Science.gov

Sample records for a20 decreases glioma

  1. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression

    PubMed Central

    Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L.; Olenyuk, Bogdan Z.; Chen, Thomas C.; Hofman, Florence M.; Shih, Jean C.

    2016-01-01

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis. PMID:26871599

  2. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    PubMed

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. Copyright © 2015. Published by Elsevier Inc.

  3. MiR-21 enhanced glioma cells resistance to carmustine via decreasing Spry2 expression.

    PubMed

    Wang, G-B; Liu, J-H; Hu, J; Xue, K

    2017-11-01

    Gliomas are accompanied with high mortality owning to their invasive peculiarity and vulnerability to drug resistance. miR-21 is a vital oncogenic miRNA that regulates drug resistance of tumor cells. This study aims to elucidate the function of miR-21 in human glioma cells resistant to carmustine (BCNU) and to demonstrate the underlying molecular mechanism. BCNU-sensitive cells (SWOZ2 cells) were transfected with miR-21 agomir and negative control, and BCNU-resistance cells (SWOZ2-BCNU cells) were transfected with miR-21 antagomir and negative control. The Real-time fluorescence quantitative PCR was used to detect and compare the levels of miR-21expression between SWOZ2-BCNU and SWOZ2 cells. The drug sensitivity of these cells to BCNU was determined by Cell Counting Kit-8 (CCK-8) assay. The protein expression of Spry2 was detected by Western blotting. The expression level of miR-21 was remarkably higher in SWOZ2-BCNU cells than that in SWOZ2 cells. The half-maximal inhibitory concentration (IC50) of BCNU was obviously higher for SWOZ2-BCNU cells than that for SWOZ2 cells. Besides, we found that aberrant expression of miR-21 in SWOZ2-BCNU cells is responsible for glioma BCNU-resistance. Consistently, Spry2 protein levels were significantly reduced in SWOZ2-BCNU as well as in miR-21 agomir-transfected cells, inversely correlated to miR-21 expression. The results of si-Spry2 co-transfection suggested that the effect of miR-21 on glioma BCNU-resistance is mediated through Spry2. miR-21 enhances the resistance of human glioma cells to BCNU by decreasing the expression of Spry2 protein. Thus, Spry2 may be a novel therapeutic target for treating glioma BCNU-resistance.

  4. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization.

    PubMed

    Goldbrunner, Roland H; Bendszus, Martin; Wood, Jeanette; Kiderlen, Michael; Sasaki, Masato; Tonn, Jörg-Christian

    2004-08-01

    The aim of this study was to test the efficacy of PTK787/ZK222584, an inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, on VEGF-dependent glioma vascularization and growth. C6 rat glioma cells were transfected with VEGF(164) in a sense (V(+)) or antisense (V(-)) direction. Spheroids generated from V(+) or V(-) cells were implanted orthotopically into 60 rat brains. Expression of VEGF and fetal liver kinase-1 (VEGF receptor 2) was assessed immunohistochemically. Animals with V(+) gliomas received orally administered PTK787/ZK222584 on postoperative Day (POD) 1 to 12 or POD 7 to 12. Untreated animals served as negative controls, and animals with V(-) gliomas served as positive controls. Growth and vascularization were evaluated by magnetic resonance imaging and immunohistochemistry. Flk-1 expression was positive within tumor vessels in V(+) gliomas, whereas all C6 clones were negative for fetal liver kinase-1 in vitro. Early (POD 1-12) and delayed (POD 7-12) application of PTK787/ZK222584 in V(+) glioma-bearing animals resulted in a significant reduction of tumor size (71% and 36%, P < 0.05) as measured by magnetic resonance imaging volumetry. Early treated V(+) gliomas reached similar volumes compared with V(-) gliomas. Vessel density was significantly reduced (42.3% and 25.7%, P < 0.05), and areas of intratumoral necrosis were enlarged (by 1.7-fold after early treatment). Additionally, proliferation was decreased by 89% and 72% (P < 0.05). There was no growth-inhibiting effect of PTK787/ZK222584 on V(-) cells observed. PTK787/ZK222584 significantly halted VEGF-mediated glioma growth by inhibition of neovascularization and proliferation, providing a promising new tool in malignant glioma therapy.

  5. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance.

    PubMed

    Yang, Wei; Wei, Jing; Guo, Tiantian; Shen, Yueming; Liu, Fenju

    2014-08-01

    Glioma contains abundant hypoxic regions which provide niches to promote the maintenance and expansion of glioma stem cells (GSCs), which are resistant to conventional therapies and responsible for recurrence. Given the fact that miR-210 plays a vital role in cellular adaption to hypoxia and in stem cell survival and stemness maintenance, strategies correcting the aberrantly expressed miR-210 might open up a new therapeutic avenue to hypoxia GSCs. In the present study, to explore the possibility of miR-210 as an effective therapeutic target to hypoxic GSCs, we employed a lentiviral-mediated anti-sense miR-210 gene transfer technique to knockdown miR-210 expression and analyze phenotypic changes in hypoxic U87s and SHG44s cells. We found that hypoxia led to an increased HIF-2α mRNA expression and miR-210 expression in GSCs. Knockdown of miR-210 decreased neurosphere formation capacity, stem cell marker expression and cell viability, and induced differentiation and G0/G1 arrest in hypoxic GSCs by partially rescued Myc antagonist (MNT) protein expression. Knockdown of MNT could reverse the gene expression changes and the growth inhibition resulting from knockdown of miR-210 in hypoxic GSCs. Moreover, knockdown of miR-210 led to increased apoptotic rate and Caspase-3/7 activity and decreased invasive capacity, reactive oxygen species (ROS) and lactate production and radioresistance in hypoxic GSCs. These findings suggest that miR-210 might be a potential therapeutic target to eliminate GSCs located in hypoxic niches. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    SciTech Connect

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael

    2005-11-04

    PTEN is a tumor suppressor gene whose loss of function is observed in {approx}40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with themore » PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN.« less

  7. Overexpression of SASH1 related to the decreased invasion ability of human glioma U251 cells.

    PubMed

    Yang, Liu; Liu, Mei; Gu, Zhikai; Chen, Jianguo; Yan, Yaohua; Li, Jian

    2012-12-01

    The purpose of this study was to investigate the impact of SAM- and SH3-domain containing 1 (SASH1) on the biological behavior of glioma cells, including its effects on cellular growth, proliferation, apoptosis, invasion, and metastasis, and thereby to provide an experimental basis for future therapeutic treatments. A pcDNA3.1-SASH1 eukaryotic expression vector was constructed and transfected into the U251 human glioma cell line. Using the tetrazolium-based colorimetric (MTT) assay, flow cytometry analyses, transwell invasion chamber experiments, and other methods, we examined the impact of SASH1 on the biological behaviors of U251 cells, including effects on viability, cell cycle, apoptosis, and invasion. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, and other proteins was observed. Compared to the empty vector and blank control groups, the pcDNA3.1-SASH1 group of U251 cells exhibited significantly reduced cell viability, proliferation, and invasion (p < 0.05), although there was no difference between the empty vector and blank control groups. The pcDNA3.1-SASH1 group demonstrated a significantly higher apoptotic index than did the empty vector and blank control groups (p < 0.05), and the percentage of apoptotic cells was similar between the empty vector and blank control groups. In addition, the pcDNA3.1-SASH1 group expressed significantly lower protein levels of cyclin D1 and MMP-2/9 compared to the control and empty vector groups (p < 0.05) and significantly higher protein levels of caspase-3 than the other two groups (p < 0.05). Cyclin D1, caspase-3, and MMP-2/9 expression was unchanged between the empty vector and blank control groups. SASH1 gene expression might be related to the inhibition of the growth, proliferation, and invasion of U251 cells and the promotion of U251 cells apoptosis.

  8. Steroids decrease uptake of carboplatin in rat gliomas--uptake improved by intracarotid infusion of bradykinin analog, RMP-7.

    PubMed

    Matsukado, K; Nakano, S; Bartus, R T; Black, K L

    1997-09-01

    A blood-tumor barrier (BTB) limits delivery of antitumor agents to brain tumors. This study sought to determine whether dexamethasone (DXN) treatment of rats with intracranial gliomas would 1) further impair delivery of carboplatin to brain tumors, and 2) whether intracarotid infusion of the bradykinin analog, RMP-7, would improve delivery during concurrent DXN treatment. Wistar rats with RG2 gliomas were utilized and a unidirectional transport, Ki, of radiolabeled [14C] carboplatin was determined using quantitative autoradiography. In DXN pretreatment animals, 3 mg/kg/day of DXN was administered intraperitoneally for 3 days prior to Ki determinations. At 10 days after tumor implantation, Ki of [14C] carboplatin into DXN-treated tumors and brain surrounding tumor (BST) was significantly lower compared to non-DXN treated tumors and BST (3.30 +/- 0.91 vs. 4.47 +/- 1.80, p < 0.05, and 0.94 +/- 0.84 vs. 2.18 +/- 0.79, p < 0.05, respectively). Intracarotid infusion of RMP-7 (0.1 mg/kg/min) significantly increased the Ki for carboplatin in DXN-treated tumors (6.35 +/- 3.10 vs. 3.30 +/- 0.91, p < 0.01), however, RMP-7 increased Ki to a greater extent in tumors not pretreated with DXN (12.07 +/- 3.60 vs. 4.47 +/- 1.80, p < 0.0001). Our studies show that dexamethasone decreases transport of carboplatin into brain tumors. Intracarotid infusion of RMP-7 selectively increases carboplatin transport to tumors.

  9. Decreasing Sports Activity with Increasing Age? Findings from a 20-Year Longitudinal and Cohort Sequence Analysis

    ERIC Educational Resources Information Center

    Breuer, Christoph; Wicker, Pamela

    2009-01-01

    According to cross-sectional studies in sport science literature, decreasing sports activity with increasing age is generally assumed. In this paper, the validity of this assumption is checked by applying more effective methods of analysis, such as longitudinal and cohort sequence analyses. With the help of 20 years' worth of data records from the…

  10. Decreasing sports activity with increasing age? Findings from a 20-year longitudinal and cohort sequence analysis.

    PubMed

    Breuer, Christoph; Wicker, Pamela

    2009-03-01

    According to cross-sectional studies in sport science literature, decreasing sports activity with increasing age is generally assumed. In this paper, the validity of this assumption is checked by applying more effective methods of analysis, such as longitudinal and cohort sequence analyses. With the help of 20 years' worth of data records from the German SocioEconomic Panel, the development of sports activity over a lifespan is analyzed. According to inadequate cross-sectional analyses, sports activity decreases with increasing age. In contrast, longitudinal analyses show that sports activity increases with increasing age. Furthermore, cohort sequence analyses indicate that not only age but also cohort and period effects influence sports activity. Thus, different methods of analysis reveal opposite results.

  11. Steroids decrease uptake of carboplatin in rat gliomas--uptake improved by intracarotid infusion of bradykinin analog, RMP-7.

    PubMed

    Matsukado, K; Nakano, S; Bartus, R T; Black, K L

    1997-01-01

    This study sought to determine whether dexamethasone (DXN) treatment of rats with intracranial gliomas would 1) further impair delivery of carboplatin to brain tumors, and 2) whether intracarotid infusion of the bradykinin analog, RMP-7, would improve delivery during concurrent DXN treatment. In DXN pretreated animals, 3 mg/kg/day of DXN was administered intraperitoneally for 3 days prior to Ki determinations. Ki of [14C] carboplatin into DXN-treated tumors and brain surrounding tumor (BST) was significantly lower compared to non-DXN treated tumors and BST (3.30 +/- 0.91 vs. 4.47 +/- 1.80, p < 0.05, and 0.94 +/- 0.84 vs. 2.18 +/- 0.79, p < 0.05, respectively). Intracarotid infusion of RMP-7 significantly increased the Ki for carboplatin in DXN-treated tumors (6.35 +/- 3.10 vs. 3.30 +/- 0.91, p < 0.01), however, RMP-7 increased Ki to a greater extent in tumors not pretreated with DXN (12.07 +/- 3.60 vs. 4.47 +/- 1.80, p < 0.0001). Dexamethasone decreases transport of carboplatin into brain tumors. Intracarotid infusion of RMP-7 selectively increases carboplatin transport to tumors.

  12. Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo.

    PubMed

    Joel, Mrinal; Mughal, Awais A; Grieg, Zanina; Murrell, Wayne; Palmero, Sheryl; Mikkelsen, Birthe; Fjerdingstad, Hege B; Sandberg, Cecilie J; Behnan, Jinan; Glover, Joel C; Langmoen, Iver A; Stangeland, Biljana

    2015-06-17

    Glioblastomas are invasive therapy resistant brain tumors with extremely poor prognosis. The Glioma initiating cell (GIC) population contributes to therapeutic resistance and tumor recurrence. Targeting GIC-associated gene candidates could significantly impact GBM tumorigenicity. Here, we investigate a protein kinase, PBK/TOPK as a candidate for regulating growth, survival and in vivo tumorigenicity of GICs. PBK is highly upregulated in GICs and GBM tissues as shown by RNA and protein analyses. We knocked down PBK using shRNA vectors and inhibited the function of PBK protein with a pharmacological PBK inhibitor, HITOPK-032. We assessed viability, tumorsphere formation and apoptosis in three patient derived GIC cultures. Gene knockdown of PBK led to decreased viability and sphere formation and in one culture an increase in apoptosis. Treatment of cells with inhibitor HITOPK-032 (5 μM and 10 μM) almost completely abolished growth and elicited a large increase in apoptosis in all three cultures. HI-TOPK-032 treatment (5 mg/kg and 10 mg/kg bodyweight) in vivo resulted in diminished growth of experimentally induced subcutaneous GBM tumors in mice. We also carried out multi-culture assays of cell survival to investigate the relative effects on GICs compared with the normal neural stem cells (NSCs) and their differentiated counterparts. Normal NSCs seemed to withstand treatment slightly better than the GICs. Our study of identification and functional validation of PBK suggests that this candidate can be a promising molecular target for GBM treatment.

  13. Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma.

    PubMed

    Ahsan, Sama; Raabe, Eric H; Haffner, Michael C; Vaghasia, Ajay; Warren, Katherine E; Quezado, Martha; Ballester, Leomar Y; Nazarian, Javad; Eberhart, Charles G; Rodriguez, Fausto J

    2014-06-03

    Diffuse intrinsic pontine glioma (DIPG) is a malignant pediatric brain tumor associated with dismal outcome. Recent high-throughput molecular studies have shown a high frequency of mutations in histone-encoding genes (H3F3A and HIST1B) and distinctive epigenetic alterations in these tumors. Epigenetic alterations described in DIPG include global DNA hypomethylation. In addition to the generally repressive methylcytosine DNA alteration, 5-hydroxymethylation of cytosine (5hmC) is recognized as an epigenetic mark associated with active chromatin. We hypothesized that in addition to alterations in DNA methylation, that there would be changes in 5hmC. To test this hypothesis, we performed immunohistochemical studies to compare epigenetic alterations in DIPG to extrapontine adult and pediatric glioblastoma (GBM) and normal brain. A total of 124 tumors were scored for histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 9 trimethylation (H3K9me3) and 104 for 5hmC and 5-methylcytosine (5mC). An H-score was derived by multiplying intensity (0-2) by percentage of positive tumor nuclei (0-100%). We identified decreased H3K27me3 in the DIPG cohort compared to pediatric GBM (p < 0.01), adult GBM (p < 0.0001) and normal brain (p < 0.0001). H3K9me3 was not significantly different between tumor types. Global DNA methylation as measured by 5mC levels were significantly lower in DIPG compared to pediatric GBM (p < 0.001), adult GBM (p < 0.01), and normal brain (p < 0.01). Conversely, 5hmC levels were significantly higher in DIPG compared to pediatric GBM (p < 0.0001) and adult GBM (p < 0.0001). Additionally, in an independent set of DIPG tumor samples, TET1 and TET3 mRNAs were found to be overexpressed relative to matched normal brain. Our findings extend the immunohistochemical study of epigenetic alterations in archival tissue to DIPG specimens. Low H3K27me3, decreased 5mC and increased 5hmC are characteristic of DIPG in comparison

  14. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.

    PubMed

    Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian

    2013-10-14

    MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.

  15. Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults.

    PubMed

    Cheng, Liqing; Zhang, Dongmei; Jiang, Youzhao; Deng, Wuquan; Wu, Qi'nan; Jiang, Xiaoyan; Chen, Bing

    2014-12-01

    A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P<0.05). Furthermore, A20 mRNA and protein expression was significantly lower in newly diagnosed T2D patients (≤1 year since diagnosis) than in patients with a long T2D duration (>1 year since diagnosis) (P<0.05). Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Decreased survival of glioma patients with astrocytoma grade IV (glioblastoma multiforme) associated with long-term use of mobile and cordless phones.

    PubMed

    Carlberg, Michael; Hardell, Lennart

    2014-10-16

    On 31 May 2011 the WHO International Agency for Research on Cancer (IARC) categorised radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e., a "possible", human carcinogen. A causal association would be strengthened if it could be shown that the use of wireless phones has an impact on the survival of glioma patients. We analysed survival of 1678 glioma patients in our 1997-2003 and 2007-2009 case-control studies. Use of wireless phones in the >20 years latency group (time since first use) yielded an increased hazard ratio (HR) = 1.7, 95% confidence interval (CI) = 1.2-2.3 for glioma. For astrocytoma grade IV (glioblastoma multiforme; n = 926) mobile phone use yielded HR = 2.0, 95% CI = 1.4-2.9 and cordless phone use HR = 3.4, 95% CI = 1.04-11 in the same latency category. The hazard ratio for astrocytoma grade IV increased statistically significant per year of latency for wireless phones, HR = 1.020, 95% CI = 1.007-1.033, but not per 100 h cumulative use, HR = 1.002, 95% CI = 0.999-1.005. HR was not statistically significant increased for other types of glioma. Due to the relationship with survival the classification of IARC is strengthened and RF-EMF should be regarded as human carcinogen requiring urgent revision of current exposure guidelines.

  17. Decreased Survival of Glioma Patients with Astrocytoma Grade IV (Glioblastoma Multiforme) Associated with Long-Term Use of Mobile and Cordless Phones

    PubMed Central

    Carlberg, Michael; Hardell, Lennart

    2014-01-01

    On 31 May 2011 the WHO International Agency for Research on Cancer (IARC) categorised radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e., a “possible”, human carcinogen. A causal association would be strengthened if it could be shown that the use of wireless phones has an impact on the survival of glioma patients. We analysed survival of 1678 glioma patients in our 1997–2003 and 2007–2009 case-control studies. Use of wireless phones in the >20 years latency group (time since first use) yielded an increased hazard ratio (HR) = 1.7, 95% confidence interval (CI) = 1.2–2.3 for glioma. For astrocytoma grade IV (glioblastoma multiforme; n = 926) mobile phone use yielded HR = 2.0, 95% CI = 1.4–2.9 and cordless phone use HR = 3.4, 95% CI = 1.04–11 in the same latency category. The hazard ratio for astrocytoma grade IV increased statistically significant per year of latency for wireless phones, HR = 1.020, 95% CI = 1.007–1.033, but not per 100 h cumulative use, HR = 1.002, 95% CI = 0.999–1.005. HR was not statistically significant increased for other types of glioma. Due to the relationship with survival the classification of IARC is strengthened and RF-EMF should be regarded as human carcinogen requiring urgent revision of current exposure guidelines. PMID:25325361

  18. Combination of photodynamic therapy and temozolomide on glioma in a rat C6 glioma model.

    PubMed

    Zhang, Xiaoming; Guo, Mian; Shen, Lei; Hu, Shaoshan

    2014-12-01

    For glioma, temozolomide (TMZ) is a commonly used chemotherapy drug and photodynamic therapy (PDT) is an important adjuvant therapy. The aim of this study was to evaluate the effect of their combination for the treatment of glioma. A rat C6 glioma model using male Wistar rats (n=180) weighing 280-300 g was established. Glioma-bearing rats (n=100) were treated with mock, hematoporphyrin monomethyl ether (HMME), laser or PDT. The expression of P-glycoprotein (P-gp) in endothelial cells of the blood-tumor-barrier and in glioma tissues was detected using immunohistochemistry and western blot, respectively. Glioma-bearing rats (n=40) were treated with normal saline, TMZ (60 mg/m(2) for five consecutive days), PDT (630 nm for 10 min) or a combination of TMZ and PDT. TMZ concentration in glioma tissues was detected using liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) and cell death was observed using transmission microscopy. Concurrently, another batch of 40 glioma-bearing rats was subjected to the same treatment, and the survival of these rats was estimated using Kaplan-Meier analysis. PDT significantly decreased the expression of P-gp in endothelial cells comprising the blood-tumor-barrier and in glioma tissues. The combination of TMZ with PDT significantly increased TMZ concentration in glioma tissues, enhanced glioma cell apoptosis and prolonged the median survival of glioma-bearing rats. The combination of PDT with TMZ shows synergistic effect in rat C6 glioma model, indicating its potential clinical use in glioma treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Focal brainstem gliomas

    PubMed Central

    Sabbagh, Abdulrahman J.; Alaqeel, Ahmed M.

    2015-01-01

    Improved neuronavigation guidance as well as intraoperative imaging and neurophysiologic monitoring technologies have enhanced the ability of neurosurgeons to resect focal brainstem gliomas. In contrast, diffuse brainstem gliomas are considered to be inoperable lesions. This article is a continuation of an article that discussed brainstem glioma diagnostics, imaging, and classification. Here, we address open surgical treatment of and approaches to focal, dorsally exophytic, and cervicomedullary brainstem gliomas. Intraoperative neuronavigation, intraoperative neurophysiologic monitoring, as well as intraoperative imaging are discussed as adjunctive measures to help render these procedures safer, more acute, and closer to achieving surgical goals. PMID:25864061

  20. Optic glioma

    MedlinePlus

    ... eyes that starts with the loss of peripheral vision and eventually leads to blindness The child may show symptoms of diencephalic syndrome, which includes: Daytime sleeping Decreased memory and brain function Headaches Delayed growth Loss of ...

  1. Epigenetic dysregulation in glioma

    PubMed Central

    Kondo, Yutaka; Katsushima, Keisuke; Ohka, Fumiharu; Natsume, Atsushi; Shinjo, Keiko

    2014-01-01

    Given that treatment options for patients with glioblastoma are limited, much effort has been made to clarify the underlying mechanisms of gliomagenesis. Recent genome-wide genomic and epigenomic analyses have revealed that mutations in epigenetic modifiers occur frequently in gliomas and that dysregulation of epigenetic mechanisms is closely associated with glioma formation. Given that epigenetic changes are reversible, understanding the epigenetic abnormalities that arise in gliomagenesis might be key to developing more effective treatment strategies for glioma. In this review, we focus on the recent advancements in epigenetic research with respect to gliomas, consider how epigenetic mechanisms dynamically regulate tumor cells, including the cancer stem cell population, and discuss perspectives and challenges for glioma treatment in the near future. PMID:24843883

  2. Therapeutic significance of estrogen receptor β agonists in gliomas

    PubMed Central

    Sareddy, Gangadhara R; Nair, Binoj C.; Gonugunta, Vijay K.; Zhang, Quan-guang; Brenner, Andrew; Brann, Darrell W.; Tekmal, Rajeshwar Rao; Vadlamudi, Ratna K.

    2013-01-01

    Gliomas are the most common and devastating central nervous system neoplasms. A gender bias exists in their development: females are at lower risk than males, implicating estrogen-mediated protective effects. Estrogen functions are mediated by two ER subtypes: ERα, that functions as tumor promoter and ERβ that function as tumor suppressor. We examined the potential use of ERβ agonists as a novel therapeutic to curb the growth of gliomas. Western analysis of six glioma model cells showed detectable expression of ERβ with little or no ERα. Treatment of glioma cells with ERβ agonists resulted in significant decrease in proliferation. IHC analysis of tumor tissues revealed that ERβ expression is down regulated in high-grade gliomas. We found that ERβ agonists promote both expression and tumor suppressive functions of ERβ in glioma cells. Liquiritigenin, a plant-derived ERβ agonist significantly reduced in vivo tumor growth in a xenograft model. Compared to control mice, animals treated with liquiritigenin had greater than 50% reduction in tumor volume and size. IHC analysis of tumors revealed a significant increase in the nuclear ERβ expression with a concomitant decrease in cell proliferation in the liquiritigenin-treated group. Our results suggest that ERβ signaling has a tumor suppressive function in gliomas. Since ERβ agonists are currently in clinical trials and are well tolerated with fewer side effects, identification of an ERβ agonist as a therapeutic agent can be readily extended to clinical use with current chemotherapies, providing an additional tool for enhancing survival in glioma patients. PMID:22442308

  3. Pathophysiology of glioma cyst formation.

    PubMed

    Adn, Mahmoudreza; Saikali, Stephan; Guegan, Yvon; Hamlat, Abderrahmane

    2006-01-01

    Fluid filled cystic cavities are accompaniments of some cerebral gliomas. These tumoural cysts together with peritumoural vasogenic brain oedema add to the morbid effects of the gliomas in terms of mass effect and increased intracranial pressure. Although different mechanisms have been suggested as to the pathogenesis of glioma-associated cysts, it is still unclear why these cysts appear in only a limited number of cerebral gliomas while brain oedema, a probable precursor of glioma cysts, is a usual accompaniment of most gliomas. Here, the authors present a two-hit hypothesis of brain glioma cyst formation. We suggest that after the formation of vasogenic tumoural brain oedema, microvascular phenomena may lead to the formation of microcysts, which might later become confluent and grow to form macroscopic cysts. Progress in the understanding of pathogenesis of cerebral glioma cysts might set targets for treatment of brain edema and glioma cysts.

  4. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain.

    PubMed

    Zagzag, David; Salnikow, Konstantin; Chiriboga, Luis; Yee, Herman; Lan, Li; Ali, M Aktar; Garcia, Roberto; Demaria, Sandra; Newcomb, Elizabeth W

    2005-03-01

    Invasion into surrounding brain tissue is a fundamental feature of gliomas and the major reason for treatment failure. The process of brain invasion in gliomas is not well understood. Differences in gene expression and/or gene products between invading and noninvading glioma cells may identify potential targets for new therapies. To look for genes associated with glioma invasion, we first employed Affymetrix microarray Genechip technology to identify genes differentially expressed in migrating glioma cells in vitro and in invading glioma cells in vivo using laser capture microdissection. We observed upregulation of a variety of genes, previously reported to be linked to glioma cell migration and invasion. Remarkably, major histocompatiblity complex (MHC) class I and II genes were significantly downregulated in migrating cells in vitro and in invading cells in vivo. Decreased MHC expression was confirmed in migrating glioma cells in vitro using RT-PCR and in invading glioma cells in vivo by immunohistochemical staining of human and murine glioblastomas for beta2 microglobulin, a marker of MHC class I protein expression. To the best of our knowledge, this report is the first to describe the downregulation of MHC class I and II antigens in migrating and invading glioma cells, in vitro and in vivo, respectively. These results suggest that the very process of tumor invasion is associated with decreased expression of MHC antigens allowing glioma cells to invade the surrounding brain in a 'stealth'-like manner.

  5. An integrated transcriptomic and computational analysis for biomarker identification in human glioma.

    PubMed

    Xing, Wenli; Zeng, Chun

    2016-06-01

    Malignant glioma is one of the most common primary brain tumors and is among the deadliest of human cancers. The molecular mechanism for human glioma is poorly understood. Early prognosis of this disease and early treatment are vital. Thus, it is crucial to target the key genes controlling pathogenesis in the early stage of glioma. In this study, differentially expressed genes in human glioma and paired peritumoral tissues were detected by transcriptome microarray analysis. Following gene microarray analysis, the gene expression profile in the differential grade glioma was further validated by bioinformatic analyses, co-expression network construction. Microarray analysis revealed that 1725 genes were differentially expressed and classified into different glioma stage. The analysis revealed 14 genes that were significantly associated with survival with a false discovery rate. Among these genes, macrophage capping protein (CAPG), a member of the actin-regulatory protein, was the key gene in a 20-gene network that modulates cell motility by interacting with the cytoskeleton. Furthermore, the prognostic impact of CAPG was validated by use of quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry on human glioma tissue. CAPG protein was significantly upregulated in clinical high-grade glioblastoma as compared with normal brain tissues. Overexpression of CAPG levels also predict shorter overall survival of glioma patients. These data demonstrated CAPG protein expression in human glioma was associated with tumorigenesis and may be a biomarker for identification of the pathological grade of glioma.

  6. TCGA_LowerGradeGliomas

    Cancer.gov

    TCGA researchers analyzed nearly 300 cases of diffuse low- and intermediate-grade gliomas, which together comprise lower-grade gliomas. LGGs occur mainly in adults and include astrocytomas, oligodendrogliomas and oligoastrocytomas.

  7. Temozolomide in malignant gliomas.

    PubMed

    Yung, W K

    2000-06-01

    Glioblastoma multiforme and anaplastic astrocytoma are the most common primary central nervous system malignancies and are the major cause of morbidity/ mortality despite combined modality approaches. Temozolomide (TMZ), a novel, oral, second-generation alkylating agent, has demonstrated antitumor activity against a broad range of solid tumors and highly resistant malignancies, including high-grade glioma Temozolomide does not require hepatic metabolism for activation, rapidly penetrates the cerebrospinal fluid, and consistently demonstrates reproducible linear pharmacokinetics with approximately 100% oral bioavailability. In preliminary clinical studies, TMZ has demonstrated meaningful efficacy and an acceptable safety profile in the treatment of patients with malignant glioma. These results have been recently confirmed in three open-label, multi-institutional studies that evaluated the use of TMZ in 525 malignant glioma patients. These studies represent the largest evaluation of a single agent in patients with recurrent malignant gliomas and were rigorously controlled with strict, prospectively defined criteria for assessment of tumor response, central review of histology, and validated instruments to assess health-related quality of life. Temozolomide was effective in delaying disease progression and maintaining health-related quality of life. Temozolomide represents a promising new agent in the treatment of malignant glioma.

  8. A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas

    ClinicalTrials.gov

    2018-03-07

    Pilomyxoid Astrocytoma; Pilocytic Astrocytoma; Glioma, Astrocytic; Optic Nerve Glioma; Pleomorphic Xanthoastrocytoma; Glioblastoma Multiforme; Anaplastic Astrocytoma; Gliosarcoma; Diffuse Intrinsic Pontine Glioma; DIPG; Low-grade Glioma; Brainstem Glioma

  9. Metabolic Reprogramming in Glioma.

    PubMed

    Strickland, Marie; Stoll, Elizabeth A

    2017-01-01

    Many cancers have long been thought to primarily metabolize glucose for energy production-a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid

  10. Metabolic Reprogramming in Glioma

    PubMed Central

    Strickland, Marie; Stoll, Elizabeth A.

    2017-01-01

    Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid

  11. Methionine and cystine double deprivation stress suppresses glioma proliferation via inducing ROS/autophagy.

    PubMed

    Liu, Huailei; Zhang, Weiguang; Wang, Kaikai; Wang, Xiaoxiong; Yin, Fei; Li, Chenguang; Wang, Chunlei; Zhao, Boxian; Zhong, Chen; Zhang, Jiakang; Peng, Fei; Bi, Yunke; Shen, Chen; Hou, Xu; Zhang, Daming; Liu, Yaohua; Ai, Jing; Zhao, Shiguang

    2015-01-22

    Cancer cells are highly dependent on methionine and cystine (Met-Cys) for survival and proliferation. However, the molecular mechanism is not fully clear. The present study is to investigate the effects of Met-Cys deprivation on glioma cells proliferation. The results showed that Met-Cys double deprivation had synergistic action on elevating ROS level, decreased GSH level and inhibition of glioma cell proliferation. Moreover, both of them deprivation triggered autophagy of glioma cells both in vitro and in vivo. Importantly, Met-Cys double restriction diet inhibited growth of glioma. These results provided a new regulation mechanism of Met-Cys metabolism on affecting glioma cell proliferation, suggesting that targeting Met-Cys metabolism may be a potential strategy for glioma therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Light-controlled inhibition of malignant glioma by opsin gene transfer

    PubMed Central

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  13. Therapeutic significance of estrogen receptor β agonists in gliomas.

    PubMed

    Sareddy, Gangadhara R; Nair, Binoj C; Gonugunta, Vijay K; Zhang, Quan-guang; Brenner, Andrew; Brann, Darrell W; Tekmal, Rajeshwar Rao; Vadlamudi, Ratna K

    2012-05-01

    Gliomas are the most common and devastating central nervous system neoplasms. A gender bias exists in their development: females are at lower risk than males, implicating estrogen-mediated protective effects. Estrogen functions are mediated by two estrogen receptor (ER) subtypes: ERα, which functions as tumor promoter, and ERβ, which functions as tumor suppressor. We examined the potential use of ERβ agonists as a novel therapeutic to curb the growth of gliomas. Western analysis of six glioma model cells showed detectable expression of ERβ with little or no ERα. Treatment of glioma cells with ERβ agonists resulted in significant decrease in proliferation. Immunohistochemical analysis of tumor tissues revealed that ERβ expression is downregulated in high-grade gliomas. We found that ERβ agonists promote both expression and tumor-suppressive functions of ERβ in glioma cells. Liquiritigenin, a plant-derived ERβ agonist significantly reduced in vivo tumor growth in a xenograft model. Compared with control mice, animals treated with liquiritigenin had greater than 50% reduction in tumor volume and size. Immunohistochemical analysis of tumors revealed a significant increase in the nuclear ERβ expression with a concomitant decrease in cell proliferation in the liquiritigenin-treated group. Our results suggest that ERβ signaling has a tumor-suppressive function in gliomas. Because ERβ agonists are currently in clinical trials and are well tolerated with fewer side effects, identification of an ERβ agonist as a therapeutic agent can be readily extended to clinical use with current chemotherapies, providing an additional tool for enhancing survival in glioma patients. ©2012 AACR

  14. Microglia immunophenotyping in gliomas.

    PubMed

    Annovazzi, Laura; Mellai, Marta; Bovio, Enrica; Mazzetti, Samanta; Pollo, Bianca; Schiffer, Davide

    2018-01-01

    Microglia, once assimilated to peripheral macrophages, in gliomas has long been discussed and currently it is hypothesized to play a pro-tumor role in tumor progression. Uncertain between M1 and M2 polarization, it exchanges signals with glioma cells to create an immunosuppressive microenvironment and stimulates cell proliferation and migration. Four antibodies are currently used for microglia/macrophage identification in tissues that exhibit different cell forms and cell localization. The aim of the present work was to describe the distribution of the different cell forms and to deduce their significance on the basis of what is known on their function from the literature. Normal resting microglia, reactive microglia, intermediate and bumpy forms and macrophage-like cells can be distinguished by Iba1, CD68, CD16 and CD163 and further categorized by CD11b, CD45, c-MAF and CD98. The number of microglia/macrophages strongly increased from normal cortex and white matter to infiltrating and solid tumors. The ramified microglia accumulated in infiltration areas of both high- and low-grade gliomas, when hypertrophy and hyperplasia occur. In solid tumors, intermediate and bumpy forms prevailed and there is a large increase of macrophage-like cells in glioblastoma. The total number of microglia cells did not vary among the three grades of malignancy, but macrophage-like cells definitely prevailed in high-grade gliomas and frequently expressed CD45 and c-MAF. CD98 + cells were present. Microglia favors tumor progression, but many aspects suggest that the phagocytosing function is maintained. CD98 + cells can be the product of fusion, but also of phagocytosis. Microglia correlated with poorer survival in glioblastoma, when considering CD163 + cells, whereas it did not change prognosis in isocitrate dehydrogenase-mutant low grade gliomas.

  15. Microglia immunophenotyping in gliomas

    PubMed Central

    Annovazzi, Laura; Mellai, Marta; Bovio, Enrica; Mazzetti, Samanta; Pollo, Bianca; Schiffer, Davide

    2018-01-01

    Microglia, once assimilated to peripheral macrophages, in gliomas has long been discussed and currently it is hypothesized to play a pro-tumor role in tumor progression. Uncertain between M1 and M2 polarization, it exchanges signals with glioma cells to create an immunosuppressive microenvironment and stimulates cell proliferation and migration. Four antibodies are currently used for microglia/macrophage identification in tissues that exhibit different cell forms and cell localization. The aim of the present work was to describe the distribution of the different cell forms and to deduce their significance on the basis of what is known on their function from the literature. Normal resting microglia, reactive microglia, intermediate and bumpy forms and macrophage-like cells can be distinguished by Iba1, CD68, CD16 and CD163 and further categorized by CD11b, CD45, c-MAF and CD98. The number of microglia/macrophages strongly increased from normal cortex and white matter to infiltrating and solid tumors. The ramified microglia accumulated in infiltration areas of both high- and low-grade gliomas, when hypertrophy and hyperplasia occur. In solid tumors, intermediate and bumpy forms prevailed and there is a large increase of macrophage-like cells in glioblastoma. The total number of microglia cells did not vary among the three grades of malignancy, but macrophage-like cells definitely prevailed in high-grade gliomas and frequently expressed CD45 and c-MAF. CD98+ cells were present. Microglia favors tumor progression, but many aspects suggest that the phagocytosing function is maintained. CD98+ cells can be the product of fusion, but also of phagocytosis. Microglia correlated with poorer survival in glioblastoma, when considering CD163+ cells, whereas it did not change prognosis in isocitrate dehydrogenase-mutant low grade gliomas. PMID:29399160

  16. Repeat prostate-specific antigen (PSA) test before prostate biopsy: a 20% decrease in PSA values is associated with a reduced risk of cancer and particularly of high-grade cancer.

    PubMed

    De Nunzio, Cosimo; Lombardo, Riccardo; Nacchia, Antonio; Tema, Giorgia; Tubaro, Andrea

    2018-03-13

    To analyse the impact of repeating a prostate-specific antigen (PSA) level assessment on prostate biopsy decision in a cohort of men undergoing prostate biopsy. From 2015 onwards, we consecutively enrolled, at a single institution in Italy, men undergoing 12-core transrectal ultrasonography-guided prostate needle biopsy. Indication for prostate biopsy was a PSA level of ≥4 ng/mL. Demographic, clinical, and histopathological data were collected. The PSA level was tested at enrolment (PSA 1 ) and 4 weeks later on the day before biopsy (PSA 2 ). Variations in PSA level were defined as: stable PSA 2 within a 10% variation, stable PSA 2 within a 20% variation, PSA 2 decreased by ≥10%, PSA 2 decreased by ≥20%, PSA 2 increased by ≥10%, PSA 2 increased by ≥20%, and PSA 2 <4 ng/mL. Percentages and multinomial logistic regression were used to analyse biopsy outcomes. High-grade cancer was defined as Grade group ≥3. Overall, 331 patients were enrolled. Prostate cancer was diagnosed in 153/331 (46%) patients and of them 80/153 (52%) had high-grade disease. When compared to the rest of the population, patients with a stable PSA within 20% variation had a higher risk of prostate cancer (odds ratio [OR] 1.80, P < 0.05) and high grade disease (OR 2.56, P < 0.05), patients with a PSA2 decreased by ≥20% had a lower risk of prostate cancer (OR 0.37, P < 0.05) and high grade disease (OR 0.13, P < 0.05), whilst patients with a PSA2 increased by ≥10% had an increased risk of high-grade prostate cancer (OR 1.93, P < 0.05). When PSA returned to normal values (<4 ng/mL) both risks of prostate cancer and high-grade disease were reduced (OR 0.33 and 0.01, respectively, P = 0.001). In a cohort of Italian men undergoing prostate biopsy, a reduction of ≥20% in PSA levels significantly reduced the risk of high-grade prostate cancer. Further multicentre studies should validate our present results. © 2018 The Authors BJU International © 2018 BJU International Published by John

  17. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  18. Inherited predisposition to glioma.

    PubMed

    Kyritsis, Athanassios P; Bondy, Melissa L; Rao, Jasti S; Sioka, Chrissa

    2010-01-01

    In gliomas, germline gene alterations play a significant role during malignant transformation of progenitor glial cells, at least for families with occurrence of multiple cancers or with specific hereditary cancer syndromes. Scientific evidence during the last few years has revealed several constitutive genetic abnormalities that may influence glioma formation. These germline abnormalities are manifested as either gene polymorphisms or hemizygous mutations of key regulatory genes that are involved either in DNA repair or in apoptosis. Such changes, among others, include hemizygous alterations of the neurofibromatosis 1 (NF1) and p53 genes that are involved in apoptotic pathways, and alterations in multiple DNA repair genes such as mismatch repair (MMR) genes, x-ray cross-complementary genes (XRCC), and O6-methylguanine-DNA methyltransferase (MGMT) genes. Subsequent cellular changes include somatic mutations in cell cycle regulatory genes and genes involved in angiogenesis and invasion, leading eventually to tumor formation in various stages. Future molecular diagnosis may identify new genomic regions that could harbor genes important for glioma predisposition and aid in the early diagnosis of these patients and genetic counseling of their families.

  19. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    PubMed

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  20. ZFX regulates glioma cell proliferation and survival in vitro and in vivo.

    PubMed

    Zhu, Zhichuan; Li, Kui; Xu, Dafeng; Liu, Yongjie; Tang, Hailiang; Xie, Qing; Xie, Liqian; Liu, Jiwei; Wang, Hongtao; Gong, Ye; Hu, Zelan; Zheng, Jing

    2013-03-01

    The zinc finger transcription factor ZFX functions as an important regulator of self-renewal in multiple stem cell types, as well as a sex determinant of mammals. Moreover, ZFX expression is abnormally elevated in several cancers, and correlates with malignancy grade. To investigate its role in the pathogenesis of gliomas, we used lentivirus-mediated RNA interference (RNAi) to knockdown ZFX expression in human glioma cell lines. Our results demonstrate that ZFX plays a crucial role in glioma proliferation and survival, confirming recent reports. We also show for the first time that ZFX knockdown decreases the in vivo growth potential of U87 glioma xenografts in both subcutaneous and intracranial models in nude mice. We conclude that lentivirus-mediated RNAi targeting of ZFX may serve as a promising strategy for glioma therapy.

  1. MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT

    SciTech Connect

    Li, Zhen, E-mail: lizhen7111@163.com; Liu, Yun-hui; Diao, Hong-yu

    2015-12-25

    In this study, we analyzed the functional role of miR-661 in glioma cell proliferation, migration and invasion. We found that overexpression of miR-661 obviously suppressed the proliferation, migration and invasion of glioma cells. MiRNA target prediction algorithms implied that hTERT is a candidate target gene for miR-661. A fluorescent reporter assay confirmed that miR-661 could lead to hTERT gene silencing by recognizing and specifically binding to the predicted site of the hTERT mRNA 3′ untranslated region (3′UTR) specifically. Furthermore, hTERT knockdown significantly decreased the growth and viability of glioma cells. These results indicate that miR-661 can inhibit glioma cell proliferation,more » migration and invasion by targeting hTERT. - Highlights: • MiR-661 was downregulated in glioma tissues and functional as a tumor suppressor. • MiR-661 modulates cell proliferation, invasion and migration of glioma cells. • MiR-661 directly target hTERT in glioma cells. • MiR-661 inhibits glioma cell tumorgenesis by targeting hTERT.« less

  2. Expression and targeting of transcription factor ATF5 in dog gliomas.

    PubMed

    York, D; Sproul, C D; Chikere, N; Dickinson, P J; Angelastro, J M

    2018-03-01

    Activating transcription factor 5 (ATF5) is a transcription factor that is highly expressed in undifferentiated neural progenitor/stem cells as well as a variety of human cancers including gliomas. In this study, we examined the expression and localization of ATF5 protein in canine gliomas, and targeting of ATF5 function in canine glioma cell lines. Paraffin-embedded canine brain glioma tissue sections and western blots of tumours and glioma cells were immunoassayed with anti-ATF5 antibody. Viability of glioma cells was tested with a synthetic cell-penetrating ATF5 peptide (CP-d/n ATF5) ATF5 antagonist. ATF5 protein expression was in the nucleus and cytoplasm and was present in normal adult brain and tumour samples, with significantly higher expression in tumours as shown by western immunoblotting. CP-d/n ATF5 was found to decrease cell viability in canine glioma cell lines in vitro in a dose-dependent manner. Similarities in expression of ATF5 in rodent, dog and human tumours, and cross species efficacy of the CP-d/n ATF5 peptide support the development of this ATF5-targeting approach as a novel and translational therapy in dog gliomas. © 2017 John Wiley & Sons Ltd.

  3. The epidemiology of glioma in adults: a “state of the science” review

    PubMed Central

    Ostrom, Quinn T.; Bauchet, Luc; Davis, Faith G.; Deltour, Isabelle; Fisher, James L.; Langer, Chelsea Eastman; Pekmezci, Melike; Schwartzbaum, Judith A.; Turner, Michelle C.; Walsh, Kyle M.; Wrensch, Margaret R.; Barnholtz-Sloan, Jill S.

    2014-01-01

    Gliomas are the most common primary intracranial tumor, representing 81% of malignant brain tumors. Although relatively rare, they cause significant mortality and morbidity. Glioblastoma, the most common glioma histology (∼45% of all gliomas), has a 5-year relative survival of ∼5%. A small portion of these tumors are caused by Mendelian disorders, including neurofibromatosis, tuberous sclerosis, and Li-Fraumeni syndrome. Genomic analyses of glioma have also produced new evidence about risk and prognosis. Recently discovered biomarkers that indicate improved survival include O6-methylguanine-DNA methyltransferase methylation, isocitrate dehydrogenase mutation, and a glioma cytosine–phosphate–guanine island methylator phenotype. Genome-wide association studies have identified heritable risk alleles within 7 genes that are associated with increased risk of glioma. Many risk factors have been examined as potential contributors to glioma risk. Most significantly, these include an increase in risk by exposure to ionizing radiation and a decrease in risk by history of allergies or atopic disease(s). The potential influence of occupational exposures and cellular phones has also been examined, with inconclusive results. We provide a “state of the science” review of current research into causes and risk factors for gliomas in adults. PMID:24842956

  4. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro.

    PubMed

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-08-06

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma.

  5. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  6. Radiotherapy in supratentorial gliomas. A study of 821 cases.

    PubMed

    Heesters, Mart; Molenaar, Willemina; Go, Gwan K

    2003-09-01

    Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological improvements. However, reduction in long

  7. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    SciTech Connect

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    2011-07-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  8. Introduction of novel semiquantitative evaluation of (99m)Tc-MIBI SPECT before and after treatment of glioma.

    PubMed

    Deltuva, Vytenis Pranas; Jurkienė, Nemira; Kulakienė, Ilona; Bunevičius, Adomas; Matukevičius, Algimantas; Tamašauskas, Arimantas

    2012-01-01

    BACKGROUND AND OBJECTIVE. There is a need for objective semiquantitative indexes for the evaluation of results of single-photon emission tomography (SPECT) in patients with brain glioma. The aim of this study was to validate the total size index (TSI) and total intensity index (TII) based on technetium-99m-methoxyisobutylisonitrile ((99m)Tc-MIBI) SPECT scans to discriminate the patients with high-grade glioma versus low-grade glioma and to evaluate the changes of viable glioma tissue by the means of TSI and TII after surgery and after radiation treatment. MATERIAL AND METHODS. Thirty-two patients (mean age, 55 years [SD, 18]; 20 men) underwent a (99m)Tc-MIBI-SPECT scan before surgery. Of these patients, 27 underwent a postoperative (99m)Tc-MIBI-SPECT scan and 7 patients with grade IV glioma underwent a third (99m)Tc-MIBI-SPECT scan after radiation treatment. TII that corresponds to the area and intensity of tracer uptake and TSI that corresponds to the area of tracer uptake were calculated before surgery, after surgery, and after radiation treatment. RESULTS. The TII and TSI were found to be valid in discriminating the patients with high-grade versus low-grade glioma with optimal cutoff values of 3.0 and 2.5, respectively. Glioma grade correlated with the preoperative TSI score (r=0.76, P<0.001) and preoperative TII score (r=0.64, P<0.001). There was a significant decrease in the TII and TSI after surgery in patients with grade IV glioma. After radiation treatment, there was a significant increase in the TII in patients with grade IV glioma. CONCLUSIONS. TSI and TII were found to be reliable in discriminating the patients with high-grade versus low-grade glioma and allowed for the semiquantitative evaluation of change in viable glioma tissue after surgery and after radiation treatment in patients with grade IV glioma.

  9. B7-H6 expression is induced by lipopolysaccharide and facilitates cancer invasion and metastasis in human gliomas.

    PubMed

    Che, Fengyuan; Xie, Xiaoli; Wang, Long; Su, Quanping; Jia, Feiyu; Ye, Yufu; Zang, Lanlan; Wang, Jing; Li, Hongyan; Quan, Yanchun; You, Cuiping; Yin, Jiawei; Wang, Zhiqiang; Li, Gen; Du, Yifeng; Wang, Lijuan

    2018-04-18

    Although great progress has been made in treatment regimens, gliomas are still incurable and the 5-year survival remains poor. Studies focusing on molecules that regulate tumorigenesis or tumor immunity may provide potential therapeutic strategies for patients with glioma. B7-H6 is selectively expressed in tumor cells and plays vital roles in host immune responses. In this study, we demonstrated that B7-H6 was expressed in glioma cell lines, including CRT, U251, SHG-44, SF-295, TG-905 and U373, and tumor tissues isolated from glioma patients. Moreover, the expression levels of B7-H6 were significantly correlated with glioma grade. Previous studies reported that inflammatory mediators and cytokines induced the expression of B7 family members including programmed death-ligand 1, B7-H2 and B7-H4. Therefore, we explored the regulation of B7-H6 expression in gliomas and showed that lipopolysaccharide induced the expression of B7-H6 in glioma cells. To further analyze the roles of B7-H6 in gliomas, the expression of B7-H6 in glioma cells was knocked down. The results of cell counting kit-8, colony formation, wound healing, and transwell migration and invasion assays demonstrated that the proliferation, migration and invasion of glioma cells were inhibited after knocking down B7-H6. To elucidate the specific mechanisms of B7-H6 function in cancer progression, we examined the expression levels of proteins involved in cell apoptosis, migration and invasion. We demonstrated that the expression levels of E-cadherin and Bcl-2 associated X protein increased, and the expression levels of vimentin, N-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9 and survivin decreased after knocking down B7-H6. In conclusion, B7-H6 plays important roles in glioma, and targeting B7-H6 may provide a novel therapeutic strategy for glioma patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma

    SciTech Connect

    Chen, Xin; Hao, Bin; Liu, Ying

    2014-03-28

    Highlights: • PCBP2 expression is over-expressed in human glioma tissues and cell lines. • SIRT6 is decreased in glioma and correlated with PCBP2. • SIRT6 inhibits PCBP2 expression by deacetylating H3K9. • SIRT6 inhibits glioma growth in vitro and in vivo. - Abstract: More than 80% of tumors that occur in the brain are malignant gliomas. The prognosis of glioma patients is still poor, which makes glioma an urgent subject of cancer research. Previous evidence and our present data show that PCBP2 is over-expressed in human glioma tissues and predicts poor outcome. However, the mechanism by which PCBP2 is regulatedmore » in glioma remains elusive. We find that SIRT6, one of the NAD{sup +}-dependent class III deacetylase SIRTUINs, is down-regulated in human glioma tissues and that the level of SIRT6 is negatively correlated with PCBP2 level while H3K9ac enrichment on the promoter of PCBP2 is positively correlated with PCBP2 expression. Furthermore, we identify PCBP2 as a target of SIRT6. We demonstrate that PCBP2 expression is inhibited by SIRT6, which depends upon deacetylating H3K9ac. Finally, our results reveal that SIRT6 inhibits glioma cell proliferation and colony formation in vitro and glioma cell growth in vivo in a PCBP2 dependent manner. In summary, our findings implicate that SIRT6 inhibits PCBP2 expression through deacetylating H3K9ac and SIRT6 acts as a tumor suppressor in human glioma.« less

  11. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    PubMed

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    SciTech Connect

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less

  13. Thallium acetate induces C6 glioma cell apoptosis.

    PubMed

    Chia, Chee-Fah; Chen, Soul-Chin; Chen, Chin-Shyang; Shih, Chuen-Ming; Lee, Horng-Mo; Wu, Chih-Hsiung

    2005-05-01

    Thallium acetate is a known neurotoxic agent. In this study, we investigated the mechanisms by which thallium acetate induces cell cycle arrest and cell apoptosis in cultured LC6 glioma cells. Exposure of C6 glioma cells to thallium acetate decreased cell viability as demonstrated by the MTT assay. Incubation of thallium acetate arrested cell cycle progression at the G2/M phase and caused cellular apoptosis at 300 microM as determined by trypan blue exclusion and flow cytometric analysis. The G2/M arrest was associated with a decrease in expression of CDK2 protein and an upregulation of p53 and the CDK inhibitor p21(Cip1), but not p27(Kip1). Thallium acetate did not alter the protein levels of cyclin A and B; cyclin D1, D2, and D3; and CDK4 expression in C6 glioma cells. Incubation of C6 glioma cells with thallium acetate upregulated the expression of proapoptotic proteins Bad and Apaf and downregulated the expression of anti-apoptotic proteins Bcl-xL and Bcl-2. In conclusion, these data suggest that thallium acetate inhibits cell cycle progression at G2/M phase by suppressing CDK activity through the p53-mediated induction of the CDK inhibitor p21(Cip1). Impairment of cell cycle progression may trigger the activation of a mitochondrial pathway and shifts the balance in the Bcl-2 family toward the proapoptotic members, promoting the formation of the apoptosome and, consequently, apoptosis.

  14. RNAi-mediated inhibition of presenilin 2 inhibits glioma cell growth and invasion and is involved in the regulation of Nrg1/ErbB signaling

    PubMed Central

    Liu, Bei; Wang, Liang; Shen, Liang-Liang; Shen, Ming-Zhi; Guo, Xiao-Dong; Wang, Tao; Liang, Qin-Chuan; Wang, Chao; Zheng, Jun; Li, Yi; Jia, Lin-Tao; Zhang, Hua; Gao, Guo-Dong

    2012-01-01

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. In this study, we found that the protein expression of presenilin 2 (PS2) was significantly increased in glioma tissues, at least partially because of promoter demethylation. We further evaluated the biological functions of PS2 in U251 glioma cell proliferation, migration, invasion, and tumor growth in vivo by specific inhibition of PS2 using short hairpin RNA (shRNA). We found that PS2 depletion inhibited glioma cell growth as the result of inhibited proliferation and induced apoptosis. PS2 depletion also decreased the invasive capability of glioma cells and anchorage-independent colony formation in soft agar. Moreover, suppression of PS2 expression significantly impaired the growth of glioma xenografts in nude mice. Finally, the decrease in glioma cell growth caused by PS2 depletion seems to involve Nrg1/ErbB signaling. In summary, our data highlight the use of RNA interference (RNAi) as a tool to better understand the molecular basis of PS2 in glioma progression and to uncover new targets for the treatment of glioma. PMID:22753229

  15. Promoter methylation and downregulation of SLC22A18 are associated with the development and progression of human glioma

    PubMed Central

    2011-01-01

    Background Downregulation of the putative tumor suppressor gene SLC22A18 has been reported in a number of human cancers. The aim of this study was to investigate the relationship between SLC22A18 downregulation, promoter methylation and the development and progression of human glioma. Method SLC22A18 expression and promoter methylation was examined in human gliomas and the adjacent normal tissues. U251 glioma cells stably overexpressing SLC22A18 were generated to investigate the effect of SLC22A18 on cell growth and adherence in vitro using the methyl thiazole tetrazolium assay. Apoptosis was quantified using flow cytometry and the growth of SLC22A18 overexpressing U251 cells was measured in an in vivo xenograft model. Results SLC22A18 protein expression is significantly decreased in human gliomas compared to the adjacent normal brain tissues. SLC22A18 protein expression is significantly lower in gliomas which recurred within six months after surgery than gliomas which did not recur within six months. SLC22A18 promoter methylation was detected in 50% of the gliomas, but not in the adjacent normal tissues of any patient. SLC22A18 expression was significantly decreased in gliomas with SLC22A18 promoter methylation, compared to gliomas without methylation. The SLC22A18 promoter is methylated in U251 cells and treatment with the demethylating agent 5-aza-2-deoxycytidine increased SLC22A18 expression and reduced cell proliferation. Stable overexpression of SLC22A18 inhibited growth and adherence, induced apoptosis in vitro and reduced in vivo tumor growth of U251 cells. Conclusion SLC22A18 downregulation via promoter methylation is associated with the development and progression of glioma, suggesting that SLC22A18 is an important tumor suppressor in glioma. PMID:21936894

  16. Isocitrate dehydrogenase mutations in gliomas

    PubMed Central

    Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  17. Dobesilate diminishes activation of the mitogen - activated protein kinase ERK1/2 in glioma cells

    PubMed Central

    Cuevas, P; Diaz-González, Diana; Garcia-Martin-Córdova, C; Sánchez, I; Lozano, Rosa Maria; Giménez-Gallego, G; Dujovny, M

    2006-01-01

    Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management. PMID:16563234

  18. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  19. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    PubMed

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Oncolytic virotherapy for malignant glioma: translating laboratory insights into clinical practice

    PubMed Central

    Auffinger, Brenda; Ahmed, Atique U.; Lesniak, Maciej S.

    2013-01-01

    Glioblastoma multiforme, one of the most common and aggressive brain tumors in adults, is highly resistant to currently available therapies and often recurs. Due to its poor prognosis and difficult management, there is an urgent need for the development and translation of new anti-glioma therapeutic approaches into the clinic. In this context, oncolytic virotherapy arises as an exciting treatment option for glioma patients. These natural or genetically engineered viruses are able to effectively infect cancer cells, inducing a specific anti-tumor cytotoxic effect. In addition, some viruses have been redesigned to modulate glioma microenvironment, to express cytokines to boost a systemic anti-glioma immune response and to incorporate angiostatic genes to decrease glioma vasculature. Although recent clinical trials have confirmed the safety of oncolytic virotherapies in the brain, their moderate clinical efficacy has not yet matched the encouraging preclinical laboratory results. In this review, we will discuss the leading anti-glioma virotherapy approaches that are presently under preclinical and clinical evaluation. We will also review different delivery methods, in vivo virus behavior, fate, replication, intratumoral spread, activation of anti-tumor immune response, and targeting of glioma stem cells. We will focus on the advantages and limitations of each therapeutic approach and how to overcome these hurdles to effectively translate exciting laboratory results into promising clinical trials. PMID:23443138

  1. Tumour network in glioma

    PubMed Central

    Winkler, Frank

    2016-01-01

    In this podcast, a new biological insight in brain tumours is discussed. The author's group has identified the existence of a tumour cell network in incurable gliomas which facilitates multicellular communication and exchange of small molecules between single tumour cells. The tumour cells that are integrated in this network, around 50% of cells according to studies in mouse models and patient samples, appear to be protected from the effects of radiotherapy and possibly also chemotherapy, which may explain how such tumours develop resistance to therapies and why patients relapse after treatment. An overview of ideas that are being investigated preclinically to therapeutically target this network of tumour cells is given. These include approaches to disrupt the network, such as obstructing cellular communication with gap junction blockers and targeting the neurodevelopmental pathways required to form the networks. Conversely, methods to exploit the network through the local application of gap junction-permeable drugs that specifically target the integrated tumour cells could also being studied. This new discovery may result in the development of therapeutic strategies which the author hopes will reach the clinic in the next few years. PMID:28255455

  2. Tumour network in glioma.

    PubMed

    Winkler, Frank

    2016-01-01

    In this podcast, a new biological insight in brain tumours is discussed. The author's group has identified the existence of a tumour cell network in incurable gliomas which facilitates multicellular communication and exchange of small molecules between single tumour cells. The tumour cells that are integrated in this network, around 50% of cells according to studies in mouse models and patient samples, appear to be protected from the effects of radiotherapy and possibly also chemotherapy, which may explain how such tumours develop resistance to therapies and why patients relapse after treatment. An overview of ideas that are being investigated preclinically to therapeutically target this network of tumour cells is given. These include approaches to disrupt the network, such as obstructing cellular communication with gap junction blockers and targeting the neurodevelopmental pathways required to form the networks. Conversely, methods to exploit the network through the local application of gap junction-permeable drugs that specifically target the integrated tumour cells could also being studied. This new discovery may result in the development of therapeutic strategies which the author hopes will reach the clinic in the next few years.

  3. [Expression and significance of ABCG2 in human malignant glioma].

    PubMed

    Chu, Liang; Huang, Qiang; Zhai, De-Zhong; Zhu, Qing; Huo, Hong-Mei; Dong, Jun; Qian, Zhi-Yuan; Wang, Ai-Dong; Lan, Qing; Gao, Yi-Lu

    2007-10-01

    ATP-binding cassette transporter protein ABCG2 is a marker derived from hematopoietic stem cells. However, its role in tumorigenesis and malignant progression of glioma is unclear. This study was to investigate the expression and significance of ABCG2 in gliomas of different malignant grades. A microarray chip containing glioma tissues of different malignant grades, implanted glioma xenografts in nude mice, spheroids of glioma cell lines and glioma stem cells was prepared and examined for the expression of ABCG2 with immunohistochemical staining. The positive rate of ABCG2 was 26.8% in the 71 specimens of human glioma tissues, with 11.1% in grade I gliomas, 8% in grade II gliomas, 43.5% in grade III gliomas, and 42.9% in grade IV gliomas; it was significantly higher in grade III-IV gliomas than in grade I-II gliomas (chi2=10.710, P=0.001). The positive rate of ABCG2 was 100% in implanted glioma xenografts in nude mice, gliomas stem cells, and neural stem cells. It was also expressed in some normal tissues. The positive cells surrounded and invaded into vessels in glioma tissues. ABCG2 is overexpressed in glioma stem cells, glioma tissues of higher grades, and implanted glioma xenografts. The positive cells distribute around vessels in glioma tissues.

  4. Pediatric Gliomas as Neurodevelopmental Disorders

    PubMed Central

    Baker, Suzanne J.; Ellison, David W.; Gutmann, David H.

    2015-01-01

    Brain tumors represent the most common solid tumor of childhood, with gliomas comprising the largest fraction of these cancers. Several features distinguish them from their adult counterparts, including their natural history, causative genetic mutations, and brain locations. These unique properties suggest that the cellular and molecular etiologies that underlie their development and maintenance might be different from those that govern adult gliomagenesis and growth. In this review, we discuss the genetic basis for pediatric low-grade and high-grade glioma in the context of developmental neurobiology, and highlight the differences between histologically-similar tumors arising in children and adults. PMID:26638183

  5. Interactions between glioma and pregnancy: insight from a 52-case multicenter series.

    PubMed

    Peeters, Sophie; Pagès, Mélanie; Gauchotte, Guillaume; Miquel, Catherine; Cartalat-Carel, Stéphanie; Guillamo, Jean-Sébastien; Capelle, Laurent; Delattre, Jean-Yves; Beauchesne, Patrick; Debouverie, Marc; Fontaine, Denys; Jouanneau, Emmanuel; Stecken, Jean; Menei, Philippe; De Witte, Olivier; Colin, Philippe; Frappaz, Didier; Lesimple, Thierry; Bauchet, Luc; Lopes, Manuel; Bozec, Laurence; Moyal, Elisabeth; Deroulers, Christophe; Varlet, Pascale; Zanello, Marc; Chretien, Fabrice; Oppenheim, Catherine; Duffau, Hugues; Taillandier, Luc; Pallud, Johan

    2018-01-01

    OBJECTIVE The goal of this study was to provide insight into the influence of gliomas on gestational outcomes, the impact of pregnancy on gliomas, and the identification of patients at risk. METHODS In this multiinstitutional retrospective study, the authors identified 52 pregnancies in 50 women diagnosed with a glioma. RESULTS For gliomas known prior to pregnancy (n = 24), we found the following: 1) An increase in the quantified imaging growth rates occurred during pregnancy in 87% of cases. 2) Clinical deterioration occurred in 38% of cases, with seizures alone resolving after delivery in 57.2% of cases. 3) Oncological treatments were immediately performed after delivery in 25% of cases. For gliomas diagnosed during pregnancy (n = 28), we demonstrated the following: 1) The tumor was discovered during the second and third trimesters in 29% and 54% of cases, respectively, with seizures being the presenting symptom in 68% of cases. 2) The quantified imaging growth rates did not significantly decrease after delivery and before oncological treatment. 3) Clinical deterioration resolved after delivery in 21.4% of cases. 4) Oncological treatments were immediately performed after delivery in 70% of cases. Gliomas with a high grade of malignancy, negative immunoexpression of alpha-internexin, or positive immunoexpression for p53 were more likely to be associated with tumor progression during pregnancy. Deliveries were all uneventful (cesarean section in 54.5% of cases and vaginal delivery in 45.5%), and the infants were developmentally normal. CONCLUSIONS When a woman harboring a glioma envisions a pregnancy, or when a glioma is discovered in a pregnant patient, the authors suggest informing her and her partner that pregnancy may impact the evolution of the glioma clinically and radiologically. They strongly advise a multidisciplinary approach to management. ■ CLASSIFICATION OF EVIDENCE Type of question: association; study design: case series; evidence: Class IV.

  6. Downregulation of LRIG2 expression inhibits angiogenesis of glioma via EGFR/VEGF-A pathway.

    PubMed

    Yang, Hong-Kuan; Chen, Hao; Mao, Feng; Xiao, Qun-Gen; Xie, Rui-Fan; Lei, Ting

    2017-10-01

    Active angiogenesis is the basic pathological feature of glioma. Tumor angiogenesis is involved in vascular endothelial cell migration to the tumor tissue and in the formation of tube-like structures. The present study aimed to investigate the role of leucine-rich repeats and immunoglobulin-like domains 2 (LRIG2) in glioma angiogenesis. Glioma (n=50) and normal brain (n=20) tissue samples were collected from patients to detect the expression of LRIG2, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGF-A), and cluster of differentiation 31 (CD31) using immunohistochemistry. In addition, the association between the expression of LRIG2 in glioma tissue and the microvessel density (MVD) was analyzed. In vitro , the expression of LRIG2 in human glioma U87 and U251 cell lines was knocked down. Subsequently, cell migration and tube formation assays of human umbilical vein endothelial cells (HUVECs) were performed using a coculture system. The protein expression levels of LRIG2, EGFR, phosphorylated-EGFR and VEGF-A were determined using western blotting. The results demonstrated that the expression levels of LRIG2, EGFR, VEGF-A and CD31 were highly upregulated in glioma tissue samples. Furthermore, LRIG2 expression in glioma tissue samples was significantly correlated with the MVD. In vitro , the downregulation of LRIG2 inhibited HUVEC migration and tube formation induced by coculture with glioma cells. The downregulation of LRIG2 resulted in decreased expression of EGFR and VEGF-A. The effects of the LRIG2 knockdown were reversed following EGF treatment. These findings suggest that LRIG2 is a potential target for the inhibition of glioma angiogenesis, which is possibly mediated via the EGFR/VEGF-A signaling pathway.

  7. Glioma apoptosis induced by macrophages involves both death receptor-dependent and independent pathways.

    PubMed

    Chen, George G; Chak, Ernest C W; Chun, Ying S; Lam, Isa K Y; Sin, Fanny L F; Leung, Billy C S; Ng, Ho K; Poon, Wai S

    2003-03-01

    Apoptosis of glioma may represent a promising intervention for tumor treatment. Macrophages are able to induce apoptosis in a number of tumor cells, including glioma. It is known that apoptosis of cells is executed on either a death receptor-dependent or independent pathway. Whether and how apoptosis of glioma cells induced by activated macrophages is involved in these two pathways simultaneously are not known. Using in vitro and in vivo experimental models, we investigated Bcl-2 system and Fas/FasL channel, representing the death receptor-dependent and independent pathways, respectively, in glioma cells treated with the supernatant from the activated macrophages, which was rich in tumor necrosis factor-alpha and interferon-gamma. We found that levels of Fas and FasL were up-regulated both in vitro and in vivo, accompanying an increase in the expression of caspase-8. The number of apoptotic cells was also increased significantly, although the percentage of death cells exceeded the number of tumor cells positive for Fas or FasL. It was also evident that the expression of Bax was increased, whereas the level of Bcl-2 was decreased, in glioma cells treated with the supernatant from the activated macrophages. The alteration of molecules related to both death pathways led to apoptosis of glioma and the inhibition of xenograft glioma growth in mice. Apoptosis of glioma induced by the activated macrophage is executed by way of both death receptor-dependent and independent pathways, and such an apoptosis-induced approach can effectively inhibit the growth of glioma in vivo.

  8. Assessment of type of allergy and antihistamine use in the development of glioma

    PubMed Central

    McCarthy, Bridget J.; Rankin, Kristin; Il'yasova, Dora; Erdal, Serap; Vick, Nicholas; Ali-Osman, Francis; Bigner, Darell D.; Davis, Faith

    2010-01-01

    Background Allergies have been associated with decreased risk of glioma, but associations between duration and timing of allergies, and antihistamine use and glioma risk have been less consistent. The objective was to investigate this association by analyzing types, number, years since diagnosis, and age at diagnosis of allergies, and information on antihistamine usage, including type, duration, and frequency of exposure. Methods Self-report data on medically-diagnosed allergies and antihistamine use were obtained for 419 glioma cases and 612 hospital-based controls from Duke University and NorthShore University HealthSystem. Results High- and low-grade glioma cases were statistically significantly less likely to report any allergy than controls (OR= 0.66, 95% CI: 0.49–0.87 and 0.44, 95% CI: 0.25–0.76, respectively). The number of types of allergies (seasonal, medication, pet, food, and other) was inversely associated with glioma risk in a dose-response manner (p-value for trend <0.05). Age at diagnosis and years since diagnosis of allergies were not associated with glioma risk. Oral antihistamine use was statistically significantly inversely associated with glioma risk, but when stratified by allergy status, remained significant only for those with high-grade glioma and no medically-diagnosed allergy. Conclusions All types of allergies appear to be protective with reduced risk for those with more types of allergies. Antihistamine use, other than in relationship with allergy status, may not influence glioma risk. Impact A comprehensive study of allergies and antihistamine use using standardized questions and biological markers will be essential to further delineate the biological mechanism that may be involved in brain tumor development. PMID:21300619

  9. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma.

    PubMed

    Khurshed, Mohammed; Molenaar, Remco J; Lenting, Krissie; Leenders, William P; van Noorden, Cornelis J F

    2017-07-25

    Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) initiate low-grade glioma and secondary glioblastoma and induce a neomorphic activity that converts α-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (D-2-HG). It causes metabolic rewiring that is not fully understood. We investigated the effects of IDH1 mutations (IDH1MUT) on expression of genes that encode for metabolic enzymes by data mining The Cancer Genome Atlas. We analyzed 112 IDH1 wild-type (IDH1WT) versus 399 IDH1MUT low-grade glioma and 157 IDH1WT versus 9 IDH1MUT glioblastoma samples. In both glioma types, IDH1WT was associated with high expression levels of genes encoding enzymes that are involved in glycolysis and acetate anaplerosis, whereas IDH1MUT glioma overexpress genes encoding enzymes that are involved in the oxidative tricarboxylic acid (TCA) cycle. In vitro, we observed that IDH1MUT cancer cells have a higher basal respiration compared to IDH1WT cancer cells and inhibition of the IDH1MUT shifts the metabolism by decreasing oxygen consumption and increasing glycolysis. Our findings indicate that IDH1WT glioma have a typical Warburg phenotype whereas in IDH1MUT glioma the TCA cycle, rather than glycolytic lactate production, is the predominant metabolic pathway. Our data further suggest that the TCA in IDH1MUT glioma is driven by lactate and glutamate anaplerosis to facilitate production of α-KG, and ultimately D-2-HG. This metabolic rewiring may be a basis for novel therapies for IDH1MUT and IDH1WT glioma.

  10. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma.

    PubMed

    Bhat, Krishna P L; Salazar, Katrina L; Balasubramaniyan, Veerakumar; Wani, Khalida; Heathcock, Lindsey; Hollingsworth, Faith; James, Johanna D; Gumin, Joy; Diefes, Kristin L; Kim, Se Hoon; Turski, Alice; Azodi, Yasaman; Yang, Yuhui; Doucette, Tiffany; Colman, Howard; Sulman, Erik P; Lang, Frederick F; Rao, Ganesh; Copray, Sjef; Vaillant, Brian D; Aldape, Kenneth D

    2011-12-15

    Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma. © 2011 by Cold Spring Harbor Laboratory Press

  11. Sexual dimorphism in glioma glycolysis underlies sex differences in survival

    PubMed Central

    Ippolito, Joseph E.; Yim, Aldrin Kay-Yuen; Chinnaiyan, Prakash; Rubin, Joshua B.

    2017-01-01

    The molecular bases for sex differences in cancer remain undefined and how to incorporate them into risk stratification remains undetermined. Given sex differences in metabolism and the inverse correlation between fluorodeoxyglucose (FDG) uptake and survival, we hypothesized that glycolytic phenotyping would improve glioma subtyping. Using retrospectively acquired lower-grade glioma (LGG) transcriptome data from The Cancer Genome Atlas (TCGA), we discovered male-specific decreased survival resulting from glycolytic gene overexpression. Patients within this high-glycolytic group showed significant differences in the presence of key genomic alterations (i.e., 1p/19q codeletion, CIC, EGFR, NF1, PTEN, FUBP1, and IDH mutations) compared with the low-glycolytic group. Although glycolytic stratification defined poor prognostic males independent of grade, histology, TP53, and ATRX mutation status, we unexpectedly found that females with high-glycolytic gene expression and wild-type IDH survived longer than all other wild-type patients. Validation with an independent metabolomics dataset from grade 2 gliomas determined that glycolytic metabolites selectively stratified males and also uncovered a potential sexual dimorphism in pyruvate metabolism. These findings identify a potential synergy between patient sex, tumor metabolism, and genomic alterations in determining outcome for glioma patients. PMID:28768910

  12. Sexual dimorphism in glioma glycolysis underlies sex differences in survival.

    PubMed

    Ippolito, Joseph E; Yim, Aldrin Kay-Yuen; Luo, Jingqin; Chinnaiyan, Prakash; Rubin, Joshua B

    2017-08-03

    The molecular bases for sex differences in cancer remain undefined and how to incorporate them into risk stratification remains undetermined. Given sex differences in metabolism and the inverse correlation between fluorodeoxyglucose (FDG) uptake and survival, we hypothesized that glycolytic phenotyping would improve glioma subtyping. Using retrospectively acquired lower-grade glioma (LGG) transcriptome data from The Cancer Genome Atlas (TCGA), we discovered male-specific decreased survival resulting from glycolytic gene overexpression. Patients within this high-glycolytic group showed significant differences in the presence of key genomic alterations (i.e., 1p/19q codeletion, CIC, EGFR, NF1, PTEN, FUBP1, and IDH mutations) compared with the low-glycolytic group. Although glycolytic stratification defined poor prognostic males independent of grade, histology, TP53, and ATRX mutation status, we unexpectedly found that females with high-glycolytic gene expression and wild-type IDH survived longer than all other wild-type patients. Validation with an independent metabolomics dataset from grade 2 gliomas determined that glycolytic metabolites selectively stratified males and also uncovered a potential sexual dimorphism in pyruvate metabolism. These findings identify a potential synergy between patient sex, tumor metabolism, and genomic alterations in determining outcome for glioma patients.

  13. Interrelationship between differentiation and malignancy-associated properties in glioma.

    PubMed

    Frame, M C; Freshney, R I; Vaughan, P F; Graham, D I; Shaw, R

    1984-03-01

    The phenotypic expression of cells derived from human anaplastic astrocytomas, rat glioma, normal human adult and foetal brain tissue have been examined for differentiated and malignancy-associated properties. Glial fibrillary acidic protein (GFAP), high affinity glutamate and gamma-amino butyric acid (GABA) uptake and glutamine synthetase were used as indicators of astroglial differentiation. Plasminogen activator and tumour angiogenesis factor were the malignancy-associated markers. The normal adult brain-derived lines showed some differentiated astroglial features and expressed low levels of the malignancy-associated properties. The foetal cultures contained highly differentiated astroglia while the glioma lines showed considerable phenotypic heterogeneity from highly differentiated to undifferentiated. The least differentiated glioma cells exhibited the highest plasminogen activator activities. The density-dependent control of phenotypic expression was also investigated. High affinity GABA uptake, and GFAP in rat C6 glioma cultures, increased with increasing monolayer cell density, events probably mediated by an increase in the formation of cell-cell contacts at confluence. Plasminogen activator activity decreased with increasing cell density.

  14. Interrelationship between differentiation and malignancy-associated properties in glioma.

    PubMed Central

    Frame, M. C.; Freshney, R. I.; Vaughan, P. F.; Graham, D. I.; Shaw, R.

    1984-01-01

    The phenotypic expression of cells derived from human anaplastic astrocytomas, rat glioma, normal human adult and foetal brain tissue have been examined for differentiated and malignancy-associated properties. Glial fibrillary acidic protein (GFAP), high affinity glutamate and gamma-amino butyric acid (GABA) uptake and glutamine synthetase were used as indicators of astroglial differentiation. Plasminogen activator and tumour angiogenesis factor were the malignancy-associated markers. The normal adult brain-derived lines showed some differentiated astroglial features and expressed low levels of the malignancy-associated properties. The foetal cultures contained highly differentiated astroglia while the glioma lines showed considerable phenotypic heterogeneity from highly differentiated to undifferentiated. The least differentiated glioma cells exhibited the highest plasminogen activator activities. The density-dependent control of phenotypic expression was also investigated. High affinity GABA uptake, and GFAP in rat C6 glioma cultures, increased with increasing monolayer cell density, events probably mediated by an increase in the formation of cell-cell contacts at confluence. Plasminogen activator activity decreased with increasing cell density. Images Figure 2 Figure 6 PMID:6200130

  15. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I

    2018-02-01

    Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.

  16. QUANTITATIVE PET IMAGING OF TRYPTOPHAN ACCUMULATION IN GLIOMAS AND REMOTE CORTEX: CORRELATION WITH TUMOR PROLIFERATIVE ACTIVITY

    PubMed Central

    Juhász, Csaba; Chugani, Diane C.; Barger, Geoffrey R.; Kupsky, William J.; Chakraborty, Pulak K.; Muzik, Otto; Mittal, Sandeep

    2012-01-01

    PURPOSE Positron emission tomography (PET) studies with α[C-11]methyl-L-tryptophan (AMT) have shown decreased serotonin synthesis based on a decrease of the unidirectional uptake rate (K-complex) in neuropsychiatric conditions such as autism and depression. Increased A M T K-complex in tumors can indicate increased tryptophan metabolism via the immunosuppressive kynurenine pathway. Moreover, apparent AMT volume of distribution (VD’) reflects net tryptophan transport from blood to tissue. We evaluated if kinetic parameters (K-complex, VD’) of AMT, measured by PET, can predict glioma proliferative activity, and if these AMT parameters are altered in remote cortex. METHODS We evaluated dynamic AMT PET images of 30 adult patients with WHO grade IIIV gliomas to determine tumoral AMT VD’ and K-complex values, which were correlated with tumor proliferative activity as assessed by the Ki-67 labeling index in resected tumor specimens. We also compared cortical VD’ and K-complex values between glioma patients and healthy controls. RESULTS Both VD’ and K-complex values were significantly higher in gliomas than in contralateral cortex (VD’: p < 0.001; K-complex: p < 0.001). Tumoral VD’ values and tumor/cortex VD’ ratios, but not the K-complex, showed strong positive correlations with glioma proliferative activity (p≤0.001). Contralateral frontal cortex showed decreased AMT VD’ and K-complex in glioma patients as compared to controls (p≤0.01). CONCLUSIONS Increased net amino acid transport into tumor tissue, quantified by PET, can serve as an imaging marker of glioma proliferative activity. The data also suggest a glioma-induced down-regulation of cortical serotonin synthesis, likely mediated by shunting of tryptophan from serotonin synthesis to kynurenine metabolism. PMID:22889771

  17. Effects of syndecan-1 on the expression of syntenin and the migration of U251 glioma cells.

    PubMed

    Chen, Jun; Tang, Jun; Chen, Wei; Gao, Yang; He, Yang; Zhang, Qiang; Ran, Qishan; Cao, Fang; Yao, Shengtao

    2017-12-01

    Glioma is the most frequently occuring primary brain tumor. Syndecan-1 (SDC1) expression is related to poor prognosis of numerous human malignancies including glioma. Syndecan binding protein (SDCBP) is an important partner for SDC1. The present study investigated whether SDC1 and SDCBP are expressed in glioma and their functions on glioma cell migration. An immunohistochemical assay revealed that SDC1 and SDCBP were expressed and were positively related to malignant level of glioma (SDC1, r s =0.576, P=0.001; SDCBP, r s =0.661, P<0.001). Moreover, the protein levels of SDC1 were positively correlated with those of SDCBP in glioma tissues (r s =0.628, P=0.001). In U251 glioma cells, protein levels of SDC1 and SDCBP were both upregulated in U251 cells with SDC1 overexpression, while downregulated with SDC1 knockdown. Transwell assay and scratch-wound healing assay showed that SDC1 overexpression significantly increased U251 cell migration, while SDC1 knockdown had the opposite effects. Rac1 activity, signal transducer and activator of transcription 3 (STAT3) phosphorylation, as well as expression of matrix metalloproteinase 2 (MMP2) and MMP9 was significantly increased by SDC1 overexpression, while was decreased by SDC1 knockdown. In conclusion, SDC1 overexpression upregulated SDCBP expression, and promoted glioma cell migration via Rac1 activation.

  18. Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ ROCK1 pathway.

    PubMed

    Yin, Maojia; Lu, Qin; Liu, Xi; Wang, Teng; Liu, Ying; Chen, Lifen

    2016-09-16

    Dynamin-related protein 1 (Drp1) is a newly discovered therapeutic target for tumor initiation, migration, proliferation, and chemosensitivity. In the present study, we aimed to examine the level of expression and distribution of DRP1 in glioma tissues and explore the concrete mechanism of DRP1 played in glioma. Expression of DRP1 in glioma tissues was determined by immunohistochemistry staining. The DRP1 gene was knocked down using small interfering RNA, and was overexpressed using plasmids in glioma cells. To assess changes in cell function, in vitro assays for invasion and growth were applied. Protein expression was tested by using Western-blot method. Variation of F-actin in cells was analyzed using immunofluorescence staining. Interactions between proteins were determined by co-immunoprecipitation. The protein expression levels of DRP1 were significantly increased in glioma tissues compared to the normal brain tissues. Down-regulation of DRP1 decreased cell proliferation and invasion, and inhibited the formation of pseudopodias and microvillis. Moreover, a possible link between DRP1 and RHOA was confirmed when interactions between these two proteins were observed in the cells. Our results demonstrated that silencing DRP1 regulated the cytoskeleton remodeling through inhibiting RHOA/ROCK1 pathway, and thus decreased the proliferation and invasion of glioma cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma

    PubMed Central

    McFarland, Braden C.; Marks, Margaret P.; Rowse, Amber L.; Fehling, Samuel C.; Gerigk, Magda; Qin, Hongwei; Benveniste, Etty N.

    2016-01-01

    In glioma, microglia and macrophages are the largest population of tumor-infiltrating cells, referred to as glioma associated macrophages (GAMs). Herein, we sought to determine the role of Suppressor of Cytokine Signaling 3 (SOCS3), a negative regulator of Signal Transducer and Activator of Transcription 3 (STAT3), in GAM functionality in glioma. We utilized a conditional model in which SOCS3 deletion is restricted to the myeloid cell population. We found that SOCS3-deficient bone marrow-derived macrophages display enhanced and prolonged expression of pro-inflammatory M1 cytokines when exposed to glioma tumor cell conditioned medium in vitro. Moreover, we found that deletion of SOCS3 in the myeloid cell population delays intracranial tumor growth and increases survival of mice bearing orthotopic glioma tumors in vivo. Although intracranial tumors from mice with SOCS3-deficient myeloid cells appear histologically similar to control mice, we observed that loss of SOCS3 in myeloid cells results in decreased M2 polarized macrophage infiltration in the tumors. Furthermore, loss of SOCS3 in myeloid cells results in increased CD8+ T-cell and decreased regulatory T-cell infiltration in the tumors. These findings demonstrate a beneficial effect of M1 polarized macrophages on suppressing glioma tumor growth, and highlight the importance of immune cells in the tumor microenvironment. PMID:26967393

  20. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma.

    PubMed

    McFarland, Braden C; Marks, Margaret P; Rowse, Amber L; Fehling, Samuel C; Gerigk, Magda; Qin, Hongwei; Benveniste, Etty N

    2016-04-12

    In glioma, microglia and macrophages are the largest population of tumor-infiltrating cells, referred to as glioma associated macrophages (GAMs). Herein, we sought to determine the role of Suppressor of Cytokine Signaling 3 (SOCS3), a negative regulator of Signal Transducer and Activator of Transcription 3 (STAT3), in GAM functionality in glioma. We utilized a conditional model in which SOCS3 deletion is restricted to the myeloid cell population. We found that SOCS3-deficient bone marrow-derived macrophages display enhanced and prolonged expression of pro-inflammatory M1 cytokines when exposed to glioma tumor cell conditioned medium in vitro. Moreover, we found that deletion of SOCS3 in the myeloid cell population delays intracranial tumor growth and increases survival of mice bearing orthotopic glioma tumors in vivo. Although intracranial tumors from mice with SOCS3-deficient myeloid cells appear histologically similar to control mice, we observed that loss of SOCS3 in myeloid cells results in decreased M2 polarized macrophage infiltration in the tumors. Furthermore, loss of SOCS3 in myeloid cells results in increased CD8+ T-cell and decreased regulatory T-cell infiltration in the tumors. These findings demonstrate a beneficial effect of M1 polarized macrophages on suppressing glioma tumor growth, and highlight the importance of immune cells in the tumor microenvironment.

  1. Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, or Hypermutated Brain Tumors

    ClinicalTrials.gov

    2018-04-16

    Constitutional Mismatch Repair Deficiency Syndrome; Lynch Syndrome; Malignant Glioma; Recurrent Brain Neoplasm; Recurrent Diffuse Intrinsic Pontine Glioma; Refractory Brain Neoplasm; Refractory Diffuse Intrinsic Pontine Glioma

  2. A Comprehensive Meta-analysis of Genetic Associations Between Key Polymorphic Loci in DNA Repair Genes and Glioma Risk.

    PubMed

    Qi, Ling; Yu, Hong-Quan; Zhang, Yu; Ding, Li-Juan; Zhao, Dong-Hai; Lv, Peng; Wang, Wei-Yao; Xu, Ye

    2017-03-01

    Genetic variants found in DNA repair genes (ERCC1, rs3212986; ERCC2, rs13181; ERCC4, rs1800067; ERCC5, rs17655; XRCC1, rs1799782, rs25487, rs25489; XRCC3, rs861539) have been reported to have an ambivalent association with the development of glioma. In the present study, a meta-analysis was conducted to confirm the relationship, taking heterogeneity of population into consideration. We analyzed 21 articles of 6 genes along with 8 single nucleotide polymorphisms (SNPs) (24,078 cases and 30,926 healthy individuals), which assessed the relationship between nucleotide excision, base excision, double-strand break repair gene, and the development of glioma under five models. All statistical analysis was implemented by the software of R 3.2.1, and the relationships between key polymorphic loci in DNA repair genes and glioma were quantified by the pooled odds ratio (OR) and 95 % confidential intervals. Overall, the synthesized evidence demonstrated that the SNP of rs13181 and rs1799782 significantly increased the risk of glioma whereas SNP of rs1800067 were significantly associated with a decrease in the risk of glioma. Additionally, subgroup analyses of 8 SNPs by ethnicity indicated that the mutation of rs13181, rs1800067 were apparently protective factors of glioma among Asians, while the mutation of rs13181 was a risk factors of glioma in Caucasians. Furthermore, the mutation of rs1799782 significantly raises the risk of glioma for Asian. Our study suggested that rs13181*C and rs1799782*A are risk alleles for glioma; rs1800067*A are beneficial alleles for decreased susceptibility to glioma. Future studies with large sample size and other races are strongly recommended to confirm the results from this study.

  3. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    SciTech Connect

    Li, Ya’nan; Dai, Dongwei; Lu, Qiong

    2013-11-22

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD{sup +}-dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We foundmore » that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy.« less

  4. Methylation of the miR-126 gene associated with glioma progression.

    PubMed

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    miR-126 was found in 40% of glioma patients in our study (20/50 cases), resulting in significantly decreased miR-126 expression (0.1715 ± 0.1376; P < 0.05). Our results indicate that we verified successfully the miRNA-126 down-regulation phenomenon in patients with glioma which showed in the results of glioma tissue miRNAs chip and the miRNA-126 down-regulation through methylation in patients with glioma. So we could say that epigenetic modification is a crucial mechanism for controlling the expression of miR-126 in glioma.

  5. Expression of elongation factor-2 kinase contributes to anoikis resistance and invasion of human glioma cells.

    PubMed

    Zhang, Li; Zhang, Yi; Liu, Xiao-yuan; Qin, Zheng-hong; Yang, Jin-ming

    2011-03-01

    To determine whether elongation factor-2 kinase (eEF-2 kinase) contributes to the malignant phenotype of glioblastoma multiforme by promoting the migration and invasion of glioma cells. The mechanism involved was also explored. Human glioma cell lines T98G and LN-229 were used. The expression of eEF-2 kinase was silenced using siRNA, and the invasive potential of tumor cells was assessed using a wound-healing assay and a Matrigel invasion assay. Apoptosis was determined using propidium iodide (PI) staining and Western blot analysis of cleaved caspase-3. Silencing the expression of eEF-2 kinase by siRNA significantly suppressed both the migration and invasion of human glioma cells. Silencing eEF-2 kinase expression also sensitized glioma cells to anoikis, thereby decreasing tumor cell viability in the absence of attachment. Treatment of tumor cells with the caspase inhibitor z-VAD-fmk down-regulated Bim accumulation and abolished glioma cell sensitivity to anoikis. The results suggest that the expression of eEF-2 kinase contributes to migration and invasion of human glioma cells by protecting them from anoikis. eEF-2 kinase expression may serve as a prognostic marker and a novel target for cancer therapy.

  6. Expression of elongation factor-2 kinase contributes to anoikis resistance and invasion of human glioma cells

    PubMed Central

    Zhang, Li; Zhang, Yi; Liu, Xiao-yuan; Qin, Zheng-hong; Yang, Jin-ming

    2011-01-01

    Aim: To determine whether elongation factor-2 kinase (eEF-2 kinase) contributes to the malignant phenotype of glioblastoma multiforme by promoting the migration and invasion of glioma cells. The mechanism involved was also explored. Methods: Human glioma cell lines T98G and LN-229 were used. The expression of eEF-2 kinase was silenced using siRNA, and the invasive potential of tumor cells was assessed using a wound-healing assay and a Matrigel invasion assay. Apoptosis was determined using propidium iodide (PI) staining and Western blot analysis of cleaved caspase-3. Results: Silencing the expression of eEF-2 kinase by siRNA significantly suppressed both the migration and invasion of human glioma cells. Silencing eEF-2 kinase expression also sensitized glioma cells to anoikis, thereby decreasing tumor cell viability in the absence of attachment. Treatment of tumor cells with the caspase inhibitor z-VAD-fmk down-regulated Bim accumulation and abolished glioma cell sensitivity to anoikis. Conclusion: The results suggest that the expression of eEF-2 kinase contributes to migration and invasion of human glioma cells by protecting them from anoikis. eEF-2 kinase expression may serve as a prognostic marker and a novel target for cancer therapy. PMID:21278783

  7. Targeted release of oncolytic measles virus by blood outgrowth endothelial cells in situ inhibits orthotopic gliomas.

    PubMed

    Wei, J; Wahl, J; Nakamura, T; Stiller, D; Mertens, T; Debatin, K-M; Beltinger, C

    2007-11-01

    Malignant gliomas remain largely incurable despite intensive efforts to develop novel therapies. Replicating oncolytic viruses have shown great promise, among them attenuated measles viruses of the Edmonston B strain (MV-Edm). However, host immune response and the infiltrative nature of gliomas limit their efficacy. We show that human blood outgrowth endothelial cells (BOECs), readily expandable from peripheral blood, are easily infected by MV-Edm and allow replication of MV-Edm while surviving long enough after infection to serve as vehicles for MV-Edm (BOEC/MV-Edm). After intravenous and peritumoral injection, BOEC/MV-Edm deliver the viruses selectively to irradiated orthotopic U87 gliomas in mice. At the tumor, MV-Edm produced by the BOECs infect glioma cells. Subsequent spread from tumor cell to tumor cell leads to focal infection and cytopathic effects that decrease tumor size and, in the case of peritumoral injection, prolong survival of mice. Since MV-Edm within BOECs are not readily neutralized and because BOEC/MV-Edm search and destroy glioma cells, BOEC/MV-Edm constitute a promising novel approach for glioma therapy.

  8. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.

    PubMed

    Dixit, Deobrat; Ahmad, Fahim; Ghildiyal, Ruchi; Joshi, Shanker Datt; Sen, Ellora

    2016-05-15

    Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. CRNDE Expression Positively Correlates with EGFR Activation and Modulates Glioma Cell Growth.

    PubMed

    Kiang, Karrie Mei-Yee; Zhang, Xiao-Qin; Zhang, Grace Pingde; Li, Ning; Cheng, Stephen Yin; Poon, Ming-Wai; Pu, Jenny Kan-Suen; Lui, Wai-Man; Leung, Gilberto Ka-Kit

    2017-06-01

    The long non-coding RNA CRNDE has emerged as an important regulator in carcinogenesis and cancer progression. While CRNDE has previously been found to be the most highly upregulated lncRNA in glioma, detailed information on its roles in regulating cancer cell growth remains limited. In the present study, we aimed at exploring the functional roles and underlying mechanisms of CRNDE in glioma. We applied microarray data analysis to determine the prognostic significance of CRNDE in glioma patients and its correlation with epidermal growth factor receptor (EGFR) activation. EGFR inhibition was used to confirm the role of EGFR in regulating CRNDE expression. Functional studies were performed upon CRNDE silencing to explore its role in gliomagenesis. We confirm that CRNDE acts as an oncogene that is highly up-regulated in glioma, and high CRNDE expression correlates with poor prognosis in glioma patients. We further demonstrate that the expression of CRNDE correlates with EGFR activation. EGF and EGFR tyrosine kinase inhibitor (TKI) enhance and block the up-regulation of CRNDE expression, respectively, suggesting that EGFR signaling may positively regulate CRNDE expression. Functional assays show that CRNDE depletion inhibits glioma cell growth both in vitro and in vivo, and is associated with induced cellular apoptosis with decreased Bcl2/Bax ratio. Our findings suggest that the aberrant expression of CRNDE may be mediated by activated EGFR signaling and play significant roles in gliomagenesis.

  10. Tenascin-C is expressed by human glioma in vivo and shows a strong association with tumor blood vessels.

    PubMed

    Brösicke, Nicole; van Landeghem, Frank K H; Scheffler, Björn; Faissner, Andreas

    2013-11-01

    The extracellular matrix (ECM) protein tenascin-C (TN-C) is upregulated within glioma tissues and cultured glioma cell lines. TN-C possesses a multi-modular structure and a variety of functional properties have been reported for its domains. We describe five novel monoclonal antibodies identifying different domains of TN-C. The epitopes for these antibodies were investigated by using recombinantly expressed fibronectin type III domains of TN-C. The biological effects of TN-C fragments on glioma cell proliferation and adhesion were analyzed. The expression pattern of TN-C in human glioma tissue sections and in glioma cell lines was studied with the novel library of monoclonal antibodies. The immunocytochemical analyses of the established human glioma cell lines U-251-MG, U-373-MG and U-87-MG revealed distinct staining patterns for each antibody. Robust expression of TN-C was found within the tumor mass of surgery specimens from glioblastoma. In many cases, the expression of this ECM molecule was clearly associated with blood vessels, particularly with microvessels. Three of the new antibodies highlighted individual TN-C-expressing single cells in glioma tissues. The effect of TN-C domains on glioma cells was examined by a BrdU-proliferation assay and an adhesion assay. Short fragments of constitutively expressed TN-C-domains did not exert significant effects on the proliferation of glioma cells, whereas the intact molecule increased cell division rates. In contrast, the long fragment TNfnALL containing all of the FNIII domains of TN-C decreased proliferation. Additionally, we found strong differences between the adhesion-influencing properties of the recombinant fragments on glioma cells.

  11. Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9.

    PubMed

    Katakowski, Mark; Charteris, Nicholas; Chopp, Michael; Khain, Evgeniy

    2016-12-01

    The phenotypic axis of invasion and proliferation in malignant glioma cells is a well-documented phenomenon. Invasive glioma cells exhibit a decreased proliferation rate and a resistance to apoptosis, and invasive tumor cells dispersed in brain subsequently revert to proliferation and contribute to secondary tumor formation. One miRNA can affect dozens of mRNAs, and some miRNAs are potent oncogenes. Multiple miRNAs are implicated in glioma malignancy, and several of which have been identified to regulate tumor cell motility and division. Using rat 9 L gliosarcoma and human U87 glioblastoma cell lines, we investigated miRNAs associated with the switch between glioma cell invasion and proliferation. Using micro-dissection of 9 L glioma tumor xenografts in rat brain, we identified disparate expression of miR-9 between cells within the periphery of the primary tumor, and those comprising tumor islets within the invasive zone. Modifying miR-9 expression in in vitro assays, we report that miR-9 controls the axis of glioma cell invasion/proliferation, and that its contribution to invasion or proliferation is biphasic and dependent upon local tumor cell density. In addition, immunohistochemistry revealed elevated hypoxia inducible factor 1 alpha (HIF-1α) in the invasive zone as compared to the primary tumor periphery. We also found that hypoxia promotes miR-9 expression in glioma cells. Based upon these findings, we propose a hypothesis for the contribution of miR-9 to the dynamics glioma invasion and satellite tumor formation in brain adjacent to tumor.

  12. SEPT7 overexpression inhibits glioma cell migration by targeting the actin cytoskeleton pathway.

    PubMed

    Hou, Mingshan; Liu, Xiaobing; Cao, Jie; Chen, Bo

    2016-04-01

    Glioma cell metastasis is a serious obstacle for surgical treatment and prognosis, of which locomotion of the cytoskeleton is a key contributor of cancer cell spreading. SEPT7 is documented as a cytoskeletal protein with GTPase activity and involved in glioma progression. However, the underlying mechanism of SEPT7 in glioma invasion remains unresolved. Our study investigated whether SEPT7 influences glioma cell migration involved in cytoskeleton modulation. The SEPT7 expression in various glioma cell lines was markedly decreased compared to in normal human brain cells. It was demonstrated that SEPT7 overexpression significantly inhibits LN18 cell migration and chemotaxis induced by IGF‑1 (P<0.01 and P<0.01). Moreover, MMP‑2 and MMP‑9 were dramatically depressed after SEPT7 upregulation. To understand the mechanisms by which SEPT7 modulates homeostasis of the actin cytoskeleton, the F‑actin/G‑actin ratio and cofilin expression were determined. The data revealed that the F‑actin/G‑actin ratio and cofilin were reduced, and p‑cofilin increased conversely in cells with SEPT7 overexpression, indicating that SEPT7 reduced glioma cell migration by promoting cofilin phosphorylation and depolymerizing actin. Then, to understand the role of cofilin in SEPT7‑mediated actin dynamic equilibrium and cell migration, cofilin siRNA was transfected into cells. Surprisingly, cell migration and actin polymerization which had been improved by SEPT7 siRNA were significantly reversed, and the accompanying cofilin phosphorylation increased, indicating that cofilin phospho‑regulation played an important role in SEPT7‑mediated cytoskeleton locomotion and glioma cell migration. In conclusion, SEPT7 is involved in glioma cell migration with the assistance of cofilin phospho‑mediated cytoskeleton locomotion.

  13. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    SciTech Connect

    Jia, Yue; Wang, Handong, E-mail: njhdwang@hotmail.com; Wang, Qiang

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluatedmore » the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.« less

  14. A nested case-control study of 277 prediagnostic serum cytokines and glioma

    PubMed Central

    Root, Elisabeth; Pietrzak, Maciej; Rempala, Grzegorz A.; Huang, Ruo-Pan; Johannesen, Tom Borge; Grimsrud, Tom K.

    2017-01-01

    Recent research shows bidirectional communication between the normal brain and the peripheral immune system. Glioma is a primary brain tumor characterized by systemic immunosuppression. To better understand gliomagenesis, we evaluated associations between 277 prediagnostic serum cytokines and glioma. We used glioma (n = 487) and matched control (n = 487) specimens from the Janus Serum Bank Cohort in Oslo, Norway. Conditional logistic regression allowed us to identify those cytokines that were individually associated with glioma. Next, we used heat maps to compare case to control Pearson correlation matrices of 12 cytokines modeled in an in silico study of the interaction between the microenvironment and the tumor. We did the same for case-control correlation matrices of lasso-selected cytokines and all 277 cytokines in the data set. Cytokines related to glioma risk (P ≤ .05) more than 10 years before diagnosis are sIL10RB, VEGF, beta-Catenin and CCL22. LIF was associated with decreased glioma risk within five years before glioma diagnosis (odds ratio (OR) = 0.47, 95% confidence interval (CI) = 0.23, 0.94). After adjustment for cytokines above, the previously observed interaction between IL4 and sIL4RA persisted (> 20 years before diagnosis, OR = 1.72, 95% CI = 1.20, 2.47). In addition, during this period, case correlations among 12 cytokines were weaker than were those among controls. This pattern was also observed among 30 lasso- selected cytokines and all 277 cytokines. We identified four cytokines and one interaction term that were independently related to glioma risk. We have documented prediagnostic changes in serum cytokine levels that may reflect the presence of a preclinical tumor. PMID:28594935

  15. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    PubMed

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the

  16. Profiling Hsp90 differential expression and the molecular effects of the Hsp90 inhibitor IPI-504 in high-grade glioma models.

    PubMed

    Di, Kaijun; Keir, Stephen T; Alexandru-Abrams, Daniela; Gong, Xing; Nguyen, Howard; Friedman, Henry S; Bota, Daniela A

    2014-12-01

    Retaspimycin hydrochloride (IPI-504), an Hsp90 (heat shock protein 90) inhibitor, has shown activity in multiple preclinical cancer models, such as lung, breast and ovarian cancers. However, its biological effects in gliomas and normal brain derived cellular populations remain unknown. In this study, we profiled the expression pattern of Hsp90α/β mRNA in stable glioma cell lines, multiple glioma-derived primary cultures and human neural stem/progenitor cells. The effects of IPI-504 on cell proliferation, apoptosis, motility and expression of Hsp90 client proteins were evaluated in glioma cell lines. In vivo activity of IPI-504 was investigated in subcutaneous glioma xenografts. Our results showed Hsp90α and Hsp90β expression levels to be patient-specific, higher in high-grade glioma-derived primary cells than in low-grade glioma-derived primary cells, and strongly correlated with CD133 expression and differentiation status of cells. Hsp90 inhibition by IPI-504 induced apoptosis, blocked migration and invasion, and significantly decreased epidermal growth factor receptor levels, mitogen-activated protein kinase and/or Akt activities, and secretion of vascular endothelial growth factor in glioma cell lines. In vivo study showed that IPI-504 could mildly attenuate tumor growth in immunocompromised mice. These findings suggest that targeting Hsp90 by IPI-504 has the potential to become an active therapeutic strategy in gliomas in a selective group of patients, but further research into combination therapies is still needed.

  17. Frequent Nek1 overexpression in human gliomas

    SciTech Connect

    Zhu, Jun; Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; Cai, Yu, E-mail: aihaozuqiu22@163.com

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG,more » U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.« less

  18. Intraarterial Infusion Of Erbitux and Bevacizumab For Relapsed/Refractory Intracranial Glioma In Patients Under 22

    ClinicalTrials.gov

    2018-01-26

    Glioblastoma Multiforme; Fibrillary Astrocytoma of Brain; Glioma of Brainstem; Anaplastic Astrocytoma; Pilomyxoid Astrocytoma; Mixed Oligodendroglioma-Astrocytoma; Brain Stem Glioma; Diffuse Intrinsic Pontine Glioma

  19. Asiatic Acid Inhibits Pro-Angiogenic Effects of VEGF and Human Gliomas in Endothelial Cell Culture Models

    PubMed Central

    Kavitha, Chandagirikoppal V.; Agarwal, Chapla; Agarwal, Rajesh; Deep, Gagan

    2011-01-01

    Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5–20 µM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 µM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti

  20. Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model

    SciTech Connect

    Perez-Torres, Carlos J.; Engelbach, John A.; Cates, Jeremy

    2014-10-01

    Purpose: Accurate noninvasive diagnosis is vital for effective treatment planning. Presently, standard anatomical magnetic resonance imaging (MRI) is incapable of differentiating recurring tumor from delayed radiation injury, as both lesions are hyperintense in both postcontrast T1- and T2-weighted images. Further studies are therefore necessary to identify an MRI paradigm that can differentially diagnose these pathologies. Mouse glioma and radiation injury models provide a powerful platform for this purpose. Methods and Materials: Two MRI contrasts that are widely used in the clinic were chosen for application to a glioma/radiation-injury model: diffusion weighted imaging, from which the apparent diffusion coefficient (ADC) ismore » obtained, and magnetization transfer contrast, from which the magnetization transfer ratio (MTR) is obtained. These metrics were evaluated longitudinally, first in each lesion type alone–glioma versus irradiation – and then in a combined irradiated glioma model. Results: MTR was found to be consistently decreased in all lesions compared to nonlesion brain tissue (contralateral hemisphere), with limited specificity between lesion types. In contrast, ADC, though less sensitive to the presence of pathology, was increased in radiation injury and decreased in tumors. In the irradiated glioma model, ADC also increased immediately after irradiation, but decreased as the tumor regrew. Conclusions: ADC is a better metric than MTR for differentiating glioma from radiation injury. However, MTR was more sensitive to both tumor and radiation injury than ADC, suggesting a possible role in detecting lesions that do not enhance strongly on T1-weighted images.« less

  1. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade.

    PubMed

    Dejaegher, Joost; Verschuere, Tina; Vercalsteren, Ellen; Boon, Louis; Cremer, Jonathan; Sciot, Raf; Van Gool, Stefaan W; De Vleeschouwer, Steven

    2017-11-01

    Blockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged. In this study we have used flow cytometry to quantify PD-1 expression on tumor-infiltrating T cells of 25 freshly resected glioma cell suspensions (10 newly and 5 relapsed glioblastoma, 10 lower grade gliomas) and simultaneously isolated circulating T cells. A strong upregulation of PD-1 expression in the tumor microenvironment compared to the blood circulation was seen in all glioma patients. Additionally, circulating T cells were isolated from 15 age-matched healthy volunteers, but no differences in PD-1 expression were found compared to glioma patients. In the murine GL261 malignant glioma model, there was a similar upregulation of PD-1 on brain-infiltrating lymphocytes. Using a monoclonal PD-1 blocking antibody, we found a marked prolonged survival with 55% of mice reaching long-term survival. Analysis of brain-infiltrating cells 21 days after GL261 tumor implantation showed a shift in infiltrating lymphocyte subgroups with increased CD8+ T cells and decreased regulatory T cells. Together, our results suggest an important role of PD-1 in glioma-induced immune escape, and provide translational evidence for the use of PD-1 blocking antibodies in human malignant gliomas. © 2017 UICC.

  2. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    SciTech Connect

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains ofmore » nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.« less

  3. Malignant transformation of bone marrow stromal cells induced by the brain glioma niche in rats.

    PubMed

    He, Qiuping; Zou, Xifeng; Duan, Deyi; Liu, Yujun; Xu, Qunyuan

    2016-01-01

    Normal human embryonic stem cells (hESCs) can develop neoplastic cancer stem cell (CSC) properties after coculture with transformed hESCs in vitro. In the present study, the influence of the tumor microenvironment on malignant transformation of bone marrow stromal cells (BMSCs) was studied after allografting a mixture of enhanced green fluorescent protein (EGFP)-labeled BMSCs and C6 glioma cells into the rat brain to understand the influence of the cellular environment, especially the tumor environment, on the transformation of grafted BMSCs in the rat brain. We performed intracerebral transplantation in the rat brain using EGFP-labeled BMSCs coinjected with C6 tumor cells. After transplantation, the EGFP-labeled cells were isolated from the tumor using fluorescence-activated cell sorting, and the characteristics of the recovered cells were investigated. Glioma-specific biomarkers of the sorted cells and the biological characteristics of the tumors were analyzed. The BMSCs isolated from the cografts were transformed into glioma CSCs, as indicated by the marked expression of the glioma marker GFAP in glioma cells, and of Nestin and CD133 in neural stem cells and CSCs, as well as rapid cell growth, decreased level of the tumor suppressor gene p53, increased level of the oncogene murine double minute gene 2 (MDM2), and recapitulation of glioma tissues in the brain. These data suggest that BMSCs can be transformed into CSCs, which can be further directed toward glioma formation under certain conditions, supporting the notion that the tumor microenvironment is involved in transforming normal BMSCs into glial CSCs.

  4. MicroRNA-128 inhibits proliferation and invasion of glioma cells by targeting COX-2.

    PubMed

    Lin, Yihai; Wu, Zhangyi

    2018-03-07

    MicroRNAs (miRNA), a class of small noncoding RNAs, regulates message RNA (mRNA) by targeting the 3'-untranslated region (3'-UTR) resulting in suppression of gene expression. In this study, we identified the expression and function of miR-128, which was found to be downregulated in glioma tissues and glioma cells by real time PCR. Overexpression of miR-128 mimics into LN229 and U251 cells could inhibit proliferation and invasion of glioma cells. However, the inhibitory effects of miR-128 mimics on the invasion and proliferation of glioma cells were reversed by overexpression of cyclooxygenase-2 (COX-2). Our data showed that COX-2 was a candidate target of miR-128. Luciferase activity of 3'-UTR of COX-2 was reduced in the presence of miR-128. Additionally, miR-128 obviously decreased COX-2 mRNA stability determined by real time PCR. Contrarily, we found that miR-128 inhibitor significantly increased the COX-2 mRNA expression, and elevated the protein expression of MMP9 and ki67, and promoted the proliferation of glioma cells. Furthermore, luciferase activity of the 3'-UTR was upregulated by miR-128 inhibitor. All of these results supported that miR-128 was a direct regulator of COX-2. Further studies proved that COX-2 was elevated in glioma tissues and its expression was negatively correlated with the levels of miR-128. These findings may establish miR-128 as a new potential target for the treatment of patients with gliomas. Copyright © 2017. Published by Elsevier B.V.

  5. Handedness and the risk of glioma.

    PubMed

    Miller, Briana; Peeri, Noah C; Nabors, Louis Burt; Creed, Jordan H; Thompson, Zachary J; Rozmeski, Carrie M; LaRocca, Renato V; Chowdhary, Sajeel; Olson, Jeffrey J; Thompson, Reid C; Egan, Kathleen M

    2018-05-01

    Gliomas are the most common type of malignant primary brain tumor and few risk factors have been linked to their development. Handedness has been associated with several pathologic neurological conditions such as schizophrenia, autism, and epilepsy, but few studies have evaluated a connection between handedness and risk of glioma. In this study, we examined the relationship between handedness and glioma risk in a large case-control study (1849 glioma cases and 1354 healthy controls) and a prospective cohort study (326,475 subjects with 375 incident gliomas). In the case-control study, we found a significant inverse association between left handedness and glioma risk, with left-handed persons exhibiting a 35% reduction in the risk of developing glioma [odds ratio (OR) = 0.65, 95% confidence interval (CI) 0.51-0.83] after adjustment for age, gender, race, education, and state of residence; similar inverse associations were observed for GBM (OR = 0.69, 95% CI 0.52-0.91), and non-GBM (OR = 0.59, 95% CI 0.42-0.82) subgroups. The association was consistent in both males and females, and across age strata, and was observed in both glioblastoma and in lower grade tumors. In the prospective cohort study, we found no association between handedness and glioma risk (hazards ratio = 0.92, 95% CI 0.67-1.28) adjusting for age, gender, and race. Further studies on this association may help to elucidate mechanisms of pathogenesis in glioma.

  6. Fasudil increases temozolomide sensitivity and suppresses temozolomide-resistant glioma growth via inhibiting ROCK2/ABCG2.

    PubMed

    Zhang, Xin; Liu, Xiuting; Zhou, Wei; Yang, Mengdi; Ding, Yang; Wang, Qing; Hu, Rong

    2018-02-07

    Resistance to temozolomide (TMZ) is a major clinical challenge in glioma treatment, but the mechanisms of TMZ resistance are poorly understood. Here, we provided evidence that ROCK2 acted redundantly to maintain resistance of TMZ in TMZ-resistant gliomas, and as a ROCK2 phosphorylation inhibitor, fasudil significantly suppressed proliferation of TMZ-resistant gliomas in vivo and vitro via enhancing the chemosensitivity of TMZ. Additionally, the membrane translocation of ABCG2 was decreased with fasudil by ROCK2/moesin pathway. We also showed that fasudil suppressed the expression of ABCG2 via ROCK2/moesin/β-catenin pathway. Our results reveal an indispensable role for ROCK2 and provide strong evidence for the therapeutic use of fasudil in the clinical setting for TMZ-resistant gliomas.

  7. TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo

    PubMed Central

    Perlstein, Benny; Finniss, Susan A.; Miller, Cathie; Okhrimenko, Hana; Kazimirsky, Gila; Cazacu, Simona; Lee, Hae Kyung; Lemke, Nancy; Brodie, Shlomit; Umansky, Felix; Rempel, Sandra A.; Rosenblum, Mark; Mikklesen, Tom; Margel, Shlomo; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM) are characterized by resistance to chemotherapy and radiotherapy, and therefore, alternative therapeutic approaches are needed. TRAIL induces apoptosis in cancer but not in normal cells and is considered to be a promising anti-tumor agent. However, its short in vivo half-life and lack of efficient administration modes are serious impediments to its therapeutic efficacy. Nanoparticles (NP) have been used as effective delivery tools for various anticancer drugs. TRAIL was conjugated to magnetic ferric oxide NP by binding the TRAIL primary amino groups to activated double bonds on the surface of the NP. The effect of NP-TRAIL was examined on the apoptosis of glioma cells and self-renewal of glioma stem cells (GSCs). In addition, the ability of the NP-TRAIL to track U251 cell–derived glioma xenografts and to affect cell apoptosis, tumor volume, and survival among xenografted rats was also examined. Conjugation of TRAIL to NP increased its apoptotic activity against different human glioma cells and GSCs, as compared with free recombinant TRAIL. Combined treatment with NP-TRAIL and γ-radiation or bortezomib sensitized TRAIL-resistant GSCs to NP-TRAIL. Using rhodamine-labeled NP and U251 glioma cell–derived xenografts, we demonstrated that the NP-TRAIL were found in the tumor site and induced a significant increase in glioma cell apoptosis, a decrease in tumor volume, and increased animal survival. In summary, conjugation of TRAIL to NP increased its apoptotic activity both in vitro and in vivo. Therefore, NP-TRAIL represents a targeted anticancer agent with more efficient action for the treatment of GBM and the eradication of GSCs. PMID:23144078

  8. The Updated World Health Organization Glioma Classification: Cellular and Molecular Origins of Adult Infiltrating Gliomas.

    PubMed

    Pisapia, David J

    2017-12-01

    - In the recently updated World Health Organization (WHO) classification of central nervous system tumors, our concept of infiltrating gliomas as a molecular dichotomy between oligodendroglial and astrocytic tumors has been codified. Advances in animal models of glioma and a wealth of sophisticated molecular analyses of human glioma tissue have led to a greater understanding of some of the biologic underpinnings of gliomagenesis. - To review our understanding of gliomagenesis in the setting of the recently updated WHO classification of central nervous system tumors. Topics addressed include a summary of an updated diagnostic schema for infiltrating gliomas, the crucial importance of isocitrate dehydrogenase mutations, candidate cells of origin for gliomas, environmental and other posited contributing factors to gliomagenesis, and the possible role of chromatin topology in setting the stage for gliomagenesis. - We conducted a primary literature search using PubMed. - With multidimensional molecular data sets spanning increasingly larger numbers of patients with infiltrating gliomas, our understanding of the disease at the point of surgical resection has improved dramatically and this understanding is reflected in the updated WHO classification. Animal models have demonstrated a diversity of candidates for glioma cells of origin, but crucial questions remain, including the role of neural stem cells, more differentiated progenitor cells, and glioma stem cells. At this stage the increase in data generated from human samples will hopefully inform the creation of newer animal models that will recapitulate more accurately the diversity of gliomas and provide novel insights into the biologic mechanisms underlying tumor initiation and progression.

  9. A report on radiation-induced gliomas

    SciTech Connect

    Salvati, M.; Artico, M.; Caruso, R.

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  10. The anti-tumor effects of calorie restriction are correlated with reduced oxidative stress in ENU-induced gliomas

    PubMed Central

    Mahlke, Megan A.; Cortez, Lisa A.; Ortiz, Melanie A.; Rodriguez, Marisela; Uchida, Koji; Shigenaga, Mark K.; Lee, Shuko; Zhang, Yiquang; Tominaga, Kaoru; Hubbard, Gene B.; Ikeno, Yuji

    2011-01-01

    The anti-tumor effects of calorie restriction (CR) and the possible underlying mechanisms were investigated using ethylnitrosourea (ENU)-induced glioma in rats. ENU was given transplacentally at gestational day 15, and male offspring were used in this experiment. The brain from 4-, 6-, and 8-month-old rats fed either ad libitum (AL) or calorie-restricted diets (40% restriction of total calories compared to AL rats) was studied. Tumor burden was assessed by comparing the number and size of gliomas present in sections of the brain. Immunohistochemical analysis was used to document lipid peroxidation [4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA)], protein oxidation (nitrotyrosine), glycation and AGE formation [methylglyoxal (MG) and carboxymethyllysine (CML)], cell proliferation activity [proliferating cell nuclear antigen (PCNA)], cell death [single-stranded DNA (ssDNA)], presence of thioredoxin 1 (Trx1), and presence of heme oxygenase-1 (HO-1) associated with the development of gliomas. The results showed that the number of gliomas did not change with age in the AL groups; however, the average size of the gliomas was significantly larger in the 8-month-old group compared to that of the younger groups. Immunopositivity was observed mainly in tumor cells and reactive astrocytes in all histological types of ENU-induced glioma. Immunopositive areas for HNE, MDA, nitrotyrosine, MG, CML, HO-1, and Trx1 increased with the growth of gliomas. The CR group showed both reduced number and size of gliomas, and tumors exhibited less accumulation of oxidative damage, decreased formation of glycated end products, and a decreased presence of HO-1 and Trx1 compared to the AL group. Furthermore, gliomas of the CR group showed less PCNA positive and more ssDNA positive cells, which are correlated to the retarded growth of tumors. Interestingly, we also discovered that the anti-tumor effects of CR were associated with decreased hypoxia-inducible factor-1α (HIF-1α) levels in

  11. Malignant gliomas: new translational therapies.

    PubMed

    Sul, Joohee; Fine, Howard A

    2010-01-01

    Malignant gliomas are the most common primary brain tumors in adults and carry a dismal prognosis. Despite aggressive therapy with maximal safe surgical resection, radiation and chemotherapy, these tumors invariably are refractory to or become resistant to treatment and recur. Gliomas are highly infiltrative cancers and display remarkable genetic heterogeneity making them challenging to treat. Recent progress has been made in understanding the molecular and genetic composition of these tumors and from this, promising new targets for therapy have emerged. In particular, anti-angiogenesis therapies have led to modest success in disease control. In addition, the growing body of research in cancer immunology as well as cancer stem cells has made inroads in our understanding of tumorgenesis. Translational research has been particularly crucial to the development of these therapies as much preclinical and clinical work is needed to develop the rationale for treatments, to develop biomarkers of drug activity and to elucidate mechanisms of resistance. This brief overview will discuss some of the pivotal advances made in the pursuit of improved outcomes and survival for patients with this devastating disease. © 2010 Mount Sinai School of Medicine.

  12. Cellular immunotherapy for malignant gliomas.

    PubMed

    Lin, Yi; Okada, Hideho

    2016-10-01

    Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.

  13. Long non-coding RNA Fer-1-like family member 4 is overexpressed in human glioblastoma and regulates the tumorigenicity of glioma cells.

    PubMed

    Ding, Feng; Tang, Hongtu; Nie, Dekang; Xia, Liang

    2017-08-01

    Long non-coding RNA (lncRNA) is a class of regulative non-coding RNA that is >200 nucleotides in length. Previous studies have demonstrated that lncRNA Fer-1-like family member 4 (FER1L4) serves regulatory roles in tumor progression; however, its clinical significance in human neuroglioma remains unclear. In the present study, data from The Cancer Genome Atlas was mined in order to investigate the association between FER1L4 expression and prognosis in patients with glioma. A short interfering (si)RNA targeting FER1L4 was transfected into U373-MG and U251 glioma cell lines, and cell viability, invasion and apoptosis were examined using CCK-8, Transwell and Annexin V-fluorescein isothiocyanate/propidium iodide assays, respectively. FER1L4 was significantly upregulated in high-grade glioma compared with low-grade glioma. Additionally, high expression of FER1L4 significantly predicted poor prognosis in patients with glioma. The expression of FER1L4 in glioma cell lines was significantly higher compared with that in normal astrocytes. Furthermore, by downregulating FER1L4 using siRNA, the invasiveness and viability of the glioma cells significantly decreased, while apoptosis significantly increased. The findings from the present study indicate that FER1L4 serves a role in the occurrence and progression of glioma, and could be used as a prognostic biomarker for this disease.

  14. Immunotherapy of rat glioma without accumulation of CD4+CD25+FOXP3+ regulatory T cells☆

    PubMed Central

    Feng, Enshan; Gao, Haili; Su, Wei; Yu, Chunjiang

    2012-01-01

    Immunotherapy may be used for the treatment of glioblastoma multiforme; however, the induced immune response is inadequate when either T cells or dendritic cells are used alone. In this study, we established a novel vaccine procedure in rats, using dendritic cells pulsed with C6 tumor cell lysates in combination with adoptive transfer of T lymphocytes from syngenic donors. On day 21 after tumor inoculation, all the rats were sacrificed, the brains were harvested for calculation of glioma volume, cytolytic T lymphocyte responses were measured by cytotoxic assay, and the frequency of regulatory T lymphocytes (CD4+CD25+FOXP3+) in the peripheral blood was investigated by flow cytometric analysis. The survival rate of rats bearing C6 glioma was observed. Results showed that the co-immunization strategy had significant anti-tumor potential against the pre-established C6 glioma, and induced a strong cytolytic T lymphocyte response in rats. The frequency of peripheral blood CD4+CD25+FOXP3+ regulatory T lymphocytes was significantly decreased following the combination therapy, and the rats survived for a longer period. Experimental findings indicate that the combined immunotherapy of glioma cell lysate-pulsed dendritic cell vaccination following adoptive transfer of T cells can effectively inhibit the growth of gliomas in rats, boost anti-tumor immunity and produce a sustained immune response while avoiding the accumulation of CD4+CD25+FOXP3+ regulatory T lymphocytes. PMID:25657686

  15. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas

    PubMed Central

    Kohanbash, Gary; Carrera, Diego A.; Ahn, Brian J.; Jahan, Naznin; Mazor, Tali; Chheda, Zinal S.; Downey, Kira M.; Watchmaker, Payal B.; Beppler, Casey; Warta, Rolf; Amankulor, Nduka A.; Herold-Mende, Christel; Costello, Joseph F.

    2017-01-01

    Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting α-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte–associated genes and IFN-γ–inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas. PMID:28319047

  16. B-FABP-Expressing Radial Glial Cells: The Malignant Glioma Cell of Origin?123

    PubMed Central

    Mita, Raja; Coles, Jeffrey E; Glubrecht, Darryl D; Sung, Rohyun; Sun, Xuejun; Godbout, Roseline

    2007-01-01

    Brain fatty acid-binding protein (B-FABP) is normally expressed in radial glial cells, where it plays a role in the establishment of the radial glial fiber network required for neuronal migration. B-FABP is also expressed in astrocytoma tumors and in some malignant glioma cell lines. To address the role of B-FABP in malignant glioma, we have studied the growth properties of clonal populations of malignant glioma cells modified for B-FABP expression. Here, we demonstrate that expression of B-FABP in B-FABP-negative malignant glioma cells is accompanied by the appearance of radial glial-like properties, such as increased migration and extended bipolar cell processes, as well as reduced transformation. Conversely, B-FABP depletion in B-FABP-positive malignant glioma cells results in decreased migration, reduction in cell processes, and a more transformed phenotype. Moreover, expression of B-FABP in astrocytomas is associated with regions of tumor infiltration and recurrence. Rather than being a direct manifestation of the tumorigenic process, we propose that the ability of high-grade astrocytoma cells to migrate long distances from the primary tumor reflects properties associated with their cell of origin. Thus, targeting B-FABP-expressing cells may make a significant impact on the treatment of these tumors. PMID:17898869

  17. The association between birth order, sibship size and glioma development in adulthood.

    PubMed

    Amirian, E; Scheurer, Michael E; Bondy, Melissa L

    2010-06-01

    The etiology of brain tumors is still largely unknown. Previous research indicates that infectious agents and immunological characteristics may influence adult glioma risk. The purpose of our study was to evaluate the effects of birth order and sibship size (total number of siblings), as indicators of the timing and frequency of early life infections, on adult glioma risk using a population of 489 cases and 540 cancer-free controls from the Harris County Brain Tumor Study. Odds ratios for birth order and sibship size were calculated separately from multivariable logistic regression models, adjusting for sex, family history of cancer, education, and age. Each one-unit increase in birth order confers a 13% decreased risk of glioma development in adulthood (OR = 0.87, 95% CI = 0.79-0.97). However, sibship size was not significantly associated with adult glioma status (OR = 0.97, 95% CI = 0.91-1.04). Our study indicates that individuals who were more likely to develop common childhood infections at an earlier age (those with a higher birth order) may be more protected against developing glioma in adulthood. More biological and epidemiological research is warranted to clarify the exact mechanisms through which the timing of common childhood infections and the course of early life immune development affect gliomagenesis.

  18. Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium.

    PubMed

    Aldape, Kenneth; Amin, Samirkumar B; Ashley, David M; Barnholtz-Sloan, Jill S; Bates, Amanda J; Beroukhim, Rameen; Bock, Christoph; Brat, Daniel J; Claus, Elizabeth B; Costello, Joseph F; de Groot, John F; Finocchiaro, Gaetano; French, Pim J; Gan, Hui K; Griffith, Brent; Herold-Mende, Christel C; Horbinski, Craig; Iavarone, Antonio; Kalkanis, Steven N; Karabatsou, Konstantina; Kim, Hoon; Kouwenhoven, Mathilde C M; McDonald, Kerrie L; Miletic, Hrvoje; Nam, Do-Hyun; Ng, Ho Keung; Niclou, Simone P; Noushmehr, Houtan; Ormond, Ryan; Poisson, Laila M; Reifenberger, Guido; Roncaroli, Federico; Sa, Jason K; Sillevis Smitt, Peter A E; Smits, Marion; Souza, Camila F; Tabatabai, Ghazaleh; Van Meir, Erwin G; Verhaak, Roel G W; Watts, Colin; Wesseling, Pieter; Woehrer, Adelheid; Yung, W K Alfred; Jungk, Christine; Hau, Ann-Christin; van Dyck, Eric; Westerman, Bart A; Yin, Julia; Abiola, Olajide; Zeps, Nikolaj; Grimmond, Sean; Buckland, Michael; Khasraw, Mustafa; Sulman, Erik P; Muscat, Andrea M; Stead, Lucy

    2018-02-08

    Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  19. New developments in surgery of malignant gliomas

    PubMed Central

    Vranic, Andrej

    2011-01-01

    Background Malignant gliomas account for a high proportion of brain tumours. With new advances in neurooncology, the recurrence-free survival of patients with malignant gliomas has been substantially prolonged. It, however, remains dependent on the thoroughness of the surgical resection. The maximal tumour resection without additional postoperative deficit is the goal of surgery on patients with malignant gliomas. In order to minimize postoperative deficit, several pre- and intraoperative techniques have been developed. Conclusions Several techniques used in malignant glioma surgery have been developed, including microsurgery, neuroendoscopy, stereotactic biopsy and brachytherapy. Imaging and functional techniques allowing for safer tumour resection have a special value. Imaging techniques allow for better preoperative visualization and choice of the approach, while functional techniques help us locate eloquent regions of the brain. PMID:22933950

  20. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells.

    PubMed

    Li, Xue-Tao; Tang, Wei; Jiang, Ying; Wang, Xiao-Min; Wang, Yan-Hong; Cheng, Lan; Meng, Xian-Sheng

    2016-04-26

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood-brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma.

  1. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells

    PubMed Central

    Li, Xue-tao; Tang, Wei; Jiang, Ying; Wang, Xiao-min; Wang, Yan-hong; Cheng, Lan; Meng, Xian-sheng

    2016-01-01

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood–brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma. PMID:27029055

  2. Insights From Molecular Profiling of Adult Glioma.

    PubMed

    Diamandis, Phedias; Aldape, Kenneth D

    2017-07-20

    The comprehensive molecular profiling of cancer has resulted in new insights into the biology and classification of numerous tumor types. In the case of primary brain tumors that commonly affect adults, an emerging set of disease-defining biomarker sets is reshaping existing diagnostic entities that had previously been defined on the basis of their microscopic appearance. Substantial progress has been made in this regard for common primary brain tumors in adults, especially diffuse gliomas, where large-scale profiling efforts have led to the incorporation of highly prevalent molecular alterations that promote a biologically based classification as an adjunct to the traditional histopathologic approach. The growing awareness that histologically indistinguishable tumors can be divided into more precise and biologically relevant subgroups has demanded a more global routine approach to biomarker assessment. These considerations have begun to intersect with the decreasing costs and availability of genome-wide analysis tools and, thus, incorporation into routine practice. We review how molecular profiling already has led to an evolution in the classification of brain tumors. In addition, we discuss the likely trajectory of incorporation of global molecular profiling platforms into the routine clinical classification of adult brain tumors.

  3. Immunological Aspects of Malignant Gliomas.

    PubMed

    Cohen-Inbar, Or; Zaaroor, Menashe

    2016-07-01

    Glioblastoma Multiforme (GBM) is the most common malignant primary brain neoplasm having a mean survival time of <24 months. This figure remains constant, despite significant progress in medical research and treatment. The lack of an efficient anti-tumor immune response and the micro-invasive nature of the glioma malignant cells have been explained by a multitude of immune-suppressive mechanisms, proven in different models. These immune-resistant capabilities of the tumor result in a complex interplay this tumor shares with the immune system. We present a short review on the immunology of GBM, discussing the different unique pathological and molecular features of GBM, current treatment modalities, the principles of cancer immunotherapy and the link between GBM and melanoma. Current knowledge on immunological features of GBM, as well as immunotherapy past and current clinical trials, is discussed in an attempt to broadly present the complex and formidable challenges posed by GBM.

  4. Internet-based guided self-help for glioma patients with depressive symptoms: a randomized controlled trial.

    PubMed

    Boele, Florien W; Klein, Martin; Verdonck-de Leeuw, Irma M; Cuijpers, Pim; Heimans, Jan J; Snijders, Tom J; Vos, Maaike; Bosma, Ingeborg; Tijssen, Cees C; Reijneveld, Jaap C

    2018-03-01

    Depressive symptoms are common in glioma patients, and can negatively affect health-related quality of life (HRQOL). We performed a nation-wide randomized controlled trial to evaluate the effects of an online guided self-help intervention for depressive symptoms in adult glioma patients. Glioma patients with depressive symptoms were randomized to a 5-week online course based on problem-solving therapy, or a waiting list control group. After having received the intervention, the glioma patient groups combined were compared with patients with cancer outside the central nervous system (non-CNS cancer controls), who also received the intervention. Sample size calculations yielded 63 participants to be recruited per arm. The primary outcome [depressive symptoms (CES-D)] and secondary outcomes [fatigue (Checklist Individual Strength (CIS)) and HRQOL (Short Form-36)], were assessed online at baseline, post-intervention, and 3 and 12 months follow-up. In total, 89 glioma patients (intervention N = 45; waiting list N = 44) and 26 non-CNS cancer controls were included, of whom 35 and 54% completed the intervention, respectively. Recruitment could not be extended beyond 3.5 years due to funding. On depression, no statistically significant differences between the groups were found. Fatigue decreased post-treatment in the glioma intervention group compared with the waiting list group (p = 0.054, d = 0.306). At 12 months, the physical component summary (HRQOL) remained stable in glioma patients, while scores improved in non-CNS cancer controls (p = 0.035, d = 0.883). In this underpowered study, no evidence for the effectiveness of online guided self-help for depression or HRQOL in glioma patients was found, but it may improve fatigue. Trial registration Netherlands Trial Register NTR3223.

  5. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    PubMed

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells.

  6. Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas.

    PubMed

    Fujiwara, Satoshi; Nakagawa, Kou; Harada, Hironobu; Nagato, Shigeyuki; Furukawa, Koji; Teraoka, Mikio; Seno, Toshimoto; Oka, Keizo; Iwata, Shinji; Ohnishi, Takanori

    2007-04-01

    Malignant gliomas are characterized by active invasiveness, necrosis, and vascular proliferation. These pathological features have been speculated to be caused by tissue hypoxia. Hypoxia-inducible factor-1 (HIF-1), which is controlled by rapid stabilization of the HIF-1alpha subunit, is a pivotal transcriptional factor in the cellular response to hypoxia. Although many studies have described the relationship between tumor angiogenesis and hypoxic environment, the roles of HIF-1 in cell invasion have been barely elucidated in malignant gliomas. We investigated the role of HIF-1alpha in the motile and invasive activities of human glioma cells under hypoxia. Four malignant glioma cell lines, U87MG, U251MG, U373MG, and LN18, were cultured under 21 and 1% oxygen concentration. Expression of HIF-1alpha under hypoxia was observed to be much higher than that under normoxia in all cell lines. Introducing HIF-1alpha-targeted small interfering RNA (HIF-1alpha siRNA) into the glioma cell lines resulted in downregulation of HIF-1alpha expression, and significantly suppressed glioma cell migration in vitro. Furthermore, invasiveness was significantly reduced in the cells transfected with HIF-1alpha siRNA compared with those transfected with the control siRNA. Co-culture of glioma spheroids and rat brain slices showed that HIF-1alpha siRNA-transfected glioma cells failed to invade the surrounding normal brain tissue in an organotypic brain slice model. These effects of HIF-1alpha siRNA were more conspicuous under hypoxia than under normoxia. In addition, under hypoxic conditions, the level of matrix metalloproteinase (MMP)-2 mRNA was upregulated, and that of tissue inhibitor of metalloproteinase (TIMP)-2 was downregulated in all glioma cell lines. Treatment with HIF-1alpha siRNA resulted in downregulation of MMP-2 mRNA and upregulation of TIMP-2 mRNA. Furthermore, the enzyme activities of MMP-2 and MMP-9, both of which were activated by hypoxia, decreased with the introduction of

  7. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    PubMed

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification. © 2016 International Society of Neuropathology.

  8. Glioma

    MedlinePlus

    Donate Donate One Time Monthly Event Tribute For brain tumor information and support Call: 800-886-ABTA (2282) or Email: ABTAcares@abta.org Donate Now Menu Brain Tumor Information Brain Anatomy Brain Tumor Symptoms Diagnosis Types ...

  9. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study

    PubMed Central

    de Groot, John F.; Lamborn, Kathleen R.; Chang, Susan M.; Gilbert, Mark R.; Cloughesy, Timothy F.; Aldape, Kenneth; Yao, Jun; Jackson, Edward F.; Lieberman, Frank; Robins, H. Ian; Mehta, Minesh P.; Lassman, Andrew B.; DeAngelis, Lisa M.; Yung, W.K. Alfred; Chen, Alice; Prados, Michael D.; Wen, Patrick Y.

    2011-01-01

    Purpose Antivascular endothelial growth factor (anti-VEGF) therapy is a promising treatment approach for patients with recurrent glioblastoma. This single-arm phase II study evaluated the efficacy of aflibercept (VEGF Trap), a recombinantly produced fusion protein that scavenges both VEGF and placental growth factor in patients with recurrent malignant glioma. Patients and Methods Forty-two patients with glioblastoma and 16 patients with anaplastic glioma who had received concurrent radiation and temozolomide and adjuvant temozolomide were enrolled at first relapse. Aflibercept 4 mg/kg was administered intravenously on day 1 of every 2-week cycle. Results The 6-month progression-free survival rate was 7.7% for the glioblastoma cohort and 25% for patients with anaplastic glioma. Overall radiographic response rate was 24% (18% for glioblastoma and 44% for anaplastic glioma). The median progression-free survival was 24 weeks for patients with anaplastic glioma (95% CI, 5 to 31 weeks) and 12 weeks for patients with glioblastoma (95% CI, 8 to 16 weeks). A total of 14 patients (25%) were removed from the study for toxicity, on average less than 2 months from treatment initiation. The main treatment-related National Cancer Institute Common Terminology Criteria grades 3 and 4 adverse events (38 total) included fatigue, hypertension, and lymphopenia. Two grade 4 CNS ischemias and one grade 4 systemic hemorrhage were reported. Aflibercept rapidly decreases permeability on dynamic contrast enhanced magnetic resonance imaging, and molecular analysis of baseline tumor tissue identified tumor-associated markers of response and resistance. Conclusion Aflibercept monotherapy has moderate toxicity and minimal evidence of single-agent activity in unselected patients with recurrent malignant glioma. PMID:21606416

  10. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas.

    PubMed

    Ruban, Angela; Berkutzki, Tamara; Cooper, Itzik; Mohar, Boaz; Teichberg, Vivian I

    2012-12-01

    L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate–oxaloacetate transaminase(hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma.We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.

  11. Association between IL-13 Gene rs20541 Polymorphism and Glioma Susceptibility: A Meta-Analysis.

    PubMed

    Yang, Dong; Yuan, Yue; Zhang, Sixun; Zhao, Kuiming; Li, Fang; Ren, Hongxiang; Zhang, Zhe; Yu, Yanbing

    2018-01-01

    We performed a meta-analysis to estimate the association between IL-13 gene rs20541 (R130Q) polymorphism and the susceptibility of glioma. Potentially eligible studies published before February 1, 2016 were searched in 4 databases including PubMed, EMBASE, EBSCO, and Ovid. Odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were used to estimate the strength of relationship between the IL-13 gene rs20541 polymorphism and glioma susceptibility. Stata 11.0 software was used to perform the present meta-analysis. In total, 10 case-control studies with 13 datasets including 3,123 cases and 5,390 controls were identified. A significant increase in glioma susceptibility was found in the dominant model (AA + AG vs. GG: OR = 1.14, 95% CI 1.01-1.29; P = 0.031). Significantly decreasing glioma susceptibility was found for Asians in the heterozygote comparison (AG vs. GG: OR = 0.74, 95% CI 0.55-0.99; P = 0.042) and the allele contrast genetic model (A vs. G: OR = 0.67, 95% CI 0.47-0.96; P = 0.028). By contrast, in Caucasians, a significant increase in glioma susceptibility was found in the dominant model (AA + AG vs. GG: OR = 1.25, 95% CI 1.11-1.41; P = 0.000). There may be a weak association between the IL-13 gene rs20541 polymorphism and glioma susceptibility, and the associations may be different between ethnicities. © 2018 S. Karger GmbH, Freiburg.

  12. New similarity search based glioma grading.

    PubMed

    Haegler, Katrin; Wiesmann, Martin; Böhm, Christian; Freiherr, Jessica; Schnell, Oliver; Brückmann, Hartmut; Tonn, Jörg-Christian; Linn, Jennifer

    2012-08-01

    MR-based differentiation between low- and high-grade gliomas is predominately based on contrast-enhanced T1-weighted images (CE-T1w). However, functional MR sequences as perfusion- and diffusion-weighted sequences can provide additional information on tumor grade. Here, we tested the potential of a recently developed similarity search based method that integrates information of CE-T1w and perfusion maps for non-invasive MR-based glioma grading. We prospectively included 37 untreated glioma patients (23 grade I/II, 14 grade III gliomas), in whom 3T MRI with FLAIR, pre- and post-contrast T1-weighted, and perfusion sequences was performed. Cerebral blood volume, cerebral blood flow, and mean transit time maps as well as CE-T1w images were used as input for the similarity search. Data sets were preprocessed and converted to four-dimensional Gaussian Mixture Models that considered correlations between the different MR sequences. For each patient, a so-called tumor feature vector (= probability-based classifier) was defined and used for grading. Biopsy was used as gold standard, and similarity based grading was compared to grading solely based on CE-T1w. Accuracy, sensitivity, and specificity of pure CE-T1w based glioma grading were 64.9%, 78.6%, and 56.5%, respectively. Similarity search based tumor grading allowed differentiation between low-grade (I or II) and high-grade (III) gliomas with an accuracy, sensitivity, and specificity of 83.8%, 78.6%, and 87.0%. Our findings indicate that integration of perfusion parameters and CE-T1w information in a semi-automatic similarity search based analysis improves the potential of MR-based glioma grading compared to CE-T1w data alone.

  13. MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition

    PubMed Central

    van Dellen, Edwin; Douw, Linda; Hillebrand, Arjan; Ris-Hilgersom, Irene H. M.; Schoonheim, Menno M.; Baayen, Johannes C.; De Witt Hamer, Philip C.; Velis, Demetrios N.; Klein, Martin; Heimans, Jan J.; Stam, Cornelis J.; Reijneveld, Jaap C.

    2012-01-01

    Objective To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. Methods We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. Results LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4–8 Hz), similar to NGL patients. HGG patients’ networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. Conclusion Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients’ networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline. PMID:23166829

  14. Olaparib in Treating Patients With Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations

    ClinicalTrials.gov

    2018-03-15

    Advanced Malignant Solid Neoplasm; Glioblastoma; Grade II Glioma; IDH1 Gene Mutation; IDH2 Gene Mutation; Recurrent Cholangiocarcinoma; Recurrent Glioma; Recurrent Malignant Solid Neoplasm; WHO Grade III Glioma

  15. Suppression of CLC-3 chloride channel reduces the aggressiveness of glioma through inhibiting nuclear factor-κB pathway

    PubMed Central

    Huang, En-Wen; Cao, Qing-Hua; Luo, Lun; Liao, Yong-Shi; Guo, Ying

    2017-01-01

    CLC-3 chloride channel plays important roles on cell volume regulation, proliferation and migration in normal and cancer cells. Recent growing evidence supports a critical role of CLC-3 in glioma metastasis, however, the mechanism underlying is unclear. This study finds that CLC-3 is upregulated in glioma tissues and positively correlated with WHO histological grade. Patients with high CLC-3 expression had an overall shorter survival time, whereas patients with low expression of CLC-3 had a better survival time. Silencing endogenous CLC-3 with ShCLC-3 adenovirus significantly decreases volume-regulated chloride currents, inhibits the nuclear translocation of p65 subunit of Nuclear Factor-κB (NF-κB), decreases transcriptional activity of NF-κB, reduces MMP-3 and MMP-9 expression and decreases glioma cell migration and invasion. Taken together, these results suggest CLC-3 promotes the aggressiveness of glioma at least in part through nuclear factor-κB pathway, and might be a novel prognostic biomarker and therapeutic target for glioma. PMID:28969029

  16. Decreased Libido

    MedlinePlus

    ... causes decreased libido? Decreased libido often accompanies other sexual disorders. Although most men with erectile dysfunction do not complain of decreased libido, after time, persistent failure with erections and sexual performance can lead to reduced sex drive in ...

  17. Differential Glioma-Associated Tumor Antigen Expression Profiles of Human Glioma Cells Grown in Hypoxia

    PubMed Central

    Ge, Lisheng; Cornforth, Andrew N.; Hoa, Neil T.; Delgado, Christina; Chiou, Shiun Kwei; Zhou, Yi Hong; Jadus, Martin R.

    2012-01-01

    Human U251 and D54 glioma cells were tested for expression of 25 glioma-associated tumor antigen precursor proteins (TAPP) under hypoxic (1% O2) or normoxic (21% O2) conditions. Hypoxic glioma cell lines increased their mRNA expression for nine TAPP (Aim2, Art-4, EphA2, EZH2, Fosl1, PTH-rP, Sox 11, Whsc2 and YKL-40), as assessed by quantitative reverse transcriptase real-time/polymerase chain reaction (qRT-PCR). Increased differences with three hypoxic-induced TAPP: EZH2, Whsc2 and YKL-40 were shown at the protein levels by fluorescent antibody staining and quantitative electrophoretic analysis. Two TAPP (MRP3 and Trp1) were down-regulated by hypoxia in glioma cell lines. Growing the glioma cells under hypoxia for 13 days, followed by returning them back to normoxic conditions for 7 days, and restored the original normoxic TAPP profile. Thus, hypoxia was an environmental factor that stimulated the transient expression of these antigens. Intracranial xenografts grown in nude mice derived from U251 cells that had been cultured under neurosphere stem cell conditions showed increased expression of Whsc2 or YKL-40, demonstrating that these in vitro properties of glioma also occur in vivo. Whsc2-specific cytotoxic T lymphocytes killed the hypoxic U251 glioma cells better than normoxic glioma cells. The antigens expressed by hypoxic tumor cells may be a better source of starting tumor material for loading dendritic cells for novel immunotherapy of glioma using tumor-associated antigens. PMID:22957023

  18. Targeting the SMO oncogene by miR-326 inhibits glioma biological behaviors and stemness

    PubMed Central

    Du, Wenzhong; Liu, Xing; Chen, Lingchao; Dou, Zhijin; Lei, Xuhui; Chang, Liang; Cai, Jinquan; Cui, Yuqiong; Yang, Dongbo; Sun, Ying; Li, Yongli; Jiang, Chuanlu

    2015-01-01

    Background Few studies have associated microRNAs (miRNAs) with the hedgehog (Hh) pathway. Here, we investigated whether targeting smoothened (SMO) with miR-326 would affect glioma biological behavior and stemness. Methods To investigate the expression of SMO and miR-326 in glioma specimens and cell lines, we utilized quantitative real-time (qRT)-PCR, Western blot, immunohistochemistry, and fluorescence in situ hybridization. The luciferase reporter assay was used to verify the relationship between SMO and miR-326. We performed cell counting kit-8, transwell, and flow cytometric assays using annexin-V labeling to detect changes after transfection with siRNA against SMO or miR-326. qRT-PCR assays, neurosphere formation, and immunofluorescence were utilized to detect the modification of self-renewal and stemness in U251tumor stem cells. A U251-implanted intracranial model was used to study the effect of miR-326 on tumor volume and SMO suppression efficacy. Results SMO was upregulated in gliomas and was associated with tumor grade and survival period. SMO inhibition suppressed the biological behaviors of glioma cells. SMO expression was inversely correlated with miR-326 and was identified as a novel direct target of miR-326. miR-326 overexpression not only repressed SMO and downstream genes but also decreased the activity of the Hh pathway. Moreover, miR-326 overexpression decreased self-renewal and stemness and partially prompted differentiation in U251 tumor stem cells. In turn, the inhibition of Hh partially elevated miR-326 expression. Intracranial tumorigenicity induced by the transfection of miR-326 was reduced and was partially mediated by the decreased SMO expression. Conclusions This work suggests a possible molecular mechanism of the miR- 326/SMO axis, which can be a potential alternative therapeutic pathway for gliomas. PMID:25173582

  19. Anti-proliferative effect of Zea mays L. cob extract on rat C6 glioma cells through regulation of glycolysis, mitochondrial ROS, and apoptosis.

    PubMed

    Hwang, Eunmi; Sim, Sangwan; Park, Sang Hyuk; Song, Ki Duk; Lee, Hak-Kyo; Heo, Tae-Hwe; Jun, Hyun Sik; Kim, Sung-Jo

    2018-02-01

    Gliomas are one of the most common types of primary brain tumors, characterized by rapid proliferation and infiltration into normal brain tissue. Corncob is the most plentiful byproducts of Zea mays L., of which anti-cancer effect has not been reported. Therefore, we aimed to examine the anti-proliferative effect of a high-pressure hot-water extract of corncob on glioma cells and elucidated the underlying mechanism. The high-pressure hot-water corncob extract contained approximately 94.8 mg/g and 1.82 μg/g of total phenol and catechin, respectively. Glioma cell treated with different concentrations of high-pressure hot-water corncob extract was shown to be suppressed in growth during three days of culture. In parallel, corncob extract reduced the glioma cell viability and induced cell cycle arrest in G0/G1 phase by upregulating the expression level of cyclin-dependent kinase inhibitor p21. Decreased proliferation and viability in glioma cells treated with corncob extract can be attributed to reduced reactive oxygen species (ROS), antiapoptotic Bcl-2 protein, and a lactate transporter monocarboxylate transporter 1 of which levels are higher than those in normal cells. Based on its inhibitory effects on proliferation and viability of C6 glioma cells, a high-pressure hot-water corncob extract has the potential to be used for glioma treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. The role of radiotherapy in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline.

    PubMed

    Ryken, Timothy C; Parney, Ian; Buatti, John; Kalkanis, Steven N; Olson, Jeffrey J

    2015-12-01

    gliomas. Level III It is recommended that increasing age, decreasing performance status, decreasing cognition, presence of astrocytic histological component (along with additional relevant factors (see Tables 1, 2) be considered as negative prognostic indicators when predicting response to radiotherapy.

  1. Bionanotechnology and the Future of Glioma

    PubMed Central

    Chiarelli, Peter A.; Kievit, Forrest M.; Zhang, Miqin; Ellenbogen, Richard G.

    2015-01-01

    Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the “ideal” nanoparticle for glioma, a concept that may soon be realized. PMID:25722933

  2. Modeling Adult Gliomas Using RCAS/t-va Technology12

    PubMed Central

    Hambardzumyan, Dolores; Amankulor, Nduka M; Helmy, Karim Y; Becher, Oren J; Holland, Eric C

    2009-01-01

    Malignant gliomas remain the most devastating childhood and adult tumors of the central nervous system. Although adult and pediatric gliomas are histologically indistinguishable, they differ in location, behavior, and molecular characteristics. This implies that the molecular pathways and pathophysiology of malignant gliomagenesis in these two populations are distinct. Such differences between adult and pediatric gliomas may predict different therapeutic responses. Therefore, accurate genetically engineered models of adult and pediatric gliomas may help understand the biology of these tumors and evaluate therapeutic agents in preclinical studies. It has been proposed that gliomas arise from the subventricular zone in mice during development. Here, we demonstrate that, in adult mice, gliomas may arise not only when injected in the subventricular zone but also when injected in the cortex and cerebellum. Our work demonstrates a versatile and highly reproducible adult mouse model of glioma, which can be easily incorporated into preclinical studies. PMID:19412424

  3. Contemporary management of high-grade gliomas.

    PubMed

    Sim, Hao-Wen; Morgan, Erin R; Mason, Warren P

    2018-01-01

    High-grade gliomas, including glioblastoma, are the most common malignant brain tumors in adults. Despite intensive efforts to develop new therapies for these diseases, treatment options remain limited and prognosis is poor. Recently, there have been important advances in our understanding of the molecular basis of glioma, leading to refinements in our diagnostic and management approach. There is new evidence to guide the treatment of elderly patients. A multitude of new agents have been investigated, including targeted therapies, immunotherapeutics and tumor-treating fields. This review summarizes the key findings from this research, and presents a perspective on future opportunities to advance the field.

  4. [Guidelines for the radiotherapy of gliomas].

    PubMed

    Feuvret, L; Antoni, D; Biau, J; Truc, G; Noël, G; Mazeron, J-J

    2016-09-01

    Gliomas are the most frequent primary brain tumours. Treating these tumours is difficult because of the proximity of organs at risk, infiltrating nature, and radioresistance. Clinical prognostic factors such as age, Karnofsky performance status, tumour location, and treatments such as surgery, radiation therapy, and chemotherapy have long been recognized in the management of patients with gliomas. Molecular biomarkers are increasingly evolving as additional factors that facilitate diagnosis and therapeutic decision-making. These practice guidelines aim at helping in choosing the best treatment, in particular radiation therapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  5. Metabolic Remodeling of Malignant Gliomas for Enhanced Sensitization during Radiotherapy: An In Vitro Study

    PubMed Central

    Colen, Chaim B.; Seraji-Bozorgzad, Navid; Marples, Brian; Galloway, Matthew P.; Sloan, Andrew E.; Mathupala, Saroj P.

    2012-01-01

    OBJECTIVE To investigate a novel method to enhance radiosensitivity of gliomas via modification of metabolite flux immediately before radiotherapy. Malignant gliomas are highly glycolytic and produce copious amounts of lactic acid, which is effluxed to the tumor microenvironment via lactate transporters. We hypothesized that inhibition of lactic acid efflux would alter glioma metabolite profiles, including those that are radioprotective. 1H magnetic resonance spectroscopy (MRS) was used to quantify key metabolites, including those most effective for induction of low-dose radiation-induced cell death. METHODS We inhibited lactate transport in U87-MG gliomas with α-cyano-4-hydroxy-cinnamic acid (ACCA). Flow cytometry was used to assess induction of cell death in treated cells. Cells were analyzed by MRS after ACCA treatment. Control and treated cells were subjected to low-dose irradiation, and the surviving fractions of cells were determined by clonogenic assays. RESULTS MRS revealed changes to intracellular lactate on treatment with ACCA. Significant decreases in the metabolites taurine, glutamate, glutathione, alanine, and glycine were observed, along with inversion of the choline/phosphocholine profile. On exposure to low-dose radiation, ACCA-pretreated U-87MG cells underwent rapid morphological changes, which were followed by apoptotic cell death. CONCLUSION Inhibition of lactate efflux in malignant gliomas results in alterations of glycolytic metabolism, including decreased levels of the antioxidants taurine and glutathione and enhanced radiosensitivity of ACCA-treated cells. Thus, in situ application of lactate transport inhibitors such as ACCA as a novel adjunctive therapeutic strategy against glial tumors may greatly enhance the level of radiation-induced cell killing during a combined radio- and chemotherapeutic regimen. PMID:17277695

  6. PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells.

    PubMed

    Kaur, Amanpreet; Denisova, Oxana V; Qiao, Xi; Jumppanen, Mikael; Peuhu, Emilia; Ahmed, Shafiq U; Raheem, Olayinka; Haapasalo, Hannu; Eriksson, John; Chalmers, Anthony J; Laakkonen, Pirjo; Westermarck, Jukka

    2016-12-01

    Glioblastoma multiforme lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in glioblastoma multiforme, glioma cells exhibit intrinsic resistance toward many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here, we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the coexpression of proapoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in glioblastoma multiforme. Cancer Res; 76(23); 7001-11. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Insulin-Mediated Signaling Facilitates Resistance to PDGFR Inhibition in Proneural hPDGFB-Driven Gliomas.

    PubMed

    Almiron Bonnin, Damian A; Ran, Cong; Havrda, Matthew C; Liu, Huan; Hitoshi, Yasuyuki; Zhang, Zhonghua; Cheng, Chao; Ung, Matthew; Israel, Mark A

    2017-04-01

    Despite abundant evidence implicating receptor tyrosine kinases (RTK), including the platelet-derived growth factor receptor (PDGFR), in the pathogenesis of glioblastoma (GBM), the clinical use of RTK inhibitors in this disease has been greatly compromised by the rapid emergence of therapeutic resistance. To study the resistance of proneural gliomas that are driven by a PDGFR-regulated pathway to targeted tyrosine kinase inhibitors, we utilized a mouse model of proneural glioma in which mice develop tumors that become resistant to PDGFR inhibition. We found that tumors resistant to PDGFR inhibition required the expression and activation of the insulin receptor (IR)/insulin growth-like factor receptor (IGF1R) for tumor cell proliferation and survival. Cotargeting IR/IGF1R and PDGFR decreased the emergence of resistant clones in vitro Our findings characterize a novel model of glioma recurrence that implicates the IR/IGF1R signaling axis in mediating the development of resistance to PDGFR inhibition and provide evidence that IR/IGF1R signaling is important in the recurrence of the proneural subtype of glioma in which PDGF/PDGFR is most commonly expressed at a high level. Mol Cancer Ther; 16(4); 705-16. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. [A multicentric glioma presenting different pathological appearances: a case report].

    PubMed

    Kaku, Shougo; Terao, Tohru; Taya, Keisuke; Ohtuka, Toshihiro; Tanaka, Toshihide; Sawauchi, Satoshi; Numoto, Robert Tomohiko; Murakami, Shigeyuki; Ohmura, Mitsuhiro; Abe, Toshiaki

    2004-05-01

    We report a multicentric glioma case which revealed different pathological appearances. A 45-year-old male had been admitted to our hospital complaining of an attack of transient sudden aphasia. On magnetic resonance imaging (MRI), T1-weighted images revealed a low intensity and T2-weighted images demonstrated a homogeneous high intensity abnormal mass in the frontal lobe, which was not enhanced with gadolinium. Removal of the tumor was performed through a right frontal transcortical approach in March, 2002. Histological diagnosis was gemistocytic astrocytoma. The patient's condition was uneventful and postoperative MRI revealed a marked decrease in the volume of the tumor. A total of 54 Gy radiation to the brain in the locality was performed. Four months after the initial surgery, the patient suffered from incomplete right hemiparesis. MRI showed a left parietal abnormal mass which had a ring formation enhancement after gadolinium administration. This Neuro-radiological examination demonstrated complete independence from the initial right frontal tumor. A second surgery which was concerned with cyst aspiration was carried out on August 10, 2002. During the next month, a third operation for partial removal of a left parietal abnormal mass was performed. Histological diagnosis was anaplastic astrocytoma. The right frontal and left parietal tumors revealed neither continuous relation suggesting intracerebral invasion, nor dissemination through the subarachnoid space nor intracerebral metastasis. Our case was diagnosed as multicentric glioma with different pathological appearances, of which only 9 cases have been reported previously.

  9. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    PubMed Central

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60–75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas. PMID:28356992

  10. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    PubMed

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  11. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  12. Photodynamic therapy of supratentorial gliomas

    NASA Astrophysics Data System (ADS)

    Muller, Paul J.; Wilson, Brian C.

    1997-05-01

    We are reporting the results form intraoperative intracavitary PDT treatment in 56 patients with recurrent supratentorial gliomas who had failed previous surgery and radiotherapy. These patients received 2mg/kg Photofin iv. 12-36 hours prior to surgical resection of their tumor or tumor cyst drainage. The median survival times in weeks for glioblastoma (GBM), malignant astrocytoma (MA), malignant mixed astrocytoma-oligodendroglioma and ependymoma were 30, 40, >56 and >174 weeks, respectively. Eight patients with recurrent GBM who received >60 J/cm2 had a median survival of 58 weeks and 24 patients who received <60 J/cm2 survived 29 weeks. The survival of patients with recurrent glioblastoma who undergo surgical treatment alone is only 20 weeks. We are also reporting the results of PDT treatment in 20 patients with newly diagnosed MA or GBM treated with intracavitary Photofin-PDT at the time of their initial craniotomy. The median survival of the whole cohort was 44 weeks with a 1 and 2 year survival of 40 percent and 15 percent, respectively. The median survival of patients with GBM was 37 weeks with a 1 and 2 year actuarial survival of 35 percent and 0 percent, respectively. The median survival of patients with MA as 48 weeks with a 1 and 2 year actuarial survival of 44 percent and 33 percent, respectively. Six patients with a Karnofsky score of >70 who received a light dose of >1260J had a median survival of 92 weeks with a 1 and 2 year survival of 83 percent and 33 percent, respectively. The mortality rate in our total series of 93 PDT treatments or brain tumor is 3 percent. The combined serious mortality-morbidity rate is 8 percent.

  13. Molecular markers of gliomas: a clinical approach.

    PubMed

    Eoli, M; Silvani, A; Pollo, B; Bianchessi, D; Menghi, F; Valletta, L; Broggi, G; Boiardi, A; Bruzzone, M G; Finocchiaro, G

    2006-07-01

    Over the last decade, the knowledge on the molecular genetic background of gliomas has dramatically increased. This information provides the basis for the molecular target therapies and molecular tests serve to complement the subjective nature of histopathologic criteria and add useful data regarding response to treatments and prognosis. In particular, the use of loss of heterozygosity (LOH) and methylation specific polymerase chain reaction (PCR) (MSP) based testing of gliomas is already in place and used clinically in several centers. This paper provides a brief overview of these molecular genetic aberrations and discusses the clinical utility, as well as the advantages and disadvantages of such approach. Newly developed molecular techniques, such as LOH testing, fluorescence in situ hybridization (FISH), DNA sequencing and MSP, are currently being employed in assessment of gliomas in some laboratories. However, the clinical use of some markers and the context in which the information obtained should be used are still not entirely understood. Therefore, this paper will focus on validation and implementation of molecular testing in gliomas, with emphasis on LOH on chromosomes 1p, 19q, 17p and 10q and O(6)-methylguanine-DNA methyltransferase (MGMT) methylation status.

  14. Treatment of malignant gliomas with neutron radiation.

    PubMed

    Griem, M L

    1985-11-01

    The author contends that neutron radiation therapy coupled with radiation therapy or other forms of particle radiation therapy may play a role in the management of malignant gliomas. Improved survival, particularly for the patients with the diagnosis of glioblastoma, is discussed.

  15. Robotics in the neurosurgical treatment of glioma

    PubMed Central

    Sutherland, Garnette R.; Maddahi, Yaser; Gan, Liu Shi; Lama, Sanju; Zareinia, Kourosh

    2015-01-01

    Background: The treatment of glioma remains a significant challenge with high recurrence rates, morbidity, and mortality. Merging image guided robotic technology with microsurgery adds a new dimension as they relate to surgical ergonomics, patient safety, precision, and accuracy. Methods: An image-guided robot, called neuroArm, has been integrated into the neurosurgical operating room, and used to augment the surgical treatment of glioma in 18 patients. A case study illustrates the specialized technical features of a teleoperated robotic system that could well enhance the performance of surgery. Furthermore, unique positional and force information of the bipolar forceps during surgery were recorded and analyzed. Results: The workspace of the bipolar forceps in this robot-assisted glioma resection was found to be 25 × 50 × 50 mm. Maximum values of the force components were 1.37, 1.84, and 2.01 N along x, y, and z axes, respectively. The maximum total force was 2.45 N. The results indicate that the majority of the applied forces were less than 0.6 N. Conclusion: Robotic surgical systems can potentially increase safety and performance of surgical operation via novel features such as virtual fixtures, augmented force feedback, and haptic high-force warning system. The case study using neuroArm robot to resect a glioma, for the first time, showed the positional information of surgeon's hand movement and tool-tissue interaction forces. PMID:25722932

  16. Gliomas and exposure to wood preservatives.

    PubMed Central

    Cordier, S; Poisson, M; Gerin, M; Varin, J; Conso, F; Hemon, D

    1988-01-01

    A case-referent study was undertaken to look for occupational risk factors among patients with glioma treated in a neurological hospital in Paris between 1975 and 1984. In the study group were 125 men with gliomas (aged less than or equal to 65) and 238 patients (also less than or equal to 65) admitted for non-neoplastic, non-malformative vascular diseases in the same department during the same period constituting the reference group. All diagnoses were confirmed by tomodensitometry. Information on occupational history was obtained from a postal questionnaire and from medical records. Comparison of cases and referents showed a significant excess risk among teachers (OR = 4.1) and a raised risk among wood workers (OR = 1.6). Four of nine cases of glioma who had been employed as wood workers reported that a colleague had suffered from glioma (those reports were confirmed by hospital records). None were reported among 11 referent wood workers. Using a complementary questionnaire on wood work, exposure assessment to wood preservatives and solvents showed that frequent exposure to organochlorine wood preservatives and to organic solvents occurred more often among cases than referent wood workers (p less than 0.10). PMID:3196664

  17. Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

    ClinicalTrials.gov

    2018-03-22

    Anaplastic Astrocytoma; Brain Stem Glioma; Childhood Mixed Glioma; Fibrillary Astrocytoma; Giant Cell Glioblastoma; Glioblastoma; Gliosarcoma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  18. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    PubMed Central

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  19. Economics of Malignant Gliomas: A Critical Review

    PubMed Central

    Raizer, Jeffrey J.; Fitzner, Karen A.; Jacobs, Daniel I.; Bennett, Charles L.; Liebling, Dustin B.; Luu, Thanh Ha; Trifilio, Steven M.; Grimm, Sean A.; Fisher, Matthew J.; Haleem, Meraaj S.; Ray, Paul S.; McKoy, Judith M.; DeBoer, Rebecca; Tulas, Katrina-Marie E.; Deeb, Mohammed; McKoy, June M.

    2015-01-01

    Purpose: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. Methods: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Results: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. Conclusion: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. PMID:25466707

  20. Cytogenetic analysis of gemistocytic cells in gliomas.

    PubMed

    Kros, J M; Waarsenburg, N; Hayes, D P; Hop, W C; van Dekken, H

    2000-08-01

    Gemistocytes are glial cells characterized by voluminous, eosinophilic cytoplasm and a peripherally positioned, often flattened nucleus. Gemistocytes, usually present in anoxic-ischemic brains, are regularly encountered in glial neoplasms. The presence of gemistocytes in gliomas has been associated with an unfavorable clinical course, notwithstanding the low proliferative potential of these cells. It is not known whether gemistocytes residing in gliomas are dormant tumor cells, or alternatively, represent interspersed reactive glial cells. Whereas gemistocytic astrocytomas have been subject to various genetic investigations, no genomic analysis comparing individual cells in gliomas has been reported so far. In the present study, 3 astrocytomas, 3 oligodendrogliomas, and 3 mixed oligoastrocytomas, all harboring gemistocytic cells, were genetically analyzed by DNA in situ hybridization to paraffin-embedded, formalin-fixed tissue samples with optimal preservation of cellular morphology. To this end, probes for the centromeric regions of chromosome 7 and 10, known to show copy number aberrations in gliomas, were used. In addition, probes for centromeric regions of chromosomes 1 and 17 were used for the ploidy status of the tumors. The spot counts for the various chromosomes were statistically compared. Gains of chromosome 7 were found in 1 anaplastic astrocytoma, 1 anaplastic oligodendroglioma, and 1 anaplastic oligoastrocytoma. Loss of chromosome 10 was seen in 2 anaplastic astrocytomas, in 1 anaplastic oligodendroglioma, and in 1 anaplastic oligoastrocytoma. In 3 cases, significant differences in spot distributions between gemistocytes and non-gemistocytes were found, but the other cases showed no difference in spot distribution. It is concluded that, although many gemistocytic cells in gliomas may be considered reactive cells, in a subset of tumors, part of the gemistocytic cells should be considered neoplastic.

  1. Economics of Malignant Gliomas: A Critical Review.

    PubMed

    Raizer, Jeffrey J; Fitzner, Karen A; Jacobs, Daniel I; Bennett, Charles L; Liebling, Dustin B; Luu, Thanh Ha; Trifilio, Steven M; Grimm, Sean A; Fisher, Matthew J; Haleem, Meraaj S; Ray, Paul S; McKoy, Judith M; DeBoer, Rebecca; Tulas, Katrina-Marie E; Deeb, Mohammed; McKoy, June M

    2015-01-01

    Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. Copyright © 2015 by American Society of Clinical Oncology.

  2. The Upper Midwest Health Study: gliomas and occupational exposure to chlorinated solvents

    PubMed Central

    Ruder, Avima M; Yiin, James H; Waters, Martha A; Carreón, Tania; Hein, Misty J; Butler, Mary A; Calvert, Geoffrey M; Davis-King, Karen E; Schulte, Paul A; Mandel, Jack S; Morton, Roscoe F; Reding, Douglas J; Rosenman, Kenneth D; Stewart, Patricia A

    2015-01-01

    Objectives Occupational exposure to chlorinated aliphatic solvents has been associated with an increased cancer risk, including brain cancer. However, many of these solvents remain in active, large-volume use. We evaluated glioma risk from non-farm occupational exposure (ever/never and estimated cumulative exposure) to any of the six chlorinated solvents—carbon tetrachloride, chloroform, methylene chloride, trichloroethylene, tetrachloroethylene or 1,1,1-trichloroethane—among 798 cases and 1175 population-based controls, aged 18–80 years and non-metropolitan residents of Iowa, Michigan, Minnesota and Wisconsin. Methods Solvent use was estimated based on occupation, industry and era, using a bibliographic database of published exposure levels and exposure determinants. Unconditional logistic regression was used to calculate ORs adjusted for frequency matching variables age group and sex, and age and education. Additional analyses were limited to 904 participants who donated blood specimens (excluding controls reporting a previous diagnosis of cancer) genotyped for glutathione-S-transferases GSTP1, GSTM3 and GSTT1. Individuals with functional GST genes might convert chlorinated solvents crossing the blood–brain barrier into cytotoxic metabolites. Results Both estimated cumulative exposure (ppm-years) and ever exposure to chlorinated solvents were associated with decreased glioma risk and were statistically significant overall and for women. In analyses comparing participants with a high probability of exposure with the unexposed, no associations were statistically significant. Solvent-exposed participants with functional GST genes were not at increased risk of glioma. Conclusions We observed no associations of glioma risk and chlorinated solvent exposure. Large pooled studies are needed to explore the interaction of genetic pathways and environmental and occupational exposures in glioma aetiology. PMID:23104734

  3. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    SciTech Connect

    Dai, Bin; Hu, Zhiqiang, E-mail: zhiqhutg@126.com; Huang, Hui

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues.more » Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.« less

  4. [Expression and mechanism of Twist2 in glioma].

    PubMed

    Wang, L Z; Wang, W J; Xiong, Y F; Xu, S; Wang, S S; Tu, Y; Wang, Z Y; Yan, X L; Mei, J H; Wang, C L

    2017-12-08

    Objective: To investigate the significance of Twist2 in glioma and whether it is involved in the malignant transformation of glioma by epithelial-mesenchymal transition (EMT). Methods: Using immunohistochemical method detected the expression level of Twist2 in 60 cases of gliomas (including WHO grades Ⅱ, Ⅲ and Ⅳ, each for 20 cases) and 20 cases of non-tumor brain tissues. Real-time fluorescence quantitative PCR and Western blot were used to detect the expression level of Twist2 mRNA and protein in 61 cases of fresh glioma tissue (WHO grade Ⅱ 16 cases, Ⅲ 21 cases, Ⅳ 24 cases) and 12 cases of adjacent tissues, and the expression levels of E-cadherin, N-cadherin and vimentin were also investigated in fresh glioma tissue. Results: Immunohistochemistry results showed that the percentages of Twist2 expression in glioma was 90%(54/60) compared with 30%(6/20) in non-tumor brain tissues( P <0.01). The percentages of Twist2 expression were 75% (15/20), 95% (19/20), and 100% (20/20) in the WHO gradesⅡ, Ⅲ and Ⅳ gliomas, respectively. WHO grades Ⅳ and Ⅲ were significantly higher than that of WHO grade Ⅱ ( P <0.01). There was no significant difference between WHO grade Ⅳand WHO Ⅲ glioma ( P >0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expression level of Twist 2 in gliomas was significantly higher than that in para-cancerous tissues ( P <0.01), and those in WHO grades Ⅳ and Ⅲ gliomas were significantly higher than that in WHO grade Ⅱ glioma ( P <0.01). There was no significant difference between WHO grade Ⅳand grade Ⅲ glioma ( P >0.05). Detection of key protein expression in EMT by Western blot displayed that the expression of E-cadherin was negatively associated with Twist2 in glioma ( r =-0.972, P <0.01). The expression of N-cadherin and vimentin was positively associated with Twist2 in glioma( r =0.971, P <0.01; r =0.968, P <0.01). Conclusions: The expression of Twist2 in human glioma is positively

  5. SIRT3-SOD2-ROS pathway is involved in linalool-induced glioma cell apoptotic death.

    PubMed

    Cheng, Yanhao; Dai, Chao; Zhang, Jian

    2017-01-01

    Glioma is the most prevalent type of adult primary brain tumor and chemotherapy of glioma was limited by drug-resistance. Linalool is an acyclic monoterpene alcohol possessing various pharmacological activities. The present study was conducted to evaluate the effect of linalool on glioma cell growth. The effect of linalool on cell viability in U87-MG cells was investigated and the results showed that linalool significantly reduced cell viability in a concentration- and time-dependent manner. In addition, exposure of the cells to linalool resulted in a concentration-dependent increase of TUNEL-stained cells, indicating the occurrence of apoptotic cell death. Linalool decreased mitochondrial oxygen consumption rate, increased the expression of Bax and Bak, reduced the expression of Bcl-2 and Bcl-xl, and increased the activities of caspase 3 and caspase 9, leading to increase of apoptosis. Linalool resulted in a concentration-dependent decrease of SOD activity but had no significant effect on mRNA and protein expression of SOD2. Moreover, linalool resulted in a significant increase of the expression of acetylated SOD2. The mRNA and protein expression of SIRT3 was significantly inhibited by linalool. Immunoblot analysis showed that there was an evident protein/protein interaction between SOD2 and SIRT3 under normal condition. Linalool treatment significantly decreased the interaction between SOD2 and SIRT3. Overexpression of SIRT3 significantly inhibited linalool-induced increase of mitochondrial ROS production and apoptotic cell death, and decrease of cell viability. In summary, the data demonstrated that linalool exhibited inhibitory effect on glioma cells through regulation of SIRT3-SOD2-ROS signaling.

  6. Terahertz reflectometry imaging for low and high grade gliomas

    PubMed Central

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-01-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes. PMID:27782153

  7. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications. PMID:28344260

  8. ELTD1, A Potential New Biomarker for Gliomas

    PubMed Central

    Towner, Rheal A.; Jensen, Randy L.; Colman, Howard; Vaillant, Brian; Smith, Nataliya; Casteel, Rebba; Saunders, Debra; Gillespie, David L.; Silasi-Mansat, Robert; Lupu, Florea; Giles, Cory B.; Wren, Jonathan D.

    2012-01-01

    Background Glioblastoma multiforme (GBM), high-grade glioma, is characterized by being diffuse, invasive, and highly angiogenic, and has a very poor prognosis. Identification of new biomarkers could help in the further diagnosis of GBM. Objective To identify ELTD1 ([epidermal growth factor (EGF), latrophilin and seven transmembrane domain-containing 1] on chromosome 1) as a putative glioma-associated marker via a bioinformatic method. Methods We used advanced data mining and a novel bioinformatics method to predict ELTD1 as a potential novel biomarker that is associated with gliomas. Validation was done with immunohistochemistry (IHC), which was used to detect levels of ELTD1 in human high-grade gliomas, and rat F98 glioma tumors. In vivo levels of ELTD1 in rat F98 gliomas were assessed using molecular MRI (mMRI). Results ELTD1 was found to be significantly higher (P=.03) in high-grade gliomas (50 patients) compared to low-grade gliomas (21 patients), and compared well to traditional IHC markers including VEGF, GLUT-1,CAIX, and HIF-1α. ELTD1 gene expression indicates an association with grade, survival across grade, and an increase in the mesenchymal subtype. Significantly high (P<0.001) in vivo levels of ELTD1 were additionally found in F98 tumors, compared to normal brain tissue. Conclusion This study strongly suggests that associative analysis was able to accurately identify ELTD1 as a putative glioma-associated biomarker. The detection of ELTD1 was also validated in both rodent and human gliomas, and may serve as an additional biomarker for gliomas in pre-clinical and clinical diagnosis of gliomas. PMID:23096411

  9. Evaluation Expression of Microrna-93 and Integrin Β8 in Different Types of Glioma Tumors

    PubMed Central

    Afshar, Reza Malekpour; Mollaei, Hamid Reza; Shokrizadeh, Mahdieh; Iranpour, Maryam

    2017-01-01

    MicroRNAs (miRNAs), are a type of small non-coding RNAs, that induce mRNA degradation or repress translation by binding to the 3′-untranslated region (UTR) of its target mRNA. Some specific miRNAs, e.g. miR-93, have been discovered to be involved in pathological procedures by targeting some oncogenes or tumor suppressors in glioma. In the present study, real-time RT-PCR data was indicated the expression pattern and prognostic value of miR-93 in patients with types of Glioma. MiR-93 expression was significantly decreased in tumor tissue compared with normal group brain tissues (P<0.001). Low miR-93 expression was significantly correlated with progressive tumor grade (P=0.02). Moreover, multivariate analysis showed that miR-93 decreased expression (HR, 4.3; 95% CI, 0.8–17.2, P=0.02), advanced tumor grade (HR, 3.1; 95% CI, 0.2–13.9, P=0.04), for integrinβ8, level expression was inverse. Our data was shown that the down regulation of miR-93 was significantly correlated with unfavorable pathological features in patients with Glioma. Suggesting that decreased expression of miR-93can be used as a novel prognostic factor for this disease. PMID:28440610

  10. Genome-wide pathway analysis in glioma.

    PubMed

    Lee, Y H; Song, G G

    2015-01-01

    The aim of this study was to identify candidate single-nucleotide polymorphisms (SNPs) that may play a role in the susceptibility to glioma, to elucidate their potential mechanisms, and to generate SNP-to-gene-to-pathway hypotheses.A genome-wide association study (GWAS) dataset of glioma including 509,345 SNPs from 1,856 glioma patients and 4,955 control subjects of European descent was used in this study. Identify candidate Causal SNPs and Pathways (ICSNPathway) analysis was applied to the GWAS dataset.ICSNPathway analysis identified 6 candidate SNPs, 5 genes, and 9 pathways, which revealed 5 hypothetical biological mechanisms. The hypothetical mechanisms, beginning with the strongest, are summarized as follows: (i) rs667128 alters the role of taste receptor, type 2, member 8 (TAS2R8) in taste receptor activity and taste transduction pathways (p < 0.001, false discovery rate (FDR) < 0.001; p = 0.001, FDR = 0.012, respectively), (ii) rs619381 modulates the effect of taste receptor, type 2, member 7 (TAS2R7) on taste receptor activity and taste transduction (p < 0.001, FDR < 0.001; p = 0.001, FDR = 0.012), (iii) rs1033583 modulates delta-like protein 1 (DLL1), regulating cell adhesion and segment specification (p < 0.001, FDR = 0.011; p = 0.001, FDR = 0.032), (iv) rs2232580 affects the role of lipopolysaccharide binding protein (LBP) in the response to lipopolysaccharide, positive regulation of interleukin-6 production, acute inflammatory response, and in macrophage activation (0.002 ≤ p ≤ 0.013; 0.012 ≤ FDR ≤ 0.030), and (v) rs4644 and rs4652 regulate lectin, galactoside-binding, soluble, 3 (LGALS3), affecting immunoglobulin binding (p = 0.010; FDR = 0.040).Using the ICSNPathway to analyze glioma GWAS data, 6 candidate SNPs, 5 genes (TAS2R8, TAS2R7, DLL1, LBP, and LGALS3), and 9 pathways that may contribute to the susceptibility of glioma were identified. glioma, genome-wide association study, pathway-based analysis.

  11. Current status of cerebral glioma surgery in China.

    PubMed

    Wu, Jin-song; Zhang, Jie; Zhuang, Dong-xiao; Yao, Cheng-jun; Qiu, Tian-ming; Lu, Jun-feng; Zhu, Feng-ping; Mao, Ying; Zhou, Liang-fu

    2011-09-01

    The treatment of gliomas is highly individualized. Surgery for gliomas is essentially for histological diagnosis, to alleviate mass effect, and most importantly, to favor longer survival expectancy. During the past two decades, many surgical techniques and adjuvants have been applied to glioma surgery in China, which lead to a rapid development in the field of cerebral glioma surgery. This article broadly and critically reviewed the existing studies on cerebral glioma surgery and to portrait the current status of glioma surgery in China. A literature search was conducted covering major innovative surgical techniques and adjuvants for glioma surgery in China. The following databases were searched: the Pubmed (January 1995 to date); China Knowledge Resource Integrated Database (January 1995 to date) and VIP Database for Chinese Technical Periodicals (January 1995 to date). A selection criterion was established to exclude duplicates and irrelevant studies. The outcome measures were extracted from included studies. A total of 3307 articles were initially searched. After excluded by abstracts and full texts, 69 studies conducted in the mainland of China were included and went through further analysis. The philosophy of surgical strategies for cerebral gliomas in China is undergoing tremendous change. Nowadays Chinese neurosurgeons pay more attention to the postoperative neurofunctional status of the patients. The aim of the glioma surgery is not only the more extensive tumor resection but also the maximal safety of intervention. The well balance of longer overall survival and higher quality of life should be judged with respect to each individual patient.

  12. Sunitinib in Treating Patients With Recurrent Malignant Gliomas

    ClinicalTrials.gov

    2016-01-29

    Adult Anaplastic Astrocytoma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma

  13. miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas.

    PubMed

    Liu, Jing; Xu, Jinling; Li, Huining; Sun, Cuiyun; Yu, Lin; Li, Yanyan; Shi, Cuijuan; Zhou, Xuexia; Bian, Xiuwu; Ping, Yifang; Wen, Yanjun; Zhao, Shujun; Xu, Hui; Ren, Linlin; An, Tongling; Wang, Qian; Yu, Shizhu

    2015-10-06

    Down-regulation of miR-146b-5p contributes to tumorigenesis in several human cancers. However, the relevance of miR-146b-5p to prognosis, proliferation and apoptosis in gliomas remains unknown. In the present study, we demonstrated that miR-146b-5p expression was inversely correlated with grades and Ki-67 index in 147 human glioma specimens, but positively correlated with patients' survival. Furthermore, two distinct subgroups of patients with grade I-IV gliomas with different prognoses were identified according to miR-146b-5p expression in our specimens. Cox regression showed that miR-146b-5p was an independent predictor for patients' survival. Overexpression of miR-146b-5p dramatically suppressed glioma cell proliferation and induced apoptosis. Mechanistically, we validated TRAF6 as a direct functional target of miR-146b-5p and found that miR-146b-5p overexpression significantly decreased phosphorylated TAK1 and IκBα, the pivotal downstream effectors of TRAF6. Moreover, TRAF6 expression was positively correlated with glioma grades and Ki-67 index but inversely correlated with miR-146b-5p expression and predicted poor prognosis of glioma patients. In glioblastoma cell lines, silencing of TRAF6 could mimic the anti-tumor effect of miR-146b-5p. Our findings identify miR-146b-5p as a tumor suppressor and novel prognostic biomarker of gliomas, and suggest miR-146b-5p and TRAF6 as potential therapeutic candidates for malignant gliomas.

  14. Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma

    ClinicalTrials.gov

    2017-10-23

    Childhood Cerebral Anaplastic Astrocytoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma

  15. Glioma infiltration sign on high b-value diffusion-weighted imaging in gliomas and its prognostic value.

    PubMed

    Zeng, Qiang; Ling, Chenhan; Shi, Feina; Dong, Fei; Jiang, Biao; Zhang, Jianmin

    2018-03-01

    Glioma cells may infiltrate beyond the tumor margins revealed on conventional structural images. To investigate whether the presence of a glioma infiltration sign on high b-value diffusion-weighted imaging (DWI) can predict the prognosis of gliomas. Retrospective cohort. Fifty-two patients with gliomas (14 WHO grade II; 13 WHO grade III; 25 WHO grade IV). 3.0T, including a T 1 -weighted contrast-enhanced (T 1 w-CE) sequence, contrast-enhanced T 2 -flair sequence, and a DWI sequence. T 1 w-CE images and contrast-enhanced T 2 -flair images were used for identifying the tumor region for enhancing and nonenhancing gliomas, respectively. The glioma infiltration sign was defined as the presence of a peritumoral abnormal high signal region on DWI map, which was adjacent to the tumor region and had higher signal than surrounding areas. This sign was assessed on a high b-value DWI map with b = 3000 s/mm 2 . For patients with glioma infiltration sign, DWI3000 max , DWI1000 max , ADC3000 min , and ADC1000 min were measured by drawing a region of interest over the peritumoral abnormal high signal region. Survival analysis was conducted by using Cox regression. Glioma infiltration sign was observed in 28 (53.8%) patients. The occurrence rate of this sign was 92.0% in grade IV gliomas, 30.8% in grade III gliomas, and 7.1% in grade II gliomas. The glioma infiltration sign could independently predict both the progression-free survival (hazard ratio [HR], 95% confidence interval [CI] = 8.58 [3.19-23.03], P < 0.001) and overall survival (HR, 95% CI = 11.90 [3.41-41.55], P < 0.001) after adjustment. For patients with glioma infiltration sign, DWI3000 max (P = 0.005) and ADC3000 min (P = 0.008) were both independent predictors of overall survival after adjustment, while DWI1000 max and ADC1000 min were not. The glioma infiltration sign on high b-value DWI is an independent predictor of poor prognosis in glioma patients. High b-value DWI might be a

  16. Overview of current immunotherapeutic strategies for glioma

    PubMed Central

    Calinescu, Anda-Alexandra; Kamran, Neha; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro Ricardo; Castro, Maria Graciela

    2015-01-01

    In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints. PMID:26598957

  17. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma.

    PubMed

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.

  18. Emerging microtubule targets in glioma therapy.

    PubMed

    Katsetos, Christos D; Reginato, Mauricio J; Baas, Peter W; D'Agostino, Luca; Legido, Agustin; Tuszyn Ski, Jack A; Dráberová, Eduarda; Dráber, Pavel

    2015-03-01

    Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. LncRNA-TP53TG1 Participated in the Stress Response Under Glucose Deprivation in Glioma.

    PubMed

    Chen, Xin; Gao, Yang; Li, Deheng; Cao, Yiqun; Hao, Bin

    2017-12-01

    Gliomas are the most common brain tumors of the center nervous system. And long non-coding RNAs (lncRNAs) are non-protein coding transcripts, which have been considered as one type of gene expression regulator for cancer development. In this study, we investigated the role of lncRNA-TP53TG1 in response to glucose deprivation in human gliomas. The expression levels of TP53TG1 in glioma tissues and cells were analyzed by qRT-PCR. In addition, the influence of TP53TG1 on glucose metabolism related genes at the mRNA level during both high and low glucose treatment was detected by qRT-PCR. MTT, clonogenicity assays, and flow cytometry were performed to detect the cell proliferation and cell apoptosis. Furthermore, the migration of glioma cells was examined by Transwell assays. The expression of TP53TG1 was significantly higher in human glioma tissues or cell lines compared with normal brain tissue or NHA. Moreover, TP53TG1 and some tumor glucose metabolism related genes, such as GRP78, LDHA, and IDH1 were up-regulated significantly in U87 and LN18 cells under glucose deprivation. In addition, knockdown of TP53TG1 decreased cell proliferation and migration and down-regulated GRP78 and IDH1 expression levels and up-regulated PKM2 levels in U87 cells under glucose deprivation. However, over-expression of TP53TG1 showed the opposite tendency. Moreover, the effects of TP53TG1 were more remarkable in low glucose than that in high glucose. Our data showed that TP53TG1 under glucose deprivation may promote cell proliferation and migration by influencing the expression of glucose metabolism related genes in glioma. J. Cell. Biochem. 118: 4897-4904, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Loss of heterozygosity analysis in malignant gliomas.

    PubMed

    Mizoguchi, Masahiro; Kuga, Daisuke; Guan, Yanlei; Hata, Nobuhiro; Nakamizo, Akira; Yoshimoto, Koji; Sasaki, Tomio

    2011-07-01

    Despite recent advances in the diagnosis and treatment of glioblastomas, patient outcomes for these highly malignant tumors remain poor. Research into the molecular pathology of glioblastoma has uncovered various genetic changes that contribute to malignancy. Some of the identified molecular markers--such as loss of heterozygosity (LOH) on chromosome 1p/19q and chromosome 10, O6-methylguanine methyltransferase promoter hypermethylation, and mutation of isocitrate dehydrogenase-1--may help to predict patient outcomes. Indeed, LOH analysis is an effective approach to classify malignant gliomas. Genome-wide analyses have revealed that the extent and pattern of LOH regions may have important implications for the clinical course of the disease. As the genetic underpinnings of malignant gliomas are complex and varied, careful selection of the methods for genetic analysis in the clinic is important. The fundamental principles of each assay need to be understood to allow careful selection of practically useful methods. This review summarizes recent developments in the molecular analysis of malignant glioma.

  1. Blood-based biomarkers for malignant gliomas

    PubMed Central

    Boadu, Osei; Grossman, Stuart A.

    2013-01-01

    Malignant gliomas remain incurable and present unique challenges to clinicians, radiologists and clinical and translational investigators. One of the major problems in treatment of these tumors is our limited ability to reliably assess tumor response or progression. The most frequently used neuro-imaging studies (contrast-enhanced MRI and CT) rely on changes of blood-brain barrier (BBB) integrity, providing only an indirect assessment of tumor burden. In addition, the BBB can be altered by commonly used interventions including radiation, glucocorticoids and VEGF inhibitors, further complicating the interpretation of scans. Newer radiologic techniques including PET and magnetic resonance spectroscopy (MRS) are theoretically promising but thus far have not meaningfully changed the assessment of patients with malignant gliomas. A tumor-specific, blood-based biomarker would be of immediate use to clinicians and investigators if sufficiently sensitive and specific. This review discusses the potential utility of such a biomarker, the general classes of tumor-derived blood-based biomarkers and it summarizes the currently available data on circulating tumor cells, circulating nucleic acids and circulating proteins in patients with malignant gliomas. It is unclear which marker or marker class appears to be the most promising for these tumors. This article provides thoughts on how novel candidate blood-based markers could be discovered and tested in a more comprehensive way and why these efforts should be among the top priorities in neuro-oncologic research in the coming years. PMID:23670054

  2. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    SciTech Connect

    Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less

  3. Interference of ursolic acid treatment with glioma growth: An in vitro and in vivo study.

    PubMed

    Bergamin, Letícia Scussel; Figueiró, Fabrício; Dietrich, Fabrícia; Manica, Fabiana de Mattos; Filippi-Chiela, Eduardo C; Mendes, Franciane Brackman; Jandrey, Elisa Helena Farias; Lopes, Daniela Vasconcelos; Oliveira, Francine H; Nascimento, Isis C; Ulrich, Henning; Battastini, Ana Maria Oliveira

    2017-09-15

    Glioblastoma multiforme is the most devastating tumor in the brain. Ursolic acid (UA) is found in a variety of plants, and exhibits several pharmacological activities. In this study, we investigated the effects of UA in vitro, clarifying the mechanisms that mediate its toxicity and the long-lasting actions of UA in C6 glioma cells. We also evaluated the antitumor activity of UA in an in vivo orthotopic glioma model. Cell numbers were assessed using the Trypan blue exclusion test, and the cell cycle was characterized by flow cytometry using propidium iodide staining. Apoptosis was analyzed using an Annexin V kit and by examining caspase-3. Akt immunocontent was verified by Western blot and the long-lasting actions of UA were measured by cumulative population doubling (CPD). In vivo experiments were performed in rats to measure the effects on tumor size, malignant features and toxicological parameters. In vitro results showed that UA decreased glioma cell numbers, increased the sub-G1 fraction and induced apoptotic death, accompanied by increased active caspase-3 protein levels. Akt phosphorylation/activation in cells was also diminished by UA. With regard to CPD, cell proliferation was almost completely restored upon single UA treatments, but when the UA was added again, the majority of cells died, demonstrating the importance of re-treatment cycles with chemotherapeutic agents for abolishing tumor growth. In vivo, ursolic acid slightly reduced glioma tumor size but did not decrease malignant features. Ursolic acid may be a potential candidate as an adjuvant for glioblastoma therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fasting enhances the response of glioma to chemo- and radiotherapy.

    PubMed

    Safdie, Fernando; Brandhorst, Sebastian; Wei, Min; Wang, Weijun; Lee, Changhan; Hwang, Saewon; Conti, Peter S; Chen, Thomas C; Longo, Valter D

    2012-01-01

    Glioma, including anaplastic astrocytoma and glioblastoma multiforme (GBM) are among the most commonly diagnosed malignant adult brain tumors. GBM is a highly invasive and angiogenic tumor, resulting in a 12 to 15 months median survival. The treatment of GBM is multimodal and includes surgical resection, followed by adjuvant radio-and chemotherapy. We have previously reported that short-term starvation (STS) enhances the therapeutic index of chemo-treatments by differentially protecting normal cells against and/or sensitizing tumor cells to chemotoxicity. To test the effect of starvation on glioma cells in vitro, we treated primary mouse glia, murine GL26, rat C6 and human U251, LN229 and A172 glioma cells with Temozolomide in ad lib and STS mimicking conditions. In vivo, mice with subcutaneous or intracranial models of GL26 glioma were starved for 48 hours prior to radio- or chemotherapy and the effects on tumor progression and survival were measured. Starvation-mimicking conditions sensitized murine, rat and human glioma cells, but not primary mixed glia, to chemotherapy. In vivo, starvation for 48 hours, which causes a significant reduction in blood glucose and circulating insulin-like growth factor 1 (IGF-1) levels, sensitized both subcutaneous and intracranial glioma models to radio-and chemotherapy. Starvation-induced cancer sensitization to radio- or chemotherapy leads to extended survival in the in vivo glioma models tested. These results indicate that fasting and fasting-mimicking interventions could enhance the efficacy of existing cancer treatments against aggressive glioma in patients.

  5. Development of functional docetaxel nanomicelles for treatment of brain glioma.

    PubMed

    Ju, Rui-Jun; Mu, Li-Min; Li, Xue-Tao; Li, Cui-Qing; Cheng, Zhan-Jie; Lu, Wan-Liang

    2018-03-08

    The efficacy of anticancer drugs is rather limited in the treatment of brain glioma due to the hindrance of the blood-brain barrier (BBB). Herein, we reported an easy formulation of functional docetaxel nanomicelles for the treatment of brain glioma using a graft copolymer soluplus as basic material through dual-modifications with a glucose-lipid derivative and a dequalinium-lipid derivative. The studies were performed on brain glioma U87MG cells, in vitro BBB models and brain glioma-bearing nude mice. The functional docetaxel nanomicelles were approximately 100 nm. The results demonstrated that the functional docetaxel nanomicelles could transport across the BBB, enhance the cellular uptake, target to the mitochondria, induce the apoptosis, increase the cytotoxicity in the brain glioma cells, and extend survival span of the brain glioma-bearing mice. The action mechanisms were associated with dual-modifications by the glucose-lipid derivative and the dequalinium-lipid derivative, both of which are beneficial for the transport across the BBB. Furthermore, the modification with dequalinium-lipid derivative was able to target to the brain glioma cells and to the mitochondria. In conclusion, the functional docetaxel nanomicelles would be a promising formulation for the treatment of brain glioma, deserving further development for clinical trials.

  6. A role for ion channels in perivascular glioma invasion

    PubMed Central

    Thompson, Emily G.

    2017-01-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuro-peptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials. PMID:27424110

  7. Childhood Brain Stem Glioma Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood brain stem glioma can be a benign (not cancer) or malignant (cancer) condition where abnormal cells form in the tissues of the brain stem. Get information about the symptoms, diagnosis, prognosis, and treatment of newly diagnosed and recurrent childhood brain stem glioma in this expert-reviewed summary.

  8. TNF receptor-associated factor 6 regulates proliferation, apoptosis, and invasion of glioma cells.

    PubMed

    Peng, Zhang; Shuangzhu, Yue; Yongjie, Jiang; Xinjun, Zhang; Ying, Liu

    2013-05-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6), which plays an important role in inflammation and immune response, is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway. Recent studies have shown that TRAF6 played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, up to now, the biologic role of TRAF6 in glioma has still remained unknown. To address the expression of TRAF6 in glioma cells, four glioma cell lines (U251, U-87MG, LN-18, and U373) and a non-cancerous human glial cell line SVG p12 were used to explore the protein expression of TRAF6 by Western blot. Our results indicated that TRAF6 expression was upregulated in human glioma cell lines, especially in metastatic cell lines. To investigate the role of TRAF6 in cell proliferation, apoptosis, invasion, and migration of glioma, we generated human glioma U-87MG cell lines in which TRAF6 was either overexpressed or depleted. Subsequently, the effects of TRAF6 on cell viability, cell cycle distribution, apoptosis, invasion, and migration in U-87MG cells were determined with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry analysis, transwell invasion assay, and wound-healing assay. The results showed that knockdown of TRAF6 could decrease cell viability, suppress cell proliferation, invasion and migration, and promote cell apoptosis, whereas overexpression of TRAF6 displayed the opposite effects. In addition, the effects of TRAF6 on the expression of phosphor-NF-κB (p-p65), cyclin D1, caspase 3, and MMP-9 were also probed. Knockdown of TRAF6 could lower the expression of p-p65, cyclin D1, and MMP-9, and raise the expression of caspase 3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, invasion, and migration of U-87MG cell, as well as inhibition of apoptosis of U-87MG cell by abrogating activation of NF-κB.

  9. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    SciTech Connect

    Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan

    2010-11-26

    Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population

  10. Laminin associated with BMP7 as potential secondary astrocytic glioma fiber differentiation targets.

    PubMed

    Mao, G-S; Yan, M; Ma, Z-Z; Sun, L-Z; Liu, Y

    2017-08-01

    To investigate the activation of the BMP7 and laminin pathway is associated with glioma cell proliferation and differentiation. We enrolled 65 patients with primary operable glioma. Laminin and BMP7 protein expression and its subcellular localization were studied by immunofluorescence. We detected a higher level of BMP7 expression in glioma tissue in patients with a lower grade of glioma who had a lower eosinophil count. Compared to patients with a higher grade of glioma, we observed a lower level of laminin expression in patients with a lower grade of glioma. Our data indicated a potential link between eosinophil counts and the expression levels of laminin and BMP7 in glioma differentiation.

  11. Androglobin knockdown inhibits growth of glioma cell lines

    PubMed Central

    Huang, Bo; Lu, Yi-Sheng; Li, Xia; Zhu, Zhi-Chuan; Li, Kui; Liu, Ji-Wei; Zheng, Jing; Hu, Ze-Lan

    2014-01-01

    Globin family was famous for oxygen supply function of its members such as hemoglobin and myoglobin. With the progress of research, several members of this protein family have been proven to play roles in tumors including glioma. Androglobin (ADGB) is a recently identified member of globin family with very few studies about its function. In the present study, we show that ADGB plays an oncogene role in glioma. Lentiviral vector mediated ADGB knockdown inhibited the proliferation of glioma cell lines determined by MTT assay and colony formation assay. ADGB knockdown also increased the apoptosis of glioma cell line U251 assessed by flow cytometry. In addition, western blot showed that ADGB knockdown altered levels of several proteins related to proliferation, survival or apoptosis in U251 cells. These findings suggest ADGB is involved in the progression of glioma in vitro. PMID:24966926

  12. The biology and mathematical modelling of glioma invasion: a review

    PubMed Central

    Talkenberger, K.; Seifert, M.; Klink, B.; Hawkins-Daarud, A.; Swanson, K. R.; Hatzikirou, H.

    2017-01-01

    Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion. PMID:29118112

  13. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21.

    PubMed

    Dai, Bin; Hu, Zhiqiang; Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong; Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei

    2014-11-07

    Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan-Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The ultrastructural difference between CD133-positive U251 glioma stem cells and normal U251 glioma cells.

    PubMed

    Yang, Bo; Wang, You; Yang, Chunxu; Ouyang, Wen; Zhou, Fuxiang; Zhou, Yunfeng; Xie, Conghua

    2012-12-01

    Glioma stem cells (GSC) have higher tumorigenic potential and stronger chemoresistance and radioresistance than normal glioma cells. The mechanisms behind these phenomena have remained elusive. The authors have isolated CD133-positive U251 GSCs from U251 glioma cells and detected the expression of stem cell markers (CD133 and nestin) of U251 GSCs by immunofluorescence staining. Then the ultrastructures of U251 GSCs and normal U251 glioma cells were observed by transmission electron microscopy and the ultrastructural differences between them were compared. Increased cell nucleus atypia, rougher endoplasmic reticulum, and more microvilli were observed in CD133-positive U251 GSCs than in normal U251 glioma cells. In summary, these ultrastructural differences support the hypothesis that GSCs have stronger tumorigenic ability and resistance to chemotherapy and radiotherapy.

  15. L1 stimulation of human glioma cell motility correlates with FAK activation

    PubMed Central

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A.; Boulos, Magdy I.; Kappes, John C.

    2011-01-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  16. L1 stimulation of human glioma cell motility correlates with FAK activation.

    PubMed

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A; Boulos, Magdy I; Kappes, John C; Galileo, Deni S

    2011-10-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  17. IB-03IDH MUTANT GLIOMAS ARE RESISTANT TO NATURAL KILLER CELL-MEDIATED CYTOLYSIS

    PubMed Central

    Brancho, Michael; Chang, Yigang; Zhang, Xioran; Okada, Hideho; Li, Aofei; Grandi, Paola; Lotze, Michael; Amankulor, Nduka

    2014-01-01

    Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are common in gliomas. 50-80% of WHO II/III gliomas possess IDH1/IDH2 mutation. Methylation-related transcriptional repression is a feature of IDH mutant (IDHmut) tumors. Epigenetic repression of natural killer (NK) cell ligands is a common occurrence in cancer, but it is unknown if this occurs in primary brain tumors. Here, we demonstrate transcriptional repression of NKG2D activating ligands (NKG2DLs) in IDHmut gliomas, and correlate this with decreased susceptibility of IDHmut cells to natural killer (NK) cell-mediated cytolysis in vitro. Our data suggest that NK cell-astrocyte contact is required for production of Th1 cytokines IFN-γ and TNF-α, and that production of these cytokines is limited in IDHmut astrocytes. We also show that NKG2DL-specific antibody blockade can result in significant reduction in NK-cell mediated cytolysis in vitro. Furthermore, we infect IDHmut cells with JDNI7 virus containing ULBP3 plasmid DNA to induce overexpression of this ligand. Upon ULBP3 overexpression, these cells are significantly more sensitive to NK-cell mediated lysis. Taken together, our data suggest a potential immune surveillance role for the NKG2DL, ULBP3, during IDHmut gliomagenesis.

  18. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet.

    PubMed

    Lussier, Danielle M; Woolf, Eric C; Johnson, John L; Brooks, Kenneth S; Blattman, Joseph N; Scheck, Adrienne C

    2016-05-13

    Glioblastoma multiforme is a highly aggressive brain tumor with a poor prognosis, and advances in treatment have led to only marginal increases in overall survival. We and others have shown previously that the therapeutic ketogenic diet (KD) prolongs survival in mouse models of glioma, explained by both direct tumor growth inhibition and suppression of pro-inflammatory microenvironment conditions. The aim of this study is to assess the effects of the KD on the glioma reactive immune response. The GL261-Luc2 intracranial mouse model of glioma was used to investigate the effects of the KD on the tumor-specific immune response. Tumor-infiltrating CD8+ T cells, CD4+ T cells and natural killer (NK) cells were analyzed by flow cytometry. The expression of immune inhibitory receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) on CD8+ T cells were also analyzed by flow cytometry. Analysis of intracellular cytokine production was used to determine production of IFN, IL-2 and IFN- in tumor-infiltrating CD8+ T and natural killer (NK) cells and IL-10 production by T regulatory cells. We demonstrate that mice fed the KD had increased tumor-reactive innate and adaptive immune responses, including increased cytokine production and cytolysis via tumor-reactive CD8+ T cells. Additionally, we saw that mice maintained on the KD had increased CD4 infiltration, while T regulatory cell numbers stayed consistent. Lastly, mice fed the KD had a significant reduction in immune inhibitory receptor expression as well as decreased inhibitory ligand expression on glioma cells. The KD may work in part as an immune adjuvant, boosting tumor-reactive immune responses in the microenvironment by alleviating immune suppression. This evidence suggests that the KD increases tumor-reactive immune responses, and may have implications in combinational treatment approaches.

  19. Gliomas in Neurofibromatosis Type 1: A Clinicopathologic Study of 100 Patients

    PubMed Central

    Rodriguez, Fausto J.; Perry, Arie; Gutmann, David H.; O'Neill, Brian Patrick; Leonard, Jeffrey; Bryant, Sandra; Giannini, Caterina

    2012-01-01

    There are few pathologic studies of gliomas in patients with neurofibromatosis type 1. We analyzed clinical and pathologic features of gliomas from 100 neurofibromatosis type 1 patients (57 men; 43 women). The median age at tumor diagnosis was 13 years (range, 4 months to 68 years). Most tumors were typical pilocytic astrocytoma (PA) (49%) or diffusely infiltrating astrocytoma (DA) (27%) that included World Health Organization Grades II (5%), III (15%), and IV (7%); others were designated as low-grade astrocytoma, subtype indeterminate (LGSI; 17%). Two pilomyxoid astrocytomas, 1 desmoplastic infantile ganglioglioma and 1 conventional ganglioglioma, were also identified. The tumors in 24 cases arose in the optic pathways and included PA (n = 14), LGSI (n = 4), DA (n = 4), pilomyxoid astrocytoma (n = 1), and ganglioglioma (n = 1). The prognoses of the PA and LGSI gliomas overall were generally favorable; there were no survival differences between PA and LGSI groups based on site, tumor size, mitotic activity, or MIB-1 labeling index. In the combined PA and LGSI group, age younger than 10 years and gross total resection were associated with an increased overall survival rate (p = 0.047 and 0.002, respectively). Compared with the combined group (PA + LGSI), patients with DA at all sites had decreased overall and recurrence-free survival times (p < 0.001 and p = 0.003, respectively). This study emphasizes the wide histologic spectrum of gliomas that occur in patients with neurofibromatosis type 1. Classic PA and LGSI are the most common, and most have favorable prognoses. By contrast, DAs are more aggressive, similar to those that arise sporadically. PMID:18344915

  20. Mobile phone use and incidence of glioma in the Nordic countries 1979-2008: consistency check.

    PubMed

    Deltour, Isabelle; Auvinen, Anssi; Feychting, Maria; Johansen, Christoffer; Klaeboe, Lars; Sankila, Risto; Schüz, Joachim

    2012-03-01

    Some case-control studies have reported increased risks of glioma associated with mobile phone use. If true, this would ultimately affect the time trends for incidence rates (IRs). Correspondingly, lack of change in IRs would exclude certain magnitudes of risk. We investigated glioma IR trends in the Nordic countries, and compared the observed with expected incidence rates under various risk scenarios. We analyzed annual age-standardized incidence rates in men and women aged 20 to 79 years during 1979-2008 using joinpoint regression (35,250 glioma cases). Probabilities of detecting various levels of relative risk were computed using simulations. For the period 1979 through 2008, the annual percent change in incidence rates was 0.4% (95% confidence interval = 0.1% to 0.6%) among men and 0.3% (0.1% to 0.5%) among women. Incidence rates have decreased in young men (20-39 years) since 1987, remained stable in middle-aged men (40-59 years) throughout the 30-year study period, and increased slightly in older men (60-79 years). In simulations, assumed relative risks for all users of 2.0 for an induction time of up to 15 years, 1.5 for up to 10 years, and 1.2 for up to 5 years were incompatible with observed incidence time trends. For heavy users of mobile phones, risks of 2.0 for up to 5 years' induction were also incompatible. No clear trend change in glioma incidence rates was observed. Several of the risk increases seen in case-control studies appear to be incompatible with the observed lack of incidence rate increase in middle-aged men. This suggests longer induction periods than currently investigated, lower risks than reported from some case-control studies, or the absence of any association.

  1. Therapeutic options for recurrent malignant glioma.

    PubMed

    Niyazi, Maximilian; Siefert, Axel; Schwarz, Silke Birgit; Ganswindt, Ute; Kreth, Friedrich-Wilhelm; Tonn, Jörg-Christian; Belka, Claus

    2011-01-01

    Despite the given advances in neuro-oncology most patients with high grade malignant glioma ultimately fail locally or locoregionally. In parallel with improvements of initial treatment options, several salvage strategies have been elucidated and already entered clinical practice. Aim of this article is to review the current status of salvage strategies in recurrent high grade glioma. Using the following MESH headings and combinations of these terms the pubmed database was searched: "Glioma", "Recurrence", "Neoplasm Recurrence, Local", "Radiosurgery", "Brachytherapy", "Neurosurgical Procedures" and "Drug Therapy". For citation crosscheck the ISI web of science database was used employing the same search terms. In parallel, the abstracts of ASCO 2008-2009 were analyzed accordingly. Currently the following options for salvage entered clinical practice: re-resection, re-irradiation (stereotactic radiosurgery, (hypo-)fractionated (stereotactic) radiotherapy, interstitial brachytherapy) or single/poly-chemotherapy schedules including new dose-intensified or alternative treatment protocols employing targeted drugs. Re-operation is associated with high morbidity and mortality, however, is an option in a highly selected patient cohort. Since toxicity has been overestimated, re-irradiation is an increasingly used option with precise fractionated radiotherapy being the most optimal technique. On average, time to secondary progression is in the range of several months. Conventional chemotherapy regimens also improve time to secondary progression; however the efficacy is only modest and treatment-related toxicities like myelo-suppression occur very frequently. Molecular targeted agents/kinases are undergoing clinical testing; however no final recommendations can be made. Currently, several re-treatment options with only modest efficacy exist. The relative value of each approach compared to other options is unknown as well as it remains open which sequence of modalities should

  2. [Experimental study of combination therapy against human glioma xenograft by differentiation-inducing agent and cytotoxic chemotherapeutic drug].

    PubMed

    Shi, Ming-gang; Huang, Qiang; Dong, Jun; Sun, Zhi-fang; Lan, Qing

    2002-10-01

    Cytotoxic agent remains the main chemotherapeutic drug for glioma, although it has many limitations. It is not known whether differentiation-inducing agent can enhance antitumor efficiency of cytotoxic agent. This study was designed to investigate anti-tumor effects of differentiation-inducing agent in combination with cytotoxic chemotherapeutic drug against glioma. Poorly-differentiated human brain glioma xenografted nude mice were treated with carmustine(1, 3-bis-(2-chloroethyl)-1-nitrosourea, BCNU) and sodium phenylbutyrate (SPB). The therapeutic effects were determined by measuring of tumor size, pathological changes, different phases of cell cycle of tumor cell proliferation, expression of differentiation antigen, and tumor cell apoptosis. The therapeutic effects of SPB plus BCNU group were much better than that of SPB or BCNU group alone, which were proved by lower growth rate of the tumor, cellularity decreasing, appearance of astroid-like polyglonal cells, G0/G1 ratio increasing, upregulation of GFAP expression. Combined application of SPB and BCNU can obviously inhibit proliferation of glioma, and promote differentiation of tumor cells.

  3. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  4. Genetic variants in telomerase-related genes are associated with an older age at diagnosis in glioma patients: evidence for distinct pathways of gliomagenesis

    PubMed Central

    Walsh, Kyle M.; Rice, Terri; Decker, Paul A.; Kosel, Matthew L.; Kollmeyer, Thomas; Hansen, Helen M.; Zheng, Shichun; McCoy, Lucie S.; Bracci, Paige M.; Anderson, Erik; Hsuang, George; Wiemels, Joe L.; Pico, Alexander R.; Smirnov, Ivan; Molinaro, Annette M.; Tihan, Tarik; Berger, Mitchell S.; Chang, Susan M.; Prados, Michael D.; Lachance, Daniel H.; Sicotte, Hugues; Eckel-Passow, Jeanette E.; Wiencke, John K.; Jenkins, Robert B.; Wrensch, Margaret R.

    2013-01-01

    Background Genome-wide association studies have implicated single nucleotide polymorphisms (SNPs) in 7 genes as glioma risk factors, including 2 (TERT, RTEL1) involved in telomerase structure/function. We examined associations of these 7 established glioma risk loci with age at diagnosis among patients with glioma. Methods SNP genotype data were available for 2286 Caucasian glioma patients from the University of California, San Francisco (n = 1434) and the Mayo Clinic (n = 852). Regression analyses were performed to test for associations between “number of risk alleles” and “age at diagnosis,” adjusted for sex and study site and stratified by tumor grade/histology where appropriate. Results Four SNPs were significantly associated with age at diagnosis. Carrying a greater number of risk alleles at rs55705857 (CCDC26) and at rs498872 (PHLDB1) was associated with younger age at diagnosis (P = 1.4 × 10−22 and P = 9.5 × 10−7, respectively). These SNPs are stronger risk factors for oligodendroglial tumors, which tend to occur in younger patients, and their association with age at diagnosis varied across tumor subtypes. In contrast, carrying more risk alleles at rs2736100 (TERT) and at rs6010620 (RTEL1) was associated with older age at diagnosis (P = 6.2 × 10−4 and P = 2.5 × 10−4, respectively). These SNPs are risk factors for all glioma grades/histologies, and their association with age at diagnosis was consistent across tumor subgroups. Conclusions Carrying a greater number of risk alleles might be expected to decrease age at diagnosis. However, glioma susceptibility conferred by variation in telomerase-related genes did not follow this pattern. This supports the hypothesis that telomerase-related mechanisms of telomere maintenance are more associated with gliomas that develop later in life than those utilizing telomerase-independent mechanisms (ie, alternative lengthening of telomeres). PMID:23733245

  5. Lactate-Modulated Induction of THBS-1 Activates Transforming Growth Factor (TGF)-beta2 and Migration of Glioma Cells In Vitro

    PubMed Central

    Moeckel, Sylvia; Jachnik, Birgit; Lottaz, Claudio; Kreutz, Marina; Brawanski, Alexander; Proescholdt, Martin; Bogdahn, Ulrich; Bosserhoff, Anja-Katrin; Vollmann-Zwerenz, Arabel; Hau, Peter

    2013-01-01

    Background An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein. Methods Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. Results Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. Conclusion We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion. PMID:24223867

  6. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    ClinicalTrials.gov

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  7. Long non-coding RNA RP5-833A20.1 inhibits proliferation, metastasis and cell cycle progression by suppressing the expression of NFIA in U251 cells.

    PubMed

    Kang, Chun-Min; Hu, Yan-Wei; Nie, Ying; Zhao, Jia-Yi; Li, Shu-Fen; Chu, Shuai; Li, Hai-Xia; Huang, Qing-Shui; Qiu, Yu-Rong

    2016-12-01

    Early reports suggest that nuclear factor IA (NFIA) is important in the pathogenesis of glioma. Our previous study demonstrated that the long non‑coding RNA (lncRNA), RP5‑833A20.1, suppressed the expression of NFIA in THP‑1 macrophage-derived foam cells. However, the effect and possible mechanism of RP5‑833A20.1 on glioma remains to be fully elucidated, and whether the NFIA-dependent pathway is involved in its progression has not been investigated. In the present study, the mechanisms by which RP5‑833A20.1 regulates the expression of NFIA in glioma were investigated. The expression levels of RP5‑833A20.1 and NFIA were determined in U251 cells and clinical samples using reverse transcription‑quantitative polymerase chain reaction (PCR) analysis. The effects of RP5‑833A20.1 on cell proliferation, invasion, cell cycle and apoptosis were evaluated using in vitro assays. The potential changes in protein expression were investigated using western blot analysis. The methylation status of the CpG island in the NFIA promoter was determined using bisulfite PCR (BSP) sequencing. It was found that the expression of RP5‑833A20.1 was downregulated, whereas the expression of NFIA was upregulated in glioma tissues, compared with corresponding adjacent nontumor tissues from 20 patients with glioma. The overexpression of RP5‑833A20.1 inhibited proliferation and cell cycle progression, and induced apoptosis in the U251 cells. The mRNA and protein levels of NFIA were markedly inhibited by overexpression of RP5‑833A20.1 in the U251 cells. The overexpression of RP5‑833A20.1 increased the expression of microRNA‑382‑5p in the U251 cells. The BSP assay revealed that the overexpression of RP5‑833A20.1 enhanced the methylation level of the NFIA promoter. These results demonstrated that RP5‑833A20.1 inhibited tumor cell proliferation, induced apoptosis and inhibited cell‑cycle progression by suppressing the expression of NFIA in U251 cells. Collectively

  8. The potential for genetically altered microglia to influence glioma treatment.

    PubMed

    Li, W; Holsinger, R M D; Kruse, C A; Flügel, A; Graeber, M B

    2013-09-01

    Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells.

  9. The Potential for Genetically Altered Microglia to Influence Glioma Treatment

    PubMed Central

    Li, W.; Holsinger, R.M.D.; Kruse, C.A.; Flügel, A.; Graeber, M.B.

    2014-01-01

    Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells. PMID:24047526

  10. The value of intraoperative sonography in low grade glioma surgery.

    PubMed

    Petridis, Athanasios K; Anokhin, Maxim; Vavruska, Jan; Mahvash, Mehran; Scholz, Martin

    2015-04-01

    There is a number of different methods to localize a glioma intraoperatively. Neuronavigation, intraoperative MRI, 5-aminolevulinic acid, as well as intraoperative sonography. Every method has its advantages and disadvantages. Low grade gliomas do not show a specific signal with 5-aminolevulinic acid and are difficult to distinguish macroscopically from normal tissue. In the present study we stress out the importance of intraoperative diagnostic ultrasound for localization of low grade gliomas. We retrospectively evaluated the charts and MRIs of 34 patients with low grade gliomas operated in our department from 2011 until December 2014. The efficacy of ultrasound as an intraoperative navigational tool was assessed. In 15 patients ultrasound was used and in 19 not. Only histologically proven low grades gliomas (astrocytomas grade II) were evaluated. In none of the patients where ultrasound (combined with neuronavigation) was used (N=15) to find the tumors, the target was missed, whereas the exclusive use of neuronavigation missed the target in 5 of 19 cases of small subcortical low grade gliomas. Intraoperative ultrasound is an excellent tool in localizing low grade gliomas intraoperatively. It is an inexpensive, real time neuronavigational tool, which overcomes brain shift. Even when identifying the tumors with ultrasound is very reliable, the extend of resection and the decision to remove any residual tumor with the help of ultrasound is at the moment unreliable. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Glioma epidemiology in the central Tunisian population: 1993-2012.

    PubMed

    Trabelsi, Saoussen; Brahim, Dorra H'mida-Ben; Ladib, Mohamed; Mama, Nadia; Harrabi, Imed; Tlili, Kalthoum; Yacoubi, Mohamed Tahar; Krifa, Hedi; Hmissa, Sihem; Saad, Ali; Mokni, Moncef

    2014-01-01

    Glioma is a heterogeneous central nervous system (CNS) tumor group that encompasses different histological subtypes with high variability in prognosis. The lesions account for almost 80% of primary malignant brain tumors. The aim of this study is to extend our understanding of the glioma epidemiology in the central Tunisian region. We analyzed 393 gliomas recorded in cancer registry of central Tunisia from 1993 to 2012. Crude incidence rates (CR) and world age-standardized rates (ASR) were estimated using annual population data size and age structure. Statistic correlations were established using Chi-square and Kaplan-Meier test. Tunisian glioma patients were identified with a mean age at diagnosis of 48 years and 1.5 sex ratio (male/female). During the 19 years period of study the highest incidence value was observed in male group between 1998 and 2002 (CR: 0.28, ASR: 0.3). Incidence results underline increasing high grade glioma occurring in the adulthood in the last period (2007-2012). Median survival was 27 months, with 1-, 2- and 5-year survival rates of 42%, 30% and 26%, respectively. Survival was greater in patients with younger age, lower tumor grade, infratentrial tumor location and undergoing a palliative treatment. This central Tunisia gliomas registry study provides important information that could improve glioma management and healthcare practice.

  12. CT Perfusion with Acetazolamide Challenge in C6 Gliomas and Angiogenesis

    PubMed Central

    Feng, Xiao-Yuan; Qiang, Jin-Wei; Zhang, Jia-wen; Wang, Yong-gang; Liu, Ying

    2015-01-01

    Background This study was performed to investigate the correlation between CT perfusion with acetazolamide challenge and angiogenesis in C6 gliomas. Methods Thirty-two male Sprague-Dawley rats were evaluated. The rats were divided randomly to four groups: eight rats with orthotopically implanted C6 gliomas at 10-days old (Group A), eight rats with gliomas at 14-days old (Group B), eight rats with gliomas at 18-days old (Group C), eight rats with orthotopically injected normal saline served as controls. CT perfusion was performed before and after administration of acetazolamide. Changes in perfusion parameters due to acetazolamide administration were calculated and analyzed. Results Elevated carbon dioxide partial pressure and decreased pH were found in all 32 rats post acetazolamide challenge (P<0.01). Cerebral blood flowpre-challenge was increased in group C (95.0±2.5 ml/100g/min), as compared to group B (80.1±11.3 ml/100g/min) and group A (63.1±2.1 ml/100g/min). Cerebral blood flow percentage changes were detected with a reduction in group C (54.2±4.8%) as compared to controls (111.3±22.2%). Cerebral blood volume pre-challenge was increased in group C (50.8±1.7ml/100g), as compared to group B (45.7±1.9 ml/100g) and group A (38.2±0.8 ml/100g). Cerebral blood volume percentage changes were decreased in group C (23.5±4.6%) as compared to controls (113.5±30.4%). Angiogenesis ratio = [(CD105-MVD) / (FVIII-MVD)] ×100%. Positive correlations were observed between CD105-microvessel density, angiogenesis ratio, vascular endothelial growth factor, proliferation marker and cerebral blood flowpre-challenge, cerebral blood volume pre-challenge. Negative correlations were observed between CD105-microvessel density and cerebral blood flow percentage changes (P<0.01, correlation coefficient r=-0.788), cerebral blood volume percentage changes (P<0.01, r=-0.703). Negative correlations were observed between angiogenesis ratio, vascular endothelial growth factor

  13. CT perfusion with acetazolamide challenge in C6 gliomas and angiogenesis.

    PubMed

    Lu, Na; Di, Yue; Feng, Xiao-Yuan; Qiang, Jin-Wei; Zhang, Jia-wen; Wang, Yong-gang; Liu, Ying

    2015-01-01

    This study was performed to investigate the correlation between CT perfusion with acetazolamide challenge and angiogenesis in C6 gliomas. Thirty-two male Sprague-Dawley rats were evaluated. The rats were divided randomly to four groups: eight rats with orthotopically implanted C6 gliomas at 10-days old (Group A), eight rats with gliomas at 14-days old (Group B), eight rats with gliomas at 18-days old (Group C), eight rats with orthotopically injected normal saline served as controls. CT perfusion was performed before and after administration of acetazolamide. Changes in perfusion parameters due to acetazolamide administration were calculated and analyzed. Elevated carbon dioxide partial pressure and decreased pH were found in all 32 rats post acetazolamide challenge (P<0.01). Cerebral blood flow(pre-challenge) was increased in group C (95.0±2.5 ml/100 g/min), as compared to group B (80.1±11.3 ml/100 g/min) and group A (63.1±2.1 ml/100 g/min). Cerebral blood flow percentage changes were detected with a reduction in group C (54.2±4.8%) as compared to controls (111.3±22.2%). Cerebral blood volume(pre-challenge) was increased in group C (50.8±1.7 ml/100 g), as compared to group B (45.7±1.9 ml/100 g) and group A (38.2±0.8 ml/100 g). Cerebral blood volume percentage changes were decreased in group C (23.5±4.6%) as compared to controls (113.5±30.4%). Angiogenesis ratio = [(CD105-MVD) / (FVIII-MVD)] ×100%. Positive correlations were observed between CD105-microvessel density, angiogenesis ratio, vascular endothelial growth factor, proliferation marker and cerebral blood flow(pre-challenge), cerebral blood volume(pre-challenge). Negative correlations were observed between CD105-microvessel density and cerebral blood flow percentage changes (P<0.01, correlation coefficient r=-0.788), cerebral blood volume percentage changes (P<0.01, r=-0.703). Negative correlations were observed between angiogenesis ratio, vascular endothelial growth factor, proliferation marker

  14. Use of cardiac glycosides and risk of glioma.

    PubMed

    Seliger, Corinna; Meier, Christoph R; Jick, Susan S; Uhl, Martin; Bogdahn, Ulrich; Hau, Peter; Leitzmann, M F

    2016-04-01

    Cardiac glycosides induce apoptotic effects on glioma cells, but whether cardiac glycosides protect against risk for glioma is unknown. We therefore explored the relation between glycoside use and glioma risk using a large and validated database. We performed a case-control analysis using the Clinical Practice Research Datalink involving 2005 glioma cases diagnosed between 1995 and 2012 that were individually matched to 20,050 controls on age, gender, general practice, and number of years of active history in the database. Conditional logistic regression analysis was used to evaluate the association between cardiac glycosides and the risk of glioma adjusting for body mass index and smoking. We also examined use of common heart failure and arrhythmia medications to differentiate between a specific glycoside effect and a generic effect of treatment for congestive heart failure or arrhythmia. Cardiac glycoside use was inversely related to glioma incidence. After adjustment for congestive heart failure, arrhythmia, diabetes, and common medications used to treat those conditions, the OR of glioma was 0.47 (95% CI 0.27-0.81, Bonferroni-corrected p value = 0.024) for use versus non-use of cardiac glycosides, based on 17 exposed cases. In contrast, no associations were noted for other medications used to treat congestive heart failure or arrhythmias. The OR of glioma in people with congestive heart failure was 0.65 (95% CI 0.40-1.04), and for arrhythmia it was 1.01 (95% CI 0.78-1.31). These data indicate that cardiac glycoside use is independently associated with reduced glioma risk.

  15. Activation of glioma cells generates immune tolerant NKT cells.

    PubMed

    Tang, Bo; Wu, Wei; Wei, Xiaowei; Li, Yang; Ren, Gang; Fan, Wenhai

    2014-12-12

    Therapeutic outcomes of glioma are currently not encouraging. Tumor tolerance plays an important role in the pathogenesis of glioma. It is reported that micro RNAs (miR) are associated with tumor development. This study aims to investigate the role of miR-92a in the development of tolerant natural killer T (NKT) cells. In this study, U87 cells (a human glioma cell line) and primary glioma cells were prepared. The assessment of miR-92a was performed by real time RT-PCR. The expression of interleukin (IL)-10 and IL-6 in NKT cells was evaluated by flow cytometry. Results showed that abundant IL-6(+) IL-10(+) NKT cells were detected in glioma tissue. Cultures of glioma cells and NKT cells induced the expression of IL-6 and IL-10 in NKT cells. Glioma cells expressed miR-92a; the latter played a critical role in the induction of IL-6 and IL-10 expression in NKT cells. The expression of the antitumor molecules, including perforin, Fas ligand, and interferon-γ, was significantly attenuated compared with control NKT cells. The IL-6(+) IL-10(+) NKT cells showed less capability in the induction of apoptosis in glioma cells, but showed the immune suppressor functions on CD8(+) T cell activities. We conclude that glioma-derived miR-92a induces IL-6(+) IL-10(+) NKT cells; this fraction of NKT cells can suppress cytotoxic CD8(+) T cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.

    PubMed

    Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan

    2015-06-25

    Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most

  17. Facing contrast-enhancing gliomas: perfusion MRI in grade III and grade IV gliomas according to tumor area.

    PubMed

    Di Stefano, Anna Luisa; Bergsland, Niels; Berzero, Giulia; Farina, Lisa; Rognone, Elisa; Gastaldi, Matteo; Aquino, Domenico; Frati, Alessandro; Tomasello, Francesco; Ceroni, Mauro; Marchioni, Enrico; Bastianello, Stefano

    2014-01-01

    Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV), calculated with Dynamic Susceptibility Contrast (DSC) Perfusion-Weighted Imaging (PWI), allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI) approach in three tumor areas-the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map-in patients affected by contrast-enhancing glioma (grades III and IV). Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp.), the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P = 0.036). In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading.

  18. Facing Contrast-Enhancing Gliomas: Perfusion MRI in Grade III and Grade IV Gliomas according to Tumor Area

    PubMed Central

    Di Stefano, Anna Luisa; Farina, Lisa; Rognone, Elisa; Gastaldi, Matteo; Frati, Alessandro; Tomasello, Francesco; Ceroni, Mauro; Marchioni, Enrico; Bastianello, Stefano

    2014-01-01

    Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV), calculated with Dynamic Susceptibility Contrast (DSC) Perfusion-Weighted Imaging (PWI), allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI) approach in three tumor areas—the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map—in patients affected by contrast-enhancing glioma (grades III and IV). Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp.), the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P = 0.036). In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading. PMID:24800207

  19. Semiautomatic Segmentation of Glioma on Mobile Devices

    PubMed Central

    Yang, Cong; Gu, Jian-Qin; Bai, Yan; Wang, Mei-Yun

    2017-01-01

    Brain tumor segmentation is the first and the most critical step in clinical applications of radiomics. However, segmenting brain images by radiologists is labor intense and prone to inter- and intraobserver variability. Stable and reproducible brain image segmentation algorithms are thus important for successful tumor detection in radiomics. In this paper, we propose a supervised brain image segmentation method, especially for magnetic resonance (MR) brain images with glioma. This paper uses hard edge multiplicative intrinsic component optimization to preprocess glioma medical image on the server side, and then, the doctors could supervise the segmentation process on mobile devices in their convenient time. Since the preprocessed images have the same brightness for the same tissue voxels, they have small data size (typically 1/10 of the original image size) and simple structure of 4 types of intensity value. This observation thus allows follow-up steps to be processed on mobile devices with low bandwidth and limited computing performance. Experiments conducted on 1935 brain slices from 129 patients show that more than 30% of the sample can reach 90% similarity; over 60% of the samples can reach 85% similarity, and more than 80% of the sample could reach 75% similarity. The comparisons with other segmentation methods also demonstrate both efficiency and stability of the proposed approach. PMID:29065648

  20. Semiautomatic Segmentation of Glioma on Mobile Devices.

    PubMed

    Wu, Ya-Ping; Lin, Yu-Song; Wu, Wei-Guo; Yang, Cong; Gu, Jian-Qin; Bai, Yan; Wang, Mei-Yun

    2017-01-01

    Brain tumor segmentation is the first and the most critical step in clinical applications of radiomics. However, segmenting brain images by radiologists is labor intense and prone to inter- and intraobserver variability. Stable and reproducible brain image segmentation algorithms are thus important for successful tumor detection in radiomics. In this paper, we propose a supervised brain image segmentation method, especially for magnetic resonance (MR) brain images with glioma. This paper uses hard edge multiplicative intrinsic component optimization to preprocess glioma medical image on the server side, and then, the doctors could supervise the segmentation process on mobile devices in their convenient time. Since the preprocessed images have the same brightness for the same tissue voxels, they have small data size (typically 1/10 of the original image size) and simple structure of 4 types of intensity value. This observation thus allows follow-up steps to be processed on mobile devices with low bandwidth and limited computing performance. Experiments conducted on 1935 brain slices from 129 patients show that more than 30% of the sample can reach 90% similarity; over 60% of the samples can reach 85% similarity, and more than 80% of the sample could reach 75% similarity. The comparisons with other segmentation methods also demonstrate both efficiency and stability of the proposed approach.

  1. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  2. Indomethacin induced glioma apoptosis involving ceramide signals.

    PubMed

    Chang, Cheng-Yi; Li, Jian-Ri; Wu, Chih-Cheng; Wang, Jiaan-Der; Yang, Ching-Ping; Chen, Wen-Ying; Wang, Wen-Yi; Chen, Chun-Jung

    2018-04-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are increasingly implicated in the prevention and treatment of cancers apart from their known inhibitory effects on eicosanoid production. One of the NSAIDs, indomethacin, in particular shows promising antineoplastic outcome against glioma. To extend such finding, we here studied in human H4 and U87 glioma cells the possible involvement of the ceramide/protein phosphatase 2 A (PP2A)/Akt axis in the indomethacin-induced apoptosis. We found that the induced apoptosis was accompanied by a series of biochemical events, including intracellular ceramide generation, PP2A activation, Akt dephosphorylation, Mcl-1 and FLICE inhibiting protein (FLIP) transcriptional downregulation, Bax mitochondrial distribution, and caspase 3 activation. Such events were also duplicated with a cell-permeable C2-ceramide and Akt inhibitor LY294002. Pharmacological inhibition of ceramide synthase by fumonisin B1 and PP2A by okadaic acid moderately attenuated indomethacin-induced Akt dephosphorylation along with the apoptosis. Results suggested that the ceramide/PP2A/Akt axis is involved in the apoptosis and a possible cyclooxygenase-independent target for indomethacin. Furthermore, apoptosis regulatory proteins such as Mcl-1 and FLIP are potential downstream effectors of this axis and their downregulation could turn on the apoptotic program. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Photodynamic therapy of recurrent cerebral glioma

    NASA Astrophysics Data System (ADS)

    Zhu, Shu-Gan; Wu, Si-En; Chen, Zong-Qian; Sun, Wei

    1993-03-01

    Photodynamic therapy (PDT) was performed on 11 cases of recurrent cerebral glioma, including 3 cases of recurrent glioblastoma, 7 of recurrent anaplastic astrocytoma, and 1 recurrent ependymoma. Hematoporphyrin derivative (HPD) was administered intravenously at a dose of 4 - 7 mg/kg 5 - 24 hours before the operation. All patients underwent a craniotomy with a nearly radical excision of the tumor following which the tumor bed was irradiated with 630 nm laser light emitting either an argon pumped dye laser or frequency double YAG pumped dye laser for 30 to 80 minutes with a total dose of 50 J/cm2 (n equals 1), 100 J/cm2 (n equals 2), 200 J/cm2 (n equals 7), and 300 J/cm2 (n equals 1). The temperature was kept below 37 degree(s)C by irrigation. Two patients underwent postoperative radiotherapy. There was no evidence of increased cerebral edema, and no other toxicity by the therapy. All patients were discharged from the hospital within 15 days after surgery. We conclude that PDT using 4 - 7 mg/kg of HPD and 630 nm light with a dose of up to 300 J/cm2 can be used as an adjuvant therapy with no additional complications. Adjuvant PDT in the treatment of recurrent glioma is better than simple surgery.

  4. Enhanced radiation-induced cytotoxic effect by 2-ME in glioma cells is mediated by induction of cell cycle arrest and DNA damage via activation of ATM pathways.

    PubMed

    Zou, Huichao; Zhao, Shiguang; Zhang, Jianhua; Lv, Gongwei; Zhang, Xu; Yu, Hongwei; Wang, Huibo; Wang, Ligang

    2007-12-14

    Glioblastoma multiform is the most common malignant primary brain tumor in adults, but there remains no effective therapeutic approach. 2-methoxyestradiol (2-ME), which is a naturally occurring metabolite of 17beta-estradiol, was shown to enhance radiotherapeutic effect in certain tumors; however, whether 2-ME can also enhance the sensitivity of glioma cells to radiotherapy remains unknown. The present study, therefore, was to address this issue using two human glioma cell lines (T98G and U251MG). These cells were irradiated with and without 2-ME and then clonogenic assay, apoptosis assay, DNA damage, and cell cycle change were examined. Results showed that 2-ME significantly enhances radiation-induced cell death in both glioma cells, shown by decreasing cell viability and increasing apoptotic cell death. No such radiosensitizing effect was observed if cells pre-treated with Estrodiol, suggesting the specifically radiosensitizing effect of 2-ME rather than a general effect of estrodials. The enhanced radio-cytotoxic effect in glioma cells by 2-ME was found to be associated with its enhancement of G(2)/M arrest and DNA damage, and phosphorylated ATM protein kinases as well as cell cycle checkpoint protein Chk2. Furthermore, inhibition of ATM by ATM inhibitor abolished 2-ME-activated Chk2 and enhanced radio-cytotoxic effects. These results suggest that 2-ME enhancement of the sensitivity of glioma cell lines to radiotherapy is mediated by induction of G2/M cell cycle arrest and increased DNA damage via activation of ATM kinases.

  5. Nectin-like molecule 1 inhibits the migration and invasion of U251 glioma cells by regulating the expression of an extracellular matrix protein osteopontin.

    PubMed

    Yin, Bin; Li, Ke-han; An, Tai; Chen, Tao; Peng, Xiao-zhong

    2010-06-01

    To investigate the molecular mechanism of nectin-like molecule 1 (NECL1) inhibiting the migration and invasion of U251 glioma cells. We infected U251 glioma cells with adeno-nectin-like molecule 1 (Ad-NECL1) or empty adenovirus (Ad). Transwell and wound healing assays were performed to observe the migration of U251 cells incubated with the cell supernatant from Ad-NECL1 or Ad infected U251 cells. DNA microarray was applied to screen the gene expression profile after the restoration of NECL1 in U251 glioma cell lines. The differential expression of osteopontin (OPN), a gene related to migration and invasion, was further analyzed with semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. The restoration of NECL1 inhibited migration of U251 cells significantly (P<0.05). Altogether 195 genes were found differentially expressed by microarray, in which 175 were up-regulated and 20 down-regulated, including 9 extracellular matrix proteins involved in the migration of cells. Both mRNA and protein expressions of OPN, the most markedly reduced extracellular matrix protein, were found decreased in U251 cells after restoration of NECL1. Immunohistochemical assay also detected an increase of OPN in glioma tissues, related with the progressing of malignant grade. A link might exist between NECL1 and the extracellular matrix protein OPN in inhibiting the migration and invasion of U251 glioma cells.

  6. RNA interference targeting EphA2 inhibits proliferation, induces apoptosis, and cooperates with cytotoxic drugs in human glioma cells.

    PubMed

    Zhou, Zhangming; Yuan, Xianhou; Li, Zhiqiang; Tu, Hanjun; Li, Dongsheng; Qing, Jun; Wang, Hui; Zhang, Li

    2008-12-01

    Overexpression of EphA2 was detected in low- and high-grade glioma. To examine the role of EphA2 in human glioma cells, we studied its effects on proliferation and apoptosis using gene silencing through RNA interference. One siRNA targeting EphA2 gene was synthesized in vitro and was transfected into the glioma U251n cells. Expression of EphA2 proteins was detected by Western blots and immunofluorescence. Cell apoptosis and mitochondrial membrane potential were analyzed by flow cytometry and annexin-V/fluorescein isothiocyanate/propidium iodide, respectively. Caspase-3 activity was measured by a spectrofluorometer. MTT assay was used to examine changes in cell proliferation. After treatment with sequence-specific siRNA targeting EphA2, the protein level of the transfected group decreased significantly. As compared to non-siRNA transfected cells, the transfected group showed lower proliferation, higher apoptosis, and loss of mitochondrial membrane potential. Caspase-3 activity increased in cells treated with siRNA and downregulated when treated with caspase-3 inhibitor. And the effects were clearly additive when siRNA transfected cells treated with the anticancer agents. The results suggest that EphA2-siRNA inhibit U251n cell proliferation and induce their apoptosis. It is possible that EphA2 via mitochondrial and caspase-3 inhibits U251n cell apoptosis. And EphA2-siRNA transfection enhances U251n cells' sensitivity to chemotherapy. EphA2 may be an effective therapeutic target in patients with glioma. Silencing the receptor EphA2 gene is a novel approach for the containment of growth and migration of tumor in patients with malignant glioma.

  7. Genome-wide transcriptional analysis of BRD4-regulated genes and pathways in human glioma U251 cells.

    PubMed

    Du, Zhanhui; Song, Xiuxiang; Yan, Fangfang; Wang, Jingjing; Zhao, Yuxia; Liu, Shangming

    2018-03-16

    Bromodomain containing 4 (BRD4), a member of the bromodomain and extra-terminal family, has become a promising drug target for numerous types of cancer. BRD4 has been reported to be deregulated in gliomas; however, the precise molecular pathways regulated by BRD4 remained elusive. In the present study, BRD4 expression was silenced in the glioma cell line U251 and the results demonstrated that BRD4 knockdown attenuated cell proliferation and promoted cell apoptosis. A genome-wide analysis of BRD4-regulated transcripts in U251 cells was performed using microarray to reveal the possible molecular mechanism. A total of 3,529 differentially expressed genes were identified; 1,648 of these genes were upregulated and 1,881 were downregulated. The results of the gene ontology analysis revealed that these genes were mainly involved in membrane organization, mitotic cell cycle, cell division and DNA replication. Pathway analysis revealed that the pathways altered following BRD4 knockdown included multiple cellular processes, such as cell cycle and apoptosis. Candidate genes were identified through global signal transduction network analysis and were validated using reverse transcription-quantitative polymerase chain reaction and western blot analyses. The results demonstrated that BRD4 knockdown decreased the expression of KRAS proto-oncogene GTPase (KRAS). Downregulated KRAS expression in U251 cells restrained cell proliferation and promoted cell apoptosis, suggesting that the effect of BRD4 on glioma cells might occur through the Ras pathway. In conclusion, the present results confirmed the role of BRD4 in glioma and provided information for further exploration of the molecular mechanism of BRD4 in glioma development and progression.

  8. Cytochalasin B inhibits the proliferation of human glioma U251 cells through cell cycle arrest and apoptosis.

    PubMed

    Tong, Z G; Liu, N; Song, H S; Li, J Q; Jiang, J; Zhu, J Y; Qi, J P

    2014-12-19

    Cytochalasin B (CB) is known to inhibit a number of cancer types, but its effects on gliomas are unknown. We examined the in vitro effects of CB on the proliferation of human glioma U251 cells, as well as determined its mechanism of action. Cell proliferation was determined using CCK-8. The effect of CB on U251 cell morphology was observed under a transmission electron microscope. Cell cycle distribution was assessed using propidium iodine and Giemsa staining, and cell apoptosis was determined by annexin V-fluorescein isothiocyanate/propidium iodide. Cell cycle-related proteins were determined by Western blot. CB effectively inhibited U251 cell proliferation in a dose- and time-dependent manner. The 24, 48, 72, and 96 h IC50 values were 6.41 x 10(-2), 9.76 x 10(-4), 2.57 x 10(-5), and 2.08 x 10(-5) M, respectively. CB increased the proportion of cells in the G2/M phase in a dose-dependent manner, thus increasing the mitotic index and decreasing cdc2 and cyclin B1 protein levels. CB induced morphological changes in the cytoskeleton. Additionally, 10(-5) M CB induced apoptosis in 23.4 ± 0.5% of U251 cells (P < 0.05 vs control group). Caspase-3, -8, and -9 activities were increased after CB treatment. CB inhibited U251 glioma cell proliferation by damaging the microfilament structure. CB also induced glioma cell apoptosis, suggesting that it may be an effective therapeutic agent against gliomas.

  9. Upregulation of SATB1 is associated with the development and progression of glioma

    PubMed Central

    2012-01-01

    Background Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be expressed in several human cancers and may have malignant potential. This study was aimed at investigating the expression and potential role of SATB1 in human glioma. Method The relationship between SATB1 expression, clinicopathological parameters, Ki67 expression and MGMT promoter methylation status was evaluated, and the prognostic value of SATB1 expression in patients with gliomas was analyzed. SATB1-specific shRNA sequences were synthesized, and U251 cells were transfected with SATB1 RNAi plasmids. Expression of SATB1 mRNA and protein was investigated by RT-PCR and immunofluoresence staining and western blotting. The expression of c-Met, SLC22A18, caspase-3 and bcl-2 protein was determined by western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. The growth and angiogenesis of SATB1 low expressing U251 cells was measured in an in vivo xenograft model. Results Of 70 tumors, 44 (62.9%) were positive for SATB1 expression. SATB1 expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. SATB1 expression was also positively correlated with Ki67 expression but negatively with MGMT promoter methylation in glioma tissues. SATB1 shRNA expression vectors could efficiently induce the expression of SLC22A18 protein, increase the caspase-3 protein, inhibit the expression of SATB1, c-Met and bcl-2 protein, the growth, invasion, metastasis and angiogenesis of U251 cells, and induce apoptosis in vitro. Furthermore, the tumor growth of U251 cells expressing SATB1 shRNA were inhibited in vivo, and immunohistochemical analyses of tumor sections revealed a decreased vessel density in the animals where shRNA against SATB1 were

  10. Immunotherapy Approaches for Malignant Glioma From 2007 to 2009

    PubMed Central

    Sampson, John H.

    2012-01-01

    Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential. PMID:20424975

  11. Erlotinib and Temsirolimus in Treating Patients With Recurrent Malignant Glioma

    ClinicalTrials.gov

    2015-05-29

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  12. Tumefactive Multiple Sclerosis Masquerading as High Grade Glioma.

    PubMed

    Lin, Michelle; Reid, Patrick; Bakhsheshian, Joshua

    2018-04-01

    Tumefactive multiple sclerosis is a demyelinating lesion that can radiographically mimic high-grade gliomas during acute episodes, thus affecting clinical decision making. A delay in appropriate diagnoses can result in unnecessary invasive resections. The following case is a patient with unilateral weakness and radiologic findings that were concerning for a high-grade glioma. Peripheral studies were equivocal. The decision was made to proceed with a stereotactic biopsy, yielding a definitive diagnosis of tumefactive demyelinating lesion (TDL). The patient responded robustly to medical management and made a full clinical recovery. While TDLs and gliomas may look radiologically identical during acute demyelinating episodes, unlike gliomas, TDLs will demonstrate evolvement over serial imaging and robust clinical response to high dose steroids. Clinicians should proceed with caution when considering invasive procedures with such lesions. Conservative medical management is often sufficient as seen in this patient. This case highlights the importance of timely diagnosis and management of TDLs. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Ibuprofen and Diclofenac Restrict Migration and Proliferation of Human Glioma Cells by Distinct Molecular Mechanisms

    PubMed Central

    Leidgens, Verena; Seliger, Corinna; Jachnik, Birgit; Welz, Tobias; Leukel, Petra; Vollmann-Zwerenz, Arabel; Bogdahn, Ulrich; Kreutz, Marina; Grauer, Oliver M.; Hau, Peter

    2015-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with anti-tumorigenic effects in different tumor entities. For glioma, research has generally focused on diclofenac; however data on other NSAIDs, such as ibuprofen, is limited. Therefore, we performed a comprehensive investigation of the cellular, molecular, and metabolic effects of ibuprofen and diclofenac on human glioblastoma cells. Methods Glioma cell lines were treated with ibuprofen or diclofenac to investigate functional effects on proliferation and cell motility. Cell cycle, extracellular lactate levels, lactate dehydrogenase-A (LDH-A) expression and activity, as well as inhibition of the Signal Transducer and Activator of Transcription 3 (STAT-3) signaling pathway, were determined. Specific effects of diclofenac and ibuprofen on STAT-3 were investigated by comparing their effects with those of the specific STAT-3 inhibitor STATTIC. Results Ibuprofen treatment led to a stronger inhibition of cell growth and migration than treatment with diclofenac. Proliferation was affected by cell cycle arrest at different checkpoints by both agents. In addition, diclofenac, but not ibuprofen, decreased lactate levels in all concentrations used. Both decreased STAT-3 phosphorylation; however, diclofenac led to decreased c-myc expression and subsequent reduction in LDH-A activity, whereas treatment with ibuprofen in higher doses induced c-myc expression and less LDH-A alteration. Conclusions This study indicates that both ibuprofen and diclofenac strongly inhibit glioma cells, but the subsequent metabolic responses of both agents are distinct. We postulate that ibuprofen may inhibit tumor cells also by COX- and lactate-independent mechanisms after long-term treatment in physiological dosages, whereas diclofenac mainly acts by inhibition of STAT-3 signaling and downstream modulation of glycolysis. PMID:26485029

  14. Promoter Hypermethylation-mediated Inactivation of LRRC4 in Gliomas

    PubMed Central

    Zhang, Zuping; Li, Dan; Wu, Minghua; Xiang, Bo; Wang, Li; Zhou, Ming; Chen, Pan; Li, Xiaoling; Shen, Shourong; Li, Guiyuan

    2008-01-01

    Background Leucine-rich repeat C4 protein (LRRC4) is a new member of the leucine-rich repeat (LRR) superfamily. It is not only a brain-specific gene but also a novel candidate for tumor suppression. LRRC4 inactivation is commonly found in glioma cell lines and primary glioma biopsies. However, little is known about the mechanism controlling LRRC4 expression. In a previous study, we did not find any genetic alteration in LRRC4 in primary glioma, which led us to explore an alternative mechanism underlying this phenomenon. Methods In the present paper, we cloned the LRRC4 promoter with characteristics of a CpG island by luciferase reporter assay. Then, the CpG methylation status around the LRRC4 promoter region in glioma cell lines and primary gliomas was examined by methylation-specific PCR and bisulfite DNA sequencing. In order to demonstrate a functional association between LRRC4 promoter methylation and its gene inactivation, we performed DNA demethylation analysis with two human glioma cell lines using methylation-specific PCR and RT-PCR. Results The sequence spanning positions -835 to -293 relative to the translation start site was identified as the LRRC4 promoter; this sequence is a TATA- and CAAT- less, high GC content region. It was found that LRRC4 promoter activity is strongly suppressed after treatment with SssI methylase in vitro. Furthermore, LRRC4 promoter methylation was observed by methylation-specific PCR in two glioma cell lines and all 30 primary glioma specimens, but not in normal brain tissue. Bisulfite DNA sequencing showed that most of the CpG sites were located around the LRRC4 promoter methylated in glioma cells and tissues, but not in normal brain tissue. In addition, the methylase inhibitor 5-Aza-2'-deoxycytidine could induce LRRC4 mRNA expression and LRRC4 promoter partial demethylation in SF126 and SF767 glioma cells. Conclusion Methylation-mediated inactivation of LRRC4 is a frequent and glioma-specific event, and it may be a potential

  15. Molecular Subtyping of Tumors from Patients with Familial Glioma.

    PubMed

    Ruiz, Vanessa Y; Praska, Corinne E; Armstrong, Georgina; Kollmeyer, Thomas M; Yamada, Seiji; Decker, Paul A; Kosel, Matthew L; Eckel-Passow, Jeanette E; Consortium, The Gliogene; Lachance, Daniel H; Bainbridge, Matthew N; Melin, Beatrice S; Bondy, Melissa L; Jenkins, Robert B

    2017-10-10

    Single-gene mutation syndromes account for some familial glioma (FG); however, they make up only a small fraction of glioma families. Gliomas can be classified into 3 major molecular subtypes based on IDH mutation and 1p/19q co-deletion. We hypothesized that the prevalence of molecular subtypes might differ in familial versus sporadic gliomas, and that tumors in the same family should have the same molecular subtype. Participants in the FG study (Gliogene) provided samples for germline DNA analysis. Formalin-fixed, paraffin-embedded (FFPE) tumor was obtained for a subset of FG cases, and DNA was extracted. We analyzed tissue from 75 families, including 10 families containing a second affected family member. Copy number variation (CNV) data was obtained using a first-generation Affymetrix molecular inversion probe (MIP) array. Samples from 62 of 75 (83%) FG cases could be classified into the 3 subtypes. The prevalence of the molecular subtypes was: 30 (48%) IDH-wild type, 21 (34%) IDH-mutant non-codeleted, and 11 (19%) IDH-mutant and 1p/19q-codeleted. This distribution of molecular subtypes was not statistically different from that of sporadic gliomas (p=0.54). Of 10 paired FG samples, molecular subtypes were concordant for 7 (κ=0.59): 3 IDH-mutant non-codeleted, 2 IDH-wild type, and 2 IDH-mutant and 1p/19q-codeleted gliomas. Our data suggest that within individual families, patients develop gliomas of the same molecular subtype. However, we did not observe differences in the prevalence of the molecular subtypes in FG compared with sporadic gliomas. These observations provide further insight about the distribution of molecular subtypes in FG. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Oxidative stress inhibits growth and induces apoptotic cell death in human U251 glioma cells via the caspase-3-dependent pathway.

    PubMed

    Liu, X-R; Li, Y-Q; Hua, C; Li, S-J; Zhao, G; Song, H-M; Yu, M-X; Huang, Q

    2015-11-01

    To investigate the possible pathway involved in hydrogen peroxide (H2O2) induced apoptosis in U251 glioma cells. The cultured U251 glioma cells were used in this study. The cells were divided into three groups: control group (untreated glioma cells), H2O2 group (treated with 100, 300 and 500 µM H2O2) and CI group (treated with 300 µM H2O2 and 15 µM caspase inhibitor, CI). The cellular viability was determined by MTT [3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide] assay. A flow cytometer was used for measuring the cell cycles. The mode of cell death was assessed by Annexin-V/PI-flow cytometry analysis. Fluorescence dihydroethidium (DHE) method was conducted to detect the oxygen species (O2-). Western blot analysis was performed to confirm the pro-caspase-3, caspase-3 and PARP (poly-ADP-ribose polymerase) protein expression. The oxidative stress to U251 glioma cells exhibited in a dose-dependent manner with H2O2 concentrations increasing. The cell viability was considerably decreased and apoptosis occurred in H2O2 treated cells. A G1 cell cycle arrest and O2- level increase were found in H2O2 group. Western blot analysis showed a decrease of pro-caspase-3 protein level and an increase of caspase-3 and PARP level in 300 µM H2O2 treated cells. The H2O2 induced apoptosis depicted above was significantly restrained by CI. Oxidative stress inhibits growth and induces apoptotic cell death in human U251 glioma cells via the caspase-3-dependent pathway. Mitochondrial pathway might involve in this signaling conduction. These findings are favorable for understanding the mechanisms of oxidative stress-induced apoptosis in U251 glioma cells.

  17. Megavoltage irradiation in the treatment of gliomas of the brain and spinal cord.

    PubMed

    Marsa, G W; Goffinet, D R; Rubinstein, L J; Bagshaw, M A

    1975-11-01

    Curative radiotherapy was attempted in treating 256 patients with unresected or partially excised gliomas of the brain and spinal cord. Survival decreased with increasing age, reflecting the different incidences of tumor types in various age groups. Actuarial 5-year survival ranged from 85% for cerebellar astrocytomas, to 47% for medulloblastomas, to 41% for cerebral hemispheric astrocytomas, and 0% for glioblastoma multiforme. Further improvements in survival utilizing radiotherapy are unlikely until new adjuncts are developed, for higher radiation doses may lead to a disproportionate increase in radiation complications.

  18. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase. [Glioma cells, neuroblastoma cells, adenylate cyclase

    SciTech Connect

    Ciment, G.; de Vellis, J.

    1977-01-01

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate cyclic AMP upon stimulation with beta-agonists. Since both beta-receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6 cells of ''C6/B104'' cocultures, we conclude that the beta-receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  19. C-MET overexpression and amplification in gliomas.

    PubMed

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  20. P41IDENTIFICATION OF GLIOMA SPECIFIC APTAMER TARGETS

    PubMed Central

    Arora, Mohit; Alder, Jane; Lawrence, Clare; Davis, Charles; Dawson, Tim; Hall, Greg; Shaw, Lisa

    2014-01-01

    INTRODUCTION: Aptamers are in vitro generated DNA and RNA sequences which are randomly created as a library, with multiple permutations and combinations. These are then exposed to the target structure against which we want an aptamer ‘selected’ using Sequential Enumeration of Ligands by Exponential enrichment (SELEX). METHOD: Commercially available glioma and glial cell lines and in-house generated primary glioma cultures were used. Modified aptamers based on published sequences against glioma cell lines and newly generated sequences were used in the project to identify their binding targets. Cy3 or biotin- conjugated aptamers were incubated with live glioma cell cultures and imaged using confocal or light microscopy.To determine the target ligand, aptamers were then reacted with glial cell lysate and subjected to precipitation using streptavidin agarose beads and SDS polyacrylamide electrophoresis. Proteins were analysed by mass spectroscopy. RESULTS: Known and unknown aptamer protein ligands were co-precipitated. Ku70, Ku80 were precipitated along with nucleolin and related proteins. CONCLUSION: The aptamer has shown preferential binding to glioma cells and could act as a delivery system for therapeutic payloads. The aptamer targets Ku70 and Ku80, which are known to be over expressed in other forms of cancer but their role in gliomagenesis has not been fully elucidated. Other novel proteins have also been identified. Thus the aptamer co-precipitation technique has identified potential glioma biomarkers that may be of clinical significance.

  1. Extra-neural metastases of malignant gliomas: myth or reality?

    PubMed

    Beauchesne, Patrick

    2011-01-27

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. Prognosis for these patients has not significantly changed in recent years-despite debulking surgery, radiotherapy and cytotoxic chemotherapy-with a median survival of 9-12 months. Virtually no patients are cured of their illness. Malignant gliomas are usually locally invasive tumors, though extra-neural metastases can sometimes occur late in the course of the disease (median of two years). They generally appear after craniotomy although spontaneous metastases have also been reported. The incidence of these metastases from primary intra-cranial malignant gliomas is low; it is estimated at less than 2% of all cases. Extra-neural metastases from gliomas frequently occur late in the course of the disease (median of two years), and generally appear after craniotomy, but spontaneous metastases have also been reported. Malignant glioma metastases usually involve the regional lymph nodes, lungs and pleural cavity, and occasionally the bone and liver. In this review, we present three cases of extra-neural metastasis of malignant gliomas from our department, summarize the main reported cases in literature, and try to understand the mechanisms underlying these systemic metastases.

  2. Mitochondrial Dysfunction in Gliomas: Pharmacotherapeutic Potential of Natural Compounds

    PubMed Central

    Guntuku, Lalita; Naidu, G.M.; Yerra, Veera Ganesh

    2016-01-01

    Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it's high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market. PMID:26791479

  3. Ion channel gene expression predicts survival in glioma patients

    PubMed Central

    Wang, Rong; Gurguis, Christopher I.; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-01-01

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients. PMID:26235283

  4. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    SciTech Connect

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression ofmore » Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.« less

  5. Radiosensitization effect of zidovudine on human malignant glioma cells

    SciTech Connect

    Zhou Fuxiang; Liao Zhengkai; Dai Jing

    2007-03-09

    Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of {gamma}-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting inmore » a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.« less

  6. Three-dimensional cultured glioma cell lines

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)

    1991-01-01

    Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.

  7. Survival after stereotactic biopsy of malignant gliomas

    SciTech Connect

    Coffey, R.J.; Lunsford, L.D.; Taylor, F.H.

    1988-03-01

    For many patients with malignant gliomas in inaccessible or functionally important locations, stereotactic biopsy followed by radiation therapy (RT) may be a more appropriate initial treatment than craniotomy and tumor resection. We studied the long term survival in 91 consecutive patients with malignant gliomas diagnosed by stereotactic biopsy: 64 had glioblastoma multiforme (GBM) and 27 had anaplastic astrocytoma (AA). Sixty-four per cent of the GBMs and 33% of the AAs involved deep or midline cerebral structures. The treatment prescribed after biopsy, the tumor location, the histological findings, and the patient's age at presentation (for AAs) were statistically important factors determiningmore » patient survival. If adequate RT (tumor dose of 5000 to 6000 cGy) was not prescribed, the median survival was less than or equal to 11 weeks regardless of tumor histology or location. The median survival for patients with deep or midline tumors who completed RT was similar in AA (19.4 weeks) and GBM (27 weeks) cases. Histology was an important predictor of survival only for patients with adequately treated lobar tumors. The median survival in lobar GBM patients who completed RT was 46.9 weeks, and that in lobar AA patients who completed RT was 129 weeks. Cytoreductive surgery had no statistically significant effect on survival. Among the clinical factors examined, age of less than 40 years at presentation was associated with prolonged survival only in AA patients. Constellations of clinical features, tumor location, histological diagnosis, and treatment prescribed were related to survival time.« less

  8. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development-Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus.

    PubMed

    Truvé, Katarina; Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Swartling, Fredrik J; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin; Bannasch, Danika; Lindblad-Toh, Kerstin

    2016-05-01

    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10-8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility.

  9. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development—Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus

    PubMed Central

    Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin

    2016-01-01

    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10−8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility. PMID:27171399

  10. History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC).

    PubMed

    Amirian, E Susan; Scheurer, Michael E; Zhou, Renke; Wrensch, Margaret R; Armstrong, Georgina N; Lachance, Daniel; Olson, Sara H; Lau, Ching C; Claus, Elizabeth B; Barnholtz-Sloan, Jill S; Il'yasova, Dora; Schildkraut, Joellen; Ali-Osman, Francis; Sadetzki, Siegal; Jenkins, Robert B; Bernstein, Jonine L; Merrell, Ryan T; Davis, Faith G; Lai, Rose; Shete, Sanjay; Amos, Christopher I; Melin, Beatrice S; Bondy, Melissa L

    2016-06-01

    Varicella zoster virus (VZV) is a neurotropic α-herpesvirus that causes chickenpox and establishes life-long latency in the cranial nerve and dorsal root ganglia of the host. To date, VZV is the only virus consistently reported to have an inverse association with glioma. The Glioma International Case-Control Study (GICC) is a large, multisite consortium with data on 4533 cases and 4171 controls collected across five countries. Here, we utilized the GICC data to confirm the previously reported associations between history of chickenpox and glioma risk in one of the largest studies to date on this topic. Using two-stage random-effects restricted maximum likelihood modeling, we found that a positive history of chickenpox was associated with a 21% lower glioma risk, adjusting for age and sex (95% confidence intervals (CI): 0.65-0.96). Furthermore, the protective effect of chickenpox was stronger for high-grade gliomas. Our study provides additional evidence that the observed protective effect of chickenpox against glioma is unlikely to be coincidental. Future studies, including meta-analyses of the literature and investigations of the potential biological mechanism, are warranted. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas

    ClinicalTrials.gov

    2015-12-14

    Adult Brain Tumor; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Melanocytic Lesion; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma; Adult Pineocytoma; Recurrent Adult Brain Tumor

  12. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  13. Coffee, tea, soda, and caffeine intake in relation to risk of adult glioma in the NIH-AARP Diet and Health Study

    PubMed Central

    Dubrow, Robert; Darefsky, Amy S.; Freedman, Neal D.; Hollenbeck, Albert R.; Sinha, Rashmi

    2012-01-01

    Purpose We utilized the large, prospective NIH-AARP Diet and Health Study to further explore the hypothesis, suggested by two recent prospective cohort studies, that increased intake of coffee, tea, soda, and/or caffeine is associated with reduced adult glioma risk. Methods At baseline in 1995–1996, dietary intake, including coffee, tea, and soda, was assessed with a food frequency questionnaire. We used Cox proportional hazards models to calculate adjusted hazard ratios (HR) and 95 percent confidence intervals (CI) for glioma risk in relation to beverage intake. Results During follow-up of 545,771 participants through 2006, 904 participants were diagnosed with glioma. We found no trends of decreasing glioma risk with increasing intake of specific beverages or total caffeine. HR patterns for consumption of the caffeinated versus decaffeinated form of each beverage were inconsistent with a specific caffeine effect. HR patterns of reduced glioma risk for most categories of beverage intake greater than “none” prompted a post hoc analysis that revealed borderline-significant inverse associations for any versus no intake of tea (HR = 0.84; 95% CI, 0.69–1.03), total coffee plus tea (HR = 0.70; 95% CI, 0.48–1.03), and soda (HR = 0.82; 95% CI, 0.67–1.01). Conclusions The borderline-significant inverse associations could be explained by a threshold effect in which any beverage intake above a low level confers a beneficial effect, most likely due to beverage constituents other than caffeine. They also could be explained by non-drinkers of these beverages sharing unknown extraneous characteristics associated with increased glioma risk, or by chance. PMID:22457000

  14. Coffee, tea, soda, and caffeine intake in relation to risk of adult glioma in the NIH-AARP Diet and Health Study.

    PubMed

    Dubrow, Robert; Darefsky, Amy S; Freedman, Neal D; Hollenbeck, Albert R; Sinha, Rashmi

    2012-05-01

    We utilized the large, prospective NIH-AARP Diet and Health Study to further explore the hypothesis, suggested by two recent prospective cohort studies, that increased intake of coffee, tea, soda, and/or caffeine is associated with reduced adult glioma risk. At baseline in 1995-1996, dietary intake, including coffee, tea, and soda, was assessed with a food frequency questionnaire. We used Cox proportional hazards models to calculate adjusted hazard ratios (HR) and 95 % confidence intervals (CI) for glioma risk in relation to beverage intake. During follow-up of 545,771 participants through 2006, 904 participants were diagnosed with glioma. We found no trends of decreasing glioma risk with increasing intake of specific beverages or total caffeine. HR patterns for consumption of the caffeinated versus decaffeinated form of each beverage were inconsistent with a specific caffeine effect. HR patterns of reduced glioma risk for most categories of beverage intake greater than "none" prompted a post hoc analysis that revealed borderline-significant inverse associations for any versus no intake of tea (HR = 0.84; 95 % CI, 0.69-1.03), total coffee plus tea (HR = 0.70; 95 % CI, 0.48-1.03), and soda (HR = 0.82; 95 % CI, 0.67-1.01). The borderline-significant inverse associations could be explained by a threshold effect in which any beverage intake above a low level confers a beneficial effect, most likely due to beverage constituents other than caffeine. They could also be explained by non-drinkers of these beverages sharing unknown extraneous characteristics associated with increased glioma risk, or by chance.

  15. Corpus callosum involvement and postoperative outcomes of patients with gliomas.

    PubMed

    Chen, Ko-Ting; Wu, Tai-Wei Erich; Chuang, Chi-Cheng; Hsu, Yung-Hsin; Hsu, Peng-Wei; Huang, Yin-Cheng; Lin, Tzu-Kang; Chang, Chen-Nen; Lee, Shih-Tseng; Wu, Chieh-Tsai; Tseng, Chen-Kan; Wang, Chun-Chieh; Pai, Ping-Ching; Wei, Kuo-Chen; Chen, Pin-Yuan

    2015-09-01

    Corpus callosum involvement is associated with poorer survival in high grade glioma (HGG), but the prognostic value in low grade glioma (LGG) is unclear. To determine the prognostic impact of corpus callosum involvement on progression free survival (PFS) and overall survival (OS) in HGG and LGG, the records of 233 glioma patients treated from 2008 to 2011 were retrospectively reviewed. Preoperative magnetic resonance (MR) images were used to identify corpus callosum involvement. Age, sex, preoperative Karnofsky performance scale, postoperative Eastern Cooperative Oncology Group (ECOG) score and extent of resection (EOR) were evaluated with respect to PFS and OS. The incidence of corpus callosum involvement was similar among HGG (14 %) and LGG (14.5 %). Univariate analysis revealed that PFS and OS were significantly shorter in both WHO grade II and grade IV glioma with corpus callosum involvement (both, p < 0.05). Multivariate analysis showed that grade II glioma with corpus callosum involvement have shorter PFS (p = 0.03), while EOR, instead of corpus callosum involvement (p = 0.16), was an independent factor associated with PFS in grade IV glioma (p < 0.05). Corpus callosum involvement was no longer significantly associated with OS after adjusting age, gender, EOR, preoperative and postoperative performance status (p = 0.16, 0.17 and 0.56 in grade II, III and IV gliomas, respectively). Corpus callosum involvement happened in both LGG and HGG, and is associated with lower EOR and higher postoperative ECOG score both in LGG and HGG. Corpus callosum involvement tends to be an independent prognostic factor for PFS in LGG, but not for OS in LGG or in HGG.

  16. Early life exposures and the risk of adult glioma.

    PubMed

    Anic, Gabriella M; Madden, Melissa H; Sincich, Kelly; Thompson, Reid C; Nabors, L Burton; Olson, Jeffrey J; LaRocca, Renato V; Browning, James E; Pan, Edward; Egan, Kathleen M

    2013-09-01

    Exposure to common infections in early life may stimulate immune development and reduce the risk for developing cancer. Birth order and family size are proxies for the timing of exposure to childhood infections with several studies showing a reduced risk of glioma associated with a higher order of birth (and presumed younger age at infection). The aim of this study was to examine whether birth order, family size, and other early life exposures are associated with the risk of glioma in adults using data collected in a large clinic-based US case-control study including 889 glioma cases and 903 community controls. A structured interviewer-administered questionnaire was used to collect information on family structure, childhood exposures and other potential risk factors. Logistic regression was used to calculate odds ratios (OR) and corresponding 95% confidence intervals (CI) for the association between early life factors and glioma risk. Persons having any siblings were at significantly lower risk for glioma when compared to those reporting no siblings (OR=0.64; 95% CI 0.44-0.93; p=0.020). Compared to first-borns, individuals with older siblings had a significantly lower risk (OR=0.75; 95% CI 0.61-0.91; p=0.004). Birth weight, having been breast fed in infancy, and season of birth were not associated with glioma risk. The current findings lend further support to a growing body of evidence that early exposure to childhood infections reduces the risk of glioma onset in children and adults.

  17. Galanin suppresses proliferation of human U251 and T98G glioma cells via its subtype 1 receptor.

    PubMed

    Mei, Zhu; Yang, Yutao; Li, Yun; Yang, Feiya; Li, Junfa; Xing, Nianzeng; Xu, Zhi-Qing David

    2017-09-26

    Galanin is a neuropeptide with a widespread distribution throughout the nervous and endocrine systems, and recent studies have shown an anti-proliferative effect of galanin on several types of tumors. However, whether and how galanin and its receptors are involved in the regulation of cell proliferation in glioma cells remains unclear. In this study, the roles of galanin and its subtype 1 receptor (GAL1) in the proliferation of human U251 and T98G glioma cells were investigated. We found that galanin significantly suppressed the proliferation of U251 and T98G cells as well as tumor growth in nude mice. However, galanin did not exert apoptotic or cytotoxic effects on these two cell lines. In addition, we showed that galanin decreased the proliferation of U251 and T98G cells via its GAL1 receptor. Finally, we found that the GAL1 receptor was involved in the suppressive effects of galanin by activating ERK1/2.

  18. A20 Restrains Thymic Regulatory T Cell Development.

    PubMed

    Fischer, Julius Clemens; Otten, Vera; Kober, Maike; Drees, Christoph; Rosenbaum, Marc; Schmickl, Martina; Heidegger, Simon; Beyaert, Rudi; van Loo, Geert; Li, Xian Chang; Peschel, Christian; Schmidt-Supprian, Marc; Haas, Tobias; Spoerl, Silvia; Poeck, Hendrik

    2017-10-01

    Maintaining immune tolerance requires the production of Foxp3-expressing regulatory T (T reg ) cells in the thymus. Activation of NF-κB transcription factors is critically required for T reg cell development, partly via initiating Foxp3 expression. NF-κB activation is controlled by a negative feedback regulation through the ubiquitin editing enzyme A20, which reduces proinflammatory signaling in myeloid cells and B cells. In naive CD4 + T cells, A20 prevents kinase RIPK3-dependent necroptosis. Using mice deficient for A20 in T lineage cells, we show that thymic and peripheral T reg cell compartments are quantitatively enlarged because of a cell-intrinsic developmental advantage of A20-deficient thymic T reg differentiation. A20-deficient thymic T reg cells exhibit reduced dependence on IL-2 but unchanged rates of proliferation and apoptosis. Activation of the NF-κB transcription factor RelA was enhanced, whereas nuclear translocation of c-Rel was decreased in A20-deficient thymic T reg cells. Furthermore, we found that the increase in T reg cells in T cell-specific A20-deficient mice was already observed in CD4 + single-positive CD25 + GITR + Foxp3 - thymic T reg cell progenitors. T reg cell precursors expressed high levels of the tumor necrosis factor receptor superfamily molecule GITR, whose stimulation is closely linked to thymic T reg cell development. A20-deficient T reg cells efficiently suppressed effector T cell-mediated graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, suggesting normal suppressive function. Holding thymic production of natural T reg cells in check, A20 thus integrates T reg cell activity and increased effector T cell survival into an efficient CD4 + T cell response. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    SciTech Connect

    Qin, Tian; Wang, Chenlong; Chen, Xuewei

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing themore » coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in

  20. The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells.

    PubMed

    Coelho, Paulo L C; Oliveira, Mona N; da Silva, Alessandra B; Pitanga, Bruno P S; Silva, Victor D A; Faria, Giselle P; Sampaio, Geraldo P; Costa, Maria de Fatima D; Braga-de-Souza, Suzana; Costa, Silvia L

    2016-11-01

    This study aimed to investigate the antitumor and immunomodulatory properties of the flavonoid apigenin (5,7,4'-trihydroxyflavone), which was extracted from Croton betulaster Mull, in glioma cell culture using the high-proliferative rat C6 glioma cell line as a model. Apigenin was found to have the ability to reduce the viability and proliferation of C6 cells in a time-dependent and dose-dependent manner, with an IC50 of 22.8 µmol/l, 40 times lower than that of temozolomide (1000 µmol/l), after 72 h of apigenin treatment. Even after C6 cells were treated with apigenin for 48 h, high proportions of C6 cells entered apoptosis (39.56%) and autophagy (22%) as shown by flow cytometry using annexin V/propidium iodide and acridine orange staining, respectively. In addition, the flavonoid apigenin induced cell accumulation in the G0/G1 phase of the cell cycle and inhibited glioma cell migration efficiently. Moreover, apigenin induced astroglial differentiation and morphological changes in C6 cells, characterized by increased expression of glial fibrillary acidic protein and decreased expression of nestin protein, a typical marker of neuronal precursors. The immunomodulating effects of apigenin were also characterized by a change in the inflammatory profile as evidenced by a significant decrease in interleukin-10 and tumor necrosis factor production and increased nitric oxide levels. Because apigenin can induce differentiation, apoptosis, and autophagy, can alter the profile of cytokines involved in regulating the immune response, and can reduce the survival, growth, proliferation, and migration of C6 cells, this flavonoid may be considered a potential antitumor drug for the adjuvant treatment of malignant gliomas.

  1. Glycogen Synthase Kinase 3 inhibition Induces Glioma Cell Death through c-MYC, NF-κB and Glucose Regulation

    PubMed Central

    Kotliarova, Svetlana; Pastorino, Sandra; Kovell, Lara C.; Kotliarov, Yuri; Song, Hua; Zhang, Wei; Bailey, Rolanda; Maric, Dragan; Zenklusen, Jean Claude; Lee, Jeongwu; Fine, Howard A.

    2008-01-01

    Glycogen synthase kinase-3 (GSK3), a serine/threonine kinase, is involved in diverse cellular processes ranging from nutrient and energy homeostasis to proliferation and apoptosis. Its role in glioblastoma multiforme (GBM) has yet to be elucidated. We identified GSK3 as a regulator of GBM cell survival using microarray analysis, small molecule and genetic inhibitors of GSK3 activity. Various molecular and genetic approaches were then employed to dissect out the molecular mechanisms responsible for GSK3 inhibition-induced cytotoxicity. We demonstrate that multiple small molecular inhibitors of GSK3 activity and genetic down-regulation of GSK3α/β significantly inhibit glioma cell survival and clonogenicity. The potency of the cytotoxic effects is directly correlated with decreased enzyme activity-activating phosphorylation of GSK3α/β Y276/Y216 and with increased enzyme activity-inhibitory phosphorylation of GSK3α S21. Inhibition of GSK3 activity results in c-MYC activation leading to the induction of Bax, Bim, DR4/DR5 and TRAIL expression and subsequent cytotoxicity. Additionally, down-regulation of GSK3 activity results in alteration of intracellular glucose metabolism resulting in dissociation of hexokinase-II (HKII) from the outer mitochondrial membrane with subsequent mitochondrial destabilization. Finally, inhibition of GSK3 activity causes a dramatic decrease in intracellular nuclear factor-kappa B (NF-κB) activity. Inhibition of GSK3 activity results in c-MYC dependent glioma cell death through multiple mechanisms, all of which converge on the apoptotic pathways. GSK3 may therefore be an important therapeutic target for gliomas. Future studies will further define the optimal combinations of GSK3 inhibitors and cytotoxic agents for use in gliomas and other cancers. PMID:18701488

  2. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model.

    PubMed

    Woolf, Eric C; Curley, Kara L; Liu, Qingwei; Turner, Gregory H; Charlton, Julie A; Preul, Mark C; Scheck, Adrienne C

    2015-01-01

    The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood. To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma. Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4. The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas.

  3. The Effects and Molecular Mechanisms of MiR-106a in Multidrug Resistance Reversal in Human Glioma U87/DDP and U251/G Cell Lines

    PubMed Central

    Li, Xu; Kan, Pengcheng; Xin, Xin; Zhu, Yu; Yang, Ping

    2015-01-01

    Chemotherapy resistance is one of the major obstacles to effective glioma therapy. Currently, the mechanism underlying chemotherapy resistance is unclear. A recent study showed that miR-106a is an important molecule involved in chemotherapy resistance. To explore the effects and mechanisms of miR-106a on multidrug resistance reversal in human glioma cells, we silenced miR-106a expression in the cisplatin-resistant U87 (U87/DDP) and the gefitinib-resistant U251 (U251/G) glioma cell lines and measured the resulting drug sensitivity, cell apoptosis rate and rhodamine 123 content. In addition, we detected decreased expression of P-glycoprotein, MDR1, MRP1, GST-π, CDX2, ERCC1, RhoE, Bcl-2, Survivin and Topo-II, as well as reduced production of IL-6, IL-8 and TGF-β in these cell lines. Furthermore, we found decreased expression of p-AKT and transcriptional activation of NF-κB, Twist, AP-1 and Snail in these cell lines. These results suggest that miR-106a is a promising therapeutic target for the treatment of human multidrug resistant glioma. PMID:25950430

  4. Topoisomerase I Inhibitors, Shikonin and Topotecan, Inhibit Growth and Induce Apoptosis of Glioma Cells and Glioma Stem Cells

    PubMed Central

    Liu, Yun-Hui; Liu, Li-bo; Liu, Xiao-Bai; Li, Zhen; Xue, Yi-Xue

    2013-01-01

    Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs) that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy. PMID:24303074

  5. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    NASA Astrophysics Data System (ADS)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  6. Effect of CCL2 siRNA on proliferation and apoptosis in the U251 human glioma cell line.

    PubMed

    Lu, Bin; Zhou, Yue; Su, Zhongzhou; Yan, Ai; Ding, Peng

    2017-09-01

    Glioma is one of the most common types of tumor of the central nervous system. Increased expression of C‑C motif chemokine 2 (CCL2) has previously been observed in various types of cancer. The effect of CCL2 small interfering (si)RNA on the proliferation, angiogenesis and apoptosis of the glioma cell line U251 was investigated in the present study. Data on CCL2 expression in glioma and normal tissues were obtained from The Cancer Genome Atlas. A total of 30 patients with glioma were enrolled in the present study. Cell proliferation was measured using a Cell Counting kit‑8 assay, while cellular apoptosis and cell cycle distribution were examined using flow cytometric analysis. The reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to measure the expression levels of biological pathway‑associated proteins caspase‑3, caspase‑7, tumor necrosis factor receptor superfamily member 10C (TNFRSF10C), growth regulated α protein (CXCL1), C‑X‑C motif chemokine 2 (CXCL2), C‑X‑C chemokine receptor type 2 (CXCR2), vascular endothelial growth factor (VEGF)A, VEGFB and VEGF. In addition, the mechanism of cellular apoptosis was analyzed by examining the phosphorylation of extracellular signal‑related kinase (ERK)1/2 and p38 mitogen‑activated protein kinase (p38) in cells treated with the C‑C chemokine receptor type 2 inhibitor RS‑102895. CCL2 was observed to be expressed in the glioma cell line U251 and was inhibited by CCL2 siRNA. Cells transfected with CCL2 siRNA exhibited inhibited cell proliferation, cell cycle arrest and increased cellular apoptosis. The expression levels of the apoptosis‑associated proteins caspase‑3, caspase‑7 and TNFRSF10C were observed to be downregulated, in addition to those of the angiogenesis‑associated proteins CXCL1, CXCL2, CXCR2, VEGFA, VEGFB and VEGF. The decrease in the rate of phosphorylation of ERK1/2 and p38 demonstrated the involvement of the mitogen

  7. Stem cell-based therapy for malignant glioma.

    PubMed

    Bexell, Daniel; Svensson, Andreas; Bengzon, Johan

    2013-06-01

    Stem cells have been extensively investigated as tumour-tropic vectors for gene delivery to solid tumours. In this review, we discuss the potential for using stem cells as cellular vector systems in gene therapy for malignant gliomas, with a focus on neural stem cells, and multipotent mesenchymal stromal cells. Tumour cell-derived substances and factors associated with tumour-induced inflammation and tumour neovascularisation can specifically attract stem cells to invasive gliomas. Injected stem cells engineered to produce anti-tumour substances have shown strong therapeutic effects in experimental glioma models. However, the potential caveats include the immunosuppressive functions of multipotent mesenchymal stromal cells, the contribution of stem cells to the pro-tumourigenic stroma, and the malignant transformation of implanted stem cells. In addition, it is not yet known which stem cell types and therapeutic genes will be most effective for the treatment of glioma patients. Here, we highlight the possibilities and problems for translating promising experimental findings in glioma models into the clinic. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    SciTech Connect

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cellsmore » leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.« less

  9. Concurrent thermochemoradiotherapy for brain high-grade glioma

    SciTech Connect

    Ryabova, A. I., E-mail: ranigor@mail.ru; Novikov, V. A.; Startseva, Zh. A.

    2016-08-02

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: completemore » regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.« less

  10. Multidimensional assessment of empathic abilities in patients with insular glioma.

    PubMed

    Chen, Peng; Wang, Guangming; Ma, Ru; Jing, Fang; Zhang, Yongjun; Wang, Ying; Zhang, Peng; Niu, Chaoshi; Zhang, Xiaochu

    2016-10-01

    Recent studies have provided evidence that there are two possible systems for empathy: affective empathy (AE) and cognitive empathy (CE). Neuroimaging paradigms have proven that the insular cortex is involved in empathy processing, particularly in AE. However, these observations do not provide causal evidence for the role of the insula in empathy. Although impairments in empathy have been described following insular damage in a few case studies, it is not clear whether insular cortex is involved in CE and whether these two systems are impaired independently or laterally in patients with insular gliomas. In this study, we assessed 17 patients with an insular glioma, 17 patients with a noninsular glioma, and 30 healthy controls using a method that combined a self-report empathy questionnaire with the emotion recognition task, assessment of empathy for others' pain, and the emotional perspective-taking paradigm. We found that patients with an insular glioma had lower scores for empathic concern and perspective taking than did either healthy controls or lesion controls. The patients' abilities to recognize facial emotions, perceive others' pain, and understand the emotional perspectives of others were also significantly impaired. Furthermore, we did not observe a laterality effect on either AE or CE among those with insular lesions. These findings revealed that both AE and CE are impaired in patients with an insular glioma and that the insular cortex may be a central neuroanatomical structure in both the AE and CE systems.

  11. A Graphic Method for Identification of Novel Glioma Related Genes

    PubMed Central

    Gao, Yu-Fei; Yang, Lei; He, Yi-Chun; Li, Li-Peng; Huang, GuaHua; Li, Hai-Peng

    2014-01-01

    Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the knowledge of this disease is still limited. It is an important step to understand the mechanism underlying this disease by uncovering its related genes. In this study, a graphic method was proposed to identify novel glioma related genes based on known glioma related genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are related to the biological process of glioma, proving that our method was effective in identifying novel glioma related genes. We hope that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby designing effective treatments of different diseases. PMID:25050377

  12. A graphic method for identification of novel glioma related genes.

    PubMed

    Gao, Yu-Fei; Shu, Yang; Yang, Lei; He, Yi-Chun; Li, Li-Peng; Huang, GuaHua; Li, Hai-Peng; Jiang, Yang

    2014-01-01

    Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the knowledge of this disease is still limited. It is an important step to understand the mechanism underlying this disease by uncovering its related genes. In this study, a graphic method was proposed to identify novel glioma related genes based on known glioma related genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are related to the biological process of glioma, proving that our method was effective in identifying novel glioma related genes. We hope that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby designing effective treatments of different diseases.

  13. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    PubMed

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  14. Cinnamon polyphenols regulate S100β, sirtuins, and neuroactive proteins in rat C6 glioma cells.

    PubMed

    Qin, Bolin; Panickar, Kiran S; Anderson, Richard A

    2014-02-01

    Increasing evidence suggests that cinnamon has many health benefits when used in herbal medicine and as a dietary ingredient. The aim of this study was to investigate the effects of an aqueous extract of cinnamon, high in type A polyphenols, on molecular targets in rat C6 glioma cells that underlie their protective effects. C6 rat glioma cells were seeded in 35-mm culture dishes or six-well plates, then were incubated with cinnamon polyphenols at doses of 10 and 20 μg/mL for 24 h. The targeting protein expression, secretion, and phosphorylation were evaluated by immunoprecitation/immunoblotting and immunofluorescence imaging. Cinnamon polyphenols significantly enhanced secretion of S100β, a Ca(2+)-binding protein, and increased intracellular S100β expression after 24 h of incubation, in rat C6 glioma cells. Cinnamon polyphenols also enhanced protein levels of sirtuin 1, 2, and 3, deacetylases important in cell survival, and the tumor suppressor protein, p53, and inhibited the inflammatory factors, tumor necrosis factor alpha, and phospho-p65, a subunit of nuclear factor-κβ. Cinnamon polyphenols also up-regulated levels of phospho-p38, extracellular signal-regulated protein and mitogen-activated protein and kinase-activated protein kinases that may be important for prosurvival functions. Our results indicate that the effects of cinnamon polyphenols on upregulating prosurvival proteins, activating mitogen-activated protein kinase pathways, and decreasing proinflammatory cytokines may contribute to their neuroprotective effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    PubMed Central

    2009-01-01

    Background Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. Methods The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Results Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Conclusion Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to

  16. Primary Role for Kinin B1and B2Receptors in Glioma Proliferation.

    PubMed

    Nicoletti, Natália Fontana; Sénécal, Jacques; da Silva, Vinicius Duval; Roxo, Marcelo R; Ferreira, Nelson Pires; de Morais, Rafael Leite T; Pesquero, João Bosco; Campos, Maria Martha; Couture, Réjean; Morrone, Fernanda Bueno

    2017-12-01

    This study investigated the role of kinins and their receptors in malignant brain tumors. As a first approach, GL-261 glioma cells were injected (2 × 10 5 cells in 2 μl/2 min) into the right striatum of adult C57/BL6 wild-type, kinin B 1 and B 2 receptor knockout (KOB 1 R and KOB 2 R) and B 1 and B 2 receptor double knockout mice (KOB 1 B 2 R). The animals received the selective B 1 R (SSR240612) and/or B 2 R (HOE-140) antagonists by intracerebroventricular (i.c.v.) route at 5, 10, and 15 days. The tumor size quantification, mitotic index, western blot analysis, quantitative autoradiography, immunofluorescence, and confocal microscopy were carried out in brain tumor samples, 20 days after tumor induction. Our results revealed an uncontrolled tumor growing in KOB 1 R or SSR240612-treated mice, which was blunted by B 2 R blockade with HOE-140, suggesting a crosstalk between B 1 R and B 2 R in tumor growing. Combined treatment with B 1 R and B 2 R antagonists normalized the upregulation of tumor B 1 R and decreased the tumor size and the mitotic index, as was seen in double KOB 1 B 2 R. The B 1 R was detected on astrocytes in the tumor, indicating a close relationship between this receptor and astroglial cells. Noteworthy, an immunohistochemistry analysis of tumor samples from 16 patients with glioma diagnosis revealed a marked B 1 R immunopositivity in low-grade gliomas or in older glioblastoma individuals. Furthermore, the clinical data revealed a significantly higher immunopositivity for B 1 R, when compared to a lower B 2 R immunolabeling. Taken together, our results show that blocking simultaneously both kinin receptors or alternatively stimulating B 1 R may be of therapeutic value in the treatment of brain glioblastoma growth and malignancy.

  17. 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas.

    PubMed

    Eleftheriou, Maria; Pascual, Ana Jimenez; Wheldon, Lee M; Perry, Christina; Abakir, Abdulkadir; Arora, Arvind; Johnson, Andrew D; Auer, Dorothee T; Ellis, Ian O; Madhusudan, Srinivasan; Ruzov, Alexey

    2015-01-01

    DNA methylation (5-methylcytosine (5mC)) patterns are often altered in cancers. Ten-eleven translocation (Tet) proteins oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). In addition to their presumptive specific biological roles, these oxidised forms of 5mC may serve as intermediates in demethylation process. According to several reports, 5hmC levels are strongly decreased in cancers; however, the distribution of 5fC and 5caC in malignant tissue has not been studied. Here, we examine the levels of 5hmC and 5caC in 28 samples of normal breast tissue, 59 samples of invasive human breast cancer and 74 samples of gliomas using immunochemistry. In agreement with previous reports, we show that 71 % of normal breast samples exhibit strong 5hmC signal, compared with only 18 % of breast cancer samples with equivalent levels of 5hmC staining. Unexpectedly, although 5caC is not detectable in normal breast tissue, 27 % of breast cancer samples exhibit significant staining for this modification (p < 0.001). Surprisingly, the presence of immunochemically detectable 5caC is not associated with the intensity of 5hmC signal in breast cancer tissue. In gliomas, we show that 5caC is detectable in 45 % of tumours. We demonstrate that, unlike 5hmC, the levels of 5caC are elevated in a proportion of breast cancers and gliomas. Our results reveal another level of complexity to the cancer epigenome, suggesting that active demethylation and/or 5caC-dependent transcriptional regulation are pre-activated in some tumours and may contribute to their pathogenesis. Larger studies to evaluate the clinicopathological significance of 5caC in cancers are warranted.

  18. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    SciTech Connect

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.

    2010-04-15

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affectedmore » the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.« less

  19. The rise and fall of "biopsy and radiate": a history of surgical nihilism in glioma treatment.

    PubMed

    Han, Seunggu J; Sughrue, Michael E

    2012-04-01

    Many neurosurgeons take a nihilistic approach to surgical treatment of gliomas, stating the inability to achieve a cure. Where this idea comes from is somewhat nebulous to most neurosurgeons. A review of the scientific studies supporting the commonly held beliefs about gliomas shows that these ideas regarding the surgical treatment of gliomas are based on overgeneralizations of data from older studies. One should avoid the temptation to apply them to the greater concept of what gliomas are, how they behave, and what should be done, but rather we should continue to scientifically evaluate the role of surgical resection in glioma treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Current management of low-grade gliomas.

    PubMed

    Hottinger, Andreas F; Hegi, Monika E; Baumert, Brigitta G

    2016-12-01

    The management of patients suffering from low-grade gliomas (LGGs) remains a challenge in absence of a definite curative therapy. The median survival is highly variable, from 2 years (high-risk disease) to over 15 years (low risk). The aim of this review is to provide a practical step-by-step evaluation of the available treatment options for patients with LGGs. Next to clinical prognostic markers, both the isocitrate dehydrogenase (IDH) mutation status and the status of 1p/19q codeletion are key prognostic factors for the optimal management of patients with LGG. Two recent randomized phase III clinical trials were performed in LGGs. They first compared the efficacy of radiation versus temozolomide (TMZ) chemotherapy in high-risk LGGs. The second trial compared radiation versus radiation combined with procarbazine, lomustine and vincristine chemotherapy. Regarding molecular prognostic factors, IDH wild-type LGGs have the worst prognosis, independent of therapy, whereas patients with mutated IDH, codeleted 1p/19q LGGs fared best regarding progression-free survival (PFS). In high-risk LGGs, PFS is similar regardless of whether patients have been treated with radiation or TMZ. In the second trial, patients who were treated with combination radiation and chemotherapy showed significant longer overall survival.

  1. Gemistocytic astrocytes in gliomas. An autoradiographic study.

    PubMed

    Hoshino, T; Wilson, B C; Ellis, W G

    1975-05-01

    Tritiated thymidine (3-H-T) was administered intravenously to seven patients with cerebral gliomas. Autoradiographs of biopsy specimens excised within the next four hours and of autopsy specimens from three of these patients obtained three weeks to six months after the single pulse of 3-H-T revealed the following: (a) no gemistocytic astrocytes and only a few giant astrocytes were labeled in biopsy specimens, despite a high overall labeling index of 5-10% (percentage of cells labeled in the total cell population); and (b) scattered foci of labeled genistocytes occurred in autopsy specimens, despite a sharp drop in overall labeling index. In histologic sections of these same specimens, genistocytes and giant cells occurred as the major cell types in an irradiated tumor, in large clusters near foci of degeneration, and as isolated cells in anaplastic foci. These findings suggest that: 1) gemistocytes and giant astrocytes are similar in origin and growth potential regardless of minor variations in morphology; 2) these cells multiply slowly, if at all, and are closely related to regressive changes within the tumor; 3) these cells may reflect profound proliferative activity in adjacent neoplastic cells; and 4) the labeling index and malignant potential of the tumor as a whole depend upon the more rapidly dividing tumor elements. Thus, if genistocytes and giant cells indicate malignancy, they do so secondarily, and the biologically harmless gemistocyte may be the loser in an intense competition for the substrates needed in cell proliferation.

  2. Audit in the management of gliomas.

    PubMed

    Ayoubi, S; Walter, P H; Naik, S; Sankaran, M; Robinson, D

    1993-01-01

    A retrospective study of 139 glioma patients was conducted in an effort to audit management. Factors affecting survival were studied using a Cox Proportional Hazard Model. These factors included age, sex, location, grade, type of surgery, use of radiotherapy, presenting symptoms, Karnofsky score on admission and Karnofsky score 3 months following surgery. Lower grade, high Karnofsky score on admission, radiotherapy and frontal location were associated with better survival. There was statistically insignificant evidence that the other factors had an influence on survival. Patients presenting with a poor neurological score were treated with burrhole biopsy alone. Only 10% of these patients survived more than 6 months. On the other hand, 26% of patients who had craniotomy on the basis of reasonable clinical status lived less than 6 months. Sixty-six per cent of patients in this craniotomy group were aged 60 years or over, and 66% of those aged over 60 had a Karnofsky score of less than 70. We conclude that careful judgement is required before subjecting patients aged over 60, especially those with a low Karnofsky score, to radical therapy.

  3. MRI in treatment of adult gliomas.

    PubMed

    Henson, John W; Gaviani, Paola; Gonzalez, R Gilberto

    2005-03-01

    Diffuse astrocytomas of the adult cerebral hemispheres are unique among tumours in human beings in the extent to which their imaging features are related to histopathological characteristics and clinical behaviour. However, understanding is still restricted about the value of imaging features in the measurement of response and of progression in these tumours. The present approach used in clinical trials, which consists of an anatomical measurement of the enhancing tumour on MRI, has many problems, and might not be acceptable as a surrogate endpoint for survival in patients with glioblastoma who are enrolled in clinical trials. Dynamic imaging techniques, such as capillary permeability mapping, are being used in studies of new drugs that target specific molecular features of gliomas; however, the validity of these techniques has not been elucidated. Diffusion imaging can be valuable for fibre-tract mapping to assist surgical planning and might become useful in measuring early response to treatment in densely cellular tumours. Functional imaging techniques can be used to localise motor, sensory, and language-control areas before surgery. Intraoperative MRI has produced improvements in the extent of tumour resection, and molecular imaging is another technique on the horizon, which could come to have a role in clinical trials in the near future. Thus, as a rapidly expanding sphere of investigation, brain-tumour imaging is producing great excitement. The aim of these new techniques is to aid the identification of more effective treatments.

  4. Genomic Insights into Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Lapin, Danielle H.; Tsoli, Maria; Ziegler, David S.

    2017-01-01

    Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor with a peak incidence in middle childhood and a median survival of less than 1 year. The dismal prognosis associated with DIPG has been exacerbated by the failure of over 250 clinical trials to meaningfully improve survival compared with radiotherapy, the current standard of care. The traditional practice to not biopsy DIPG led to a scarcity in available tissue samples for laboratory analysis that till recently hindered therapeutic advances. Over the past few years, the acquisition of patient derived tumor samples through biopsy and autopsy protocols has led to distinct breakthroughs in the identification of key oncogenic drivers implicated in DIPG development. Aberrations have been discovered in critical genetic drivers including histone H3, ACVR1, TP53, PDGFRA, and Myc. Mutations, previously not identified in other malignancies, highlight DIPG as a distinct biological entity. Identification of novel markers has already greatly influenced the direction of preclinical investigations and offers the exciting possibility of establishing biologically targeted therapies. This review will outline the current knowledge of the genomic landscape related to DIPG, overview preclinical investigations, and reflect how biological advances have influenced the focus of clinical trials toward targeted therapies. PMID:28401062

  5. Silver nanoparticles: a novel radiation sensitizer for glioma?

    NASA Astrophysics Data System (ADS)

    Liu, Peidang; Huang, Zhihai; Chen, Zhongwen; Xu, Ruizhi; Wu, Hao; Zang, Fengchao; Wang, Cailian; Gu, Ning

    2013-11-01

    Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after AgNP injection, rats bearing glioma received 10 Gy radiation. The mean survival times were 100.5 and 98 days, the corresponding percent increase in life spans was 513.2% and 497.7%, and the cure rates were 41.7 and 38.5% at 200 days for the 10 and 20 μg AgNPs and radiation combination groups, respectively. In contrast, the mean survival times for irradiated controls, 10 and 20 μg AgNPs alone, and untreated controls were 24.5, 16.1, 19.4, and 16.4 days, respectively. Furthermore, a cooperative antiproliferative and proapoptotic effect was obtained when gliomas were treated with AgNPs followed by radiotherapy. Our results showed the therapeutic efficacy of AgNPs in combination with radiotherapy without apparent systemic toxicity, suggesting the clinical potential of AgNPs in improving the outcome of malignant glioma radiotherapy.Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after Ag

  6. Single-Cell RNA-Sequencing in Glioma.

    PubMed

    Johnson, Eli; Dickerson, Katherine L; Connolly, Ian D; Hayden Gephart, Melanie

    2018-04-10

    In this review, we seek to summarize the literature concerning the use of single-cell RNA-sequencing for CNS gliomas. Single-cell analysis has revealed complex tumor heterogeneity, subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment influence in the disease process. Although bulk RNA-sequencing has guided our initial understanding of glioma genetics, this method does not accurately define the heterogeneous subpopulations found within these tumors. Single-cell techniques have appealing applications in cancer research, as diverse cell types and the tumor microenvironment have important implications in therapy. High cost and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued innovation will improve accessibility and expand our of knowledge gliomas.

  7. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    PubMed Central

    2010-01-01

    treated with BPA-BNCT were significantly higher than those in Group B and Group C irradiated by [60Co] γ-rays (P < 0.01). The clonogenicity of glioma cells was reduced by BPA-BNCT compared with cells treated in the reactor (Group F, G, H, I), and with the control cells (P < 0.01). Upon BPA-BNCT treatment, the Bax level increased in glioma cells, whereas Bcl-2 expression decreased. Conclusions Compared with γ-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by BNCT may be related to activation of Bax and downregulation of Bcl-2. PMID:21122152

  8. A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas.

    PubMed

    Regazzo, Giulia; Terrenato, Irene; Spagnuolo, Manuela; Carosi, Mariantonia; Cognetti, Gaetana; Cicchillitti, Lucia; Sperati, Francesca; Villani, Veronica; Carapella, Carmine; Piaggio, Giulia; Pelosi, Andrea; Rizzo, Maria Giulia

    2016-07-30

    Malignant gliomas are the most common primary brain tumors in adults and challenging cancers for diagnosis and treatment. They remain a disease for which non-invasive, diagnostic and/or prognostic novel biomarkers are highly desirable. Altered microRNA (miRNA) profiles have been observed in tumor tissues and biological fluids. To date only a small set of circulating/serum miRNA is found to be differentially expressed in brain tumors compared to normal controls. Here a restricted signature of circulating/serum miRNA including miR-15b*,-23a, -99a, -125b, -133a, -150*, -197, -340, -497, -548b-5p and let-7c were investigated as potential non-invasive biomarkers in the diagnosis of glioma patients. Serum and tissues miRNAs expression in patients with brain cancers (n = 30) and healthy controls (n = 15) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Relative expression was calculated using the comparative Ct method. Statistical significance (p ≤ 0,05) was determined using the Mann-Whitney rank sum and Fisher's exact test. Diagnostic accuracy of miRNAs in distinguishing glioblastoma multiforme (GBM) from lower grade cancer was assessed by the Receiver Operating Characteristic (ROC) curve analysis. To validate the role of the identified miRNAs in cancer a comprehensive literature search was conducted using PubMed, Web of Science (Core Collection) and Scopus databases. We observed a decrease of miR-497 and miR-125b serum levels depending on tumor stages with reduced level in GBM than lower grade tumors. The ROC curve analysis distinguishing GBM from lower grade cases yielded an area under the curve (AUC) of 0.87 (95 % confidence interval (CI) = 0.712-1) and of 0.75 (95 % CI = 0.533-0.967) for miR-497 and -125b, respectively. GBM patients are more likely to show a miR-497 and -125b down-regulation than the lower grade group (p = 0.002 and p = 0.024, respectively). These results were subsequently compared with

  9. Functional Role of Matrix gla Protein in Glioma Cell Migration.

    PubMed

    Fu, Mu-Hui; Wang, Chih-Yen; Hsieh, Yun-Ti; Fang, Kuan-Min; Tzeng, Shun-Fen

    2017-07-13

    Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor subtype. Despite that metastasis of GBM beyond the central nervous system (CNS) is rare, its malignancy is attributed to the highly infiltration trait, leading to the difficulty of complete surgical excision. Matrix gla protein (MGP) is a vitamin K-dependent small secretory protein, and functions as a calcification inhibitor. The involvement of MGP function in glioma cell dynamics remains to be clarified. The study showed that a low proliferative rat C6 glioma cell line named as C6-2 exhibited faster migratory and invasive capability compared to that observed in a high tumorigenic rat C6 glioma cell line (called as C6-1). Interestingly, C6-2 cells expressed higher levels of MGP molecules than C6-1 cells did. Lentivirus-mediated short hairpin RNA (shRNA) against MGP gene expression (MGP-KD) in C6-2 cells or lentivirus-mediated overexpression of MGP transcripts in C6-1 cells resulted in the morphological alteration of the two cell lines. Moreover, MGP-KD caused a decline in cell migration and invasion ability of C6-2 cells. In contrast, increased expression of MGP in C6-1 cells promoted their cell migration and invasion. The observations were further verified by the results from the implantation of C6-1 and C6-2 cells into ex vivo brain slice and in vivo rat brain. Thus, our results demonstrate that the manipulation of MGP expression in C6 glioma cells can mediate glioma cell migratory activity. Moreover, our findings indicate the possibility that high proliferative glioma cells expressing a high level of MGP may exist and contribute to tumor infiltration and recurrence.

  10. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    SciTech Connect

    Chang, Cheng-Yi; Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Kuan, Yu-Hsiang

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and geneticmore » silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.« less

  11. Anatomic mapping of molecular subtypes in diffuse glioma.

    PubMed

    Tang, Qisheng; Lian, Yuxi; Yu, Jinhua; Wang, Yuanyuan; Shi, Zhifeng; Chen, Liang

    2017-09-15

    Tumor location served as an important prognostic factor in glioma patients was considered to postulate molecular features according to cell origin theory. However, anatomic distribution of unique molecular subtypes was not widely investigated. The relationship between molecular phenotype and histological subgroup were also vague based on tumor location. Our group focuses on the study of glioma anatomic location of distinctive molecular subgroups and histology subtypes, and explores the possibility of their consistency based on clinical background. We retrospectively reviewed 143 cases with both molecular information (IDH1/TERT/1p19q) and MRI images diagnosed as cerebral diffuse gliomas. The anatomic distribution was analyzed between distinctive molecular subgroups and its relationship with histological subtypes. The influence of tumor location, molecular stratification and histology diagnosis on survival outcome was investigated as well. Anatomic locations of cerebral diffuse glioma indicate varied clinical outcome. Based on that, it can be stratified into five principal molecular subgroups according to IDH1/TERT/1p19q status. Triple-positive (IDH1 and TERT mutation with 1p19q codeletion) glioma tended to be oligodendroglioma present with much better clinical outcome compared to TERT mutation only group who is glioblastoma inclined (median overall survival 39 months VS 18 months). Five molecular subgroups were demonstrated with distinctive locational distribution. This kind of anatomic feature is consistent with its corresponding histological subtypes. Each molecular subgroup in glioma has unique anatomic location which indicates distinctive clinical outcome. Molecular diagnosis can be served as perfect complementary tool for the precise diagnosis. Integration of histomolecular diagnosis will be much more helpful in routine clinical practice in the future.

  12. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1.

    PubMed

    Tönjes, Martje; Barbus, Sebastian; Park, Yoon Jung; Wang, Wei; Schlotter, Magdalena; Lindroth, Anders M; Pleier, Sabrina V; Bai, Alfa H C; Karra, Daniela; Piro, Rosario M; Felsberg, Jörg; Addington, Adele; Lemke, Dieter; Weibrecht, Irene; Hovestadt, Volker; Rolli, Claudio G; Campos, Benito; Turcan, Sevin; Sturm, Dominik; Witt, Hendrik; Chan, Timothy A; Herold-Mende, Christel; Kemkemer, Ralf; König, Rainer; Schmidt, Kathrin; Hull, William-Edmund; Pfister, Stefan M; Jugold, Manfred; Hutson, Susan M; Plass, Christoph; Okun, Jürgen G; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard

    2013-07-01

    Here we show that glioblastoma express high levels of branched-chain amino acid transaminase 1 (BCAT1), the enzyme that initiates the catabolism of branched-chain amino acids (BCAAs). Expression of BCAT1 was exclusive to tumors carrying wild-type isocitrate dehydrogenase 1 (IDH1) and IDH2 genes and was highly correlated with methylation patterns in the BCAT1 promoter region. BCAT1 expression was dependent on the concentration of α-ketoglutarate substrate in glioma cell lines and could be suppressed by ectopic overexpression of mutant IDH1 in immortalized human astrocytes, providing a link between IDH1 function and BCAT1 expression. Suppression of BCAT1 in glioma cell lines blocked the excretion of glutamate and led to reduced proliferation and invasiveness in vitro, as well as significant decreases in tumor growth in a glioblastoma xenograft model. These findings suggest a central role for BCAT1 in glioma pathogenesis, making BCAT1 and BCAA metabolism attractive targets for the development of targeted therapeutic approaches to treat patients with glioblastoma.

  13. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1

    PubMed Central

    Park, Yoon Jung; Wang, Wei; Schlotter, Magdalena; Lindroth, Anders M; Pleier, Sabrina V; Bai, Alfa H C; Karra, Daniela; Piro, Rosario M; Felsberg, Jörg; Addington, Adele; Lemke, Dieter; Weibrecht, Irene; Hovestadt, Volker; Rolli, Claudio G; Campos, Benito; Turcan, Sevin; Sturm, Dominik; Witt, Hendrik; Chan, Timothy A; Herold-Mende, Christel; Kemkemer, Ralf; König, Rainer; Schmidt, Kathrin; Hull, William-Edmund; Pfister, Stefan M; Jugold, Manfred; Hutson, Susan M; Plass, Christoph; Okun, Jürgen G; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard

    2016-01-01

    Here we show that glioblastoma express high levels of branched-chain amino acid transaminase 1 (BCAT1), the enzyme that initiates the catabolism of branched-chain amino acids (BCAAs). Expression of BCAT1 was exclusive to tumors carrying wild-type isocitrate dehydrogenase 1 (IDH1) and IDH2 genes and was highly correlated with methylation patterns in the BCAT1 promoter region. BCAT1 expression was dependent on the concentration of α-ketoglutarate substrate in glioma cell lines and could be suppressed by ectopic overexpression of mutant IDH1 in immortalized human astrocytes, providing a link between IDH1 function and BCAT1 expression. Suppression of BCAT1 in glioma cell lines blocked the excretion of glutamate and led to reduced proliferation and invasiveness in vitro, as well as significant decreases in tumor growth in a glioblastoma xenograft model. These findings suggest a central role for BCAT1 in glioma pathogenesis, making BCAT1 and BCAA metabolism attractive targets for the development of targeted therapeutic approaches to treat patients with glioblastoma. PMID:23793099

  14. Suppressed expression of CD44 variant isoforms during human glioma A172 cell differentiation induced by cyclic AMP.

    PubMed

    Sakai, H; Nakashima, S; Yoshimura, S; Nakatani, K; Shinoda, J; Sakai, N; Yamada, H; Nozawa, Y

    1996-06-07

    CD44 is a major receptor for hyaluronic acid, which is the most frequent route of malignant glioma invasion. Multiple isoforms of CD44 are generated by alternative mRNA splicing. We have examined differential expression of CD44 variant isoforms (CD44vs) during dibutyryl cyclic AMP (dbcAMP)/theophylline-induced differentiation of human glioma A172 cells using reverse transcriptase-polymerase chain reaction (RT-PCR). Treatment of cells with dbcAMP and theophylline caused decreased expression of all CD44 isoforms after 24 h. The CD44 standard form was observed to return to the unstimulated level after 72 h, whereas the variant isoforms, CD44 8v-10v and 10v, remained at the low level after 24-72 h. Changes of CD44vs were correlated with the level of expression of c-jun. These results suggested that the expression patterns of CD44vs might correlate with cellular differentiation in human glioma cells.).

  15. Elevated expression of solute carrier family 22 member 18 increases the sensitivity of U251 glioma cells to BCNU

    PubMed Central

    CHU, SHENG-HUA; MA, YAN-BIN; FENG, DONG-FU; ZHANG, HONG; QIU, JIAN-HUA; ZHU, ZHI-AN

    2011-01-01

    Previous studies showed that solute carrier family 22 member 18 (SLC22A18) is involved in tumorigenesis. The aim of this study was to examine the role of SLC22A18 in glioma cells. Glioma U251 cells were transfected with the human SLC22A18 gene. Transfection of the empty vector pcDNA3.1 was used as a negative control. Sensitivity to BCNU was measured by Annexin V staining. The expression of caspase-3 and bcl-2 was determined by immunohistochemistry. The transfection was confirmed by PCR, RT-PCR and Western blotting. Augmented apoptotic cell death was observed in the SLC22A18-transfected cells, compared to the non-transfected cells or cells with the empty vector. Caspase-3 expression increased in U251-SLC22A18 cells, whereas the bcl-2 expression decreased. These results indicated that SLC22A18 has a pro-apoptotic function in glioma cells. PMID:22848278

  16. Temozolomide induces the expression of the glioma Big Potassium (gBK) ion channel, while inhibiting fascin-1 expression: possible targets for glioma therapy.

    PubMed

    Hoa, Neil T; Ge, Lisheng; Martini, Filippo; Chau, Vincent; Ahluwalia, Amrita; Kruse, Carol A; Jadus, Martin R

    2016-10-01

    Temozolomide (TMZ) improves Glioblastoma Multiforme (GBM) patient survival. The invasive behavior of the glioma cells is the cause of GBM relapse. The glioma BK ion channel (gBK) may provide glioma cells with a mechanism to invade surrounding tissue. gBK contains epitopes that cytolytic T lymphocytes (CTLs) can recognize and kill glioma cells. Fascin-1 is an actin crosslinking molecule that supports microvilli; these membrane protrusions provide a physical defense against CTLs. TMZ was investigated to determine its effect on gBK and fascin-1 expression. Human glioma cells cultured in TMZ were analyzed for their altered mRNA and gBK protein levels by using quantitative real time PCR, immunostaining and cellular functional assays. TMZ slowed glioma cell growth and inhibited their transmigratory properties due to loss of fascin-1. TMZ induced increased gBK and HLA expression and allowed these TMZ-treated cells to become better targets for gBK-specific CTLs. Besides its traditional chemotherapeutic effect, TMZ can have four other targeted pathways: 1) slowed glioma cell growth; 2) inhibited glioma cell transmigration; 3) increased HLA-A2 and gBK tumor antigen production; 4) increased CTL-mediated cytolysis of the TMZ treated glioma cells due to the loss of their defensive membrane protrusions supported by fascin-1.

  17. LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas

    PubMed Central

    Wang, Wen; Yang, Fan; Zhang, Lu; Chen, Jing; Zhao, Zheng; Wang, Haoyuan; Wu, Fan; Liang, Tingyu; Yan, Xiaoyan; Li, Jiye; Lan, Qing; Wang, Jiangfei; Zhao, Jizong

    2016-01-01

    Anaplastic glioma is Grade III and the median overall survival is about 37.6 months. However, there are still other factors that affect the prognosis for anaplastic glioma patients due to variable overall survival. So we screened four-lncRNA signature (AGAP2-AS1, TPT1-AS1, LINC01198 and MIR155HG) from the lncRNA expression profile from the GSE16011, CGGA and REMBRANDT datasets. The patients in low risk group had longer overall survival than high risk group (median OS 2208.25 vs. 591.30 days; P < 0.0001). Moreover, patients in the low risk group showed similar overall survival to Grade II patients (P = 0.1669), while the high risk group showed significant different to Grade IV (P = 0.0005) with similar trend. So based on the four-lncRNA, the anaplastic gliomas could be divided into grade II-like and grade IV-like groups. On the multivariate analysis, it showed the signature was an independent prognostic factor (P = 0.000). The expression of four lncRNAs in different grades showed that AGAP2-AS1, LINC01198 and MIR155HG were increased with tumor grade, while TPT1-AS1 was decreased. Knockdown of AGAP2-AS1 can inhibit the cell proliferation, migration and invasion, while increase the apoptosis cell rates in vitro. In conclusion, our results showed that the four-lncRNA signature has prognostic value for anaplastic glioma. Moreover, clinicians should conduct corresponding therapies to achieve best treatment with less side effects for two groups patients. PMID:27764782

  18. Inhibition of cathepsin L sensitizes human glioma cells to ionizing radiation in vitro through NF-κB signaling pathway

    PubMed Central

    Yang, Neng; Wang, Pan; Wang, Wen-juan; Song, Yun-zhen; Liang, Zhong-qin

    2015-01-01

    Aim: Cathepsin L, a lysosomal cysteine proteinase, is exclusively elevated in a variety of malignancies, including gliomas. In this study we investigated the relationship between cathepsin L and NF-κB, two radiation-responsive elements, in regulating the sensitivity of human glioma cells ionizing radiation (IR) in vitro. Methods: Human glioma U251 cells were exposed to IR (10 Gy), and the expression of cathepsin L and NF-κB was measured using Western blotting. The nuclear translocation of NF-κB p65 and p50 was analyzed with immunofluorescence assays. Cell apoptosis was examined with clonogenic assays. NF-κB transcription and NF-κB-dependent cyclin D1 and ATM transactivation were monitored using luciferase reporter and ChIP assays, respectively. DNA damage repair was investigated using the comet assay. Results: IR significantly increased expression of cathepsin L and NF-κB p65 and p50 in the cells. Furthermore, IR significantly increased the nuclear translocation of NF-κB, and NF-κB-dependent cyclin D1 and ATM transactivation in the cells. Knockdown of p65 did not change the expression of cathepsin L in IR-treated cells. Pretreatment with Z-FY-CHO (a selective cathepsin L inhibitor), or knockdown of cathepsin L significantly attenuated IR-induced nuclear translocation of NF-κB and cyclin D1 and ATM transactivation, and sensitized the cells to IR. Pretreatment with Z-FY-CHO, or knockdown of p65 also decreased IR-induced DNA damage repair and clonogenic cell survival, and sensitized the cells to IR. Conclusion: Cathepsin L acts as an upstream regulator of NF-κB activation in human glioma cells and contributes to their sensitivity to IR in vitro. Inhibition of cathepsin L can sensitize the cells to IR. PMID:25661319

  19. Relative survival of patients with supratentorial low-grade gliomas

    PubMed Central

    Smoll, Nicolas R.; Gautschi, Oliver P.; Schatlo, Bawarjan; Schaller, Karl; Weber, Damien C.

    2012-01-01

    We sought to assess the population-based estimates of age-standardized survival among patients with low-grade gliomas (LGG) and to determine the impact of age and time on relative survival (RS). Data from the Surveillance, Epidemiology, and End Results (SEER) program of NCI from 1973 through 2006 were analyzed to assess survival among 5037 patients. Relationships were modeled using Dickman's piecewise constant hazards RS model. The 3- and 10-year age-standardized RS were 67% and 37%, respectively. When analyzed by age group, the 10-year overall survival (OS) and RS for children (age, <16 years), young adults (age, 16–39 years), adults (age, 40–64 years), and older patients (age, ≥65 years) were 86% and 86%, 61% and 62%, 40% and 43%, and 10% and 14%, respectively. The observed difference between OS and RS was larger among older patients (4%) and smallest among children (<1%). Older patients were 30.5 times (excess hazard ratio [eHR]; 95% confidence interval [CI], 20.3–50.0) as likely as young adults to die during the first year and 18.2 times as likely to die during the second year. Adults were 5.3 (eHR; 95% CI, 3.5–8.1) times as likely to die during their first year as young adults. In the remaining years, the observed survival differences were substantially decreased, and the presence of an age-by-follow-up interaction was observed. Survival among older patients with LGG was substantially different from the one computed for young adults and children. Despite the hazards across age groups not being proportional, RS does not provide additional information, compared with OS, in patients with LGG. PMID:22773277

  20. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma

    PubMed Central

    Ju, Rui-Jun; Zeng, Fan; Liu, Lei; Mu, Li-Min; Xie, Hong-Jun; Zhao, Yao; Yan, Yan; Wu, Jia-Shuan; Hu, Ying-Jie; Lu, Wan-Liang

    2016-01-01

    The efficacy of chemotherapy for brain glioma is restricted by the blood–brain barrier (BBB), and surgery or radiotherapy cannot eliminate the glioma cells because of their unique location. Residual brain glioma cells can form vasculogenic mimicry (VM) channels that can cause a recurrence of brain glioma. In the present study, targeting liposomes incorporating epirubicin and celecoxib were prepared and used for the treatment of brain glioma, along with the destruction of their VM channels. Evaluations were performed on the human brain glioma U87MG cells in vitro and on intracranial brain glioma-bearing nude mice. Targeting epirubicin plus celecoxib liposomes in the circulatory blood system were able to be transported across the BBB, and accumulated in the brain glioma region. Then, the liposomes were internalized by brain glioma cells and killed glioma cells by direct cytotoxic injury and the induction of apoptosis. The induction of apoptosis was related to the activation of caspase-8- and -3-signaling pathways, the activation of the proapoptotic protein Bax, and the suppression of the antiapoptotic protein Mcl-1. The destruction of brain glioma VM channels was related to the downregulation of VM channel-forming indictors, which consisted of MMP-2, MMP-9, FAK, VE-Cad, and VEGF. The results demonstrated that the targeting epirubicin plus celecoxib liposomes were able to effectively destroy the glioma VM channels and exhibited significant efficacy in the treatment of intracranial glioma-bearing nude mice. Therefore, targeting epirubicin plus celecoxib liposomes could be a potential nanostructured formulation to treat gliomas and destroy their VM channels. PMID:27042063

  1. Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas.

    PubMed

    Savaskan, N E; Seufert, S; Hauke, J; Tränkle, C; Eyüpoglu, I Y; Hahnen, E

    2011-01-06

    Malignant glioma represents one of the most aggressive and lethal human neoplasias. A hallmark of gliomas is their rapid proliferation and destruction of vital brain tissue, a process in which excessive glutamate release by glioma cells takes center stage. Pharmacologic antagonism with glutamate signaling through ionotropic glutamate receptors attenuates glioma progression in vivo, indicating that glutamate release by glioma cells is a prerequisite for rapid glioma growth. Glutamate has been suggested to promote glioma cell proliferation in an autocrine or paracrine manner, in particular by activation of the (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate (AMPA) subtype of glutamate receptors. Here, we dissect the effects of glutamate secretion on glioma progression. Glioma cells release glutamate through the amino-acid antiporter system X(c)(-), a process that is mechanistically linked with cystine incorporation. We show that disrupting glutamate secretion by interfering with the system X(c)(-) activity attenuates glioma cell proliferation solely cystine dependently, whereas glutamate itself does not augment glioma cell growth in vitro. Neither AMPA receptor agonism nor antagonism affects glioma growth in vitro. On a molecular level, AMPA insensitivity is concordant with a pronounced transcriptional downregulation of AMPA receptor subunits or overexpression of the fully edited GluR2 subunit, both of which block receptor activity. Strikingly, AMPA receptor inhibition in tumor-implanted brain slices resulted in markedly reduced tumor progression associated with alleviated neuronal cell death, suggesting that the ability of glutamate to promote glioma progression strictly requires the tumor microenvironment. Concerning a potential pharmacotherapy, targeting system X(c)(-) activity disrupts two major pathophysiological properties of glioma cells, that is, the induction of excitotoxic neuronal cell death and incorporation of cystine required for

  2. Changes in brain glioma incidence and laterality correlates with use of mobile phones--a nationwide population based study in Israel.

    PubMed

    Barchana, Micha; Margaliot, Menahem; Liphshitz, Irena

    2012-01-01

    Mobile phones are in extensive use worldwide and concerns regarding their role in tumor formation were raised. Over the years multiple studies were published in order to investigate this issue using several approaches. The current study looks at secular trends of brain gliomas (low and high grade) incidence and changes in tumor's laterality over 30 years in a population extensively using this technology with a possible correlation to the spread of use of mobile phones. All brain gliomas that were diagnosed from 1980-2009 were included and subdivided into two groups--low and high grade. Secular and periodic time trend analyses of incidence rates and changes in laterality were performed. Preferred side of head using mobile phones was assessed with a questionnaire in a sample of adult individuals. A decrease in incidence of low grade giomas (LGG) that correlated with introduction of mobile technology was found from 2.57, 2.34 and 2.79 for every 100,000 in the period 1980 to the end of 1994 to 1.72, 1.82 and 1.57, respectively, over the last three 5-years periods (1995-2009). High-grade glioma incidences increased significantly from 1980-2009 but in the period after mobile phones were introduced (1994-2009) a lower, non significant, rate of increase was observed in males and a lower one (significant) in females. A shift towards left sided tumor location for all adult gliomas combined and separately for LGG and HGG was noted from 1995 onward. The shift was more marked for those who were diagnosed in ages 20-49 (p=0.03). We found a statistically significant decrease in LGG's over 30-years period that correlates with introducing of mobile phones technology and a shift in laterality towards left-sided tumors, the latter occurred in both low and high-grade gliomas.

  3. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    PubMed

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  4. Multi-targeting NGR-modified liposomes recognizing glioma tumor cells and vasculogenic mimicry for improving anti-glioma therapy.

    PubMed

    Huang, Dan; Zhang, Shuang; Zhong, Ting; Ren, Wei; Yao, Xin; Guo, Yang; Duan, Xiao-Chuan; Yin, Yi-Fan; Zhang, Shu-Shi; Zhang, Xuan

    2016-07-12

    Like the anti-angiogenic strategy, anti-vascular mimicry is considered as a novel targeting strategy for glioma. In the present study, we used NGR as a targeting ligand and prepared NGR-modified liposomes containing combretastatin A4 (NGR-SSL-CA4) in order to evaluate their potential targeting of glioma tumor cells and vasculogenic mimicry (VM) formed by glioma cells as well as their anti-VM activity in mice with glioma tumor cells. NGR-SSL-CA4 was prepared by a thin-film hydration method. The in vitro targeting of U87-MG (human glioma tumor cells) by NGR-modified liposomes was evaluated. The in vivo targeting activity of NGR-modified liposomes was tested in U87-MG orthotopic tumor-bearing nude mice. The anti-VM activity of NGR-SSL-CA4 was also investigated in vitro and in vivo. The targeting activity of the NGR-modified liposomes was demonstrated by in vitro flow cytometry and in vivo biodistribution. The in vitro anti-VM activity of NGR-SSL-CA4 was indicated in a series of cell migration and VM channel experiments. NGR-SSL-CA4 produced very marked anti-tumor and anti-VM activity in U87-MG orthotopic tumor-bearing mice in vivo. Overall, the NGR-SSL-CA4 has great potential in the multi-targeting therapy of glioma involving U87-MG cells, and the VM formed by U87-MG cells as well as endothelial cells producing anti-U87-MG cells, and anti-VM formed by U87-MG cells as well as anti-endothelial cell activity.

  5. Multi-targeting NGR-modified liposomes recognizing glioma tumor cells and vasculogenic mimicry for improving anti-glioma therapy

    PubMed Central

    Huang, Dan; Zhang, Shuang; Zhong, Ting; Ren, Wei; Yao, Xin; Guo, Yang; Duan, Xiao-Chuan; Yin, Yi-Fan; Zhang, Shu-Shi; Zhang, Xuan

    2016-01-01

    Like the anti-angiogenic strategy, anti-vascular mimicry is considered as a novel targeting strategy for glioma. In the present study, we used NGR as a targeting ligand and prepared NGR-modified liposomes containing combretastatin A4 (NGR-SSL-CA4) in order to evaluate their potential targeting of glioma tumor cells and vasculogenic mimicry (VM) formed by glioma cells as well as their anti-VM activity in mice with glioma tumor cells. NGR-SSL-CA4 was prepared by a thin-film hydration method. The in vitro targeting of U87-MG (human glioma tumor cells) by NGR-modified liposomes was evaluated. The in vivo targeting activity of NGR-modified liposomes was tested in U87-MG orthotopic tumor-bearing nude mice. The anti-VM activity of NGR-SSL-CA4 was also investigated in vitro and in vivo. The targeting activity of the NGR-modified liposomes was demonstrated by in vitro flow cytometry and in vivo biodistribution. The in vitro anti-VM activity of NGR-SSL-CA4 was indicated in a series of cell migration and VM channel experiments. NGR-SSL-CA4 produced very marked anti-tumor and anti-VM activity in U87-MG orthotopic tumor-bearing mice in vivo. Overall, the NGR-SSL-CA4 has great potential in the multi-targeting therapy of glioma involving U87-MG cells, and the VM formed by U87-MG cells as well as endothelial cells producing anti-U87-MG cells, and anti-VM formed by U87-MG cells as well as anti-endothelial cell activity. PMID:27283987

  6. Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1α expression in human glioma cells by a proteasome-independent pathway: Implications for in vivo therapy1

    PubMed Central

    Newcomb, Elizabeth W.; Ali, M. Aktar; Schnee, Tona; Lan, Li; Lukyanov, Yevgeniy; Fowkes, Mary; Miller, Douglas C.; Zagzag, David

    2005-01-01

    Angiogenesis is a critical step required for sustained tumor growth and tumor progression. The stimulation of endothelial cells by cytokines secreted by tumor cells such as vascular endothelial growth factor (VEGF) induces their proliferation and migration. This is a prominent feature of high-grade gliomas. The secretion of VEGF is greatly upregulated under conditions of hypoxia because of the transcription factor hypoxia-inducible factor (HIF)-1α, which controls the expression of many genes, allowing rapid adaptation of cells to their hypoxic microenvironment. Flavopiridol, a novel cyclin-dependent kinase inhibitor, has been attributed with antiangiogenic properties in some cancer cell lines by its ability to inhibit VEGF production. Here, we show that flavopiridol treatment of human U87MG and T98G glioma cell lines decreases hypoxia-mediated HIF-1α expression, VEGF secretion, and tumor cell migration. These in vitro results correlate with reduced vascularity of intracranial syngeneic GL261 gliomas from animals treated with flavopiridol. In addition, we show that flavopiridol downregulates HIF-1α expression in the presence of a proteasome inhibitor, an agent that normally results in the accumulation and overexpression of HIF-1α. The potential to downregulate HIF-1α expression with flavopiridol treatment in combination with a proteasome inhibitor makes this an extremely attractive anticancer treatment strategy for tumors with high angiogenic activity, such as gliomas. PMID:16053697

  7. Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1alpha expression in human glioma cells by a proteasome-independent pathway: implications for in vivo therapy.

    PubMed

    Newcomb, Elizabeth W; Ali, M Aktar; Schnee, Tona; Lan, Li; Lukyanov, Yevgeniy; Fowkes, Mary; Miller, Douglas C; Zagzag, David

    2005-07-01

    Angiogenesis is a critical step required for sustained tumor growth and tumor progression. The stimulation of endothelial cells by cytokines secreted by tumor cells such as vascular endothelial growth factor (VEGF) induces their proliferation and migration. This is a prominent feature of high-grade gliomas. The secretion of VEGF is greatly upregulated under conditions of hypoxia because of the transcription factor hypoxiainducible factor (HIF)-1alpha, which controls the expression of many genes, allowing rapid adaptation of cells to their hypoxic microenvironment. Flavopiridol, a novel cyclin-dependent kinase inhibitor, has been attributed with antiangiogenic properties in some cancer cell lines by its ability to inhibit VEGF production. Here, we show that flavopiridol treatment of human U87MG and T98G glioma cell lines decreases hypoxia-mediated HIF-1alpha expression, VEGF secretion, and tumor cell migration. These in vitro results correlate with reduced vascularity of intracranial syngeneic GL261 gliomas from animals treated with flavopiridol. In addition, we show that flavopiridol downregulates HIF-1alpha expression in the presence of a proteasome inhibitor, an agent that normally results in the accumulation and overexpression of HIF-1alpha. The potential to downregulate HIF-1alpha expression with flavopiridol treatment in combination with a proteasome inhibitor makes this an extremely attractive anticancer treatment strategy for tumors with high angiogenic activity, such as gliomas.

  8. Hydrogen Peroxide-Induced Secreted Frizzled-Related Protein 1 Gene Demethylation Contributes to Hydrogen Peroxide-Induced Apoptosis in Human U251 Glioma Cells.

    PubMed

    Xing, Zhiguo; Ni, Yaping; Zhao, Junjie; Ma, Xudong

    2017-05-01

    Glioblastoma multiforme is a type of central nervous system tumor with extremely poor prognosis. Previously, hydrogen peroxide (H 2 O 2 ), which promotes the oxidative stress response, has been reported to induce the apoptosis of glioma cells. Recently, secreted frizzled-related protein 1 (SFRP1) has been shown to be associated with various types of malignant tumors and with H 2 O 2 -induced oxidative stress in cardiomyocytes by negatively regulating the Wnt signaling pathway. This study aimed to explore SFRP1 expression and its roles in H 2 O 2 -induced apoptosis in human glioma cells. We found that the SFRP1 level was decreased in several human glioma cell lines, including U87, U251, and SW1783 cells. In U251 cells, SFRP1 could function as a cancer suppressor gene, and the growth of U251 cells could be inhibited not only by H 2 O 2 but also by the overexpression of SFRP1. Furthermore, we demonstrated that H 2 O 2 -induced SFRP1 gene demethylation partially contributed to H 2 O 2 -induced U251 cell apoptosis, which was verified by studies using an SFRP inhibitor (WAY-316606). Our research identified that H 2 O 2 -induced SFRP1 gene demethylation contributes to H 2 O 2 -induced apoptosis in human U251 glioma cells.

  9. Oxygenation and response to irradiation of organotypic multicellular spheroids of human glioma.

    PubMed

    Sminia, Peter; Acker, Helmut; Eikesdal, Hans Petter; Kaaijk, Patricia; Enger, Per øvind; Slotman, Ben; Bjerkvig, Rolf

    2003-01-01

    Investigation of the oxygenation status of organotypic multicellular spheroids (OMS) and their response to irradiation. Tumour specimens of glioblastoma multiforme patients (n = 16) were initiated as OMS. Following 20 Gy gamma-irradiation, the cell migratory capacity was evaluated. Spheroid oxygenation was determined by micro-electrode pO2 measurements and pimonidazole immunostaining. Spheroids prepared from established human glioma cell lines were used as a reference. Irradiation inhibited spheroid outgrowth by 12 to 88% relative to the non-irradiated controls. A large interpatient variation was noticed. Oxygen measurements revealed a gradual decrease in pO2 level from the periphery to the core of the spheroids, but the pO2 values remained within an oxygenated range. However, in the cell line spheroids an intermediate layer of hypoxia surrounding the central core was observed. Cell line spheroids with a hypoxic cell fraction and well-oxygenated OMS both show high resistance to irradiation, indicating that hypoxia may not be the biological factor determining the radioresistance of glioma spheroids in vitro.

  10. Fluorescence-guided surgery and biopsy in gliomas with an exoscope system.

    PubMed

    Piquer, José; Llácer, Jose L; Rovira, Vicente; Riesgo, Pedro; Rodriguez, Ruben; Cremades, Antonio

    2014-01-01

    The introduction of fluorescence-guided resection allows a better identification of tumor tissue and its more radical resection. We describe our experience with a modified exoscope to detect 5 ALA-induced fluorescence in neuronavigation-guided brain surgery or biopsy of malignant brain tumors. Thirty-eight patients with a suspected preoperative diagnosis of high-grade astrocytoma were included. We used a neuronavigation device and a high-definition exoscope system with a built-in filter to detect 5-ALA fluorescence in all cases. Thirty patients underwent craniotomy with tumor resection and 8 underwent frameless stereotactic brain biopsy. Histopathological diagnosis confirmed the presence of high-grade gliomas in 34 patients. Total resection was achieved in 23 cases and subtotal in 7. No relevant complications related to the administration of 5-ALA were detected. The use of the exoscope in 5-ALA fluorescence-guided tumor surgery has twofold implications: during brain tumor surgery it can be considered a valuable tool to achieve a more radical resection of the lesion, and when applied to a biopsy of a suspected brain high-grade glioma, it decreases the possibility of a negative biopsy.

  11. Fluorescence-Guided Surgery and Biopsy in Gliomas with an Exoscope System

    PubMed Central

    Piquer, José; Llácer, Jose L.; Rovira, Vicente; Riesgo, Pedro; Rodriguez, Ruben; Cremades, Antonio

    2014-01-01

    Background. The introduction of fluorescence-guided resection allows a better identification of tumor tissue and its more radical resection. We describe our experience with a modified exoscope to detect 5 ALA-induced fluorescence in neuronavigation-guided brain surgery or biopsy of malignant brain tumors. Methods. Thirty-eight patients with a suspected preoperative diagnosis of high-grade astrocytoma were included. We used a neuronavigation device and a high-definition exoscope system with a built-in filter to detect 5-ALA fluorescence in all cases. Thirty patients underwent craniotomy with tumor resection and 8 underwent frameless stereotactic brain biopsy. Results. Histopathological diagnosis confirmed the presence of high-grade gliomas in 34 patients. Total resection was achieved in 23 cases and subtotal in 7. No relevant complications related to the administration of 5-ALA were detected. Conclusions. The use of the exoscope in 5-ALA fluorescence-guided tumor surgery has twofold implications: during brain tumor surgery it can be considered a valuable tool to achieve a more radical resection of the lesion, and when applied to a biopsy of a suspected brain high-grade glioma, it decreases the possibility of a negative biopsy. PMID:24971317

  12. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells

    SciTech Connect

    Papait, Roberto; Magrassi, Lorenzo; Rigamonti, Dorotea

    2009-02-06

    Temozolomide (TMZ) and carmustine (BCNU), cancer-drugs usually used in the treatment of gliomas, are DNA-methylating agents producing O6-methylguanine. It has been shown that 06-methylguanine triggers DNA mismatch repair and in turn induce apoptosis and senescence, respectively, over a 4 and 6 days period [Y. Hirose, M.S. Berger, R.O. Pieper, p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells, Cancer Res. 61 (2001) 1957-1963; W. Roos, M. Baumgartner, B. Kaina, Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1, Oncogene 23 (2004) 359-367]. Heremore » we show that TMZ and BCNU have an earlier effect on nuclear organization and chromatin structure. In particular, we report that TMZ and BCNU induce clustering of pericentromeric heterochromatin regions and increase the amount of heterochromatic proteins MeCP2 and HP1{alpha} bound to chromatin. These drugs also decrease global levels of histone H3 acetylation and increase levels of histone H3 trimethylated on lysine 9 (H3-triMeK9). These events precede the senescence status. We conclude that TMZ and BCNU efficacy in glioma treatment may implicate a first event characterized by changes in heterochromatin organization and its silencing which is then followed by apoptosis and senescence.« less

  13. Antiproliferative activity of melanoidins isolated from heated potato fiber (potex) in glioma cell culture model.

    PubMed

    Langner, Ewa; Nunes, Fernando M; Pozarowski, Piotr; Kandefer-Szerszeń, Martyna; Pierzynowski, Stefan G; Rzeski, Wojciech

    2011-03-23

    Potex constitutes a potato fiber preparation widely used as an ingredient to meat and bakery products which thermal treatment results in creation of new compounds. Melanoidins are high molecular weight brown end products of Maillard reaction, and few data presenting tumor cell growth inhibiting activity of melanoidins have been reported. Thus, in present study we utilized water extract of Potex roasted (180 °C for 2 h), whose chemical characterization revealed the presence of melanoidin complexes. Heated Potex extract inhibited C6 glioma cell proliferation in a dose-dependent manner measured by MTT method. High molecular weight components present in initial extract were responsible for stronger antiproliferative effect compared with low molecular weight fraction. Impaired MAPK (mitogen-activated protein kinase) and Akt signaling was found in cells treated with the extract. Moreover, flow cytometry analyses revealed the extract to induce G1/S arrest in glioma cells. Simultaneously, Western blot analysis showed elevated levels of p21 protein with concomitant decrease of cyclin D1. In conclusion, observed antiproliferative activity of melanoidins present in heated Potex was linked to disregulated MAPK and Akt signaling pathways, as well as to cell cycle cessation. These results suggest potential application of Potex preparation as a functional food ingredient and chemopreventive agent.

  14. Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model

    NASA Astrophysics Data System (ADS)

    Griscelli, Frank; Li, Hong; Cheong, Chiat; Opolon, Paule; Bennaceur-Griscelli, Annelise; Vassal, Gilles; Soria, Jeannette; Soria, Claudine; Lu, He; Perricaudet, Michel; Yeh, Patrice

    2000-06-01

    The objective of the present study was to evaluate the antitumor effect of a defective adenovirus expressing a secretable angiostatin-like molecule (AdK3) in combination with radiotherapy in rat C6 gliomas s.c. preestablished into athymic mice. In vitro, the combination regimen was significantly (P < 0.001) more cytotoxic for human microcapillary endothelial cells than either treatment alone, whereas survival of C6 glioma cells was not affected in the conditions used. Radiotherapy and AdK3 gene delivery was then studied on well established C6 xenografts (165 ± 70 mm3). In these tumors, AdK3 intratumoral injections had only a marginal effect. Interestingly, when experimental radiotherapy was added, significantly higher (P < 0.005), and possibly synergistic, antitumoral effects were observed that tightly correlated a marked decrease of intratumoral vascularization. The combination of radiotherapy and AdK3 intratumoral injections also revealed a significant (P < 0.05) inhibition of tumor growth as compared with either treatment alone for larger tumors (467 ± 120 mm3). Altogether, these data emphasize the potential of combining a destructive strategy directed against the tumor cells with an anti-angiogenic approach to fight cancer.

  15. Glucocorticoids and the cell surface of human glioma cells: relationship to cytostasis.

    PubMed

    Mackie, A E; Freshney, R I; Akturk, F; Hunt, G

    1988-12-01

    The glucocorticoid hormones methyl prednisolone and dexamethasone were shown to be cytostatic, but not cytotoxic, at high cell densities for early passage and continuous cell lines from human glioma at 0.25 microM and above, in the presence or absence of serum. In the absence of serum both steroids at 2.5 nM increased the saturation density close to the level reached in serum. Examination of the iodinated glycoproteins of the cell surface by gel electrophoresis did not reveal any consistent change. However, gel exclusion chromatography of protease digests of the cell surface and of material released into the medium showed an increase in incorporation of 3H-glucosamine in pronase digests after treatment with methyl prednisolone. Ion exchange chromatography showed that sulphated glycosaminoglycans, particularly heparan sulphate, increased and hyaluronic acid decreased in response to steroids, and there was increased retention of GAGs on the cell surface relative to the released fraction. It was concluded that glucocorticoid hormones modify the cell surface of human glioma cells and that this may contribute to enhanced cell intraction and lead to increased density limitation of cell proliferation.

  16. Glucocorticoids and the cell surface of human glioma cells: relationship to cytostasis.

    PubMed Central

    Mackie, A. E.; Freshney, R. I.; Akturk, F.; Hunt, G.

    1988-01-01

    The glucocorticoid hormones methyl prednisolone and dexamethasone were shown to be cytostatic, but not cytotoxic, at high cell densities for early passage and continuous cell lines from human glioma at 0.25 microM and above, in the presence or absence of serum. In the absence of serum both steroids at 2.5 nM increased the saturation density close to the level reached in serum. Examination of the iodinated glycoproteins of the cell surface by gel electrophoresis did not reveal any consistent change. However, gel exclusion chromatography of protease digests of the cell surface and of material released into the medium showed an increase in incorporation of 3H-glucosamine in pronase digests after treatment with methyl prednisolone. Ion exchange chromatography showed that sulphated glycosaminoglycans, particularly heparan sulphate, increased and hyaluronic acid decreased in response to steroids, and there was increased retention of GAGs on the cell surface relative to the released fraction. It was concluded that glucocorticoid hormones modify the cell surface of human glioma cells and that this may contribute to enhanced cell intraction and lead to increased density limitation of cell proliferation. PMID:3254724

  17. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells.

    PubMed

    Papait, Roberto; Magrassi, Lorenzo; Rigamonti, Dorotea; Cattaneo, Elena

    2009-02-06

    Temozolomide (TMZ) and carmustine (BCNU), cancer-drugs usually used in the treatment of gliomas, are DNA-methylating agents producing O6-methylguanine. It has been shown that 06-methylguanine triggers DNA mismatch repair and in turn induce apoptosis and senescence, respectively, over a 4 and 6 days period [Y. Hirose, M.S. Berger, R.O. Pieper, p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells, Cancer Res. 61 (2001) 1957-1963; W. Roos, M. Baumgartner, B. Kaina, Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1, Oncogene 23 (2004) 359-367]. Here we show that TMZ and BCNU have an earlier effect on nuclear organization and chromatin structure. In particular, we report that TMZ and BCNU induce clustering of pericentromeric heterochromatin regions and increase the amount of heterochromatic proteins MeCP2 and HP1alpha bound to chromatin. These drugs also decrease global levels of histone H3 acetylation and increase levels of histone H3 trimethylated on lysine 9 (H3-triMeK9). These events precede the senescence status. We conclude that TMZ and BCNU efficacy in glioma treatment may implicate a first event characterized by changes in heterochromatin organization and its silencing which is then followed by apoptosis and senescence.

  18. E series prostaglandins alter the proliferative, apoptotic and migratory properties of T98G human glioma cells in vitro

    PubMed Central

    2012-01-01

    Background In many types of cancer, prostaglandin E2 (PGE2) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE1, PGE2 and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods T98G human glioma cells were treated with IBP, PGE1 or PGE2 at varying concentrations for 24–72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results A significant decrease was seen in cell number (54%) in the presence of 50 μM IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE1 or PGE2 caused significant increases in cell number (37% PGE1 and 45% PGE2). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE1 (62%) and to a greater extent by PGE2 (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE1 and 44% PGE2) and the transwell migration assay (28% PGE1 and 68% PGE2). Conclusions The present study demonstrated that treatments which alter PGE1 and PGE2 metabolism

  19. Lipid vesicles containing transferrin receptor binding peptide TfR-T12 and octa-arginine conjugate stearyl-R8 efficiently treat brain glioma along with glioma stem cells.

    PubMed

    Mu, Li-Min; Bu, Ying-Zi; Liu, Lei; Xie, Hong-Jun; Ju, Rui-Jun; Wu, Jia-Shuan; Zeng, Fan; Zhao, Yao; Zhang, Jing-Ying; Lu, Wan-Liang

    2017-06-14

    Surgery and radiotherapy cannot fully remove brain glioma; thus, chemotherapy continues to play an important role in treatment of this illness. However, because of the restriction of the blood-brain barrier (BBB) and the regeneration of glioma stem cells, post-chemotherapy relapse usually occurs. Here, we report a potential solution to these issues that involves a type of novel multifunctional vinblastine liposomes equipped with transferrin receptor binding peptide TfR-T 12 and octa-arginine conjugate stearyl-R 8 . Studies were performed on brain glioma and glioma stem cells in vitro and were verified in brain glioma-bearing mice. The liposomes were transported across the BBB, killing brain glioma and glioma stem cells via the induction of necrosis, apoptosis and autophagy. Furthermore, we reveal the molecular mechanisms for treating brain glioma and glioma stem cells via functionalized drug lipid vesicles.

  20. Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia.

    PubMed

    Xu, Cheng-Shi; Wang, Ze-Fen; Huang, Xiao-Dong; Dai, Li-Ming; Cao, Chang-Jun; Li, Zhi-Qiang

    2015-03-20

    Melatonin, a well-known antioxidant, has been shown to possess anti-invasive properties for glioma. However, little is known about the effect of melatonin on glioma cell migration and invasion under hypoxia, which is a crucial microenvironment for tumor progress. In addition, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are closely associated with cell migration and invasion. Therefore, we investigated the possible role of these kinases and its related signaling in the regulation of human U251 glioma cells behavior by melatonin under hypoxia. The abilities of migration and invasion of U251 glioma cells were determined by wound healing and transwell assay in vitro. The intracellular production of reactive oxygen species (ROS) was measured by using the fluorescent probe 6-carboxy-2', 7'-dichorodihydrofluorescein diacetate (DCFH-DA). Immunofluorescence experiments and western blotting analysis were used to detect the expression level of protein. Small interfering RNAs (siRNA) was used to silence specific gene expression. The pharmacologic concentration (1 mM) of melatonin significantly inhibited the migration and invasion of human U251 glioma cells under hypoxia. The inhibitory effect of melatonin was accompanied with the reduced phosphorylation of FAK and Pyk2, and decreased expression of alpha v beta 3 (αvβ3) integrin. Additionally, inhibition of αvβ3 integrin by siRNA reduced the phosphorylation of FAK/Pyk2 and demonstrated the similar anti-tumor effects as melatonin, suggesting the involvement of αvβ3 integrin- FAK/Pyk2 pathway in the anti-migratory and anti-invasive effect of melatonin. It was also found that melatonin treatment decreased the ROS levels in U251 glioma cells cultured under hypoxia. ROS inhibitor apocynin not only inhibited αvβ3 integrin expression and the phosphorylation levels of FAK and Pyk2, but also suppressed the migratory and invasive capacity of U251 glioma cells under hypoxia. These results suggest that

  1. Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk: A Report from the Glioma International Case-Control Study.

    PubMed

    Amirian, E Susan; Zhou, Renke; Wrensch, Margaret R; Olson, Sara H; Scheurer, Michael E; Il'yasova, Dora; Lachance, Daniel; Armstrong, Georgina N; McCoy, Lucie S; Lau, Ching C; Claus, Elizabeth B; Barnholtz-Sloan, Jill S; Schildkraut, Joellen; Ali-Osman, Francis; Sadetzki, Siegal; Johansen, Christoffer; Houlston, Richard S; Jenkins, Robert B; Bernstein, Jonine L; Merrell, Ryan T; Davis, Faith G; Lai, Rose; Shete, Sanjay; Amos, Christopher I; Melin, Beatrice S; Bondy, Melissa L

    2016-02-01

    Several previous studies have found inverse associations between glioma susceptibility and a history of allergies or other atopic conditions. Some evidence indicates that respiratory allergies are likely to be particularly relevant with regard to glioma risk. Using data from the Glioma International Case-Control Study (GICC), we examined the effects of respiratory allergies and other atopic conditions on glioma risk. The GICC contains detailed information on history of atopic conditions for 4,533 cases and 4,171 controls, recruited from 14 study sites across five countries. Using two-stage random-effects restricted maximum likelihood modeling to calculate meta-analysis ORs, we examined the associations between glioma and allergy status, respiratory allergy status, asthma, and eczema. Having a history of respiratory allergies was associated with an approximately 30% lower glioma risk, compared with not having respiratory allergies (mOR, 0.72; 95% confidence interval, 0.58-0.90). This association was similar when restricting to high-grade glioma cases. Asthma and eczema were also significantly protective against glioma. A substantial amount of data on the inverse association between atopic conditions and glioma has accumulated, and findings from the GICC study further strengthen the existing evidence that the relationship between atopy and glioma is unlikely to be coincidental. As the literature approaches a consensus on the impact of allergies in glioma risk, future research can begin to shift focus to what the underlying biologic mechanism behind this association may be, which could, in turn, yield new opportunities for immunotherapy or cancer prevention. ©2016 American Association for Cancer Research.

  2. Cancer Immunotherapy for Gliomas: Overview and Future Directions.

    PubMed

    Hashimoto, Naoya

    2016-07-15

    Immunotherapy has been highlighted because we have obtained much evidence, which includes theoretical backborn as well as favorable results from clinical trials. As immunotherapy gives an apparently different cytotoxic mechanism and a little adverse event, the promising results are getting a lot of attention. In this article, cancer immunotherapy for gliomas is reviewed thoroughly from the literature, focusing on the clinical trial results.

  3. Management of diffusely infiltrating glioma in the elderly.

    PubMed

    Wirsching, Hans-Georg; Happold, Caroline; Roth, Patrick; Weller, Michael

    2015-11-01

    Genetic, epigenetic, and expression analyses have refined the traditional, histopathology-based classification of diffusely infiltrating gliomas. This review summarizes these trends and implications for elderly patients. The vast majority of diffusely infiltrating gliomas in elderly patients share an unfavorable molecular phenotype, that is, telomerase reverse transcriptase promoter mutation in the absence of isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion. Histopathologically, these are mostly astrocytic tumors and treatment is guided by the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter. 1p/19q codeletion indicates oligodendroglial histology and benefit from the addition of procarbazine, chlorethyl-cyclohexyl-nitroso-urea/lomustine, and vincristine polychemotherapy to radiotherapy. These tumors are almost exclusively associated with IDH mutations, but their molecular profile is rare in elderly patients. Two large phase III trials, RTOG 0825 and AVAglio, failed to demonstrate an overall survival benefit from antiangiogenic therapy with bevacizumab added to combined chemoradiotherapy (TMZ) in patients with newly diagnosed glioblastoma, but a trend toward improved survival with increasing age can be noted. Ongoing clinical trials in elderly patients with diffusely infiltrating glioma will clarify the role of combined chemoradiotherapy, and of bevacizumab or other antiangiogenic agents as an adjunct to radiotherapy. The choice of first-line therapy in elderly patients with diffusely infiltrating glioma is between postoperative hypofractionated radiotherapy and chemotherapy, guided by MGMT methylation in most patients.

  4. Usefulness of FMISO—PET for Glioma Analysis

    PubMed Central

    Kobayashi, Hiroyuki; Hirata, Kenji; Yamaguchi, Shigeru; Terasaka, Shunsuke; Shiga, Tohru; Houkin, Kiyohiro

    2013-01-01

    Glioma is one of the most common brain tumors in adults. Its diagnosis and management have been determined by histological classifications. It is difficult to establish new paradigms because the pathology has matured and a great deal of knowledge has accumulated. On the other hand, we understand that there are limitations to this gold-standard because of the heterogeneity of glioma. Thus, it is necessary to find new criteria independent of conventional morphological diagnosis. Molecular imaging such as positron emission tomography (PET) is one of the most promising approaches to this challenge. PET provides live information of metabolism through the behavior of single molecules. The advantage of PET is that its noninvasive analysis does not require tissue sample, therefore examination can be performed repeatedly. This is very useful for capturing changes in the biological nature of tumor without biopsy. In the present clinical practice for glioma, 18F-fluorodeoxyglucose (FDG) PET is the most common tracer for predicting prognosis and differentiating other malignant brain tumors. Amino acid tracers such as 11C-methionine (MET) are the most useful for detecting distribution of glioma, including low-grade. Tracers to image hypoxia are under investigation for potential clinical use, and recently, 18F-fluoromisonidazole (FMISO) has been suggested as an effective tracer to distinguish glioblastoma multiforme from others. PMID:24172591

  5. Growth hormone and cancer: GH production and action in glioma?

    PubMed

    Lea, Robert W; Dawson, Timothy; Martinez-Moreno, Carlos G; El-Abry, Nasra; Harvey, Steve

    2015-09-01

    The hypersecretion of pituitary growth hormone (GH) is associated with an increased risk of cancer, while reducing pituitary GH signaling reduces this risk. Roles for pituitary GH in cancer are therefore well established. The expression of the GH gene is, however, not confined to the pituitary gland and it is now known to occur in many extrapituitary tissues, in which it has local autocrine or paracrine actions, rather than endocrine function. It is, for instance, expressed in cancers of the prostate, lung, skin, endometrium and colon. The oncogenicity of autocrine GH may also be greater than that induced by endocrine or exogenous GH, as higher concentrations of GHR antagonists are required to inhibit its actions. This may reflect the fact that autocrine GH is thought to act at intracellular receptors directly after synthesis, in compartments not readily accessible to endocrine (or exogenous) GH. The roles and actions of extrapituitary GH in cancer may therefore differ from those of pituitary GH. The possibility that GH may be expressed and act in glioma tumors was therefore examined by immunohistochemistry. These results demonstrate, for the first time, the presence of abundant GH- and GH receptor (GHR-) immunoreactivity in glioma, in which they were co-localized in cytoplasmic but not nuclear compartments. These results demonstrate that glioma differs from most cancers in lacking nuclear GHRs, but GH is nevertheless likely to have autocrine or paracrine actions in the induction and progression of glioma. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Neurodevelopmental Outcomes of Children with Low-Grade Gliomas

    ERIC Educational Resources Information Center

    Ris, M. Douglas; Beebe, Dean W.

    2008-01-01

    As a group, children with low-grade gliomas (LGGs) enjoy a high rate of long-term survival and do not require the intensity of neurotoxic treatments used with higher risk pediatric brain tumors. Because they are generally considered to have favorable neurobehavioral outcomes, they have not been studied as thoroughly as higher-grade brain tumors by…

  7. Mutant tristetraprolin: a potent inhibitor of malignant glioma cell growth

    USDA-ARS?s Scientific Manuscript database

    Malignant gliomas rely on the production of certain critical growth factors including VEGF, interleukin (IL)-6 and IL-8, to fuel rapid tumor growth, angiogenesis, and treatment resistance. Post-transcriptional regulation through adenine and uridine-rich elements of the 3' untranslated region is one ...

  8. Surgical oncology for gliomas: the state of the art.

    PubMed

    Sanai, Nader; Berger, Mitchel S

    2018-02-01

    Surgical resection remains the mainstay of treatment for patients with glioma of any grade. Maximal resection of the tumour is central to achieving long-term disease control; however, the relationship between the extent of glioma resection and actual clinical benefit for the patient is predicated on the balance between cytoreduction and neurological morbidity. For the neurosurgical oncologist, the clinical rationale for undertaking increasingly extensive resections has gained traction. In parallel, novel surgical techniques and technologies have been developed that help improve patient outcomes. During the past decade, neurosurgeons have leveraged advanced intraoperative imaging methods, fluorescence-based tumour biomarkers, and real-time mutational analyses to maximize the extent of tumour resection. In addition, approaches to minimizing the risk of perioperative morbidity continue to be improved through the combined use of stimulation-mapping techniques, corticospinal tract imaging, and stereotactic thermal ablation. Taken together, these modern principles of neurosurgical oncology bear little resemblance to historical therapeutic strategies for patients with glioma and have dramatically altered the approach to the treatment of patients with these brain tumours. Herein, we outline the state of the art in surgical oncology for gliomas.

  9. Senescence from glioma stem cell differentiation promotes tumor growth

    SciTech Connect

    Ouchi, Rie; Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550; Okabe, Sachiko

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such asmore » IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.« less

  10. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma.

    PubMed

    Zhang, Bo; Zhang, Yujie; Liao, Ziwei; Jiang, Ting; Zhao, Jingjing; Tuo, Yanyan; She, Xiaojian; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Hu, Yu; Pang, Zhiqing

    2015-01-01

    Now it is well evidenced that tumor growth is a comprehensive result of multiple pathways, and glioma parenchyma cells and stroma cells are closely associated and mutually compensatory. Therefore, drug delivery strategies targeting both of them simultaneously might obtain more promising therapeutic benefits. In the present study, we developed a multi-targeting drug delivery system modified with uPA-activated cell-penetrating peptide (ACPP) for the treatment of brain glioma (ANP). In vitro experiments demonstrated nanoparticles (NP) decorated with cell-penetrating peptide (CPP) or ACPP could significantly improve nanoparticles uptake by C6 glioma cells and nanoparticles penetration into glioma spheroids as compared with traditional NP and thus enhanced the therapeutic effects of its payload when paclitaxel (PTX) was loaded. In vivo imaging experiment revealed that ANP accumulated more specifically in brain glioma site than NP decorated with or without CPP. Brain slides further showed that ACPP contributed to more nanoparticles accumulation in glioma site, and ANP could co-localize not only with glioma parenchyma cells, but also with stroma cells including neo-vascular cells and tumor associated macrophages. The pharmacodynamics results demonstrated ACPP could significantly improve the therapeutic benefits of nanoparticles by significantly prolonging the survival time of glioma bearing mice. In conclusion, the results suggested that nanoparticles modified with uPA-sensitive ACPP could reach multiple types of cells in glioma tissues and provide a novel strategy for glioma targeted therapy.

  11. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication.

    PubMed

    Lin, Qingtang; Liu, Zhao; Ling, Feng; Xu, Geng

    2016-02-01

    Gliomas are the most common type of primary brain tumor. Using current standard treatment regimens, the prognosis of patients with gliomas remains poor, which is predominantly due to the resistance of glioma cells to chemotherapy. The organ microenvironment has been implicated in the pathogenesis and survival of tumor cells. Thus, the aim of the present study was to test the hypothesis that astrocytes (the housekeeping cells of the brain microenvironment) may protect glioma cells from chemotherapy and to investigate the underlying mechanism. Immunofluorescent and scanning electron microscopy demonstrated that glioma cells were surrounded and infiltrated by activated astrocytes. In vitro co-culture of glioma cells with astrocytes significantly reduced the cytotoxic effects on glioma cells caused by various chemotherapeutic agents, as demonstrated by fluorescein isothiocyanate-propidium iodide flow cytometry. Transwell experiments indicated that this protective effect was dependent on physical contact and the gap junctional communication (GJC) between astrocytes and glioma cells. Microarray expression profiling further revealed that astrocytes upregulated the expression levels of various critical survival genes in the glioma cells via GJC. The results of the present study indicated that the organ microenvironment may affect the biological behavior of tumor cells and suggest a novel mechanism of resistance in glioma cells, which may be of therapeutic relevance clinically.

  12. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation.

    PubMed

    Jiang, Rifeng; Jiang, Jingjing; Zhao, Lingyun; Zhang, Jiaxuan; Zhang, Shun; Yao, Yihao; Yang, Shiqi; Shi, Jingjing; Shen, Nanxi; Su, Changliang; Zhang, Ju; Zhu, Wenzhen

    2015-12-08

    Conventional diffusion imaging techniques are not sufficiently accurate for evaluating glioma grade and cellular proliferation, which are critical for guiding glioma treatment. Diffusion kurtosis imaging (DKI), an advanced non-Gaussian diffusion imaging technique, has shown potential in grading glioma; however, its applications in this tumor have not been fully elucidated. In this study, DKI and diffusion weighted imaging (DWI) were performed on 74 consecutive patients with histopathologically confirmed glioma. The kurtosis and conventional diffusion metric values of the tumor were semi-automatically obtained. The relationships of these metrics with the glioma grade and Ki-67 expression were evaluated. The diagnostic efficiency of these metrics in grading was further compared. It was demonstrated that compared with the conventional diffusion metrics, the kurtosis metrics were more promising imaging markers in distinguishing high-grade from low-grade gliomas and distinguishing among grade II, III and IV gliomas; the kurtosis metrics also showed great potential in the prediction of Ki-67 expression. To our best knowledge, we are the first to reveal the ability of DKI to assess the cellular proliferation of gliomas, and to employ the semi-automatic method for the accurate measurement of gliomas. These results could have a significant impact on the diagnosis and subsequent therapy of glioma.

  13. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan, E-mail: zoulijuantg@126.com

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9more » expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.« less

  14. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    SciTech Connect

    Chen, Jianguo; Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province; Sun, Jie

    2015-10-09

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the releasemore » of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.« less

  15. Glioma-Derived Platelet-Derived Growth Factor-BB Recruits Oligodendrocyte Progenitor Cells via Platelet-Derived Growth Factor Receptor-α and Remodels Cancer Stroma.

    PubMed

    Zheng, Yang; Yamamoto, Seiji; Ishii, Yoko; Sang, Yang; Hamashima, Takeru; Van De, Nguyen; Nishizono, Hirofumi; Inoue, Ran; Mori, Hisashi; Sasahara, Masakiyo

    2016-05-01

    Glioma is an aggressive and incurable disease, and is frequently accompanied by augmented platelet-derived growth factor (PDGF) signaling. Overexpression of PDGF-B ligand characterizes a specific subclass of glioblastoma multiforme, but the significance of the ligand remains to be elucidated. For this end, we implanted a glioma-cell line transfected with PDGF-BB-overexpressing vector (GL261-PDGF-BB) or control vector (GL261-vector) into wild-type mouse brain, and examined the effect of glioma-derived PDGF on the tumor microenvironment. The volume of GL261-PDGF-BB rapidly increased compared with GL261-vector. Recruitment of many PDGF receptor (PDGFR)-α and Olig2-positive oligodendrocyte precursor cells and frequent hemorrhages were observed in GL261-PDGF-BB but not in GL261-vector. We then implanted GL261-PDGF-BB into the mouse brain with and without Pdgfra gene inactivation, corresponding to PDGFRα-knockout (KO) and Flox mice, respectively. The recruitment of oligodendrocyte precursor cells was largely suppressed in PDGFRα-KO than in Flox, whereas the volume of GL261-PDGF-BB was comparable between the two genotypes. Frequent hemorrhage and increased IgG-leakage were associated with aberrant vascular structures within the area where many recruited oligodendrocyte precursor cells accumulated in Flox. In contrast, these vascular phenotypes were largely normalized in PDGFRα-KO. Increased matrix metalloproteinase-9 in recruited oligodendrocyte precursor cells and decreased claudin-5 in vasculature may underlie the vascular abnormality. Glioma-derived PDGF-B signal induces cancer stroma characteristically seen in high-grade glioma, and should be therapeutically targeted to improve cancer microenvironment. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells

    PubMed Central

    Li, Xue-Tao; Ju, Rui-Jun; Li, Xiu-Ying; Zeng, Fan; Shi, Ji-Feng; Liu, Lei; Zhang, Cheng-Xiang; Sun, Meng-Ge; Lou, Jin-Ning; Lu, Wan-Liang

    2014-01-01

    Most anticancer drugs are not able to cross the blood-brain barrier (BBB) effectively while surgery and radiation therapy cannot eradicate brain glioma cells and glioma stem cells (GSCs), hence resulting in poor prognosis with high recurrence rates. In the present study, a kind of multifunctional targeting daunorubicin plus quinacrine liposomes was developed for treating brain glioma and GSCs. Evaluations were performed on in-vitro BBB model, murine glioma cells, GSCs, and GSCs bearing mice. Results showed that the multifunctional targeting daunorubicin plus quinacrine liposomes exhibited evident capabilities in crossing the BBB, in killing glioma cells and GSCs and in diminishing brain glioma in mice. Action mechanism studies indicated that the enhanced efficacy of the multifunctional targeting drugs-loaded liposomes could be due to the following aspects: evading the rapid elimination from blood circulation; crossing the BBB effectively; improving drug uptake by glioma cells and GSCs; down-regulating the overexpressed ABC transporters; inducing apoptosis of GSCs via up-regulating apoptotic receptor/ligand (Fas/Fasl), activating apoptotic enzymes (caspases 8, 9 and 3), activating pro-apoptotic proteins (Bax and Bok), activating tumor suppressor protein (P53) and suppressing anti-apoptotic proteins (Bcl-2 and Mcl-1). In conclusion, the multifunctional targeting daunorubicin plus quinacrine liposomes could be used as a potential therapy for treating brain glioma and GSCs. PMID:25153726

  17. Silencing of the TPM1 gene induces radioresistance of glioma U251 cells.

    PubMed

    Du, Hua-Qing; Wang, Ying; Jiang, Yao; Wang, Chen-Han; Zhou, Tao; Liu, Hong-Yi; Xiao, Hong

    2015-06-01

    The present study was designed to investigate the relationship between tropomyosin 1 (TPM1) and radioresistance in human U251 cells. Radioresistant U251 (RR-U251) cells were established by repeated small irradiating injury. TPM1 levels in the U251 and RR-U251 cells were inhibited by transfection with TPM1-short hairpin RNA (shRNA) while overexpression was induced by treatment with pcDNA3.1‑TPM1. The radiosensitivity of the U251 and RR-U251 cells and the plasmid-transfected cells was evaluated by cell viability, migration and invasion assays. Cell apoptosis was also examined in vitro. The radiosensitivity of U251 xenografts was observed by tumor growth curve after radiotherapy in an in vivo experiment. Western blotting and immunohistochemistry were used to detect the level of TPM1 in vivo. The expression of TPM1 was significantly decreased in the RR-U251 cells, which may be correlated with the radioresistance of the glioma U251 cells. In the TPM1-silenced RR-U251 and TPM1-silenced U251 cells, cell viability, migration and invasion ability were significantly increased, and the rate of cell apoptosis was decreased. Consistent with these results, in the TPM1-overexpressing U251 and RR-U251 cells, cell viability, migration and invasion abilities were markedly decreased, and increased apoptosis was noted when compared to the control group. Tumor growth of the U251 xenografts was significantly inhibited following treatment with pcDNA3.1‑TPM1 combined with radiotherapy. Taken together, these results indicate that TPM1 may be one mechanism underlying radiation resistance, and TPM1 may be a potential target for overcoming the radiation resistance in glioma.

  18. Vorinostat, Temozolomide, or Bevacizumab in Combination With Radiation Therapy Followed by Bevacizumab and Temozolomide in Young Patients With Newly Diagnosed High-Grade Glioma

    ClinicalTrials.gov

    2017-10-11

    Brain Stem Glioma; Cerebral Astrocytoma; Childhood Cerebellar Anaplastic Astrocytoma; Childhood Cerebral Anaplastic Astrocytoma; Childhood Spinal Cord Neoplasm; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebral Astrocytoma

  19. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells.

    PubMed

    Sauvageot, Claire Marie-Elisabeth; Weatherbee, Jessica Leigh; Kesari, Santosh; Winters, Susan Elizabeth; Barnes, Jessica; Dellagatta, Jamie; Ramakrishna, Naren Raj; Stiles, Charles Dean; Kung, Andrew Li-Jen; Kieran, Mark W; Wen, Patrick Yung Chih

    2009-04-01

    Glioblastoma multiforme (GBM) arises from genetic and signaling abnormalities in components of signal transduction pathways involved in proliferation, survival, and the cell cycle axis. Studies to date with single-agent targeted molecular therapy have revealed only modest effects in attenuating the growth of these tumors, suggesting that targeting multiple aberrant pathways may be more beneficial. Heat-shock protein 90 (HSP90) is a molecular chaperone that is involved in the conformational maturation of a defined group of client proteins, many of which are deregulated in GBM. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a well-characterized HSP90 inhibitor that should be able to target many of the aberrant signal transduction pathways in GBM. We assessed the ability of 17-AAG to inhibit the growth of glioma cell lines and glioma stem cells both in vitro and in vivo and assessed its ability to synergize with radiation and/or temozolomide, the standard therapies for GBM. Our results reveal that 17-AAG is able to inhibit the growth of both human glioma cell lines and glioma stem cells in vitro and is able to target the appropriate proteins within these cells. In addition, 17-AAG can inhibit the growth of intracranial tumors and can synergize with radiation both in tissue culture and in intracranial tumors. This compound was not found to synergize with temozolomide in any of our models of gliomas. Our results suggest that HSP90 inhibitors like 17-AAG may have therapeutic potential in GBM, either as a single agent or in combination with radiation.

  20. Differential regulation of cdk2 and cyclin D1 in irradiated human glioma cells.

    PubMed

    Pykett, M; Azzam, E; Little, J

    1997-01-01

    We have utilized a series of glioma cell lines to study the effects of ionizing radiation on the regulation of proteins that contribute to cell cycle progression. While no alterations of cyclin E or cdk4 were detected, a high percentage of glioma cell lines exhibited constitutive overexpression of cdk2 protein and aberrant patterns of cyclin D1 protein. The fraction of glioma cells expressing cdk2 was similar to that observed in normal astrocytes, but individual glioma cells overexpressed cdk2. In response to ionizing radiation, both cyclin D1 and cdk2 accumulated in control cells but not in gliomas with overexpressed cdk2 or aberrant cyclin D1. These novel findings provide the first evidence of altered cyclin-cdk regulation in gliomas in response to ionizing radiation.

  1. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics

    PubMed Central

    Lv, Donglai; Yu, Shi-cang; Ping, Yi-fang; Wu, Haibo; Zhao, Xilong; Zhang, Huarong; Cui, Youhong; Chen, Bing; Zhang, Xia; Dai, Jianwu

    2016-01-01

    Three-dimensional (3D) culture, which can simulate in vivo microenvironments, has been increasingly used to study tumor cell biology. Since most preclinical anti-glioma drug tests still rely on conventional 2D cell culture, we established a collagen scaffold for 3D glioma cell culture. Glioma cells cultured on these 3D scaffolds showed greater degree of dedifferentiation and quiescence than cells in 2D culture. 3D-cultured cells also exhibited enhanced resistance to chemotherapeutic alkylating agents, with a much higher proportion of glioma stem cells and upregulation of O6-methylguanine DNA methyltransferase (MGMT). Importantly, tumor cells in 3D culture showed chemotherapy resistance patterns similar to those observed in glioma patients. Our results suggest that 3D collagen scaffolds are promising in vitro research platforms for screening new anti-glioma therapeutics. PMID:27486877

  2. The value of 201thallium-SPECT imaging in childhood brainstem gliomas.

    PubMed

    Nadvi, S S; Ebrahim, F S; Corr, P

    1998-08-01

    To compare 201thallium (T1) uptake and SPECT with MRI in children with brainstem gliomas. Ten children with brainstem gliomas were prospectively evaluated by 201Tl-SPECT and MRI. Histological verification was obtained in eight children - two died prior to surgery. Quantitative thallium uptake index (UI) was obtainable in five cases and was compared to tumour grade. In addition, two patients with known benign brainstem lesions (neurofibromatosis and tuberculoma) were similarly prospectively evaluated. All children with brainstem glioma accumulated thallium. (Mean U1 3.23, 100% sensitivity). The single patient with brainstem tuberculoma also accumulated thallium (UI 2.80, 91.7% specificity). There was no correlation between thallium uptake and tumour grade. Uptake could not be conclusively correlated with the following MR features: gadolinium enhancement, exophytic or intrinsic gliomas, necrosis and location of glioma within the brainstem. 201T1-SPECT is a promising imaging adjunct in the assessment of childhood brainstem gliomas.

  3. Effect of 5-Aza-2'-deoxycytidine on SLC22A18 in glioma U251 cells.

    PubMed

    Chu, Sheng-Hua; Ma, Yan-Bin; Feng, Dong-Fu; Zhang, Hong; Qiu, Jian-Hua; Zhu, Zhi-An

    2012-01-01

    SLC22A18 [solute carrier family 22 (organic cation transporter) member 18] is located within the 11p15.5 cluster, and may be a new tumor suppressor gene; evidence of SLC22A18 hypermethylation is documented in several types of human cancers. In order to determine whether SLC22A18 hypermethylation is involved in glioma, we determined the SLC22A18 gene protein expression, mRNA expression and methylation status in glioma U251 cells before and after treatment with 5-Aza-2'‑deoxycytidine (5-Aza-CdR), and observed the change in growth. Glioma U251 cells treated with 5-Aza-CdR were analyzed by flow cytometry to identify any change in their cell cycle profiles. Tumors induced via the injection of untreated U251 cells were measured. Immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and PCR-based methylation assay were carried out to determine SLC22A18 gene protein expression, mRNA expression and methylation status in glioma U251 cells before and after treatment with 5-Aza‑CdR. The treated cells showed an increase in their proportion in G1, from 79.2 to 83.5%, and a decrease in S phase, from 12.4 to 5.8%. The apoptotic rate increased from 6.4 to 15.8%. Tumors induced via the injection of untreated U251 cells were approximately 1.46 cm³ in size, whereas the tumors induced by U251 cells treated with 5-Aza-CdR averaged 0.88 cm³ in size. The expression levels of SLC22A18 protein and mRNA in U251 cells were increased following treatment with 5x10⁻⁷ M 5-Aza‑CdR. Prior to 5-Aza-CdR treatment, the SLC22A18 gene demonstrated hypermethylation and therefore could not be cleaved by HpaII and MspI. It is known that only the DNA digested with HpaII or MspI can be amplified. Following treatment with 5-Aza‑CdR, the SLC22A18 gene became demethylated, and could then be cleaved by both of the enzymes, and this failed to be amplified. 5-Aza-cdR may induce glioma U251 cell division and apoptosis and enhance demethylation and protein and mRNA expression

  4. Subjective Quality of Life in Persons with Low-Grade Glioma and Their Next of Kin

    ERIC Educational Resources Information Center

    Edvardsson, Tanja I.; Ahlstrom, Gerd I.

    2009-01-01

    Patients with low-grade glioma have a longer survival than patients with highly malignant glioma, and for this reason questions of quality of life (QoL) are of particular importance to such patients as well as to their next of kin. No studies have been found in which both adult patients with low-grade glioma and their next of kin have estimated…

  5. Glioma Cell Proliferation Controlled by ERK Activity-Dependent Surface Expression of PDGFRA

    PubMed Central

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G.; Renström, Erik

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  6. Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells.

    PubMed

    Caja, Laia; Tzavlaki, Kalliopi; Dadras, Mahsa S; Tan, E-Jean; Hatem, Gad; Maturi, Naga P; Morén, Anita; Wik, Lotta; Watanabe, Yukihide; Savary, Katia; Kamali-Moghaddan, Masood; Uhrbom, Lene; Heldin, Carl-Henrik; Moustakas, Aristidis

    2018-02-16

    Glioblastoma multiforme is a brain malignancy characterized by high heterogeneity, invasiveness, and resistance to current therapies, attributes related to the occurrence of glioma stem cells (GSCs). Transforming growth factor β (TGFβ) promotes self-renewal and bone morphogenetic protein (BMP) induces differentiation of GSCs. BMP7 induces the transcription factor Snail to promote astrocytic differentiation in GSCs and suppress tumor growth in vivo. We demonstrate that Snail represses stemness in GSCs. Snail interacts with SMAD signaling mediators, generates a positive feedback loop of BMP signaling and transcriptionally represses the TGFB1 gene, decreasing TGFβ1 signaling activity. Exogenous TGFβ1 counteracts Snail function in vitro, and in vivo promotes proliferation and re-expression of Nestin, confirming the importance of TGFB1 gene repression by Snail. In conclusion, novel insight highlights mechanisms whereby Snail differentially regulates the activity of the opposing BMP and TGFβ pathways, thus promoting an astrocytic fate switch and repressing stemness in GSCs.

  7. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    NASA Astrophysics Data System (ADS)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-11-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  8. Overexpression of NIMA-related kinase 2 is associated with poor prognoses in malignant glioma.

    PubMed

    Liu, Huajie; Liu, Bin; Hou, Xianzeng; Pang, Bo; Guo, Pengbo; Jiang, Wanli; Ding, Qian; Zhang, Rui; Xin, Tao; Guo, Hua; Xu, Shangchen; Pang, Qi

    2017-05-01

    Eleated expression of NIMA-related kinase 2 (NEK2) was frequently observed in a variety of malignant cancers, and it appears to be involved in the initiation, maintenance, progression, metastasis of cancer and is positively associated with poor prognosis. We sought to investigate NEK2 expression and its predictive roles in malignant gliomas, and study the correlation of NEK2 protein expression with proliferation, clinical parameters, overall survival and some other parameters. We investigate NEK2 protein expression in 99 samples of malignant gliomas, including 35 WHO grade II, 22 grade III, and 42 grade IV gliomas, by immunohistochemistry and western blot (n = 50). We then made correlative analysis of protein overexpression using the Kaplan-Meier method, Log rank test, and Cox proportional-hazards model analysis. NEK2 protein was overexpressed in malignant gliomas, but not in normal brain tissues. Overexpression of NEK2 correlated with malignancy, proliferation and adverse overall survival in gliomas. Moreover, chemotherapy, resection extent and WHO grade also correlate with overall survival in gliomas. However, within WHO grade II glioma subgroup, NEK2 overexpression showed no impact on overall survival. The present study firstly reveals that NEK2 protein is widely overexpressed in gliomas. NEK2 overexpression correlates significantly with malignancy (WHO grades), proliferation (Ki-67) and prognosis in malignant gliomas. NEK2 is a potential gene therapy target and prognostic indicator.

  9. Significance of perivascular tumour cells defined by CD109 expression in progression of glioma.

    PubMed

    Shiraki, Yukihiro; Mii, Shinji; Enomoto, Atsushi; Momota, Hiroyuki; Han, Yi-Peng; Kato, Takuya; Ushida, Kaori; Kato, Akira; Asai, Naoya; Murakumo, Yoshiki; Aoki, Kosuke; Suzuki, Hiromichi; Ohka, Fumiharu; Wakabayashi, Toshihiko; Todo, Tomoki; Ogawa, Seishi; Natsume, Atsushi; Takahashi, Masahide

    2017-12-01

    In the progression of glioma, tumour cells often exploit the perivascular microenvironment to promote their survival and resistance to conventional therapies. Some of these cells are considered to be brain tumour stem cells (BTSCs); however, the molecular nature of perivascular tumour cells has not been specifically clarified because of the complexity of glioma. Here, we identified CD109, a glycosylphosphatidylinositol-anchored protein and regulator of multiple signalling pathways, as a critical regulator of the progression of lower-grade glioma (World Health Organization grade II/III) by clinicopathological and whole-genome sequencing analysis of tissues from human glioma. The importance of CD109-positive perivascular tumour cells was confirmed not only in human lower-grade glioma tissues but also in a mouse model that recapitulated human glioma. Intriguingly, BTSCs isolated from mouse glioma expressed high levels of CD109. CD109-positive BTSCs exerted a proliferative effect on differentiated glioma cells treated with temozolomide. These data reveal the significance of tumour cells that populate perivascular regions during glioma progression, and indicate that CD109 is a potential therapeutic target for the disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Role of NOD- like Receptors in Glioma Angiogenesis: Insights into future therapeutic interventions.

    PubMed

    Saxena, Shivanjali; Jha, Sushmita

    2017-04-01

    Gliomas are the most common solid tumors among central nervous system tumors. Most glioma patients succumb to their disease within two years of the initial diagnosis. The median survival of gliomas is only 14.6 months, even after aggressive therapy with surgery, radiation, and chemotherapy. Gliomas are heavily infiltrated with myeloid- derived cells and endothelial cells. Increasing evidence suggests that these myeloid- derived cells interact with tumor cells promoting their growth and migration. NLRs (nucleotide-binding oligomerization domain (NOD)-containing protein like receptors) are a class of pattern recognition receptors that are critical to sensing pathogen and danger associated molecular patterns. Mutations in some NLRs lead to autoinflammatory diseases in humans. Moreover, dysregulated NLR signaling is central to the pathogenesis of several cancers, autoimmune and neurodegenerative diseases. Our review explores the role of angiogenic factors that contribute to upstream or downstream signaling pathways leading to NLRs. Angiogenesis plays a significant role in the pathogenesis of variety of tumors including gliomas. Though NLRs have been detected in several cancers including gliomas and NLR signaling contributes to angiogenesis, the exact role and mechanism of involvement of NLRs in glioma angiogenesis remain largely unexplored. We discuss cellular, molecular and genetic studies of NLR signaling and convergence of NLR signaling pathways with angiogenesis signaling in gliomas. This may lead to re-appropriation of existing anti-angiogenic therapies or development of future strategies for targeted therapeutics in gliomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Setting the Stage for Personalized Treatment of Glioma | Center for Cancer Research

    Cancer.gov

    Gliomas, the most common type of primary brain tumors in adults, arise from different types of glial cells, which support and protect the neurons of the central nervous system. How a patient’s glioma is treated depends in part on the type of glial cell from which the tumor developed. Classification of gliomas has traditionally been done by microscopic analysis of tumor sections. This process is subjective and prone to inconsistencies, which may explain in part the wide-ranging and often suboptimal responses of gliomas to treatment.  

  12. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    PubMed

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P < 0.05). Downregulated the expression of CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  13. Erlotinib Hydrochloride and Isotretinoin in Treating Patients With Recurrent Malignant Glioma

    ClinicalTrials.gov

    2017-05-25

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Recurrent Adult Brain Tumor

  14. Forkhead Box A2 (FOXA2) Inhibits Invasion and Tumorigenesis in Glioma Cells.

    PubMed

    Ding, Bingqian; Liang, Huimin; Gao, Ming; Li, Zhenjiang; Xu, Chenyang; Fan, Shaokang; Chang, Na

    2017-05-24

    The forkhead box A2 (FOXA2) is the key transcriptional factor that plays an important role in tumorigenesis. However, until now the expression pattern and role of FOXA2 in glioma have yet to be elucidated. Therefore, the aim of this study was to evaluate the expression of FOXA2 in glioma and investigate its role in glioma cells. Our data showed that FOXA2 was significantly downregulated in human glioma cell lines. Forced expression of FOXA2 suppressed the ability of glioma cells to proliferate, migrate, and invade and influenced the expression level of EMT-associated proteins. In addition, forced expression of FOXA2 attenuated tumor growth of glioma in a nude mouse xenograft model. Mechanistically, we disclosed that forced expression of FOXA2 greatly downregulated the expression of β-catenin, cyclin D1, and c-Myc in glioma cells. Taken together, these results show that FOXA2 may play an important role in proliferation, invasion, and tumorigenesis in glioma cells. Thus, FOXA2 may be a potential therapeutic target for the treatment of glioma.

  15. MYB-QKI rearrangements in Angiocentric Glioma drive tumorigenicity through a tripartite mechanism

    PubMed Central

    Bandopadhayay, Pratiti; Ramkissoon, Lori A.; Jain, Payal; Bergthold, Guillaume; Wala, Jeremiah; Zeid, Rhamy; Schumacher, Steven E.; Urbanski, Laura; O’Rourke, Ryan; Gibson, William J.; Pelton, Kristine; Ramkissoon, Shakti H.; Han, Harry J.; Zhu, Yuankun; Choudhari, Namrata; Silva, Amanda; Boucher, Katie; Henn, Rosemary E.; Kang, Yun Jee; Knoff, David; Paolella, Brenton R.; Gladden-Young, Adrianne; Varlet, Pascale; Pages, Melanie; Horowitz, Peleg M.; Federation, Alexander; Malkin, Hayley; Tracy, Adam; Seepo, Sara; Ducar, Matthew; Hummelen, Paul Van; Santi, Mariarita; Buccoliero, Anna Maria; Scagnet, Mirko; Bowers, Daniel C.; Giannini, Caterina; Puget, Stephanie; Hawkins, Cynthia; Tabori, Uri; Klekner, Almos; Bognar, Laszlo; Burger, Peter C.; Eberhart, Charles; Rodriguez, Fausto J.; Hill, D. Ashley; Mueller, Sabine; Haas-Kogan, Daphne A.; Phillips, Joanna J.; Santagata, Sandro; Stiles, Charles D.; Bradner, James E.; Jabado, Nada; Goren, Alon; Grill, Jacques; Ligon, Azra H.; Goumnerova, Liliana; Waanders, Angela J.; Storm, Phillip B.; Kieran, Mark W.; Ligon, Keith L.; Beroukhim, Rameen; Resnick, Adam C.

    2016-01-01

    Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs including 19 Angiocentric Gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in Angiocentric Gliomas. In vitro and in vivo functional studies show MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression, and hemizygous loss of the tumor suppressor QKI. This represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor. PMID:26829751

  16. KIF23 is an independent prognostic biomarker in glioma, transcriptionally regulated by TCF-4

    PubMed Central

    Yang, Zhengxiang; Wu, Yiping; Wang, Hongjun; Bao, Zhaoshi; Jiang, Tao

    2016-01-01

    Kinesin family member 23 (KIF23), a nuclear protein and a key regulator of cellular cytokinesis, has been found to be overexpressed as an oncogene in glioma. However, the prognostic and clinicopathological features of glioma with KIF23 expression was not clear yet. Here, we analyzed KIF23 expression pattern by using whole genome mRNA expression microarray data from Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn), and found that KIF23 overexpression was significantly associated with high grade glioma as well as the higher mortality in survival analysis (log-rank test, p<0.01). The results of the three other validation datasets showed similar findings. Furthermore, KIF23 also served as an independent prognostic biomarker in glioma patients. Finally, functional assay showed that reduction of KIF23 suppressed glioma cell proliferation both in vivo and vitro. Additionally, we found that KIF23 was regulated by TCF-4 at transcriptionally level. Therefore, this evidence indicates KIF23 over-expression is associated with glioma malignancy and conferred a worse survival time in glioma, which suggests KIF23 is a new novel prognostic biomarker with potential therapeutic implications in glioma. PMID:27013586

  17. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhongjun; Duan, Jinhong; Wang, Chen; Fang, Ying; Yang, Xian-Da

    2014-06-01

    Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma, but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as the study model. Pulsing DCs with a glioma peptide antigen (Ag) generated a limited anti-glioma response compared to un-pulsed DCs. Pulsing DCs with GO alone failed to produce obvious immune modulation effects. However, stimulating DCs with a mixture of GO and Ag (GO-Ag) significantly enhanced the anti-glioma immune reaction ( p < 0.05). The secretion of interferon gamma (IFN-γ) by the lymphocytes was also markedly boosted by GO-Ag. Additionally, the anti-glioma immune response induced by GO-Ag appeared to be target-specific. Furthermore, at the concentration used in this study, GO exhibited a negligible effect on the viability of the DCs. These results suggested that GO might have potential utility for boosting a DC-mediated anti-glioma immune response.

  18. Adhesion molecules and the extracellular matrix as drug targets for glioma.

    PubMed

    Shimizu, Toshihiko; Kurozumi, Kazuhiko; Ishida, Joji; Ichikawa, Tomotsugu; Date, Isao

    2016-04-01

    The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.

  19. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma.

    PubMed

    Munck Af Rosenschold, Per; Costa, Junia; Engelholm, Svend Aage; Lundemann, Michael J; Law, Ian; Ohlhues, Lars; Engelholm, Silke

    2015-05-01

    We sought to assess the impact of amino-acid (18)F-fluoro-ethyl-tyrosine (FET) positron emission tomography (PET) on the volumetric target definition for radiation therapy of high-grade glioma versus the current standard using MRI alone. Specifically, we investigated the influence of tumor grade, MR-defined tumor volume, and the extent of surgical resection on PET positivity. Fifty-four consecutive high-grade glioma patients (World Health Organization grades III-IV) with confirmed histology were scanned using FET-PET/CT and T1 and T2/fluid attenuated inversion recovery MRI. Gross tumor volume and clinical target volumes (CTVs) were defined in a blinded fashion based on MRI and subsequently PET, and volumetric analysis was performed. The extent of the surgical resection was reviewed using postoperative MRI. Overall, for ∼ 90% of the patients, the PET-positive volumes were encompassed by T1 MRI with contrast-defined tumor plus a 20-mm margin. The tumor volume defined by PET was larger for glioma grade IV (P < .001) and smaller for patients with more extensive surgical resection (P = .004). The margin required to be added to the MRI-defined tumor in order to fully encompass the FET-PET positive volume tended to be larger for grade IV tumors (P = .018). With an unchanged CTV margin and by including FET-PET for gross tumor volume definition, the CTV will increase moderately for most patients, and quite substantially for a minority of patients. Patients with grade IV glioma were found to be the primary candidates for PET-guided radiation therapy planning. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Armodafinil in Reducing Cancer-Related Fatigue in Patients With High Grade Glioma | Division of Cancer Prevention

    Cancer.gov

    This randomized phase III trial studies armodafinil to see how well it works in reducing cancer-related fatigue in patients with high grade glioma. Armodafinil may help relieve fatigue in patients with high grade glioma. |

  1. WEE1 Inhibitor AZD1775 and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas

    ClinicalTrials.gov

    2018-04-30

    Anaplastic Astrocytoma; Anaplastic Oligoastrocytoma; Diffuse Intrinsic Pontine Glioma; Diffuse Midline Glioma, H3 K27M-Mutant; Glioblastoma; Gliosarcoma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  2. The Effect of Molecular Diagnostics on the Treatment of Glioma.

    PubMed

    Bush, Nancy Ann Oberheim; Butowski, Nicholas

    2017-04-01

    This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.

  3. High- and low-grade glioma differentiation: the role of percentage signal recovery evaluation in MR dynamic susceptibility contrast imaging.

    PubMed

    Aprile, Italo; Giovannelli, Giorgia; Fiaschini, Paola; Muti, Marco; Kouleridou, Anna; Caputo, Nevia

    2015-10-01

    Evaluation of cerebral blood volume (CBV) with magnetic resonance (MR) imaging can differentiate low-grade from high-grade gliomas. The percentage of signal recovery (PSR) in the venous phase of perfusion curves is inversely proportional to blood-brain barrier (BBB) permeability. Since even BBB permeability relates to glioma malignancy grade, we carried out a comparative evaluation between CBV and PSR to characterise cerebral gliomas. Forty-nine patients with cerebral gliomas were studied with MR perfusion imaging. In all tumours, both maximum CBV and minimum PSR were calculated. The difference between the CBV and PSR mean values among the low-grade and high-grade gliomas was assessed using statistical methods. We also examined whether there was an additional difference between low-grade and grade III gliomas. Finally, CBV and PSR diagnostic sensitivity and specificity in identifying low-grade gliomas compared to all gliomas and low-grade gliomas compared to all gliomas excluding glioblastomas was assessed. A significant difference between low-grade and high-grade gliomas with both CBV and PSR was demonstrated. Conversely, there was a significant difference between low-grade and grade III gliomas only with PSR, while CBV did not show significant difference. Finally, superior sensitivity and specificity of PSR compared to CBV in identifying low-grade gliomas was demonstrated both compared to all gliomas and all gliomas excluding glioblastomas. The PSR evaluation proved better than CBV for determining the grade of brain and is therefore a useful tool to be considered in the MR evaluation of gliomas.

  4. Intratumoral heterogeneity of malignant gliomas measured in vitro

    SciTech Connect

    Allam, A.; Taghian, A.; Gioioso, D.

    1993-09-20

    The purpose of the study was to evaluate the extent of intratumoral heterogeneity of radiation sensitivity in malignant gliomas, by comparing the intrinsic radiation sensitivity of different glioma sublines derived from the same tumor. The study was performed on five early established malignant gliomas (passage 3-10). Each specimen was quickly cut into three equal pieces (except for one specimen, where only two pieces were obtained). Each piece was processed independently, disintegrated into single cell suspension using a cocktail of enzymes. Survival curve assays, using colony formation as an end-point, were performed for each subline. Comparison between the intrinsic radiation sensitivitymore » of sublines was calculated using the surviving fraction at 2 Gy and the mean inactivation dose as the measured parameters. The DNA content of the cell lines as well as their cell cycle analysis was determined using flow cytometry. The mean calculated surviving fraction at 2 Gy of all the sublines was 0.37, the mean mean inactivation dose was 1.98. The intertumoral coefficient of variation for the calculated surviving fraction at a statistically significant difference in the surviving fraction at 2 Gy and mean inactivation dose values of their sublines. This difference in radiation sensitivity between sublines of the same tumor was not attributed to a difference either in the ploidy status or in the distribution of cells in the cell cycle. There is a significant intratumoral heterogeneity of radiation sensitivity in some malignant gliomas. This heterogeneity may limit the predictive power of surviving fraction at 2 Gy or mean inactivation dose, especially when their values are based upon a single measurement/single biopsy. In the meantime, this heterogeneity may be a factor in the discrepancy between unexpectedly sensitive tumor cell lines in vitro and their high clinical radiation resistance. 20 refs., 3 figs., 2 tabs.« less

  5. Jerking & confused: Leucine-rich glioma inactivated 1 receptor encephalitis.

    PubMed

    Casault, Colin; Alikhani, Katayoun; Pillay, Neelan; Koch, Marcus

    2015-12-15

    This is a case of autoimmune encephalitis with features of faciobrachial dystonic seizures (FBDS) pathognomonic for Leucine Rich Glioma inactivated (LGI)1 antibody encephalitis. This voltage-gated potassium channel complex encephalitis is marked by rapid onset dementia, FBDS and hyponatremia, which is sensitive to management with immunotherapy including steroids, IVIG and other agents. In this case report we review the clinical features, imaging and management of this condition. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Mutant IDH1 and seizures in patients with glioma.

    PubMed

    Chen, Hao; Judkins, Jonathon; Thomas, Cheddhi; Wu, Meijing; Khoury, Laith; Benjamin, Carolina G; Pacione, Donato; Golfinos, John G; Kumthekar, Priya; Ghamsari, Farhad; Chen, Li; Lein, Pamela; Chetkovich, Dane M; Snuderl, Matija; Horbinski, Craig

    2017-05-09

    Because the d-2-hydroxyglutarate (D2HG) product of mutant isocitrate dehydrogenase 1 (IDH1 mut ) is released by tumor cells into the microenvironment and is structurally similar to the excitatory neurotransmitter glutamate, we sought to determine whether IDH1 mut increases the risk of seizures in patients with glioma, and whether D2HG increases the electrical activity of neurons. Three WHO grade II-IV glioma cohorts from separate institutions (total N = 712) were retrospectively assessed for the presence of preoperative seizures and tumor location, WHO grade, 1p/19q codeletion, and IDH1 mut status. Rat cortical neurons were grown on microelectrode arrays, and their electrical activity was measured before and after treatment with exogenous D2HG, in the presence or absence of the selective NMDA antagonist, AP5. Preoperative seizures were observed in 18%-34% of IDH1 wild-type (IDH1 wt ) patients and in 59%-74% of IDH1 mut patients ( p < 0.001). Multivariable analysis, including WHO grade, 1p/19q codeletion, and temporal lobe location, showed that IDH1 mut was an independent correlate with seizures (odds ratio 2.5, 95% confidence interval 1.6-3.9, p < 0.001). Exogenous D2HG increased the firing rate of cultured rat cortical neurons 4- to 6-fold, but was completely blocked by AP5. The D2HG product of IDH1 mut may increase neuronal activity by mimicking the activity of glutamate on the NMDA receptor, and IDH1 mut gliomas are more likely to cause seizures in patients. This has rapid translational implications for the personalized management of tumor-associated epilepsy, as targeted IDH1 mut inhibitors may improve antiepileptic therapy in patients with IDH1 mut gliomas. © 2017 American Academy of Neurology.

  7. Molecular Diagnostic and Prognostic Subtyping of Gliomas in Tunisian Population.

    PubMed

    Trabelsi, Saoussen; Chabchoub, Imen; Ksira, Iadh; Karmeni, Nadhir; Mama, Nadia; Kanoun, Samia; Burford, Anna; Jury, Alexa; Mackay, Alan; Popov, Sergey; Bouaouina, Noureddine; Ben Ahmed, Slim; Mokni, Moncef; Tlili, Kalthoum; Krifa, Hedi; Yacoubi, Mohamed Tahar; Jones, Chris; Saad, Ali; H'mida Ben Brahim, Dorra

    2017-05-01

    It has become increasingly evident that morphologically similar gliomas may have distinct clinical phenotypes arising from diverse genetic signatures. To date, glial tumours from the Tunisian population have not been investigated. To address this, we correlated the clinico-pathology with molecular data of 110 gliomas by a combination of HM450K array, MLPA and TMA-IHC. PTEN loss and EGFR amplification were distributed in different glioma histological groups. However, 1p19q co-deletion and KIAA1549:BRAF fusion were, respectively, restricted to Oligodendroglioma and Pilocytic Astrocytoma. CDKN2A loss and EGFR overexpression were more common within high-grade gliomas. Furthermore, survival statistical correlations led us to identify Glioblastoma (GB) prognosis subtypes. In fact, significant lower overall survival (OS) was detected within GB that overexpressed EGFR and Cox2. In addition, IDH1R132H mutation seemed to provide a markedly survival advantage. Interestingly, the association of IDHR132H mutation and EGFR normal status, as well as the association of differentiation markers, defined GB subtypes with good prognosis. By contrast, poor survival GB subtypes were defined by the combination of PTEN loss with PDGFRa expression and/or EGFR amplification. Additionally, GB presenting p53-negative staining associated with CDKN2A loss or p21 positivity represented a subtype with short survival. Thus, distinct molecular subtypes with individualised prognosis were identified. Interestingly, we found a unique histone mutation in a poor survival young adult GB case. This tumour exceptionally associated the H3F3A G34R mutation and MYCN amplification as well as 1p36 loss and 10q loss. Furthermore, by exhibiting a remarkable methylation profile, it emphasised the oncogenic power of G34R mutation connecting gliomagenesis and chromatin regulation.

  8. NKG2D ligands in glioma stem-like cells: expression in situ and in vitro.

    PubMed

    Flüh, Charlotte; Chitadze, Guranda; Adamski, Vivian; Hattermann, Kirsten; Synowitz, Michael; Kabelitz, Dieter; Held-Feindt, Janka

    2018-03-01

    Glioblastoma multiforme (GBM) is a highly malignant brain tumor. Tumor stem cells have a major influence on tumor malignancy, and immunological escape mechanisms, involving the Natural Killer Group 2, member D (NKG2D) receptor-ligand-system, are key elements in tumor immuno-surveillance. We analyzed the expression profile and localization of NKG2D ligands (NKG2DL) and embryonic and neural stem cell markers in solid human GBM and stem-like cells isolated from glioma cell lines by qRT-PCR and immunohistochemistry, including quantitative analysis. We also evaluated the effect of Temozolomide (TMZ), the standard chemotherapeutic agent used in GBM therapy, on NKG2DL expression. NKG2DL-positive cells were mostly found scattered and isolated, were detectable in glial fibrillary acidic protein (GFAP)-positive tumor regions and partly in the penumbra of tumor vessels. NKG2DL were found in a distinct tumor stem-like cell subpopulation and were broadly costained with each other. Quantitative analysis revealed, that dependent on the individual NKG2DL investigated, cell portions costained with different stem cell markers varied between small (Musashi-1) and high (KLf-4) amounts. However, a costaining of NKG2DL with CD3γ, typically found in T cells, was also observable, whereas CD11b as a marker for tumor micoglia cells was only rarely costained with NKG2DL. Stem-like cells derived from the glioma cell lines T98G and U251MG showed a distinct expression pattern of NKG2DL and stem cell markers, which seemed to be balanced in a cell line-specific way. With differentiation, T98G displayed less NKG2DL, whereas in U251MG, only expression of most stem cell markers decreased. In addition, stimulation with TMZ led to a significant upregulation of NKG2DL in stem-like cells of both lines. As stem-like glioma cells tend to show a higher expression of NKG2DL than more differentiated tumor cells and TMZ treatment supports upregulation of NKG2DL, the NKG2D system might play an important role

  9. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry.

    PubMed

    Xu, Jinping; Elazab, Ahmed; Liang, Jinhua; Jia, Fucang; Zheng, Huimin; Wang, Weimin; Wang, Limin; Hu, Qingmao

    2017-01-01

    Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM) volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I), 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm 2 . Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  10. PI3 kinase mutations and mutational load as poor prognostic markers in diffuse glioma patients.

    PubMed

    Draaisma, Kaspar; Wijnenga, Maarten M J; Weenink, Bas; Gao, Ya; Smid, Marcel; Robe, P; van den Bent, Martin J; French, Pim J

    2015-12-23

    Recent advances in molecular diagnostics allow diffuse gliomas to be classified based on their genetic changes into distinct prognostic subtypes. However, a systematic analysis of all molecular markers has thus far not been performed; most classification schemes use a predefined and select set of genes/molecular markers. Here, we have analysed the TCGA dataset (combined glioblastoma (GBM) and lower grade glioma (LGG) datasets) to identify all prognostic genetic markers in diffuse gliomas in order to generate a comprehensive classification scheme. Of the molecular markers investigated (all genes mutated at a population frequency >1.7 % and frequent chromosomal imbalances) in the entire glioma dataset, 57 were significantly associated with overall survival. Of these, IDH1 or IDH2 mutations are associated with lowest hazard ratio, which confirms IDH as the most important prognostic marker in diffuse gliomas. Subsequent subgroup analysis largely confirms many of the currently used molecular classification schemes for diffuse gliomas (ATRX or TP53 mutations, 1p19q codeletion). Our analysis also identified PI3-kinase mutations as markers of poor prognosis in IDH-mutated + ATRX/TP53 mutated diffuse gliomas, median survival 3.7 v. 6.3 years (P = 0.02, Hazard rate (HR) 2.93, 95 % confidence interval (CI) 1.16 - 7.38). PI3-kinase mutations were also prognostic in two independent datasets. In our analysis, no additional molecular markers were identified that further refine the molecular classification of diffuse gliomas. Interestingly, these molecular classifiers do not fully explain the variability in survival observed for diffuse glioma patients. We demonstrate that tumor grade remains an important prognostic factor for overall survival in diffuse gliomas, even within molecular glioma subtypes. Tumor grade was correlated with the mutational load (the number of non-silent mutations) of the tumor: grade II diffuse gliomas harbour fewer genetic changes than grade

  11. Downregulation of miR-452 Promotes Stem-like Traits and Tumorigenicity of Gliomas

    PubMed Central

    Liu, Liping; Chen, Kun; Wu, Jueheng; Shi, Ling; Hu, Bo; Cheng, Shiyuan; Li, Mengfeng; Song, Libing

    2013-01-01

    Purpose miR-452 is reported to be required for neural crest stem cell differentiation during neural crest development. However, the biological role of miR-452 in gliomas remains unclear. The aim of the present study was to evaluate the effect of miR-452 on the stem-like properties and tumorigenesis of glioma cells. Experimental Design The expression of miR-452 was examined in glioma cells and glioma tissues using real-time PCR. The effects of miR-452 on stem-like traits and tumorigenesis were investigated in vitro and in vivo using patient-derived glioma cells and glioma cell lines. Western blotting and luciferase reporter assays were performed to examine the negative regulation of Bmi-1, LEF1 and TCF4 by miR-452. The methylation of the miR-452 promoter region was examined by bisulfite genomic sequencing PCR. Results miR-452 was markedly downregulated in glioma cells and clinical glioma tissues. miR-452 levels inversely correlated with WHO grades and patient survival. miR-452 directly targeted and suppressed multiple stemness regulators, including Bmi-1, LEF1 and TCF4, resulting in reduced stem-like traits and tumorigenesis of glioma cells in vitro and in vivo. Furthermore, we demonstrated that downregulation of miR-452 in gliomas was caused by hypermethylation of its promoter region. Conclusions Downregulation of miR-452 plays an important role in promoting the stem-like traits and tumorigenesis of gliomas and may represent a novel prognostic biomarker and therapeutic target for the disease. PMID:23695168

  12. L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor.

    PubMed

    Mohanan, Vishnu; Temburni, Murali K; Kappes, John C; Galileo, Deni S

    2013-04-01

    The L1CAM cell adhesion/recognition molecule (L1, CD171) and fibroblast growth factor receptor (FGFR) both are expressed by human high-grade glioma cells, but their potential actions in controlling cell behavior have not been linked. L1 actions in cancer cells have been attributed mainly to integrin receptors, and we demonstrated previously that L1-stimulated glioma cell migration correlates with integrin expression, increased focal adhesion kinase activation and focal complex turnover. Our analyses of datasets revealed FGFR is overexpressed in glioma regardless of grade, while ADAM10 metalloprotease expression increases with glioma grade. Here, we used dominant-negative and short hairpin RNA approaches to inhibit the activation of FGFR1 and expression of L1, respectively. An L1 peptide that inhibits L1-FGFR interaction and PD173074, a chemical inhibitor of FGFR1 activity, also were used to elucidate the involvement of L1-FGFR interactions on glioma cell behavior. Time-lapse cell motility studies and flow cytometry cell cycle analyses showed that L1 operates to increase glioma cell motility and proliferation through FGFR activation. Shutdown of both L1 expression and FGFR activity in glioma cells resulted in a complete termination of cell migration in vitro. These studies show for the first time that soluble L1 ectodomain (L1LE) acts on glioma cells through FGFRs, and that FGFRs are used by glioma cells for increasing motility as well as proliferation in response to activation by L1LE ligand. Thus, effective treatment of high-grade glioma may require simultaneous targeting of L1, FGFRs, and integrin receptors, which would reduce glioma cell motility as well as proliferation.

  13. Anesthetic pentobarbital inhibits proliferation and migration of malignant glioma cells.

    PubMed

    Xie, Jun; Li, Yan; Huang, Yijun; Qiu, Pengxin; Shu, Minfeng; Zhu, Wenbo; Ou, Yanqiu; Yan, Guangmei

    2009-09-08

    Malignant gliomas are common and aggressive brain tumors in adults. The rapid proliferation and diffuse brain migration are main obstacles to successful treatment. Here we show that pentobarbital, a central depressant introduced clinically a century ago, is capable of suppressing proliferation and migration of C6 malignant glioma cells in a concentration-dependent manner. Pentobarbital also leads to a G1 phase cell cycle arrest accompanied by suppressed G1 cell cycle regulatory proteins Cyclin D1, Cyclin D3, CDK2 and phosphorylated Rb. In addition, noticeable morphological changes and interrupted alpha-tubulin microtubule assembly are induced by pentobarbital exposure. Intracellular signal pathways involved in the effect of pentobarbital is concerned with inactivation of ERK, c-Jun and Akt. Together, these findings suggest anti-proliferation and anti-migration effects of pentobarbital on malignant gliomas, most likely by arresting cell cycle and interfering microtubule. ERK, c-Jun MAPK and PI3K/Akt are possible signaling pathways involved.

  14. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  15. Improving surgical outcome for gliomas with intraoperative mapping.

    PubMed

    Ferracci, François-Xavier; Duffau, Hugues

    2018-04-01

    Radical glioma resection improves overall survival, both in low-grade and high-grade glial tumors. However, preservation of the quality of life is also crucial. Areas covered: Due to the diffuse feature of gliomas, which invade the central nervous system, and due to considerable variations of brain organization among patients, an individual cerebral mapping is mandatory to solve the classical dilemma between the oncological and functional issues. Because functional neuroimaging is not reliable enough, intraoperative electrical stimulation, especially in awake patients benefiting from a real-time cognitive monitoring, is the best way to increase the extent of resection while sparing eloquent neural networks. Expert commentary: Here, we propose a paradigmatic shift from image-guided resection to functional mapping-guided resection, based on the study of the dynamic distribution of delocalized cortico-subcortical circuits at the individual level, i.e., the investigation of brain connectomics and neuroplastic potential. This surgical philosophy results in an improvement of both oncological outcomes and quality of life. This highlights the need to reinforce the link between glioma surgery and cognitive neurosciences.

  16. The ketogenic diet for the treatment of malignant glioma.

    PubMed

    Woolf, Eric C; Scheck, Adrienne C

    2015-01-01

    Advances in our understanding of glioma biology has led to an increase in targeted therapies in preclinical and clinical trials; however, cellular heterogeneity often precludes the targeted molecules from being found on all glioma cells, thus reducing the efficacy of these treatments. In contrast, one trait shared by virtually all tumor cells is altered (dysregulated) metabolism. Tumor cells have an increased reliance on glucose, suggesting that treatments affecting cellular metabolism may be an effective method to improve current therapies. Indeed, metabolism has been a focus of cancer research in the last few years, as many pathways long associated with tumor growth have been found to intersect metabolic pathways in the cell. The ketogenic diet (high fat, low carbohydrate and protein), caloric restriction, and fasting all cause a metabolic change, specifically, a reduction in blood glucose and an increase in blood ketones. We, and others, have demonstrated that these metabolic changes improve survival in animal models of malignant gliomas and can potentiate the anti-tumor effect of chemotherapies and radiation treatment. In this review we discuss the use of metabolic alteration for the treatment of malignant brain tumors. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. ASYMMETRIC CELL DIVISION: IMPLICATIONS FOR GLIOMA DEVELOPMENT AND TREATMENT

    PubMed Central

    Lewis, Kate Marie; Petritsch, Claudia

    2014-01-01

    Glioma is a heterogeneous disease process with differential histology and treatment response. It was previously thought that the histological features of glial tumors indicated their cell of origin. However, the discovery of continuous neuro-gliogenesis in the normal adult brain and the identification of brain tumor stem cells within glioma have led to the hypothesis that these brain tumors originate from multipotent neural stem or progenitor cells, which primarily divide asymmetrically during the postnatal period. Asymmetric cell division allows these cell types to concurrently self-renew whilst also producing cells for the differentiation pathway. It has recently been shown that increased symmetrical cell division, favoring the self-renewal pathway, leads to oligodendroglioma formation from oligodendrocyte progenitor cells. In contrast, there is some evidence that asymmetric cell division maintenance in tumor stem-like cells within astrocytoma may lead to acquisition of treatment resistance. Therefore cell division mode in normal brain stem and progenitor cells may play a role in setting tumorigenic potential and the type of tumor formed. Moreover, heterogeneous tumor cell populations and their respective cell division mode may confer differential sensitivity to therapy. This review aims to shed light on the controllers of cell division mode which may be therapeutically targeted to prevent glioma formation and improve treatment response. PMID:25530875

  18. Genetic therapy in gliomas: historical analysis and future perspectives.

    PubMed

    Mattei, Tobias Alécio; Ramina, Ricardo; Miura, Flavio Key; Aguiar, Paulo Henrique; Valiengo, Leandro da Costa

    2005-03-01

    High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodologies that increase tumor infection/transduction and, consequently confer more permanent activity against the tumor, will lead to enhanced therapeutic results. Due to the promising practical clinical benefits that can be expected for the near future, an exposition to the practicing neurosurgeon about the basic issues in genetic therapy of gliomas seems convenient. Among the main topics, we shall discuss anti-tumoral mechanisms of various genes that can be transfected, the advantages and drawbacks of the different vectors utilized, the possibilities of tumor targeting by modifications in the native tropism of virus vectors, as well as the different physical methods for vector delivery to the tumors. Along with the exposition we will also review of the history of the genetic therapy for gliomas, with special focus on the main problems found during the advancement of scientific discoveries in this area. A general analysis is also made of the present state of this promising therapeutic modality, with reference to the problems that still must be solved and the new paradigms for future research in this area.

  19. Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1

    PubMed Central

    Bertrand, Y; Currie, J-C; Poirier, J; Demeule, M; Abulrob, A; Fatehi, D; Stanimirovic, D; Sartelet, H; Castaigne, J-P; Béliveau, R

    2011-01-01

    Background: ANG1005 consists of three molecules of paclitaxel conjugated via ester bonds to the 19-amino-acid peptide Angiopep-2. The new chemical agent has been shown to cross the blood–brain barrier (BBB) by receptor-mediated transcytosis via low-density lipoprotein receptor-related protein 1 (LRP1). The experiments here examined the role of LRP1 in the subsequent endocytosis of drug into cancer cells. Methods: Localisation of ANG1005 and Angiopep-2 was examined by immunohistochemistry and in-vivo near-infrared fluorescence imaging in mice carrying orthotopic glioma tumours. Transport of ANG1005 and Angiopep-2 was examined in U87 glioblastoma cell lines. Results: Systemically administered ANG1005 and Cy5.5Angiopep-2 localised to orthotopic glioma tumours in mice. The glioma transplants correlated with high expression levels of LRP1. Decreasing LRP1 activity, by RNA silencing or LRP1 competitors, decreased uptake of ANG1005 and Angiopep-2 into U87 glioblastoma cells. Conversely, LRP1 expression and endocytosis rates for ANG1005 and Angiopep-2 increased in U87 cells under conditions that mimicked the microenvironment near aggressive tumours, that is, hypoxic and acidic conditions. Conclusion: ANG1005 might be a particularly effective chemotherapeutic agent for the wide array of known LRP1-expressing brain and non-brain cancers, in particular those with an aggressive phenotype. PMID:22027709

  20. NSPc1 promotes cancer stem cell self-renewal by repressing the synthesis of all-trans retinoic acid via targeting RDH16 in malignant glioma.

    PubMed

    Hu, P-S; Xia, Q-S; Wu, F; Li, D-K; Qi, Y-J; Hu, Y; Wei, Z-Z; Li, S-S; Tian, N-Y; Wei, Q-F; Shen, L-J; Yin, B; Jiang, T; Yuan, J-G; Qiang, B-Q; Han, W; Peng, X-Z

    2017-08-17

    Polycomb group (PcG) proteins play an important role in development and stem cell maintenance, and their dysregulation have been closely linked to oncogenesis and cancer stem cell phenotypes. Here, we found that nervous system polycomb 1 (NSPc1) was highly expressed in stem cell-like glioma cells (SLCs). Knockdown of NSPc1 in SLCs resulted in impaired neurosphere formation and self-renewal abilities, down-regulated expression of stemness markers such as NESTIN, CD133 and SOX2, and decreased capacity to propagate subcutaneous xenografts. In contrast, glioma cells overexpressing NSPc1 exhibited a stem cell-like phenotype, up-regulated expression of stemness markers NESTIN, CD133 and SOX2, and an enhanced capacity to propagate subcutaneous xenografts. Furthermore, we identified that NSPc1 epigenetically repressed the expression of retinol dehydrogenase 16 (RDH16) by directly binding to a region upstream (-1073 to -823) of the RDH16 promoter. Next, we confirmed that RDH16 is a stemness suppressor that partially rescues SLCs from the NSPc1-induced increase in neurosphere formation. Finally, we showed that ATRA partly reversed the NSPc1-induced stemness enhancement in SLCs, through mechanisms correlated with an ATRA-dependent decrease in the expression of NSPc1. Thus, our results demonstrate that NSPc1 promotes cancer stem cell self-renewal by repressing the synthesis of ATRA via targeting RDH16 and may provide novel targets for glioma treatment in the future.

  1. Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Peng, Qian; Madsen, Steen J.; Uzal, Francisco A.; Hirschberg, Henry

    2016-03-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage vaccines could be increased by: (1) PDT of the priming tumor cells, and (2) injection of allogeneic glioma cells directly into brain tumors. Experiments were conducted in an in vivo brain tumor model using Fisher rats and BT4C (allogeneic) and F98 (syngeneic) glioma cells. Preliminary results showed that vaccination alone had significantly less inhibitory effect on F98 tumor growth compared to the combination of vaccination and allogeneic cell (BT4C) injection.

  2. Betulinic acid derivative B10 inhibits glioma cell proliferation through suppression of SIRT1, acetylation of FOXO3a and upregulation of Bim/PUMA.

    PubMed

    Huo, Longwei; Bai, Xiaobin; Wang, Yafei; Wang, Maode

    2017-08-01

    Glioma is the most common primary malignant tumor of the central nervous system. B10 is a new glycosylated derivative of betulinic acid with enhanced cytotoxic activity. The present study was designed to explore the molecular mechanism underlying the anticancer effect of B10 in glioma cells. 25-50μM B10 resulted in a significant decrease of cell viability and BrdU incorporation. 25-50mg/kg B10 significantly reduced the implanted tumor weight and volume in nude mice. Activation of apoptosis was found in glioma cells when the cells were exposed to B10, as evidenced by increased number of TUNEL-stained cells, increased caspase 3 and 9 activities, and Bax and cleaved PARP expression. B10 caused a significant decrease in mitochondrial oxygen consumption rate, mitochondrial complex I, II, III, IV, and V activities, and ATP level, and increase of mitochondrial ROS production, indicating the induction of mitochondrial dysfunction. B10 reduced the expression of sirtuin (SIRT) 1 and resulted in an increase in forkhead box O (FOXO) 3a expression and acetylation. Activation of SIRT1 by SRT-1720 and downregualtion of FOXO3a using shRNA significantly inhibited B10-induced cytotoxicity. B10 markedly increased the expression of Bim and PUMA. Downregualtion of FOXO3a or activation of SIRT1 significantly inhibited B10-induced increase of Bim and PUMA expression. Downregualtion of Bim or PUMA could suppress B10-induced increase of Bax expression. Moreover, B10-induced cytotoxicity was significantly suppressed by downregulation of Bim or PUMA. In summary, we identified B10 as a potent therapeutic candidate for glioma treatment and SIRT1-FOXO3a-Bim/PUMA axis as a novel therapeutic target. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; De Souza, Patricia Coutinho; Henry, Leah; Lupu, Florea; Silasi-Mansat, Robert; Ehrenshaft, Marilyn; Mason, Ronald P; Gomez-Mejiba, Sandra E; Ramirez, Dario C

    2013-12-01

    Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model. © 2013.

  4. Retinoids in the treatment of glioma: a new perspective

    PubMed Central

    Mawson, Anthony R

    2012-01-01

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  5. Glioma surgery with intraoperative mapping-balancing the onco-functional choice.

    PubMed

    Brennum, Jannick; Engelmann, Christina M; Thomsen, Johanne Asperud; Skjøth-Rasmussen, Jane

    2018-05-01

    Balancing survival versus risk of inducing functional deficits is a challenge when resecting gliomas in or near eloquent areas. Our objectives were to assess deficits prior to and at 6 and 12 months after awake craniotomies with cortical and subcortical mapping in patients with suspected grade 2 gliomas in eloquent areas. We analyzed whether pre- and intraoperative factors were linked to an increased risk of postoperative deficits. Retrospective study of 92 consecutive patients operated between January 2010 and June 2014. All deficits reported by any healthcare professional and KPS-score preoperatively, immediately postoperatively (day 1-10), at 6 months and 12 months, were analyzed. A decrease in neurological and or cognitive function was common in the first days after surgery, with a significant improvement at 6 months after surgery and further improvement at 12 months. Immediately after surgery, 33% of the patients had severe deficits compared to 2% prior to surgery; this improved to 9% at 6 months and 3% at 12 months. However, at 12 months, 18% of the patients had new or worsened minor or moderate deficits and only 10% had no deficits compared to 39% prior to surgery. There were only minor changes in KPS. None of the recorded pre/intraoperative factors were found significantly to influence the risk of moderate/severe late postoperative deficits. A significant amount of the patients in this study experienced new or worsened neurological and or cognitive deficits during follow-up. We found a higher frequency of deficits than normally reported. This is due to the inclusion of mild deficits, the use of patient-reported data, and our focus on cognitive deficits. Our study indicates that the impact of awake craniotomy with mapping on patient outcome is larger than expected. This in no way negates the use of the technique.

  6. Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide.

    PubMed

    Kanzawa, Takao; Bedwell, Joshua; Kondo, Yasuko; Kondo, Seiji; Germano, Isabelle M

    2003-12-01

    Temozolomide (TMZ) is a DNA alkylating agent currently used as adjuvant treatment for anaplastic astrocytomas. Its use in managing glioblastoma multiforme has been halted because of the lack of therapeutic effects due to cell resistance. Note that O6-alkylguanine-DNA alkyltranferase (AGT) is a DNA repair enzyme that limits the efficacy of TMZ. In this study the authors investigated the ability of O6-benzylguanine (BG), an AGT inhibitor, to sensitize a glioblastoma cell line resistant to TMZ. The effects of TMZ alone (100 microg) and after exposure to BG (50 microg) were assessed in two glioblastoma cell lines, U373-MG and T98G, respectively, sensitive and resistant to TMZ. Cell viability was assessed using trypan blue; cell cycle analysis by fluorescence-activated cell sorter; and apoptosis and autophagy by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and acridine orange staining, respectively. Furthermore, the involvement of an autophagy marker, microtubule-associated light chain 3 (LC3), was assessed. Temozolomide suppressed the growth of and caused cell cycle arrest in the G2-M phase of U373-MG cells but not T98G cells. Exposure to BG prior to TMZ resulted in a significant decrease in cell viability as well as cell cycle arrest in the G2-M phase in T98G cells (p < 0.05). Although apoptosis was not detected on TUNEL staining, programmed cell death Type II (autophagy) was detected after exposure to BG and TMZ in T98G cells. These results indicate that inhibition of AGT by BG can render previously resistant glioma cells sensitive to TMZ treatment. The mechanism of cell demise following BG-TMZ treatment seems to be autophagy and not apoptosis. Combination therapy involving TMZ and an AGT inhibitor may be an effective strategy to treat resistant gliomas.

  7. The role of Nrf2 in migration and invasion of human glioma cell U251.

    PubMed

    Pan, Hao; Wang, Handong; Zhu, Lin; Mao, Lei; Qiao, Liang; Su, Xingfen

    2013-01-01

    NF-E2-related factor 2 (Nrf2) is a transcription factor that is related to tumor cell multidrug resistance and proliferation. Here we studied the involvement of Nrf2 in the migration and invasion of human U251 glioma cells. Two kinds of plasmid, that is, pEGFP-Nrf2 and Si-Nrf2, were constructed and transfected to upregulate or downregulate the expression of Nrf2 in U251 glioma cell line. Blank vectors or random siRNA plasmid were used as negative control. Cells treated with lipofectamine only were set up as blank control. Protein and mRNA level of Nrf2 and matrix metalloproteinase 9 (MMP9) were investigated by reverse transcriptase-polymerase chain reaction and western blot after transfection. Wound healing assay and transwell assay were used to study migration and invasion of U251 after transfection. Gelatin zymography was performed to reveal the change of MMP9 activity after transfection. The mRNA and protein level of Nrf2 was upregulated in U251-pEGFP-Nrf2 while downregulated in U251-Si-Nrf2 48 hours after transfection. In the wound healing assay, there were more cells in group pEGFP-Nrf2 crossing the scratch line than in group Si-Nrf2. Furthermore, in transwell migration and invasion assay, there were more cells in group pEGFP-Nrf2 penetrating the membranes than in group Si-Nrf2. Then we investigated the change of MMP9 activity, mRNA, and protein levels after transfection. The results suggested that upregulation of Nrf2 led to an increase in MMP9 expression and activity whereas downregulation of Nrf2 led to a decrease in MMP9 expression and activity. Nrf2 is involved in migration and invasion of U251 cells, which may be related to MMP9. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Effect of temozolomide on livin and caspase-3 in U251 glioma stem cells.

    PubMed

    Li, Genhua; Zhang, Hao; Liu, Yang; Kong, Lingsheng; Guo, Qiang; Jin, Feng

    2015-03-01

    The aim of the present study was to analyze the effect of temozolomide (TMZ) on the antiapoptotic gene livin and the associated gene caspase-3. Cancer stem cells were isolated from U251 glioblastoma cells using immunomagnetic beads. The glioma cells and glioma stem cells were transfected with livin or small hairpin RNA (shRNA) against livin using lentiviral vectors. Quantitative PCR, flow cytometry and a Cell Counting kit-8 assay were used to detect the expression of livin and caspase-3, analyze the cell cycle and investigate cell proliferation, respectively, following treatment with various concentrations of TMZ (0, 25, 50, 100, 200 and 400 μmol/l) for different periods of time (24, 48 and 72 h). The expression levels of livin and caspase-3 in the U251 stem cells were significantly higher than those in the U251 cells (P<0.01). At the same intervention time, the expression levels of livin decreased and those of caspase-3 increased as the concentration of TMZ increased (P<0.05). The expression levels of livin and caspase-3 in the U251 cells were lower than those in the U251 stem cells with the same intervention time and concentration of TMZ (P<0.05). The cell cycle was arrested in the G2/M phase in the U251 cells following TMZ intervention; the proportion of cells in the G2/M phase increased as the concentration of TMZ increased (P<0.05). The U251 stem cells were arrested in the S phase following treatment with TMZ; the proportion of cells in the S phase increased as the concentration of TMZ increased (P<0.05). In conclusion, the expression levels of livin and caspase-3 were effectively inhibited and increased, respectively, in all cell models following treatment with TMZ. TMZ is able to arrest the cell cycle and enhance cell apoptosis. U251 stem cells are less vulnerable than U251 cells to TMZ.

  9. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    PubMed

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK.

  10. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma

    PubMed Central

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK. PMID:26517117

  11. Cholera Toxin Subunit B Enabled Multifunctional Glioma-Targeted Drug Delivery.

    PubMed

    Guan, Juan; Zhang, Zui; Hu, Xuefeng; Yang, Yang; Chai, Zhilan; Liu, Xiaoqin; Liu, Jican; Gao, Bo; Lu, Weiyue; Qian, Jun; Zhan, Changyou

    2017-12-01

    Glioma is among the most formidable brain cancers due to location in the brain. Cholera toxin subunit B (CTB) is investigated to facilitate multifunctional glioma-targeted drug delivery by targeting the glycosphingolipid GM1 expressed in the blood-brain barrier (BBB), neovasulature, and glioma cells. When modified on the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CTB-NPs), CTB fully retains its bioactivity after 24 h incubation in the fresh mouse plasma. The formed protein corona (PC) of CTB-NP and plain PLGA nanoparticles (NP) after incubation in plasma is analyzed using liquid chromatography tandem massspectrometry (nano-LC-MS/MS). CTB modification does not alter the protein components of the formed PC, macrophage phagocytosis, or pharmacokinetic profiles. CTB-NP can efficiently penetrate the in vitro BBB model and target glioma cells and human umbilical vascular endothelial cells. Paclitaxel is loaded in NP (NP/PTX) and CTB-NP (CTB-NP/PTX), and their antiglioma effects are assessed in nude mice bearing intracranial glioma. CTB-NP/PTX can efficiently induce apoptosis of intracranial glioma cells and ablate neovasulature in vivo, resulting in significant prolongation of survival of nude mice bearing intracranial glioma (34 d) in comparison to those treated with NP/PTX (29 d), Taxol (24 d), and saline (21 d). The present study suggests a potential multifunctional glioma-targeted drug delivery system enabled by cholera toxin subunit B. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of obesity-related risk factors in the aetiology of glioma.

    PubMed

    Disney-Hogg, Linden; Sud, Amit; Law, Philip J; Cornish, Alex J; Kinnersley, Ben; Ostrom, Quinn T; Labreche, Karim; Eckel-Passow, Jeanette E; Armstrong, Georgina N; Claus, Elizabeth B; Il'yasova, Dora; Schildkraut, Joellen; Barnholtz-Sloan, Jill S; Olson, Sara H; Bernstein, Jonine L; Lai, Rose K; Swerdlow, Anthony J; Simon, Matthias; Hoffmann, Per; Nöthen, Markus M; Jöckel, Karl-Heinz; Chanock, Stephen; Rajaraman, Preetha; Johansen, Christoffer; Jenkins, Robert B; Melin, Beatrice S; Wrensch, Margaret R; Sanson, Marc; Bondy, Melissa L; Houlston, Richard S

    2018-04-01

    Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse causation. Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal relationship. No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio, lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between obesity-related traits with subtypes of glioma-glioblastoma (GBM) or non-GBM tumours. This study provides no evidence to implicate obesity-related factors as causes of glioma.

  13. Alisertib and Fractionated Stereotactic Radiosurgery in Treating Patients With Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2017-10-25

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  14. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting.

    PubMed

    Liu, Yayuan; Ran, Rui; Chen, Jiantao; Kuang, Qifang; Tang, Jie; Mei, Ling; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2014-06-01

    The treatment of glioma is a great challenge because of the existence of the blood-brain barrier (BBB). In order to reduce toxicity to the normal brain tissue and achieve efficient treatment, it is also important for drugs to specifically accumulate in the glioma foci and penetrate into the tumor core after entering into the brain. In this study, a specific ligand cyclic RGD peptide was conjugated to a cell penetrating peptide R8 to develop a multifunctional peptide R8-RGD. R8-RGD increased the cellular uptake of liposomes by 2-fold and nearly 30-fold compared to separate R8 and RGD respectively, and displayed effective penetration of three-dimensional glioma spheroids and BBB model in vitro. In vivo studies showed that R8-RGD-lipo could be efficiently delivered into the brain and selectively accumulated in the glioma foci after systemic administration in C6 glioma bearing mice. When paclitaxel (PTX) was loaded in liposomes, R8-RGD-lipo could induce the strongest inhibition and apoptosis against C6 cells and finally achieved the longest survival in intracranial C6 glioma bearing mice. In conclusion, all the results indicated that the tandem peptide R8-RGD was a promising ligand possessing multi functions including BBB transporting, glioma targeting and tumor penetrating. And R8-RGD-lipo was proved to be a potential anti-glioma drug delivery system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Functional outcome after language mapping for insular World Health Organization Grade II gliomas in the dominant hemisphere: experience with 24 patients.

    PubMed

    Duffau, Hugues; Moritz-Gasser, Sylvie; Gatignol, Peggy

    2009-08-01

    dramatically reduced (none in this patient series), thanks to the systematic use of intraoperative awake mapping, even in cases of repeated operations. Furthermore, patient quality of life may be improved due to a decrease of epilepsy after surgery. Thus, the authors suggest systematically considering resection when an insular Grade II glioma is diagnosed after seizures in a patient with no or mild deficit, even a glioma invading the dominant hemisphere.

  16. MiR-133b contributes to arsenic-induced apoptosis in U251 glioma cells by targeting the hERG channel.

    PubMed

    Wang, Jian; Li, Yongli; Jiang, Chuanlu

    2015-04-01

    Substantial evidence indicates that the human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) is overexpressed in human glioblastoma multiforme (GBM) specimens and plays an essential role in the malignant proliferation of glioma cells. However, its upstream regulator in glioma cells is not fully elucidated. The present study was designed to determine whether the expression of hERG gene is regulated by miR-133b or miR-34a, thereby contributing to the anti-proliferation effect of arsenic trioxide (ATO) in U251 human glioma cells. Real-time polymerase chain reactions (qRT-PCR) and Western blot results demonstrated that hERG mRNA and protein levels were dramatically upregulated in clinical GBM specimens. Conversely, both miR-133b and miR-34a were markedly downregulated in clinical GBM specimens by qRT-PCR. The hERG gene was a direct target of miR-133b and miR-34a by bioinformatics analyses and luciferase reporter assays. Moreover, ATO, which is an emerging chemotherapy drug for glioma disease, remarkably elevated the level of miR-133b, but not miR-34a in U251 glioma cells. The level of miR-133b upstream transactivator serum response factor (SRF) was also suppressed by ATO. The transfection of anti-miR-133b oligonucleotide (AMO-133b) remarkably prevented the decrease of hERG protein by 5 μM ATO treatment for 24 h in U251 cells, whereas anti-miR-34a oligonucleotide (AMO-34a) did not exhibit recuperated effect. Finally, the transient overexpression by miR-133b mimics and treatment with the hERG channel-specific blocker E4031 markedly facilitated the ATO inhibition of proliferation of and induced apoptosis in U251 cells, whereas AMO-miR-133b attenuated these changes. Our study provided the evidence for the pathological role of miR-133b and miR-34a in the development of GBM and thus expanded our understanding of the hERG gene expression and ATO chemotherapeutic roles of miRNAs. Targeting miR-133b/hERG pathway may be a new strategy for chemotherapy of

  17. Post-bevacizumab Clinical Outcomes and the Impact of Early Discontinuation of Bevacizumab in Patients with Recurrent Malignant Glioma.

    PubMed

    Cha, Yongjun; Kim, Yu Jung; Lee, Se-Hoon; Kim, Tae-Min; Choi, Seung Hong; Kim, Dong-Wan; Park, Chul-Kee; Kim, Il Han; Kim, Jee Hyun; Kim, Eunhee; Choi, Byungse; Kim, Chae-Yong; Kim, In Ah; Heo, Dae Seog

    2017-01-01

    Bevacizumab±irinotecan is effective for treatment of recurrent malignant gliomas. However, the optimal duration of treatment has not been established. Ninety-four consecutive patients with recurrent malignant glioma who were treated with bevacizumab at our institutions were identified. Patients who continued bevacizumab until tumor progression were enrolled in a late discontinuation (LD) group, while those who stopped bevacizumab before tumor progression were enrolled in an early discontinuation (ED) group. Landmark analyses were performed at weeks 9, 18, and 26 for comparison of patient survival between the two groups. Among 89 assessable patients, 62 (69.7%) and 27 (30.3%) patients were categorized as the LD and ED groups, respectively. According to landmark analysis, survival times from weeks 9, 18, and 26 were not significantly different between the two groups in the overall population. However, the LD group showed a trend toward increased survival compared to the ED group among responders. In the ED group, the median time from discontinuation to disease progression was 11.4 weeks, and none of the patients showed a definite rebound phenomenon. Similar median survival times after disease progression were observed between groups (14.4 weeks vs. 15.7 weeks, p=0.251). Of 83 patients, 38 (45.8%) received further therapy at progression, and those who received further therapy showed longer survival in both the LD and ED groups. In recurrent malignant glioma, duration of bevacizumab was not associated with survival time in the overall population. However, ED of bevacizumab in responding patients might be associated with decreased survival.

  18. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment.

    PubMed

    Zanotto-Filho, Alfeu; Coradini, Karine; Braganhol, Elizandra; Schröder, Rafael; de Oliveira, Cláudia Melo; Simões-Pires, André; Battastini, Ana Maria Oliveira; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski; Forcelini, Cassiano Mateus; Beck, Ruy Carlos Ruver; Moreira, José Cláudio Fonseca

    2013-02-01

    In this study, we developed curcumin-loaded lipid-core nanocapsules (C-LNCs) in an attempt to improve the antiglioma activity of this polyphenol. C-LNC showed nanotechnological properties such as nanometric mean size (196 nm), 100% encapsulation efficiency, polydispersity index below 0.1, and negative zeta potential. The in vitro release assays demonstrated a controlled release of curcumin from lipid-core nanocapsules. In C6 and U251MG gliomas, C-LNC promoted a biphasic delivery of curcumin: the first peak occurred early in the treatment (1-3h), whereas the onset of the second phase occurred after 48 h. In C6 cells, the cytotoxicity of C-LNC was comparable to non-encapsulated curcumin only after 96 h, whereas C-LNCs were more cytotoxic than non-encapsulated curcumin after 24h of incubation in U251MG. Induction of G2/M arrest and autophagy were observed in C-LNC as well as in free-curcumin treatments. In rats bearing C6 gliomas, C-LNC (1.5mg/kg/day, i.p.) decreased the tumor size and malignance and prolonged animal survival when compared to same dose of non-encapsulated drug. In addition, serum markers of tissue toxicity and histological parameters were not altered. Considered overall, the data suggest that the nanoencapsulation of curcumin in LNC is an important strategy to improve its pharmacological efficacy in the treatment of gliomas. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. VP22 and cytosine deaminase fusion gene modified tissue-engineered neural stem cells for glioma therapy.

    PubMed

    Jin, Guishan; Zhou, Yiqiang; Chai, Qi; Zhu, Guidong; Xu, Fujian; Liu, Fusheng

    2013-03-01

    The herpes simplex virus type 1 tegument protein VP22 has the remarkable property of intercellular trafficking, thus making it a promising tool for improving gene transfer efficiency. To investigate whether the fusion of VP22 to the cytosine deaminase (CD) suicide gene could enhance the therapeutic efficiency of neural stem cells (NSCs) in the treatment for C6 glioma, the lentiviral vectors pHIV-VP(22)-EGFP, pHIV-CD, and pHIV-VP(22)-CD were constructed based on the pHIV-EGFP vector. After packaging, vectors were transduced into rat NSCs. Fluorescence-activated cell sorting analysis revealed that the fusion of VP22-EGFP increased the expression rate of EGFP in NSCs compared with lenti-EGFP transduced cells. Under incubation with the prodrug 5-fluorocytosine (5-FC), the survival rates of C6 cells co-cultured with NSCs/VP(22)-CD (NSCs transduced with lenti-VP(22)-CD) decreased tremendously compared with those of C6 and NSCs/CD. Similar results were also observed in vivo; a significant reduction in tumor volumes in C6 glioma-bearing rats was observed in the NSCs/VP(22)-CD therapy group when compared with other control groups. Our results reveal that VP22 increases the transduction efficiency of lentivirus into NSCs and enhances the therapeutic efficacy of CD-engineered rat NSCs in the treatment for C6 glioma, demonstrating that VP22 might be a useful tool for the gene therapy of engineered NSCs and providing a potential novel strategy for enhancing the effectiveness of gene therapy in other diseases.

  20. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux

    PubMed Central

    Yang, Yi; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-01-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0–100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the alternation of other intracellular organelles, although F-actin structure was slightly disturbed. Apparent ultrastructure alternation with increased autophagosome and autolysosome accumulation was observed in aurantiamide acetate-treated cells. The expression of LC3-II was greatly up-regulated in cells exposed to aurantiamide acetate (P < 0.05 compared with control). The cytoplasmic accumulation of autophagosomes and autolysosomes induced by aurantiamide acetate treatment was confirmed by fluorescent reporter protein labelling. Administration of chloroquine (CQ), which inhibits the fusion step of autophagosomes, further increased the accumulation of autophagosomes in the cytoplasm of U87 cells. Autophagy inhibition by 3-methyladenine, Bafilomycin A1 or CQ had no influence on aurantiamide acetate-induced cytotoxicity, whereas autophagy stimulator rapamycin significantly suppressed aurantiamide acetate-induced cell death. The anti-tumour effects of aurantiamide acetate were further evaluated in tumour-bearing nude mice. Intratumoural injection of aurantiamide acetate obviously suppressed tumour growth, and increased number of autophagic vacuoles was observed in tumour tissues of animals receiving aurantiamide acetate. Our findings suggest that aurantiamide acetate may suppress the growth of malignant gliomas by blocking autophagic flux. PMID:25704599

  1. A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications.

    PubMed

    Bogdańska, Magdalena U; Bodnar, Marek; Piotrowska, Monika J; Murek, Michael; Schucht, Philippe; Beck, Jürgen; Martínez-González, Alicia; Pérez-García, Víctor M

    2017-01-01

    Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs, WHO grade II gliomas) may grow very slowly for the long periods of time, however they inevitably cause death due to the phenomenon known as the malignant transformation. This refers to the transition of LGGs to more aggressive forms of high grade gliomas (HGGs, WHO grade III and IV gliomas). In this paper we propose a mathematical model describing the spatio-temporal transition of LGGs into HGGs. Our modelling approach is based on two cellular populations with transitions between them being driven by the tumour microenvironment transformation occurring when the tumour cell density grows beyond a critical level. We show that the proposed model describes real patient data well. We discuss the relationship between patient prognosis and model parameters. We approximate tumour radius and velocity before malignant transformation as well as estimate the onset of this process.

  2. A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications

    PubMed Central

    Bodnar, Marek; Piotrowska, Monika J.; Murek, Michael; Schucht, Philippe; Beck, Jürgen; Martínez-González, Alicia; Pérez-García, Víctor M.

    2017-01-01

    Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs, WHO grade II gliomas) may grow very slowly for the long periods of time, however they inevitably cause death due to the phenomenon known as the malignant transformation. This refers to the transition of LGGs to more aggressive forms of high grade gliomas (HGGs, WHO grade III and IV gliomas). In this paper we propose a mathematical model describing the spatio-temporal transition of LGGs into HGGs. Our modelling approach is based on two cellular populations with transitions between them being driven by the tumour microenvironment transformation occurring when the tumour cell density grows beyond a critical level. We show that the proposed model describes real patient data well. We discuss the relationship between patient prognosis and model parameters. We approximate tumour radius and velocity before malignant transformation as well as estimate the onset of this process. PMID:28763450

  3. KITENIN promotes glioma invasiveness and progression, associated with the induction of EMT and stemness markers

    PubMed Central

    Oh, Se-Jeong; Kim, Ok; Joo, Young-Eun; Bae, Jeong-A; Yoon, Somy; Ryu, Hyang-Hwa; Jung, Shin; Kim, Kyung-Keun; Lee, Jae-Hyuk; Moon, Kyung-Sub

    2015-01-01

    KITENIN (KAI1 COOH-terminal interacting tetraspanin) promotes tumor invasion and metastasis in various cancers. This study assessed the association between KITENIN expression and advanced glioma grade in patients. In vitro assays revealed that KITENIN knockdown inhibited the invasion and migration of glioma cells, whereas KITENIN overexpression promoted their invasion and migration. In orthotopic mouse tumor models, mice transplanted with KITENIN-transfected glioma cells had significantly shorter survival than mice transplanted with mock-transfected cells. Patients with low KITENIN expression showed a significantly longer progression-free survival than patients with high KITENIN expression. KITENIN induced the expression of the epithelial-mesenchymal transition (EMT) markers (N-cadherin, ZEB1, ZEB2, SNAIL and SLUG) as well as the glioma stemness markers (CD133, ALDH1 and EPH-B1). Taken together, these findings showed that high levels of KITENIN increased glioma invasiveness and progression, associated with the up-regulation of EMT and stemness markers. PMID:25605251

  4. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside

    NASA Astrophysics Data System (ADS)

    Liu, Heng; Zhang, Jun; Chen, Xiao; Du, Xue-Song; Zhang, Jin-Long; Liu, Gang; Zhang, Wei-Guo

    2016-04-01

    Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.

  5. MiR-320 inhibits the growth of glioma cells through downregulating PBX3.

    PubMed

    Pan, Cuicui; Gao, Hua; Zheng, Ni; Gao, Qi; Si, Yuanquan; Zhao, Yueran

    2017-09-21

    MiR-320 is downregulated in multiple cancers, including glioma and acts as tumor suppressor through inhibiting tumor cells proliferation and inducing apoptosis. PBX3 (Pre-B cell leukemia homeobox 3), a putative target gene of miR-320, has been reported to be upregulated in various tumors and promote tumor cell growth through regulating MAKP/ERK pathway. This study aimed to verify whether miR-320 influences glioma cells growth through regulating PBX3. Twenty-four human glioma and paired adjacent nontumorous tissues were collected for determination of miR-320 and PBX3 expression using RT-qPCR and western blot assays. Luciferase reporter assay was performed to verify the interaction between miR-320 and its targeting sequence in the 3' UTR of PBX3 in glioma cells U87 and U251. Increased miR-320 level in U87 and U251 cells was achieved through miR-320 mimic transfection and the effect of which on glioma cells growth, proliferation, cell cycle, apoptosis and activation of Raf-1/MAPK pathway was determined using MTT, colony formation, flow cytometry and western blot assays. PBX3 knockdown was performed using shPBX3 and the influence on MAPK pathway activation was evaluated. MiR-320 downregulation and PBX3 upregulation was found in glioma tissues. Luciferase reporter assays identified miR-320 directly blinds to the 3' UTR of PBX3 in glioma cells. MiR-320 mimic transfection suppressed glioma cells proliferation, and induced cell cycle arrest and apoptosis. Both miR-320 overexpression and PBX3 knockdown inhibited Raf-1/MAPK activation. MiR-320 may suppress glioma cells growth and induced apoptosis through the PBX3/Raf-1/MAPK axis, and miR-320 oligonucleotides may be a potential cancer therapeutic for glioma.

  6. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.

  7. Isolation and characterization of bone marrow-derived progenitor cells from malignant gliomas.

    PubMed

    Guo, Ke-Tai; Juerchott, Kathrin; Fu, Peng; Selbig, Joachim; Eigenbrod, Sabina; Tonn, Jörg-Christian; Schichor, Christian

    2012-11-01

    Malignant gliomas are highly-vascularised tumours. Neoangiogenesis is a crucial factor in the malignant behaviour of tumour and prognosis of patients. Several mechanisms are suspected to lead to neoangiogenesis, one of them is the recruitment of multipotent progenitor cells towards the tumour. Factors such as Vascular endothelial growth factor-A (VEGF-A) were described to recruit bone marrow-derived endothelial progenitor cells (EPCs) to the glioma stroma and vasculature. Little is known about isolating EPCs from normal or malignant tissues. In this study, we addressed the topic of characterization of tumour-isolated EPCs and re-defined the clonal relationship between EPCs and hematopoietic stem cells (HSCs) in gliomas. We first checked public gene expression data of glioma for putative marker expression, pointing towards a prevalence of EPCs and HSCs in glioma. Immunohistochemical staining of glioma tissue confirmed the higher expression of these progenitor markers in glioma tissue. EPCs and HSCs were consequently isolated and characterized at the phenotypic and functional levels. We applied a new isolation method, for the first time, to specimen from patients with high grade glioma including seven grade IV glioblastoma, five-grade III astrocytoma, and three grade III oligoastrocytoma. In all samples, we were able to isolate the tumour-derived EPCs, which were positive for characteristic markers: CD31, CD34 and VEGFR2. The EPCs formed capillary networks in vitro and had the ability to take up acetylated low-density lipoprotein. Glioma-derived HSCs were positive for CD34 and CD45, but they were unable to form a capillary network in vitro. These findings on tumour-derived EPCs/HSCs were in concordance with the results, derived from peripheral blood of healthy volunteers. In our study, we established a new method for EPC/HSC isolation from human gliomas, defined the contribution of EPCs and HSCs to the tumour tissue, and highlighted the intense in vivo tumour host

  8. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells.

    PubMed

    Li, Feng; Lv, Bingke; Liu, Yang; Hua, Tian; Han, Jianbang; Sun, Chengmei; Xu, Limin; Zhang, Zhongfei; Feng, Zhiming; Cai, Yingqian; Zou, Yuxi; Ke, Yiquan; Jiang, Xiaodan

    2018-01-01

    Tumor initiating cells or cancer stem cells (CSCs) play an important role in the initiation, development, metastasis, and recurrence of tumors. However, traditional therapies have limited effects against CSCs and targeting these cells is crucial when developing new therapeutic strategies against cancer. One potentially targetable factor is CD47, a member of the immunoglobulin superfamily. This protein acts as an anti-phagocytic "don't eat me" signal and is often found expressed by cancer cells, particularly CSCs. CD47 functions by activating signal regulatory protein-α (SIRP-α) expressed on macrophages, preventing phagocytosis. However, the role of CD47 in glioma stem cells (GSCs) has been not been thoroughly investigated. Our study therefore examined the expression and function of this protein in glioma cells and GSCs. We found that CD47 was highly expressed on glioma cells, especially GSCs, and that expression associated with worse clinical outcomes. We also found that CD47+ glioma cells possessed stem/progenitor cell-like characteristics and knocking down CD47 expression resulted in a reduction in these characteristics. Treatment with anti-CD47 antibody led to increased phagocytosis of glioma cells and GSCs by macrophages. We next examined the effects of anti-CD47 antibody on glioma cells/GSCs in an immune competent mouse glioma model, revealing significant inhibition of tumor growth and prolonged survival times. Importantly, there were no apparent side effects in the animal model. In summary, we have shown that CD47 is a potentially safe and effective therapeutic target for glioma.

  9. Cytotoxicity of sophorolipid-gellan gum-gold nanoparticle conjugates and their doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines

    NASA Astrophysics Data System (ADS)

    Dhar, Sheetal; Reddy, E. Maheswara; Prabhune, Asmita; Pokharkar, Varsha; Shiras, Anjali; Prasad, B. L. V.

    2011-02-01

    Biocompatible gold nanoparticles were synthesized by using a naturally occurring gum-Gellan Gum-as a capping and reducing agent. These were further conjugated with sophorolipids which again were accessed through a biochemical transformation of a fatty acid. The cellular uptake of sophorolipid-conjugated gellan gum reduced gold nanoparticles and their cytotoxicity on human glioma cell line LN-229 and human glioma stem cell line HNGC-2 were investigated. Quite surprisingly even the simple sophorolipid-conjugated gellan gum reduced/capped gold nanoparticles showed greater efficacy in killing the glioma cell lines and, gratifyingly, the glioma stem cell lines also. The cytotoxic effects became more prominent once the anti cancer drug doxorubicin hydrochloride was also conjugated to these gold nanoparticles.Biocompatible gold nanoparticles were synthesized by using a naturally occurring gum-Gellan Gum-as a capping and reducing agent. These were further conjugated with sophorolipids which again were accessed through a biochemical transformation of a fatty acid. The cellular uptake of sophorolipid-conjugated gellan gum reduced gold nanoparticles and their cytotoxicity on human glioma cell line LN-229 and human glioma stem cell line HNGC-2 were investigated. Quite surprisingly even the simple sophorolipid-conjugated gellan gum reduced/capped gold nanoparticles showed greater efficacy in killing the glioma cell lines and, gratifyingly, the glioma stem cell lines also. The cytotoxic effects became more prominent once the anti cancer drug doxorubicin hydrochloride was also conjugated to these gold nanoparticles. Electronic supplementary information (ESI) available: Confocal Z-stacking images of Texas Red Conjugated SL-GG-Au NPs, thermogravimetic analysis of DOX-SL-GG-Au-NPs and SL-GG-AuNPs, and time-dependent fluorescence spectra of DOX-SL-GG-Au NPs. See DOI: 10.1039/c0nr00598c

  10. The construction of the multifunctional targeting ursolic acids liposomes and its apoptosis effects to C6 glioma stem cells.

    PubMed

    Ying, Xue; Wang, Yahua; Xu, Haolun; Li, Xia; Yan, Helu; Tang, Hui; Wen, Chen; Li, Yingchun

    2017-09-08

    Brain gliomas, one of the most fatal tumors to human, severely threat the health and life of human. They are capable of extremely strong invasion ability. And invasive glioma cells could rapidly penetrate into normal brain tissues and break them. We prepared a kind of functional liposomes, which could be transported acrossing the blood-brain barrier (BBB) and afterwards induce the apoptosis of glioma stem cells. In this research, we chose ursolic acids (UA) as an anti-cancer drug to inhibit the growth of C6 glioma cells, while epigallocatechin 3-gallate(EGCG) as the agent that could induce the apoptosis of C6 glioma stem cells. With the targeting ability of MAN, the liposomes could be delivered through the BBB and finally were concentrated on the brain gliomas. Cell experiments in vitro demonstrated that the functional liposomes were able to significantly enhance the anti-cancer effects of the drugs due to promoting the apoptosis and endocytosis effects of C6 glioma cells and C6 glioma stem cells at the same time. Furthermore, the evaluations through animal models showed that the drugs could obviously prolong the survival period of brain glioma-bearing mice and inhibit the tumor growth. Consequently, multifunctional targeting ursolic acids liposomes could potentially improve the therapeutic effects on C6 glioma cells and C6 glioma stem cells.

  11. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer.

    PubMed

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina; Aradottir, Steina; Borg, Ake; Armstrong, Georgina N; Shete, Sanjay; Lau, Ching C; Bainbridge, Matthew N; Claus, Elizabeth B; Barnholtz-Sloan, Jill; Lai, Rose; Il'yasova, Dora; Houlston, Richard S; Schildkraut, Joellen; Bernstein, Jonine L; Olson, Sara H; Jenkins, Robert B; Lachance, Daniel H; Wrensch, Margaret; Davis, Faith G; Merrell, Ryan; Johansen, Christoffer; Sadetzki, Siegal; Bondy, Melissa L; Melin, Beatrice S

    2014-10-01

    Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  12. The construction of the multifunctional targeting ursolic acids liposomes and its apoptosis effects to C6 glioma stem cells

    PubMed Central

    Ying, Xue; Wang, Yahua; Xu, Haolun; Li, Xia; Yan, Helu; Tang, Hui; Wen, Chen; Li, Yingchun

    2017-01-01

    Brain gliomas, one of the most fatal tumors to human, severely threat the health and life of human. They are capable of extremely strong invasion ability. And invasive glioma cells could rapidly penetrate into normal brain tissues and break them. We prepared a kind of functional liposomes, which could be transported acrossing the blood-brain barrier (BBB) and afterwards induce the apoptosis of glioma stem cells. In this research, we chose ursolic acids (UA) as an anti-cancer drug to inhibit the growth of C6 glioma cells, while epigallocatechin 3-gallate(EGCG) as the agent that could induce the apoptosis of C6 glioma stem cells. With the targeting ability of MAN, the liposomes could be delivered through the BBB and finally were concentrated on the brain gliomas. Cell experiments in vitro demonstrated that the functional liposomes were able to significantly enhance the anti-cancer effects of the drugs due to promoting the apoptosis and endocytosis effects of C6 glioma cells and C6 glioma stem cells at the same time. Furthermore, the evaluations through animal models showed that the drugs could obviously prolong the survival period of brain glioma-bearing mice and inhibit the tumor growth. Consequently, multifunctional targeting ursolic acids liposomes could potentially improve the therapeutic effects on C6 glioma cells and C6 glioma stem cells. PMID:28969057

  13. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    PubMed Central

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Armstrong, Georgina N.; Shete, Sanjay; Lau, Ching C.; Bainbridge, Matthew N.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Lai, Rose; Il'yasova, Dora; Houlston, Richard S.; Schildkraut, Joellen; Bernstein, Jonine L.; Olson, Sara H.; Jenkins, Robert B.; Lachance, Daniel H.; Wrensch, Margaret; Davis, Faith G.; Merrell, Ryan; Johansen, Christoffer; Sadetzki, Siegal; Bondy, Melissa L.; Melin, Beatrice S.; Adatto, Phyllis; Morice, Fabian; Payen, Sam; McQuinn, Lacey; McGaha, Rebecca; Guerra, Sandra; Paith, Leslie; Roth, Katherine; Zeng, Dong; Zhang, Hui; Yung, Alfred; Aldape, Kenneth; Gilbert, Mark; Weinberger, Jeffrey; Colman, Howard; Conrad, Charles; de Groot, John; Forman, Arthur; Groves, Morris; Levin, Victor; Loghin, Monica; Puduvalli, Vinay; Sawaya, Raymond; Heimberger, Amy; Lang, Frederick; Levine, Nicholas; Tolentino, Lori; Saunders, Kate; Thach, Thu-Trang; Iacono, Donna Dello; Sloan, Andrew; Gerson, Stanton; Selman, Warren; Bambakidis, Nicholas; Hart, David; Miller, Jonathan; Hoffer, Alan; Cohen, Mark; Rogers, Lisa; Nock, Charles J; Wolinsky, Yingli; Devine, Karen; Fulop, Jordonna; Barrett, Wendi; Shimmel, Kristen; Ostrom, Quinn; Barnett, Gene; Rosenfeld, Steven; Vogelbaum, Michael; Weil, Robert; Ahluwalia, Manmeet; Peereboom, David; Staugaitis, Susan; Schilero, Cathy; Brewer, Cathy; Smolenski, Kathy; McGraw, Mary; Naska, Theresa; Rosenfeld, Steven; Ram, Zvi; Blumenthal, Deborah T.; Bokstein, Felix; Umansky, Felix; Zaaroor, Menashe; Cohen, Avi; Tzuk-Shina, Tzeela; Voldby, Bo; Laursen, René; Andersen, Claus; Brennum, Jannick; Henriksen, Matilde Bille; Marzouk, Maya; Davis, Mary Elizabeth; Boland, Eamon; Smith, Marcel; Eze, Ogechukwu; Way, Mahalia; Lada, Pat; Miedzianowski, Nancy; Frechette, Michelle; Paleologos, Nina; Byström, Gudrun; Svedberg, Eva; Huggert, Sara; Kimdal, Mikael; Sandström, Monica; Brännström, Nikolina; Hayat, Amina; Tihan, Tarik; Zheng, Shichun; Berger, Mitchel; Butowski, Nicholas; Chang, Susan; Clarke, Jennifer; Prados, Michael; Rice, Terri; Sison, Jeannette; Kivett, Valerie; Duo, Xiaoqin; Hansen, Helen; Hsuang, George; Lamela, Rosito; Ramos, Christian; Patoka, Joe; Wagenman, Katherine; Zhou, Mi; Klein, Adam; McGee, Nora; Pfefferle, Jon; Wilson, Callie; Morris, Pagan; Hughes, Mary; Britt-Williams, Marlin; Foft, Jessica; Madsen, Julia; Polony, Csaba; McCarthy, Bridget; Zahora, Candice; Villano, John; Engelhard, Herbert; Borg, Ake; Chanock, Stephen K; Collins, Peter; Elston, Robert; Kleihues, Paul; Kruchko, Carol; Petersen, Gloria; Plon, Sharon; Thompson, Patricia; Johansen, C.; Sadetzki, S.; Melin, B.; Bondy, Melissa L.; Lau, Ching C.; Scheurer, Michael E.; Armstrong, Georgina N.; Liu, Yanhong; Shete, Sanjay; Yu, Robert K.; Aldape, Kenneth D.; Gilbert, Mark R.; Weinberg, Jeffrey; Houlston, Richard S.; Hosking, Fay J.; Robertson, Lindsay; Papaemmanuil, Elli; Claus, Elizabeth B.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Sloan, Andrew E.; Barnett, Gene; Devine, Karen; Wolinsky, Yingli; Lai, Rose; McKean-Cowdin, Roberta; Il'yasova, Dora; Schildkraut, Joellen; Sadetzki, Siegal; Yechezkel, Galit Hirsh; Bruchim, Revital Bar-Sade; Aslanov, Lili; Sadetzki, Siegal; Johansen, Christoffer; Kosteljanetz, Michael; Broholm, Helle; Bernstein, Jonine L.; Olson, Sara H.; Schubert, Erica; DeAngelis, Lisa; Jenkins, Robert B.; Yang, Ping; Rynearson, Amanda; Andersson, Ulrika; Wibom, Carl; Henriksson, Roger; Melin, Beatrice S.; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Merrell, Ryan; Lada, Patricia; Wrensch, Margaret; Wiencke, John; Wiemels, Joe; McCoy, Lucie; McCarthy, Bridget J.; Davis, Faith G.

    2014-01-01

    Background Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Methods Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. Results We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Conclusions Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes. PMID:24723567

  14. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    PubMed

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety.

  15. The ability of hyaluronan fragments to reverse the resistance of C6 rat glioma cell line to temozolomide and carmustine.

    PubMed

    Karbownik, Michał Seweryn; Pietras, Tadeusz; Szemraj, Janusz; Kowalczyk, Edward; Nowak, Jerzy Zygmunt

    2014-01-01

    Hyaluronan (HA) is an extracellular matrix (ECM) polymer that may contribute to the emergence of anti-cancer drug resistance. Attempts to reverse drug resistance using small hyaluronan oligomers (oHA) are being made. The initial reports suggest that the oHA fraction may effectively reverse anti-cancer drug resistance in glioma models. However, the reversal effects of oHA of defined molecular length on glioma cells have not been investigated yet. In this study, we examined HA fragments containing 2 disaccharide units (oHA-2), 5 disaccharide units (oHA-5), and 68 kDa hyaluronan polymer (HA-68k) as agents possibly reversing the resistance of a C6 rat glioma cell line to temozolomide (TMZ) and carmustine (BCNU). A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay was used to assess the cytotoxicity of TMZ and BCNU in the presence or absence of the hyaluronan fragments. By comparing viability of the cells, the reversal effects of HA fragments on TMZ and BCNU resistance in C6 glioma cells were assessed. We found statistically significant decreases in the viability of cells in the presence of TMZ+oHA-5 as compared to TMZ alone (51.2 ±4.5 vs. 74.2 ±5.8, p = 0.0031), BCNU+o-HA5 as compared to BCNU alone (49.3 ±4.4 vs. 65.6 ±5.7, p = 0.0119), and BCNU+HA-68k as compared to BCNU alone (55.2 ±2.3 vs. 65.6 ±5.7, p = 0.0496). Hyaluronan oligomers of 5 disaccharide units (oHA-5) significantly reversed the resistance of C6 cells to TMZ and BCNU. The results are only preliminary and a more thorough follow-up investigation is required to assess their actual role.

  16. The ability of hyaluronan fragments to reverse the resistance of C6 rat glioma cell line to temozolomide and carmustine

    PubMed Central

    Pietras, Tadeusz; Szemraj, Janusz; Kowalczyk, Edward; Nowak, Jerzy Zygmunt

    2014-01-01

    Aim of the study Hyaluronan (HA) is an extracellular matrix (ECM) polymer that may contribute to the emergence of anti-cancer drug resistance. Attempts to reverse drug resistance using small hyaluronan oligomers (oHA) are being made. The initial reports suggest that the oHA fraction may effectively reverse anti-cancer drug resistance in glioma models. However, the reversal effects of oHA of defined molecular length on glioma cells have not been investigated yet. In this study, we examined HA fragments containing 2 disaccharide units (oHA-2), 5 disaccharide units (oHA-5), and 68 kDa hyaluronan polymer (HA-68k) as agents possibly reversing the resistance of a C6 rat glioma cell line to temozolomide (TMZ) and carmustine (BCNU). Material and methods A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay was used to assess the cytotoxicity of TMZ and BCNU in the presence or absence of the hyaluronan fragments. By comparing viability of the cells, the reversal effects of HA fragments on TMZ and BCNU resistance in C6 glioma cells were assessed. Results We found statistically significant decreases in the viability of cells in the presence of TMZ+oHA-5 as compared to TMZ alone (51.2 ±4.5 vs. 74.2 ±5.8, p = 0.0031), BCNU+o-HA5 as compared to BCNU alone (49.3 ±4.4 vs. 65.6 ±5.7, p = 0.0119), and BCNU+HA-68k as compared to BCNU alone (55.2 ±2.3 vs. 65.6 ±5.7, p = 0.0496). Conclusions Conclusions: Hyaluronan oligomers of 5 disaccharide units (oHA-5) significantly reversed the resistance of C6 cells to TMZ and BCNU. The results are only preliminary and a more thorough follow-up investigation is required to assess their actual role. PMID:25477754

  17. MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.

    PubMed

    Chai, Chang; Song, Lai-Jun; Han, Shuang-Yin; Li, Xi-Qing; Li, Ming

    2018-05-01

    Our study aims to investigate the effect of microRNA-21 (miR-21) on the proliferation, senescence, and apoptosis of glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway. Glioma tissues and brain tissues were collected for this study after surgical decompression for traumatic brain injury. RT-qPCR was employed to measure mRNA levels of miR-21, SPRY1, PTEN, PI3K, and AKT, and Western blotting was conducted to determine protein levels of SPRY1, PTEN, PI3K, AKT, p-AKT, Caspase-3, Caspase-9, P53, GSK3, and p-GSK3. Human glioma U87 cells were assigned into the blank, negative control (NC), miR-21 mimics, miR-21 inhibitors, siRNA-SPRY1, and miR-21 inhibitors + siRNA-SPRY1 groups, with human HEB cells serving as the normal group. Cell proliferation, cell cycle, and apoptosis were determined by MTT and flow cytometry, respectively. Compared with control group, an increased expression of miR-21, PI3K, AKT, p-AKT, P53, and p-GSK3, and a decreased expression of SPRY1, PTEN, Caspase-3, and Caspase-9 were observed in the glioma group, and no significant differences were found in the expression of GSK3. SPRY1 was verified to be the target gene of miR-21. Compared with the blank and NC groups, levels of PI3K, AKT, p-AKT, P53, and p-GSK3 increased while levels of SPRY1, PTEN, Caspase-3, and Caspase-9 decreased in the miR-21 mimics and siRNA-SPRY1 groups; the miR-21 inhibitors group reversed the tendency; furthermore, the miR-21 inhibitors group showed decreased cell proliferation but promoted apoptosis, which were opposite to the results of the miR-21 mimics and siRNA-SPRY1 groups. MicroRNA-21 might promote cell proliferation and inhibit cell senescence and apoptosis of human glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway. © 2018 John Wiley & Sons Ltd.

  18. AKT Axis, miR-21, and RECK Play Pivotal Roles in Dihydroartemisinin Killing Malignant Glioma Cells

    PubMed Central

    Shao, Ying-Ying; Zhang, Tao-Lan; Wu, Lan-Xiang; Zou, He-Cun; Li, Shuang; Huang, Jin; Zhou, Hong-Hao

    2017-01-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is known to play important roles in inhibiting proliferation rate, inducing apoptosis, as well as hindering the metastasis and invasion of glioma cells, but the underlying mechanisms are still unclear so far. In this study, methyl thiazolyl tetrazolium (MTT), colony-forming, wound healing, invasion, and apoptosis assays were performed to investigate the effect of DHA on malignant glioma cells. Results showed that DHA induced apoptosis of malignant glioma cells through Protein Kinase B (AKT) axis, induced death of malignant glioma cells by downregulating miR-21, and inhibited the invasion of malignant glioma cells corresponding with up-regulation of the reversion-inducing-cysteine-rich protein with kazal motifs (RECK). These results revealed that AKT axis, miR-21, and RECK play pivotal roles in DHA killing malignant glioma cells, suggesting that DHA is a potential agent for treating glioma. PMID:28208619

  19. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate.

    PubMed

    Andronesi, Ovidiu C; Arrillaga-Romany, Isabel C; Ly, K Ina; Bogner, Wolfgang; Ratai, Eva M; Reitz, Kara; Iafrate, A John; Dietrich, Jorg; Gerstner, Elizabeth R; Chi, Andrew S; Rosen, Bruce R; Wen, Patrick Y; Cahill, Daniel P; Batchelor, Tracy T

    2018-04-16

    Inhibitors of the mutant isocitrate dehydrogenase 1 (IDH1) entered recently in clinical trials for glioma treatment. Mutant IDH1 produces high levels of 2-hydroxyglurate (2HG), thought to initiate oncogenesis through epigenetic modifications of gene expression. In this study, we show the initial evidence of the pharmacodynamics of a new mutant IDH1 inhibitor in glioma patients, using non-invasive 3D MR spectroscopic imaging of 2HG. Our results from a Phase 1 clinical trial indicate a rapid decrease of 2HG levels by 70% (CI 13%, P = 0.019) after 1 week of treatment. Importantly, inhibition of mutant IDH1 may lead to the reprogramming of tumor metabolism, suggested by simultaneous changes in glutathione, glutamine, glutamate, and lactate. An inverse correlation between metabolic changes and diffusion MRI indicates an effect on the tumor-cell density. We demonstrate a feasible radiopharmacodynamics approach to support the rapid clinical translation of rationally designed drugs targeting IDH1/2 mutations for personalized and precision medicine of glioma patients.

  20. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab.

    PubMed

    Harris, Robert J; Cloughesy, Timothy F; Pope, Whitney B; Nghiemphu, Phioanh L; Lai, Albert; Zaw, Taryar; Czernin, Johannes; Phelps, Michael E; Chen, Wei; Ellingson, Benjamin M

    2012-08-01

    The current study examined the use of voxel-wise changes in (18)F-FDOPA and (18)F-FLT PET uptake, referred to as parametric response maps (PRMs), to determine whether they were predictive of response to bevacizumab in patients with recurrent malignant gliomas. Twenty-four patients with recurrent malignant gliomas who underwent bevacizumab treatment were analyzed. Patients had MR and PET images acquired before and at 2 time points after bevacizumab treatment. PRMs were created by examining the percentage change in tracer uptake between time points in each image voxel. Voxel-wise increase in PET uptake in areas of pretreatment contrast enhancement defined by MRI stratified 3-month progression-free survival (PFS) and 6-month overall survival (OS) according to receiver-operating characteristic curve analysis. A decrease in PET tracer uptake was associated with longer PFS and OS, whereas an increase in PET uptake was associated with short PFS and OS. The volume fraction of increased (18)F-FDOPA PET uptake between the 2 posttreatment time points also stratified long- and short-term PFS and OS (log-rank, P < .05); however, (18)F-FLT uptake did not stratify OS. This study suggests that an increase in FDOPA or FLT PET uptake on PRMs after bevacizumab treatment may be a useful biomarker for predicting PFS and that FDOPA PET PRMs are also predictive of OS in recurrent gliomas treated with bevacizumab.

  1. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab

    PubMed Central

    Harris, Robert J.; Cloughesy, Timothy F.; Pope, Whitney B.; Nghiemphu, Phioanh L.; Lai, Albert; Zaw, Taryar; Czernin, Johannes; Phelps, Michael E.; Chen, Wei; Ellingson, Benjamin M.

    2012-01-01

    The current study examined the use of voxel-wise changes in 18F-FDOPA and 18F-FLT PET uptake, referred to as parametric response maps (PRMs), to determine whether they were predictive of response to bevacizumab in patients with recurrent malignant gliomas. Twenty-four patients with recurrent malignant gliomas who underwent bevacizumab treatment were analyzed. Patients had MR and PET images acquired before and at 2 time points after bevacizumab treatment. PRMs were created by examining the percentage change in tracer uptake between time points in each image voxel. Voxel-wise increase in PET uptake in areas of pretreatment contrast enhancement defined by MRI stratified 3-month progression-free survival (PFS) and 6-month overall survival (OS) according to receiver-operating characteristic curve analysis. A decrease in PET tracer uptake was associated with longer PFS and OS, whereas an increase in PET uptake was associated with short PFS and OS. The volume fraction of increased 18F-FDOPA PET uptake between the 2 posttreatment time points also stratified long- and short-term PFS and OS (log-rank, P < .05); however, 18F-FLT uptake did not stratify OS. This study suggests that an increase in FDOPA or FLT PET uptake on PRMs after bevacizumab treatment may be a useful biomarker for predicting PFS and that FDOPA PET PRMs are also predictive of OS in recurrent gliomas treated with bevacizumab. PMID:22711609

  2. Cathepsin L suppression increases the radiosensitivity of human glioma U251 cells via G2/M cell cycle arrest and DNA damage.

    PubMed

    Zhang, Qing-qing; Wang, Wen-juan; Li, Jun; Yang, Neng; Chen, Gang; Wang, Zhong; Liang, Zhong-qin

    2015-09-01

    Cathepsin L is a lysosomal cysteine protease that plays important roles in cancer tumorigenesis, proliferation and chemotherapy resistance. The aim of this study was to determine how cathepsin L regulated the radiosensitivity of human glioma cells in vitro. Human glioma U251 cells (harboring the mutant type p53 gene) and U87 cells (harboring the wide type p53 gene) were irradiated with X-rays. The expression of cathepsin L was analyzed using Western blot and immunofluorescence assays. Cell survival and DNA damage were evaluated using clonogenic and comet assays, respectively. Flow cytometry was used to detect the cell cycle distribution. Apoptotic cells were observed using Hoechst 33258 staining and fluorescence microscopy. Irradiation significantly increased the cytoplasmic and nuclear levels of cathepsin L in U251 cells but not in U87 cells. Treatment with the specific cathepsin L inhibitor Z-FY-CHO (10 μmol/L) or transfection with cathepsin L shRNA significantly increased the radiosensitivity of U251 cells. Both suppression and knockdown of cathepsin L in U251 cells increased irradiation-induced DNA damage and G2/M phase cell cycle arrest. Both suppression and knockdown of cathepsin L in U251 cells also increased irradiation-induced apoptosis, as shown by the increased levels of Bax and decreased levels of Bcl-2. Cathepsin L is involved in modulation of radiosensitivity in human glioma U251 cells (harboring the mutant type p53 gene) in vitro.

  3. Apigenin inhibits glioma cell growth through promoting microRNA-16 and suppression of BCL-2 and nuclear factor-κB/MMP‑9.

    PubMed

    Chen, Xin-Jun; Wu, Mian-Yun; Li, Deng-Hui; You, Jin

    2016-09-01

    The present study aimed to investigate the effect of apigenin on glioma cells and to explore its potential mechanism. U87 human glioma cells treated with apigenin were used in the current study. Cell Counting Kit‑8 solution and Annexin V-fluorescein isothiocyanate/propidium iodide Apoptosis Detection kit were used to analyze the effect of apigenin on U87 cell viability and apoptotic cell death. Reverse transcription‑quantitative polymerase chain reaction analysis was also used to determine microRNA‑16 (miR‑16) and MMP‑9 gene expression levels. Nuclear factor‑κB (NF‑κB) and B‑cell CLL/lymphoma 2 (BCL2) protein expression levels were determined using western blot analysis. An anti‑miR‑16 plasmid was constructed and transfected into U87 cells. The current study demonstrated that apigenin significantly decreased cell viability and induced apoptotic cell death of U87 cells in a dose‑dependent manner. Additionally, it was demonstrated that apigenin significantly increased miR‑16 levels, suppressed BCL2 protein expression and suppressed the NF‑κB/MMP9 signaling pathway in U87 cells. Furthermore, downregulation of miR‑16 using the anti‑miR‑16 plasmid reversed the effect of apigenin on cell viability, BCL2 protein expression and the NF‑κB/MMP‑9 pathway in U87 cells. The results of the present study suggested that apigenin inhibits glioma cell growth through promoting miR‑16 and suppression of BCL2 and NF-κB/MMP-9. In conclusion, the present study demonstrated the potential anticancer effects of apigenin on glioma cells.

  4. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    PubMed Central

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  5. Preoperative Grading of Glioma Using Dynamic Susceptibility Contrast MRI: Relative Cerebral Blood Volume Analysis of Intra-tumoural and Peri-tumoural Tissue.

    PubMed

    Soliman, Radwa K; Gamal, Sara A; Essa, Abdel-Hakeem A; Othman, Mostafa H

    2018-04-01

    To assess the usefulness of intra-tumor and peri-tumoral relative cerebral blood volume (rCBV) in preoperative glioma grading. 21 patients with histopathologically confirmed glioma were included. Imaging was achieved on a 1.5T MRI scanner. Dynamic susceptibility contrast (DSC) MRI was performed using T2* weighted gradient echo-planner imaging (EPI). Multiple regions of interest (ROIs) have been drawn in the hotspots regions, the highest ROI has been selected to represent the rCBV of each intra-tumoral and peri-tumoral regions. Based on histopathology, tumors were subdivided into low grade and high grade. Receiver operating characteristic analysis (ROC) of rCBV, of both intra-tumoral and peri-tumoral regions, was performed to find cut-off values between high and low-grade tumors. The resulting sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated. Based on the histopathology, high-grade glioma (HGG) represented 76.2% whereas low-grade glioma (LGG) represented 23.8%. Both intra-tumoral and peri-tumoral rCBV of HGG were significantly higher than those of LGG. A cut-off value >2.9 for intra-tumoral rCBV provided sensitivity, specificity, and accuracy of 80%, 100%, and 85.7% respectively to differentiate between HGG and LGG. Additionally, the cut-off value >0.7 for peri-tumoral rCBV provided sensitivity, specificity, and accuracy of 100%, 66.6%, and 90.5% respectively to differentiate between HGG and LGG. rCBV of each of intra-tumoral and peri-tumoral rCBV are significantly reliable for the preoperative distinction between HGG and LGG. Combined intra-tumoral and peri-tumoral rCBV provides overall better diagnostic accuracy and helps to decrease the invasive intervention for non-surgical candidates. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Epidemiology of venous thromboembolism in 9489 patients with malignant glioma.

    PubMed

    Semrad, Thomas J; O'Donnell, Robert; Wun, Ted; Chew, Helen; Harvey, Danielle; Zhou, Hong; White, Richard H

    2007-04-01

    The authors sought to define the incidence of symptomatic venous thromboembolism (VTE) in patients harboring malignant gliomas. The authors conducted a retrospective analysis of data obtained in all cases of malignant glioma diagnosed in California during a 6-year period; the occurrence of a VTE was identified using linked hospital discharge data. The Cox proportional hazard model was used to analyze the association of specific risk factors with the development of a VTE or death within 2 years of the cancer diagnosis. Among 9489 cases, the 2-year cumulative incidence of VTE was 7.5% (715 cases), with a rate of 16.1 events per 100 person-years during the first 6 months. Three hundred ninety-one (55%) of these 715 cases were diagnosed within 61 days of major neurosurgery. Risk factors for VTE included older age (hazard ratio [HR] 2.6, confidence interval [CI] 2.0-3.4 for age range 65-74 years compared with < or = 45 years), glioblastoma multiforme histology (HR 1.7, CI 1.4-2.1), three or more chronic comorbidities (HR 3.5, CI 2.8-4.3 [compared with no comorbidity]), and neurosurgery within 61 days (HR 1.7, CI 1.3-2.3). Patients in whom a VTE was present were at higher risk of dying within 2 years (HR 1.3, CI 1.2-1.4). In a nested case-control analysis of all VTE cases, there was no association between insertion of a vena cava filter and the risk of a recurrent VTE. In patients harboring a glioma there was a very high incidence of symptomatic VTEs, particularly within 2 months of neurosurgery. The development of a VTE was associated with a 30% increase in the risk of death within 2 years. Further studies are needed to determine if risk stratification and the use of medical prophylaxis after neurosurgery improves outcomes.

  7. Genomic aberrations in diffuse low-grade gliomas.

    PubMed

    Dahlback, Hanne-Sofie S; Gorunova, Ludmila; Brandal, Petter; Scheie, David; Helseth, Eirik; Meling, Torstein R; Heim, Sverre

    2011-06-01

    The current classification of diffuse low-grade gliomas is based mainly on histopathological criteria, which cannot accurately predict the highly variable clinical course observed in patients with such tumors. In an attempt to increase pathogenetic understanding of these tumors, we investigated 38 WHO Grade II astrocytomas, oligodendrogliomas, and oligoastrocytomas using a combination of G-band chromosome analysis and high-resolution comparative genomic hybridization (HR-CGH). Abnormal karyotypes were found in 41% of tumors. Karyotypes of astrocytomas and oligodendrogliomas were near-diploid whereas oligoastrocytomas also displayed near-tetraploid clones. The most common aberrations were losses of chromosomes X, Y, 3, 4, 6, and 11 and gains of chromosomes 8 and 12. The only recurrent structural rearrangement was del(6)(q21). HR-CGH analysis verified karyotyping findings but also revealed frequent losses at 1p, 17q, and 19q and gains of 7q, 10p, 11q, and 20p. Among the tumors were two gemistocytic astrocytomas, a subgroup of diffuse astrocytomas with a particular predisposition for progression but not studied cytogenetically before; one showed a near-diploid, complex karyotype with structural aberrations of chromosomes 1, 3, and 11 whereas both displayed simple aberrations including loss of 11p by HR-CGH. Our findings suggest that within diffuse low-grade gliomas are genetically distinct entities that do not fit the currently used classification. In addition, tumors with complex chromosomal aberrations had a higher tendency for aggressive tumor behavior (shorter progression-free survival) than tumors displaying simple aberrations only (P = 0.07). This could help identify genetic subsets of patients with low-grade glioma who might benefit from early antineoplastic therapy. Copyright © 2011 Wiley-Liss, Inc.

  8. Treatment of Glioma Using neuroArm Surgical System

    PubMed Central

    2016-01-01

    The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and stereotaxy, was used in the surgical resection of glioma in seven cases. neuroArm is equipped with force sensors at the end-effector allowing quantification of tool-tissue interaction forces and transmits force of dissection to the surgeon sited at a remote workstation that includes a haptic interface. Interaction forces between the tool tips and the brain tissue were measured for each procedure, and the peak forces were quantified. Results showed maximum and minimum peak force values of 2.89 N (anaplastic astrocytoma, WHO grade III) and 0.50 N (anaplastic oligodendroglioma, WHO grade III), respectively, with the mean of peak forces varying from case to case, depending on type of the glioma. Mean values of the peak forces varied in range of 1.27 N (anaplastic astrocytoma, WHO grade III) to 1.89 N (glioblastoma with oligodendroglial component, WHO grade IV). In some cases, ANOVA test failed to reject the null hypothesis of equality in means of the peak forces measured. However, we could not find a relationship between forces exerted to the pathological tissue and its size, type, or location. PMID:27314044

  9. Irradiation and Bevacizumab in High-Grade Glioma Retreatment Settings

    SciTech Connect

    Niyazi, Maximilian; Ganswindt, Ute; Schwarz, Silke Birgit

    2012-01-01

    Purpose: Reirradiation is a treatment option for recurrent high-grade glioma with proven but limited effectiveness. Therapies directed against vascular endothelial growth factor have been shown to exert certain efficacy in combination with chemotherapy and have been safely tested in combination with radiotherapy in a small cohort of patients. To study the feasibility of reirradiation combined with bevacizumab treatment, the toxicity and treatment outcomes of this approach were analyzed retrospectively. Patients and Methods: After previous treatment with standard radiotherapy (with or without temozolomide) patients with recurrent malignant glioma received bevacizumab (10 mg/kg intravenous) on Day 1 and Day 15 during radiotherapy.more » Maintenance therapy was selected based on individual considerations, and mainly bevacizumab-containing regimens were chosen. Patients received 36 Gy in 18 fractions. Results: The data of the medical charts of the 30 patients were analyzed retrospectively. All were irradiated in a single institution and received either bevacizumab (n = 20), no additional substance (n = 7), or temozolomide (n = 3). Reirradiation was tolerated well, regardless of the added drug. In 1 patient treated with bevacizumab, a wound dehiscence occurred. Overall survival was significantly better in patients receiving bevacizumab (p = 0.03, log-rank test). In a multivariate proportional hazards Cox model, bevacizumab, Karnovsky performance status, and World Health Organization grade at relapse turned out to be the most important predictors for overall survival. Conclusion: Reirradiation with bevacizumab is a feasible and effective treatment for patients with recurrent high-grade gliomas. A randomized trial is warranted to finally answer the question whether bevacizumab adds substantial benefit to a radiotherapeutic retreatment setting.« less

  10. Pathological laughter and behavioural change in childhood pontine glioma.

    PubMed

    Hargrave, Darren R; Mabbott, Donald J; Bouffet, Eric

    2006-05-01

    Children with pontine glioma usually present classically with ataxia, motor deficits and cranial nerve palsies. The pons has generally not been regarded as a structure that mediates complex affective behaviour. However, we report nine children who either at the time of presentation or progression demonstrated marked behavioural changes manifesting as either "pathological laughter" or separation anxiety in the form of school refusal. A mechanism of how pontine lesions can cause such complex affective and cognitive behaviour has been suggested to consist of the disruption of a network of cerebro-ponto-cerebellar pathways and the evidence for this mechanism is discussed.

  11. A Metabolic Therapy for Malignant Glioma Requires a Clinical Measure.

    PubMed

    Corbin, Zachary; Spielman, Daniel; Recht, Lawrence

    2017-11-02

    Cancers are "reprogrammed" to use a much higher rate of glycolysis (GLY) relative to oxidative phosphorylation (OXPHOS), even in the presence of adequate amounts of oxygenation. Originally identified by Nobel Laureate Otto Warburg, this hallmark of cancer has recently been termed metabolic reprogramming and represents a way for the cancer tissue to divert carbon skeletons to produce biomass. Understanding the mechanisms that underlie this metabolic shift should lead to better strategies for cancer treatments. Malignant gliomas, cancers that are very resistant to conventional treatments, are highly glycolytic and seem particularly suited to approaches that can subvert this phenotype.

  12. The antitumor action of cannabinoids on glioma tumorigenesis.

    PubMed

    Zogopoulos, Panagiotis; Korkolopoulou, Penelope; Patsouris, Efstratios; Theocharis, Stamatios

    2015-06-01

    Cannabinoids are a class of chemical compounds with a wide spectrum of pharmacological effects, mediated by two specific plasma membrane receptors (CB1 and CB2). Recently, CB1 and CB2 expression levels have been detected in human tumors, including those of brain. Cannabinoids-endocannabinoids exert anti-inflammatory, anti-proliferative, anti-invasive, anti-metastatic and pro-apoptotic effects in different cancer types, both in vitro and in vivo in animal models, after local or systemic administration. We present the available experimental and clinical data, to date, regarding the antitumor action of cannabinoids on the tumorigenesis of gliomas.

  13. The management of lomustine overdose in malignant glioma patients

    PubMed Central

    Wirsching, Hans-Georg; Tritschler, Isabel; Palla, Antonella; Renner, Christoph; Weller, Michael; Tabatabai, Ghazaleh

    2014-01-01

    Lomustine is an oral alkylating drug commonly used for brain tumor patients. Recently, the lomustine-containing PCV polychemotherapy regime (procarbazine, CCNU/lomustine, and vincristine) in combination with radiotherapy has become the standard of care for anaplastic oligodendroglioma with 1p/19q codeletion and high-risk low-grade glioma. Here, we review the literature of all reported cases of lomustine overdose, highlight complications by exemplifying a case of inadvertent lomustine overdose, and outline the management of this potential complication of outpatient PCV therapy. PMID:26034630

  14. Demographic variation in incidence of adult glioma by subtype, United States, 1992-2007.

    PubMed

    Dubrow, Robert; Darefsky, Amy S

    2011-07-29

    We hypothesized that race/ethnic group, sex, age, and/or calendar period variation in adult glioma incidence differs between the two broad subtypes of glioblastoma (GBM) and non-GBM. Primary GBM, which constitute 90-95% of GBM, differ from non-GBM with respect to a number of molecular characteristics, providing a molecular rationale for these two broad glioma subtypes. We utilized data from the Surveillance, Epidemiology, and End Results Program for 1992-2007, ages 30-69 years. We compared 15,088 GBM cases with 9,252 non-GBM cases. We used Poisson regression to calculate adjusted rate ratios and 95% confidence intervals. The GBM incidence rate increased proportionally with the 4th power of age, whereas the non-GBM rate increased proportionally with the square root of age. For each subtype, compared to non-Hispanic Whites, the incidence rate among Blacks, Asians/Pacific Islanders, and American Indians/Alaskan Natives was substantially lower (one-fourth to one-half for GBM; about two-fifths for non-GBM). Secondary to this primary effect, race/ethnic group variation in incidence was significantly less for non-GBM than for GBM. For each subtype, the incidence rate was higher for males than for females, with the male/female rate ratio being significantly higher for GBM (1.6) than for non-GBM (1.4). We observed significant calendar period trends of increasing incidence for GBM and decreasing incidence for non-GBM. For the two subtypes combined, we observed a 3% decrease in incidence between 1992-1995 and 2004-2007. The substantial difference in age effect between GBM and non-GBM suggests a fundamental difference in the genesis of primary GBM (the driver of GBM incidence) versus non-GBM. However, the commonalities between GBM and non-GBM with respect to race/ethnic group and sex variation, more notable than the somewhat subtle, albeit statistically significant, differences, suggest that within the context of a fundamental difference, some aspects of the complex process of

  15. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma.

    PubMed

    El-Habr, Elias A; Dubois, Luiz G; Burel-Vandenbos, Fanny; Bogeas, Alexandra; Lipecka, Joanna; Turchi, Laurent; Lejeune, François-Xavier; Coehlo, Paulo Lucas Cerqueira; Yamaki, Tomohiro; Wittmann, Bryan M; Fareh, Mohamed; Mahfoudhi, Emna; Janin, Maxime; Narayanan, Ashwin; Morvan-Dubois, Ghislaine; Schmitt, Charlotte; Verreault, Maité; Oliver, Lisa; Sharif, Ariane; Pallud, Johan; Devaux, Bertrand; Puget, Stéphanie; Korkolopoulou, Penelope; Varlet, Pascale; Ottolenghi, Chris; Plo, Isabelle; Moura-Neto, Vivaldo; Virolle, Thierry; Chneiweiss, Hervé; Junier, Marie-Pierre

    2017-04-01

    Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.

  16. Estimation of PKCδ autophosphorylation in U87 MG glioma cells: combination of experimental, conceptual and numerical approaches.

    PubMed

    Misuth, Matus; Joniova, Jaroslava; Belej, Dominik; Hrivnak, Stanislav; Horvath, Denis; Huntosova, Veronika

    2017-03-01

    Golgi apparatus (GA) is a center for lipid metabolism and the final target of ceramide pathway, which may result in apoptosis. In this work localization of highly hydrophobic hypericin is followed by time-resolved imaging of NBDC 6 (fluorescent ceramide) in U87 MG glioma cells. Decrease of NBDC 6 fluorescence lifetimes in cells indicates that hypericin can also follow this pathway. It is known that both, ceramide and hypericin can significantly influence protein kinase C (PKC) activity. Western blotting analysis shows increase of PKCδ autophosphorylation at Ser645 (p(S645)PKCδ) in glioma cells incubated with 500 nM hypericin and confocal-fluorescence microscopy distinguishes p(S645)PKCδ localization between GA related compartments and nucleus. Experimental and numerical methods are combined to study p(S645)PKCδ in U87 MG cell line. Image processing based on conceptual qualitative description is combined with numerical treatment via simple exponential saturation model which describes redistribution of p(S645)PKCδ between nucleus and GA related compartments after hypericin administration. These results suggest, that numerical methods can significantly improve quantification of biomacromolecules (p(S645)PKCδ) directly from the fluorescence images and such obtained outputs are complementary if not equal to typical used methods in biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Single-nucleotide polymorphisms of allergy-related genes and risk of adult glioma.

    PubMed

    Backes, Danielle M; Siddiq, Afshan; Cox, David G; Calboli, Federico C F; Gaziano, J Michael; Ma, Jing; Stampfer, Meir; Hunter, David J; Camargo, Carlos A; Michaud, Dominique S

    2013-06-01

    Previous studies have shown an inverse association between allergies and glioma risk; however, results for associations between single nucleotide polymorphisms (SNPs) of allergy-related genes and glioma risk have been inconsistent and restricted to a small number of SNPs. The objective of this study was to examine the association between 166 SNPs of 21 allergy-related genes and glioma risk in a nested case-control study of participants from three large US prospective cohort studies. Blood col