium between 90 and 120 min and was also highest in glioma cells: 1.46 fmol of L-T3 and 0.49 fmol of L-T4 per 10(6) cells. When expressed as percent of total cell uptake, however, glioma cells had the lowest values (3.1% for L-T3 and 1.1% for L-T4). Also in contrast to other cell lines, glioma cells transported L-T4 almost as effectively as L-T3. D-T3 and D-T4 total cell uptake was 86% and 96% lower than that of the respective L-isomers, and the nuclear uptake as a fraction of the cell uptake was similar. Kinetic analysis of the initial rate of cell uptake gave Vmax values for D-T3 and D-T4 that were 97% and 98% lower than for the L-isomers. Antimycin and monodansylcadaverine decreased the Vmax as well as the equilibrium cell and nuclear uptake of the L-isomers. The apparent nuclear affinity constant for L-T4 in intact cells was inhibited 90% in the presence of antimycin, whereas no effect was observed in isolated nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Differential response of glioma cells to FOXO1-directed therapy.

    PubMed

    Lau, Cara J; Koty, Zaf; Nalbantoglu, Josephine

    2009-07-01

    Gliomas are the most common adult primary brain tumors, and the most malignant form, glioblastoma multiforme, is invariably fatal. The phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is altered in most glioblastoma multiforme. PTEN, an important negative regulator of the PI3K-Akt pathway, is also commonly mutated in glioma, leading to constitutive activation of Akt. One ultimate consequence is phosphorylation and inactivation of FOXO forkhead transcription factors that regulate genes involved in apoptosis, cell cycle arrest, nutrient availability, DNA repair, stress, and angiogenesis. We tested the ability of a mutant FOXO1 factor that is not subject to Akt phosphorylation to overcome dysregulated PI3K-Akt signaling in two PTEN-null glioma cell lines, U87 and U251. Adenovirus-mediated gene transfer of the mutant FOXO1 successfully restored cell cycle arrest and induced cell death in vitro and prolonged survival in vivo in xenograft models of human glioma (33% survival at 1 year of animals bearing U251 tumors). However, U87 were much more resistant than U251 to mutant FOXO1-induced death, showing evidence of increased nuclear export and Akt-independent phosphorylation of FOXO1 at S249. A cyclin-dependent kinase 2 inhibitor decreased phosphorylation of S249 and rendered U87 cells significantly more susceptible to mutant FOXO1-induced death. Our results indicate that targeting FOXO1, which is at the convergence point of several growth factor receptor tyrosine kinase pathways, can effectively induce glioma cell death and inhibit tumor growth. They also highlight the importance of Akt-independent phosphorylation events in the nuclear export of FOXO1.

  3. Targeting of human glioma xenografts in vivo utilizing radiolabeled antibodies

    SciTech Connect

    Williams, J.A.; Wessels, B.W.; Wharam, M.D.; Order, S.E.; Wanek, P.M.; Poggenburg, J.K.; Klein, J.L. )

    1990-06-01

    Radiolabeled antibodies provide a potential basis for selective radiotherapy of human gliomas. We have measured tumor targeting by radiolabeled monoclonal and polyclonal antibodies directed against neuroectodermal and tumor-associated antigens in nude mice bearing human glioma xenografts. Monoclonal P96.5, a mouse IgG2a immunoglobulin, defines an epitope of a human melanoma cell surface protein, and specifically binds the U-251 human glioma as measured by immunoperoxidase histochemistry. 111In-radiolabeled P96.5 specifically targets the U-251 human glioma xenograft and yields 87.0 microCuries (microCi) of tumor activity per gram per 100 microCi injected activity compared to 4.5 microCi following administration of radiolabeled irrelevant monoclonal antibody. Calculations of targeting ratios demonstrate deposited dose to be 11.6 times greater with radiolabeled P96.5 administration compared to irrelevant monoclonal antibody. The proportion of tumor dose found in normal organs is less than 10%, further supporting specific targeting of the human glioma xenograft by this antibody. Monoclonal antibody ZME018, which defines a second melanoma-associated antigen, and polyclonal rabbit antiferritin, which defines a tumor-associated antigen, demonstrate positive immunoperoxidase staining of the tumor, but comparatively decreased targeting. When compared to the 111In-radiolabeled antibody, 90Y-radiolabeled P96.5 demonstrates comparable tumor targeting and percentages of tumor dose found in normal organs. To test the therapeutic potential of 90Y-radiolabeled P96.5, tumors and normal sites were implanted with miniature thermoluminescent dosimeters (TLD). Seven days following administration of 100 microCi 90Y-radiolabeled P96.5, average absorbed doses of 3770, 980, 353, and 274 cGy were observed in tumor, liver, contralateral control site, and total body, respectively.

  4. Effect of pterostilbene on glioma cells and related mechanisms

    PubMed Central

    Yu, Liang; Zhong, Zhendong; Sun, Hongbin; Yan, Linxia; He, Baomin; Li, Supin; Ma, Shuai; Yang, Lili; Huang, Yulan

    2016-01-01

    Neuroglioma is the most common primary malignant tumor in neurosurgery. Due to unfavorable life quality of patients, the treatment of glioma is a major challenge in clinics. The search for effect treatment drugs thus benefits patient prognosis. As one derivative of resveratrol, pterostilbene has a wide spectrum of pharmaceutical functions, especially with the anti-tumor effects. This study thus investigated the effect of pterostilbene on neuroglioma and related mechanisms. U87 glioma cell line was divided into control, normal culture and different dosages of pterostilbene groups, which received 5 mM or 10 mM pterostilbene for 48 h. MTT assay was used to detect U87 cell proliferation, while invasion assay was employed to test the effect of pterostilbene on cell invasion, followed by flow cytometry assay for analyzing U87 cell apoptosis. Real-time PCR was used to test mRNA expression of Bcl-2 and Bax in glioma cells under the effect of pterostilbene, while Western blotting was used to detect alternation of Bcl-2 and Bax protein levels. Pterostilbene significantly inhibited proliferation and invasion abilities of glioma cells compared to those in control group (P<0.05). It can also enhance cell apoptosis, decrease mRNA and protein of Bcl-2 expression, and increase mRNA and protein expressions of Bax (P<0.05 compared to control group) in a dose-dependent manner. Pterostilbene can facilitate apoptosis of glioma cells, and inhibit their proliferation and invasion via mediating apoptotic/anti-apoptotic homeostasis. PMID:28077996

  5. MicroRNA in Human Glioma

    PubMed Central

    Li, Mengfeng; Li, Jun; Liu, Lei; Li, Wei; Yang, Yi; Yuan, Jie

    2013-01-01

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy. PMID:24202447

  6. Myeloid-derived suppressor cells in gliomas

    PubMed Central

    Kaminska, Bozena

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of early myeloid progenitors and precursors at different stages of differentiation into granulocytes, macrophages, and dendritic cells. Blockade of their differentiation into mature myeloid cells in cancer results in an expansion of this population. High-grade gliomas are the most common malignant tumours of the central nervous system (CNS), with a poor prognosis despite intensive radiation and chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed the extensive heterogeneity of immune cells infiltrating gliomas and their microenvironment. Immune cell infiltrates consist of: resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells, and T lymphocytes. Intratumoural density of glioma-associated MDSCs correlates positively with the histological grade of gliomas and patient’s survival. MDSCs have the ability to attract T regulatory lymphocytes to the tumour, but block the activation of tumour-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. Immunomodulatory mechanisms employed by malignant gliomas pose an appalling challenge to brain tumour immunotherapy. In this mini-review we describe phenotypic and functional characteristics of MDSCs in humans and rodents, and their occurrence and potential roles in glioma progression. While understanding the complexity of immune cell interactions in the glioma microenvironment is far from being accomplished, there is significant progress that may lead to the development of immunotherapy for gliomas. PMID:28373814

  7. Practical molecular pathologic diagnosis of infiltrating gliomas.

    PubMed

    Pekmezci, Melike; Perry, Arie

    2015-03-01

    Recent advances in molecular diagnostics have led to better understanding of glioma tumorigenesis and biology. Numerous glioma biomarkers with diagnostic, prognostic, and predictive value have been identified. Although some of these markers are already part of the routine clinical management of glioma patients, data regarding others are limited and difficult to apply routinely. In addition, multiple methods for molecular subclassification have been proposed either together with or as an alternative to the current morphologic classification and grading scheme. This article reviews the literature regarding glioma biomarkers and offers a few practical suggestions.

  8. [Therapeutic strategies and prospects of gliomas].

    PubMed

    Taillibert, Sophie; Pedretti, Marta; Sanson, Marc

    2004-10-23

    The prognosis and the treatment of gliomas depend on age, performance status and histological grade. Symptomatic treatment relies on steroids against cerebral edema, anti-epileptic drugs for seizures and perioperatively, prevention of thrombo-embolism and digestive complications, physiotherapy. Specific therapies include surgery, radiotherapy and chemotherapy. Surgery is necessary for histological diagnosis. In low grade gliomas, it has a significant impact in terms of survival. In malignant gliomas, surgery provides symptomic relief without clearly improving survival. Radiation therapy has been shown to improve survival in malignant glioma, but not in asymptomatic low grade tumors. Chemotherapy has a modest efficacy in glioblastomas, whereas oligodendrogliomas with 1p 19q deletion are chemosensitive tumors.

  9. Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade.

    PubMed

    Tao, Bang-Bao; He, Hua; Shi, Xiu-hua; Wang, Chun-lin; Li, Wei-qing; Li, Bing; Dong, Yan; Hu, Guo-Han; Hou, Li-Jun; Luo, Chun; Chen, Ju-xiang; Chen, Huai-rui; Yu, Yu-hong; Sun, Qing-fang; Lu, Yi-Cheng

    2013-05-01

    Gliomas are the most common neoplasms in the central nervous system. The lack of efficacy of glioma therapies necessitates in-depth studies of glioma pathology, especially of the underlying molecular mechanisms that transform normal glial cells into tumor cells. Here we report that a deubiquitinating enzyme, ubiquitin-specific protease 2a (USP2a), and its substrate, fatty acid synthase (FASN), are over-expressed in glioma tissue. Using real-time quantitative polymerase chain reaction (PCR), Western blot and immunohistochemistry, we examined the expression and cellular distribution of USP2a and FASN in human glioma tissues. The expression patterns of USP2a and FASN correlated with the pathologic and clinical characteristics of the patients. Real-time PCR analysis showed that the expression levels of USP2a and its substrate FASN were higher in high-grade (World Health Organization [WHO] grades III and IV) glioma tissues than in low-grade (WHO grades I and II) glioma tissues. Western blot analysis indicated that the average optical densitometry ratio of USP2a and its substrate FASN in high-grade gliomas was higher than in low-grade gliomas. Moreover, statistical analysis of grade-classified glioma samples showed that the level of USP2a and FASN expression increased with the elevation of the WHO grade of glioma. USP2a protein expression was detected in the nucleus of glioma tissues and an increase in expression was significantly associated with the elevation of the WHO grade of glioma by immunohistochemistry. These findings expand our understanding of the molecular profiling of glioma and could shed light on new diagnostic criteria for gliomas.

  10. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo

    PubMed Central

    Venneti, Sriram; Dunphy, Mark P.; Zhang, Hanwen; Pitter, Kenneth L.; Zanzonico, Patrick; Campos, Carl; Carlin, Sean D.; La Rocca, Gaspare; Lyashchenko, Serge; Ploessl, Karl; Rohle, Daniel; Omuro, Antonio M.; Cross, Justin R.; Brennan, Cameron W.; Weber, Wolfgang A.; Holland, Eric C.; Mellinghoff, Ingo K.; Kung, Hank F.; Lewis, Jason S.; Thompson, Craig B.

    2015-01-01

    Glucose and glutamine are the two principal nutrients that cancer cells use to proliferate and survive. Many cancers show altered glucose metabolism, which constitutes the basis for in vivo positron emission tomography (PET) imaging with 18F-fluorodeoxyglucose (18F-FDG). However, 18F-FDG is ineffective in evaluating gliomas due to high background uptake in the brain. Glutamine metabolism is also altered in many cancers, and we demonstrate that PET imaging in vivo with the glutamine analogue 4-18F-(2S,4R)-fluoroglutamine (18F-FGln) shows high uptake in gliomas but low background brain uptake, facilitating clear tumor delineation. Chemo/radiation therapy reduced 18F-FGln-tumor avidity, corresponding with decreased tumor burden. 18F-FGln uptake was not observed in animals with a permeable blood-brain barrier or neuroinflammation. We translated these findings to human subjects, where 18F-FGln showed high tumor/background ratios with minimal uptake in the surrounding brain in human glioma patients with progressive disease. These data suggest that 18F-FGln is avidly taken up by gliomas, can be used to assess metabolic nutrient uptake in gliomas in vivo, and may serve as a valuable tool in the clinical management of gliomas. PMID:25673762

  11. Carbon Ion Radiation Inhibits Glioma and Endothelial Cell Migration Induced by Secreted VEGF

    PubMed Central

    Liu, Yang; Liu, Yuanyuan; Sun, Chao; Gan, Lu; Zhang, Luwei; Mao, Aihong; Du, Yuting; Zhou, Rong; Zhang, Hong

    2014-01-01

    This study evaluated the effects of carbon ion and X-ray radiation and the tumor microenvironment on the migration of glioma and endothelial cells, a key process in tumorigenesis and angiogenesis during cancer progression. C6 glioma and human microvascular endothelial cells were treated with conditioned medium from cultures of glioma cells irradiated at a range of doses and the migration of both cell types, tube formation by endothelial cells, as well as the expression and secretion of migration-related proteins were evaluated. Exposure to X-ray radiation-conditioned medium induced dose-dependent increases in cell migration and tube formation, which were accompanied by an upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2 and -9 expression. However, glioma cells treated with conditioned medium of cells irradiated at a carbon ion dose of 4.0 Gy showed a marked decrease in migratory potential and VEGF secretion relative to non-irradiated cells. The application of recombinant VEGF165 stimulated migration in glioma and endothelial cells, which was associated with increased FAK phosphorylation at Tyr861, suggesting that the suppression of cell migration by carbon ion radiation could be via VEGF-activated FAK signaling. Taken together, these findings indicate that carbon ion may be superior to X-ray radiation for inhibiting tumorigenesis and angiogenesis through modulation of VEGF level in the glioma microenvironment. PMID:24893038

  12. Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis.

    PubMed

    Kim, Sung-Jo; Hwang, Eunmi; Yi, Sun Shin; Song, Ki Duk; Lee, Hak-Kyo; Heo, Tae-Hwe; Park, Sang-Kyu; Jung, Yun Joo; Jun, Hyun Sik

    2017-02-08

    Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.

  13. Positive expression of KIF20A indicates poor prognosis of glioma patients

    PubMed Central

    Duan, Jia; Huang, Wei; Shi, Haiping

    2016-01-01

    Glioma patients have a poor overall survival; however, patients can show distinct clinical outcomes due to the high heterogeneity of the tumor, which may be indicated by certain clinicobiological parameters. Kinesin family member 20A (KIF20A), which participates in cytokinesis and intracellular transportation, has been recently reported to be upregulated in pancreatic cancer, breast cancer, and bladder cancer. In the current study, we investigated the expression of KIF20A in gliomas and its significance in predicting the prognosis after surgery. We found that KIF20A positive expression in glioma tissues correlated significantly with Ki67 protein expression and advanced World Health Organization grade. Univariate and multivariate analysis revealed that KIF20A can act as an independent prognostic factor for predicting the overall survival of glioma patients. Moreover, we demonstrated that KIF20A can positively regulate the expression of Ki67 in glioma cell lines. Correspondingly, overexpression of KIF20A can promote cell proliferation and invasion, whereas knockdown of KIF20A can inhibit cell viability and invasion capacity. In vitro study also showed that under the treatment of plumbagin, an anticancer drug, KIF20A expression decreased in a dose-dependent manner. In addition, the overexpression of KIF20A can also increase the drug resistance toward plumbagin, which provided the possibility that KIF20A may contribute to the chemotherapy resistance of gliomas. PMID:27843327

  14. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.

    PubMed

    Dixit, Deobrat; Ahmad, Fahim; Ghildiyal, Ruchi; Joshi, Shanker Datt; Sen, Ellora

    2016-05-15

    Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival.

  15. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis.

    PubMed

    Augustin, Iris; Goidts, Violaine; Bongers, Angelika; Kerr, Grainne; Vollert, Gordon; Radlwimmer, Bernhard; Hartmann, Christian; Herold-Mende, Christel; Reifenberger, Guido; von Deimling, Andreas; Boutros, Michael

    2012-01-01

    Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production.

  16. Low Expression of CAPON in Glioma Contributes to Cell Proliferation via the Akt Signaling Pathway

    PubMed Central

    Gao, Shangfeng; Wang, Jie; Zhang, Tong; Liu, Guangping; Jin, Lei; Ji, Daofei; Wang, Peng; Meng, Qingming; Zhu, Yufu; Yu, Rutong

    2016-01-01

    CAPON is an adapter protein for nitric oxide synthase 1 (NOS1). CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON) and CAPON-S (short form of CAPON). Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical role in NOS1 activity regulation. In this study, we found that the protein levels of CAPON-S, but not than CAPON-L, were significantly decreased in glioma tissues. Therefore, we established lentivirus-mediated stable cell lines with CAPON-S overexpression or down-regulation, and investigated the role of CAPON-S in the proliferation of glioma cells by using CCK8, EdU, and flow cytometry assays. Overexpression of CAPON-S reduced the cell variability and the percentage of EdU-positive cells, and arrested the cells in the G1 phase in glioma cells. Silencing of CAPON by short-hairpin RNA showed the opposite effects. Furthermore, an intracellular signaling array revealed that overexpression of CAPON-S resulted in a remarkable reduction in the phosphorylation of Akt and S6 ribosomal protein in glioma cells, which was further confirmed by Western blot. These findings suggest that CAPON may function as a tumor suppressor in human brain glioma and that the inactivation of the Akt signaling pathway caused by CAPON-S overexpression may provide insight into the underlying mechanism of CAPON in glioma cell proliferation. PMID:27869735

  17. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis

    PubMed Central

    Augustin, Iris; Goidts, Violaine; Bongers, Angelika; Kerr, Grainne; Vollert, Gordon; Radlwimmer, Bernhard; Hartmann, Christian; Herold-Mende, Christel; Reifenberger, Guido; von Deimling, Andreas; Boutros, Michael

    2012-01-01

    Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production. PMID:22147553

  18. A nested case-control study of 277 prediagnostic serum cytokines and glioma.

    PubMed

    Schwartzbaum, Judith; Wang, Min; Root, Elisabeth; Pietrzak, Maciej; Rempala, Grzegorz A; Huang, Ruo-Pan; Johannesen, Tom Borge; Grimsrud, Tom K

    2017-01-01

    Recent research shows bidirectional communication between the normal brain and the peripheral immune system. Glioma is a primary brain tumor characterized by systemic immunosuppression. To better understand gliomagenesis, we evaluated associations between 277 prediagnostic serum cytokines and glioma. We used glioma (n = 487) and matched control (n = 487) specimens from the Janus Serum Bank Cohort in Oslo, Norway. Conditional logistic regression allowed us to identify those cytokines that were individually associated with glioma. Next, we used heat maps to compare case to control Pearson correlation matrices of 12 cytokines modeled in an in silico study of the interaction between the microenvironment and the tumor. We did the same for case-control correlation matrices of lasso-selected cytokines and all 277 cytokines in the data set. Cytokines related to glioma risk (P ≤ .05) more than 10 years before diagnosis are sIL10RB, VEGF, beta-Catenin and CCL22. LIF was associated with decreased glioma risk within five years before glioma diagnosis (odds ratio (OR) = 0.47, 95% confidence interval (CI) = 0.23, 0.94). After adjustment for cytokines above, the previously observed interaction between IL4 and sIL4RA persisted (> 20 years before diagnosis, OR = 1.72, 95% CI = 1.20, 2.47). In addition, during this period, case correlations among 12 cytokines were weaker than were those among controls. This pattern was also observed among 30 lasso- selected cytokines and all 277 cytokines. We identified four cytokines and one interaction term that were independently related to glioma risk. We have documented prediagnostic changes in serum cytokine levels that may reflect the presence of a preclinical tumor.

  19. Coffee, tea, caffeine intake, and risk of adult glioma in three prospective cohort studies.

    PubMed

    Holick, Crystal N; Smith, Scott G; Giovannucci, Edward; Michaud, Dominique S

    2010-01-01

    Current data suggest that caffeinated beverages may be associated with lower risk of glioma. Caffeine has different effects on the brain, some of which could play a role in brain carcinogenesis, and coffee has been consistently associated with reduced risk of liver cancer, thus suggesting a potential anticarcinogenic effect. A total of 335 incident cases of gliomas (men, 133; women, 202) were available from three independent cohort studies. Dietary intake was assessed by food frequency questionnaires obtained at baseline and during follow-up. Cox proportional hazard models were used to estimate incidence rate ratios (RR) and 95% confidence intervals (CI) between consumption of coffee, tea, carbonated beverages, caffeine, and glioma risk adjusting for age and total caloric intake. Estimates from each cohort were pooled using a random-effects model. Consumption of five or more cups of coffee and tea daily compared with no consumption was associated with a decrease risk of glioma (RR, 0.60; 95% CI, 0.41-0.87; P(trend) = 0.04). Inverse, although weaker, associations were also observed between coffee, caffeinated coffee, tea, and carbonated beverages and glioma risk. No association was observed between decaffeinated coffee and glioma risk. Among men, a statistically significant inverse association was observed between caffeine consumption and risk of glioma (RR, 0.46; 95% CI, 0.26-0.81; P(trend) = 0.03); the association was weaker among women. Our findings suggest that consumption of caffeinated beverages, including coffee and tea, may reduce the risk of adult glioma, but further research is warranted to confirm these findings in other populations.

  20. Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression

    PubMed Central

    Miyauchi, Jeremy T.; Chen, Danling; Choi, Matthew; Nissen, Jillian C.; Shroyer, Kenneth R.; Djordevic, Snezana; Zachary, Ian C.; Selwood, David; Tsirka, Stella E.

    2016-01-01

    Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression. PMID:26755653

  1. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    SciTech Connect

    Jia, Yue; Wang, Handong; Wang, Qiang; Ding, Hui; Wu, Heming; Pan, Hao

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  2. Coffee, tea, caffeine intake and risk of adult glioma in 3 prospective cohort studies

    PubMed Central

    Holick, Crystal N.; Smith, Scott G.; Giovannucci, Edward; Michaud, Dominique S.

    2009-01-01

    Current data suggest that caffeinated beverages may be associated with lower risk of glioma. Caffeine has different effects on the brain, some which could play a role in brain carcinogenesis, and coffee has been consistently associated with reduced risk of liver cancer, thus suggesting a potential anticarcinogenic effect. A total of 335 incident cases of gliomas (men = 133, women = 202) were available from three independent cohort studies. Dietary intake was assessed by food-frequency questionnaires obtained at baseline and during follow-up. Cox proportional hazard models were used to estimate incidence rate ratios (RR) and 95% confidence intervals (CI) between consumption of coffee, tea, carbonated beverages, caffeine, and glioma risk adjusting for age and total caloric intake. Estimates from each cohort were pooled using a random-effects model. Consumption of five or more cups of coffee and tea a day compared to no consumption was associated with a decrease risk of glioma (RR = 0.60; 95% CI: 0.41–0.87; p-trend = 0.04). Inverse, although weaker, associations were also observed between coffee, caffeinated coffee, tea, carbonated beverages and glioma risk. No association was observed between decaffeinated coffee and glioma risk. Among men, a statistically significant inverse association was observed between caffeine consumption and risk of glioma (RR = 0.46; 95% CI: 0.26–0.81; p-trend = 0.03); the association was weaker among women. Our findings suggest that consumption of caffeinated beverages, including coffee and tea, may reduce the risk of adult glioma, but further research is warranted to confirm these findings in other populations. PMID:20056621

  3. Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma.

    PubMed

    Guo, Wanhua; Li, Aimei; Jia, Zhijun; Yuan, Yi; Dai, Haifeng; Li, Hongxiu

    2013-10-15

    Glioblastoma is one of the most malignant brain tumors with a poor prognosis. In this study, we examined the effects of transferrin (Tf)-modified poly ethyleneglycol-poly lactic acid (PEG-PLA) nanoparticles conjugated with resveratrol (Tf-PEG-PLA-RSV) to glioma therapy in vitro and in vivo. The cell viability of Tf-PEG-PLA-RSV on C6 and U87 glioma cells was determined by the MTT assay. In vivo biodistribution and antitumor activity were investigated in Brain glioma bearing rat model of C6 glioma by i.p. administration of RSV-polymer conjugates. We found that the average diameter of each Tf-PEG-PLA-RSV is around 150 nm with 32 molecules of Tf on surface. In vitro cytotoxicity of PEG-PLA-RSV against C6 and U87 cells was higher than that of free RSV, and further the modification of Tf enhanced the cytotoxicity of the RSV-polymer conjugates as a result of the increased cellular uptake of the RSV-modified conjugates by glioma cells. In comparison with free RSV, RSV conjugates could significantly decrease tumor volume and accumulate in brain tumor, which resulted in prolonging the survival of C6 glioma-bearing rats. These results suggest that Tf-NP-RSV had a potential of therapeutic effect to glioma both in vitro and in vivo and might be a potential candidate for targeted therapy of glioma and worthy of further investigation. © 2013 Elsevier B.V. All rights reserved.

  4. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    PubMed

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the

  5. The pathobiology of glioma tumors.

    PubMed

    Gladson, Candece L; Prayson, Richard A; Liu, Wei Michael

    2010-01-01

    The ongoing characterization of the genetic and epigenetic alterations in the gliomas has already improved the classification of these heterogeneous tumors and enabled the development of rodent models for analysis of the molecular pathways underlying their proliferative and invasive behavior. Effective application of the targeted therapies that are now in development will depend on pathologists' ability to provide accurate information regarding the genetic alterations and the expression of key receptors and ligands in the tumors. Here we review the mechanisms that have been implicated in the pathogenesis of the gliomas and provide examples of the cooperative nature of the pathways involved, which may influence the initial therapeutic response and the potential for development of resistance.

  6. The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism

    PubMed Central

    Chinnaiyan, Prakash; Kensicki, Elizabeth; Bloom, Gregory; Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Eschrich, Steven; Qu, Xiaotao; Forsyth, Peter; Gillies, Robert

    2015-01-01

    Although considerable progress has been made toward understanding glioblastoma biology through large-scale genetic and protein expression analyses, little is known about the underlying metabolic alterations promoting their aggressive phenotype. We conducted global metabolomic profiling on patient-derived glioma specimens and identified specific metabolic programs differentiating low- and high-grade tumors, with the metabolic signature of glioblastoma reflecting accelerated anabolic metabolism. When coupled with transcriptional profiles, we identified the metabolic phenotype of the mesenchymal subtype to consist of accumulation of the glycolytic intermediate phosphoenolpyruvate and decreased pyruvate kinase activity. Unbiased hierarchical clustering of metabolomic profiles identified three subclasses, which we term energetic, anabolic, and phospholipid catabolism with prognostic relevance. These studies represent the first global metabolomic profiling of glioma, offering a previously undescribed window into their metabolic heterogeneity, and provide the requisite framework for strategies designed to target metabolism in this rapidly fatal malignancy. PMID:23026133

  7. Intraarterial Infusion Of Erbitux and Bevacizumab For Relapsed/Refractory Intracranial Glioma In Patients Under 22

    ClinicalTrials.gov

    2017-01-12

    Glioblastoma Multiforme; Fibrillary Astrocytoma of Brain; Glioma of Brainstem; Anaplastic Astrocytoma; Pilomyxoid Astrocytoma; Mixed Oligodendroglioma-Astrocytoma; Brain Stem Glioma; Diffuse Intrinsic Pontine Glioma

  8. Caffeine inhibits migration in glioma cells through the ROCK-FAK pathway.

    PubMed

    Chen, Ying; Chou, Wei-Chung; Ding, You-Ming; Wu, Ya-Chieh

    2014-01-01

    Glioma is the most malignant brain tumor that has the ability to migrate and invade the CNS. In this study, we investigated the signaling mechanism of caffeine on the migration of glioma cells. The effect of caffeine on cell migration was evaluated using Transwell and wound healing assays. The expression of the focal adhesion complex as it related to cell migration was assayed using Western blotting and immunostaining. Caffeine decreased the migration of rat C6 and human U87MG glioma cells and down-regulated the expression of phosphorylated focal adhesion kinase (p-FAK) and p-paxillin. Caffeine also decreased p-FAK staining at the edge of glioma cells and disassembled actin stress fibers. Additionally, caffeine elevated expression of phosphorylated myosin light chain (p-MLC), an effect that could be blocked by Y27632, a rho-associated protein kinase (ROCK) inhibitor, but not myosin light chain kinase inhibitor, ML-7. Y27632 also inhibited the caffeine-reduced expression of p-FAK and p-paxillin as well as cell migration. Caffeine decreased the migration of glioma cell through the ROCK-focal adhesion complex pathway; this mechanism may be useful as part of clinical therapy in the future. © 2014 S. Karger AG, Basel

  9. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.

  10. Quantitative MRI for analysis of peritumoral edema in malignant gliomas

    PubMed Central

    Warntjes, J. B. Marcel; Smedby, Örjan; Lundberg, Peter

    2017-01-01

    Background and purpose Damage to the blood-brain barrier with subsequent contrast enhancement is a hallmark of glioblastoma. Non-enhancing tumor invasion into the peritumoral edema is, however, not usually visible on conventional magnetic resonance imaging. New quantitative techniques using relaxometry offer additional information about tissue properties. The aim of this study was to evaluate longitudinal relaxation R1, transverse relaxation R2, and proton density in the peritumoral edema in a group of patients with malignant glioma before surgery to assess whether relaxometry can detect changes not visible on conventional images. Methods In a prospective study, 24 patients with suspected malignant glioma were examined before surgery. A standard MRI protocol was used with the addition of a quantitative MR method (MAGIC), which measured R1, R2, and proton density. The diagnosis of malignant glioma was confirmed after biopsy/surgery. In 19 patients synthetic MR images were then created from the MAGIC scan, and ROIs were placed in the peritumoral edema to obtain the quantitative values. Dynamic susceptibility contrast perfusion was used to obtain cerebral blood volume (rCBV) data of the peritumoral edema. Voxel-based statistical analysis was performed using a mixed linear model. Results R1, R2, and rCBV decrease with increasing distance from the contrast-enhancing part of the tumor. There is a significant increase in R1 gradient after contrast agent injection (P < .0001). There is a heterogeneous pattern of relaxation values in the peritumoral edema adjacent to the contrast-enhancing part of the tumor. Conclusion Quantitative analysis with relaxometry of peritumoral edema in malignant gliomas detects tissue changes not visualized on conventional MR images. The finding of decreasing R1 and R2 means shorter relaxation times closer to the tumor, which could reflect tumor invasion into the peritumoral edema. However, these findings need to be validated in the future. PMID

  11. Telomere Length and Risk of Glioma

    PubMed Central

    Walcott, Farzana; Rajaraman, Preetha; Gadalla, Shahinaz M.; Inskip, Peter D.; Purdue, Mark P.; Albanes, Demetrius; Orr, Esther; De Vivo, Immaculata; Savage, Sharon A.

    2013-01-01

    Background Telomere length in blood or buccal cell DNA has been associated with risk of various cancers. Glioma can be a highly malignant brain tumor and has few known risk factors. Genetic variants in or near RTEL1 and TERT, key components of telomere biology, are associated with glioma risk. Therefore, we evaluated the association between relative telomere length (RTL) and glioma in a prospective study. Materials and Methods We performed a nested case-control study within the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. RTL was determined by quantitative PCR on blood or buccal cell DNA obtained at least two years prior to diagnosis from 101 individuals with glioma cases. Healthy controls (n=198) were matched to cases (2:1) on age, gender, smoking status, calendar year, and DNA source. Conditional logistic regression was used to investigate the association between RTL and glioma. Results As expected, RTL declined with increasing age in both cases and controls. There was no statistically significant association between RTL and glioma overall. An analysis stratified by gender suggested that short RTL (1st tertile) in males was associated with glioma (odds ratio, [OR] = 2.29, 95% confidence interval [CI] 1.02-5.11); this association was not observed for females (OR=0.41, 95% CI 0.14-1.17). Conclusions This prospective study did not identify significant associations between RTL and glioma risk, but there may be gender-specific differences. Larger, prospective studies are needed to evaluate these findings. PMID:24231251

  12. Asiatic Acid Inhibits Pro-Angiogenic Effects of VEGF and Human Gliomas in Endothelial Cell Culture Models

    PubMed Central

    Kavitha, Chandagirikoppal V.; Agarwal, Chapla; Agarwal, Rajesh; Deep, Gagan

    2011-01-01

    Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5–20 µM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 µM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti

  13. Cigarette smoking, alcohol intake, and risk of glioma in the NIH-AARP Diet and Health Study

    PubMed Central

    Braganza, M Z; Rajaraman, P; Park, Y; Inskip, P D; Freedman, N D; Hollenbeck, A R; de González, A Berrington; Kitahara, C M

    2014-01-01

    Background: Although cigarette smoking and alcohol drinking increase the risk of several cancers and certain components of cigarette smoke and alcohol can penetrate the blood–brain barrier, it remains unclear whether these exposures influence the risk of glioma. Methods: We examined the associations between cigarette smoking, alcohol intake, and risk of glioma in the National Institutes of Health-AARP Diet and Health Study, a prospective study of 477 095 US men and women ages 50–71 years at baseline. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using models with age as the time metric and adjusted for sex, race/ethnicity, education, and marital status. Results: During a median 10.5 person-years of follow-up, 492 men and 212 women were diagnosed with first primary glioma. Among men, current, heavier smoking was associated with a reduced risk of glioma compared with never smoking, but this was based on only nine cases. No associations were observed between smoking behaviours and glioma risk in women. Greater alcohol consumption was associated with a decreased risk of glioma, particularly among men (>2 drinks per day vs <1 drink per week: HR=0.67, 95% CI=0.51–0.90). Conclusion: Smoking and alcohol drinking do not appear to increase the risk of glioma. PMID:24335921

  14. Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens.

    PubMed

    Kong, Byung Ho; Park, Na-Ri; Shim, Jin-Kyoung; Kim, Bo-Kyung; Shin, Hye-Jin; Lee, Ji-Hyun; Huh, Yong-Min; Lee, Su-Jae; Kim, Se-Hoon; Kim, Eui-Hyun; Park, Eun-Kyung; Chang, Jong Hee; Kim, Dong-Seok; Kim, Sun Ho; Hong, Yong-Kil; Kang, Seok-Gu; Lang, Frederick F

    2013-02-01

    The existence of cancer stem cells (CSCs) in glioblastoma has been proposed. However, the unknown knowledge that is yet to be revealed is the presence of glioma CSCs (gCSCs) in correlation to each WHO grades of glioma. We approached this study with a hypothesis that specimens from high-grade gliomas would have higher isolation rate of gCSCs in comparison to those of lower-grade gliomas. The glioma specimens were obtained from patients and underwent gliomasphere assay. The gliomaspheres were chosen to be analyzed with immunocytochemisty for surface markers. Then the selected gliomaspheres were exposed to neural differentiation conditions. Lastly, we made mouse orthotopic glioma models to examine the capacity of gliomagenesis. The gliomaspheres were formed in WHO grade IV (13 of 21) and III (two of nine) gliomas. Among them, WHO grade IV (11 of 13) and III (two of two) gliomaspheres showed similar surface markers to gCSCs and were capable of neural differentiation. Lastly, among the chosen cells, 10 of 11 WHO grade IV and two of two WHO grade III gliomaspheres were capable of gliomagenesis. Thus, overall, the rates of existence of gCSCs were more prominent in high-grade gliomas: 47.6% (10 of 21) in WHO grade IV gliomas and 22.2% (two of nine) in WHO grade III gliomas, whereas WHO grade II and I gliomas showed virtually no gCSCs. This trend of stage-by-stage increase of gCSCs in gliomas showed statistical significance by chi-square test linear-by-linear association. We prove that the rates of existence of gCSCs increase proportionally as the WHO grades of gliomas rise.

  15. Associations of High-Grade Glioma With Glioma Risk Alleles and Histories of Allergy and Smoking

    PubMed Central

    Lachance, Daniel H.; Yang, Ping; Johnson, Derek R.; Decker, Paul A.; Kollmeyer, Thomas M.; McCoy, Lucie S.; Rice, Terri; Xiao, Yuanyuan; Ali-Osman, Francis; Wang, Frances; Stoddard, Shawn M.; Sprau, Debra J.; Kosel, Matthew L.; Wiencke, John K.; Wiemels, Joseph L.; Patoka, Joseph S.; Davis, Faith; McCarthy, Bridget; Rynearson, Amanda L.; Worra, Joel B.; Fridley, Brooke L.; O’Neill, Brian Patrick; Buckner, Jan C.; Il’yasova, Dora; Jenkins, Robert B.; Wrensch, Margaret R.

    2011-01-01

    Glioma risk has consistently been inversely associated with allergy history but not with smoking history despite putative biologic plausibility. Data from 855 high-grade glioma cases and 1,160 controls from 4 geographic regions of the United States during 1997–2008 were analyzed for interactions between allergy and smoking histories and inherited variants in 5 established glioma risk regions: 5p15.3 (TERT), 8q24.21 (CCDC26/MLZE), 9p21.3 (CDKN2B), 11q23.3 (PHLDB1/DDX6), and 20q13.3 (RTEL1). The inverse relation between allergy and glioma was stronger among those who did not (odds ratioallergy-glioma = 0.40, 95% confidence interval: 0.28, 0.58) versus those who did (odds ratioallergy-glioma = 0.76, 95% confidence interval: 0.59, 0.97; Pinteraction = 0.02) carry the 9p21.3 risk allele. However, the inverse association with allergy was stronger among those who carried (odds ratioallergy-glioma = 0.44, 95% confidence interval: 0.29, 0.68) versus those who did not carry (odds ratioallergy-glioma = 0.68, 95% confidence interval: 0.54, 0.86) the 20q13.3 glioma risk allele, but this interaction was not statistically significant (P = 0.14). No relation was observed between glioma risk and smoking (odds ratio = 0.92, 95% confidence interval: 0.77, 1.10; P = 0.37), and there were no interactions for glioma risk of smoking history with any of the risk alleles. The authors’ observations are consistent with a recent report that the inherited glioma risk variants in chromosome regions 9p21.3 and 20q13.3 may modify the inverse association of allergy and glioma. PMID:21742680

  16. Inhibitory effects of pharmacological doses of melatonin on aromatase activity and expression in rat glioma cells.

    PubMed

    González, A; Martínez-Campa, C; Mediavilla, M D; Alonso-González, C; Sánchez-Barceló, E J; Cos, S

    2007-09-17

    Melatonin exerts oncostatic effects on different kinds of neoplasias, especially on oestrogen-dependent tumours. Recently, it has been described that melatonin, on the basis of its antioxidant properties, inhibits the growth of glioma cells. Glioma cells express oestrogen receptors and have the ability to synthesise oestrogens from androgens. In the present study, we demonstrate that pharmacological concentrations of melatonin decreases the growth of C6 glioma cells and reduces the local biosynthesis of oestrogens, through the inhibition of aromatase, the enzyme that catalyses the conversion of androgens into oestrogens. These results are supported by three types of evidence. Firstly, melatonin counteracts the growth stimulatory effects of testosterone on glioma cells, which is dependent on the local synthesis of oestrogens from testosterone. Secondly, we found that melatonin reduces the aromatase activity of C6 cells, measured by the tritiated water release assay. Finally, by (RT)-PCR, we found that melatonin downregulates aromatase mRNA steady-state levels in these glioma cells. We conclude that melatonin inhibits the local production of oestrogens decreasing aromatase activity and expression. By analogy to the implications of aromatase in other forms of oestrogen-sensitive tumours, it is conceivable that the modulation of the aromatase by pharmacological melatonin may play a role in the growth of glioblastomas.

  17. Radiotherapeutic management of optic nerve gliomas in children

    SciTech Connect

    Danoff, B.F.; Kramer, S.; Thompson, N.

    1980-01-01

    Optic nerve gliomas represent one to five percent of all intracranial tumors in children. The management of these tumors remains controversial. From 1956 to 1977, 18 children with optic nerve gliomas were treated at Thomas Jefferson University Hospital using external beam radiotherapy. All children presented with decreased visual acuity and five of eighteen were blind in one eye. No patient was found to have involvement of a single optic nerve. in eight patients, the chiasm was involved, in ten patients, tumor had extended to the frontal lobes and/or hypothalamus. Initial surgical management included biopsy only in seven patients, inspection of tumor in two patients and partial excision in seven patients. Two patients were treated with radiotherapy based on radiological findings. A tumor dose of 5000 to 6000 rad was given in 5.5 to 6.5 weeks. Stabilization of visual impairment or improvement in vision was noted in 78 percent of patients who were evaluable. The ten year survival was 73 percent. Radiological evidence of tumor regression will be presented. It is our impression that radiotherapy is indicated in the treatment of children with optic nerve gliomas who have poor prognostic signs (i.e., chiasmal and/or hypothalamic involvement and progressive visual loss).

  18. Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model

    SciTech Connect

    Perez-Torres, Carlos J.; Engelbach, John A.; Cates, Jeremy; Thotala, Dinesh; Yuan, Liya; Schmidt, Robert E.; Rich, Keith M.; Drzymala, Robert E.; Ackerman, Joseph J.H.; Garbow, Joel R.

    2014-10-01

    Purpose: Accurate noninvasive diagnosis is vital for effective treatment planning. Presently, standard anatomical magnetic resonance imaging (MRI) is incapable of differentiating recurring tumor from delayed radiation injury, as both lesions are hyperintense in both postcontrast T1- and T2-weighted images. Further studies are therefore necessary to identify an MRI paradigm that can differentially diagnose these pathologies. Mouse glioma and radiation injury models provide a powerful platform for this purpose. Methods and Materials: Two MRI contrasts that are widely used in the clinic were chosen for application to a glioma/radiation-injury model: diffusion weighted imaging, from which the apparent diffusion coefficient (ADC) is obtained, and magnetization transfer contrast, from which the magnetization transfer ratio (MTR) is obtained. These metrics were evaluated longitudinally, first in each lesion type alone–glioma versus irradiation – and then in a combined irradiated glioma model. Results: MTR was found to be consistently decreased in all lesions compared to nonlesion brain tissue (contralateral hemisphere), with limited specificity between lesion types. In contrast, ADC, though less sensitive to the presence of pathology, was increased in radiation injury and decreased in tumors. In the irradiated glioma model, ADC also increased immediately after irradiation, but decreased as the tumor regrew. Conclusions: ADC is a better metric than MTR for differentiating glioma from radiation injury. However, MTR was more sensitive to both tumor and radiation injury than ADC, suggesting a possible role in detecting lesions that do not enhance strongly on T1-weighted images.

  19. Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytomembrane MMP14

    PubMed Central

    Wang, Donghai; Huang, Bin; Zhao, Peng; Wang, Jian; Qu, Xun; Li, Xingang

    2016-01-01

    The brain microenvironment has emerged as an important component in malignant progression of human glioma. However, astrocytes, the most abundant glial cells in the glioma microenvironment, have as yet a poorly defined role in the development of this disease, particularly with regard to invasion. Here, we co-cultured human astrocytes with human glioma cell lines, U251 and A172, in an in vitro transwell system in order to ascertain their influence on migration and invasion of gliomas. mRNA and protein expression assays were subsequently used to identify candidate proteins mediating this activity. Astrocytes significantly increased migration and invasion of both U251 and A172 cells in migration and invasion (plus matrigel) assays. Membrane type 1 matrix metalloproteinase (MMP14) originating from glioma cells was identified in qRT-PCR as the most highly up-regulated member of the MMP family of genes (~ 3 fold, p < 0.05) in this system. A cytokine array and ELISA were used to identify interleukin-6 (IL-6) as a highly increased factor in media collected from astrocytes, especially under co-culture conditions. IL-6 was also the key cytokine inducing cytomembrane MMP14 expression, the active form of MMP14, in glioma cells. Knockdown of MMP14 with siRNA led to decreased migration and invasion. Taken together, our results indicated that cytomembrane MMP14 was induced by IL-6 secreted from astrocytes, thereby enhancing the migration and invasion of glioma cells through activation of MMP2. Therefore, this IL-6 and MMP14 axis between astrocytes and glioma cells may become a potential target for treatment of glioma patients. PMID:27613828

  20. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    SciTech Connect

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella; Schulz-Schaeffer, Walter; Rave-Fraenk, Margret; Hasselblatt, Martin; Jelkmann, Wolfgang; Giese, Alf; Ehrenreich, Hannelore

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains of nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.

  1. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways.

    PubMed

    Rathod, Sachin S; Rani, Sandhya B; Khan, Mohsina; Muzumdar, Dattatraya; Shiras, Anjali

    2014-01-01

    MiRNA-34a is considered as a potential prognostic marker for glioma, as studies suggest that its expression negatively correlates with patient survival in grade III and IV glial tumors. Here, we show that expression of miR-34a was decreased in a graded manner in glioma and glioma stem cell-lines as compared to normal brain tissues. Ectopic expression of miR-34a in glioma stem cell-lines HNGC-2 and NSG-K16 decreased the proliferative and migratory potential of these cells, induced cell cycle arrest and caused apoptosis. Notably, the miR-34a glioma cells formed significantly smaller xenografts in immuno-deficient mice as compared with control glioma stem cell-lines. Here, using a bioinformatics approach and various biological assays, we identify Rictor, as a novel target for miR-34a in glioma stem cells. Rictor, a defining component of mTORC2 complex, is involved in cell survival signaling. mTORC2 lays downstream of Akt, and thus is a direct activator of Akt. Our earlier studies have elaborated on role of Rictor in glioma invasion (Das et al., 2011). Here, we demonstrate that miR34a over-expression in glioma stem cells profoundly decreased levels of p-AKT (Ser473), increased GSK-3β levels and targeted for degradation β-catenin, an important mediator of Wnt signaling pathway. This led to diminished levels of the Wnt effectors cyclin D1 and c-myc. Collectively, we show that the tumor suppressive function of miR-34a in glioblastoma is mediated via Rictor, which through its effects on AKT/mTOR pathway and Wnt signaling causes pronounced effects on glioma malignancy.

  2. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways

    PubMed Central

    Rathod, Sachin S.; Rani, Sandhya B.; Khan, Mohsina; Muzumdar, Dattatraya; Shiras, Anjali

    2014-01-01

    MiRNA-34a is considered as a potential prognostic marker for glioma, as studies suggest that its expression negatively correlates with patient survival in grade III and IV glial tumors. Here, we show that expression of miR-34a was decreased in a graded manner in glioma and glioma stem cell-lines as compared to normal brain tissues. Ectopic expression of miR-34a in glioma stem cell-lines HNGC-2 and NSG-K16 decreased the proliferative and migratory potential of these cells, induced cell cycle arrest and caused apoptosis. Notably, the miR-34a glioma cells formed significantly smaller xenografts in immuno-deficient mice as compared with control glioma stem cell-lines. Here, using a bioinformatics approach and various biological assays, we identify Rictor, as a novel target for miR-34a in glioma stem cells. Rictor, a defining component of mTORC2 complex, is involved in cell survival signaling. mTORC2 lays downstream of Akt, and thus is a direct activator of Akt. Our earlier studies have elaborated on role of Rictor in glioma invasion (Das et al., 2011). Here, we demonstrate that miR34a over-expression in glioma stem cells profoundly decreased levels of p-AKT (Ser473), increased GSK-3β levels and targeted for degradation β-catenin, an important mediator of Wnt signaling pathway. This led to diminished levels of the Wnt effectors cyclin D1 and c-myc. Collectively, we show that the tumor suppressive function of miR-34a in glioblastoma is mediated via Rictor, which through its effects on AKT/mTOR pathway and Wnt signaling causes pronounced effects on glioma malignancy. PMID:24944883

  3. Overexpression of MicroRNA-216a Suppresses Proliferation, Migration, and Invasion of Glioma Cells By Targeting Leucine-rich Repeat-containing G Protein-coupled Receptor 5.

    PubMed

    Zhang, Junfeng; Xu, Kun; Shi, Lili; Zhang, Li; Zhao, Zhaohua; Xu, Hao; Liang, Fei; Li, Hongbo; Zhao, Yan; Xu, Xi; Tian, Yingfang

    2017-03-02

    Increasing studies have suggested that microRNAs (miRNAs) are involved in the development of gliomas. MicroRNA-216a hasbeen reported as a tumor-associated miRNA in many types of cancer, either as an oncogene or a tumor suppressor. However, little is known about the function of miR-216a in gliomas. The present study was designed to explore the potential role of miR-216a in gliomas. We found that miR-216a was significantly decreased in glioma tissues and cell lines. Overexpression of miR-216a significantly suppressed the proliferation, migration and invasion of glioma cells. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) was identified as a target gene of miR-216a in glioma cells by bioinformatics analysis, dual-luciferase reporter assay, real-time quantitative polymerase chain reaction and western blot analysis. Moreover, miR-216a overexpression inhibited the Wnt/β-catenin signaling pathway. The restoration of LGR5 expression markedly reversed the antitumor effect of miR-216a in glioma cells. Taken together, these findings suggest a tumor suppressor role of miR-216a in gliomas which inhibits glioma cell proliferation, migration and invasion by targeting LGR5. Our study suggests that miR-216a may serve as a potential therapeutic target for future glioma treatment.

  4. Prognostic value of choline and creatine in WHO grade II gliomas.

    PubMed

    Hattingen, Elke; Raab, Peter; Franz, Kea; Lanfermann, Heiner; Setzer, Matthias; Gerlach, Rüdiger; Zanella, Friedhelm E; Pilatus, Ulrich

    2008-09-01

    The purpose of this study was to evaluate whether proton magnetic resonance spectroscopy ((1)H-MRS) predicts survival time, tumor progression, and malignant transformation in patients with WHO grade II gliomas. (1)H-MRS and MR imaging (MRI) were performed before surgery in 45 patients with histologically proven WHO grade II gliomas. Metabolite concentrations of choline-containing compounds (Cho) and creatine/phosphocreatine (tCr) were normalized to contralateral brain tissue. Spectroscopic data as well as the extent of tumor resection, contrast enhancement, size and histopatholocical type of the tumor, age, sex, and first neurological symptoms of the patients were analyzed for survival, tumor progression, and malignant transformation for a follow-up period of 1 to 5 years. The normalized tCr of WHO grade II gliomas was a significant predictor for tumor progression (p = 0.011) and for malignant tumor transformation (p = 0.016). Further, contrast enhancement of the tumor (p = 0.014) at the time of diagnosis was significant for malignant tumor transformation and extent of tumor resection for the tumor progression (p = 0.007). All other parameters failed to predict any of the three endpoints. Normalized values of tCr in WHO grade II gliomas may have prognostic implications for this group of gliomas. As a rule of the thumb, low-grade gliomas with decreased tCr (relative tCr values below 1.0) may show longer progression-free times and later malignant transformation than low-grade gliomas with regular or increased tCr values.

  5. microRNA-153 Targets mTORC2 Component Rictor to Inhibit Glioma Cells

    PubMed Central

    Cui, Yan; Zhao, Jizong; Yi, Lei; Jiang, Yugang

    2016-01-01

    Rictor upregulation and mTORC complex 2 (mTORC2) over-activation participate in glioma cell progression, yet the underling mechanisms are not known. We here identified microRNA-153 (miR-153) as a potential anti-Rictor miRNA, which was downregulated in multiple human glioma tissues and glioma cell lines (U87MG, T98G, U373MG and U251MG). miR-153 downregulation was correlated with Rictor (mRNA and protein) upregulation and p-Akt Ser473 (the mTORC2 indicator) over-activation in the glioma tissues and cells. Our in vitro evidences suggested that Rictor could be one primary target of miR-153 in glioma cells. Exogenous overexpression of miR-153 downregulated Rictor (mRNA and protein) and decreased p-Akt Ser473 in U87MG cells, leading to significant growth inhibition and apoptosis activation. Notably, U87MG cells with Rictor shRNA knockdown showed similar phenotypes of cells with miR-153 overexpression. More importantly, in Rictor-silenced U87MG cells, miR-153 expression failed to further affect cell growth nor apoptosis. In vivo, we showed that miR-153 overexpression dramatically inhibited U87MG tumor growth in nude mice. Together, these results suggest that miR-153 downregulation could be one important reason of Rictor upregulation and mTORC2 over-activation in glioma cells. Further, miR-153-induced anti-glioma cell activity is possibly via downregulating Rictor. PMID:27295037

  6. Tubulin nitration in human gliomas.

    PubMed

    Fiore, Gabriella; Di Cristo, Carlo; Monti, Gianluca; Amoresano, Angela; Columbano, Laura; Pucci, Pietro; Cioffi, Fernando A; Di Cosmo, Anna; Palumbo, Anna; d'Ischia, Marco

    2006-02-06

    Immunohistochemical and biochemical investigations showed that significant protein nitration occurs in human gliomas, especially in grade IV glioblastomas at the level of astrocytes and oligodendrocytes and neurones. Enhanced alpha-tubulin immunoreactivity was co-present in the same elements in the glioblastomas. Proteomic methodologies were employed to identify a nitrated protein band at 55 kDa as alpha-tubulin. Peptide mass fingerprinting procedures demonstrated that tubulin is nitrated at Tyr224 in grade IV tumour samples but is unmodified in grade I samples and in non-cancerous brain tissue. These results provide the first characterisation of endogenously nitrated tubulin from human tumour samples.

  7. Incidence of gliomas by anatomic location

    PubMed Central

    Larjavaara, Suvi; Mäntylä, Riitta; Salminen, Tiina; Haapasalo, Hannu; Raitanen, Jani; Jääskeläinen, Juha; Auvinen, Anssi

    2007-01-01

    The anatomic location of a glioma influences prognosis and treatment options. The aim of our study was to describe the distribution of gliomas in different anatomic areas of the brain. A representative population-based sample of 331 adults with glioma was used for preliminary analyses. The anatomic locations for 89 patients from a single center were analyzed in more detail from radiologic imaging and recorded on a three-dimensional 1 × 1 × 1– cm grid. The age-standardized incidence rate of gliomas was 4.7 per 100,000 person-years. The most frequent subtypes were glioblastoma (47%) and grade II–III astrocytoma (23%), followed by oligodendroglioma and mixed glioma. The gliomas were located in the frontal lobe in 40% of the cases, temporal in 29%, parietal in 14%, and occipital lobe in 3%, with 14% in the deeper structures. The difference in distribution between lobes remained after adjustment for their tissue volume: the tumor:volume ratio was 4.5 for frontal, 4.8 for temporal, and 2.3 for parietal relative to the occipital lobe. The area with the densest occurrence was the anterior subcortical brain. Statistically significant spatial clustering was found in the three-dimensional analysis. No differences in location were found among glioblastoma, diffuse astrocytoma, and oligodendroglioma. Our results demonstrate considerable heterogeneity in the anatomic distribution of gliomas within the brain. PMID:17522333

  8. TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo

    PubMed Central

    Perlstein, Benny; Finniss, Susan A.; Miller, Cathie; Okhrimenko, Hana; Kazimirsky, Gila; Cazacu, Simona; Lee, Hae Kyung; Lemke, Nancy; Brodie, Shlomit; Umansky, Felix; Rempel, Sandra A.; Rosenblum, Mark; Mikklesen, Tom; Margel, Shlomo; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM) are characterized by resistance to chemotherapy and radiotherapy, and therefore, alternative therapeutic approaches are needed. TRAIL induces apoptosis in cancer but not in normal cells and is considered to be a promising anti-tumor agent. However, its short in vivo half-life and lack of efficient administration modes are serious impediments to its therapeutic efficacy. Nanoparticles (NP) have been used as effective delivery tools for various anticancer drugs. TRAIL was conjugated to magnetic ferric oxide NP by binding the TRAIL primary amino groups to activated double bonds on the surface of the NP. The effect of NP-TRAIL was examined on the apoptosis of glioma cells and self-renewal of glioma stem cells (GSCs). In addition, the ability of the NP-TRAIL to track U251 cell–derived glioma xenografts and to affect cell apoptosis, tumor volume, and survival among xenografted rats was also examined. Conjugation of TRAIL to NP increased its apoptotic activity against different human glioma cells and GSCs, as compared with free recombinant TRAIL. Combined treatment with NP-TRAIL and γ-radiation or bortezomib sensitized TRAIL-resistant GSCs to NP-TRAIL. Using rhodamine-labeled NP and U251 glioma cell–derived xenografts, we demonstrated that the NP-TRAIL were found in the tumor site and induced a significant increase in glioma cell apoptosis, a decrease in tumor volume, and increased animal survival. In summary, conjugation of TRAIL to NP increased its apoptotic activity both in vitro and in vivo. Therefore, NP-TRAIL represents a targeted anticancer agent with more efficient action for the treatment of GBM and the eradication of GSCs. PMID:23144078

  9. TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo.

    PubMed

    Perlstein, Benny; Finniss, Susan A; Miller, Cathie; Okhrimenko, Hana; Kazimirsky, Gila; Cazacu, Simona; Lee, Hae Kyung; Lemke, Nancy; Brodie, Shlomit; Umansky, Felix; Rempel, Sandra A; Rosenblum, Mark; Mikklesen, Tom; Margel, Shlomo; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM) are characterized by resistance to chemotherapy and radiotherapy, and therefore, alternative therapeutic approaches are needed. TRAIL induces apoptosis in cancer but not in normal cells and is considered to be a promising anti-tumor agent. However, its short in vivo half-life and lack of efficient administration modes are serious impediments to its therapeutic efficacy. Nanoparticles (NP) have been used as effective delivery tools for various anticancer drugs. TRAIL was conjugated to magnetic ferric oxide NP by binding the TRAIL primary amino groups to activated double bonds on the surface of the NP. The effect of NP-TRAIL was examined on the apoptosis of glioma cells and self-renewal of glioma stem cells (GSCs). In addition, the ability of the NP-TRAIL to track U251 cell-derived glioma xenografts and to affect cell apoptosis, tumor volume, and survival among xenografted rats was also examined. Conjugation of TRAIL to NP increased its apoptotic activity against different human glioma cells and GSCs, as compared with free recombinant TRAIL. Combined treatment with NP-TRAIL and γ-radiation or bortezomib sensitized TRAIL-resistant GSCs to NP-TRAIL. Using rhodamine-labeled NP and U251 glioma cell-derived xenografts, we demonstrated that the NP-TRAIL were found in the tumor site and induced a significant increase in glioma cell apoptosis, a decrease in tumor volume, and increased animal survival. In summary, conjugation of TRAIL to NP increased its apoptotic activity both in vitro and in vivo. Therefore, NP-TRAIL represents a targeted anticancer agent with more efficient action for the treatment of GBM and the eradication of GSCs.

  10. ELTD1, an effective anti-angiogenic target for gliomas: preclinical assessment in mouse GL261 and human G55 xenograft glioma models.

    PubMed

    Ziegler, Jadith; Pody, Richard; Coutinho de Souza, Patricia; Evans, Blake; Saunders, Debra; Smith, Nataliya; Mallory, Samantha; Njoku, Charity; Dong, Yunzhou; Chen, Hong; Dong, Jiali; Lerner, Megan; Mian, Osamah; Tummala, Sai; Battiste, James; Fung, Kar-Ming; Wren, Jonathan D; Towner, Rheal A

    2017-02-01

    Despite current therapies, glioblastoma is a devastating cancer, and validation of effective biomarkers for it will enable better diagnosis and therapeutic intervention for this disease. We recently discovered a new biomarker for high-grade gliomas, ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1) via bioinformatics, and validated that ELTD1 protein levels are significantly higher in human and rodent gliomas. The focus of this study was to assess the effect on tumor growth of an antibody against ELTD1 in orthotopic, GL261, and G55 xenograft glioma models. The effect of anti-ELTD1 antibody therapy was assessed by animal survival, MRI measured tumor volumes, MR angiography, MR perfusion imaging, and immunohistochemistry (IHC) characterization of microvessel density in mouse glioma models. Comparative treatments included anti-vascular endothelial growth factor (VEGF) and anti-c-Met antibody therapies, compared with untreated controls. Tumor volume and survival data in this study show that antibodies against ELTD1 inhibit glioma growth just as effectively or even more so compared with other therapeutic targets studied, including anti-VEGF antibody therapy. Untreated GL261 or G55 tumors were found to have significantly higher ELTD1 levels (IHC) compared with contralateral normal brain. The anti-angiogenic effect of ELTD1 antibody therapy was observed in assessment of microvessel density, as well as from MR angiography and perfusion measurements, which indicated that anti-ELTD1 antibody therapy significantly decreased vascularization compared with untreated controls. Either as a single therapy or in conjunction with other therapeutic approaches, anti-ELTD1 antibodies could be a valuable new clinical anti-angiogenic therapeutic for high-grade gliomas.

  11. Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts.

    PubMed

    Zhao, Ming; Liang, Chao; Li, Anmin; Chang, Jin; Wang, Hanjie; Yan, Runmin; Zhang, Jiajing; Tai, Junli

    2010-06-01

    Paclitaxel has fared poorly in clinical trials against brain glioma. We hypothesized that superparamagnetic nanocarriers may enhance its bioactivities by delivering it into the brain. The magnetic paclitaxel nanoparticles (MPNPs) were fabricated and their cytotoxicity against glioma was tested both in vitro and in glioma-bearing rats. MPNPs exhibited superparamagnetism and produced an extended release of paclitaxel over 15 days in vitro. They were easily internalized into glioma cells and exerted remarkable toxicity, as free paclitaxel did. Furthermore, after intravenous injection of MPNPs to glioma-bearing rats and magnetic targeting with a 0.5 T magnet, drug content increased for 6- to 14-fold in implanted glioma and 4.6- to 12.1-fold in the normal brain compared to free paclitaxel. The survival of glioma-bearing rats was significantly prolonged after magnetic targeting therapy with MPNPs. MPNPs efficiently delivered paclitaxel into brain glioma by magnetic targeting and enhance its antitumor activity. They are promising for local chemotherapy for malignant glioma.

  12. A neurocentric perspective on glioma invasion

    PubMed Central

    Cuddapah, Vishnu Anand; Robel, Stefanie; Watkins, Stacey; Sontheimer, Harald

    2017-01-01

    Malignant gliomas are devastating tumours that frequently kill patients within 1 year of diagnosis. The major obstacle to a cure is diffuse invasion, which enables tumours to escape complete surgical resection and chemo- and radiation therapy. Gliomas use the same tortuous extracellular routes of migration that are travelled by immature neurons and stem cells, frequently using blood vessels as guides. They repurpose ion channels to dynamically adjust their cell volume to accommodate to narrow spaces and breach the blood-brain barrier through disruption of astrocytic endfeet, which envelop blood vessels. The unique biology of glioma invasion provides hitherto unexplored brain-specific therapeutic targets for this devastating disease. PMID:24946761

  13. Surgical management of low-grade gliomas.

    PubMed

    Gerard, Carter S; Straus, David; Byrne, Richard W

    2014-08-01

    Low-grade gliomas represent a wide spectrum of intra-axial brain tumors with diverse presentations, radiographic and surgical appearances, and prognoses. While there remains a role for biopsy, a growing body of evidence shows that aggressive surgical resection of low-grade gliomas may improve symptoms, extend progression-free survival (PFS), and even cure a select few patients. With the application of preoperative functional imaging, intraoperative navigation, and cortical stimulation, neurosurgeons are able to perform more complete resections while limiting the risk to patients. In this article, we describe the surgical management and current operative techniques used in the treatment of low-grade gliomas.

  14. A report on radiation-induced gliomas

    SciTech Connect

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F. )

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  15. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma.

    PubMed

    Wang, Aiqin; Meng, Mingzhu; Zhao, Xiuhe; Kong, Lina

    2017-04-01

    Gliomas are the most common and aggressive primary malignant tumor in the central nervous system, and requires new biomarkers and therapeutic methods. Long noncoding RNAs (lncRNAs) are important factors in numerous human diseases, including cancer. But studies on lncRNAs and gliomas are limited. In this study, we investigated the expression patterns of lncRNAs in 3 pairs of glioma samples and adjacent non-tumor tissues via microarray and selected the most down-regulated lnc00462717 to further verify its roles in glioma. We observed that decreased lnc00462717 expression was associated with the malignant status in glioma. In vitro experiment demonstrated that lnc00462717 overexpression suppressed glioma cell proliferation, survival and migration while knockdown of lnc00462717 had an opposite result. Moreover, we identified MDM2 as a direct target of lnc00462717 and lnc00462717 played a role by partially regulating the MDM2/MAPK pathway. In conclusion, lnc00462717 may function in suppressing glioma cell proliferation, survival, migration and may potentially serve as a novel biomarker and therapeutic target for glioma.

  16. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326

    PubMed Central

    Ke, Jing; Yao, Yi-long; Zheng, Jian; Wang, Ping; Liu, Yun-hui; Ma, Jun; Li, Zhen; Liu, Xiao-bai; Li, Zhi-qing; Wang, Zhen-hua; Xue, Yi-xue

    2015-01-01

    Glioma is the most common and aggressive primary adult brain tumor. Long non-coding RNAs (lncRNAs) have important roles in a variety of biological properties of cancers. Here, we elucidated the function and the possible molecular mechanisms of lncRNA HOTAIR in human glioma U87 and U251 cell lines. Quantitative RT-PCR demonstrated that HOTAIR expression was up-regulated in glioma tissues and cell lines. Knockdown of HOTAIR exerted tumor-suppressive function in glioma cells. Further, HOTAIR was confirmed to be the target of miR-326 and miR-326 mediated the tumor-suppressive effects of HOTAIR knockdown on glioma cell lines. Moreover, over-expressed miR-326 reduced the FGF1 expression which played an oncogenic role in glioma by activating PI3K/AKT and MEK 1/2 pathways. In addition, the in vivo studies also supported the above findings. Taken together, knockdown of HOTAIR up-regulated miR-326 expression, and further inducing the decreased expression of FGF1, these results provided a comprehensive analysis of HOTAIR-miR-326-FGF1 axis in human glioma and provided a new potential therapeutic strategy for glioma treatment. PMID:26183397

  17. CSF-1R inhibition alters macrophage polarization and blocks glioma progression

    PubMed Central

    Pyonteck, Stephanie M.; Akkari, Leila; Schuhmacher, Alberto J.; Bowman, Robert L.; Sevenich, Lisa; Quail, Daniela F.; Olson, Oakley C.; Quick, Marsha L.; Huse, Jason T.; Teijeiro, Virginia; Setty, Manu; Leslie, Christina S.; Oei, Yoko; Pedraza, Alicia; Zhang, Jianan; Brennan, Cameron W.; Sutton, James C.; Holland, Eric C.; Daniel, Dylan; Joyce, Johanna A.

    2013-01-01

    Glioblastoma multiforme (GBM) comprises several molecular subtypes including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment, such as tumor-associated macrophages and microglia (TAMs). Macrophages depend upon colony stimulating factor (CSF)-1 for differentiation and survival. A CSF-1R inhibitor was used to target TAMs in a mouse proneural GBM model, which dramatically increased survival, and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly, TAMs were not depleted in treated mice. Instead, glioma-secreted factors including GM-CSF and IFN-γ facilitated TAM survival in the context of CSF-1R inhibition. Alternatively activated/ M2 macrophage markers decreased in surviving TAMs, consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in proneural GBM patients. Our results identify TAMs as a promising therapeutic target for proneural gliomas, and establish the translational potential of CSF-1R inhibition for GBM. PMID:24056773

  18. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells

    PubMed Central

    Wang, Lixia; Hou, Yingying; Yin, Xuyuan; Su, Jingna; Zhao, Zhe; Ye, Xiantao; Zhou, Xiuxia; Zhou, Li; Wang, Zhiwei

    2016-01-01

    Rottlerin, isolated from a medicinal plant Mallotus phillippinensis, has been demonstrated to inhibit cellular growth and induce cytoxicity in glioblastoma cell lines through inhibition of calmodulin-dependent protein kinase III. Emerging evidence suggests that rottlerin exerts its antitumor activity as a protein kinase C inhibitor. Although further studies revealed that rottlerin regulated multiple signaling pathways to suppress tumor cell growth, the exact molecular insight on rottlerin-mediated tumor inhibition is not fully elucidated. In the current study, we determine the function of rottlerin on glioma cell growth, apoptosis, cell cycle, migration and invasion. We found that rottlerin inhibited cell growth, migration, invasion, but induced apoptosis and cell cycle arrest. Mechanistically, the expression of Cdc20 oncoprotein was measured by the RT-PCR and Western blot analysis in glioma cells treated with rottlerin. We observed that rottlerin significantly inhibited the expression of Cdc20 in glioma cells, implying that Cdc20 could be a novel target of rottlerin. In line with this, over-expression of Cdc20 decreased rottlerin-induced cell growth inhibition and apoptosis, whereas down-regulation of Cdc20 by its shRNA promotes rottlerin-induced anti-tumor activity. Our findings indicted that rottlerin could exert its tumor suppressive function by inhibiting Cdc20 pathway which is constitutively active in glioma cells. Therefore, down-regulation of Cdc20 by rottlerin could be a promising therapeutic strategy for the treatment of glioma. PMID:27626499

  19. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    PubMed

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas.

  20. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  1. Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe.

    PubMed

    Cornago, M; Garcia-Alberich, C; Blasco-Angulo, N; Vall-Llaura, N; Nager, M; Herreros, J; Comella, J X; Sanchis, D; Llovera, M

    2014-10-02

    Glioblastoma multiforme is resistant to conventional anti-tumoral treatments due to its infiltrative nature and capability of relapse; therefore, research efforts focus on characterizing gliomagenesis and identifying molecular targets useful on therapy. New therapeutic strategies are being tested in patients, such as Histone deacetylase inhibitors (HDACi) either alone or in combination with other therapies. Here two HDACi included in clinical trials have been tested, suberanilohydroxamic acid (SAHA) and valproic acid (VPA), to characterize their effects on glioma cell growth in vitro and to determine the molecular changes that promote cancer cell death. We found that both HDACi reduce glioma cell viability, proliferation and clonogenicity. They have multiple effects, such as inducing the production of reactive oxygen species (ROS) and activating the mitochondrial apoptotic pathway, nevertheless cell death is not prevented by the pan-caspase inhibitor Q-VD-OPh. Importantly, we found that HDACi alter cell cycle progression by decreasing the expression of G2 checkpoint kinases Wee1 and checkpoint kinase 1 (Chk1). In addition, HDACi reduce the expression of proteins involved in DNA repair (Rad51), mitotic spindle formation (TPX2) and chromosome segregation (Survivin) in glioma cells and in human glioblastoma multiforme primary cultures. Therefore, HDACi treatment causes glioma cell entry into mitosis before DNA damage could be repaired and to the formation of an aberrant mitotic spindle that results in glioma cell death through mitotic catastrophe-induced apoptosis.

  2. RhoGDIα suppresses self-renewal and tumorigenesis of glioma stem cells

    PubMed Central

    Wu, Fan; Hu, Peishan; Li, Dengke; Hu, Yan; Qi, Yingjiao; Yin, Bin; Jiang, Tao; Yuan, Jiangang; Han, Wei; Peng, Xiaozhong

    2016-01-01

    Glioma stem cells (GSCs) are a subset of tumor cells that drive glioma initiation and progression. The molecular mechanisms underlying the maintenance of GSCs are still poorly understood. Here we investigated the role of Rho GDP dissociation inhibitor α (RhoGDIα) in GSCs. RhoGDIα was down-regulated in glioma stem cells. Over-expression of RhoGDIα suppressed the self-renewal and tumorigenesis of GSCs. Further data showed that RhoGDIα inhibited the transcription activity of stem cell marker Oct4. Moreover, inactivation of ROCK1, a downstream effector of RhoGDIα, also decreased the self-renewal and Oct4 transcription activity, and rescued the effects caused by RhoGDIα knockdown. Our results indicate that RhoGDIα is involved in the maintenance of GSCs. PMID:27557508

  3. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling

    PubMed Central

    Nesvick, Cody L.; Feldman, Michael J.; Sizdahkhani, Saman; Liu, Huailei; Chu, Huiying; Yang, Fengxu; Tang, Ling; Tian, Jing; Zhao, Shiguang; Li, Guohui; Heiss, John D.; Liu, Yang; Zhuang, Zhengping; Xu, Guowang

    2016-01-01

    Metabolomics has shown significant potential in identifying small molecules specific to tumor phenotypes. In this study we analyzed resected tissue metabolites using capillary electrophoresis-mass spectrometry and found that tissue hypotaurine levels strongly and positively correlated with glioma grade. In vitro studies were conducted to show that hypotaurine activates hypoxia signaling through the competitive inhibition of prolyl hydroxylase domain-2. This leads to the activation of hypoxia signaling as well as to the enhancement of glioma cell proliferation and invasion. In contrast, taurine, the oxidation metabolite of hypotaurine, decreased intracellular hypotaurine and resulted in glioma cell growth arrest. Lastly, a glioblastoma xenograft mice model was supplemented with taurine feed and exhibited impaired tumor growth. Taken together, these findings suggest that hypotaurine is an aberrantly produced oncometabolite, mediating tumor molecular pathophysiology and progression. The hypotaurine metabolic pathway may provide a potentially new target for glioblastoma diagnosis and therapy. PMID:26934654

  4. MR Imaging-derived Oxygen Metabolism and Neovascularization Characterization for Grading and IDH Gene Mutation Detection of Gliomas.

    PubMed

    Stadlbauer, Andreas; Zimmermann, Max; Kitzwögerer, Melitta; Oberndorfer, Stefan; Rössler, Karl; Dörfler, Arnd; Buchfelder, Michael; Heinz, Gertraud

    2016-12-13

    Purpose To explore the diagnostic performance of physiological magnetic resonance (MR) imaging of oxygen metabolism and neovascularization activity for grading and characterization of isocitrate dehydrogenase (IDH) gene mutation status of gliomas. Materials and Methods This retrospective study had institutional review board approval; written informed consent was obtained from all patients. Eighty-three patients with histopathologically proven glioma (World Health Organization [WHO] grade II-IV) were examined with quantitative blood oxygen level-dependent imaging and vascular architecture mapping. Biomarker maps of neovascularization activity (microvessel radius, microvessel density, and microvessel type indicator [MTI]) and oxygen metabolism (oxygen extraction fraction [OEF] and cerebral metabolic rate of oxygen [CMRO2]) were calculated. Receiver operating characteristic analysis was used to determine diagnostic performance for grading and detection of IDH gene mutation status. Results Low-grade (WHO grade II) glioma showed areas with increased OEF (+18%, P < .001, n = 20), whereas anaplastic glioma (WHO grade III) and glioblastoma (WHO grade IV) showed decreased OEF when compared with normal brain tissue (-54% [P < .001, n = 21] and -49% [P < .001, n = 41], respectively). This allowed clear differentiation between low- and high-grade glioma (area under the receiver operating characteristic curve [AUC], 1) for the patient cohort. MTI had the highest diagnostic performance (AUC, 0.782) for differentiation between gliomas of grades III and IV among all biomarkers. CMRO2 was decreased (P = .037) in low-grade glioma with a mutated IDH gene, and MTI was significantly increased in glioma grade III with IDH mutation (P = .013) when compared with the IDH wild-type counterparts. CMRO2 showed the highest diagnostic performance for IDH gene mutation detection in low-grade glioma (AUC, 0.818) and MTI in high-grade glioma (AUC, 0.854) and for all WHO grades (AUC, 0.899) among

  5. MiR-101 reverses the hypomethylation of the LMO3 promoter in glioma cells

    PubMed Central

    Yu, Zhibin; Xu, Gang; Tang, Hailin; Wang, Wei; Wang, Zeyou; Li, Guiyuan; Wu, Minghua

    2015-01-01

    LIM-only protein 3 (LMO3), a member of the LIM-only protein group, is a new DNA methylation gene that was identified in gliomas via the MeDIP-Chip in our previous study. In this study, we found that LIM-only protein 3 (LMO3) is hypomethylated and overexpressed in glioma cells and tissues. The overexpression of LMO3 was correlated with a poor prognosis in glioma patients, and LMO3 was indirectly inhibited by the tumor suppressor miR-101, which is a potential prognosis marker of gliomas. MiR-101 decreased the expression of LMO3 by reversing the methylation status of the LMO3 promoter and by inhibiting the presence of the methylation-related histones H3K4me2 and H3K27me3 and increasing the presence of H3K9me3 and H4K20me3 on the promoter. It was determined that miR-101 decreases the occupancy of H3K27me3 by inhibiting EZH2, DNMT3A and EED and decreases the H3K9me3 occupancy on the LMO3 promoter via SUV39H1, SUV39H2, G9a and PHF8. Furthermore, miR-101 suppresses the expression of LMO3 by decreasing USF and MZF1. PMID:25829251

  6. Improving vaccine efficacy against malignant glioma

    PubMed Central

    Ladomersky, Erik; Genet, Matthew; Zhai, Lijie; Gritsina, Galina; Lauing, Kristen L.; Lulla, Rishi R.; Fangusaro, Jason; Lenzen, Alicia; Kumthekar, Priya; Raizer, Jeffrey J.; Binder, David C.; James, C. David; Wainwright, Derek A.

    2016-01-01

    ABSTRACT The effective treatment of adult and pediatric malignant glioma is a significant clinical challenge. In adults, glioblastoma (GBM) accounts for the majority of malignant glioma diagnoses with a median survival of 14.6 mo. In children, malignant glioma accounts for 20% of primary CNS tumors with a median survival of less than 1 y. Here, we discuss vaccine treatment for children diagnosed with malignant glioma, through targeting EphA2, IL-13Rα2 and/or histone H3 K27M, while in adults, treatments with RINTEGA, Prophage Series G-100 and dendritic cells are explored. We conclude by proposing new strategies that are built on current vaccine technologies and improved upon with novel combinatorial approaches. PMID:27622066

  7. Targeting immune checkpoints in malignant glioma

    PubMed Central

    Li, Tete; Liu, Yong-Jun; Chen, Wei; Chen, Jingtao

    2017-01-01

    Malignant glioma is the most common and a highly aggressive cancer in the central nervous system (CNS). Cancer immunotherapy, strategies to boost the bodys anti-cancer immune responses instead of directly targeting tumor cells, recently achieved great success in treating several human solid tumors. Although once considered immune privileged and devoid of normal immunological functions, CNS is now considered a promising target for cancer immunotherapy, featuring the recent progresses in neurobiology and neuroimmunology and a highly immunosuppressive state in malignant glioma. In this review, we focus on immune checkpoint inhibitors, specifically, antagonizing monoclonal antibodies for programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and indoleamine 2,3-dioxygenase (IDO). We discuss advances in the working mechanisms of these immune checkpoint molecules, their status in malignant glioma, and current preclinical and clinical trials targeting these molecules in malignant glioma. PMID:27756892

  8. [Classification and documentation of diffuse gliomas].

    PubMed

    Romeike, B F M

    2007-06-01

    Most current grading systems of diffuse gliomas are based solely on the microscopic evaluation of surgical specimens and the TNM classification does not have a value for brain tumors. Here additional parameters are presented, which are suitable for a classification and documentation of diffuse gliomas. As additional parameters to the WHO typing and grading we discuss age groups, different tumor devolutions, circumstances such as a second malignant neoplasm or hereditary tumors, tumor expansion based on anatomically defined brain regions, Karnofsky Scale, eloquence of the brain regions, diag-nostic certainty and informativity of tissue samples. This work shows that clinical data and imaging studies can contribute substantially to the classification of diffuse gliomas. The additional parameters presented here constitute a significant improvement of glioma documentation. Especially complex courses of long duration and repeated therapeutic interventions can be better surveyed and digitally processed.

  9. The Art of Intraoperative Glioma Identification

    PubMed Central

    Zhang, Zoe Z.; Shields, Lisa B. E.; Sun, David A.; Zhang, Yi Ping; Hunt, Matthew A.; Shields, Christopher B.

    2015-01-01

    A major dilemma in brain-tumor surgery is the identification of tumor boundaries to maximize tumor excision and minimize postoperative neurological damage. Gliomas, especially low-grade tumors, and normal brain have a similar color and texture, which poses a challenge to the neurosurgeon. Advances in glioma resection techniques combine the experience of the neurosurgeon and various advanced technologies. Intraoperative methods to delineate gliomas from normal tissue consist of (1) image-based navigation, (2) intraoperative sampling, (3) electrophysiological monitoring, and (4) enhanced visual tumor demarcation. The advantages and disadvantages of each technique are discussed. A combination of these methods is becoming widely accepted in routine glioma surgery. Gross total resection in conjunction with radiation, chemotherapy, or immune/gene therapy may increase the rates of cure in this devastating disease. PMID:26284196

  10. Photochemical internalization of bleomycin for glioma treatment

    PubMed Central

    Mathews, Marlon S.; Blickenstaff, Joseph W.; Shih, En-Chung; Zamora, Genesis; Vo, Van; Sun, Chung-Ho; Hirschberg, Henry; Madsen, Steen J.

    2012-01-01

    Abstract. We study the use of photochemical internalization (PCI) for enhancing chemotherapeutic response to malignant glioma cells in vitro. Two models are studied: monolayers consisting of F98 rat glioma cells and human glioma spheroids established from biopsy-derived glioma cells. In both cases, the cytotoxicity of aluminum phthalocyanine disulfonate (AlPcS2a)-based PCI of bleomycin was compared to AlPcS2a-photodynamic therapy (PDT) and chemotherapy alone. Monolayers and spheroids were incubated with AlPcS2a (PDT effect), bleomycin (chemotherapy effect), or AlPcS2a+bleomycin (PCI effect) and were illuminated (670 nm). Toxicity was evaluated using colony formation assays or spheroid growth kinetics. F98 cells in monolayer/spheroids were not particularly sensitive to the effects of low radiant exposure (1.5  J/cm2 @ 5  mW/cm2) AlPcS2a-PDT. Bleomycin was moderately toxic to F98 cells in monolayer at relatively low concentrations—incubation of F98 cells in 0.1  μg/ml for 4 h resulted in 80% survival, but less toxic in human glioma spheroids respectively. In both in vitro systems investigated, a significant PCI effect is seen. PCI using 1.5  J/cm2 together with 0.25  μg/ml bleomycin resulted in approximately 20% and 18% survival of F98 rat glioma cells and human glioma spheroids, respectively. These results show that AlPcS2a-mediated PCI can be used to enhance the efficacy of chemotherapeutic agents such as bleomycin in malignant gliomas. PMID:22612148

  11. Neurofibromatosis type 1 and sporadic optic gliomas

    PubMed Central

    Singhal, S; Birch, J; Kerr, B; Lashford, L; Evans, D

    2002-01-01

    Aims: To compare the natural history of sporadic optic glioma with those associated with neurofibromatosis type 1 (NF1). Methods: Optic glioma cases were identified using both the Manchester Children's Tumour Registry (CTR) and the North West Regional NF1 Database (NF1DB), with detailed information on natural history available from the former (in 34 of 36 cases identified). Results: A total of 52 cases over a period of 41 years were identified. From the 34 whose natural history was known, almost all (n = 31) were symptomatic, with mean ages of presentation of 4.5 and 5.1 years for NF1 and sporadic cases respectively. The majority (n = 22) presented with visual impairment, seven of whom were blind in at least one eye. Sporadic cases were over twice as likely as NF1 to have visual impairment. Recurrence occurred in 12 patients. Fewer NF1 patients died as a direct result of their optic glioma, but overall mortality and 5 and 10 year survival rates between the two groups were similar. All five primary (non-metastatic) second central nervous system (CNS) tumours occurred in NF1 cases, two of these following radiotherapy. Conclusions: Symptomatic sporadic optic gliomas presented with impaired vision more frequently and were more aggressive than NF1 optic gliomas. Only optic glioma cases with NF1 were at risk of developing a second CNS tumour. Aggressive treatment of sporadic optic gliomas and early surveillance of NF1 optic gliomas may be required. The use of radiotherapy in these children requires further clarification. PMID:12089128

  12. Targeted Radiolabeled Compounds in Glioma Therapy.

    PubMed

    Cordier, Dominik; Krolicki, Leszek; Morgenstern, Alfred; Merlo, Adrian

    2016-05-01

    Malignant gliomas of World Health Organization (WHO) grades II-IV represent the largest entity within the group of intrinsic brain tumors and are graded according to their pathophysiological features with survival times between more than 10 years (WHO II) and only several months (WHO IV). Gliomas arise from astrocytic or oligodendrocytic precursor cells and exhibit an infiltrative growth pattern lacking a clearly identifiable tumor border. The development of effective treatment strategies of the invasive tumor cell front represents the main challenge in glioma therapy. The therapeutic standard consists of surgical resection and, depending on the extent of resection and WHO grade, adjuvant external beam radiotherapy or systemic chemotherapy. Within the last decades, there has been no major improvement of the prognosis of patients with glioma. The consistent overexpression of neurokinin type 1 receptors in gliomas WHO grades II-IV has been used to develop a therapeutic substance P-based targeting system. A substance P-analogue conjugated to the DOTA or DOTAGA chelator has been labeled with different alpha-particle or beta-particle emitting radionuclides for targeted glioma therapy. The radiopharmaceutical has been locally injected into the tumors or the resection cavity. In several clinical studies, the methodology has been examined in adjuvant and neoadjuvant clinical settings. Although no large controlled series have so far been generated, the results of radiolabeled substance P-based targeted glioma therapy compare favorably with standard therapy. Recently, labeling with the alpha particle emitting Bi-213 has been found to be promising due to the high linear energy transfer and the very short tissue range of 0.08 mm. Further development needs to focus on the improvement of the stability of the compound and the application by dedicated catheter systems to improve the intratumoral distribution of the radiopharmaceutical within the prognostically critical

  13. TGF-β-induced hCG-β regulates redox homeostasis in glioma cells.

    PubMed

    Ahmad, Fahim; Ghosh, Sadashib; Sinha, Sanchari; Joshi, Shanker Datt; Mehta, Veer Singh; Sen, Ellora

    2015-01-01

    Transforming growth factor (TGF-β) is associated with the progression of glioblastoma multiforme (GBM)-the most malignant of brain tumors. Since there is a structural homology between TGF-β and human chorionic gonadotropin (hCG) and as both TGF-β and hCG-β are known regulators of oxidative stress and survival responses in a variety of tumors, the role of TGF-β in the regulation of hCG-β and its consequences on redox modulation of glioblastoma cells was investigated. A heightened hCG-β level was observed in GBM tumors. TGF-β treatment increased hCG-β expression in glioma cell lines, and this heightened hCG-β was found to regulate redox homeostasis in TGF-β-treated glioma cells, as siRNA-mediated knockdown of hCG-β (i) elevated reactive oxygen species (ROS) generation, (ii) decreased thioredoxin Trx1 expression and thioredoxin reductase (TrxR) activity, and (iii) abrogated expression of TP53-induced glycolysis and apoptosis regulator (TIGAR). Silencing of hCG-β abrogated Smad2/3 levels, suggesting the existence of TGF-β-hCG-β cross-talk in glioma cells. siRNA-mediated inhibition of elevated TIGAR levels in TGF-β-treated glioma cells was accompanied by an increase in ROS levels. As a farnesyltransferase inhibitor, Manumycin is known to induce glioma cell apoptosis in a ROS-dependent manner, and we investigated whether Manumycin could induce apoptosis in TGF-β-treated cells with elevated hCG-β exhibiting ROS-scavenging property. Manumycin-induced apoptosis in TGF-β-treated cells was accompanied by elevated ROS levels and decreased expression of hCG-β, Trx1, Smad2/3, and TIGAR. These findings indicate the existence of a previously unknown TGF-β-hCG-β link that regulates redox homeostasis in glioma cells.

  14. MiR-16 modulate temozolomide resistance by regulating BCL-2 in human glioma cells.

    PubMed

    Han, Jing; Chen, Qianxue

    2015-01-01

    Temozolomide (TMZ) with radiotherapy is the current standard of care for newly diagnosed glioma. However, glioma patients who are treated with the drug often develop resistance to it and some other drugs. Recently studies have shown that microRNAs (miRNAs) play an important role in drug resistance. In present study, we first examined the sensitivity to temozolomide in six glioma cell lines, and established a resistant variant, U251MG/TR cells from TMZ-sensitive glioma cell line, U251MG. We then performed a comprehensive analysis of miRNA expressions in U251MG/TR and parental cells using cancer microRNA PCR Array. Among the downregulated microRNAs was miR-16, members of miR-15/16 family, whose expression was further validated by qRT-PCR in U251MG/TR and U251MG cells. The selective microRNA, miR-16 mimics or inhibitor was respectively transfected into U251MG/TR cells and AM38 cell. We found that treatment with the mimics of miR-16 greatly decreased the sensitivity of U251MG/TR cells to temozolomide, while sensitivity to these drugs was increased by treatment with the miR-16 inhibitor. In addition, the downregulation of miR-16 in temozolomide-sensitive AM38 cells was concurrent with the upregulation of Bcl-2 protein. Conversely, overexpression of miR-16 in temozolomide-resistant cells inhibited Bcl-2 expression and decreased temozolomide resistance. In conclusion, MiR-16 mediated temozolomide-resistance in glioma cells by modulation of apoptosis via targeting Bcl-2, which suggesting that miR-16 and Bcl-2 would be potential therapeutic targets for glioma therapy.

  15. MicroRNA-145 Is Downregulated in Glial Tumors and Regulates Glioma Cell Migration by Targeting Connective Tissue Growth Factor

    PubMed Central

    Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M.; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A.; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3′-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3′-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors. PMID:23390502

  16. The interface between glial progenitors and gliomas

    PubMed Central

    Canoll, Peter

    2009-01-01

    The mammalian brain and spinal cord contain heterogeneous populations of cycling, immature cells. These include cells with stem cell-like properties as well as progenitors in various stages of early glial differentiation. This latter population is distributed widely throughout gray and white matter and numerically represents an extremely large cell pool. In this review, we discuss the possibility that the glial progenitors that populate the adult CNS are one source of gliomas. Indeed, the marker phenotypes, morphologies, and migratory properties of cells in gliomas strongly resemble glial progenitors in many ways. We review briefly some salient features of normal glial development and then examine the similarities and differences between normal progenitors and cells in gliomas, focusing on the phenotypic plasticity of glial progenitors and the responses to growth factors in promoting proliferation and migration of normal and glioma cells, and discussing known mutational changes in gliomas in the context of how these might affect the proliferative and migratory behaviors of progenitors. Finally, we will discuss the “cancer stem cell” hypothesis in light of the possibility that glial progenitors can generate gliomas. PMID:18784926

  17. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells

    PubMed Central

    Li, Xue-tao; Tang, Wei; Jiang, Ying; Wang, Xiao-min; Wang, Yan-hong; Cheng, Lan; Meng, Xian-sheng

    2016-01-01

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood–brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma. PMID:27029055

  18. GliomaPredict: a clinically useful tool for assigning glioma patients to specific molecular subtypes.

    PubMed

    Li, Aiguo; Bozdag, Serdar; Kotliarov, Yuri; Fine, Howard A

    2010-07-15

    Advances in generating genome-wide gene expression data have accelerated the development of molecular-based tumor classification systems. Tools that allow the translation of such molecular classification schemas from research into clinical applications are still missing in the emerging era of personalized medicine. We developed GliomaPredict as a computational tool that allows the fast and reliable classification of glioma patients into one of six previously published stratified subtypes based on sets of extensively validated classifiers derived from hundreds of glioma transcriptomic profiles. Our tool utilizes a principle component analysis (PCA)-based approach to generate a visual representation of the analyses, quantifies the confidence of the underlying subtype assessment and presents results as a printable PDF file. GliomaPredict tool is implemented as a plugin application for the widely-used GenePattern framework. GliomaPredict provides a user-friendly, clinically applicable novel platform for instantly assigning gene expression-based subtype in patients with gliomas thereby aiding in clinical trial design and therapeutic decision-making. Implemented as a user-friendly diagnostic tool, we expect that in time GliomaPredict, and tools like it, will become routinely used in translational/clinical research and in the clinical care of patients with gliomas.

  19. Microglia-glioma cross-talk: a two way approach to new strategies against glioma.

    PubMed

    Arcuri, Cataldo; Fioretti, Bernard; Bianchi, Roberta; Mecca, Carmen; Tubaro, Claudia; Beccari, Tommaso; Franciolini, Fabio; Giambanco, Ileana; Donato, Rosario

    2017-01-01

    Glioblastoma (GBM) is the most malignant and aggressive among primary brain tumors, characterized by very low life expectancy. In vivo, glioma and glioblastoma in particular contain large numbers of immune cells (myeloid cells) such as microglia and tumour-infiltrating macrophages (or glioma associated macrophages). These glioma-infiltrating myeloid cells comprise up to 30% of total tumor mass and have been suggested to play several roles in glioma progression including proliferation, survival, motility and immunosuppression. Although tumor microglia and macrophages can acquire proinflammatory (M1) phenotype being capable of releasing proinflammatory cytokines, phagocytosing and presenting antigens, their effector immune function in gliomas appears to be suppressed by the acquisition of an anti-inflammatory (M2) phenotype. In the present work we review the microglia-glioma interactions to highlight the close relationship between the two cell types and the factors that can influence their properties (chemokines, cytokines, S100B protein). A future therapeutic possibility might be to simultaneously targeting, for example with nanomedicine, glioma cells and microglia to push the microglia towards an antitumor phenotype (M1) and/or prevent glioma cells from "conditioning" by microglia.

  20. Insights From Molecular Profiling of Adult Glioma.

    PubMed

    Diamandis, Phedias; Aldape, Kenneth D

    2017-07-20

    The comprehensive molecular profiling of cancer has resulted in new insights into the biology and classification of numerous tumor types. In the case of primary brain tumors that commonly affect adults, an emerging set of disease-defining biomarker sets is reshaping existing diagnostic entities that had previously been defined on the basis of their microscopic appearance. Substantial progress has been made in this regard for common primary brain tumors in adults, especially diffuse gliomas, where large-scale profiling efforts have led to the incorporation of highly prevalent molecular alterations that promote a biologically based classification as an adjunct to the traditional histopathologic approach. The growing awareness that histologically indistinguishable tumors can be divided into more precise and biologically relevant subgroups has demanded a more global routine approach to biomarker assessment. These considerations have begun to intersect with the decreasing costs and availability of genome-wide analysis tools and, thus, incorporation into routine practice. We review how molecular profiling already has led to an evolution in the classification of brain tumors. In addition, we discuss the likely trajectory of incorporation of global molecular profiling platforms into the routine clinical classification of adult brain tumors.

  1. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation.

    PubMed

    Oktay, Yavuz; Ülgen, Ege; Can, Özge; Akyerli, Cemaliye B; Yüksel, Şirin; Erdemgil, Yiğit; Durası, I Melis; Henegariu, Octavian Ioan; Nanni, E Paolo; Selevsek, Nathalie; Grossmann, Jonas; Erson-Omay, E Zeynep; Bai, Hanwen; Gupta, Manu; Lee, William; Turcan, Şevin; Özpınar, Aysel; Huse, Jason T; Sav, M Aydın; Flanagan, Adrienne; Günel, Murat; Sezerman, O Uğur; Yakıcıer, M Cengiz; Pamir, M Necmettin; Özduman, Koray

    2016-06-10

    The single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17-16.52; 95% CI) for IDH-mutated gliomas and 12.85 (5.94-27.83; 95% CI) for IDH-mutated, 1p/19q co-deleted gliomas. Decreasing strength with increasing anaplasia implied a modulatory effect. No somatic mutations were noted at this locus in 114 blood-tumor pairs, nor was there a copy number difference between risk-allele and only-ancestral allele carriers. CCDC26 RNA-expression was rare and not different between the two groups. There were only minor subtype-specific differences in common glioma driver genes. RNA sequencing and LC-MS/MS comparisons pointed to significantly altered MYC-signaling. Baseline enhancer activity of the conserved region specifically on the MYC promoter and its further positive modulation by the SNP risk-allele was shown in vitro. Our findings implicate MYC deregulation as the underlying cause of the observed association.

  2. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    PubMed

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  3. TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells.

    PubMed

    Liu, Zhi-Jun; Liu, Hong-Lin; Zhou, Hai-Cun; Wang, Gui-Cong

    2016-01-01

    Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was significantly decreased in human glioma cell lines. TIPE2 overexpression significantly inhibited hypoxia-induced migration and invasion, as well as suppressed the EMT process in glioma cells. Furthermore, TIPE2 overexpression prevented hypoxia-induced expression of β-catenin, cyclin D1, and c-myc in human glioma cells. In summary, these data suggest that TIPE2 overexpression inhibited hypoxia-induced Wnt/β-catenin pathway activation and EMT in glioma cells.

  4. MiR-508-5p Inhibits the Progression of Glioma by Targeting Glycoprotein Non-metastatic Melanoma B.

    PubMed

    Bao, Gang; Wang, Ning; Li, Ruichun; Xu, Gaofeng; Liu, Peijun; He, Baixiang

    2016-07-01

    Glioma is a severe and highly lethal brain cancer, a malignancy largely stemming from growing in a relatively restrained area of the brain. Hence, the understanding of the molecular regulation of the growth of glioma is critical for improving its treatment. MicroRNA has become a hotspot in research on diseases, especially in the initiation and progression of different types of cancer. However, the molecular function and mechanisms of miR-508-5p in gliomagenesis are still unclear. The aim of this study was to investigate miR-508-5p expression in glioma and determine its effects on proliferation. miR-508-5p expression levels, both in glioma cell lines and in tissue, were significantly lower than in a normal human astrocyte cell line or adjacent tissues. Cell growth was analyzed using a MTT assay and over-expression of miR-508-5p was found to decrease glioma cell growth. Moreover, a bioinformatic analysis was performed, showing that glycoprotein non-metastatic melanoma B (GPNMB) was a direct target for miR-508-5p in glioma cells. Furthermore, in vivo treatment with miR-508-5p reduced GPNMB protein levels in the tumor. Additionally, overexpression of GPNMB without 3'-UTR partially reversed the cell growth arrest induced by miR-508-5p over-expression in glioma cells. In conclusion, these results indicate that increased expression of miR-508-5p might be related to glioma progression, indicating a potential role of miR-508-5p for clinical therapy.

  5. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    SciTech Connect

    Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan; Lee, Hyejin; An, Sungkwan; Park, Myung-Jin; Kim, Min-Jung; Lee, Su-Jae

    2010-11-26

    Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and

  6. Knockdown of Long Non-Coding RNA KCNQ1OT1 Restrained Glioma Cells’ Malignancy by Activating miR-370/CCNE2 Axis

    PubMed Central

    Gong, Wei; Zheng, Jian; Liu, Xiaobai; Liu, Yunhui; Guo, Junqing; Gao, Yana; Tao, Wei; Chen, Jiajia; Li, Zhiqing; Ma, Jun; Xue, Yixue

    2017-01-01

    Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. Here, we elucidated the function and possible molecular mechanisms of lncRNA KCNQ1OT1 in human glioma U87 and U251 cells. Quantitative Real-Time polymerase chain reaction (qRT-PCR) demonstrated that KCNQ1OT1 expression was up-regulated in glioma tissues and cells. Knockdown of KCNQ1OT1 exerted tumor-suppressive function in glioma cells. Moreover, a binding region was confirmed between KCNQ1OT1 and miR-370 by dual-luciferase assays. qRT-PCR showed that miR-370 was down-regulated in human glioma tissue and cells. In addition, restoration of miR-370 exerted tumor-suppressive function via inhibiting cell proliferation, migration and invasion, while promoting the apoptosis of human glioma cells. Knockdown of KCNQ1OT1 decreased the expression level of Cyclin E2 (CCNE2) by binding to miR-370. Further, miR-370 bound to CCNE2 3′UTR region and decreased the expression of CCNE2. These results provided a comprehensive analysis of KCNQ1OT1-miR-370-CCNE2 axis in human glioma cells and might provide a novel strategy for glioma treatment. PMID:28381990

  7. Comparison of cellular localization of thallium-201, proliferating cell nuclear antigen and Ki-67 in C6 gliomas

    SciTech Connect

    Krishna, L.; Katsetos, C.D.; Vender, J.

    1996-05-01

    In order to substantiate the use of thallium-201 scintigraphy as a tool to evaluate the proliferative capacity of a glioma, we compared the patterns of cellular localization of thallium-201 (Tl-201) with established proliferation markers - proliferating cell nuclear antigen (PCNA) and Ki-67 in C6 gliomas. Six Sprague-Dawley rats were stereotactically implanted with C6 glioma cells intracerebrally. On day 7 post-implantation, 50uCi of Tl-201 chloride were injected intravenously to each animal. The animals were sacrificed 60 minutes post-injection and the brain was immediately removed and frozen in dry ice to preserve cellular integrity. Ten um sections of the C6 glioma were mounted on gelatin coated slides. Consecutive slides were used to perform microautoradiographic localization of Tl-201, as well as immunohistochemical localization of PCNA and Ki-67. Localization of all markers were measured by counting and comparing either silver grain density (for Tl-201), or immunostained cells (for PCNA and Ki-67) in at least 1000 cells in glioma vs normal brain. All three markers localized primarily in the glioma as opposed to normal brain at statistically significant levels at p<0.05. Mean indices for glioma vs non-glioma regions were (i) Tl-201: 142 grains/cm{sup 2} vs 11 grains/cm; (ii) PCNA: 92% vs 4%; (iii) Ki-67: 74% vs 3%. The significant and selective localization of the proliferation markers PCNA and Ki-67 as well as Tl-201 in the glioma cells provides validation at a cellular level, that Tl-201 can be used as a proliferation marker. Existing technology ie. Tl-201 scintigraphy, can be used in the management of biopsy-proven gliomas, to measure the proliferative capacity of the tumor. The advantages of using a non-invasive, relatively inexpensive proliferation marker such as Tl-201 scintigraphy include the capacity to evaluate the proliferation potential of the entire glioma, thereby decreasing the sampling errors inherent in evaluating biopsy specimens.

  8. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    PubMed

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification.

  9. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P{sub 2} on cell migration and invasiveness

    SciTech Connect

    Young, Nicholas; Van Brocklyn, James R. . E-mail: james.vanbrocklyn@osumc.edu

    2007-05-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P{sub 1-5}. S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P{sub 1}, S1P{sub 2} and S1P{sub 3} all contribute positively to S1P-stimulated glioma cell proliferation, with S1P{sub 1} being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P{sub 5} blocks glioma cell proliferation, and inhibits ERK activation. S1P{sub 1} and S1P{sub 3} enhance glioma cell migration and invasion. S1P{sub 2} inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P{sub 2} also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P{sub 2}-stimulated glioma invasion. Thus, while S1P{sub 2} decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.

  10. [A case of sporadic and transient bradyarrhythmias in a patient with a glioma in the medulla oblongata].

    PubMed

    Kawasaki, S; Ishii, M; Kon, S; Yoshida, Y

    1993-08-01

    In a 20-year-old female patient with a brain stem glioma in the medulla oblongata in association with paraplegia and respiratory paralysis, bradyarrhythmias such as sinus bradycardia and sinus arrest repeated sporadically and transiently, but soon subsided as radiotherapy was being delivered to the glioma in the medulla oblongata. The bradyarrhythmias were differentiated from sick sinus syndrome in their sporadic and transient character. The patient responded normally to atropine, isoproterenol, and phenylephrine. Parasympathetic nerve reflexes induced by Aschner's, Czermak's, and Valsalva's maneuvers and sympathetic nerve reflex induced by change of body position were within normal limits. Although EKG abnormalities associated with diseases of the central nervous system are frequently due to intracranial hypertension and/or irritation of the hypothalamus, the bradyarrhythmias in this patient were possibly due to vagus stimulation caused by the glioma in the medulla.

  11. Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637.

    PubMed

    Yi, Wenbo; Li, Dongliang; Guo, Yongmin; Zhang, Yan; Huang, Bin; Li, Xingang

    2016-12-01

    Cancer cell migration and invasion are essential features of the metastatic process. Volatile anesthetic sevoflurane inhibits the migration and invasion of multiple cancer cell lines; however, its effects on glioma cells are unclear. Emerging evidence suggests that microRNA (miRNA)-637 regulates glioma cell migration and invasion through the Akt1 pathway. Sevoflurane has been shown to modulate a number of miRNAs. In the present study, we examined whether sevoflurane inhibits glioma cell migration and invasion and, if so, whether these beneficial effects are mediated by miRNA-637. U251 glioma cells were treated without (control) or with sevoflurane at low, moderate or high concentrations for 6 h. To explore the molecular mechanisms, an additional group of U251 cells was treated with a miRNA‑637 inhibitor prior to treatment with a high concentration of sevoflurane. Compared with the control group, sevoflurane inhibited the migration and invasion of U251 cells in a dose-dependent manner. Molecular analyses revealed that sevoflurane increased the expression of miRNA‑637 and decreased the expression of Akt1 and phosphorylated Akt1 in a dose-dependent manner. Moreover, the inhibitory effects of sevoflurane on U251 cell migration and invasion were completely abolished by pre-treatment with miRNA‑637 inhibitor, which reversed the sevoflurane-induced reduction in the expression of Akt1 and phosphorylated Akt1 in the U251 cells. These results demonstrate that sevoflurane inhibits glioma cell migration and invasion and that these beneficial effects are mediated by the upregulation of miRNA‑637, which suppresses Akt1 expression and activity. These findings may have significant clinical implications for anesthesiologists regarding the choice of volatile anesthetic agents for the surgical resection of gliomas to prevent metastases and improve patient outcomes.

  12. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study

    PubMed Central

    de Groot, John F.; Lamborn, Kathleen R.; Chang, Susan M.; Gilbert, Mark R.; Cloughesy, Timothy F.; Aldape, Kenneth; Yao, Jun; Jackson, Edward F.; Lieberman, Frank; Robins, H. Ian; Mehta, Minesh P.; Lassman, Andrew B.; DeAngelis, Lisa M.; Yung, W.K. Alfred; Chen, Alice; Prados, Michael D.; Wen, Patrick Y.

    2011-01-01

    Purpose Antivascular endothelial growth factor (anti-VEGF) therapy is a promising treatment approach for patients with recurrent glioblastoma. This single-arm phase II study evaluated the efficacy of aflibercept (VEGF Trap), a recombinantly produced fusion protein that scavenges both VEGF and placental growth factor in patients with recurrent malignant glioma. Patients and Methods Forty-two patients with glioblastoma and 16 patients with anaplastic glioma who had received concurrent radiation and temozolomide and adjuvant temozolomide were enrolled at first relapse. Aflibercept 4 mg/kg was administered intravenously on day 1 of every 2-week cycle. Results The 6-month progression-free survival rate was 7.7% for the glioblastoma cohort and 25% for patients with anaplastic glioma. Overall radiographic response rate was 24% (18% for glioblastoma and 44% for anaplastic glioma). The median progression-free survival was 24 weeks for patients with anaplastic glioma (95% CI, 5 to 31 weeks) and 12 weeks for patients with glioblastoma (95% CI, 8 to 16 weeks). A total of 14 patients (25%) were removed from the study for toxicity, on average less than 2 months from treatment initiation. The main treatment-related National Cancer Institute Common Terminology Criteria grades 3 and 4 adverse events (38 total) included fatigue, hypertension, and lymphopenia. Two grade 4 CNS ischemias and one grade 4 systemic hemorrhage were reported. Aflibercept rapidly decreases permeability on dynamic contrast enhanced magnetic resonance imaging, and molecular analysis of baseline tumor tissue identified tumor-associated markers of response and resistance. Conclusion Aflibercept monotherapy has moderate toxicity and minimal evidence of single-agent activity in unselected patients with recurrent malignant glioma. PMID:21606416

  13. MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition

    PubMed Central

    van Dellen, Edwin; Douw, Linda; Hillebrand, Arjan; Ris-Hilgersom, Irene H. M.; Schoonheim, Menno M.; Baayen, Johannes C.; De Witt Hamer, Philip C.; Velis, Demetrios N.; Klein, Martin; Heimans, Jan J.; Stam, Cornelis J.; Reijneveld, Jaap C.

    2012-01-01

    Objective To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. Methods We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. Results LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4–8 Hz), similar to NGL patients. HGG patients’ networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. Conclusion Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients’ networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline. PMID:23166829

  14. Phenotypic Transition as a Survival Strategy of Glioma

    PubMed Central

    ICHIKAWA, Tomotsugu; OTANI, Yoshihiro; KUROZUMI, Kazuhiko; DATE, Isao

    2016-01-01

    Malignant glioma is characterized by rapid proliferation, invasion into surrounding central nervous system tissues, and aberrant vascularization. There is increasing evidence that shows gliomas are more complex than previously thought, as each tumor comprises considerable intratumoral heterogeneity with mixtures of genetically and phenotypically distinct subclones. Heterogeneity within and across tumors is recognized as a critical factor that limits therapeutic progress for malignant glioma. Recent genotyping and expression profiling of gliomas has allowed for the creation of classification schemes that assign tumors to subtypes based on similarity to defined expression signatures. Also, malignant gliomas frequently shift their biological features upon recurrence and progression. The ability of glioma cells to resist adverse conditions such as hypoxia and metabolic stress is necessary for sustained tumor growth and strongly influences tumor behaviors. In general, glioma cells are in one of two phenotypic categories: higher proliferative activity with angiogenesis, or higher migratory activity with attenuated proliferative ability. Further, they switch phenotypic categories depending on the situation. To date, a multidimensional approach has been employed to clarify the mechanisms of phenotypic shift of glioma. Various molecular and signaling pathways are involved in phenotypic shifts of glioma, possibly with crosstalk between them. In this review, we discuss molecular and phenotypic heterogeneity of glioma cells and mechanisms of phenotypic shifts in regard to the glioma proliferation, angiogenesis, and invasion. A better understanding of the molecular mechanisms that underlie phenotypic shifts of glioma may provide new insights into targeted therapeutic strategies. PMID:27169497

  15. Phenotypic Transition as a Survival Strategy of Glioma.

    PubMed

    Ichikawa, Tomotsugu; Otani, Yoshihiro; Kurozumi, Kazuhiko; Date, Isao

    2016-07-15

    Malignant glioma is characterized by rapid proliferation, invasion into surrounding central nervous system tissues, and aberrant vascularization. There is increasing evidence that shows gliomas are more complex than previously thought, as each tumor comprises considerable intratumoral heterogeneity with mixtures of genetically and phenotypically distinct subclones. Heterogeneity within and across tumors is recognized as a critical factor that limits therapeutic progress for malignant glioma. Recent genotyping and expression profiling of gliomas has allowed for the creation of classification schemes that assign tumors to subtypes based on similarity to defined expression signatures. Also, malignant gliomas frequently shift their biological features upon recurrence and progression. The ability of glioma cells to resist adverse conditions such as hypoxia and metabolic stress is necessary for sustained tumor growth and strongly influences tumor behaviors. In general, glioma cells are in one of two phenotypic categories: higher proliferative activity with angiogenesis, or higher migratory activity with attenuated proliferative ability. Further, they switch phenotypic categories depending on the situation. To date, a multidimensional approach has been employed to clarify the mechanisms of phenotypic shift of glioma. Various molecular and signaling pathways are involved in phenotypic shifts of glioma, possibly with crosstalk between them. In this review, we discuss molecular and phenotypic heterogeneity of glioma cells and mechanisms of phenotypic shifts in regard to the glioma proliferation, angiogenesis, and invasion. A better understanding of the molecular mechanisms that underlie phenotypic shifts of glioma may provide new insights into targeted therapeutic strategies.

  16. Olaparib in Treating Patients With Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations

    ClinicalTrials.gov

    2017-09-12

    Advanced Malignant Solid Neoplasm; Glioblastoma; Grade II Glioma; IDH1 Gene Mutation; IDH2 Gene Mutation; Recurrent Cholangiocarcinoma; Recurrent Glioma; Recurrent Malignant Solid Neoplasm; WHO Grade III Glioma

  17. Reduction in gap junction intercellular communication promotes glioma migration

    PubMed Central

    Aftab, Qurratulain; Sin, Wun-Chey; Naus, Christian C.

    2015-01-01

    Glioblastoma Multiforme (GBM), an aggressive form of adult brain tumor, is difficult to treat due to its invasive nature. One of the molecular changes observed in GBM is a decrease in the expression of the gap junction protein Connexin43 (Cx43); however, how a reduction in Cx43 expression contributes to glioma malignancy is still unclear. In this study we examine whether a decrease in Cx43 protein expression has a role in enhanced cell migration, a key feature associated with increased tumorigenicity. We used a 3D spheroid migration model that mimics the in vivo architecture of tumor cells to quantify migration changes. We found that down-regulation of Cx43 expression in the U118 human glioma cell line increased migration by reducing cell-ECM adhesion, and changed the migration pattern from collective to single cell. In addition gap junction intercellular communication (GJIC) played a more prominent role in mediating migration than the cytoplasmic interactions of the C-terminal tail. Live imaging revealed that reducing Cx43 expression enhanced relative migration by increasing the cell speed and affecting the direction of migration. Taken together our findings reveal an unexplored role of GJIC in facilitating collective migration. PMID:25926558

  18. Distinct molecular profile of diffuse cerebellar gliomas.

    PubMed

    Nomura, Masashi; Mukasa, Akitake; Nagae, Genta; Yamamoto, Shogo; Tatsuno, Kenji; Ueda, Hiroki; Fukuda, Shiro; Umeda, Takayoshi; Suzuki, Tomonari; Otani, Ryohei; Kobayashi, Keiichi; Maruyama, Takashi; Tanaka, Shota; Takayanagi, Shunsaku; Nejo, Takahide; Takahashi, Satoshi; Ichimura, Koichi; Nakamura, Taishi; Muragaki, Yoshihiro; Narita, Yoshitaka; Nagane, Motoo; Ueki, Keisuke; Nishikawa, Ryo; Shibahara, Junji; Aburatani, Hiroyuki; Saito, Nobuhito

    2017-08-29

    Recent studies have demonstrated that tumor-driving alterations are often different among gliomas that originated from different brain regions and have underscored the importance of analyzing molecular characteristics of gliomas stratified by brain region. Therefore, to elucidate molecular characteristics of diffuse cerebellar gliomas (DCGs), 27 adult, mostly glioblastoma cases were analyzed. Comprehensive analysis using whole-exome sequencing, RNA sequencing, and Infinium methylation array (n = 17) demonstrated their distinct molecular profile compared to gliomas in other brain regions. Frequent mutations in chromatin-modifier genes were identified including, noticeably, a truncating mutation in SETD2 (n = 4), which resulted in loss of H3K36 trimethylation and was mutually exclusive with H3F3A K27M mutation (n = 3), suggesting that epigenetic dysregulation may lead to DCG tumorigenesis. Alterations that cause loss of p53 function including TP53 mutation (n = 9), PPM1D mutation (n = 2), and a novel type of PPM1D fusion (n = 1), were also frequent. On the other hand, mutations and copy number changes commonly observed in cerebral gliomas were infrequent. DNA methylation profile analysis demonstrated that all DCGs except for those with H3F3A mutations were categorized in the "RTK I (PDGFRA)" group, and those DCGs had a gene expression signature that was highly associated with PDGFRA. Furthermore, compared with the data of 315 gliomas derived from different brain regions, promoter methylation of transcription factors genes associated with glial development showed a characteristic pattern presumably reflecting their tumor origin. Notably, SOX10, a key transcription factor associated with oligodendroglial differentiation and PDGFRA regulation, was up-regulated in both DCG and H3 K27M-mutant diffuse midline glioma, suggesting their developmental and biological commonality. In contrast, SOX10 was silenced by promoter methylation in most cerebral gliomas. These

  19. EFEMP2 is upregulated in gliomas and promotes glioma cell proliferation and invasion

    PubMed Central

    Wang, Long; Chen, Qianxue; Chen, Zhibiao; Tian, Daofeng; Xu, Haitao; Cai, Qiang; Liu, Baohui; Deng, Gang

    2015-01-01

    Gliomas are the most common and aggressive form of primary brain tumor. Although EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2), an extracellular matrix (ECM) glycoprotein, is regarded as a candidate oncogene, little is known about the association of EFEMP2 and gliomas. Here, the expression of EFEMP2 was significantly increased in glioma tissues (n=60) compared to non-tumorous brain tissues (n=25). Silencing of EFEMP2 expression through RNA interference in two glioma cell lines (U87 and U373) remarkably inhibited cell proliferation and G1/S transition. More importantly, EFEMP2 silencing significantly induced cell apoptosis via increasing the ratio of Bax and Bcl-2. Additionally, knockdown of EFEMP2 significantly inhibited the invasive ability of both glioma cells, which was associated with the downregulated expression of metalloproteinase-2 (MMP-2) and MMP-9. In conclusion, expression of EFEMP2 was associated with the oncogenic potential of gliomas and silencing of its expression can suppress cancer cell growth and metastasis. Inhibition of EFEMP2 may be a therapeutic strategy for gliomas. PMID:26617746

  20. Glioma-Associated Oncogene Homolog1 (Gli1)-Aquaporin1 pathway promotes glioma cell metastasis

    PubMed Central

    Liao, Zheng-qiang; Ye, Ming; Yu, Pei-gen; Xiao, Chun; Lin, Feng-yun

    2016-01-01

    Glioma-Associated Oncogene Homolog1 (Gli1) is known to be activated in malignant glioma; however, its downstream pathway has not been fully explained. The aim of this study was to explore the role of Gli1-Aquaporin1 (AQP1) signal pathway in glioma cell survival. Our data suggests that both Gli1 and AQP1 are upregulated in glioma tissues, as in comparison to in normal tissues. These up-regulation phenomena were also observed in glioma U251 and U87 cells. It was demonstrated that Gli1 positively regulated the AQP1 expression. By luciferase reporter gene and ChIP assay, we observed that this modulation process was realized by combination of Gli1 with AQP1 promotor. In addition, knock down of Gli1 by siRNA interference reduced the viability of glioma cells as well as suppressed cell metastasis. Also, the inhibitory effects of cell survival by silenced Gli1 were abrogated by AQP1 overexpression. In summary, glioma cell survival is a regulatory process and can be mediated by Gli1-AQP1 pathway. [BMB Reports 2016; 49(7): 394-399] PMID:27157540

  1. HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-β pathways

    PubMed Central

    Duan, Ran; Han, Lei; Wang, Qixue; Wei, Jianwei; Chen, Luyue; Zhang, Jianning; Kang, Chunsheng; Wang, Lei

    2015-01-01

    Homeobox (HOX) genes, including HOXA13, are involved in human cancer. We found that HOXA13 expression was associated with glioma grade and prognosis. Bioinformatics analysis revealed that most of the HOXA13-associated genes were enriched in cancer-related signaling pathways and mainly involved in the regulation of transcription. We transfected four glioma cell lines with Lenti-si HOXA13. HOXA13 increased cell proliferation and invasion and inhibited apoptosis. HOXA13 decreased β-catenin, phospho-SMAD2, and phospho-SMAD3 in the nucleus and increased phospho-β-catenin in the cytoplasm. Furthermore, downregulation of HOXA13 in orthotopic tumors decreased tumor growth. We suggest that HOXA13 promotes glioma progression in part via Wnt- and TGF-β-induced EMT and is a potential diagnostic biomarker for glioblastoma and an independent prognostic factor in high-grade glioma. PMID:26356815

  2. Cell biology-metabolic crosstalk in glioma.

    PubMed

    Colquhoun, Alison

    2017-08-01

    The renewed interest in cancer metabolism in recent years has been fuelled by the identification of the involvement of key oncogenes and tumour suppressor genes in the control of metabolic pathways. Many of these alterations lead to dramatic changes in bioenergetics, biosynthesis and redox balance within tumour cells. The complex relationship between tumour cell metabolism and the tumour microenvironment has turned this field of biochemistry and cell biology into a challenging and exciting area for study. In the case of gliomas the involvement of altered metabolic pathways including glycolysis, oxidative phosphorylation and glutaminolysis are pointing the way to new possibilities for treatment. The tumour-promoting effects of inflammation are an emerging hallmark of cancer and the role of the eicosanoids in gliomas is an area of active research to elucidate the importance of individual eicosanoids in glioma cell proliferation, migration and immune escape. In this review, the different aspects of metabolic reprogramming which occur in gliomas are highlighted and their relationship to glioma cell biology and the wider tumour microenvironment is described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Functional MRI for Surgery of Gliomas.

    PubMed

    Castellano, Antonella; Cirillo, Sara; Bello, Lorenzo; Riva, Marco; Falini, Andrea

    2017-08-23

    Advanced neuroimaging techniques such as functional MRI (fMRI) and diffusion MR tractography have been increasingly used at every stage of the surgical management of brain gliomas, as a means to improve tumor resection while preserving brain functions. This review provides an overview of the last advancements in the field of functional MRI techniques, with a particular focus on their current clinical use and reliability in the preoperative and intraoperative setting, as well as their future perspectives for personalized multimodal management of patients with gliomas. fMRI and diffusion MR tractography give relevant insights on the anatomo-functional organization of eloquent cortical areas and subcortical connections near or inside a tumor. Task-based fMRI and diffusion tensor imaging (DTI) tractography have proven to be valid and highly sensitive tools for localizing the distinct eloquent cortical and subcortical areas before surgery in glioma patients; they also show good accuracy when compared with intraoperative stimulation mapping data. Resting-state fMRI functional connectivity as well as new advanced HARDI (high angular resolution diffusion imaging) tractography methods are improving and reshaping the role of functional MRI for surgery of gliomas, with potential benefit for personalized treatment strategies. Noninvasive functional MRI techniques may offer the opportunity to perform a multimodal assessment in brain tumors, to be integrated with intraoperative mapping and clinical data for improving surgical management and oncological and functional outcome in patients affected by gliomas.

  4. Nimotuzumab in combination with radiotherapy in high grade glioma patients

    PubMed Central

    Solomon, Maria Teresa; Miranda, Nederlay; Jorrín, Eugenia; Chon, Ivonne; Marinello, Jorge Juan; Alert, José; Lorenzo-Luaces, Patricia; Crombet, Tania

    2014-01-01

    Nimotuzumab, a humanized antibody targeting epidermal growth factor receptor, has potent anti-proliferative, anti-angiogenic, and pro-apoptotic effects in vitro and in vivo. It also reduces the number of radio-resistant CD133+ glioma stem cells. The antibody has been extensively evaluated in patients with advanced head and neck, glioma, lung, esophageal, pancreatic, and gastric cancer. In this single institution experience, 35 patients with anaplastic astrocytoma (AA) or glioblastoma multiforme (GBM) were treated with irradiation and 200 mg doses of nimotuzumab. The first 6 doses were administered weekly, together with radiotherapy, and then treatment continued every 21 days until 1 year. The median number of doses was 12, and the median cumulative dose was thus 2400 mg of nimotuzumab. The most frequent treatment-related toxicities were increase in liver function tests, fever, nausea, anorexia, asthenia, dizziness, and tremors. These adverse reactions were classified as mild and moderate. The median survival time was 12.4 mo or 27.0 mo for patients with GBM or AA patients, respectively, who received curative-intent radiotherapy in combination with the antibody. The survival time of a matched population treated at the same hospital with irradiation alone was decreased (median 8.0 and 12.2 mo for GBM and AA patients, respectively) compared with that of the patients who received nimotuzumab and curative-intent radiotherapy. We have thus confirmed that nimotuzumab is a very well-tolerated drug, lacking cumulative toxicity after maintenance doses. This study, in a poor prognosis population, validates the previous data of survival gain after combining nimotuzumab and radiotherapy, in newly diagnosed high-grade glioma patients. PMID:24521695

  5. Tissue Proteome Analysis of Different Grades of Human Gliomas Provides Major Cues for Glioma Pathogenesis.

    PubMed

    Gollapalli, Kishore; Ghantasala, Saicharan; Atak, Apurva; Rapole, Srikanth; Moiyadi, Aliasgar; Epari, Sridhar; Srivastava, Sanjeeva

    2017-05-01

    Gliomas are heterogeneous and most commonly occurring brain tumors. Blood-brain barrier restricts the entry of brain tumor proteins into blood stream thus limiting the usage of serum or plasma for proteomic analysis. Our study aimed at understanding the molecular basis of aggressiveness of various grades of brain tumors using isobaric tagging for relative and absolute quantification (iTRAQ) based mass spectrometry. Tissue proteomic analysis of various grades of gliomas was performed using four-plex iTRAQ. We labeled five sets (each set consists of control, grade-II, III, and IV tumor samples) of individual glioma patients using iTRAQ reagents. Significantly altered proteins were subjected to bioinformatics analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID). Various metabolic pathways like glycolysis, TCA-cycle, electron transport chain, lactate metabolism, and blood coagulation pathways were majorly observed to be perturbed in gliomas. Most of the identified proteins involved in redox reactions, protein folding, pre-messenger RNA (mRNA) processing, antiapoptosis, and blood coagulation were found to be upregulated in gliomas. Transcriptomics data of glioblastoma multiforme (GBM), low-grade gliomas (LGGs), and controls were downloaded from The Cancer Genome Atlas (TCGA) data portal and further analyzed using BRB-Array tools. Expression levels of a few significantly altered proteins like lactate dehydrogenase, alpha-1 antitrypsin, fibrinogen alpha chain, nucleophosmin, annexin A5, thioredoxin, ferritin light chain, thymosin beta-4-like protein 3, superoxide dismutase-2, and peroxiredoxin-1 and 6 showed a positive correlation with increasing grade of gliomas thereby offering an insight into molecular basis behind their aggressive nature. Several proteins identified in different grades of gliomas are potential grade-specific markers, and perturbed pathways provide comprehensive overview of molecular cues involved in glioma

  6. Differential Glioma-Associated Tumor Antigen Expression Profiles of Human Glioma Cells Grown in Hypoxia

    PubMed Central

    Ge, Lisheng; Cornforth, Andrew N.; Hoa, Neil T.; Delgado, Christina; Chiou, Shiun Kwei; Zhou, Yi Hong; Jadus, Martin R.

    2012-01-01

    Human U251 and D54 glioma cells were tested for expression of 25 glioma-associated tumor antigen precursor proteins (TAPP) under hypoxic (1% O2) or normoxic (21% O2) conditions. Hypoxic glioma cell lines increased their mRNA expression for nine TAPP (Aim2, Art-4, EphA2, EZH2, Fosl1, PTH-rP, Sox 11, Whsc2 and YKL-40), as assessed by quantitative reverse transcriptase real-time/polymerase chain reaction (qRT-PCR). Increased differences with three hypoxic-induced TAPP: EZH2, Whsc2 and YKL-40 were shown at the protein levels by fluorescent antibody staining and quantitative electrophoretic analysis. Two TAPP (MRP3 and Trp1) were down-regulated by hypoxia in glioma cell lines. Growing the glioma cells under hypoxia for 13 days, followed by returning them back to normoxic conditions for 7 days, and restored the original normoxic TAPP profile. Thus, hypoxia was an environmental factor that stimulated the transient expression of these antigens. Intracranial xenografts grown in nude mice derived from U251 cells that had been cultured under neurosphere stem cell conditions showed increased expression of Whsc2 or YKL-40, demonstrating that these in vitro properties of glioma also occur in vivo. Whsc2-specific cytotoxic T lymphocytes killed the hypoxic U251 glioma cells better than normoxic glioma cells. The antigens expressed by hypoxic tumor cells may be a better source of starting tumor material for loading dendritic cells for novel immunotherapy of glioma using tumor-associated antigens. PMID:22957023

  7. Differential glioma-associated tumor antigen expression profiles of human glioma cells grown in hypoxia.

    PubMed

    Ge, Lisheng; Cornforth, Andrew N; Hoa, Neil T; Delgado, Christina; Chiou, Shiun Kwei; Zhou, Yi Hong; Jadus, Martin R

    2012-01-01

    Human U251 and D54 glioma cells were tested for expression of 25 glioma-associated tumor antigen precursor proteins (TAPP) under hypoxic (1% O(2)) or normoxic (21% O(2)) conditions. Hypoxic glioma cell lines increased their mRNA expression for nine TAPP (Aim2, Art-4, EphA2, EZH2, Fosl1, PTH-rP, Sox 11, Whsc2 and YKL-40), as assessed by quantitative reverse transcriptase real-time/polymerase chain reaction (qRT-PCR). Increased differences with three hypoxic-induced TAPP: EZH2, Whsc2 and YKL-40 were shown at the protein levels by fluorescent antibody staining and quantitative electrophoretic analysis. Two TAPP (MRP3 and Trp1) were down-regulated by hypoxia in glioma cell lines. Growing the glioma cells under hypoxia for 13 days, followed by returning them back to normoxic conditions for 7 days, and restored the original normoxic TAPP profile. Thus, hypoxia was an environmental factor that stimulated the transient expression of these antigens. Intracranial xenografts grown in nude mice derived from U251 cells that had been cultured under neurosphere stem cell conditions showed increased expression of Whsc2 or YKL-40, demonstrating that these in vitro properties of glioma also occur in vivo. Whsc2-specific cytotoxic T lymphocytes killed the hypoxic U251 glioma cells better than normoxic glioma cells. The antigens expressed by hypoxic tumor cells may be a better source of starting tumor material for loading dendritic cells for novel immunotherapy of glioma using tumor-associated antigens.

  8. Targeting the SMO oncogene by miR-326 inhibits glioma biological behaviors and stemness

    PubMed Central

    Du, Wenzhong; Liu, Xing; Chen, Lingchao; Dou, Zhijin; Lei, Xuhui; Chang, Liang; Cai, Jinquan; Cui, Yuqiong; Yang, Dongbo; Sun, Ying; Li, Yongli; Jiang, Chuanlu

    2015-01-01

    Background Few studies have associated microRNAs (miRNAs) with the hedgehog (Hh) pathway. Here, we investigated whether targeting smoothened (SMO) with miR-326 would affect glioma biological behavior and stemness. Methods To investigate the expression of SMO and miR-326 in glioma specimens and cell lines, we utilized quantitative real-time (qRT)-PCR, Western blot, immunohistochemistry, and fluorescence in situ hybridization. The luciferase reporter assay was used to verify the relationship between SMO and miR-326. We performed cell counting kit-8, transwell, and flow cytometric assays using annexin-V labeling to detect changes after transfection with siRNA against SMO or miR-326. qRT-PCR assays, neurosphere formation, and immunofluorescence were utilized to detect the modification of self-renewal and stemness in U251tumor stem cells. A U251-implanted intracranial model was used to study the effect of miR-326 on tumor volume and SMO suppression efficacy. Results SMO was upregulated in gliomas and was associated with tumor grade and survival period. SMO inhibition suppressed the biological behaviors of glioma cells. SMO expression was inversely correlated with miR-326 and was identified as a novel direct target of miR-326. miR-326 overexpression not only repressed SMO and downstream genes but also decreased the activity of the Hh pathway. Moreover, miR-326 overexpression decreased self-renewal and stemness and partially prompted differentiation in U251 tumor stem cells. In turn, the inhibition of Hh partially elevated miR-326 expression. Intracranial tumorigenicity induced by the transfection of miR-326 was reduced and was partially mediated by the decreased SMO expression. Conclusions This work suggests a possible molecular mechanism of the miR- 326/SMO axis, which can be a potential alternative therapeutic pathway for gliomas. PMID:25173582

  9. The role of radiotherapy in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline.

    PubMed

    Ryken, Timothy C; Parney, Ian; Buatti, John; Kalkanis, Steven N; Olson, Jeffrey J

    2015-12-01

    gliomas. Level III It is recommended that increasing age, decreasing performance status, decreasing cognition, presence of astrocytic histological component (along with additional relevant factors (see Tables 1, 2) be considered as negative prognostic indicators when predicting response to radiotherapy.

  10. Bionanotechnology and the Future of Glioma

    PubMed Central

    Chiarelli, Peter A.; Kievit, Forrest M.; Zhang, Miqin; Ellenbogen, Richard G.

    2015-01-01

    Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the “ideal” nanoparticle for glioma, a concept that may soon be realized. PMID:25722933

  11. Multigene sets for clinical application in glioma.

    PubMed

    de Groot, John F; Sulman, Erik P; Aldape, Kenneth D

    2011-04-01

    Diffuse gliomas are a heterogeneous group of malignancies with highly variable outcomes, and diagnosis is largely based on histologic appearance. Tumor classification according to cell type and grade provides some prognostic information. However, significant clinical and biologic heterogeneity exists in glioma, even after accounting for known clinicopathologic variables. Significant advances in knowledge of the molecular genetics of brain tumors have occurred in the past decade, largely because of the availability of high-throughput profiling techniques, including new sequencing methodologies and multidimensional profiling by The Cancer Genome Atlas project. The large amount of data generated from these efforts has enabled the identification of prognostic and predictive factors and helped to identify pathways driving tumor growth. Implementing these signatures into the clinic to personalize therapy presents a new challenge. Identification of relevant biomarkers, especially when coupled with clinical trials of newer targeted therapies, will enable better patient stratification and individualization of treatment for patients with glioma.

  12. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  13. Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses

    PubMed Central

    Yao, Nai-Wei; Chang, Chen; Lin, Hsiu-Ting; Yen, Chen-Tung; Chen, Jeou-Yuan

    2016-01-01

    Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, Ktrans maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management. PMID:27198662

  14. CS-27IDH1/2 MUTATIONS INFLUENCE ZEB1 EXPRESSION IN GRADES II AND III GLIOMAS

    PubMed Central

    Nesvick, Cody; Zhang, Chao; Montgomery, Blake; Lee, Michaela; Yang, Chunzhang; Wang, Herui; Merrill, Marsha; Heiss, John; Ray-Chaudhury, Abhik; Zhuang, Zhengping

    2014-01-01

    Epithelial-mesenchymal transition (EMT) is a cell program that crucially regulates polarity and enhances invasion in normal epithelia and carcinomas. It has been recently demonstrated that EMT-promoting transcription factors (EMT-TFs) also govern cell invasion in glioblastoma, but the role of these proteins in lower-grade gliomas has not yet been investigated. We investigated the impact of EMT-TF expression on overall survival in World Health Organization (WHO) grades II and III gliomas using the National Cancer Institute Repository for Molecular Brain Neoplasis Data (REMBRANDT) and Cancer Genome Atlas Network Lower-Grade Glioma (CGAN LGG) datasets. Surprisingly, while expression of EMT-promoting transcription factors were generally associated with a decrease in overall survival, high ZEB1 expression was associated with an increase in overall survival in both datasets (log-rank test on all grade II and III gliomas: for REMBRANDT, median overall survival (OS) 54.2 months ZEB1-high vs. 19.6 months ZEB1-low, p = 0.0016; for CGAN, median OS 134.3 months ZEB1-high vs. 63.6 months ZEB1-low, p = 0.0038). Mutations in the genes coding for Isocitrate Dehydrogenases 1 and 2 (IDH1/2) are found in 85-90% of grades II and III gliomas and confer a favorable prognosis in these tumors. Using the CGAN LGG dataset, we found that ZEB1 is upregulated in IDH1/2-mutant versus IDH1/2-wild type tumors (unpaired t-test on all grade II and III gliomas: t = 10.292, p < 0.0001). Moreover, IDH1/2-mutant gliomas express lower levels of genes that are suppressed by ZEB1 including MIR200B and MIR200C (unpaired t-test on all grade II and III gliomas: p < 0.0001 for both targets). We further validated these findings in an independent set of 37 grade II and III gliomas using quantitative real-time PCR, Western blot and immunohistochemistry. These findings reveal that ZEB1 not only has an unexpected prognostic significance in grades II and III gliomas but also may play an important role in IDH1

  15. Molecular alterations of KIT oncogene in gliomas.

    PubMed

    Gomes, Ana L; Reis-Filho, Jorge S; Lopes, José M; Martinho, Olga; Lambros, Maryou B K; Martins, Albino; Schmitt, Fernando; Pardal, Fernando; Reis, Rui M

    2007-01-01

    Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK), is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117) immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17) and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH) and quantitative real-time PCR (qRT-PCR) were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179) of cases, namely in 25% (1/4) of pilocytic astrocytomas, 25% (5/20) of diffuse astrocytomas, 20% (1/5) of anaplastic astrocytomas, 19.5% (15/77) of glioblastomas and one third (3/9) of anaplastic oligoastrocytomas. Only 5.7% (2/35) of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0-22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24) of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK inhibitors.

  16. Isocitrate dehydrogenase status and molecular subclasses of glioma and glioblastoma.

    PubMed

    Agnihotri, Sameer; Aldape, Kenneth D; Zadeh, Gelareh

    2014-12-01

    Diffuse gliomas and secondary glioblastomas (GBMs) that develop from low-grade gliomas are a common and incurable class of brain tumor. Mutations in the metabolic enzyme glioblastomas (IDH1) represent a distinguishing feature of low-grade gliomas and secondary GBMs. IDH1 mutations are one of the most common and earliest detectable genetic alterations in low-grade diffuse gliomas, and evidence supports this mutation as a driver of gliomagenesis. Here, the authors highlight the biological consequences of IDH1 mutations in gliomas, the clinical and therapeutic/diagnostic implications, and the molecular subtypes of these tumors. They also explore, in brief, the non-IDH1-mutated gliomas, including primary GBMs, and the molecular subtypes and drivers of these tumors. A fundamental understanding of the diversity of GBMs and lower-grade gliomas will ultimately allow for more effective treatments and predictors of survival.

  17. Glial Progenitors as Targets for Transformation in Glioma

    PubMed Central

    Ilkanizadeh, Shirin; Lau, Jasmine; Huang, Miller; Foster, Daniel J.; Wong, Robyn; Frantz, Aaron; Wang, Susan; Weiss, William A.; Persson, Anders I.

    2014-01-01

    Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system (CNS). Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we will focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomas. Recent studies suggest that OPCs can give rise to gliomas. Furthermore, signaling pathways often associated with NSCs also play key roles during OPC lineage development. Recent advances suggesting that gliomas can undergo a switch from progenitor- to stem-like phenotype after therapy, implicating that an OPC-origin is more likely than previously recognized. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues. PMID:24889528

  18. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function

    PubMed Central

    Cao, Shuanzhu; Wang, Yanzhou; Li, Jinquan; Lv, Mingliang; Niu, Haitao; Tian, Yong

    2016-01-01

    The human metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA associated with metastasis, and is a favorable prognostic factor for lung cancer. Recent studies have shown that MALAT1 plays an important role in many malignancies. However, little is known about the role of MALAT1 in glioma. In this study, we determined the expression of MALAT1 and explored its prognostic value in glioma. Further, we investigated the regulatory mechanism of MALAT1 in glioma progression. Our results showed that the expression of MALAT1 was significantly decreased in glioma specimens than in noncancerous brain tissues. In addition, MALAT1 expression was significantly correlated with tumor size, WHO grade and Karnofsky Performance Status (KPS), and was an independent prognostic factor for survival of glioma patients. The gain- and loss-of-function experiments revealed miR-155 down-regulation by MALAT1, resulting in reciprocal effects. Further, MALAT1 suppresses cell viability by down-regulating miR-155. FBXW7 mRNA was identified as a direct target of miR-155 in glioma. The miR-155-induced tumorigenesis is mediated through FBXW7 function. Finally, we found that MALAT1 positively regulated FBXW7 expression, which was responsible for glioma progression mediated by MALAT1-miR-155 pathway. In conclusion, our data demonstrated that MALAT1 may be a novel prognostic biomarker and therapeutic target in glioma. Restoration of MALAT1 levels represents a novel therapeutic strategy against glioma. PMID:27904771

  19. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4.

    PubMed

    Ochs, Katharina; Ott, Martina; Rauschenbach, Katharina J; Deumelandt, Katrin; Sahm, Felix; Opitz, Christiane A; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2015-12-27

    Malignant gliomas and other types of tumors generate a local immunosuppressive microenvironment, which prohibits an effective anti-tumor immune response and promotes tumor growth. Along with others, we have recently demonstrated that catabolism of the essential amino acid tryptophan via tryptophan-2,3-dioxygenase (TDO) is an important mechanism mediating tumor-associated immunosuppression particularly in gliomas. The pathways regulating TDO in tumors, however, are poorly understood. Here we show that prostaglandins enhance TDO expression and enzymatic activity in malignant gliomas via activation of prostaglandin E receptor-4 (EP4). Stimulation with prostaglandin E2 (PGE2 ) up-regulated TDO-mediated kynurenine release in human glioma cell lines while knockdown of the PGE2 receptor EP4 inhibited TDO expression and activity. In human malignant glioma tissue expression of the PGE2 -producing enzyme cyclooxygenase-2 (COX2) and its receptor EP4 were associated with TDO expression both on transcript and protein level. High expression of EP4 correlated with poor survival in malignant glioma patients WHO III-IV. Importantly, treatment of glioma cells with an EP4 inhibitor decreased TDO expression and activity. Moreover, TDO-over-expressing murine gliomas showed increased COX2 and EP4 expression suggesting a positive feedback mechanism in vivo. In summary, targeting EP4 may inhibit - in addition to immunosuppressive COX2 signaling - tryptophan degradation as another important immunosuppressive pathway and thus, could provide a dual clinically relevant immunotherapeutic avenue for the treatment of malignant gliomas. This article is protected by copyright. All rights reserved.

  20. Low-dose arsenic trioxide enhances 5-aminolevulinic acid-induced PpIX accumulation and efficacy of photodynamic therapy in human glioma.

    PubMed

    Wang, Chunlei; Chen, Xiaofeng; Wu, Jianing; Liu, Huailei; Ji, Zhiyong; Shi, Huaizhang; Gao, Cheng; Han, Dayong; Wang, Ligang; Liu, Yaohua; Yang, Guang; Fu, Changyu; Li, Huadong; Zhang, Dongzhi; Liu, Ziyi; Li, Xianfeng; Yin, Fei; Zhao, Shiguang

    2013-10-05

    Among glioma treatment strategies, 5-aminolevulinic acid (5-ALA)-based fluorescence-guided resection (FGR) and photodynamic therapy (PDT) have been used as effective novel approaches against malignant glioma. However, insufficient intracellular protoporphyrin IX (PpIX) accumulation limits the application of FGR and PDT in the marginal areas of gliomas. To overcome these issues, we assessed the intracellular levels of PpIX in human glioma cell lines and rat cortical astrocytes pretreated with 0.1μM arsenic trioxide (ATO). Apoptosis and cell viability after PDT were evaluated using Annexin V-FITC apoptosis detection kit and MTT assay, respectively. In order to find out the possible mechanism, we investigated the expression of the key enzymes in the heme biosynthesis pathway, which regulates porphyrin synthesis in glioma cells. Our findings showed that the 5-ALA-induced PpIX accumulation in glioma cell lines pretreated with 0.1μM ATO was increased relative to the control groups. No changes in fluorescence intensity were detected in the rat cortical astrocytes pretreated using the same ATO concentration. Apoptosis following PDT in glioma cells pretreated with 0.1μM ATO were significantly higher than in control groups, especially late apoptotic cells, while the cell viability was decreased. The expression of CPOX was upregulated in glioma cells after pretreatment with 0.1μM ATO. We concluded that ATO was a potential optional approach in enhancing intracellular PpIX accumulation and improving the benefits of 5-ALA-induced FGR and PDT in glioma.

  1. Zn{sup 2+} induces apoptosis in human highly metastatic SHG-44 glioma cells, through inhibiting activity of the voltage-gated proton channel Hv1

    SciTech Connect

    Wang, Yifan; Zhang, Shangrong; Li, Shu Jie

    2013-08-23

    Highlights: •Hv1 is expressed in highly metastatic glioma cell. •Zn{sup 2+} ions induces apoptosis in highly metastatic glioma cells. •Zn{sup 2+} ions markedly inhibit proton secretion. •Zn{sup 2+} ions reduce the gelatinase activity. •Inhibition of Hv1 activity via Zn{sup 2+} ions can effectively retard the cancer growth. -- Abstract: In contrast to the voltage-gated K{sup +} channels, the voltage-gated proton channel Hv1 contains a voltage-sensor domain but lacks a pore domain. Here, we showed that Hv1 is expressed in the highly metastatic glioma cell SHG-44, but lowly in the poorly metastatic glioma cell U-251. Inhibition of Hv1 activity by 140 μM zinc chloride induces apoptosis in the human highly metastatic glioma cells. Zn{sup 2+} ions markedly inhibit proton secretion, and reduce the gelatinase activity in the highly metastatic glioma cells. In vivo, the glioma tumor sizes of the implantation of the SHG-44 xenografts in nude mice that were injected zinc chloride solution, were dramatically smaller than that in the controlled groups. The results demonstrated that the inhibition of Hv1 activity via Zn{sup 2+} ions can effectively retard the cancer growth and suppress the cancer metastasis by the decrease of proton extrusion and the down-regulation of gelatinase activity. Our results suggest that Zn{sup 2+} ions may be used as a potential anti-glioma drug for glioma therapy.

  2. [Guidelines for the radiotherapy of gliomas].

    PubMed

    Feuvret, L; Antoni, D; Biau, J; Truc, G; Noël, G; Mazeron, J-J

    2016-09-01

    Gliomas are the most frequent primary brain tumours. Treating these tumours is difficult because of the proximity of organs at risk, infiltrating nature, and radioresistance. Clinical prognostic factors such as age, Karnofsky performance status, tumour location, and treatments such as surgery, radiation therapy, and chemotherapy have long been recognized in the management of patients with gliomas. Molecular biomarkers are increasingly evolving as additional factors that facilitate diagnosis and therapeutic decision-making. These practice guidelines aim at helping in choosing the best treatment, in particular radiation therapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  3. 'Low grade glioma': an update for radiologists.

    PubMed

    Larsen, Jennifer; Wharton, Steve B; McKevitt, Fiona; Romanowski, Charles; Bridgewater, Caroline; Zaki, Hesham; Hoggard, Nigel

    2017-02-01

    With the recent publication of a new World Health Organization brain tumour classification that reflects increased understanding of glioma tumour genetics, there is a need for radiologists to understand the changes and their implications for patient management. There has also been an increasing trend for adopting earlier, more aggressive surgical approaches to low-grade glioma (LGG) treatment. We will summarize these changes, give some context to the increased role of tumour genetics and discuss the associated implications of their adoption for radiologists. We will discuss the earlier and more radical surgical resection of LGG and what it means for patients undergoing imaging.

  4. Molecular targeting for malignant gliomas (Review).

    PubMed

    Kondo, Yasuko; Hollingsworth, Emporia F; Kondo, Seiji

    2004-05-01

    With tendency to invade rapidly in the brain, malignant gliomas are very resistant to conventional therapies including radiation and chemotherapy. Recent advances in genetic and molecular techniques have made it possible to define characteristic molecular profiles of malignant gliomas. Based on the list of the molecules closely related to glioblastoma tissues, we reviewed strategies targeting them. Target molecules extensively studied include EGFR, PTEN, telomerase and signal pathway modulators for Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. Therapies targeting specific molecules may result in killing tumor cells effectively while keeping normal cells intact.

  5. Brain stem glioma: two case studies.

    PubMed

    Rosenblum, Ruth K

    2005-01-01

    The paths taken by each family in coming to terms with the dismal prognosis associated with brain stem glioma can be quite different. The case studies of 2 school-age girls diagnosed with a brain stem glioma within weeks of each other are presented. The multi-disciplinary team response to each family was individualized at each stage of diagnosis, treatment, and end-of-life care, as expected. The ultimate chronologic union of these 2 families as each child neared death was somewhat uncanny. The experience of each family, and their relationship with the team through this process, was an intense challenge and learning experience.

  6. Metabolic Remodeling of Malignant Gliomas for Enhanced Sensitization during Radiotherapy: An In Vitro Study

    PubMed Central

    Colen, Chaim B.; Seraji-Bozorgzad, Navid; Marples, Brian; Galloway, Matthew P.; Sloan, Andrew E.; Mathupala, Saroj P.

    2012-01-01

    OBJECTIVE To investigate a novel method to enhance radiosensitivity of gliomas via modification of metabolite flux immediately before radiotherapy. Malignant gliomas are highly glycolytic and produce copious amounts of lactic acid, which is effluxed to the tumor microenvironment via lactate transporters. We hypothesized that inhibition of lactic acid efflux would alter glioma metabolite profiles, including those that are radioprotective. 1H magnetic resonance spectroscopy (MRS) was used to quantify key metabolites, including those most effective for induction of low-dose radiation-induced cell death. METHODS We inhibited lactate transport in U87-MG gliomas with α-cyano-4-hydroxy-cinnamic acid (ACCA). Flow cytometry was used to assess induction of cell death in treated cells. Cells were analyzed by MRS after ACCA treatment. Control and treated cells were subjected to low-dose irradiation, and the surviving fractions of cells were determined by clonogenic assays. RESULTS MRS revealed changes to intracellular lactate on treatment with ACCA. Significant decreases in the metabolites taurine, glutamate, glutathione, alanine, and glycine were observed, along with inversion of the choline/phosphocholine profile. On exposure to low-dose radiation, ACCA-pretreated U-87MG cells underwent rapid morphological changes, which were followed by apoptotic cell death. CONCLUSION Inhibition of lactate efflux in malignant gliomas results in alterations of glycolytic metabolism, including decreased levels of the antioxidants taurine and glutathione and enhanced radiosensitivity of ACCA-treated cells. Thus, in situ application of lactate transport inhibitors such as ACCA as a novel adjunctive therapeutic strategy against glial tumors may greatly enhance the level of radiation-induced cell killing during a combined radio- and chemotherapeutic regimen. PMID:17277695

  7. TERT rs2853676 polymorphisms correlate with glioma prognosis in Chinese population

    PubMed Central

    He, Xue; Wei, Yahui; Chen, Zhengshuai; Zhu, Xikai; Ma, Lifeng; Zhang, Ning; Zhang, Yuan; Kang, Longli; Yuan, Dongya; Zhang, Zongyong; Jin, Tianbo

    2016-01-01

    High rates of recurrence and the lack of effective treatments contribute to the poor prognosis of patients with glioma. There is therefore an urgent need for an easily detectable biomarker to facilitate early detection. In this study, we explored the association between TERT rs2853676 genetic polymorphisms and the prognosis of Chinese glioma patients. A total of 481 glioma patients at the Tangdu Hospital of the Fourth Military Medical University in China were included in this study. The overall survival rates were calculated using the Kaplan-Meier method. Prognostic factors were determined through multivariate Cox regression analysis. The overall survival (OS) rates of one, two, and three years were 31%, 10.3%, and 7.5%, respectively. The progress-free survival (PFS) rates of one, two, and three years were 15.7%, 7.3%, and 4.7%, respectively. The genotype “A/G” of TERT rs2857676 decreased the PFS rate (hazard ratios [HR] = 0.824; P = 0.059). The genotype “A/G (HR = 0.803; 95% CI, 0.656 – 0.982; P = 0.032)” and “A/A + A/G” decreased the recurrence rate compared to the genotype G/G (HR = 0.818; 95% CI, 0.675-0.99; P = 0.040). Our study indicates that TERT rs2853676 polymorphisms correlate with glioma survival and recurrence rates in a Chinese population, which suggests that they could potentially serve as prognostic markers in glioma patients. PMID:27655710

  8. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study.

    PubMed

    Colen, Chaim B; Seraji-Bozorgzad, Navid; Marples, Brian; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2006-12-01

    To investigate a novel method to enhance radiosensitivity of gliomas via modification of metabolite flux immediately before radiotherapy. Malignant gliomas are highly glycolytic and produce copious amounts of lactic acid, which is effluxed to the tumor microenvironment via lactate transporters. We hypothesized that inhibition of lactic acid efflux would alter glioma metabolite profiles, including those that are radioprotective. H magnetic resonance spectroscopy (MRS) was used to quantify key metabolites, including those most effective for induction of low-dose radiation-induced cell death. We inhibited lactate transport in U87-MG gliomas with alpha-cyano-4-hydroxycinnamic acid (ACCA). Flow cytometry was used to assess induction of cell death in treated cells. Cells were analyzed by MRS after ACCA treatment. Control and treated cells were subjected to low-dose irradiation, and the surviving fractions of cells were determined by clonogenic assays. MRS revealed changes to intracellular lactate on treatment with ACCA. Significant decreases in the metabolites taurine, glutamate, glutathione, alanine, and glycine were observed, along with inversion of the choline/phosphocholine profile. On exposure to low-dose radiation, ACCA-pretreated U-87MG cells underwent rapid morphological changes, which were followed by apoptotic cell death. Inhibition of lactate efflux in malignant gliomas results in alterations of glycolytic metabolism, including decreased levels of the antioxidants taurine and glutathione and enhanced radiosensitivity of ACCA-treated cells. Thus, in situ application of lactate transport inhibitors such as ACCA as a novel adjunctive therapeutic strategy against glial tumors may greatly enhance the level of radiation-induced cell killing during a combined radio- and chemotherapeutic regimen.

  9. Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth.

    PubMed

    Figueiró, Fabrício; Bernardi, Andressa; Frozza, Rudimar L; Terroso, Thatiana; Zanotto-Filho, Alfeu; Jandrey, Elisa H F; Moreira, José Claudio F; Salbego, Christianne G; Edelweiss, Maria I; Pohlmann, Adriana R; Guterres, Sílvia S; Battastini, Ana Maria O

    2013-03-01

    The development of novel therapeutic strategies to treat gliomas remains critical as a result of the poor prognoses, inef-. ficient therapies and recurrence associated with these tumors. In this context, biodegradable nanoparticles are emerging as efficient drug delivery systems for the treatment of difficult-to-treat diseases such as brain tumors. In the current study, we evaluated the antiglioma effect of trans-resveratrol-loaded lipid-core nanocapsules (RSV-LNC) based on in vitro (C6 glioma cell line) and in vivo (brain-implanted C6 cells) models of the disease. In vitro, RSV-LNC decreased the viability of C6 glioma cells to a higher extent than resveratrol in solution. Interestingly, RSV-LNC treatment was not cytotoxic to hippocampal organotypic cultures, a model of healthy neural cells, suggesting selectivity for cancer cells. RSV-LNC induced losses in glioma cell viability through induction of apoptotic cell death, as assessed by Annexin-FITC/PI assay, which was preceded by an early arrest in the S and G1 phases of the cell cycle. In brain-implanted C6 tumors, treatment with RSV-LNC (5 mg/kg/day, i.p.) for 10 days promoted a marked decrease in tumor size and also reduced the incidence of some malignant tumor-associated characteristics, such as intratumoral hemorrhaging, intratumoral edema and pseudopalisading, compared to resveratrol in solution. Taken together, the results presented herein suggest that nanoencapsulation of resveratrol improves its antiglioma activity, thus providing a provocative foundation for testing the clinical usefulness of nanoformulations of this natural compound as a new chemotherapeutic strategy for the treatment of gliomas.

  10. MicroRNA-520c inhibits glioma cell migration and invasion by the suppression of transforming growth factor-β receptor type 2.

    PubMed

    Hu, Shengli; Chen, Huibin; Zhang, Yuqiang; Wang, Chaojia; Liu, Kaijun; Wang, Hui; Luo, Jie

    2017-03-01

    Dysregulation of microRNAs (miRNAs) is actively involved in the development and progression of glioma. miR-520c was previously found to inhibit glioblastoma cell migration. However, the clinical significance of miR-520c and its biological function in glioma remain largely unknown. In the present study, we found that miR-520c expression in glioma tissues was significantly decreased compared to adjacent non‑cancerous tissues. The low level of miR-520c was prominently correlated with advanced World Health Organization (WHO) grade and decreased overall survival of glioma patients. Overexpression of miR-520c in U251 cells significantly decreased the migration and invasion of the cancer cells, while miR-520c silencing promoted U87 cell migration and invasion in vitro. Mechanistically, miR-520c inversely regulated transforming growth factor-β receptor type 2 (TGFBRII) abundance in the glioma cells. Herein, TGFBRII was found to be a downstream target of miR-520c in glioma. Furthermore, an inverse correlation between TGFBRII and miR-520c expression was observed in the glioma cases. In constrast, restoration of TGFBRII expression abrogated the effects of miR-520c overexpression in U251 cells with increased cell migration and invasion. In addition, miR-520c overexpression blocked TGF-β1‑induced cell migration and invasion in U251 cells. Collectively, miR-520c may serve as a prognostic predictor and a therapeutic target for glioma patients.

  11. Altered splicing leads to reduced activation of CPEB3 in high-grade gliomas

    PubMed Central

    Skubal, Magdalena; Gielen, Gerrit H.; Waha, Anke; Gessi, Marco; Kaczmarczyk, Lech; Seifert, Gerald; Freihoff, Dorothee; Freihoff, Johannes; Pietsch, Torsten; Simon, Matthias; Theis, Martin; Steinhäuser, Christian; Waha, Andreas

    2016-01-01

    Cytoplasmic polyadenylation element binding proteins (CPEBs) are auxiliary translational factors that associate with consensus sequences present in 3′UTRs of mRNAs, thereby activating or repressing their translation. Knowing that CPEBs are players in cell cycle regulation and cellular senescence prompted us to investigate their contribution to the molecular pathology of gliomas–most frequent of intracranial tumors found in humans. To this end, we performed methylation analyses in the promoter regions of CPEB1-4 and identified the CPEB1 gene to be hypermethylated in tumor samples. Decreased expression of CPEB1 protein in gliomas correlated with the rising grade of tumor malignancy. Abundant expression of CPEBs2-4 was observed in several glioma specimens. Interestingly, expression of CPEB3 positively correlated with tumor progression and malignancy but negatively correlated with protein phosphorylation in the alternatively spliced region. Our data suggest that loss of CPEB3 activity in high-grade gliomas is caused by expression of alternatively spliced variants lacking the B-region that overlaps with the kinase recognition site. We conclude that deregulation of CPEB proteins may be a frequent phenomenon in gliomas and occurs on the level of transcription involving epigenetic mechanism as well as on the level of mRNA splicing, which generates isoforms with compromised biological properties. PMID:27256982

  12. Aluminum-induced oxidative events in cell lines: glioma are more responsive than neuroblastoma.

    PubMed

    Campbell, A; Prasad, K N; Bondy, S C

    1999-05-01

    Aluminum, a trivalent cation unable to undergo redox reactions, has been linked to many diseases such as dialysis dementia and microcytic anemia without iron deficiency. It has also been implicated in Alzheimer's disease although this is controversial. Because cell death due to oxidative injury is suspected to be a contributory factor in many neurological diseases and aluminum neurotoxicity, glioma (C-6) and neuroblastoma (NBP2) cells were utilized to assess early changes in oxidative parameters consequent to a 48-h exposure to aluminum sulfate. A 500-microM concentration of this salt produced a significant increase in reactive oxygen species (ROS) production and a significant decrease in glutathione (GSH) content in glioma cells. However, the same concentration of the aluminum salt did not lead to any significant changes in the neuroblastoma cells. Mitochondrial respiratory activity in glioma cells was also found to be significantly higher in the aluminum treated cells. As judged by morin-metal complex formation, aluminum can enter glioma cells much more readily than neuroblastoma cells. Thus, it is possible that the cerebral target following an acute exposure to aluminum may be glial rather than neuronal.

  13. Critical role of the FERM domain in Pyk2 stimulated glioma cell migration

    SciTech Connect

    Lipinski, Christopher A.; Tran, Nhan L.; Dooley, Andrea; Pang, Yuan-Ping; Rohl, Carole; Kloss, Jean; Yang, Zhongbo; McDonough, Wendy; Craig, David; Berens, Michael E.; Loftus, Joseph C. . E-mail: loftus.joseph@mayo.edu

    2006-10-27

    The strong tendency of malignant glioma cells to invade locally into surrounding normal brain precludes effective surgical resection, reduces the efficacy of radiotherapy, and is associated with increased resistance to chemotherapy regimens. We report that the N-terminal FERM domain of Pyk2 regulates its promigratory function. A 3-dimensional model of the Pyk2 FERM domain was generated and mutagenesis studies identified residues essential for Pyk2 promigratory function. Model-based targeted mutations within the FERM domain decreased Pyk2 phosphorylation and reduced the capacity of Pyk2 to stimulate glioma cell migration but did not significantly alter the intracellular distribution of Pyk2. Expression of autonomous Pyk2 FERM domain fragments containing analogous mutations exhibited reduced capacity to inhibit glioma cell migration and Pyk2 phosphorylation relative to expression of an autonomous wild type FERM domain fragment. These results indicate that the FERM domain plays an important role in regulating the functional competency of Pyk2 as a promigratory factor in glioma.

  14. RUNX3 is down-regulated in glioma by Myc-regulated miR-4295.

    PubMed

    Li, Xinxing; Zheng, Jihui; Diao, Hongyu; Liu, Yunhui

    2016-03-01

    MicroRNAs are increasingly reported as tumour suppressors that regulate gene expression after transcription. Our results demonstrated that miR-4295 is overexpression in glioma tissues and its level is significantly correlated with clinical stage. We also found that miR-4295 inhibited the cell G0/G1 arrest and apoptosis leading to promoted cell proliferation and activity. The murine modelling study revealed that female nude mice injected with U87/anti-miR-4295 exhibit subcutaneous tumours in the right groin. Compared with anti-NC, the tumour volume was significantly decreased in anti-miR-4295 treatment group. Furthermore, we confirmed miR-4295 mediates the expression of RUNX3 by targeting its 3'untranslation region. In addition, N-myc protein also could bind to the promoter of pri-miR-4295 and inhibit the expression of RUNX3 in glioma cells. These results validate a pathogenetic role of a miR-4295 in gliomas and establish a potentially regulatory and signalling pathway involving N-myc/miR-4295/RUNX3 in gliomas.

  15. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.

    PubMed

    Gabriely, Galina; Wurdinger, Thomas; Kesari, Santosh; Esau, Christine C; Burchard, Julja; Linsley, Peter S; Krichevsky, Anna M

    2008-09-01

    Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for "physiological" modulation of multiple proteins whose expression is deregulated in cancer.

  16. PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells.

    PubMed

    Kaur, Amanpreet; Denisova, Oxana V; Qiao, Xi; Jumppanen, Mikael; Peuhu, Emilia; Ahmed, Shafiq U; Raheem, Olayinka; Haapasalo, Hannu; Eriksson, John; Chalmers, Anthony J; Laakkonen, Pirjo; Westermarck, Jukka

    2016-12-01

    Glioblastoma multiforme lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in glioblastoma multiforme, glioma cells exhibit intrinsic resistance toward many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here, we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the coexpression of proapoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in glioblastoma multiforme. Cancer Res; 76(23); 7001-11. ©2016 AACR.

  17. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    PubMed

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  18. Memantine Induces NMDAR1-Mediated Autophagic Cell Death in Malignant Glioma Cells

    PubMed Central

    Yoon, Wan-Soo; Yeom, Mi-Young; Kang, Eun-Sun; Chung, Yong-An; Chung, Dong-Sup; Jeun, Sin-Soo

    2017-01-01

    Objective Autophagy is one of the key responses of cells to programmed cell death. Memantine, an approved anti-dementia drug, has an antiproliferative effect on cancer cells but the mechanism is poorly understood. The aim of the present study was to test the possibility of induction of autophagic cell death by memantine in glioma cell lines. Methods Glioma cell lines (T-98 G and U-251 MG) were used for this study. Results The antiproliferative effect of memantine was shown on T-98 G cells, which expressed N-methyl-D-aspartate 1 receptor (NMDAR1). Memantine increased the autophagic-related proteins as the conversion ratio of light chain protein 3-II (LC3-II)-/LC3-I and the expression of beclin-1. Memantine also increased formation of autophagic vacuoles observed under a transmission electron microscope. Transfection of small interfering RNA (siRNA) to knock down NMDAR1 in the glioma cells induced resistance to memantine and decreased the LC3-II/LC3-I ratio in T-98 G cells. Conclusion Our study demonstrates that in glioma cells, memantine inhibits proliferation and induces autophagy mediated by NMDAR1. PMID:28264232

  19. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy.

  20. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas12

    PubMed Central

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-01-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas. PMID:21390190

  1. Autophagy suppression sensitizes glioma cells to IMP dehydrogenase inhibition-induced apoptotic death.

    PubMed

    Isakovic, Andjelka M; Dulovic, Marija; Markovic, Ivanka; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Isakovic, Aleksandra

    2017-01-01

    We investigated the role of autophagy, a process of controlled self-digestion, in the in vitro anticancer action of the inosine monophosphate dehydrogenase (IMPDH) inhibitor ribavirin. Ribavirin-triggered oxidative stress, caspase activation, and apoptotic death in U251 human glioma cells were associated with the induction of autophagy, as confirmed by intracellular acidification, appearance of autophagic vesicles, conversion of microtubule associated protein 1 light chain 3 (LC3)-I to autophagosome-associated LC3-II, and degradation of autophagic target p62/sequestosome 1. Ribavirin downregulated the activity of autophagy-inhibiting mammalian target of rapamycin complex 1 (mTORC1), as indicated by a decrease in phosphorylation of the mTORC1 substrate ribosomal p70S6 kinase and reduction of the mTORC1-activating Src/Akt signaling. Guanosine supplementation inhibited, while IMPDH inhibitor tiazofurin mimicked ribavirin-mediated autophagy induction, suggesting the involvement of IMPDH blockade in the observed effect. Autophagy suppression by ammonium chloride, bafilomycin A1, or RNA interference-mediated knockdown of LC3 sensitized glioma cells to ribavirin-induced apoptosis. Ribavirin also induced cytoprotective autophagy associated with Akt/mTORC1 inhibition in C6 rat glioma cells. Our data demonstrate that ribavirin-triggered Akt/mTORC1-dependent autophagy counteracts apoptotic death of glioma cells, indicating autophagy suppression as a plausible therapeutic strategy for sensitization of cancer cells to IMPDH inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells.

    PubMed

    Xia, Hongping; Qi, Yanting; Ng, Samuel S; Chen, Xiaona; Chen, Shen; Fang, Marong; Li, Dan; Zhao, Yu; Ge, Ruiguang; Li, Guo; Chen, Yangchao; He, Ming-Liang; Kung, Hsiang-fu; Lai, Lihui; Lin, Marie C

    2009-03-06

    MicroRNAs (miRNAs) are non-protein-coding RNAs that function as post-transcriptional gene regulators. Recent evidence has shown that miRNA plays a pivotal role in the development of many cancers including glioma, a lethal brain cancer. We have recently compared the miRNA expression profiles between normal brain and glioma tissues from Chinese patients by miRNA microarray and identified a panel of differentially expressed miRNAs. Here, we studied the function of one miRNA, miR-15b, in glioma carcinogenesis and elucidated its downstream targets. Over-expression of miR-15b resulted in cell cycle arrest at G0/G1 phase while suppression of miR-15b expression resulted in a decrease of cell populations in G0/G1 and a corresponding increase of cell populations in S phase. We further showed that CCNE1 (encoding cyclin E1) is one of the downstream targets of miR-15b. Taken together, our findings indicate that miR-15b regulates cell cycle progression in glioma cells by targeting cell cycle-related molecules.

  3. Prognostic factors for deep situated malignant gliomas treated with linac radiosurgery.

    PubMed

    Wang, Yun-Yan; Yang, Guo-Kuan; Li, Shu-Ying; Baol, Xiu-Feng; Wu, Cheng-Yuan

    2004-06-01

    To study the function of radiosurgery on malignant glioma by analyzing prognostic factors affecting malignant gliomas treated with linac radiosurgery. Fifty-eight patients with deep situated malignant gliomas, aged 7 to 70 years, 28 anaplastic astrocytomas and 30 glioblastomas multiforme were analyzed. The median volume of tumor was 10.67 cm3, and median prescription dose for linac radiosurgery was 20 Gy. Results were analyzed with Kaplan-Meier curve and Cox regression. In follow-up 44.8 percent tumors (26 patients) decreased in size. Median tumor local control interval was 10 months, 15 months for anaplastic astrocytomas, and 9 months for glioblastoma multiforme. Tumor local control probability was 37.9 percent for 1 year and 10.3 percent for 2 years. Median survival was 22.5 months for anaplastic astrocytoma, 13 months for glioblastoma multiforme, and 15 months for all patients. The survival probability was 79.3 percent at 1 year and 20.6 percent at 2 years. Isocenter numbers and tumor volume were the prognostic factors for tumor control, but conformity index was the prognostic factor for survival by Cox regression analysis. Considering pathology, only isocenter number and target volume significantly affected tumor control interval. Complications appeared in 44.8 percent patients and the median interval of complication onset was 8 months. Symptomatic cerebral edema was observed in 31.0 percent patients. Linac radiosurgery can effectively improve tumor local control and prolong survival for deep situated malignant gliomas.

  4. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    PubMed Central

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60–75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas. PMID:28356992

  5. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    PubMed

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  6. Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation.

    PubMed

    Li, Sichen; Chou, Arthur P; Chen, Weidong; Chen, Ruihuan; Deng, Yuzhong; Phillips, Heidi S; Selfridge, Julia; Zurayk, Mira; Lou, Jerry J; Everson, Richard G; Wu, Kuan-Chung; Faull, Kym F; Cloughesy, Timothy; Liau, Linda M; Lai, Albert

    2013-01-01

    Mutations in isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) are found in a subset of gliomas. Among the many phenotypic differences between mutant and wild-type IDH1/2 gliomas, the most salient is that IDH1/2 mutant glioma patients demonstrate markedly improved survival compared with IDH1/2 wild-type glioma patients. To address the mechanism underlying the superior clinical outcome of IDH1/2 mutant glioma patients, we investigated whether overexpression of the IDH1(R132H) protein could affect response to therapy in the context of an isogenic glioma cell background. Stable clonal U87MG and U373MG cell lines overexpressing IDH1(WT) and IDH1(R132H) were generated, as well as U87MG cell lines overexpressing IDH2(WT) and IDH2(R172K). In vitro experiments were conducted to characterize baseline growth and migration and response to radiation and temozolomide. In addition, reactive oxygen species (ROS) levels were measured under various conditions. U87MG-IDH1(R132H) cells, U373MG-IDH1(R132H) cells, and U87MG-IDH2(R172K) cells demonstrated increased sensitivity to radiation but not to temozolomide. Radiosensitization of U87MG-IDH1(R132H) cells was accompanied by increased apoptosis and accentuated ROS generation, and this effect was abrogated by the presence of the ROS scavenger N-acetyl-cysteine. Interestingly, U87MG-IDH1(R132H) cells also displayed decreased growth at higher cell density and in soft agar, as well as decreased migration. Overexpression of IDH1(R132H) and IDH2(R172K) mutant protein in glioblastoma cells resulted in increased radiation sensitivity and altered ROS metabolism and suppression of growth and migration in vitro. These findings provide insight into possible mechanisms contributing to the improved outcomes observed in patients with IDH1/2 mutant gliomas.

  7. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  8. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  9. [Intramedullary glioma. Postoperative MRI aspects].

    PubMed

    Borocco, A; Idir, A; Joubert, E; Lacroix, C; Hurth, M; Doyon, D

    1995-06-01

    MRI is the standard exploration of intramedullary tumours. Following up the patients is of prime importance to detect and treat possible recurrences at an early stage. The purpose of this paper is to specify the postoperative MRI semiology of intraspinal gliomas. During the 1986-1992 period, 47 patients operated upon in the Bicêtre hospital for primary intraspinal tumours were followed up with high-field MR (1.5 Tesla, Signa, G.E.). The retrospective visual study was carried out by two neuro-radiologists. The patients' group consisted of 24 women and 23 men aged from 15 to 67 years (mean 38 years). The tumours treated were 29 ependymomas and 18 astrocytomas. Eighty-five MRI examinations were analysed. Most of them comprised at least two planes in T1 and T2-weighted spin echo sequences with gadolinium injection, then only T1-weighted spin echo sequences after gadolinium injection (0.1 mmol/kg). The mean postoperative follow up period in the 47 patients was 32 months (range 7 to 84 months). Contrast enhancement of the spinal cord was observed in 20 cases. In the 6 patients with recurrence (5 astrocytomas, 1 malignant ependymoma) there was a segmental increase of spinal cord volume with contrast enhancement after gadolinium injection. In 3 out of these 6 patients clinical deterioration appeared later than MRI semiology. In clinically stable patients neither enhancement nor increase in spinal cord size was found in 27 cases, and enhancement alone was noted in 12 cases. There was no reliable criterion in the analysis of post gadolinium signal enhancement that could be used to differentiate recurrence from cicatricial contrast enhancement.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Gene therapy for malignant glioma.

    PubMed

    Okura, Hidehiro; Smith, Christian A; Rutka, James T

    2014-01-01

    Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.

  11. Photodynamic therapy of supratentorial gliomas

    NASA Astrophysics Data System (ADS)

    Muller, Paul J.; Wilson, Brian C.

    1997-05-01

    We are reporting the results form intraoperative intracavitary PDT treatment in 56 patients with recurrent supratentorial gliomas who had failed previous surgery and radiotherapy. These patients received 2mg/kg Photofin iv. 12-36 hours prior to surgical resection of their tumor or tumor cyst drainage. The median survival times in weeks for glioblastoma (GBM), malignant astrocytoma (MA), malignant mixed astrocytoma-oligodendroglioma and ependymoma were 30, 40, >56 and >174 weeks, respectively. Eight patients with recurrent GBM who received >60 J/cm2 had a median survival of 58 weeks and 24 patients who received <60 J/cm2 survived 29 weeks. The survival of patients with recurrent glioblastoma who undergo surgical treatment alone is only 20 weeks. We are also reporting the results of PDT treatment in 20 patients with newly diagnosed MA or GBM treated with intracavitary Photofin-PDT at the time of their initial craniotomy. The median survival of the whole cohort was 44 weeks with a 1 and 2 year survival of 40 percent and 15 percent, respectively. The median survival of patients with GBM was 37 weeks with a 1 and 2 year actuarial survival of 35 percent and 0 percent, respectively. The median survival of patients with MA as 48 weeks with a 1 and 2 year actuarial survival of 44 percent and 33 percent, respectively. Six patients with a Karnofsky score of >70 who received a light dose of >1260J had a median survival of 92 weeks with a 1 and 2 year survival of 83 percent and 33 percent, respectively. The mortality rate in our total series of 93 PDT treatments or brain tumor is 3 percent. The combined serious mortality-morbidity rate is 8 percent.

  12. Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

    ClinicalTrials.gov

    2017-09-04

    Anaplastic Astrocytoma; Brain Stem Glioma; Childhood Mixed Glioma; Fibrillary Astrocytoma; Giant Cell Glioblastoma; Glioblastoma; Gliosarcoma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  13. Gliomas and exposure to wood preservatives.

    PubMed

    Cordier, S; Poisson, M; Gerin, M; Varin, J; Conso, F; Hemon, D

    1988-10-01

    A case-referent study was undertaken to look for occupational risk factors among patients with glioma treated in a neurological hospital in Paris between 1975 and 1984. In the study group were 125 men with gliomas (aged less than or equal to 65) and 238 patients (also less than or equal to 65) admitted for non-neoplastic, non-malformative vascular diseases in the same department during the same period constituting the reference group. All diagnoses were confirmed by tomodensitometry. Information on occupational history was obtained from a postal questionnaire and from medical records. Comparison of cases and referents showed a significant excess risk among teachers (OR = 4.1) and a raised risk among wood workers (OR = 1.6). Four of nine cases of glioma who had been employed as wood workers reported that a colleague had suffered from glioma (those reports were confirmed by hospital records). None were reported among 11 referent wood workers. Using a complementary questionnaire on wood work, exposure assessment to wood preservatives and solvents showed that frequent exposure to organochlorine wood preservatives and to organic solvents occurred more often among cases than referent wood workers (p less than 0.10).

  14. White Matter Change Revealed by Diffusion Tensor Imaging in Gliomas

    PubMed Central

    Won, Young Il; Kim, Chi Heon; Park, Chul-Kee; Koo, Bang-Bon; Lee, Jong-Min; Jung, Hee-Won

    2016-01-01

    Background Tumor-related white matter change is detected at late stages with magnetic resonance imaging (MRI), when mass effect or prominent edema is present. We analyzed if diffusion tensor imaging (DTI) white matter change earlier than conventional MRI. Methods Twenty-six patients with gliomas (World Health Organization grade II, 5; grade III, 12; and grade IV, 9) within 2 cm from the posterior limb of the internal capsule (IC) were studied. Fifteen normal adults were enrolled as controls. Fluid attenuation inversion recovery MRI showed a high signal change at the posterior limb of the IC (HSIC) in 9 patients with grade III or IV gliomas. We classified the gliomas as WHO grade II (gliomas II), grade III or IV without HSIC [gliomas III/IV(-)] and grade III or IV with HSIC [gliomas III/IV(+)], as an indicator of the increase in the severity of the white matter changes. Fractional anisotropy (FA) and apparent diffusion coefficients (ADC) were calculated for the pyramidal tract. Tumor progression along pyramidal tract was evaluated by follow-up MRI in 16 patients at 40±18 months. Results FA showed no significant difference between gliomas II and control (p=0.694), but was lower in gliomas III/IV(-) and gliomas III/IV(+) (p<0.001). ADCs were higher in gliomas II, gliomas III/IV(-) and gliomas III/IV(+) than control (p<0.001). Tumor progression was detected in 2/16 patients. Conclusion DTI detected white matter changes that appeared to be normal in MRI. ADC changed even in low grade glioma, indicating ADC may be a better parameter for the early detection of white matter change. PMID:27867919

  15. [Histological and molecular classification of gliomas].

    PubMed

    Figarella-Branger, D; Colin, C; Coulibaly, B; Quilichini, B; Maues De Paula, A; Fernandez, C; Bouvier, C

    2008-01-01

    Gliomas are the most frequent tumors of the central nervous system. The WHO classification, based on the presumed cell origin, distinguishes astrocytic, oligodendrocytic and mixed gliomas. A grading system is based on the presence of the following criteria: increased cellular density, nuclear atypias, mitosis, vascular proliferation and necrosis. The main histological subtype of grade I gliomas are pilocytic astrocytomas, which are benign. Diffuse astrocytomas, oligodendrogliomas and oligoastrocytomas are low-grade (II) or high-grade (III and IV) tumors. Glioblastomas correspond to grade IV astrocytomas. C. Daumas-Duport et al. have proposed another classification based on histology and imaging data, which distinguishes oligodendrogliomas and mixed gliomas of grade A (without endothelial proliferation and/or contrast enhancement), oligodendrogliomas and mixed gliomas of grade B (with endothelial proliferation or contrast enhancement), glioblastomas and glioneuronal malignant tumors. Both classifications lack reproducibility. Many studies have searched for a molecular classification. Recurrent abnormalities in gliomas have been found. They encompassed recurrent chromosomal alterations, such as lost of chromosome 10, gain of chromosome 7, deletion of chromosome 1p and 19q, but also activation of the Akt pathway (amplification of EGFR), dysregulation of the cell cycle (deletion of p16, p53). These studies have enabled the description of two molecular subtypes for glioblastomas. De novo glioblastomas, which occur in young patients without of a prior history of brain tumor and harbor frequent amplification of EGFR, deletion of p16 and mutation of PTEN while mutation of p53 is infrequent. Secondary glioblastomas occur in the context of a preexisting low-grade glioma and are characterized by more frequent mutation of p53. On the other side, combined complete deletion of 1p and 19q as the result of the translocation t(1;19)(q10;p10) is highly specific of oligodendrogliomas

  16. The antimicrotubule drug estramustine but not irradiation induces apoptosis in malignant glioma involving AKT and caspase pathways.

    PubMed

    Vallbo, Christina; Bergenheim, Tommy; Hedman, Håkan; Henriksson, Roger

    2002-01-01

    Irradiation is one of the cornerstones used in the treatment of malignant glioma. However, the effect is modest and glioma cells generally display a pronounced radio-resistance. In this study, the effect of irradiation, alone and in combination with the antimicrotubule drug estramustine (EaM), was investigated in vitro using the BT4C rat glioma cell line, and in vivo the BT4C rat intracerebral glioma model was used. Apoptosis was detected by analysing DNA laddering, in situ end labelling (ISEL) and Annexin V reactivity. In addition, phosphorylation status of MAPK, JNK, p38, and AKT, proteins involved in pro- and anti-apoptotic signalling pathways was analysed by Western blotting. Irradiation did not induce apoptosis, neither in vitro nor in vivo. EaM, however, induced apoptosis in vivo and in vitro, regardless of whether EaM was given alone, before or after irradiation. When BT4C cells were treated with the caspase-3 inhibitor Ac-DEVD-CHO prior to EaM, the number of apoptotic cells was decreased, indicating an involvement of caspase-3. The signalling pathways regulating apoptosis are complex and involve kinases such as MAPK, JNK, p38 and AKT. Irradiation did not induce any changes in the expression levels or phosphorylation status of these proteins. On the other hand, the phosphorylation level of AKT was reduced after EaM treatment, which might, in part, propose how EaM induces apoptosis in glioma cells.

  17. Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights

    NASA Astrophysics Data System (ADS)

    Alfonso, J. C. L.; Köhn-Luque, A.; Stylianopoulos, T.; Feuerhake, F.; Deutsch, A.; Hatzikirou, H.

    2016-11-01

    Gliomas are highly invasive brain tumours characterised by poor prognosis and limited response to therapy. There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve tumour blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation induced by blood vessel occlusion/collapse. In contrast, the therapeutic intention of normalising the abnormal tumour vasculature is to improve the efficacy of conventional treatment modalities. Although these strategies have shown therapeutic potential, it remains unclear why they both often fail to control glioma growth. To shed some light on this issue, we propose a mathematical model based on the migration/proliferation dichotomy of glioma cells in order to investigate why vaso-modulatory interventions have shown limited success in terms of tumour clearance. We found the existence of a critical cell proliferation/diffusion ratio that separates glioma responses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the front speed and increase the infiltration width, for those in the other regime, the invasion speed increases and infiltration width decreases. We discuss how these in silico findings can be used to guide individualised vaso-modulatory approaches to improve treatment success rates.

  18. Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights

    PubMed Central

    Alfonso, J. C. L.; Köhn-Luque, A.; Stylianopoulos, T.; Feuerhake, F.; Deutsch, A.; Hatzikirou, H.

    2016-01-01

    Gliomas are highly invasive brain tumours characterised by poor prognosis and limited response to therapy. There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve tumour blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation induced by blood vessel occlusion/collapse. In contrast, the therapeutic intention of normalising the abnormal tumour vasculature is to improve the efficacy of conventional treatment modalities. Although these strategies have shown therapeutic potential, it remains unclear why they both often fail to control glioma growth. To shed some light on this issue, we propose a mathematical model based on the migration/proliferation dichotomy of glioma cells in order to investigate why vaso-modulatory interventions have shown limited success in terms of tumour clearance. We found the existence of a critical cell proliferation/diffusion ratio that separates glioma responses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the front speed and increase the infiltration width, for those in the other regime, the invasion speed increases and infiltration width decreases. We discuss how these in silico findings can be used to guide individualised vaso-modulatory approaches to improve treatment success rates. PMID:27876890

  19. Prolonged survival after treatment of diffuse intrinsic pontine glioma with radiation, temozolamide, and bevacizumab: report of 2 cases.

    PubMed

    Aguilera, Dolly G; Mazewski, Claire; Hayes, Laura; Jordan, Cathy; Esiashivilli, Natia; Janns, Anna; Macdonald, Tobey J

    2013-01-01

    Diffuse intrinsic pontine gliomas have poor prognosis. We report on 2 patients with diffuse intrinsic pontine glioma treated with radiation, followed by temozolamide 200 mg/m/d for 5 days every 28 days and bevacizumab 10 mg/kg/dose every 14 days. Both patients have ongoing PFS of 37 and 47 months from diagnosis. A decrease in tumor size by >65% was observed in both the patients. Both patients continue treatment. No steroid requirement since 10 weeks after radiation. Quality of life is excellent and the chemotherapy regimen is well tolerated. A clinical trial in an expanded cohort is warranted to determine the toxicity and evaluate response.

  20. Computer Simulation of Glioma Growth and Morphology

    PubMed Central

    Frieboes, Hermann B.; Lowengrub, John S.; Wise, S.; Zheng, X.; Macklin, Paul; Bearer, Elaine; Cristini, Vittorio

    2007-01-01

    Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in-vitro and in-vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g. from histopathology or intra-operative analysis, this model can be used for disease diagnosis

  1. [Classification of gliomas. Current progress and perspectives].

    PubMed

    Capper, D; Reifenberger, G

    2015-06-01

    The diagnostic subdivision of gliomas is traditionally based on histological features as defined by the World Health Organization (WHO) classification of tumors of the central nervous system. In recent years molecular studies have identified a number of genetic and epigenetic markers that could contribute to an improved tumor classification and better prediction of response to therapy and prognosis in the individual patient. The most important molecular tests with differential diagnostic relevance in patients with astrocytic and oligodendroglial tumors include the detection of genetic mutations in the isocitrate dehydrogenase 1 (IDH1), IDH2, alpha thalassemia/mental retardation syndrome X-linked (ATRX), histone H3.3 (H3F3A) and v-raf murine sarcoma viral oncogene homolog B (BRAF) genes as well as the demonstration of codeletions of chromosomal arms 1p and 19q. Important predictive markers that have been linked to the response to alkylating chemotherapy are O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastoma patients and 1p/19q codel status in anaplastic glioma patients. Oncogenic c11orf95/RELA fusion gene formation is characteristic for a subgroup of patients with supratentorial ependymoma. In addition to diagnostic testing of individual genes, novel microarray and next generation sequencing (NGS) techniques show promising perspectives in glioma diagnostics. The assessment of DNA methylation profiles using DNA methylation arrays representing 450,000 CpG dinucleotides distributed throughout the human genome (450 k array test) now allows the robust molecular classification of gliomas into clinically relevant entities and variants. Moreover, glioma-associated gene panel NGS promises the timely parallel sequencing of relevant diagnostic and predictive marker genes in a single test. It will now be a major task to integrate these novel results and techniques into the conventional histological procedures in the up-coming revision of the

  2. Economics of Malignant Gliomas: A Critical Review

    PubMed Central

    Raizer, Jeffrey J.; Fitzner, Karen A.; Jacobs, Daniel I.; Bennett, Charles L.; Liebling, Dustin B.; Luu, Thanh Ha; Trifilio, Steven M.; Grimm, Sean A.; Fisher, Matthew J.; Haleem, Meraaj S.; Ray, Paul S.; McKoy, Judith M.; DeBoer, Rebecca; Tulas, Katrina-Marie E.; Deeb, Mohammed; McKoy, June M.

    2015-01-01

    Purpose: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. Methods: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Results: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. Conclusion: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. PMID:25466707

  3. Targeting and therapy of human glioma xenografts in vivo utilizing radiolabeled antibodies

    SciTech Connect

    Williams, J.A.; Wessels, B.W.; Edwards, J.A.; Kopher, K.A.; Wanek, P.M.; Wharam, M.D.; Order, S.E.; Klein, J.L. )

    1990-02-01

    Radiolabeled antibodies provide a potential basis for selective radiotherapy of human gliomas. We have measured tumor targeting by radiolabeled monoclonal antibodies directed against neuroectodermal and tumor-associated antigens in nude mice bearing human glioma xenografts. Monoclonal P96.5, a mouse IgG2a immunoglobulin, defines an epitope of a human melanoma cell surface protein and specifically binds the U-251 human glioma as measured by immunoperoxidase histochemistry. IIIIn-radiolabeled P96.5 specifically targets the U-251 human glioma xenograft and yields 87.0 microCi of tumor activity/g/100 microCi injected activity compared to 4.5 microCi following administration of 100 microCi radiolabeled irrelevant monoclonal antibody. Calculations of targeting ratios demonstrate the deposited dose to be 11.6 times greater with radiolabeled P96.5 administration compared to irrelevant monoclonal antibody. The dose found in normal organs is less than 20% of that in the tumor, further supporting specific targeting of the human glioma xenograft by this antibody. Monoclonal antibody ZME018, which defines a second melanoma-associated antigen, demonstrates positive immunoperoxidase staining of the tumor, but comparatively decreased targeting. To test the therapeutic potential of 90Y-radiolabeled P96.5 and ZME018, tumors and normal sites were implanted with miniature thermoluminescent dosimeters. Average absorbed doses of 3770 +/- 445 (SEM) and 645 +/- 48 cGy in tumor, 353 +/- 41 and 222 +/- 13 cGy in a contralateral control i.m. site, 980 +/- 127 and 651 +/- 63 cGy in liver, and 275 +/- 14 and 256 +/- 18 cGy in total body were observed 7 days following administration of 100 microCi 90Y-radiolabeled P96.5 and ZME018, respectively. Calculations of absorbed dose by the medical internal radiation dose method confirmed thermoluminescent dosimeter absorbed dose measurements.

  4. Tissue microarray analysis for epithelial membrane protein-2 as a novel biomarker for gliomas.

    PubMed

    Chung, Lawrance K; Pelargos, Panayiotis E; Chan, Ann M; Demos, Joanna V; Lagman, Carlito; Sheppard, John P; Nguyen, Thien; Chang, Yu-Ling; Hojat, Seyed A; Prins, Robert M; Liau, Linda M; Nghiemphu, Leia; Lai, Albert; Cloughesy, Timothy F; Yong, William H; Gordon, Lynn K; Wadehra, Madhuri; Yang, Isaac

    2017-09-08

    Epithelial membrane protein-2 (EMP2) expression is noted in many human cancers. We evaluated EMP2 as a biomarker in gliomas. A large tissue microarray of lower grade glioma (WHO grades II-III, n = 19 patients) and glioblastoma (GBM) (WHO grade IV, n = 50 patients) was stained for EMP2. EMP2 expression was dichotomized to low or high expression scores and correlated with clinical data. The mean EMP2 expression was 1.68 in lower grade gliomas versus 2.20 in GBMs (P = 0.01). The percentage of samples with high EMP2 expression was greater in GBMs than lower grade gliomas (90.0 vs. 52.6%, P = 0.001). No significant difference was found between median survival among patients with GBM tumors exhibiting high EMP2 expression and survival of those with low EMP2 expression (8.38 vs. 10.98 months, P = 0.39). However, EMP2 expression ≥2 correlated with decreased survival (r = -0.39, P = 0.001). The EMP2 expression level also correlated with Ki-67 positivity (r = 0.34, P = 0.008). The mortality hazard ratio for GBM patients with EMP2 score of 3 or higher was 1.92 (CI 0.69-5.30). Our findings suggest that elevated EMP2 expression is associated with GBM. With other biomarkers, EMP2 may have use as a molecular target for the diagnosis and treatment of gliomas.

  5. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    SciTech Connect

    Dai, Bin; Hu, Zhiqiang; Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong; Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  6. Isolation and Characterization of Fast-Migrating Human Glioma Cells in the Progression of Malignant Gliomas.

    PubMed

    Adamski, Vivian; Schmitt, Anne Dorothée; Flüh, Charlotte; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-03-13

    Gliomas are the most common primary brain tumors. The most malignant form, the glioblastoma multiforme (GBM; WHO IV), is characterized by an invasive phenotype, which enables the tumor cells to infiltrate into adjacent brain tissue. When investigating GBM migration and invasion properties in vitro, in most cases GBM cell lines were analyzed. Comprehensive investigations focusing on progression-dependent characteristics of migration processes using fresh human glioma samples of different malignancy grades do not exist. Thus, we isolated fast-migrating tumor cells from fresh human glioma samples of different malignancy grades (astrocytomas WHO grade II, grade III, GBM, and GBM recurrences) and characterized them with regard to the transcription of genes involved in the migration and invasion, tumor progression, epithelial-to-mesenchymal transition, and stemness. In addition, we transferred our results to GBM cell lines and glioma stem-like cells and examined the influence of temozolomide on the expression of the above-mentioned genes in relation to migratory potential. Our results indicate that "evolutionary-like" expression alterations occur during glioma progression when comparing slow- and fast-migrating cells of fresh human gliomas. Furthermore, a close relation between migratory and stemness properties seems to be most likely. Variations in gene expression were also identified in GBM cell lines, not only when comparing fast- and slow-migrating cells but also regarding temozolomide-treated and untreated cells. Moreover, these differences coincided with the expression of stem cell markers and their migratory potential. Expression of migration-related genes in fast-migrating glioma cells is not only regulated in a progression-dependent manner, but these cells are also characterized by specific stem cell-like features.

  7. Induction of apoptosis in glioma cells requires cell-to-cell contact with human umbilical cord blood stem cells.

    PubMed

    Gondi, Christopher S; Gogineni, Venkateswara R; Chetty, Chandramu; Dasari, Venkata R; Gorantla, Bharathi; Gujrati, Meena; Dinh, Dzung H; Rao, Jasti S

    2010-05-01

    We have previously demonstrated the multipotent nature of human umbilical cord blood stem cells (hUCB). In this study, we have attempted to show the use of hUCB in glioma therapy. We used hUCB enriched in CD44 and CD133 cells for our studies and observed that glioma cells co-cultured with hUCB undergo apoptosis. To prove the role of cell-to-cell contact in the induction of apoptotic events, we used a modified 0.22 microm Boyden's chamber where the upper surface was used to culture glioma cells (SNB19 or U87) or xenografts (4910 or 5310) and the lower surface to culture hUCB. TUNEL assay was carried out to determine the degree of apoptotic induction and we observed that glioma or xenograft cells co-cultured with hUCB had a higher number of TUNEL-positive characteristics (63+/-6%) compared to the controls. Further, we co-cultured glioma cells labeled with lipophilic green fluorescent dye and hUCB labeled with lipophilic red fluorescent dye. FACS analysis of cells collected from the upper and lower surfaces revealed that glioma cells had taken up red fluorescent dye from the stem cells (70+/-3%) when compared to glioma cells co-cultured with fibroblast cells (15+/-4%). The apoptotic events in the glioma and xenograft cells co-cultured with hUCB were also confirmed by Western blot analysis for the cleavage of PARP and activation of caspase 8. In addition, elevated levels of CHK-2 levels and downregulation of MAP2K1 were observed in glioma cells co-cultured with hUCB indicating the DNA damage and decrease in cell survival. Nude mice, intracranially implanted with luciferase-expressing U87 cells followed by implantation of hUCB or human fibroblast cells showed retardation of intracranial tumors in hUCB-implanted mice. Taken together, these results demonstrate that hUCB have therapeutic potential with possible clinical implications.

  8. Terahertz reflectometry imaging for low and high grade gliomas

    PubMed Central

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-01-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes. PMID:27782153

  9. Oncolytic adenoviruses: A thorny path to glioma cure

    PubMed Central

    Ulasov, I.V.; Borovjagin, A.V.; Schroeder, B.A.; Baryshnikov, A.Y.

    2014-01-01

    Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of glioma patients may have increased over the past decade. Current therapeutic options for glioma patients include tumor resection, chemotherapy, and concomitant radiation therapy with an average survival of approximately 16 months. The rapid progression of gliomas has spurred the development of novel treatment options, such as cancer gene therapy and oncolytic virotherapy. Preclinical testing of oncolytic adenoviruses using glioma models revealed both positive and negative sides of the virotherapy approach. Here we present a detailed overview of the glioma virotherapy field and discuss auxiliary therapeutic strategies with the potential for augmenting clinical efficacy of GBM virotherapy treatment. PMID:25685829

  10. Terahertz reflectometry imaging for low and high grade gliomas

    NASA Astrophysics Data System (ADS)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-10-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.

  11. Progress on molecular biomarkers and classification of malignant gliomas.

    PubMed

    Zhang, Chuanbao; Bao, Zhaoshi; Zhang, Wei; Jiang, Tao

    2013-06-01

    Gliomas are the most common primary intracranial tumors in adults. Anaplastic gliomas (WHO grade III) and glioblastomas (WHO grade IV) represent the major groups of malignant gliomas in the brain. Several diagnostic, predictive, and prognostic biomarkers for malignant gliomas have been reported over the last few decades, and these markers have made great contributions to the accuracy of diagnosis, therapeutic decision making, and prognosis of patients. However, heterogeneity in patient outcomes may still be observed, which highlights the insufficiency of a classification system based purely on histopathology. Great efforts have been made to incorporate new information about the molecular landscape of gliomas into novel classifications that may potentially guide treatment. In this review, we summarize three distinctive biomarkers, three most commonly altered pathways, and three classifications based on microarray data in malignant gliomas.

  12. BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma

    PubMed Central

    González-Gómez, Pilar; Anselmo, Nilson Praia; Mira, Helena

    2014-01-01

    Astrocytic glioma is the most common brain tumor. The glioma initiating cell (GIC) fraction of the tumor is considered as highly chemoresistant, suggesting that GICs are responsible for glioma relapse. A potential treatment for glioma is to induce differentiation of GICs to a more benign and/or druggable cell type. Given BMPs are among the most potent inducers of GIC differentiation, they have been considered as noncytotoxic therapeutic compounds that may be of use to prevent growth and recurrence of glioma. We herein summarize advances made in the understanding of the role of BMP signaling in astrocytic glioma, with a particular emphasis on the effects exerted on GICs. We discuss the prognostic value of BMP signaling components and the implications of BMPs in the differentiation of GICs and in their sensitization to alkylating drugs and oncolytic therapy/chemotherapy. This mechanistic insight may provide new opportunities for therapeutic intervention of brain cancer. PMID:24877113

  13. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications.

  14. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    PubMed Central

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  15. Interference with distinct steps of sphingolipid synthesis and signaling attenuates proliferation of U87MG glioma cells

    PubMed Central

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; Nusshold, Christoph; Brunner, Anna Martina; Plastira, Ioanna; Rechberger, Gerald; Reicher, Helga; Wadsack, Christian; Zimmer, Andreas; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Glioblastoma is the most common malignant brain tumor, which, despite combined radio- and chemotherapy, recurs and is invariably fatal for affected patients. Members of the sphingolipid (SL) family are potent effectors of glioma cell proliferation. In particular sphingosine-1-phosphate (S1P) and the corresponding G protein-coupled S1P receptors transmit proliferative signals to glioma cells. To investigate the contribution to glioma cell proliferation we inhibited the first step of de novo SL synthesis in p53wt and p53mut glioma cells, and interfered with S1P signaling specifically in p53wt U87MG cells. Subunit silencing (RNAi) or pharmacological antagonism (using myriocin) of serine palmitoyltransferase (SPT; catalyzing the first committed step of SL biosynthesis) reduced proliferation of p53wt but not p53mut GBM cells. In U87MG cells these observations were accompanied by decreased ceramide, sphingomyelin, and S1P content. Inhibition of SPT upregulated p53 and p21 expression and induced an increase in early and late apoptotic U87MG cells. Exogenously added S1P (complexed to physiological carriers) increased U87MG proliferation. In line, silencing of individual members of the S1P receptor family decreased U87MG proliferation. Silencing and pharmacological inhibition of the ATP-dependent cassette transporter A1 (ABCA1) that facilitates S1P efflux in astrocytes attenuated U87MG growth. Glyburide-mediated inhibition of ABCA1 resulted in intracellular accumulation of S1P raising the possibility that ABCA1 promotes S1P efflux in U87MG glioma cells thereby contributing to inside-out signaling. Our findings indicate that de novo SL synthesis, S1P receptor-mediated signaling, and ABCA1-mediated S1P efflux could provide pharmacological targets to interfere with glioma cell proliferation. PMID:26002572

  16. The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults.

    PubMed

    Feng, Jie; Hao, Shuyu; Pan, Changcun; Wang, Yu; Wu, Zhen; Zhang, Junting; Yan, Hai; Zhang, Liwei; Wan, Hong

    2015-11-01

    Brainstem and thalamic gliomas are rare, and they are poorly understood in adults. Genetic aberrations that occur in these tumors are still unknown. In this study, we investigated whether thalamic gliomas have different genetic aberrations and clinical outcomes compared with brainstem gliomas in adults. Forty-three glioma samples were selected, including 28 brainstem and 15 thalamic gliomas. The frequency of the K27M mutation in adult midline gliomas was 58.1%. High-grade gliomas in the thalamus were statistically significantly more numerous than brainstem gliomas. Patients with K27M mutant brainstem gliomas had a significantly shorter overall survival than patients with wild-type tumors (P = .020) by Cox regression after adjustment for other independent risk factors. However, there was no statistical tendency toward a poorer overall survival in thalamic gliomas containing the K27M mutation compared with wild-type tumors. The presence of the K27M mutation significantly corresponded with mutations in TP53 in thalamic gliomas. Interestingly, the K27M mutation was mutually exclusive with mutations in IDH1, which was detected only in brainstem gliomas. The microarray data identified 86 differentially expressed genes between brainstem and thalamic gliomas with the K27M mutation. The cyclin-dependent kinase 6 (CDK6) gene, which plays an important role in cancer pathways, was found to be differentially expressed between brainstem and thalamic gliomas with K27M mutations. Although the K27M mutation was frequently observed in adult brainstem and thalamic gliomas, this mutation tended to be associated with a poorer prognosis in brainstem gliomas but not in thalamic gliomas. Brainstem gliomas may present different genetic aberrations from thalamic gliomas. These differences may provide guidance for therapeutic decisions for the treatment of adult brainstem and thalamic gliomas, which may have different molecular targets.

  17. ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells.

    PubMed

    Danilovskyi, S V; Minchenko, D O; Moliavko, O S; Kovalevska, O V; Karbovskyi, L L; Minchenko, O H

    2014-01-01

    Endoplasmic reticulum stress and hypoxia are necessary components of malignant tumors growth and suppression of ERN1 (from endoplasmic reticulum to nuclei-1) signalling pathway, which is linked to the apoptosis and cell death processes, significantly decreases proliferative processes. Glioma cells with ERN1 knockdown were used in order to investigate the effect of ERNI blockade on the expression of TP53, MDM2, PERP, and USP7 genes and its hypoxic regulation. We have studied the expression of TP53 (tumor protein 53), MDM2 (TP53 E3 ubiquitin protein ligase homolog), PERP (TP53 apoptosis effector), and USP7 (ubiquitin specific peptidase 7) genes, which are related to cell proliferation and apoptosis, in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that blockade of ERNI gene function in U87 glioma cells intensified the expression of TP53 and USP7 genes, but decreased the expression ofMDM2 and PERP genes. Thus, an enhanced expression of TP53 gene in ERN1 knockdown glioma cells correlates with the decreased level of ubiquitin ligase MDM2 and increased expression level of USP7 which deubiquitinates TP53 and MDM2 and induces TP53-dependent cell growth repression and apoptosis. At the same time, the expression levels of TP53, MDM2, and USP7 genes do not change significantly in glioma cells with suppression of endoribonuclease activity only, but PERP gene expression is strongly increased. Moreover, the expression of TP53 and UPS7 genes is decreased in hypoxic conditions in control glioma cells only; however, MDM2 and PERP gene expressions are increased in both cell types, being more significant in ERN1 knockdown cells. Thus, the expression of genes encoding TP53 and related to TP53 factors depends upon the endoplasmic reticulum stress signaling as well as on hypoxia, and correlates with suppression of glioma growth under ERN1 knockdown.

  18. Effects of morphine on testosterone levels in rat C6 glioma cells: modulation by anastrozole.

    PubMed

    Ceccarelli, Ilaria; Rossi, Antonella; Maddalena, Melinda; Weber, Elisabetta; Aloisi, Anna Maria

    2009-10-01

    Rat C6 glioma cells are commonly used to investigate the functions of glial cells. To evaluate the presence of testosterone and its metabolism in rat C6 glioma cells, we cultured them in media with or without the addition of testosterone propionate and anastrozole, a blocker of aromatase, the enzyme needed to transform testosterone into estradiol. The same procedure was repeated with morphine (10 and 100 microM), known to decrease testosterone levels in the brain (in rats) and plasma (in rats and humans). Confluent cells were exposed to the test media for 48 h and then collected. Cell pellets were used to determine testosterone by radioimmunoassay. The C6 cells contained detectable levels of testosterone and the levels increased with the addition of testosterone to the medium. Aromatase blockage by anastrozole increased cellular levels of testosterone regardless of the addition of exogenous testosterone. Both concentrations of morphine dose-dependently decreased testosterone levels in the C6 cells; this effect was also present with the contemporary administration of anastrozole. Our findings show that testosterone is present in rat C6 glioma cells and can be metabolized by aromatase. Moreover, the presence of morphine in the culture medium strongly decreased testosterone, demonstrating that the glia would be a target of the morphine-induced hypogonadal effect.

  19. Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation.

    PubMed

    Shi, Qing; Bao, Shideng; Maxwell, Jill A; Reese, Elizabeth D; Friedman, Henry S; Bigner, Darell D; Wang, Xiao-Fan; Rich, Jeremy N

    2004-12-10

    Secreted protein acidic, rich in cysteine (SPARC), is an extracellular matrix protein expressed in many advanced cancers, including malignant gliomas. We and others have previously shown that human glioma cell lines engineered to overexpress SPARC adopt an invasive phenotype. We now show that SPARC expression increases cell survival under stress initiated by serum withdrawal through a decrease in apoptosis. Phosphatidylinositol 3-OH kinase/AKT is a potent pro-survival pathway that contributes to the malignancy of gliomas. Cells expressing SPARC display increased AKT activation with decreased caspase 3/7 activity. Exogenous SPARC rapidly induces AKT phosphorylation, an effect that is blocked by a neutralizing SPARC antibody. Furthermore, AKT activation is essential for the anti-apoptotic effects of SPARC as the decreased apoptosis and caspase activity associated with SPARC expression can be blocked with dominant-negative AKT or a specific AKT inhibitor. As tumor cells face stressful microenvironments particularly during the process of invasion, these results suggest that SPARC functions, in part, to promote tumor progression by enabling tumor cells to survive under stressful conditions.

  20. Awake craniotomy for supratentorial gliomas: why, when and how?

    PubMed

    Ibrahim, George M; Bernstein, Mark

    2012-09-01

    Awake craniotomy has become an increasingly utilized procedure in the treatment of supratentorial intra-axial tumors. The popularity of this procedure is partially attributable to improvements in intraoperative technology and anesthetic techniques. The application of awake craniotomy to the field of neuro-oncology has decreased iatrogenic postoperative neurological deficits, allowed for safe maximal tumor resection and improved healthcare resource stewardship by permitting early patient discharge. In this article, we review recent evidence for the utility of awake craniotomy in the resection of gliomas and describe the senior author's experience in performing this procedure. Furthermore, we explore innovative applications of awake craniotomy to outpatient tumor resections and the conduct of neurosurgery in resource-poor settings. We conclude that awake craniotomy is an effective and versatile neurosurgical procedure with expanding applications in neuro-oncology.

  1. Malignant gliomas: old and new systemic treatment approaches

    PubMed Central

    Mesti, Tanja

    2016-01-01

    Abstract Background Malignant (high-grade) gliomas are rapidly progressive brain tumours with very high morbidity and mortality. Until recently, treatment options for patients with malignant gliomas were limited and mainly the same for all subtypes of malignant gliomas. The treatment included surgery and radiotherapy. Chemotherapy used as an adjuvant treatment or at recurrence had a marginal role. Conclusions Nowadays, the treatment of malignant gliomas requires a multidisciplinary approach. The treatment includes surgery, radiotherapy and chemotherapy. The chosen approach is more complex and individually adjusted. By that, the effect on the survival and quality of life is notable higher. PMID:27247544

  2. Characteristics of gliomas in patients with somatic IDH mosaicism.

    PubMed

    Bonnet, Charlotte; Thomas, Laure; Psimaras, Dimitri; Bielle, Franck; Vauléon, Elodie; Loiseau, Hugues; Cartalat-Carel, Stéphanie; Meyronet, David; Dehais, Caroline; Honnorat, Jérôme; Sanson, Marc; Ducray, François

    2016-03-31

    IDH mutations are found in the majority of adult, diffuse, low-grade and anaplastic gliomas and are also frequently found in cartilaginous tumors. Ollier disease and Maffucci syndrome are two enchondromatosis syndromes characterized by the development of multiple benign cartilaginous tumors due to post-zygotic acquisition of IDH mutations. In addition to skeletal tumors, enchondromatosis patients sometimes develop gliomas. The aim of the present study was to determine whether gliomas in enchondromatosis patients might also result from somatic IDH mosaicism and whether their characteristics are similar to those of sporadic IDH-mutated gliomas. For this purpose, we analyzed the characteristics of 6 newly diagnosed and 32 previously reported cases of enchondromatosis patients who developed gliomas and compared them to those of a consecutive series of 159 patients with sporadic IDH-mutated gliomas. As was the case with sporadic IDH mutated gliomas, enchondromatosis gliomas were frequently located in the frontal lobe (54 %) and consisted of diffuse low-grade (73 %) or anaplastic gliomas (21 %). However, they were diagnosed at an earlier age (25.6 years versus 44 years, p < 0.001) and were more frequently multicentric (32 % versus 1 %, p < 0.001) and more frequently located within the brainstem than sporadic IDH mutated gliomas (21 % versus 1 %, p < 0.001). Their molecular profile was characterized by IDH mutations and loss of ATRX expression. In two patients, the same IDH mutation was demonstrated in the glioma and in a cartilaginous tumor. In contrast to sporadic IDH mutated gliomas, no enchondromatosis glioma harbored a 1p/19q co-deletion (0/6 versus 59/123, p = 0.03). The characteristics of gliomas in patients with enchondromatosis suggest that these tumors, as cartilaginous tumors, result from somatic IDH mosaicism and that the timing of IDH mutation acquisition might affect the location and molecular characteristics of gliomas. Early

  3. In Vivo Measurement of Glioma-Induced Vascular Permeability

    PubMed Central

    Lee, Jisook; Baird, Andrew; Eliceiri, Brian P.

    2014-01-01

    The normal blood–brain barrier (BBB) consists of tight interendothelial cell junctions and adjacent astrocyte end feet separated by a basal lamina surrounding the endothelium. The interactions between the different cell types of BBB are disrupted in distinct patterns in the microenvironment of glioma. Malignant gliomas infiltrate the surrounding normal brain parenchyma; a process associated with vascular permeability (VP) and breakdown of the BBB. Herein, we describe methods to quantitatively measure glioma-induced vascular permeability, utilizing an orthotopic xenograft model of glioma. PMID:21874468

  4. Sunitinib in Treating Patients With Recurrent Malignant Gliomas

    ClinicalTrials.gov

    2016-01-29

    Adult Anaplastic Astrocytoma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma

  5. Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial-mesenchymal transition in vitro and predicts poor prognosis in glioma.

    PubMed

    Lv, Qiao-Li; Chen, Shu-Hui; Zhang, Xue; Sun, Bao; Hu, Lei; Qu, Qiang; Huang, Yuan-Tao; Wang, Gui-Hua; Liu, Yan-Ling; Zhang, Ying-Ying; Zhou, Hong-Hao

    2017-03-01

    Increasing evidence indicates that long noncoding RNAs play important roles in development and progression of various cancers. Zinc finger antisense 1 is a novel long noncoding RNA whose clinical significance, biological function, and underlying mechanism are still undetermined in glioma. In this study, we reported that zinc finger antisense 1 expression was markedly upregulated in glioma and tightly correlated with clinical stage. Moreover, patients with high zinc finger antisense 1 expression had shorter survival. Multivariate Cox regression analysis provided a clue that, probably, zinc finger antisense 1 level could serve as an independent prognostic factor for glioma. Functionally, zinc finger antisense 1 acted as an oncogene in glioma because its knockdown could promote apoptosis and significantly inhibit cell proliferation, migration, and invasion. Furthermore, zinc finger antisense 1 silencing could result in cell cycle arrest at the G0/G1 phase and correspondingly decrease the percentage of S phase cells in both U87 and U251 cell lines. Moreover, it was found that silenced zinc finger antisense 1 could impair migration and invasion by inhibiting the epithelial-mesenchymal transition through reducing the expression of MMP2, MMP9, N-cadherin, Integrin β1, ZEB1, Twist, and Snail as well as increasing E-cadherin level in glioma. Taken together, our data identified that zinc finger antisense 1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma.

  6. Analysis of difference of association between polymorphisms in the XRCC5, RPA3 and RTEL1 genes and glioma, astrocytoma and glioblastoma

    PubMed Central

    Jin, Tianbo; Wang, Yuan; Li, Gang; Du, Shuli; Yang, Hua; Geng, Tingting; Hou, Peng; Gong, Yongkuan

    2015-01-01

    Background: Gliomas are the most common aggressive brain tumors and have many complex pathological types. Previous reports have discovered that genetic mutations are associated with the risk of glioma. However, it is unclear whether uniform genetic mutations exist difference between glioma and its two pathological types in the Han Chinese population. Materials and methods: We evaluated 20 SNPs of 703 glioma cases (338 astrocytoma cases, 122 glioblastoma cases) and 635 controls in a Han Chinese population using χ2 test and genetic model analysis. Results: In three case-control studies, we found rs9288516 in XRCC5 gene showed a decreased risk of glioma (OR, 0.85; 95% CI, 0.73-0.99; P = 0.042) and glioblastoma (OR, 0.70; 95% CI, 0.52-0.92; P = 0.001) in the allele model. We identified rs414805 in RPA3 gene showed an increased risk of glioblastoma in allele model (OR, 1.38; 95% CI, 1.00-1.89; P = 0.047) and dominant model (OR, 1.57; 95% CI, 1.05-2.35; P = 0.027), analysis respectively. Meanwhile, rs2297440 in RTEL1 gene showed an increased risk of glioma (OR, 1.30; 95% CI, 1.10-1.54; P = 0.002) and astrocytoma (OR, 1.26; 95% CI, 1.02-1.54; P = 0.029) in the allele model. In addition, we also observed a haplotype of “GCT” in the RTEL1 gene with an increased risk of astrocytoma (P = 0.005). Conclusions: Polymorphisms in the XRCC5, RPA3 and RTEL1 genes, combinating with previous reaserches, are associated with glioma developing. However, those genes mutations may play different roles in the glioma, astrocytoma and glioblastoma, respectively. PMID:26328260

  7. Intensity-modulated radiotherapy in high-grade gliomas: Clinical and dosimetric results

    SciTech Connect

    Narayana, Ashwatha . E-mail: narayana@mskcc.org; Yamada, Josh; Berry, Sean; Shah, Priti B.S.; Hunt, Margie; Gutin, Philip H.; Leibel, Steven A.

    2006-03-01

    Purpose: To report preliminary clinical and dosimetric data from intensity-modulated radiotherapy (IMRT) for malignant gliomas. Methods and Materials: Fifty-eight consecutive high-grade gliomas were treated between January 2001 and December 2003 with dynamic multileaf collimator IMRT, planned with the inverse approach. A dose of 59.4-60 Gy at 1.8-2.0 Gy per fraction was delivered. A total of three to five noncoplanar beams were used to cover at least 95% of the target volume with the prescription isodose line. Glioblastoma accounted for 70% of the cases, and anaplastic oligodendroglioma histology (pure or mixed) was seen in 15% of the cases. Surgery consisted of biopsy only in 26% of the patients, and 80% received adjuvant chemotherapy. Results: With a median follow-up of 24 months, 85% of the patients have relapsed. The median progression-free survival time for anaplastic astrocytoma and glioblastoma histology was 5.6 and 2.5 months, respectively. The overall survival time for anaplastic glioma and glioblastoma was 36 and 9 months, respectively. Ninety-six percent of the recurrences were local. No Grade IV/V late neurologic toxicities were noted. A comparative dosimetric analysis revealed that regardless of tumor location, IMRT did not significantly improve target coverage compared with three-dimensional planning. However, IMRT resulted in a decreased maximum dose to the spinal cord, optic nerves, and eye by 16%, 7%, and 15%, respectively, owing to its improved dose conformality. The mean brainstem dose also decreased by 7%. Intensity-modulated radiotherapy delivered with a limited number of beams did not result in an increased dose to the normal brain. Conclusions: It is unlikely that IMRT will improve local control in high-grade gliomas without further dose escalation compared with conventional radiotherapy. However, it might result in decreased late toxicities associated with radiotherapy.

  8. Modeling and quantifying biochemical changes in C6 tumor gliomas by Fourier transform infrared imaging.

    PubMed

    Beljebbar, Abdelilah; Amharref, Nadia; Lévèques, Antoine; Dukic, Sylvain; Venteo, Lydie; Schneider, Laurence; Pluot, Michel; Manfait, Michel

    2008-11-15

    The purpose of the study was to investigate molecular changes associated with glioma tissues using FT-IR microspectroscopic imaging (FT-IRM). A multivariate statistical analysis allowed one to successfully discriminate between normal, tumoral, peri-tumoral, and necrotic tissue structures. Structural changes were mainly related to qualitative and quantitative changes in lipid content, proteins, and nucleic acids that can be used as spectroscopic markers for this pathology. We have developed a spectroscopic model of glioma to quantify these chemical changes. The model constructed includes individual FT-IR spectra of normal and glioma brain constituents such as lipids, DNA, and proteins (measured on delipidized tissue). Modeling of FT-IR spectra yielded fit coefficients reflecting the chemical changes associated with a tumor. Our results demonstrate the ability of FT-IRM to assess the importance and distribution of each individual constituent and its variation in normal brain structures as well as in the different pathological states of glioma. We demonstrated that (i) cholesterol and phosphatidylethanolamine contributions are highest in corpus callosum and anterior commissure but decrease gradually towards the cortex surface as well as in the tumor, (ii) phosphatidylcholine contribution is highest in the cortex and decreases in the tumor, (iii) galactocerebroside is localized only in white, but not in gray matter, and decreases in the vital tumor region while the necrosis area shows a higher concentration of this cerebroside, (iv) DNA and oleic acid increase in the tumor as compared to gray matter. This approach could, in the future, contribute to enhance diagnostic accuracy, improve the grading, prognosis, and play a vital role in therapeutic strategy and monitoring.

  9. Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma

    ClinicalTrials.gov

    2017-08-28

    Childhood Cerebral Anaplastic Astrocytoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma

  10. The upper midwest health study: a case–control study of pesticide applicators and risk of glioma

    PubMed Central

    2012-01-01

    Background An excess incidence of brain cancer in farmers has been noted in several studies. The National Institute for Occupational Safety and Health developed the Upper Midwest Health Study (UMHS) as a case–control study of intracranial gliomas and pesticide uses among rural residents. Previous studies of UMHS participants, using “ever-never” exposure to farm pesticides and analyzing men and women separately, found no positive association of farm pesticide exposure and glioma risks. The primary objective was to determine if quantitatively estimated exposure of pesticide applicators was associated with an increased risk of glioma in male and female participants. Methods The study included 798 histologically confirmed primary intracranial glioma cases (45 % with proxy respondents) and 1,175 population-based controls, all adult (age 18–80) non-metropolitan residents of Iowa, Michigan, Minnesota, and Wisconsin. The analyses used quantitatively estimated exposure from questionnaire responses evaluated by an experienced industrial hygienist with 25 years of work on farm pesticide analyses. Odds ratios (ORs) and 95 % confidence intervals (CIs) using unconditional logistic regression modeling were calculated adjusting for frequency-matching variables (10-year age group and sex), and for age and education (a surrogate for socioeconomic status). Analyses were separately conducted with or without proxy respondents. Results No significant positive associations with glioma were observed with cumulative years or estimated lifetime cumulative exposure of farm pesticide use. There was, a significant inverse association for phenoxy pesticide used on the farm (OR 0.96 per 10 g-years of cumulative exposure, CI 0.93-0.99). No significant findings were observed when proxy respondents were excluded. Non-farm occupational applicators of any pesticide had decreased glioma risk: OR 0.72, CI 0.52-0.99. Similarly, house and garden pesticide applicators had a decreased risk

  11. Trends in Malignant Glioma Monoclonal Antibody Therapy

    PubMed Central

    Chekhonin, Ivan; Gurina, Olga

    2015-01-01

    Although new passive and active immunotherapy methods are emerging, unconjugated monoclonal antibodies remain the only kind of biological preparations approved for high-grade glioma therapy in clinical practice. In this review, we combine clinical and experimental data discussion. As antiangiogenic therapy is the standard of care for recurrent glioblastoma multiforme (GBM), we analyze major clinical trials and possible therapeutic combinations of bevacizumab, the most common monoclonal antibody to vascular endothelial growth factor (VEGF). Another humanized antibody to gain recognition in GBM is epidermal growth factor (EGFR) antagonist nimotuzumab. Other antigens (VEGF receptor, platelet-derived growth factor receptor, hepatocyte growth factor and c-Met system) showed significance in gliomas and were used to create monoclonal antibodies applied in different malignant tumors. We assess the role of genetic markers (isocitrate dehydrogenase, O6-methylguanine-DNA methyltransnsferase) in GBM treatment outcome prediction. Besides antibodies studied in clinical trials, we focus on perspective targets and briefly list other means of passive immunotherapy.

  12. Activity of lysosomal exoglycosidases in human gliomas.

    PubMed

    Wielgat, P; Walczuk, U; Szajda, S; Bień, M; Zimnoch, L; Mariak, Z; Zwierz, K

    2006-12-01

    There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.

  13. Anaplastic glioma: current treatment and management.

    PubMed

    Le Rhun, Emilie; Taillibert, Sophie; Chamberlain, Marc C

    2015-06-01

    Anaplastic glioma (AG) is divided into three morphology-based groups (anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma) as well as three molecular groups (glioma-CpG island methylation phenotype [G-CIMP] negative, G-CIMP positive non-1p19q codeleted tumors and G-CIMP positive codeleted tumors). The RTOG 9402 and EORTC 26951 trials established radiotherapy plus (procarbazine, lomustine, vincristine) chemotherapy as the standard of care in 1p/19q codeleted AG. Uni- or non-codeleted AG are currently best treated with radiotherapy only or alkylator-based chemotherapy only as determined by the NOA-04 trial. Maturation of NOA-04 and results of the currently accruing studies, CODEL (for codeleted AG) and CATNON (for uni or non-codeleted AG), will likely refine current up-front treatment recommendations for AG.

  14. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma.

    PubMed

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.

  15. Overview of current immunotherapeutic strategies for glioma

    PubMed Central

    Calinescu, Anda-Alexandra; Kamran, Neha; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro Ricardo; Castro, Maria Graciela

    2015-01-01

    In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints. PMID:26598957

  16. Raman spectroscopy of gliomas: an exploratory study

    NASA Astrophysics Data System (ADS)

    Shenoy, Mahesh; Hole, Arti R.; Shridhar, E.; Moiyadi, Aliasgar V.; Krishna, C. Murali

    2014-03-01

    Gliomas are extremely infiltrative type of brain cancers, the borders of which are difficult to locate. Gliomas largely consist of tumors of astrocytic or oligodendroglial lineage. Usually stereotactic surgery is performed to obtain tumor tissue sample. Complete excision of these tumors with preservation of uninvolved normal areas is important during brain tumor surgeries. The present study was undertaken to explore feasibility of classifying abnormal and normal glioma tissues with Raman spectroscopy (RS). RS is a nondestructive vibrational spectroscopic technique, which provides information about molecular composition, molecular structures and molecular interactions in tissue. Postoperated 33 (20-abnormal and 13-normal) gliomas tissue samples of different grades were collected under clinical supervision. Five micron section from tissue sample was used for confirmatory histopathological diagnosis while the remaining tissue was placed on CaF2 window and spectra were acquired using a fiberoptic-probe-coupled HE-785 Raman-spectrometer. Spectral acquisition parameters were laser power-80mW, integration-20s and averaged over 3 accumulations. Spectra were pre-processed and subjected to unsupervised Principal-Component Analysis (PCA) to identify trends of classification. Supervised PC-LDA (Principal-Component-Linear-Discriminant Analysis) was used to develop standard-models using spectra of 12 normal and abnormal specimens each. Leave-one-out crossvalidation yielded classification-efficiency of 90% and 80% for normal and abnormal conditions, respectively. Evaluation with an independent-test data-set comprising of 135 spectra of 9 samples provided sensitivity of 100% and specificity of 70%. Findings of this preliminary study may pave way for objective tumor margin assessment during brain surgery.

  17. Serum proteomics of glioma: methods and applications.

    PubMed

    Somasundaram, Kumaravel; Nijaguna, Mamatha B; Kumar, Durairaj Mohan

    2009-10-01

    The prognosis of patients with glioblastoma, the most malignant adult glial brain tumor, remains poor in spite of advances in treatment procedures, including surgical resection, irradiation and chemotherapy. Genetic heterogeneity of glioblastoma warrants extensive studies in order to gain a thorough understanding of the biology of this tumor. While there have been several studies of global transcript profiling of glioma with the identification of gene signatures for diagnosis and disease management, translation into clinics is yet to happen. Serum biomarkers have the potential to revolutionize the process of cancer diagnosis, grading, prognostication and treatment response monitoring. Besides having the advantage that serum can be obtained through a less invasive procedure, it contains molecules at an extraordinary dynamic range of ten orders of magnitude in terms of their concentrations. While the conventional methods, such as 2DE, have been in use for many years, the ability to identify the proteins through mass spectrometry techniques such as MALDI-TOF led to an explosion of interest in proteomics. Relatively new high-throughput proteomics methods such as SELDI-TOF and protein microarrays are expected to hasten the process of serum biomarker discovery. This review will highlight the recent advances in the proteomics platform in discovering serum biomarkers and the current status of glioma serum markers. We aim to provide the principles and potential of the latest proteomic approaches and their applications in the biomarker discovery process. Besides providing a comprehensive list of available serum biomarkers of glioma, we will also propose how these markers will revolutionize the clinical management of glioma patients.

  18. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation

    PubMed Central

    Oktay, Yavuz; Ülgen, Ege; Can, Özge; Akyerli, Cemaliye B.; Yüksel, Şirin; Erdemgil, Yiğit; Durası, İ. Melis; Henegariu, Octavian Ioan; Nanni, E. Paolo; Selevsek, Nathalie; Grossmann, Jonas; Erson-Omay, E. Zeynep; Bai, Hanwen; Gupta, Manu; Lee, William; Turcan, Şevin; Özpınar, Aysel; Huse, Jason T.; Sav, M. Aydın; Flanagan, Adrienne; Günel, Murat; Sezerman, O. Uğur; Yakıcıer, M. Cengiz; Pamir, M. Necmettin; Özduman, Koray

    2016-01-01

    The single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17–16.52; 95% CI) for IDH-mutated gliomas and 12.85 (5.94–27.83; 95% CI) for IDH-mutated, 1p/19q co-deleted gliomas. Decreasing strength with increasing anaplasia implied a modulatory effect. No somatic mutations were noted at this locus in 114 blood-tumor pairs, nor was there a copy number difference between risk-allele and only-ancestral allele carriers. CCDC26 RNA-expression was rare and not different between the two groups. There were only minor subtype-specific differences in common glioma driver genes. RNA sequencing and LC-MS/MS comparisons pointed to significantly altered MYC-signaling. Baseline enhancer activity of the conserved region specifically on the MYC promoter and its further positive modulation by the SNP risk-allele was shown in vitro. Our findings implicate MYC deregulation as the underlying cause of the observed association. PMID:27282637

  19. Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion.

    PubMed

    McCoy, E S; Haas, B R; Sontheimer, H

    2010-07-28

    Glial-derived tumors, gliomas, are highly invasive cancers that invade normal brain through the extracellular space. To navigate the tortuous extracellular spaces, cells undergo dynamic changes in cell volume, which entails water flux across the membrane through aquaporins (AQPs). Two members of this family, AQP1 and AQP4 are highly expressed in primary brain tumor biopsies and both have a consensus phosphorylation site for protein kinase C (PKC), which is a known regulator of glioma cell invasion. AQP4 colocalizes with PKC to the leading edge of invading processes and clustered with chloride channel (ClC2) and K(+)-Cl(-) cotransporter 1 (KCC1), believed to provide the pathways for Cl(-) and K(+) secretion to accomplish volume changes. Using D54MG glioma cells stably transfected with either AQP1 or AQP4, we show that PKC activity regulates water permeability through phosphorylation of AQP4. Activation of PKC with either phorbol 12-myristate 13-acetate or thrombin enhanced AQP4 phosphorylation, reduced water permeability and significantly decreased cell invasion. Conversely, inhibition of PKC activity with chelerythrine reduced AQP4 phosphorylation, enhanced water permeability and significantly enhanced tumor invasion. PKC regulation of AQP4 was lost after mutational inactivation of the consensus PKC phosphorylation site S180A. Interestingly, AQP1 expressing glioma cells, by contrast, were completely unaffected by changes in PKC activity. To demonstrate a role for AQPs in glioma invasion in vivo, cells selectively expressing AQP1, AQP4 or the mutated S180A-AQP4 were implanted intracranially into SCID mice. AQP4 expressing glioma cells showed significantly reduced invasion compared to AQP1 and S180 expressing tumors as determined by quantitative stereology, consistent with a differential role for AQP1 and AQP4 in this process. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Autophagy and Akt promote survival in glioma.

    PubMed

    Fan, Qi-Wen; Weiss, William A

    2011-05-01

    Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.

  1. Statistical considerations on prognostic models for glioma

    PubMed Central

    Molinaro, Annette M.; Wrensch, Margaret R.; Jenkins, Robert B.; Eckel-Passow, Jeanette E.

    2016-01-01

    Given the lack of beneficial treatments in glioma, there is a need for prognostic models for therapeutic decision making and life planning. Recently several studies defining subtypes of glioma have been published. Here, we review the statistical considerations of how to build and validate prognostic models, explain the models presented in the current glioma literature, and discuss advantages and disadvantages of each model. The 3 statistical considerations to establishing clinically useful prognostic models are: study design, model building, and validation. Careful study design helps to ensure that the model is unbiased and generalizable to the population of interest. During model building, a discovery cohort of patients can be used to choose variables, construct models, and estimate prediction performance via internal validation. Via external validation, an independent dataset can assess how well the model performs. It is imperative that published models properly detail the study design and methods for both model building and validation. This provides readers the information necessary to assess the bias in a study, compare other published models, and determine the model's clinical usefulness. As editors, reviewers, and readers of the relevant literature, we should be cognizant of the needed statistical considerations and insist on their use. PMID:26657835

  2. Steroid requirements during radiotherapy for malignant gliomas.

    PubMed

    Marantidou, Athina; Levy, Christine; Duquesne, Alyette; Ursu, Renata; Bailon, Olivier; Coman, Irene; Belin, Catherine; Carpentier, Antoine F

    2010-10-01

    Radiotherapy (RT) is the standard treatment for high-grade gliomas. However, toxicity may develop during RT, such as brain edema or worsening of neurological symptoms. Surprisingly, no dedicated study had focused on steroid requirements during RT in adult patients with malignant gliomas. We evaluated prospectively all patients with malignant gliomas treated by RT in a single center from July 2006 to May 2009. Age, sex, initial Karnofsky performance status (KPS), tumor localization and histology, type of surgical resection, clinical target volume, total dose and duration of RT, concomitant treatment with temozolomide, and steroid dosage during RT and at 1 and 3 months after RT were recorded in all patients. Most of the 80 patients (70%) were already taking steroids before RT. Half of them (55%) required initiation or further steroids increase during RT. The median time to steroid increase was 8 days. Only 13% of patients remained free of steroids during RT, and the mean maximal dosage of prednisone was 55 ± 48 mg. At 3 months after RT, 29% of patients were free of steroids, and the mean prednisone dosage was 32 ± 50 mg. Unresected tumors and initial KPS ≤80% were the only variables associated with higher steroid requirements on multivariate analysis. In our series, almost all patients required steroids during RT. Poor initial KPS and biopsy were associated with higher steroid requirements.

  3. Perspectives in Intraoperative Diagnostics of Human Gliomas

    PubMed Central

    Tyurikova, O.; Dembitskaya, Y.; Yashin, K.; Mishchenko, M.; Vedunova, M.; Medyanik, I.; Kazantsev, V.

    2015-01-01

    Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cells are critical for the development of treatment methods. Modern medical approaches offer complex procedures, including the microsurgical tumor removal, radiotherapy, and chemotherapy, supplemented with photodynamic therapy and immunotherapy. The most radical of them is surgical resection, which allows removing the largest part of the tumor, reduces the intracranial hypertension, and minimizes the degree of neurological deficit. However, complete removal of the tumor remains impossible. The main limitations are insufficient visualization of glioma boundaries, due to its infiltrative growth, and the necessity to preserve healthy tissue. This review is devoted to the description of advantages and disadvantages of modern intraoperative diagnostics of human gliomas and highlights potential perspectives for development of their treatment. PMID:26543495

  4. Low-grade gliomas: introduction and overview.

    PubMed

    Piepmeier, J M; Christopher, S

    1997-08-01

    This issue of the Journal of Neuro-Oncology is devoted to recent investigations of low-grade gliomas. The purpose of this issue is not to debate the relative merits and liabilities of different management strategies for low-grade gliomas, but to present new data concerning novel and innovative approaches to evaluating these lesions. The common theme of many of these reports represents a departure from grading systems that primarily depend on a morphology-based analysis from light microscopy to classify these tumors. The purpose of this review is to present the reasoning behind the selection of authors for this issue of the Journal of Neuro-Oncology and to provide a format for presentation of new ideas concerning these interesting tumors. It is clear that standard classification systems that address only the morphological characteristics of tumor cells can not adequately represent the wide variation in biological activity that is found with these lesions. It is hoped that these articles will stimulate further interest and research into low-grade gliomas that will one day lead to more effective therapy.

  5. A review of management strategies of malignant gliomas in the elderly population

    PubMed Central

    Kumthekar, Priya U; Macrie, Bryan D; Singh, Simran K; Kaur, Gurvinder; Chandler, James P; Sejpal, Samir V

    2014-01-01

    Glioblastoma Multiforme (GBM) is the most frequent primary malignant brain tumor in adults. It is an aggressive primary brain neoplasm, associated with a poor prognosis and median survival of less than 1 year. Approximately 50% of patients diagnosed with malignant gliomas in the United States are over the age of 65. Advancing age and poor performance status are two variables that have found to negatively affect prognosis. When compared to younger patients, not only is the treatment of elderly patients associated with decreased efficacy but also greater toxicity. As a result, elderly patients often receive less aggressive treatment and are excluded from clinical trials. There are many challenges in the treatment of elderly patients with GBM including increased surgical morbidity and mortality as well as increased toxicity to radiation and chemotherapy. As such, the optimal therapy remains unclear and controversial for the elderly malignant glioma population. PMID:25232486

  6. Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye

    PubMed Central

    Sakuma, Morito; Kita, Sayaka; Higuchi, Hideo

    2016-01-01

    Abstract The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser, and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility, we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed, whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells, as monitored by a pH indicator, was decreased and then gradually increased by the illumination of IR700, while the pH in BT142 cells increased monotonically. In these experiments, the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH. PMID:27877897

  7. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Wuerth, Lena; Brons, Stephan; Mohr, Angela; Lindel, Katja; Weber, Klaus; Haberer, Thomas; Debus, Juergen; Combs, Stephanie E.

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  8. Corticosterone Inhibits the Proliferation of C6 Glioma Cells via the Translocation of Unphosphorylated Glucocorticoid Receptor.

    PubMed

    Nakatani, Yoshihiko; Amano, Taku; Takeda, Hiroshi

    2016-01-01

    Astroglial cells have been considered to have passive brain function by helping to maintain neurons. However, recent studies have revealed that the dysfunction of such passive functions may be associated with various neuropathological diseases, such as schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis and major depression. Corticosterone (CORT), which is often referred to as the stress hormone, is a well-known regulator of peripheral immune responses and also shows anti-inflammatory properties in the brain. However, it is still obscure how CORT affects astroglial cell function. In this study, we investigated the effects of CORT on the proliferation and survival of astroglial cells using C6 glioma cells. Under treatment with CORT for 24h, the proliferation of C6 glioma cells decreased in a dose-dependent manner. Moreover, this inhibition was diminised by treatment with mifepristone, a glucocorticoid receptor (GR) antagonist, but not by spironolactone, a mineralocorticoid receptor (MR) antagonist, and was independent of GR phosphorylation and other GR-related intracellular signaling cascades. Furthermore, it was observed that the translocation of GR from the cytosol to the nucleus was promoted by the treatment with CORT. These results indicate that CORT decreases the proliferation of C6 glioma cells by modifying the transcription of a particular gene related to cell proliferation independent of GR phosphorylation.

  9. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition.

    PubMed

    Do, Minchenko; Oo, Riabovol; Oo, Ratushna; Oh, Minchenko

    2017-01-01

    The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes

  10. Interference of ursolic acid treatment with glioma growth: An in vitro and in vivo study.

    PubMed

    Bergamin, Letícia Scussel; Figueiró, Fabrício; Dietrich, Fabrícia; Manica, Fabiana de Mattos; Filippi-Chiela, Eduardo C; Mendes, Franciane Brackman; Jandrey, Elisa Helena Farias; Lopes, Daniela Vasconcelos; Oliveira, Francine H; Nascimento, Isis C; Ulrich, Henning; Battastini, Ana Maria Oliveira

    2017-09-15

    Glioblastoma multiforme is the most devastating tumor in the brain. Ursolic acid (UA) is found in a variety of plants, and exhibits several pharmacological activities. In this study, we investigated the effects of UA in vitro, clarifying the mechanisms that mediate its toxicity and the long-lasting actions of UA in C6 glioma cells. We also evaluated the antitumor activity of UA in an in vivo orthotopic glioma model. Cell numbers were assessed using the Trypan blue exclusion test, and the cell cycle was characterized by flow cytometry using propidium iodide staining. Apoptosis was analyzed using an Annexin V kit and by examining caspase-3. Akt immunocontent was verified by Western blot and the long-lasting actions of UA were measured by cumulative population doubling (CPD). In vivo experiments were performed in rats to measure the effects on tumor size, malignant features and toxicological parameters. In vitro results showed that UA decreased glioma cell numbers, increased the sub-G1 fraction and induced apoptotic death, accompanied by increased active caspase-3 protein levels. Akt phosphorylation/activation in cells was also diminished by UA. With regard to CPD, cell proliferation was almost completely restored upon single UA treatments, but when the UA was added again, the majority of cells died, demonstrating the importance of re-treatment cycles with chemotherapeutic agents for abolishing tumor growth. In vivo, ursolic acid slightly reduced glioma tumor size but did not decrease malignant features. Ursolic acid may be a potential candidate as an adjuvant for glioblastoma therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain.

    PubMed

    Oliva, Claudia R; Nozell, Susan E; Diers, Anne; McClugage, Samuel G; Sarkaria, Jann N; Markert, James M; Darley-Usmar, Victor M; Bailey, Shannon M; Gillespie, G Yancey; Landar, Aimee; Griguer, Corinne E

    2010-12-17

    Temozolomide (TMZ) is an oral alkylating agent used for the treatment of high-grade gliomas. Acquired chemoresistance is a severe limitation to this therapy with more than 90% of recurrent gliomas showing no response to a second cycle of chemotherapy. Efforts to better understand the underlying mechanisms of acquired chemoresistance to TMZ and potential strategies to overcome chemoresistance are, therefore, critically needed. TMZ methylates nuclear DNA and induces cell death; however, the impact on mitochondria DNA (mtDNA) and mitochondrial bioenergetics is not known. Herein, we tested the hypothesis that TMZ-mediated alterations in mtDNA and respiratory function contribute to TMZ-dependent acquired chemoresistance. Using an in vitro model of TMZ-mediated acquired chemoresistance, we report 1) a decrease in mtDNA copy number and the presence of large heteroplasmic mtDNA deletions in TMZ-resistant glioma cells, 2) remodeling of the entire electron transport chain with significant decreases of complexes I and V and increases of complexes II/III and IV, and 3) pharmacologic and genetic manipulation of cytochrome c oxidase, which restores sensitivity to TMZ-dependent apoptosis in resistant glioma cells. Importantly, human primary and recurrent pairs of glioblastoma multiforme (GBM) biopsies as well as primary and TMZ-resistant GBM xenograft lines exhibit similar remodeling of the ETC. Overall these results suggest that TMZ-dependent acquired chemoresistance may be due to a mitochondrial adaptive response to TMZ genotoxic stress with a major contribution from cytochrome c oxidase. Thus, abrogation of this adaptive response may reverse chemoresistance and restore sensitivity to TMZ, providing a strategy for improved therapeutic outcomes in GBM patients.

  12. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells.

    PubMed

    Antal, Otilia; Péter, Mária; Hackler, László; Mán, Imola; Szebeni, Gábor; Ayaydin, Ferhan; Hideghéty, Katalin; Vigh, László; Kitajka, Klára; Balogh, Gábor; Puskás, Laszló G

    2015-09-01

    Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.

  13. Differential Effects of Cold Atmospheric Plasma in the Treatment of Malignant Glioma

    PubMed Central

    Siu, Alan; Volotskova, Olga; Cheng, Xiaoqian; Khalsa, Siri S.; Bian, Ka; Murad, Ferid; Keidar, Michael; Sherman, Jonathan H.

    2015-01-01

    Objective Cold atmospheric plasma (CAP) has recently been shown to selectively target cancer cells with minimal effects on normal cells. We systematically assessed the effects of CAP in the treatment of glioblastoma. Methods Three glioma cell lines, normal astrocytes, and endothelial cell lines were treated with CAP. The effects of CAP were then characterized for viability, cytotoxicity/apoptosis, and cell cycle effects. Statistical significance was determined with student's t-test. Results CAP treatment decreases viability of glioma cells in a dose dependent manner, with the ID50 between 90-120 seconds for all glioma cell lines. Treatment with CAP for more than 120 seconds resulted in viability less than 35% at 24-hours posttreatment, with a steady decline to less than 20% at 72-hours. In contrast, the effect of CAP on the viability of NHA and HUVEC was minimal, and importantly not significant at 90 to 120 seconds, with up to 85% of the cells remained viable at 72-hours post-treatment. CAP treatment produces both cytotoxic and apoptotic effects with some variability between cell lines. CAP treatment resulted in a G2/M-phase cell cycle pause in all three cell lines. Conclusions This preliminary study determined a multi-focal effect of CAP on glioma cells in vitro, which was not observed in the non-tumor cell lines. The decreased viability depended on the treatment duration and cell line, but overall was explained by the induction of cytotoxicity, apoptosis, and G2/M pause. Future studies will aim at further characterization with more complex pre-clinical models. PMID:26083405

  14. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Diffuse intrinsic pontine glioma (DIPG) is a fast-growing childhood brain stem glioma that is difficult to treat and has a poor prognosis. A focal glioma grows more slowly, is easier to treat, and has a better prognosis. Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  15. Aberrant CpG Islands Hypermethylation Profiles in Malignant Gliomas

    PubMed Central

    Kim, Kwang Ryeol; Kim, Ealmaan

    2014-01-01

    Background The authors analyzed whether the promoter hypermethylation of cancer-related genes was involved in the tumorigenesis of malignant gliomas. Methods A total of 29 patients received surgery and histologically confirmed to have malignant gliomas from January 2000 to December 2006. The promoter methylation status of several genes, which were reported to be frequently methylated in malignant gliomas, was investigated using methylation-specific polymerase chain reaction. Results All cases of malignant gliomas represented the promoter hypermethylation in at least 2 or more genes tested. Of 29 tumors, 28 (96.55%) showed concurrent hypermethylation of 3 or more genes. Ras association domain family member 1, epithelial cadherin, O-6 methyl guanine DNA methyltransferase, thrombospondin 1, p14 and adenomatous polyposis coli were frequently methylated in high grade gliomas including glioblastomas, anaplastic astrocytomas, and anaplastic oligodendrogliomas. Conclusion Aberrant hypermethylation profile was closely related with malignant gliomas suggesting that epigenetic change may play a role in the development of malignant gliomas. Two or three target genes may provide useful clues to the development of the useful prognostic as well as diagnostic assays for malignant gliomas. PMID:24926469

  16. Conditioned medium from neural stem cells inhibits glioma cell growth.

    PubMed

    Li, Z; Zhong, Q; Liu, H; Liu, P; Wu, J; Ma, D; Chen, X; Yang, X

    2016-10-31

    Malignant glioma is one of the most common brain tumors in the central nervous system. Although the significant progress has been made in recent years, the mortality is still high and 5-year survival rate is still very low. One of the leading causes to the high mortality for glioma patients is metastasis and invasion. An efficient method to control the tumor metastasis is a promising way to treat the glioma. Previous reports indicated that neural stem cells (NSCs) were served as a delivery vector to the anti-glioma therapy. Here, we used the conditioned medium from rat NSCs (NSC-CM) to culture the human glioblastoma cell lines. We found that NSC-CM could inhibit the glioma cell growth, invasion and migration in vitro and attenuate the tumor growth in vivo. Furthermore, this anti-glioma effect was mediated by the inactivation of mitogen activated protein kinase (MAPK) pathway. Above all, this study provided the direct evidence to put forward a simple and efficient method in the inhibition of glioma cells/tumor growth, potentially advancing the anti-glioma therapy.

  17. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes.

    PubMed

    Li, Aiguo; Walling, Jennifer; Ahn, Susie; Kotliarov, Yuri; Su, Qin; Quezado, Martha; Oberholtzer, J Carl; Park, John; Zenklusen, Jean C; Fine, Howard A

    2009-03-01

    Gliomas are the most common type of primary brain tumors in adults and a significant cause of cancer-related mortality. Defining glioma subtypes based on objective genetic and molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications based on gene expression data have been attempted in the past with varying success and with only some concordance between studies, possibly due to inherent bias that can be introduced through the use of analytic methodologies that make a priori selection of genes before classification. To overcome this potential source of bias, we have applied two unsupervised machine learning methods to genome-wide gene expression profiles of 159 gliomas, thereby establishing a robust glioma classification model relying only on the molecular data. The model predicts for two major groups of gliomas (oligodendroglioma-rich and glioblastoma-rich groups) separable into six hierarchically nested subtypes. We then identified six sets of classifiers that can be used to assign any given glioma to the corresponding subtype and validated these classifiers using both internal (189 additional independent samples) and two external data sets (341 patients). Application of the classification system to the external glioma data sets allowed us to identify previously unrecognized prognostic groups within previously published data and within The Cancer Genome Atlas glioblastoma samples and the different biological pathways associated with the different glioma subtypes offering a potential clue to the pathogenesis and possibly therapeutic targets for tumors within each subtype.

  18. Association between Prediagnostic Serum 25-Hydroxyvitamin D Concentration and Glioma

    PubMed Central

    Zigmont, Victoria; Garrett, Amy; Peng, Jin; Seweryn, Michal; Rempala, Grzegorz A.; Harris, Randall; Holloman, Christopher; Gundersen, Thomas E.; Ahlbom, Anders; Feychting, Maria; Johannesen, Tom Borge; Grimsrud, Tom Kristian; Schwartzbaum, Judith

    2016-01-01

    There are no previous studies of the association between prediagnostic serum vitamin D concentration and glioma. Vitamin D has immunosuppressive properties; as does glioma. It was, therefore, our hypothesis that elevated vitamin D concentration would increase glioma risk. We conducted a nested case–control study using specimens from the Janus Serum Bank cohort in Norway. Blood donors who were subsequently diagnosed with glioma (n = 592), between 1974 and 2007, were matched to donors without glioma (n = 1112) on date and age at blood collection and sex. We measured 25-hydroxyvitamin D (25(OH)D), an indicator of vitamin D availability, using liquid chromatography coupled with mass spectrometry. Seasonally adjusted odds ratios (ORs) and 95% confidence intervals (95%CIs) were estimated for each control quintile of 25(OH)D using conditional logistic regression. Among men diagnosed with high grade glioma >56, we found a negative trend (P=.04). Men diagnosed ≤ 56 showed a borderline positive trend (P=.08). High levels (>66 nmol/L) of 25(OH)D in men > 56 were inversely related to high grade glioma from ≥ 2 years before diagnosis (OR=0.59; 95%CI=0.38,0.91) to ≥ 15 years before diagnosis (OR=0.61; 95%CI=0.38,0.96). Our findings are consistent long before glioma diagnosis and are therefore unlikely to reflect preclinical disease. PMID:26317248

  19. [Occurrence and molecular pathology of high grade gliomas].

    PubMed

    Murnyák, Balázs; Csonka, Tamás; Hegyi, Katalin; Méhes, Gábor; Klekner, Almos; Hortobágyi, Tibor

    2013-09-30

    Glial tumours represent the most frequent type of primary brain cancers. Gliomas are characterized by heterogeneity that makes the diagnosis, histological classification and the choosing of correct therapy more difficult. Despite the advances in developing therapeutic strategies patients with malignant gliomas have a poor prognosis; therefore glial tumours represent one of the most important areas of cancer research. There are no detailed data on the epidemiology of gliomas in Hungary. In the first section of our publication, we analysed the histological diagnosed cases between 2007 and 2011 at the Institute of Pathology, University of Debrecen Medical and Health Science Centre. We analyzed the incidence of 214 high-grade gliomas by tumor grades, gender, age, and the anatomical localization. The majority of cases were glioblastoma (182 cases), and the remaining 32 cases were anaplastic gliomas. The mean age of patients was 57 years (+/- 16.4), and the male:female ratio was 1.1:1. The most frequent area of tumors was the frontal lobe followed by the temporal, parietal and occipital lobe. We include new findings published recently about glioma pathogenesis, molecular pathways, mutant genes and chromosomal regions. We explain briefly the role of selected important genes in glioma genesis and give an update on knowledge provided by modern molecular methods, which could beneficially influence future therapy and the diagnosis of gliomas.

  20. A role for ion channels in perivascular glioma invasion

    PubMed Central

    Thompson, Emily G.

    2017-01-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuro-peptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials. PMID:27424110

  1. Association Between Prediagnostic Serum 25-Hydroxyvitamin D Concentration and Glioma.

    PubMed

    Zigmont, Victoria; Garrett, Amy; Peng, Jin; Seweryn, Michal; Rempala, Grzegorz A; Harris, Randall; Holloman, Christopher; Gundersen, Thomas E; Ahlbom, Anders; Feychting, Maria; Johannesen, Tom Borge; Grimsrud, Tom Kristian; Schwartzbaum, Judith

    2015-01-01

    There are no previous studies of the association between prediagnostic serum vitamin D concentration and glioma. Vitamin D has immunosuppressive properties; as does glioma. It was, therefore, our hypothesis that elevated vitamin D concentration would increase glioma risk. We conducted a nested case-control study using specimens from the Janus Serum Bank cohort in Norway. Blood donors who were subsequently diagnosed with glioma (n = 592), between 1974 and 2007, were matched to donors without glioma (n = 1112) on date and age at blood collection and sex. We measured 25-hydroxyvitamin D [25(OH)D], an indicator of vitamin D availability, using liquid chromatography coupled with mass spectrometry. Seasonally adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated for each control quintile of 25(OH)D using conditional logistic regression. Among men diagnosed with high grade glioma >56, we found a negative trend (P = .04). Men diagnosed ≤ 56 showed a borderline positive trend (P = .08). High levels (>66 nmol/L) of 25(OH)D in men >56 were inversely related to high grade glioma from ≥2 yr before diagnosis (OR = 0.59; 95% CI = 0.38, 0.91) to ≥15 yr before diagnosis (OR = 0.61; 95% CI = 0.38,0.96). Our findings are consistent long before glioma diagnosis and are therefore unlikely to reflect preclinical disease.

  2. Cystoid angiocentric glioma: A case report and literature review

    PubMed Central

    Cheng, Sainan; Lü, Yubo; Xu, Shangchen; Liu, Qiang; Lee, Pearlene

    2015-01-01

    Angiocentric glioma is a rare subtype of neuroepithelial tumor that is associated with a history of epilepsy. We report a case of cystoid angiocentric glioma associated with an area of calcification. This 25 year old male patient presented with tonic clonic spasm. He underwent craniotomy with complete resection of the lesion. Pathologic specimen showed monomorphous bipolar cells with angiocentric growth pattern. PMID:26629293

  3. Bufalin induces the interplay between apoptosis and autophagy in glioma cells through endoplasmic reticulum stress.

    PubMed

    Shen, Shuying; Zhang, Yi; Wang, Zhen; Liu, Rui; Gong, Xingguo

    2014-01-01

    Malignant gliomas are common primary tumors of the central nervous system. The prognosis of patients with malignant glioma is poor in spite of current intensive therapy and thus novel therapeutic modalities are necessary. Bufalin is the major component of Chan-Su (a traditional Chinese medicine) extracts from the venom of Bufo gargarizan. In this study, we evaluated the growth inhibitory effect of bufalin on glioma cells and explored the underlying molecular mechanisms. Our results showed that bufalin inhibited the growth of glioma cells significantly. Mechanistic studies demonstrated that bufalin induced apoptosis through mitochondrial apoptotic pathway. In addition, bufalin was also found to induce ER stress-mediated apoptosis, which was supported by the up- regulation of ER stress markers, CHOP and GRP78, and augmented phosphorylation of PERK and eIF2α as well as cleavage of caspase-4. Downregulation of CHOP using siCHOP RNA attenuated bufalin-induced apoptosis, further confirming the role of ER stress response in mediating bufalin-induced apoptosis. Evidence of bufalin-induced autophagy included formation of the acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. Further experiments showed that the mechanism of bufalin-induced autophagy associated with ATP deleption involved an increase in the active form of AMPK, decreased phosphorylation levels of mTOR and its downstream targets 4EBP1 and p70S6K1. Furthermore, TUDC and silencing of eIF2α or CHOP partially blocked bufalin-induced accumulation of LC3-II, which indicated that ER stress preceded bufalin-induced autophagy and PERK/eIF2α/CHOP signaling pathway played a major part in the process. Blockage of autophagy increased expression of ER stress associated proteins and the ratio of apoptosis, indicating that autophagy played a cytoprotective role in bufalin induced ER stress and cell death. In conclusion, bufalin inhibits glioma cell growth and induces interplay between

  4. Occupation and the risk of adult glioma in the United States.

    PubMed

    De Roos, A J; Stewart, P A; Linet, M S; Heineman, E F; Dosemeci, M; Wilcosky, T; Shapiro, W R; Selker, R G; Fine, H A; Black, P M; Inskip, P D

    2003-03-01

    Previous studies have observed increased glioma incidence associated with employment in the petroleum and electrical industries, and in farming. Several other occupations have also been associated with increased risk, but with inconsistent results. We evaluated associations between occupational title and glioma incidence in adults. Cases were 489 patients with glioma diagnosed from 1994 to 1998 at three United States hospitals. Controls were 799 patients admitted to the same hospitals for non-malignant conditions. An experienced industrial hygienist grouped occupations that were expected to have similar tasks and exposures. The risk of adult glioma was evaluated for those subjects who ever worked in an occupational group for at least six months, those who worked longer than five years in the occupation, and those with more than ten years latency since starting work in the occupation. Several occupational groups were associated with increased glioma incidence for having ever worked in the occupation, including butchers and meat cutters (odds ratio [OR] = 2.4; 95% confidence limits [CL]: 1.0, 6.0), computer programmers and analysts (OR = 2.0; 95% CL: 1.0, 3.8), electricians (OR = 1.8; 95% CL: 0.8, 4.1), general farmers and farmworkers (OR = 2.5; 95% CL: 1.4, 4.7), inspectors, checkers, examiners, graders, and testers (OR = 1.5; 95% CL: 0.8, 2.7), investigators, examiners, adjustors, and appraisers (OR = 1.7; 95% CL: 0.8, 3.7), physicians and physician assistants (OR = 2.4; 95% CL: 0.8, 7.2), and store managers (OR = 1.6; 95% CL: 0.8, 3.1), whereas occupation as a childcare worker was associated with decreased glioma incidence (OR = 0.4; 95% CL: 0.2, 0.9). These associations generally persisted when the subjects worked longer than five years in the occupation, and for those with more than ten years latency since starting to work in the occupation. This is our first analysis of occupation and will guide future exposure-specific assessments.

  5. A cadherin switch underlies malignancy in high-grade gliomas.

    PubMed

    Appolloni, I; Barilari, M; Caviglia, S; Gambini, E; Reisoli, E; Malatesta, P

    2015-04-09

    Although the infiltrative behavior of malignant gliomas is one of their most critical aspects, the mechanisms underlying it have not yet been elucidated. To migrate in the brain parenchyma, malignant glioma cells need to bypass the cell-cell contact inhibitory signals. Here we propose that the blinding of cell-cell contact sensing in gliomas is caused by an unusual mechanism of cadherin switch, involving the replacement of N-cadherin with R-cadherin (Rcad) at the cell-cell junctions and the activation of ERK and p27. In our model of malignant glioma, we found that Rcad expression is necessary and sufficient to release cells from contact inhibition of proliferation, and is necessary, although not sufficient, for overriding contact inhibition of migration and for tumorigenicity. Altogether, these observations suggest that Rcad is a potential target for malignant glioma therapies.

  6. Noninvasive Monitoring of Glioma Growth in the Mouse

    PubMed Central

    Alessandrini, Francesco; Ceresa, Davide; Appolloni, Irene; Marubbi, Daniela; Malatesta, Paolo

    2016-01-01

    Malignant gliomas are the most common and deadly primary malignant brain tumors. In vivo orthotopic models could doubtless represent an appropriate tool to test novel treatment for gliomas. However, methods commonly used to monitor the growth of glioma inside the mouse brain are time consuming and invasive. We tested the reliability of a minimally invasive procedure, based on a secreted luciferase (Gaussia luciferase), to frequently monitor the changes of glioma size. Gluc activity was evaluated from blood samples collected from the tail tip of mice twice a week, allowing to make a growth curve for the tumors. We validated the correlation between Gluc activity and tumor size by analysing the tumor after brain dissection. We found that this method is reliable for monitoring human glioma transplanted in immunodeficient mice, but it has strong limitation in immunocompetent models, where an immune response against the luciferase is developed during the first weeks after transplant. PMID:27698917

  7. Noninvasive Monitoring of Glioma Growth in the Mouse.

    PubMed

    Alessandrini, Francesco; Ceresa, Davide; Appolloni, Irene; Marubbi, Daniela; Malatesta, Paolo

    2016-01-01

    Malignant gliomas are the most common and deadly primary malignant brain tumors. In vivo orthotopic models could doubtless represent an appropriate tool to test novel treatment for gliomas. However, methods commonly used to monitor the growth of glioma inside the mouse brain are time consuming and invasive. We tested the reliability of a minimally invasive procedure, based on a secreted luciferase (Gaussia luciferase), to frequently monitor the changes of glioma size. Gluc activity was evaluated from blood samples collected from the tail tip of mice twice a week, allowing to make a growth curve for the tumors. We validated the correlation between Gluc activity and tumor size by analysing the tumor after brain dissection. We found that this method is reliable for monitoring human glioma transplanted in immunodeficient mice, but it has strong limitation in immunocompetent models, where an immune response against the luciferase is developed during the first weeks after transplant.

  8. Mutations in chromatin machinery and pediatric high-grade glioma

    PubMed Central

    Lulla, Rishi R.; Saratsis, Amanda Muhs; Hashizume, Rintaro

    2016-01-01

    Pediatric central nervous system tumors are the most common solid tumor of childhood. Of these, approximately one-third are gliomas that exhibit diverse biological behaviors in the unique context of the developing nervous system. Although low-grade gliomas predominate and have favorable outcomes, up to 20% of pediatric gliomas are high-grade. These tumors are a major contributor to cancer-related morbidity and mortality in infants, children, and adolescents, with long-term survival rates of only 10 to 15%. The recent discovery of somatic oncogenic mutations affecting chromatin regulation in pediatric high-grade glioma has markedly improved our understanding of disease pathogenesis, and these findings have stimulated the development of novel therapeutic approaches targeting epigenetic regulators for disease treatment. We review the current perspective on pediatric high-grade glioma genetics and epigenetics, and discuss the emerging and experimental therapeutics targeting the unique molecular abnormalities present in these deadly childhood brain tumors. PMID:27034984

  9. Glioma coexisting with angiographically occult cerebrovascular malformation: A case report

    PubMed Central

    Chen, Junhui; Chen, Lei; Zhang, Chunlei; He, Jianqing; Li, Peipei; Zhou, Jingxu; Zhu, Jun; Wang, Yuhai

    2016-01-01

    Angiographically occult cerebrovascular malformation (AOVM) is a type of complex cerebrovascular malformation that is not visible on digital subtraction angiography (DSA). Vascular malformation coexisting with glioma is clinically rare, and glioma coexisting with AOVM is even more rare. To the best of our knowledge, the present study is the first to report glioma coexisting with AOVM in the literature. The present study reports a rare case of glioma coexisting with AOVM in a 30-year-old male patient. Computed tomography (CT) scan revealed calcification, hemorrhage and edema in the right frontal lobe. CT angiography revealed a vascular malformation in the right frontal lobe, which was not observed on DSA. Finally, glioma coexisting with AOVM was confirmed by 2.0T magnetic resonance imaging and postoperative pathological examination. The present patient had a positive outcome and no neurological dysfunctions during the 6-month follow-up subsequent to surgery. PMID:27698825

  10. Androglobin knockdown inhibits growth of glioma cell lines

    PubMed Central

    Huang, Bo; Lu, Yi-Sheng; Li, Xia; Zhu, Zhi-Chuan; Li, Kui; Liu, Ji-Wei; Zheng, Jing; Hu, Ze-Lan

    2014-01-01

    Globin family was famous for oxygen supply function of its members such as hemoglobin and myoglobin. With the progress of research, several members of this protein family have been proven to play roles in tumors including glioma. Androglobin (ADGB) is a recently identified member of globin family with very few studies about its function. In the present study, we show that ADGB plays an oncogene role in glioma. Lentiviral vector mediated ADGB knockdown inhibited the proliferation of glioma cell lines determined by MTT assay and colony formation assay. ADGB knockdown also increased the apoptosis of glioma cell line U251 assessed by flow cytometry. In addition, western blot showed that ADGB knockdown altered levels of several proteins related to proliferation, survival or apoptosis in U251 cells. These findings suggest ADGB is involved in the progression of glioma in vitro. PMID:24966926

  11. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  12. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma.

    PubMed

    Liu, Zengjin; Han, Huamin; He, Xin; Li, Shouwei; Wu, Chenxing; Yu, Chunjiang; Wang, Shengdian

    2016-03-01

    Glioma is known to induce local and systemic immunosuppression, which inhibits antitumor T cell responses. The galectin-9-Tim-3-pathway negatively regulates T cell pathways in the tumor immunosuppressive environment. The present study assessed the expression of Tim-3 and galectin-9 in glioma patients, and evaluated the association between the expression of Tim-3 and galectin-9 with clinical characteristics. The present study identified that Tim-3 expression was significantly increased in peripheral blood T cells of glioma patients compared with those of healthy controls, and was additionally increased on tumor-infiltrating T cells. The expression of Tim-3 on tumor-infiltrating T cells was associated with the World Health Organization (WHO) grade of glioma, but negatively correlated with the Karnofsky Performance Status score of the glioma patients. Immunohistochemical analysis revealed that the expression of galectin-9 in tumor tissues was associated with Tim-3 expression on tumor-infiltrating T cells and the WHO grade of glioma. These findings suggest that the galectin-9-Tim-3 pathway may be critical in the immunoevasion of glioma and may be a potent target for immunotherapy in glioma patients.

  13. Clinical significance of vasculogenic mimicry in human gliomas.

    PubMed

    Liu, Xiao-mei; Zhang, Qing-ping; Mu, Yong-gao; Zhang, Xiang-hen; Sai, Ke; Pang, Jesse Chung-Sean; Ng, Ho-Keung; Chen, Zhong-ping

    2011-11-01

    Vasculogenic mimicry (VM) is known as non-endothelial tumor cell-lined microvascular channels in aggressive tumors. We have previously found the presence of VM in high-grade gliomas. In this study, we aimed to identify VM patterns in gliomas and to explore their clinical significance. Tumor samples as well as their detailed clinical/prognostic data were collected from 101 patients. Vasculogenic mimicry in the glioma samples was determined by dual staining for endothelial marker CD34 and periodic acid-Schiff (PAS). Tumor samples were also immunohistochemically stained for Ki-67, VEGF, COX-2 and MMP-9. The association between VM and the clinical characteristics of the patients were analyzed. A Kaplan-Meier survival analysis and log-rank tests were performed to compare survival times of the patients. Vasculogenic mimicry was present in 13 out of 101 samples. The higher grade gliomas had a higher incidence of VM than that of lower grade gliomas (P = 0.006). Vasculogenic mimicry channels were associated with the expression of COX-2 and MMP-9 (P < 0.05). While there was no association between the existence of VM and the sex, age and preoperative epilepsy of the patients, or expression of Ki-67 and VEGF. However, patients with VM-positive gliomas survived a shorter period of time than those with VM negative gliomas (P = 0.027). Interestingly, in high-grade gliomas, the level of microvascular density was lower in VM positive tumors than those VM negative tumors (P = 0.039). Our results suggest that VM channels in gliomas correlate with increasing malignancy and higher aggressiveness, and may provide a complementation to the tumor's blood supply, especially in less vascularized regions, which may aid in the identification of glioma patients with a poorer prognosis.

  14. Morbidity profile following aggressive resection of parietal lobe gliomas.

    PubMed

    Sanai, Nader; Martino, Juan; Berger, Mitchel S

    2012-06-01

    The impact of parietal lobe gliomas is typically studied in the context of parietal lobe syndromes. However, critical language pathways traverse the parietal lobe and are susceptible during tumor resection. The authors of this study reviewed their experience with parietal gliomas to characterize the impact of resection and the morbidity associated with language. The study population included adults who had undergone resection of parietal gliomas of all grades. Tumor location was identified according to a proposed classification system for parietal region gliomas. Low- and high-grade tumors were volumetrically analyzed using FLAIR and T1-weighted contrast-enhanced MR imaging. One hundred nineteen patients with parietal gliomas were identified--34 with low-grade gliomas and 85 with high-grade gliomas. The median patient age was 45 years, and most patients (53) presented with seizures, whereas only 4 patients had an appreciable parietal lobe syndrome. The median preoperative tumor volume was 31.3 cm(3), the median extent of resection was 96%, and the median postoperative tumor volume was 0.9 cm(3). Surprisingly, the most common early postoperative neurological deficit was dysphasia (16 patients), not weakness (12 patients), sensory deficits (14 patients), or parietal lobe syndrome (10 patients). A proposed parietal glioma classification system, based on surgical anatomy, was predictive of language deficits. This is the largest reported experience with parietal lobe gliomas. The findings suggested that parietal language pathways are compromised at a surprisingly high rate. The proposed parietal glioma classification system is predictive of postoperative morbidity associated with language and can assist with preoperative planning. Taken together, these data emphasize the value of identifying language pathways when operating within the parietal lobe.

  15. The Glioma International Case-Control Study: A Report From the Genetic Epidemiology of Glioma International Consortium

    PubMed Central

    Amirian, E. Susan; Armstrong, Georgina N.; Zhou, Renke; Lau, Ching C.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill S.; Il'yasova, Dora; Schildkraut, Joellen; Ali-Osman, Francis; Sadetzki, Siegal; Johansen, Christoffer; Houlston, Richard S.; Jenkins, Robert B.; Lachance, Daniel; Olson, Sara H.; Bernstein, Jonine L.; Merrell, Ryan T.; Wrensch, Margaret R.; Davis, Faith G.; Lai, Rose; Shete, Sanjay; Amos, Christopher I.; Scheurer, Michael E.; Aldape, Kenneth; Alafuzoff, Irina; Brännström, Thomas; Broholm, Helle; Collins, Peter; Giannini, Caterina; Rosenblum, Marc; Tihan, Tarik; Melin, Beatrice S.; Bondy, Melissa L.

    2016-01-01

    Decades of research have established only a few etiological factors for glioma, which is a rare and highly fatal brain cancer. Common methodological challenges among glioma studies include small sample sizes, heterogeneity of tumor subtypes, and retrospective exposure assessment. Here, we briefly describe the Glioma International Case-Control (GICC) Study (recruitment, 2010–2013), a study being conducted by the Genetic Epidemiology of Glioma International Consortium that integrates data from multiple data collection sites, uses a common protocol and questionnaire, and includes biospecimen collection. To our knowledge, the GICC Study is the largest glioma study to date that includes collection of blood samples, which will allow for genetic analysis and interrogation of gene-environment interactions. PMID:26656478

  16. Migration-prone glioma cells show curcumin resistance associated with enhanced expression of miR-21 and invasion/anti-apoptosis-related proteins

    PubMed Central

    Huang, Chiung-Yin; Huang, Bor-Ren; Lin, Chingju; Lu, Dah-Yuu; Wei, Kuo-Chen

    2015-01-01

    In study, the expression patterns and functional differences between an original glioma cell population (U251 and U87) and sublines (U251-P10, U87-P10) that were selected to be migration-prone were investigated. The expressions levels of VEGF and intracellular adhesion molecule-1 (ICAM-1) were increased in the migration-prone sublines as well as in samples from patients with high-grade glioma when compared to those with low-grade glioma. In addition, cells of the migration-prone sublines showed increased expression of the oncogenic microRNA. miR-21, which was also associated with more advanced clinical pathological stages in the patient tissue specimens. Treatment of U251 cells with an miR-21 mimic dramatically enhanced the migratory activity and expression of anti-apoptotic proteins. Furthermore, treatment with curcumin decreased the miR-21 level and anti-apoptotic protein expression, and increased the expression of pro-apoptosis proteins and microtubule-associated protein light chain 3-II (LC3-II) in U251 cells. The migration-prone sublines showed decreased induction of cell death markers in response to curcumin treatment. Finally, U251-P10 cells showed resistance against curcumin treatment. These results suggest that miR-21 is associated with regulation of the migratory ability and survival in human glioma cells. These findings suggest novel mechanisms of malignancy and new potential combinatorial strategies for the management of malignant glioma. PMID:26473373

  17. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1

    PubMed Central

    Gu, Jianjun; Xu, Rong; Li, Yaxing; Zhang, Jianhe; Wang, Shousen

    2016-01-01

    To explore the effects of microRNA-218 (miR-218) on glioma cell lines and the related mechanism. U251 and U87 cells were transfected with negative control, miR-218 mimic or miR-218 inhibitor using lipofectamine 2000. The expressions of mRNA and proteins were detected with qRT-PCR and Western blotting. The cell proliferation, apoptosis, migration and invasion were studied using MTT, flow cytometry, Transwell assay and scratch-wound assay, respectively. The targeting effect of HMGB1 by miR-218 was measured with luciferase reporter assay. The results showed that miR-218 was significantly downregulated while HMGB1 was upregulated in both glioma cell lines. Transfection of miR-218 significantly reduced the cell viability and colony formation, increased cell apoptosis and arrested cell in G0/G1 phase. Transfection of miR-218 also decreased the invasion and migration of glioma cells. The expressions of HMGB1, RAGE, cyclin D1 and MMP-9 were downregulated while the expression of caspase-9 was upregulated by miR-218. Silencing HMGB1 increased the expression of RAGE, cyclin D1, MMP-9 but decreased the expression of caspase-9 in U251 and U87 cells. Co-transfection with pcHMGB1 and miR-218 significantly decreased the growth inhibition and increased the apoptosis of glioma cells while these effects were abolished in glioma cells co-transfected with HMGB1 siRNA and miR-218 inhibitor. In addition, co-transfection with pcHMGB1 and miR-218 inhibitor increased the invasiveness of U251 and U87 cells. These findings suggested that miR-218 may negatively regulate HMGB-mediated suppression of RAGE to regulate cell proliferation, apoptosis and invasion, and that intervention of miR-218-HMGB1-RAGE may be useful for developing potential clinical strategies. PMID:27725858

  18. L1 stimulation of human glioma cell motility correlates with FAK activation.

    PubMed

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A; Boulos, Magdy I; Kappes, John C; Galileo, Deni S

    2011-10-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  19. L1 stimulation of human glioma cell motility correlates with FAK activation

    PubMed Central

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A.; Boulos, Magdy I.; Kappes, John C.

    2011-01-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  20. PCR-Based Simple Subgrouping Is Validated for Classification of Gliomas and Defines Negative Prognostic Copy Number Aberrations in IDH Mutant Gliomas.

    PubMed

    Nakae, Shunsuke; Sasaki, Hikaru; Hayashi, Saeko; Hattori, Natsuki; Kumon, Masanobu; Nishiyama, Yuya; Adachi, Kazuhide; Nagahisa, Shinya; Hayashi, Takuro; Inamasu, Joji; Abe, Masato; Hasegawa, Mitsuhiro; Hirose, Yuichi

    2015-01-01

    Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, -9p, and -11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.

  1. PCR-Based Simple Subgrouping Is Validated for Classification of Gliomas and Defines Negative Prognostic Copy Number Aberrations in IDH Mutant Gliomas

    PubMed Central

    Nakae, Shunsuke; Sasaki, Hikaru; Hayashi, Saeko; Hattori, Natsuki; Kumon, Masanobu; Nishiyama, Yuya; Adachi, Kazuhide; Nagahisa, Shinya; Hayashi, Takuro; Inamasu, Joji; Abe, Masato; Hasegawa, Mitsuhiro; Hirose, Yuichi

    2015-01-01

    Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, −9p, and −11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas. PMID:26558387

  2. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    SciTech Connect

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-04-15

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  3. Visual Outcomes in Pediatric Optic Pathway Glioma After Conformal Radiation Therapy

    SciTech Connect

    Awdeh, Richard M.; Kiehna, Erin N.; Drewry, Richard D.; Kerr, Natalie C.; Haik, Barrett G.; Wu Shengjie; Xiong Xiaoping; Merchant, Thomas E.

    2012-09-01

    Purpose: To assess visual outcome prospectively after conformal radiation therapy (CRT) in children with optic pathway glioma. Methods and Materials: We used CRT to treat optic pathway glioma in 20 children (median age 9.3 years) between July 1997 and January 2002. We assessed changes in visual acuity using the logarithm of the minimal angle of resolution after CRT (54 Gy) with a median follow-up of 24 months. We included in the study children who underwent chemotherapy (8 patients) or resection (9 patients) before CRT. Results: Surgery played a major role in determining baseline (pre-CRT) visual acuity (better eye: P=.0431; worse eye: P=.0032). The visual acuity in the worse eye was diminished at baseline (borderline significant) with administration of chemotherapy before CRT (P=.0726) and progression of disease prior to receiving CRT (P=.0220). In the worse eye, improvement in visual acuity was observed in patients who did not receive chemotherapy before CRT (P=.0289). Conclusions: Children with optic pathway glioma initially treated with chemotherapy prior to receiving radiation therapy have decreased visual acuity compared with those who receive primary radiation therapy. Limited surgery before radiation therapy may have a role in preserving visual acuity.

  4. Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization.

    PubMed

    Kim, Young-Heon; Yoo, Ki-Chun; Cui, Yan-Hong; Uddin, Nizam; Lim, Eun-Jung; Kim, Min-Jung; Nam, Seon-Young; Kim, In-Gyu; Suh, Yongjoon; Lee, Su-Jae

    2014-11-01

    Given its contribution to malignant phenotypes of cancer, tumor hypoxia has been considered as a potential therapeutic problem. In the stressful microenvironment condition, hypoxia inducible factor 1 (HIF1) is well known to mediate the transcriptional adaptation of cells to hypoxia and acts as a central player for the process of hypoxia-driven malignant cancer progression. Here, we found that irradiation causes the HIF1α protein to stabilize, even in normoxia condition through activation of p38 MAPK, thereby promoting angiogenesis in tumor microenvironment and infiltrative property of glioma cells. Notably, irradiation reduced hydroxylation of HIF1α through destabilization of prolyl hydroxylases (PHD)-2. Moreover, radiation also decreased the half-life of protein von Hippel-Lindau (pVHL), which is a specific E3 ligase for HIF1α. Of note, inhibition of p38 MAPK attenuated radiation-induced stabilization of HIF1α through destabilization of PHD-2 and pVHL. In agreement with these results, targeting of either p38 MAPK, HIF1α, pVHL or PHD-2 effectively mitigated the radiation-induced tube formation of human brain-derived micro-vessel endothelial cells (HB-MEC) and infiltration of glioma cells. Taken together, our findings suggest that targeting HIF1α in combination with ionizing radiation might increase the efficacy of radiotherapy for glioma treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro.

    PubMed

    Bilmin, K; Kujawska, T; Secomski, W; Nowicki, A; Grieb, P

    2016-01-01

    Sonodynamic therapy (SDT) is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA) which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX. The objective of the study was to describe ALA-mediated sonodynamic effects in vitro on a rat RG2 glioma cell line. Glioma cells, seeded at the bottom of 96-well plates and incubated with ALA (10 µg/ml) for 6 h, were exposed to the sinusoidal US pulses with a resonance frequency of 1 MHz, 1000 µs duration, 0.4 duty-cycle, and average acoustic power varying from 2 W to 6 W. Ultrasound waves were generated by a flat circular piezoelectric transducer with a diameter of 25 mm. Cell viability was determined by MTT assay. Structural cellular changes were visualized with a fluorescence microscope. Signs of cytotoxicity such as a decrease in cell viability, chromatin condensation and apoptosis were found. ALA-mediated SDT evokes cytotoxic effects of low intensity US on rat RG2 glioma cells in vitro. This cell line is indicated for further preclinical assessment of SDT in in vivo conditions.

  6. Mannose Phosphate Isomerase Regulates Fibroblast Growth Factor Receptor Family Signaling and Glioma Radiosensitivity

    PubMed Central

    Cazet, Aurélie; Charest, Jonathan; Bennett, Daniel C.; Sambrooks, Cecilia Lopez; Contessa, Joseph N.

    2014-01-01

    Asparagine-linked glycosylation is an endoplasmic reticulum co- and post- translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization. PMID:25314669

  7. Alteration of the Intra- and Cross- Hemisphere Posterior Default Mode Network in Frontal Lobe Glioma Patients

    PubMed Central

    Zhang, Haosu; Shi, Yonghong; Yao, Chengjun; Tang, Weijun; Yao, Demin; Zhang, Chenxi; Wang, Manning; Wu, Jinsong; Song, Zhijian

    2016-01-01

    Patients with frontal lobe gliomas often experience neurocognitive dysfunctions before surgery, which affects the default mode network (DMN) to different degrees. This study quantitatively analyzed this effect from the perspective of cerebral hemispheric functional connectivity (FC). We collected resting-state fMRI data from 20 frontal lobe glioma patients before treatment and 20 healthy controls. All of the patients and controls were right-handed. After pre-processing the images, FC maps were built from the seed defined in the left or right posterior cingulate cortex (PCC) to the target regions determined in the left or right temporal-parietal junction (TPJ), respectively. The intra- and cross-group statistical calculations of FC strength were compared. The conclusions were as follows: (1) the intra-hemisphere FC strength values between the PCC and TPJ on the left and right were decreased in patients compared with controls; and (2) the correlation coefficients between the FC pairs in the patients were increased compared with the corresponding controls. When all of the patients were grouped by their tumor’s hemispheric location, (3) the FC of the subgroups showed that the dominant hemisphere was vulnerable to glioma, and (4) the FC in the dominant hemisphere showed a significant correlation with WHO grade. PMID:27248706

  8. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  9. Number of glioma polyploid giant cancer cells (PGCCs) associated with vasculogenic mimicry formation and tumor grade in human glioma

    PubMed Central

    2013-01-01

    Background Polyploid giant cancer cells (PGCCs) contribute to solid tumor heterogeneity. This study investigated the relationships among PGCCs numbers, vasculogenic mimicry (VM) formation, and tumor grades in glioma. Methods A total of 76 paraffin-embedded glioma tissue samples, including 28 cases of low grade and 48 cases of high grade gliomas, were performed with H&E and immunohistochemical staining for Ki-67 and hemoglobin. The size of PGCCs nuclei was measured by a micrometer using H&E section and defined as at least three times larger than the nuclei of regular diploid cancer cells. The number of PGCCs and different blood supply patterns were compared in different grade gliomas. Microcirculation patterns in tumors were assessed using CD31 immunohistochemical and PAS histochemical double staining. Human glioma cancer cell line C6 was injected into the chicken embryonating eggs to form xenografts, which was used to observe the PGCCs and microcirculation patterns. Results In human glioma, the number of PGCCs increased with the grade of tumors (χ2 = 4.781, P = 0.015). There were three kinds of microcirculation pattern in human glioma including VM, mosaic vessel (MV) and endothelium dependent vessel. PGCCs were able to generate erythrocytes via budding to form VM. The walls of VM were positive (or negative) for PAS staining and negative for CD31 staining. There were more VM and MVs in high grade gliomas than those in low grade gliomas. The differences have statistical significances for VM (t = 3.745, P = 0.000) and MVs (t = 4.789, P = 0.000). PGCCs, VM and MVs can also be observed in C6 chicken embryonating eggs xenografts. Conclusions The data demonstrated presence of PGCCs, VM and MVs in glioma and PGCCs generating erythrocytes contribute the formation of VM and MVs. PMID:24422894

  10. Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma.

    PubMed

    Doucette, Tiffany A; Kong, Ling-Yuan; Yang, Yuhui; Ferguson, Sherise D; Yang, Jinbo; Wei, Jun; Qiao, Wei; Fuller, Gregory N; Bhat, Krishna P; Aldape, Kenneth; Priebe, Waldemar; Bögler, Oliver; Heimberger, Amy B; Rao, Ganesh

    2012-09-01

    Signal transducer and activator of transcription (STAT) 3 has been described as a "master regulator" of signaling pathways involved in the transition from low-grade glioma (LGG) to high-grade glioma (HGG). Although STAT3 is overexpressed in HGGs, it remains unclear whether its overexpression is sufficient to induce or promote the malignant progression of glioma. To characterize the effect of STAT3 expression on tumor progression in vivo, we expressed the STAT3 gene in glioneuronal progenitor cells in mice. STAT3 was expressed alone or concurrently with platelet-derived growth factor B (PDGFB), a well-described initiator of LGG. STAT3 alone was insufficient to induce tumor formation; however, coexpression of STAT3 with PDGFB in mice resulted in a significantly higher incidence of HGGs than PDGFB alone. The median symptomatic tumor latency in mice coexpressing STAT3 and PDGFB was significantly shorter, and mice that developed symptomatic tumors demonstrated significantly higher expression of phosphorylated STAT3 intratumorally. In HGGs, expression of STAT3 was associated with suppression of apoptosis and an increase in tumor cell proliferation. HGGs induced by STAT3 and PDGFB also displayed frequent foci of necrosis and microvascular proliferation. The expression of CD31 (a marker of endothelial proliferation) was significantly higher in tumors induced by coexpression of STAT3 and PDGFB. When mice injected with PDGFB and STAT3 were treated with a STAT3 inhibitor, median survival increased and the incidence of HGG and CD31 expression decreased significantly. These results demonstrate that STAT3 promotes the malignant progression of glioma. Inhibiting STAT3 expression mitigates tumor progression and improves survival, validating it as a therapeutic target.

  11. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet.

    PubMed

    Lussier, Danielle M; Woolf, Eric C; Johnson, John L; Brooks, Kenneth S; Blattman, Joseph N; Scheck, Adrienne C

    2016-05-13

    Glioblastoma multiforme is a highly aggressive brain tumor with a poor prognosis, and advances in treatment have led to only marginal increases in overall survival. We and others have shown previously that the therapeutic ketogenic diet (KD) prolongs survival in mouse models of glioma, explained by both direct tumor growth inhibition and suppression of pro-inflammatory microenvironment conditions. The aim of this study is to assess the effects of the KD on the glioma reactive immune response. The GL261-Luc2 intracranial mouse model of glioma was used to investigate the effects of the KD on the tumor-specific immune response. Tumor-infiltrating CD8+ T cells, CD4+ T cells and natural killer (NK) cells were analyzed by flow cytometry. The expression of immune inhibitory receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) on CD8+ T cells were also analyzed by flow cytometry. Analysis of intracellular cytokine production was used to determine production of IFN, IL-2 and IFN- in tumor-infiltrating CD8+ T and natural killer (NK) cells and IL-10 production by T regulatory cells. We demonstrate that mice fed the KD had increased tumor-reactive innate and adaptive immune responses, including increased cytokine production and cytolysis via tumor-reactive CD8+ T cells. Additionally, we saw that mice maintained on the KD had increased CD4 infiltration, while T regulatory cell numbers stayed consistent. Lastly, mice fed the KD had a significant reduction in immune inhibitory receptor expression as well as decreased inhibitory ligand expression on glioma cells. The KD may work in part as an immune adjuvant, boosting tumor-reactive immune responses in the microenvironment by alleviating immune suppression. This evidence suggests that the KD increases tumor-reactive immune responses, and may have implications in combinational treatment approaches.

  12. BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells

    PubMed Central

    Ciechomska, Iwona Anna; Przanowski, Piotr; Jackl, Judyta; Wojtas, Bartosz; Kaminska, Bozena

    2016-01-01

    Glioblastoma (GBM) contains rare glioma stem-like cells (GSCs) with capacities of self-renewal, multi-lineage differentiation, and resistance to conventional therapy. Drug-induced differentiation of GSCs is recognized as a promising approach of anti-glioma therapy. Accumulating evidence suggests that unique properties of stem cells depend on autophagy. Here we demonstrate that BIX01294, an inhibitor of a G9a histone methyltransferase (introducing H3K9me2 and H3K27me3 repressive marks) triggers autophagy in human glioma cells. Pharmacological or genetic inhibition of autophagy decreased LC3-II accumulation and GFP-LC3 punctation in BIX01294-treated cells. GSCs-enriched spheres originating from glioma cells and GBM patient-derived cultures express lower levels of autophagy related (ATG) genes than the parental glioma cell cultures. Typical differentiation inducers that upregulate neuronal and astrocytic markers in sphere cultures, increase the level of ATG mRNAs. G9a binds to the promoters of autophagy (LC3B, WIPI1) and differentiation-related (GFAP, TUBB3) genes in GSCs. Higher H3K4me3 (an activation mark) and lower H3K9me2 (the repressive mark) levels at the promoters of studied genes were detected in serum-differentiated cells than in sphere cultures. BIX01294 treatment upregulates the expression of autophagy and differentiation-related genes in GSCs. Pharmacological inhibition of autophagy decreases GFAP and TUBB3 expression in BIX01294-treated GSCs suggesting that BIX01294-induced differentiation of GSCs is autophagy-dependent. PMID:27934912

  13. Venous thromboembolism in high grade glioma among surgical patients: results from a single center over a 10 year period.

    PubMed

    Smith, Timothy R; Lall, Rishi R; Graham, Randall B; Mcclendon, Jamal; Lall, Rohan R; Nanney, Allan D; Adel, Joseph G; Zakarija, Anaadriana; Chandler, James P

    2014-11-01

    Patients with high-grade glioma are at elevated risk of venous thromboembolism (VTE). The relationship between VTE and survival in glioma patients remains unclear, as does the optimal protocol for chemoprophylaxis. The purpose of this study was to assessthe incidence of and risk factors associated with VTE in patients with high-grade glioma, and the correlation between VTE and survival in this population. Furthermore, we sought to define a protocol for perioperative DVT prophylaxis. This was a retrospective review of patients who underwent craniotomy for resection of high-grade glioma (WHO grade III or IV) at Northwestern University between 1999 and 2010. A total of 336 patients met inclusion criteria. 53 patients developed postoperative VTE (15.7 %). Median survival was 12.0 months and was not significantly different between VTE(+) and VTE(-) patients. Demographics and surgical factors were not significantly correlated with VTE development. Prior history of VTE was highly predictive of postoperative VTE (OR 7.1, p < .01), as was seizure (OR 2.4, p = .005). Increased duration of postoperative ICU stay was also a risk factor for VTE (p = .025). 25 patients in our study received prophylactic anticoagulation(pAC) with either heparin or enoxaparin. Early initiation of pAC was associated with decreased incidence of VTE (p = .042). There were no hemorrhagic complications in patients receiving pAC. VTE is a common complication in high-grade glioma patients. Early initiation of anticoagulation is safe and may decrease the risk of VTE. We recommend initiation of chemoprophylaxis on postoperative day 1 in patients without contraindication.

  14. Adoptive cell transfer therapy for malignant gliomas.

    PubMed

    Ishikawa, Eiichi; Takano, Shingo; Ohno, Tadao; Tsuboi, Koji

    2012-01-01

    To date, various adoptive immunotherapies have been attempted for treatment of malignant gliomas using nonspecific and/or specific effector cells. Since the late 1980s, with the development of rIL-2, the efficacy of lymphokine-activated killer (LAK) cell therapy with or without rIL-2 for malignant gliomas had been tested with some modifications in therapeutic protocols. With advancements in technology, ex vivo expanded tumor specific cytotoxic T-lymphocytes (CTL) or those lineages were used in clinical trials with higher tumor response rates. In addition, combinations of those adoptive cell transfer using LAK cells, CTLs or natural killer (NK) cells with autologous tumor vaccine (ATV) therapy were attempted. Also, a strategy of high-dose (or lymphodepleting) chemotherapy followed by adoptive cell transfer has been drawing attentions recently. The most important role of these clinical studies using cell therapy was to prove that these ex vivo expanded effector cells could kill tumor cells in vivo. Although recent clinical results could demonstrate radiologic tumor shrinkage in a number of cases, cell transfer therapy alone has been utilized less frequently, because of the high cost of ex vivo cell expansion, the short duration of antitumor activity in vivo, and the recent shift of interest to vaccine immunotherapy. Nevertheless, NK cell therapy using specific feeder cells or allergenic NK cell lines have potentials to be a good choice of treatment because of easy ex vivo expansion and their efficacy especially when combined with vaccine therapy as they are complementary to each other. Also, further studies are expected to clarify the efficacy of the high-dose chemotherapy followed by a large scale cell transfer therapy as a new therapeutic strategy for malignant gliomas.

  15. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2015-03-02

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  16. Aloe-emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells.

    PubMed

    Acevedo-Duncan, Mildred; Russell, Christopher; Patel, Sapna; Patel, Rekha

    2004-12-20

    Aloe-emodin (1,8-dihydroy-3-[hydroxymethyl]-anthraquione) purified from Aloe vera leaves has been reported to have antitumor activity. The objectives of our research were to determine how aloe-emodin regulates the cell cycle, cell proliferation and protein kinase C (PKC) during glioma growth and development. To establish the cell cycle effects of aloe-emodin on brain cells [transformed glia cell line (SVG) and human glioma U-373MG cell line (U-373MG)], cells were treated with either dimethylsulfoxide (DMSO; control) or aloe-emodin (40 microM). Results from flow cytometry demonstrated that aloe-emodin delayed the number of cells entering and exiting DNA synthesis (S) phase in both SVG and U-373MG cells indicating that aloe-emodin may inhibit S phase progression. Assessment of cell viability demonstrated that SVG and U-373MG glioma cell were highly sensitive to aloe-emodin. The aloe-emodin-induced decreased proliferation was sustained at 48-96 h. A PKC activity assay was quantified to establish the role of PKC in aloe-emodin's mode of action. Exposure of SVG and U-373MG glioma cells to aloe-emodin suppressed PKC activity and reduced the protein content of most of the PKC isozymes. We determined that cancer growth inhibition by aloe-emodin was due to apoptosis (i.e., programmed cell death). Taken together, these results support the hypothesis that aloe-emodin represents a novel antitumor chemotherapeutic drug.

  17. β-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastma cells.

    PubMed

    Liu, Xiangrong; Wang, Lei; Zhao, Shangfeng; Ji, Xunming; Luo, Yumin; Ling, Feng

    2011-06-01

    β-Catenin, a core component of Wnt/β-catenin signaling, has been shown to be a crucial factor in a broad range of tumors, while its role in glioma is not well understood. In this study, the expression of β-catenin in astrocytic glioma tissues with different grade and human normal cerebral tissues was examined using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. We found a higher expression level of β-catenin in astrocytic glioma patients with high grade in comparison with the normal controls. Additionally, siRNA was transfected into human U251 glioblastoma cells by liposome after the design of siRNA was confirmed to effectively inhibit the expression of β-catenin by RT-PCR. Compared to the control siRNA group, siRNA-mediated knockdown of β-catenin in human U251 cells inhibited cell proliferation, resulted in cell apoptosis, and arrested cell cycle in G₀/G₁. Additionally, downregulation of β-catenin decreased the expression level of cyclin D1, c-Myc and c-jun. Taken together, these results indicate that overexpression of β-catenin may be an important contributing factor to glioma progression.

  18. MiRNA-181b suppresses IGF-1R and functions as a tumor suppressor gene in gliomas.

    PubMed

    Shi, Zhu-Mei; Wang, Xie-Feng; Qian, Xu; Tao, Tao; Wang, Lin; Chen, Qiu-Dan; Wang, Xi-Rui; Cao, Lei; Wang, Ying-Yi; Zhang, Jun-Xia; Jiang, Tao; Kang, Chun-Sheng; Jiang, Bing-Hua; Liu, Ning; You, Yong-Ping

    2013-04-01

    MicroRNAs (miRNAs) are single-stranded, 18- to 23-nt RNA molecules that function as regulators of gene expression. Previous studies have shown that microRNAs play important roles in human cancers, including gliomas. Here, we found that expression levels of miR-181b were decreased in gliomas, and we identified IGF-1R as a novel direct target of miR-181b. MiR-181b overexpression inhibited cell proliferation, migration, invasion, and tumorigenesis by targeting IGF-1R and its downstream signaling pathways, PI3K/AKT and MAPK/ERK1/2. Overexpression of IGF-1R rescued the inhibitory effects of miR-181b. In clinical specimens, IGF-1R was overexpressed, and its protein levels were inversely correlated with miR-181b expression. Taken together, our results indicate that miR-181b functions in gliomas to suppress growth by targeting the IGF-1R oncogene and that miR-181b may serve as a novel therapeutic target for gliomas.

  19. β-diketone-cobalt complexes inhibit DNA synthesis and induce S-phase arrest in rat C6 glioma cells.

    PubMed

    Zhang, Kaizhi; Zhao, Xingli; Liu, Junzhi; Fang, Xiangyang; Wang, Xuepeng; Wang, Xiaohong; Li, Rui

    2014-03-01

    β-diketone-cobalt complexes, a family of newly synthesized non-platinum metal compounds, exhibit potential antitumor activity; however, the antitumor mechanism is unclear. The current study investigated the mechanism by which β-diketone-cobalt complexes inhibit rat C6 glioma cell proliferation. It was found that β-diketone-cobalt complexes suppress rat C6 glioma cell viability in a dose-dependent manner (3.125-100 μg/ml). In rat C6 glioma cells, the IC50 value of β-diketone-cobalt complexes was 24.7±3.395 μg/ml and the IC10 value was 4.37±1.53 μg/ml, indicating a strong inhibitory effect. Further investigation suggested that β-diketone-cobalt complexes inhibit rat C6 glioma cell proliferation, which is associated with S-phase arrest and DNA synthesis inhibition. During this process, β-diketone-cobalt complexes decreased cyclin A expression and increased cyclin E and p21 expression. In addition, β-diketone-cobalt complexes exhibit a stronger antitumor capability than the antineoplastic agent, 5-fluorouracil.

  20. Lactate-Modulated Induction of THBS-1 Activates Transforming Growth Factor (TGF)-beta2 and Migration of Glioma Cells In Vitro

    PubMed Central

    Moeckel, Sylvia; Jachnik, Birgit; Lottaz, Claudio; Kreutz, Marina; Brawanski, Alexander; Proescholdt, Martin; Bogdahn, Ulrich; Bosserhoff, Anja-Katrin; Vollmann-Zwerenz, Arabel; Hau, Peter

    2013-01-01

    Background An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein. Methods Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. Results Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. Conclusion We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion. PMID:24223867

  1. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  2. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    ClinicalTrials.gov

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  3. Telomere maintenance and the etiology of adult glioma.

    PubMed

    Walsh, Kyle M; Wiencke, John K; Lachance, Daniel H; Wiemels, Joseph L; Molinaro, Annette M; Eckel-Passow, Jeanette E; Jenkins, Robert B; Wrensch, Margaret R

    2015-11-01

    A growing body of epidemiologic and tumor genomic research has identified an important role for telomere maintenance in glioma susceptibility, initiation, and prognosis. Telomere length has long been investigated in relation to cancer, but whether longer or shorter telomere length might be associated with glioma risk has remained elusive. Recent data address this question and are reviewed here. Common inherited variants near the telomerase-component genes TERC and TERT are associated both with longer telomere length and increased risk of glioma. Exome sequencing of glioma patients from families with multiple affected members has identified rare inherited mutations in POT1 (protection of telomeres protein 1) as high-penetrance glioma risk factors. These heritable POT1 mutations are also associated with increased telomere length in leukocytes. Tumor sequencing studies further indicate that acquired somatic mutations of TERT and ATRX are among the most frequent alterations found in adult gliomas. These mutations facilitate telomere lengthening, thus bypassing a critical mechanism of apoptosis. Although future research is needed, mounting evidence suggests that glioma is, at least in part, a disease of telomere dysregulation. Specifically, several inherited and acquired variants underlying gliomagenesis affect telomere pathways and are also associated with increased telomere length. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Glioma epidemiology in the central Tunisian population: 1993-2012.

    PubMed

    Trabelsi, Saoussen; Brahim, Dorra H'mida-Ben; Ladib, Mohamed; Mama, Nadia; Harrabi, Imed; Tlili, Kalthoum; Yacoubi, Mohamed Tahar; Krifa, Hedi; Hmissa, Sihem; Saad, Ali; Mokni, Moncef

    2014-01-01

    Glioma is a heterogeneous central nervous system (CNS) tumor group that encompasses different histological subtypes with high variability in prognosis. The lesions account for almost 80% of primary malignant brain tumors. The aim of this study is to extend our understanding of the glioma epidemiology in the central Tunisian region. We analyzed 393 gliomas recorded in cancer registry of central Tunisia from 1993 to 2012. Crude incidence rates (CR) and world age-standardized rates (ASR) were estimated using annual population data size and age structure. Statistic correlations were established using Chi-square and Kaplan-Meier test. Tunisian glioma patients were identified with a mean age at diagnosis of 48 years and 1.5 sex ratio (male/female). During the 19 years period of study the highest incidence value was observed in male group between 1998 and 2002 (CR: 0.28, ASR: 0.3). Incidence results underline increasing high grade glioma occurring in the adulthood in the last period (2007-2012). Median survival was 27 months, with 1-, 2- and 5-year survival rates of 42%, 30% and 26%, respectively. Survival was greater in patients with younger age, lower tumor grade, infratentrial tumor location and undergoing a palliative treatment. This central Tunisia gliomas registry study provides important information that could improve glioma management and healthcare practice.

  5. Long noncoding RNA profiles reveal three molecular subtypes in glioma.

    PubMed

    Li, Rui; Qian, Jin; Wang, Ying-Yi; Zhang, Jun-Xia; You, Yong-Ping

    2014-04-01

    Gliomas are the most lethal type of primary brain tumor in adult. Long noncoding RNAs (lncRNAs), which are involved in the progression of various cancers, may offer a potential gene therapy target in glioma. We first classified gliomas into three molecular subtypes (namely LncR1, LncR2 and LncR3) in Rembrandt dataset using consensus clustering. Survival analysis indicated that LncR3 had the best prognosis, while the LncR1 subtype showed the poorest overall survival rate. The results were further validated in an independent glioma dataset GSE16011. Additionally, we collected and merged data of the two databases (Rembrandt and GSE16011 dataset) and analyzed prognosis of each subtype in WHO II, III and IV gliomas. The similar results were obtained. Gene Set Variation Analysis (GSVA) demonstrated that LncR1 subtype enriched cultured astroglia's gene signature, while LncR2 subtype was characterized by neuronal gene signature. Oligodendrocytic was rich in LncR3. In addition, IDH1 mutation and 1p/19q LOH were found rich with LncR3, and EGFR amplification showed high percentage in LncR1 in GSE16011 dataset. We report a novel molecular classification of glioma based on lncRNA expression profiles and believe that it would provide a potential platform for future studies on gene treatment for glioma and lead to more individualized therapies to improve survival rates. © 2014 John Wiley & Sons Ltd.

  6. Evaluation of nano-magnetic fluid on malignant glioma cells

    PubMed Central

    Xu, Hongsheng; Zong, Hailiang; Ma, Chong; Ming, Xing; Shang, Ming; Li, Kai; He, Xiaoguang; Cao, Lei

    2017-01-01

    The temperature variation rule of nano-magnetic fluid in the specific magnetic field and the effect on the treatment of malignant glioma were examined. The temperature variation of nano-magnetic fluid in the specific magnetic field was investigated by heating in vitro, and cell morphology was observed through optical microscopy and electron microscopy. MTT detection also was used to detect the effect of Fe3O4 nanometer magnetic fluid hyperthermia (MFH) on the proliferation of human U251 glioma cell line. The Fe3O4 nano MFH experiment was used to detect the inhibition rate of the tumor volume in nude mice with tumors. The results of the experiment showed that the heating ability of magnetic fluid was positively correlated with its concentration at the same intensity of the magnetic field. The results also indicated the prominent inhibitory effect of nanometer MFH on the proliferation of glioma cells, which was a dose-dependent relationship with nanometer magnetic fluid concentration. The hyperthermia experiment of nude mice with tumors displayed a significant inhibiting effect of Fe3O4 nanometer magnetic fluid in glioma volume. These results explain that iron (II, III) oxide (Fe3O4) nanometer MFH can inhibit the proliferation of U251 glioma cells, and has an obvious inhibitory effect on glioma volume, which plays a certain role in the treatment of brain glioma. PMID:28356945

  7. PRG3 induces Ras-dependent oncogenic cooperation in gliomas

    PubMed Central

    Yakubov, Eduard; Chen, Daishi; Broggini, Thomas; Sehm, Tina; Majernik, Gökce Hatipoglu; Hock, Stefan W.; Schwarz, Marc; Engelhorn, Tobias; Doerfler, Arnd; Buchfelder, Michael; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    Malignant gliomas are one of the most devastating cancers in humans. One characteristic hallmark of malignant gliomas is their cellular heterogeneity with frequent genetic lesions and disturbed gene expression levels conferring selective growth advantage. Here, we report on the neuronal-associated growth promoting gene PRG3 executing oncogenic cooperation in gliomas. We have identified perturbed PRG3 levels in human malignant brain tumors displaying either elevated or down-regulated PRG3 levels compared to non-transformed specimens. Further, imbalanced PRG3 levels in gliomas foster Ras-driven oncogenic amplification with increased proliferation and cell migration although angiogenesis was unaffected. Hence, PRG3 interacts with RasGEF1 (RasGRF1/CDC25), undergoes Ras-induced challenges, whereas deletion of the C-terminal domain of PRG3 (PRG3ΔCT) inhibits Ras. Moreover PRG3 silencing makes gliomas resistant to Ras inhibition. In vivo disequilibrated PRG3 gliomas show aggravated proliferation, invasion, and deteriorate clinical outcome. Thus, our data show that the interference with PRG3 homeostasis amplifies oncogenic properties and foster the malignancy potential in gliomas. PMID:27058420

  8. Understanding inherited genetic risk of adult glioma – a review

    PubMed Central

    Rice, Terri; Lachance, Daniel H.; Molinaro, Annette M.; Eckel-Passow, Jeanette E.; Walsh, Kyle M.; Barnholtz-Sloan, Jill; Ostrom, Quinn T.; Francis, Stephen S.; Wiemels, Joseph; Jenkins, Robert B.; Wiencke, John K.; Wrensch, Margaret R.

    2016-01-01

    During the past six years, researchers have made major progress identifying common inherited genetic variation that increases risk for primary adult glioma. This paper summarizes knowledge about rare familial cancer syndromes that include adult glioma and reviews the available literature on the more recently discovered common inherited variation. Ten independent inherited variants in eight chromosomal regions have been convincingly associated with increased risk for adult glioma. Most of these variants increase relative risk of primary adult glioma by 20% to 40%, but the TP53 variant rs78378222 confers a two-fold relative risk (ie, 200%), and rs557505857 on chromosome 8 confers a six-fold relative risk of IDH-mutated astrocytomas and oligodendroglial tumors (ie, 600%). Even with a six-fold relative risk, the overall risk of developing adult glioma is too low for screening for the high-risk variant on chromosome 8. Future studies will help clarify which inherited adult glioma risk variants are associated with subtypes defined by histology and/or acquired tumor mutations. This review also provides an information sheet for primary adult glioma patients and their families. PMID:26941959

  9. Understanding inherited genetic risk of adult glioma - a review.

    PubMed

    Rice, Terri; Lachance, Daniel H; Molinaro, Annette M; Eckel-Passow, Jeanette E; Walsh, Kyle M; Barnholtz-Sloan, Jill; Ostrom, Quinn T; Francis, Stephen S; Wiemels, Joseph; Jenkins, Robert B; Wiencke, John K; Wrensch, Margaret R

    2016-03-01

    During the past six years, researchers have made major progress identifying common inherited genetic variation that increases risk for primary adult glioma. This paper summarizes knowledge about rare familial cancer syndromes that include adult glioma and reviews the available literature on the more recently discovered common inherited variation. Ten independent inherited variants in eight chromosomal regions have been convincingly associated with increased risk for adult glioma. Most of these variants increase relative risk of primary adult glioma by 20% to 40%, but the TP53 variant rs78378222 confers a two-fold relative risk (ie, 200%), and rs557505857 on chromosome 8 confers a six-fold relative risk of IDH-mutated astrocytomas and oligodendroglial tumors (ie, 600%). Even with a six-fold relative risk, the overall risk of developing adult glioma is too low for screening for the high-risk variant on chromosome 8. Future studies will help clarify which inherited adult glioma risk variants are associated with subtypes defined by histology and/or acquired tumor mutations. This review also provides an information sheet for primary adult glioma patients and their families.

  10. Xeroderma pigmentosum complementation group f polymorphisms influence risk of glioma.

    PubMed

    Cheng, Hong-Bin; Xie, Chen; Zhang, Ru-You; Hu, Shao-Shan; Wang, Zhi; Yue, Wu

    2013-01-01

    We conducted an exploratory investigation of whether variation in six common SNPs of xeroderma pigmentosum complementation group F (XPF) is associated with risk of glioma in a Chinese population. Six single nucleotide polymorphisms (SNPs) were genotyped in 207 glioma cases and 236 cancer-free controls by a 384-well plate format on the Sequenom MassARRAY platform (Sequenom, San Diego, USA). The rs1800067 G and rs2276466 G allele frequencies were significantly higher in the glioma group than controls. Individuals with the rs1800067 GG genotype were at greater risk of glioma when compared with the A/A genotype in the codominant model, with an OR (95% CI) of 2.63 (1.04-7.25). The rs2276466 polymorphism was significantly associated with moderate increased risk of glioma in codominant and dominant models, with ORs (95% CI) of 1.90 (1.05-3.44) and 1.55 (1.07-2.47), respectively. The combination genotype of rs1800067 G and rs2276466 G alleles was associated with a reduced risk of glioma (OR=0.44, 95% CI=0.19-0.98). These findings indicate that genetic variants of the XPF gene have critical functions in the development of glioma.

  11. Identification of molecular pathways facilitating glioma cell invasion in situ.

    PubMed

    Nevo, Ido; Woolard, Kevin; Cam, Maggie; Li, Aiguo; Webster, Joshua D; Kotliarov, Yuri; Kim, Hong Sug; Ahn, Susie; Walling, Jennifer; Kotliarova, Svetlana; Belova, Galina; Song, Hua; Bailey, Rolanda; Zhang, Wei; Fine, Howard A

    2014-01-01

    Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC) xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs) compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT) processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  12. Evaluation of nano-magnetic fluid on malignant glioma cells.

    PubMed

    Xu, Hongsheng; Zong, Hailiang; Ma, Chong; Ming, Xing; Shang, Ming; Li, Kai; He, Xiaoguang; Cao, Lei

    2017-02-01

    The temperature variation rule of nano-magnetic fluid in the specific magnetic field and the effect on the treatment of malignant glioma were examined. The temperature variation of nano-magnetic fluid in the specific magnetic field was investigated by heating in vitro, and cell morphology was observed through optical microscopy and electron microscopy. MTT detection also was used to detect the effect of Fe3O4 nanometer magnetic fluid hyperthermia (MFH) on the proliferation of human U251 glioma cell line. The Fe3O4 nano MFH experiment was used to detect the inhibition rate of the tumor volume in nude mice with tumors. The results of the experiment showed that the heating ability of magnetic fluid was positively correlated with its concentration at the same intensity of the magnetic field. The results also indicated the prominent inhibitory effect of nanometer MFH on the proliferation of glioma cells, which was a dose-dependent relationship with nanometer magnetic fluid concentration. The hyperthermia experiment of nude mice with tumors displayed a significant inhibiting effect of Fe3O4 nanometer magnetic fluid in glioma volume. These results explain that iron (II, III) oxide (Fe3O4) nanometer MFH can inhibit the proliferation of U251 glioma cells, and has an obvious inhibitory effect on glioma volume, which plays a certain role in the treatment of brain glioma.

  13. CT Perfusion with Acetazolamide Challenge in C6 Gliomas and Angiogenesis

    PubMed Central

    Feng, Xiao-Yuan; Qiang, Jin-Wei; Zhang, Jia-wen; Wang, Yong-gang; Liu, Ying

    2015-01-01

    Background This study was performed to investigate the correlation between CT perfusion with acetazolamide challenge and angiogenesis in C6 gliomas. Methods Thirty-two male Sprague-Dawley rats were evaluated. The rats were divided randomly to four groups: eight rats with orthotopically implanted C6 gliomas at 10-days old (Group A), eight rats with gliomas at 14-days old (Group B), eight rats with gliomas at 18-days old (Group C), eight rats with orthotopically injected normal saline served as controls. CT perfusion was performed before and after administration of acetazolamide. Changes in perfusion parameters due to acetazolamide administration were calculated and analyzed. Results Elevated carbon dioxide partial pressure and decreased pH were found in all 32 rats post acetazolamide challenge (P<0.01). Cerebral blood flowpre-challenge was increased in group C (95.0±2.5 ml/100g/min), as compared to group B (80.1±11.3 ml/100g/min) and group A (63.1±2.1 ml/100g/min). Cerebral blood flow percentage changes were detected with a reduction in group C (54.2±4.8%) as compared to controls (111.3±22.2%). Cerebral blood volume pre-challenge was increased in group C (50.8±1.7ml/100g), as compared to group B (45.7±1.9 ml/100g) and group A (38.2±0.8 ml/100g). Cerebral blood volume percentage changes were decreased in group C (23.5±4.6%) as compared to controls (113.5±30.4%). Angiogenesis ratio = [(CD105-MVD) / (FVIII-MVD)] ×100%. Positive correlations were observed between CD105-microvessel density, angiogenesis ratio, vascular endothelial growth factor, proliferation marker and cerebral blood flowpre-challenge, cerebral blood volume pre-challenge. Negative correlations were observed between CD105-microvessel density and cerebral blood flow percentage changes (P<0.01, correlation coefficient r=-0.788), cerebral blood volume percentage changes (P<0.01, r=-0.703). Negative correlations were observed between angiogenesis ratio, vascular endothelial growth factor

  14. Association between adult height, genetic susceptibility and risk of glioma

    PubMed Central

    Kitahara, Cari M; Wang, Sophia S; Melin, Beatrice S; Wang, Zhaoming; Braganza, Melissa; Inskip, Peter D; Albanes, Demetrius; Andersson, Ulrika; Beane Freeman, Laura E; Buring, Julie E; Carreón, Tania; Feychting, Maria; Gapstur, Susan M; Gaziano, J Michael; Giles, Graham G; Hallmans, Goran; Hankinson, Susan E; Henriksson, Roger; Hsing, Ann W; Johansen, Christoffer; Linet, Martha S; McKean-Cowdin, Roberta; Michaud, Dominique S; Peters, Ulrike; Purdue, Mark P; Rothman, Nathaniel; Ruder, Avima M; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Stevens, Victoria L; Visvanathan, Kala; Waters, Martha A; White, Emily; Wolk, Alicja; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Hoover, Robert; Fraumeni, Joseph F; Chatterjee, Nilanjan; Yeager, Meredith; Chanock, Stephen J; Hartge, Patricia; Rajaraman, Preetha

    2012-01-01

    Background Some, but not all, observational studies have suggested that taller stature is associated with a significant increased risk of glioma. In a pooled analysis of observational studies, we investigated the strength and consistency of this association, overall and for major sub-types, and investigated effect modification by genetic susceptibility to the disease. Methods We standardized and combined individual-level data on 1354 cases and 4734 control subjects from 13 prospective and 2 case–control studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for glioma and glioma sub-types were estimated using logistic regression models stratified by sex and adjusted for birth cohort and study. Pooled ORs were additionally estimated after stratifying the models according to seven recently identified glioma-related genetic variants. Results Among men, we found a positive association between height and glioma risk (≥190 vs 170–174 cm, pooled OR = 1.70, 95% CI: 1.11–2.61; P-trend = 0.01), which was slightly stronger after restricting to cases with glioblastoma (pooled OR = 1.99, 95% CI: 1.17–3.38; P-trend = 0.02). Among women, these associations were less clear (≥175 vs 160–164 cm, pooled OR for glioma = 1.06, 95% CI: 0.70–1.62; P-trend = 0.22; pooled OR for glioblastoma = 1.36, 95% CI: 0.77–2.39; P-trend = 0.04). In general, we did not observe evidence of effect modification by glioma-related genotypes on the association between height and glioma risk. Conclusion An association of taller adult stature with glioma, particularly for men and stronger for glioblastoma, should be investigated further to clarify the role of environmental and genetic determinants of height in the etiology of this disease. PMID:22933650

  15. Use of cardiac glycosides and risk of glioma.

    PubMed

    Seliger, Corinna; Meier, Christoph R; Jick, Susan S; Uhl, Martin; Bogdahn, Ulrich; Hau, Peter; Leitzmann, M F

    2016-04-01

    Cardiac glycosides induce apoptotic effects on glioma cells, but whether cardiac glycosides protect against risk for glioma is unknown. We therefore explored the relation between glycoside use and glioma risk using a large and validated database. We performed a case-control analysis using the Clinical Practice Research Datalink involving 2005 glioma cases diagnosed between 1995 and 2012 that were individually matched to 20,050 controls on age, gender, general practice, and number of years of active history in the database. Conditional logistic regression analysis was used to evaluate the association between cardiac glycosides and the risk of glioma adjusting for body mass index and smoking. We also examined use of common heart failure and arrhythmia medications to differentiate between a specific glycoside effect and a generic effect of treatment for congestive heart failure or arrhythmia. Cardiac glycoside use was inversely related to glioma incidence. After adjustment for congestive heart failure, arrhythmia, diabetes, and common medications used to treat those conditions, the OR of glioma was 0.47 (95% CI 0.27-0.81, Bonferroni-corrected p value = 0.024) for use versus non-use of cardiac glycosides, based on 17 exposed cases. In contrast, no associations were noted for other medications used to treat congestive heart failure or arrhythmias. The OR of glioma in people with congestive heart failure was 0.65 (95% CI 0.40-1.04), and for arrhythmia it was 1.01 (95% CI 0.78-1.31). These data indicate that cardiac glycoside use is independently associated with reduced glioma risk.

  16. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas

    PubMed Central

    2015-01-01

    BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q

  17. Malignant glioma: lessons from genomics, mouse models, and stem cells.

    PubMed

    Chen, Jian; McKay, Renée M; Parada, Luis F

    2012-03-30

    Eighty percent of malignant tumors that develop in the central nervous system are malignant gliomas, which are essentially incurable. Here, we discuss how recent sequencing studies are identifying unexpected drivers of gliomagenesis, including mutations in isocitrate dehydrogenase 1 and the NF-κB pathway, and how genome-wide analyses are reshaping the classification schemes for tumors and enhancing prognostic value of molecular markers. We discuss the controversies surrounding glioma stem cells and explore how the integration of new molecular data allows for the generation of more informative animal models to advance our knowledge of glioma's origin, progression, and treatment.

  18. Localisation of malignant glioma by a radiolabelled human monoclonal antibody.

    PubMed Central

    Phillips, J; Alderson, T; Sikora, K; Watson, J

    1983-01-01

    Human monoclonal antibodies were produced by fusing intratumoral lymphocytes from patients with malignant gliomas with a human myeloma line. One antibody was selected for further study after screening for binding activity to glioma cell lines. The patient from whom it was derived developed recurrent glioma. 1 mg of antibody was purified, radiolabelled with 131I, and administered intravenously. The distribution of antibody was determined in the blood, CSF and tumour cyst fluid and compared with that of a control human monoclonal immunoglobulin. Antibody localisation in the tumour was observed and confirmed by external scintiscanning. Images PMID:6101173

  19. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.

    PubMed

    Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan

    2015-06-25

    Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most

  20. Season of Birth and Risk for Adult Onset Glioma

    PubMed Central

    Efird, Jimmy T.

    2010-01-01

    Adult onset glioma is a rare cancer which occurs more frequently in Caucasians than African Americans, and in men than women. The etiology of this disease is largely unknown. Exposure to ionizing radiation is the only well established environmental risk factor, and this factor explains only a small percentage of cases. Several recent studies have reported an association between season of birth and glioma risk. This paper reviews the plausibility of evidence focusing on the seasonal interrelation of farming, allergies, viruses, vitamin D, diet, birth weight, and handedness. To date, a convincing explanation for the occurrence of adult gliomas decades after a seasonal exposure at birth remains elusive. PMID:20623001

  1. Chromatin Remodeling Factor LSH is Upregulated by the LRP6-GSK3β-E2F1 Axis Linking Reversely with Survival in Gliomas

    PubMed Central

    Xiao, Desheng; Huang, Jun; Pan, Yu; Li, Hao; Fu, Chunyan; Mao, Chao; Cheng, Yan; Shi, Ying; Chen, Ling; Jiang, Yiqun; Yang, Rui; Liu, Yating; Zhou, Jianhua; Cao, Ya; Liu, Shuang; Tao, Yongguang

    2017-01-01

    The signaling pathway-based stratification in chromatin modification could predict clinical outcome more reliably than morphology-alone-based classification schemes in gliomas. Here we reported a role of the chromatin-remodeling factor lymphoid-specific helicase (LSH) in gliomas. Among astrocytomas of grade I to III and glioblastoma of grade IV, LSH were almost completely expressed in all cases, and strongly correlated with astrocytomas progression and poor prognosis of patients with astrocytomas and glioblastoma. Ectopic expression of LSH promoted tumor formation. Up-regulation of transcription factor E2F1 in astrocytomas and glioblastoma was associated with the progression of gliomas and correlated with LSH expression. Chromatin immunoprecipitation (ChIP) analysis showed transcription factor E2F1 were recruited to the promoter region of LSH, and depletion of E2F1 decreased LSH expression and cell growth. Moreover, glycogen synthase kinase-3β (GSK-3β), an intact complex of E2F1, were also highly expressed in astrocytomas and linked with astrocytomas progression and poor prognosis of patients with astrocytomas and glioblastoma. Inhibition of GSK3β increased the enrichment of E2F1 to the LSH promoter, in turn, increased LSH expression. Lipoprotein receptor-related protein 6 (LRP6), an upstream regulator of GSK3β signaling pathway, was highly expressed in gliomas. Knockdown of LRP6 decreased LSH expression through decrease of recruitment of E2F1 to the LSH promoter leading to inhibition of cell growth. Taken together, this study reveals evidence demonstrating a mechanism by which upregulated promoted gliomas. A mechanistic link between LSH expression and activation of the LPR6/ GSK3β/E2F1 axis in gliomas illustrates a novel role of LSH in malignant astrocytomas and glioblastoma. PMID:28042322

  2. Prospective Longitudinal Analysis of 2-Hydroxyglutarate Magnetic Resonance Spectroscopy Identifies Broad Clinical Utility for the Management of Patients With IDH-Mutant Glioma.

    PubMed

    Choi, Changho; Raisanen, Jack M; Ganji, Sandeep K; Zhang, Song; McNeil, Sarah S; An, Zhongxu; Madan, Akshay; Hatanpaa, Kimmo J; Vemireddy, Vamsidhara; Sheppard, Christie A; Oliver, Dwight; Hulsey, Keith M; Tiwari, Vivek; Mashimo, Tomoyuki; Battiste, James; Barnett, Samuel; Madden, Christopher J; Patel, Toral R; Pan, Edward; Malloy, Craig R; Mickey, Bruce E; Bachoo, Robert M; Maher, Elizabeth A

    2016-11-20

    Purpose Proton magnetic resonance spectroscopy (MRS) of the brain can detect 2-hydroxyglutarate (2HG), the oncometabolite produced in neoplasms harboring a mutation in the gene coding for isocitrate dehydrogenase ( IDH). We conducted a prospective longitudinal imaging study to determine whether quantitative assessment of 2HG by MRS could serve as a noninvasive clinical imaging biomarker for IDH-mutated gliomas. Patients and Methods 2HG MRS was performed in 136 patients using point-resolved spectroscopy at 3 T in parallel with standard clinical magnetic resonance imaging and assessment. Data were analyzed in patient cohorts representing the major phases of the glioma clinical course and were further subgrouped by histology and treatment type to evaluate 2HG. Histologic correlations were performed. Results Quantitative 2HG MRS was technically and biologically reproducible. 2HG concentration > 1 mM could be reliably detected with high confidence. During the period of indolent disease, 2HG concentration varied by less than ± 1 mM, and it increased sharply with tumor progression. 2HG concentration was positively correlated with tumor cellularity and significantly differed between high- and lower-grade gliomas. In response to cytotoxic therapy, 2HG concentration decreased rapidly in 1p/19q codeleted oligodendrogliomas and with a slower time course in astrocytomas and mixed gliomas. The magnitude and time course of the decrease in 2HG concentration and magnitude of the decrease in tumor volume did not differ between oligodendrogliomas treated with temozolomide or carmustine. Criteria for 2HG MRS were established to make a presumptive molecular diagnosis of an IDH mutation in gliomas technically unable to undergo a surgical procedure. Conclusion 2HG concentration as measured by MRS was reproducible and reliably reflected the disease state. These data provide a basis for incorporating 2HG MRS into clinical management of IDH-mutated gliomas.

  3. SHP2 regulates proliferation and tumorigenicity of glioma stem cells.

    PubMed

    Roccograndi, Laura; Binder, Zev A; Zhang, Logan; Aceto, Nicola; Zhang, Zhuo; Bentires-Alj, Mohamed; Nakano, Ichiro; Dahmane, Nadia; O'Rourke, Donald M

    2017-08-29

    SHP2 is a cytoplasmic protein tyrosine phosphatase (PTPase) involved in multiple signaling pathways and was the first identified proto-oncogene PTPase. Previous work in glioblastoma (GBM) has demonstrated the role of SHP2 PTPase activity in modulating the oncogenic phenotype of adherent GBM cell lines. Mutations in PTPN11, the gene encoding SHP2, have been identified with increasing frequency in GBM. Given the importance of SHP2 in developing neural stem cells, and the importance of glioma stem cells (GSCs) in GBM oncogenesis, we explored the functional role of SHP2 in GSCs. Using paired differentiated and stem cell primary cultures, we investigated the association of SHP2 expression with the tumor stem cell compartment. Proliferation and soft agar assays were used to demonstrate the functional contribution of SHP2 to cell growth and transformation. SHP2 expression correlated with SOX2 expression in GSC lines and was decreased in differentiated cells. Forced differentiation of GSCs by removal of growth factors, as confirmed by loss of SOX2 expression, also resulted in decreased SHP2 expression. Lentiviral-mediated knockdown of SHP2 inhibited proliferation. Finally, growth in soft-agar was similarly inhibited by loss of SHP2 expression. Our results show that SHP2 function is required for cell growth and transformation of the GSC compartment in GBM.

  4. Extracts from Glioma Tissues following Cryoablation Have Proapoptosis, Antiproliferation, and Anti-Invasion Effects on Glioma Cells

    PubMed Central

    Liu, Tianzhu; Wang, Xin; Yin, Zhilin; Pan, Jun; Guo, Hongbo; Zhang, Shizhong

    2014-01-01

    Objective. This study is to investigate the in vivo apoptotic processes in glioma tissues following cryoablation and the effects of glioma tissue extracts on GL261 glioma cells in vitro. Methods. TUNEL and flow cytometry analysis were performed to detect the apoptotic processes in the glioma tissues following cryoablation and in the GL261 cells treated with cryoablated tumor extracts. The scratch assay, the transwell assay, and Western blot analysis were carried out to evaluate the effects of cryoablated tumor extracts on the migration, invasion, and proliferation of tumor cells. Results. Our in vivo results indicated that the rapid-onset apoptosis was induced via the intrinsic pathway and the delayed apoptosis was triggered through the extrinsic pathway. The in vitro results showed that extracts from glioma tissues following cryoablation induced apoptosis via extrinsic pathways in GL261 glioma cells. Furthermore, cryoablated tumor extracts significantly inhibited the migration and proliferation of these cells, which would be related to the inhibition of ERK1/2 pathway and the activation of P38 pathway. Conclusion. Glioma cells surviving in cryoablation undergo intrinsic or extrinsic apoptosis. Augmenting the induction of apoptosis or enhancing the cryosensitization of tumor cells by coupling cryoablation with specific chemotherapy effectively increases the efficiency of this therapeutic treatment. PMID:24818132

  5. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  6. Gene therapy and targeted toxins for glioma.

    PubMed

    Castro, Maria G; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D; Curtin, James F; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Ghulam Muhammad, A K M; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R

    2011-06-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.

  7. Advances in Oncolytic Virus Therapy for Glioma

    PubMed Central

    Haseley, Amy; Alvarez-Breckenridge, Christopher; Chaudhury, Abhik Ray; Kaur, Balveen

    2009-01-01

    The World Health Organization grossly classifies the various types of astrocytomas using a grade system with grade IV gliomas having the worst prognosis. Oncolytic virus therapy is a novel treatment option for GBM patients. Several patents describe various oncolytic viruses used in preclinical and clinical trials to evaluate safety and efficacy. These viruses are natural or genetically engineered from different viruses such as HSV-1, Adenovirus, Reovirus, and New Castle Disease Virus. While several anecdotal studies have indicated therapeutic advantage, recent clinical trials have revealed the safety of their usage, but demonstration of significant efficacy remains to be established. Oncolytic viruses are being redesigned with an interest in combating the tumor microenvironment in addition to defeating the cancerous cells. Several patents describe the inclusion of tumor microenvironment modulating genes within the viral backbone and in particular those which attack the tumor angiotome. The very innovative approaches being used to improve therapeutic efficacy include: design of viruses which can express cytokines to activate a systemic antitumor immune response, inclusion of angiostatic genes to combat tumor vasculature, and also enzymes capable of digesting tumor extra cellular matrix (ECM) to enhance viral spread through solid tumors. As increasingly more novel viruses are being tested and patented, the future battle against glioma looks promising. PMID:19149710

  8. Distinct methylation profiles of glioma subtypes.

    PubMed

    Uhlmann, Karen; Rohde, Klaus; Zeller, Constanze; Szymas, Janusz; Vogel, Siegfried; Marczinek, Karola; Thiel, Gundula; Nürnberg, Peter; Laird, Peter W

    2003-08-10

    Gliomas are tumors of the central nervous system with a wide spectrum of different tumor types. They range from pilocytic astrocytoma, with a generally good prognosis, to the extremely aggressive malignant glioblastoma. In addition to these 2 types of contrasting neoplasms, several other subtypes can be distinguished, each characterized by specific phenotypic, as well as genotypic features. Recently, the epigenotype, as evident from differentially methylated DNA loci, has been proposed to be useful as a further criterion to distinguish between tumor types. In our study, we screened 139 tissue samples, including 33 pilocytic astrocytomas, 46 astrocytomas of different grades, 7 oligoastrocytomas, 10 oligodendrogliomas, 10 glioblastoma multiforme samples and 33 control tissues, for methylation at CpG islands of 15 different gene loci. We used the semiquantitative high throughput method MethyLight to analyze a gene panel comprising ARF, CDKN2B, RB1, APC, CDH1, ESR1, GSTP1, TGFBR2, THBS1, TIMP3, PTGS2, CTNNB1, CALCA, MYOD1 and HIC1. Seven of these loci showed tumor specific methylation changes. We found tissue as well as grade specific methylation profiles. Interestingly, pilocytic astrocytomas showed no evidence of CpG island hypermethylation, but were significantly hypomethylated, relative to control tissues, at MYOD1. Our results show that glioma subtypes have characteristic methylation profiles and, with the exception of pilocytic astrocytomas, show both locus specific hyper- as well as hypomethylation. Copyright 2003 Wiley-Liss, Inc.

  9. Objective tumour heterogeneity determination in gliomas

    NASA Astrophysics Data System (ADS)

    Simon, Dirk; Klein, Jan; Rexilius, Jan; Stieltjes, Bram

    2009-02-01

    Diffusion weighted imaging (DWI) derived apparent diffusion coefficient (ADC) values are known to correlate inversely to tumour cellularity in brain tumours. The average ADC value increases after successful chemotherapy, radiotherapy or a combination of both and can be therewith used as a surrogate marker for treatment response. Moreover, high and low malignant areas can be distinguished. The main purpose of our project was to develop a software platform that enables the automated delineation and ADC quantification of different tumour sections in a fast, objective, user independent manner. Moreover, the software platform allows for an analysis of the probability density of the ADC in high and low malignant areas in ROIs drawn on conventional imaging to create a ground truth. We tested an Expectation Maximization algorithm with a Gaussian mixture model to objectively determine tumour heterogeneity in gliomas because of yielding Gaussian distributions in the different areas. Furthermore, the algorithm was initialized by seed points in the areas of the gross tumour volume and the data indicated that an automatic initialization should be possible. Thus automated clustering of high and low malignant areas and subsequent ADC determination within these areas is possible yielding reproducible ADC measurements within heterogeneous gliomas.

  10. Optic gliomas: radiation therapy and prognosis

    SciTech Connect

    Horwich, A.; Bloom, H.J.G.

    1985-06-01

    A retrospective study was performed of 30 patients with optic gliomas referred to the Royal Marsden Hospital between 1951 and 1981. Twenty-nine of these had progressive disease, and were treated with radiotherapy. At presentation 12 (41%) had visual deficit to the extent of at least one blind eye. Visual acuity improved following treatment in 10 (43%) of 23 evaluable patients, was stable in 11 (48%) and deteriorated in 2 (9%). There was increase in visual fields in 4 (18%) of 22 evaluable patients, and no change in the remaining 18 (82%). The probability of survival was 100% at five years following radiotherapy, and 93% at 10 years and also at 15 years. In view of the substantial morbidity and mortality in reported series, and the tendency for referral of more serious cases to a radiotherapy center, the authors conclude from the results that radiotherapy is effective in preventing progression of optic glioma, and that the treatment early in the course of the disease is indicated to minimize the associated visual deficit.

  11. Survival after stereotactic biopsy of malignant gliomas

    SciTech Connect

    Coffey, R.J.; Lunsford, L.D.; Taylor, F.H.

    1988-03-01

    For many patients with malignant gliomas in inaccessible or functionally important locations, stereotactic biopsy followed by radiation therapy (RT) may be a more appropriate initial treatment than craniotomy and tumor resection. We studied the long term survival in 91 consecutive patients with malignant gliomas diagnosed by stereotactic biopsy: 64 had glioblastoma multiforme (GBM) and 27 had anaplastic astrocytoma (AA). Sixty-four per cent of the GBMs and 33% of the AAs involved deep or midline cerebral structures. The treatment prescribed after biopsy, the tumor location, the histological findings, and the patient's age at presentation (for AAs) were statistically important factors determining patient survival. If adequate RT (tumor dose of 5000 to 6000 cGy) was not prescribed, the median survival was less than or equal to 11 weeks regardless of tumor histology or location. The median survival for patients with deep or midline tumors who completed RT was similar in AA (19.4 weeks) and GBM (27 weeks) cases. Histology was an important predictor of survival only for patients with adequately treated lobar tumors. The median survival in lobar GBM patients who completed RT was 46.9 weeks, and that in lobar AA patients who completed RT was 129 weeks. Cytoreductive surgery had no statistically significant effect on survival. Among the clinical factors examined, age of less than 40 years at presentation was associated with prolonged survival only in AA patients. Constellations of clinical features, tumor location, histological diagnosis, and treatment prescribed were related to survival time.

  12. Photodynamic therapy of recurrent cerebral glioma

    NASA Astrophysics Data System (ADS)

    Zhu, Shu-Gan; Wu, Si-En; Chen, Zong-Qian; Sun, Wei

    1993-03-01

    Photodynamic therapy (PDT) was performed on 11 cases of recurrent cerebral glioma, including 3 cases of recurrent glioblastoma, 7 of recurrent anaplastic astrocytoma, and 1 recurrent ependymoma. Hematoporphyrin derivative (HPD) was administered intravenously at a dose of 4 - 7 mg/kg 5 - 24 hours before the operation. All patients underwent a craniotomy with a nearly radical excision of the tumor following which the tumor bed was irradiated with 630 nm laser light emitting either an argon pumped dye laser or frequency double YAG pumped dye laser for 30 to 80 minutes with a total dose of 50 J/cm2 (n equals 1), 100 J/cm2 (n equals 2), 200 J/cm2 (n equals 7), and 300 J/cm2 (n equals 1). The temperature was kept below 37 degree(s)C by irrigation. Two patients underwent postoperative radiotherapy. There was no evidence of increased cerebral edema, and no other toxicity by the therapy. All patients were discharged from the hospital within 15 days after surgery. We conclude that PDT using 4 - 7 mg/kg of HPD and 630 nm light with a dose of up to 300 J/cm2 can be used as an adjuvant therapy with no additional complications. Adjuvant PDT in the treatment of recurrent glioma is better than simple surgery.

  13. Impact of the coxsackie and adenovirus receptor (CAR) on glioma cell growth and invasion: requirement for the C-terminal domain.

    PubMed

    Huang, Kuo-Cheng; Altinoz, Meric; Wosik, Karolina; Larochelle, Nancy; Koty, Zafiro; Zhu, Lixia; Holland, Paul C; Nalbantoglu, Josephine

    2005-02-20

    Expression of the coxsackie and adenovirus receptor (CAR) is downregulated in malignant glioma cell lines and is barely detectable in high-grade primary astrocytoma (glioblastoma multiforme). We determined the effect of forced CAR expression on the invasion and growth of the human glioma cell line U87-MG, which does not express any CAR. Although retrovirally mediated expression of full-length CAR in U87-MG cells did not affect monolayer growth in vitro, it did reduce glioma cell invasion in a 3-dimensional spheroid model. Furthermore, in xenograft experiments, intracerebral implantation of glioma cells expressing full-length CAR resulted in tumors with a significantly reduced volume compared to tumors generated by control vector-transduced U87-MG cells. In contrast, U87-MG cells expressing transmembrane CAR with a deletion of the entire cytoplasmic domain (except for the first 2 intracellular juxtamembrane cysteine amino acids) had rates of invasion and tumor growth that were similar to those of the control cells. This difference in behavior between the 2 forms of CAR was not due to improper cell surface localization of the cytoplasmically deleted CAR as determined by comparable immunostaining of unpermeabilized cells, equivalent adenoviral transduction of the cells and similar extent of fractionation into lipid-rich domains. Taken together, these results suggest that the decrease or loss of CAR expression in malignant glioma may confer a selective advantage in growth and invasion to these tumors.

  14. Enhanced radiation-induced cytotoxic effect by 2-ME in glioma cells is mediated by induction of cell cycle arrest and DNA damage via activation of ATM pathways.

    PubMed

    Zou, Huichao; Zhao, Shiguang; Zhang, Jianhua; Lv, Gongwei; Zhang, Xu; Yu, Hongwei; Wang, Huibo; Wang, Ligang

    2007-12-14

    Glioblastoma multiform is the most common malignant primary brain tumor in adults, but there remains no effective therapeutic approach. 2-methoxyestradiol (2-ME), which is a naturally occurring metabolite of 17beta-estradiol, was shown to enhance radiotherapeutic effect in certain tumors; however, whether 2-ME can also enhance the sensitivity of glioma cells to radiotherapy remains unknown. The present study, therefore, was to address this issue using two human glioma cell lines (T98G and U251MG). These cells were irradiated with and without 2-ME and then clonogenic assay, apoptosis assay, DNA damage, and cell cycle change were examined. Results showed that 2-ME significantly enhances radiation-induced cell death in both glioma cells, shown by decreasing cell viability and increasing apoptotic cell death. No such radiosensitizing effect was observed if cells pre-treated with Estrodiol, suggesting the specifically radiosensitizing effect of 2-ME rather than a general effect of estrodials. The enhanced radio-cytotoxic effect in glioma cells by 2-ME was found to be associated with its enhancement of G(2)/M arrest and DNA damage, and phosphorylated ATM protein kinases as well as cell cycle checkpoint protein Chk2. Furthermore, inhibition of ATM by ATM inhibitor abolished 2-ME-activated Chk2 and enhanced radio-cytotoxic effects. These results suggest that 2-ME enhancement of the sensitivity of glioma cell lines to radiotherapy is mediated by induction of G2/M cell cycle arrest and increased DNA damage via activation of ATM kinases.

  15. Expression and regulation of prostate apoptosis response-4 (Par-4) in human glioma stem cells in drug-induced apoptosis.

    PubMed

    Jagtap, Jayashree C; Dawood, Parveen; Shah, Reecha D; Chandrika, Goparaju; Natesh, Kumar; Shiras, Anjali; Hegde, Amba S; Ranade, Deepak; Shastry, Padma

    2014-01-01

    Gliomas are the most common and aggressive of brain tumors in adults. Cancer stem cells (CSC) contribute to chemoresistance in many solid tumors including gliomas. The function of prostate apoptosis response-4 (Par-4) as a pro-apoptotic protein is well documented in many cancers; however, its role in CSC remains obscure. In this study, we aimed to explore the role of Par-4 in drug-induced cytotoxicity using human glioma stem cell line--HNGC-2 and primary culture (G1) derived from high grade glioma. We show that among the panel of drugs- lomustine, carmustine, UCN-01, oxaliplatin, temozolomide and tamoxifen (TAM) screened, only TAM induced cell death and up-regulated Par-4 levels significantly. TAM-induced apoptosis was confirmed by PARP cleavage, Annexin V and propidium iodide staining and caspase-3 activity. Knock down of Par-4 by siRNA inhibited cell death by TAM, suggesting the role of Par-4 in induction of apoptosis. We also demonstrate that the mechanism involves break down of mitochondrial membrane potential, down regulation of Bcl-2 and reduced activation of Akt and ERK 42/44. Secretory Par-4 and GRP-78 were significantly expressed in HNGC-2 cells on exposure to TAM and specific antibodies to these molecules inhibited cell death suggesting that extrinsic Par-4 is important in TAM-induced apoptosis. Interestingly, TAM decreased the expression of neural stem cell markers--Nestin, Bmi1, Vimentin, Sox2, and Musashi in HNGC-2 cell line and G1 cells implicating its potential as a stemness inhibiting drug. Based on these data and our findings that enhanced levels of Par-4 sensitize the resistant glioma stem cells to drug-induced apoptosis, we propose that Par-4 may be explored for evaluating anti-tumor agents in CSC.

  16. Experimental therapy of human glioma by means of a genetically engineered virus mutant

    SciTech Connect

    Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. )

    1991-05-10

    Malignant gliomas are the most common malignant brain tumors and are almost always fatal. A thymidine kinase-negative mutant of herpes simplex virus-1 (dlsptk) that is attenuated for neurovirulence was tested as a possible treatment for gliomas. In cell culture, dlsptk killed two long-term human glioma lines and three short-term human glioma cell populations. In nude mice with implanted subcutaneous and subrenal U87 human gliomas, intraneoplastic inoculation of dlsptk caused growth inhibition. In nude mice with intracranial U87 gliomas, intraneoplastic inoculation of dlsptk prolonged survival. Genetically engineered viruses such as dlsptk merit further evaluation as novel antineoplastic agents.

  17. Evodiamine Prevents Glioma Growth, Induces Glioblastoma Cell Apoptosis and Cell Cycle Arrest through JNK Activation.

    PubMed

    Wu, Wen-Shin; Chien, Chih-Chiang; Liu, Kao-Hui; Chen, Yen-Chou; Chiu, Wen-Ta

    2017-01-01

    Evodiamine (EVO) is an active medicinal compound derived from the traditional herbal medicine Evodia rutaecarpa. It has been reported that evodiamine has several beneficial biological properties, including anticancer and anti-inflammatory activities. However, the in vitro and in vivo anticancer activities of EVO against the growth of glioblastoma cells remain undefined. EVO induced significant decreases in the viability of U87 and C6 glioma cells, but not of primary astrocytes, according with the occurrence of apoptotic characteristics including DNA ladders, caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage, and hypodiploid cells. The disruption of the mitochondrial membrane potential (MMP) was detected, and it was found that the peptidyl caspase-9 inhibitor, Z-LEHD-FMK, significantly prevented glioma cells from EVO-induced apoptosis. Increased c-Jun N-terminal kinase (JNK) protein phosphorylation by EVO was observed, and the addition of JNK inhibitors, SP600125 and JNKI inhibited th