Science.gov

Sample records for a2780 human ovarian

  1. Cytotoxic Effects of Strawberry, Korean Raspberry, and Mulberry Extracts on Human Ovarian Cancer A2780 Cells

    PubMed Central

    Lee, Dahae; Kang, Ki Sung; Lee, Sanghyun; Cho, Eun Ju; Kim, Hyun Young

    2016-01-01

    Reactive oxygen species are tumorigenic by their ability to increase cell proliferation, survival, and cellular migration. The purpose of the present study was to compare the antioxidant activity and cytotoxic effects of 3 berry extracts (strawberry, Korean raspberry, and mulberry) in A2780 human ovarian carcinoma cells. Except for raspberry, the ethyl acetate or methylene chloride fractions of berries containing phenolic compounds exerted dose dependent free radical scavenging activities. In the raspberry fractions, the hexane fraction also exhibited potent antioxidant activity. The cytotoxic effects of berries extracts in A2780 human ovarian carcinoma cells were measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Surprisingly, co-treatment with n-butanol (BuOH) fractions of berries showed stronger cytotoxic effects compared to the other fractions. These findings suggest that potent anticancer molecules are found in the BuOH fractions of berries that have stronger cytotoxic activity than antioxidants. PMID:28078263

  2. LC-MS Based Sphingolipidomic Study on A2780 Human Ovarian Cancer Cell Line and its Taxol-resistant Strain

    PubMed Central

    Huang, Hao; Tong, Tian-Tian; Yau, Lee-Fong; Chen, Cheng-Yu; Mi, Jia-Ning; Wang, Jing-Rong; Jiang, Zhi-Hong

    2016-01-01

    Drug resistance elicited by cancer cells continue to cause huge problems world-wide, for example, tens of thousands of patients are suffering from taxol-resistant human ovarian cancer. However, its biochemical mechanisms remain unclear. Sphingolipid metabolic dysregulation has been increasingly regarded as one of the drug-resistant mechanisms for various cancers, which in turn provides potential targets for overcoming the resistance. In the current study, a well-established LC-MS based sphingolipidomic approach was applied to investigate the sphingolipid metabolism of A2780 and taxol-resistant A2780 (A2780T) human ovarian cancer cell lines. 102 sphingolipids (SPLs) were identified based on accurate mass and characteristic fragment ions, among which 12 species have not been reported previously. 89 were further quantitatively analyzed by using multiple reaction monitoring technique. Multivariate analysis revealed that the levels of 52 sphingolipids significantly altered in A2780T cells comparing to those of A2780 cells. These alterations revealed an overall increase of sphingomyelin levels and significant decrease of ceramides, hexosylceramides and lactosylceramides, which concomitantly indicated a deviated SPL metabolism in A2780T. This is the most comprehensive sphingolipidomic analysis of A2780 and A2780T, which investigated significantly changed sphingolipid profile in taxol-resistant cancer cells. The aberrant sphingolipid metabolism in A2780T could be one of the mechanisms of taxol-resistance. PMID:27703266

  3. Inhibition of A2780 Human Ovarian Carcinoma Cell Proliferation by a Rubus Component, Sanguiin H-6.

    PubMed

    Lee, Dahae; Ko, Hyeonseok; Kim, Young-Joo; Kim, Su-Nam; Choi, Kyung-Chul; Yamabe, Noriko; Kim, Ki Hyun; Kang, Ki Sung; Kim, Hyun Young; Shibamoto, Takayuki

    2016-02-03

    The effects of a red raspberry component, sanguiin H-6 (SH-6), on the induction of apoptosis and the related signaling pathways in A2780 human ovarian carcinoma cells were investigated. SH-6 caused an antiproliferative effect and a severe morphological change resembling that of apoptotic cell death but no effect on the cancer cell cycle arrest. In addition, SH-6 induced an early apoptotic effect and activation of caspases as well as the cleavage of PARP, which is a hallmark of apoptosis. The early apoptotic percentages of A2780 cells exposed to 20 and 40 μM SH-6 were 35.39 and 41.76, respectively. Also, SH-6 caused the activation of mitogen-activated protein kinases (MAPKs), especially p38, and the increase of truncated p15/BID. These results in the present study suggest that the apoptosis of A2780 human ovarian carcinoma cells by SH-6 is mediated by the MAPK p38 and a caspase-8-dependent BID cleavage pathway.

  4. Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane.

    PubMed

    Hunakova, Luba; Gronesova, Paulina; Horvathova, Eva; Chalupa, Ivan; Cholujova, Dana; Duraj, Jozef; Sedlak, Jan

    2014-11-04

    Cisplatin resistance is one of the major obstacles in the treatment of ovarian cancer. In an effort to look for new possibilities of how to overcome this difficulty, we studied the mechanisms of the interactions between sulforaphane (SFN) and cisplatin (cisPt) in combined treatment of human ovarian carcinoma A2780 and SKOV3 cell lines. Synergy (A2780) and antagonism (SKOV3) found in MTT assay was confirmed by apoptosis. While SFN significantly potentiated cisPt-induced DNA damage in A2780 cells, it protected SKOV3 cells against cisPt-crosslinking. We revealed a less efficient Nrf-2 pathway inducibility by SFN in A2780 compared to SKOV3 cells, when activation of the Nrf-2 pathway incites its protectivity against cisPt. Thus, different activation of the Nrf-2 pathway may explain the dual effects of SFN.

  5. A2780 human ovarian cancer cells with acquired paclitaxel resistance display cancer stem cell properties.

    PubMed

    Han, Xiaofeng; DU, Fangfang; Jiang, Li; Zhu, Yifei; Chen, Zhen; Liu, Yanjun; Hong, Tingting; Wang, Teng; Mao, Yong; Wu, Xiaohong; Bruce, Iain C; Jin, Jian; Ma, Xin; Hua, Dong

    2013-11-01

    The use of chemotherapy to treat cancer is effective, but chemoresistance reduces this efficacy. Chemotherapy resistance involves several mechanisms, including the cancer stem cell (CSC) concept. The aim of the present study was to assess whether paclitaxel-resistant epithelial ovarian carcinoma is capable of generating cells with CSC-like properties. Using the paclitaxel-resistant A2780/PTX cell line, it was demonstrated that high aldehyde dehydrogenase 1 (ALDH1) activity identifies CSCs from diverse sources. Furthermore, the A2780/PTX cells had a strong ability to form colonies in soft agar assays. Notably, it was demonstrated that the inhibition of the PI3K signaling pathway abolished colony formation. These data suggest that there is a link between paclitaxel resistance and CSC enrichment. It is possible that therapeutic benefits, such as the restoration of chemosensitivity or the suppression of tumorigenicity, may be enabled by gaining further insights into the mechanisms underlying chemoresistance and the generation of CSCs.

  6. Preclinical in vivo activity of a combination gemcitabine/liposomal doxorubicin against cisplatin-resistant human ovarian cancer (A2780/CDDP).

    PubMed

    Gallo, D; Fruscella, E; Ferlini, C; Apollonio, P; Mancuso, S; Scambia, G

    2006-01-01

    Both gemcitabine and liposomal doxorubicin are antineoplastic drugs with clinical activity in platinum-refractory ovarian cancer. The purpose of this study was to evaluate the antitumor activity of a combination gemcitabine/liposomal doxorubicin administered to athymic mice bearing cisplatin-resistant human ovarian cancer (A2780/CDDP) xenografts. Emphasis was on the use of very low doses of each drug and of different dosing schedules. Data obtained showed that combined treatment with 80 mg/kg gemcitabine and 15 mg/kg liposomal doxorubicin produced a significant enhancement of antitumor activity compared with monotherapy at the same doses of these agents. Noteworthy is the fact that the majority of xenograft-bearing animals receiving the combination therapy demonstrated a complete tumor regression at the end of the study. A similar trend was observed when doses of both drugs were reduced to 20 mg/kg gemcitabine and to 6 mg/kg liposomal doxorubicin. Again, three out of ten mice receiving the combination were tumor free at the end of the study. No significant differences were observed in antitumor activity when comparing the simultaneous vs the consecutive dosing schedule. Remarkably, no additive toxicity was observed in any experimental trials. These data encourage clinical trials to prove the advantages of this combination treatment with respect to the single-agent chemotherapy in platinum-refractory ovarian cancer patients.

  7. Kudsuphilactone B, a nortriterpenoid isolated from Schisandra chinensis fruit, induces caspase-dependent apoptosis in human ovarian cancer A2780 cells.

    PubMed

    Jeong, Miran; Kim, Hye Mi; Kim, Hyun Ji; Choi, Jung-Hye; Jang, Dae Sik

    2017-04-01

    A phytochemical study on the fruits of Schisandra chinensis led to the isolation and characterization of nineteen compounds. The structures of the isolates were determined to be schizandrin, deoxyschizandrin, angeloylgomisin H, gomisin A, gomisin J, (-)-gomisin L1, (-)-gomisin L2, wuweizisu C, gomisin N, meso-dihydroguaiaretic acid, kadsuphilactone B, α-ylangenol, α-ylangenyl acetate, β-chamigrenal, β-chamigrenic acid, 4-hydroxybenzoic acid, protocatechuic acid, p-methylcarvacrol, and indole-3-acetic acid. Of these, some lignans and a nortriterpene showed cytotoxic activity in human ovarian and endometrial cancer cells. In particular, a nortriterpenoid kadsuphilactone B exhibited significant cytotoxic activity with IC50 values below 25 μM in both A2780 and Ishikawa cells. Kadsuphilactone B induced apoptotic cell death and stimulated the activation of caspase-3, -8, and -9 and the cleavages of poly (ADP-ribose) polymerase. Caspase inhibitors attenuated the pro-apoptotic activity of kudsuphilactone B. In addition, kadsuphilactone B altered the expression levels of B cell lymphoma 2 (Bcl-2) family proteins. Moreover, activation of MAPKs was modulated by kadsuphilactone B in a dose-dependent manner. Taken together, these results show that kadsuphilactone B induces caspase-dependent apoptosis in human cancer cells via the regulation of Bcl-2 family protein and MAPK signaling.

  8. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    SciTech Connect

    Barghout, Samir H.; Zepeda, Nubia; Xu, Zhihua; Steed, Helen; Lee, Cheng-Han; Fu, YangXin

    2015-12-04

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas a few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.

  9. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells

    PubMed Central

    Reza, Abu Musa Md Talimur; Choi, Yun-Jung; Yasuda, Hideyo; Kim, Jin-Hoi

    2016-01-01

    An enigmatic question exists concerning the pro- or anti-cancer status of mesenchymal stem cells (MSCs). Despite growing interest, this question remains unanswered, and the debate became intensified with new evidences backing each side. Here, we showed that human adipose MSC (hAMSC)-derived conditioned medium (CM) exhibited inhibitory effects on A2780 human ovarian cancer cells by blocking the cell cycle, and activating mitochondria-mediated apoptosis signalling. Explicitly, we demonstrated that exosomes, an important biological component of hAMSC-CM, could restrain proliferation, wound-repair and colony formation ability of A2780 and SKOV-3 cancer cells. Furthermore, hAMSC-CM-derived exosomes induced apoptosis signalling by upregulating different pro-apoptotic signalling molecules, such as BAX, CASP9, and CASP3, as well as downregulating the anti-apoptotic protein BCL2. More specifically, cancer cells exhibited reduced viability following fresh or protease-digested exosome treatment; however, treatment with RNase-digested exosomes could not inhibit the proliferation of cancer cells. Additionally, sequencing of exosomal RNAs revealed a rich population of microRNAs (miRNAs), which exhibit anti-cancer activities by targeting different molecules associated with cancer survival. Our findings indicated that exosomal miRNAs are important players involved in the inhibitory influence of hAMSC-CM towards ovarian cancer cells. Therefore, we believe that these comprehensive results will provide advances concerning ovarian cancer research and treatment. PMID:27929108

  10. Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp.

    PubMed

    Zhao, Ran; Qin, Wenjun; Qin, Ruihuan; Han, Jing; Li, Can; Wang, Yisheng; Xu, Congjian

    2017-01-01

    Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal β1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.

  11. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells.

    PubMed

    Shin, Soon Young; Jung, Hyeryoung; Ahn, Seunghyun; Hwang, Doseok; Yoon, Hyuk; Hyun, Jiye; Yong, Yeonjoong; Cho, Hi Jae; Koh, Dongsoo; Lee, Young Han; Lim, Yoongho

    2014-03-15

    Ovarian carcinoma remains the most lethal among gynecological cancers. Chemoresistance is a clinical problem that severely limits treatment success. To identify potent anticancer agents against the cisplatin-resistant human ovarian cancer cell line A2780/Cis, 26 polyphenols bearing a cinnamaldehyde scaffold were synthesized. Structural differences in their inhibitory effect on clonogenicity of A2780/Cis cells were elucidated using comparative molecular field analysis and comparative molecular similarity indices analysis. Structural conditions required for increased inhibitory activity can be derived based on the analysis of their contour maps. The two most active compounds (16 and 19) were selected and further characterized their biological activities. We found that compounds 16 and 19 trigger cell cycle arrest at the G2/M phase and apoptotic cell death in cisplatin-resistant A2780/Cis human ovarian cancer cells. The molecular mechanism of compound 16 was elucidated using in vitro aurora A kinase assay, and the binding mode between the compound 16 and aurora A kinase was interpreted using in silico docking experiments. The findings obtained here may help us develop novel plant-derived polyphenols used for potent chemotherapeutic agents. In conclusion, compounds 16 and 19 could be used as promising lead compounds for the development of novel anticancer therapies in the treatment of cisplatin-resistant ovarian cancers.

  12. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells

    SciTech Connect

    Han Xiaobing; Xi Ling; Wang Hui; Huang Xiaoyuan; Ma Xiangyi; Han Zhiqiang; Wu Peng; Ma Xiaoli; Lu Yunping; Wang, Gang Zhou Jianfeng; Ma Ding

    2008-10-17

    Diverse types of voltage-gated potassium (K{sup +}) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca{sup 2+}-activated K{sup +} channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC{sub 50} = 31.1 {mu}M, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21{sup Cip1} expression in a p53-dependent manner.

  13. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  14. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs

    PubMed Central

    Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2017-01-01

    Ovarian cancer is the deadliest gynecological malignancy in women, and fifth leading cause of death. Despite advances made in chemotherapy and surgery, the average time of clinical remission is approximately 2 years and the 5-year survival rate is 45%. Thus, there is an urgent need for the development of a novel therapeutic approach to ovarian cancer treatment. We investigated the effect of a specific nutrient mixture (EPQ) containing ascorbic acid, lysine, proline, green tea extract, and quercetin on human ovarian cancer cell A-2780 in vivo and in vitro. Athymic female nude mice (n = 12) were all inoculated intraperitoneally (IP) with 2 × 106 cells in 0.1 mL of phosphate buffered saline (PBS) and randomly divided into two groups. Upon injection, the Control group (n = 6) was fed a regular diet and the EPQ group (n = 6) a regular diet supplemented with 0.5% EPQ. Four weeks later, the mice were sacrificed and tumors that developed in the ovary were excised, weighed, and processed for histology. Lungs were inspected for metastasis. In vitro, A-2780 cells were cultured in Dulbecco modified Eagle medium supplemented with 10% FBS and antibiotics. At near confluence, cells were treated with EPQ in triplicate at concentrations between 0 and 1000 μg/mL. Cell proliferation was measured via MTT assay, MMP-9 secretion via gelatinase zymography, invasion through Matrigel and morphology via hematoxylin and eosin (H & E) staining. All Control mice developed large ovarian tumors, whereas 5 out of 6 mice in the EPQ group developed no tumors, and one, a small tumor. Control mice also showed lung metastasis in 6 out of 6 mice, while no lung metastasis was evident in EPQ mice. Zymography demonstrated only MMP-9 expression, which EPQ inhibited in a dose-dependent fashion, with virtual total block at 250 μg/mL concentration. EPQ significantly inhibited invasion through Matrigel with total block at 250 μg/mL concentration. MTT showed dose-dependent inhibition of cell proliferation

  15. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs.

    PubMed

    Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2017-03-18

    Ovarian cancer is the deadliest gynecological malignancy in women, and fifth leading cause of death. Despite advances made in chemotherapy and surgery, the average time of clinical remission is approximately 2 years and the 5-year survival rate is 45%. Thus, there is an urgent need for the development of a novel therapeutic approach to ovarian cancer treatment. We investigated the effect of a specific nutrient mixture (EPQ) containing ascorbic acid, lysine, proline, green tea extract, and quercetin on human ovarian cancer cell A-2780 in vivo and in vitro. Athymic female nude mice (n = 12) were all inoculated intraperitoneally (IP) with 2 × 10⁶ cells in 0.1 mL of phosphate buffered saline (PBS) and randomly divided into two groups. Upon injection, the Control group (n = 6) was fed a regular diet and the EPQ group (n = 6) a regular diet supplemented with 0.5% EPQ. Four weeks later, the mice were sacrificed and tumors that developed in the ovary were excised, weighed, and processed for histology. Lungs were inspected for metastasis. In vitro, A-2780 cells were cultured in Dulbecco modified Eagle medium supplemented with 10% FBS and antibiotics. At near confluence, cells were treated with EPQ in triplicate at concentrations between 0 and 1000 μg/mL. Cell proliferation was measured via MTT assay, MMP-9 secretion via gelatinase zymography, invasion through Matrigel and morphology via hematoxylin and eosin (H & E) staining. All Control mice developed large ovarian tumors, whereas 5 out of 6 mice in the EPQ group developed no tumors, and one, a small tumor. Control mice also showed lung metastasis in 6 out of 6 mice, while no lung metastasis was evident in EPQ mice. Zymography demonstrated only MMP-9 expression, which EPQ inhibited in a dose-dependent fashion, with virtual total block at 250 μg/mL concentration. EPQ significantly inhibited invasion through Matrigel with total block at 250 μg/mL concentration. MTT showed dose-dependent inhibition of cell

  16. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57.

    PubMed

    Cicchillitti, Lucia; Di Michele, Michela; Urbani, Andrea; Ferlini, Cristiano; Donat, Maria Benedetta; Scambia, Giovanni; Rotilio, Domenico

    2009-04-01

    Epithelial ovarian cancer is the leading cause of gynecological cancer mortality. Despite good response to surgery and initial chemotherapy, chemoresistance occurrence represents a major obstacle to a successful therapy. To better understand biological mechanisms at the basis of paclitaxel resistance, a comparative proteomic approach based on DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS) was applied to the human epithelial ovarian cancer cell lines A2780 and its paclitaxel resistant counterpart A2780TC1. Most of the differentially expressed proteins between the two cell lines belong to the class of stress response (29%), metabolism (21%), and cell cycle and apoptosis (17%). We focused on proteins which were most strongly modulated by paclitaxel resistance and in particular on the disulphide isomerase ERp57, which may represent a chemoresistance biomarker. ERp57 was found to interact with class III beta-tubulin (TUBB3), involved in paclitaxel resistance in ovarian and other cancers. Moreover, we demonstrated a novel localization of this protein in cytoskeleton and described that ERp57/TUBB3 interaction occurs also in the nuclear compartment and in association with a multimeric complex formed by nucleolin, nucleophosmin, hnRNPK, and mortalin. Our data suggest that ERp57 plays an important role in chemoresistance mechanisms in ovarian cancer by modulating the attachment of microtubules to chromosomes following paclitaxel treatment through its interaction with TUBB3.

  17. Cisplatin induced apoptosis of ovarian cancer A2780s cells by activation of ERK/p53/PUMA signals.

    PubMed

    Song, Hao; Wei, Mei; Liu, Wenfen; Shen, Shulin; Li, Jiaqun; Wang, Liming

    2017-03-13

    Cisplatin (CDDP) is one of the most effective anticancer agents widely used in the treatment of solid tumors, including ovarian cancer. It is generally considered as a cytotoxic drug which kills cancer cells by causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, the underlying mechanisms leading to cell apoptosis remain obscure. In this study, the signaling pathways involved in CDDP -induced apoptosis were examined using CDDP-sensitive ovarian cancer A2780s cells. A2780s cells were treated with CDDP (1.5-3 μg/ml) for 6 h, 12 h and 24 h. Using siRNA targeting P53 and PUMA, and a selective MEK inhibitor, PD98059 to examine the relation between ERK1/2 activation, p53 and PUMA expression after exposure to CDDP, and the effect on CDDP-induced apoptosis. The results shown that treatment of A2780s cells with CDDP (3 μg/ml) for 6-24 h induced apoptosis, resulting in the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and accumulation of p53 and PUMA (p53 upregulated modulator of apoptosis) protein. Knockdown of P53 or PUMA by siRNA transfection blocked CDDP-induced apoptosis. Inhibition of ERK1/2 using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death but prevented CDDP-induced accumulation of p53 and PUMA. Knockdown of P53 by siRNA transfection also blocked CDDP-induced accumulation of PUMA. We therefore concluded that CDDP activated ERK1/2 and induced-p53-dependent PUMA upregulation, resulting in triggering apoptosis in A2780s cells. Our study clearly demonstrates that the ERK1/2/p53/PUMA axis is related to CDDP-induced cell death in A2780s cells.

  18. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    SciTech Connect

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja; Kulcenty, Katarzyna; Wierzchowski, Marcin; Kaczmarek, Mariusz; Murias, Marek; Kwiatkowska-Borowczyk, Eliza; Jodynis-Liebert, Jadwiga

    2012-08-15

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  19. Induction of drug resistance and protein kinase C genes in A2780 ovarian cancer cells after incubation with antineoplastic agents at sublethal concentrations.

    PubMed

    Brügger, Dorothee; Brischwein, Klaus; Liu, Chao; Bader, Peter; Niethammer, Dietrich; Gekeler, Volker; Beck, James F

    2002-01-01

    We examined the inducibility of drug resistance (MDR1, MRP1, LRP) and protein kinase C (PKC) isozyme (alpha, epsilon, eta, theta, tau, zeta) corresponding genes in A2780 ovarian cancer cells after a 24-hour treatment with adriamycin (ADR), camptothecin (CAM), etoposide (ETO) or vincristine (VCR). Sublethal concentrations of drugs were used to exclude short-term effects caused by selection. Cell cycle analysis was performed to identify possible correlation between resistance factors, PKC isozymes and proliferation. We found a mostly combined induction of MDR1, LRP, PKC tau and PKC zeta by CAM, ETO and VCR. PKC alpha, epsilon, eta and theta gene expression altered variably. Cell cycle analysis showed that A2780 cells responded with a marked G2/M arrest after a 24-hour treatment with CAM, ETO and VCR but an association between the induction of PKC isozymes corresponding genes and proliferation was not seen. Our analysis points to a possible link between atypical PKC tau/PKC zeta and MDR1/LRP in cytostatic stress response of cancer cells.

  20. Synthetic paclitaxel-octreotide conjugate reverses the resistance of paclitaxel in A2780/Taxol ovarian cancer cell line.

    PubMed

    Shen, Yang; Zhang, Xiao-Yu; Chen, Xi; Fan, Li-Li; Ren, Mu-Lan; Wu, Yong-Ping; Chanda, Kenneth; Jiang, Shi-Wen

    2017-01-01

    The high mortality of ovarian cancer is partly due to the frequent resistance of ovarian cancer to current chemotherapy agents such as paclitaxel and platinum. Somatostatin analogue (SSTA) has been shown to inhibit the proliferation of some tumors through binding to somatostatin receptor (SSTR) and activation of Ras-, Rapl- and B-Raf-dependent extracellular signal-regulated kinase 2 (Erk2). It was reported that paclitaxel-octreotide conjugate (POC) exhibited enhanced tumor growth inhibition with reduced toxicity. In the present study, we prepared the POC and investigated its effects and mechanism for the reversal of drug resistance in paclitaxel-resistant ovarian cancer cell line. We demonstrated that treatment with POC led to more cell apoptosis than either paclitaxel or octreotide (OCT) alone. Moreover, the expression of multidrug resistance 1 (MDR1) and vascular endothelial growth factor (VEGF) mRNA, and protein decreased in a dose-dependent manner while the expression of SSTR remained stable following treatment with POC. Although the exact action, in vivo effects and pharmacologic kinetics of POC remain to be investigated, we have demonstrated the feasibility for the synthesis of POC, and more significantly, provided a potential approach to overcome the resistance of ovarian cancer against taxol. The findings also shed some new light on the mechanisms underlying the development of resistance to taxol by ovarian cancer cells.

  1. The anti-tumor effect of cross-reacting material 197, an inhibitor of heparin-binding EGF-like growth factor, in human resistant ovarian cancer

    SciTech Connect

    Tang, Xiao-han; Deng, Suo; Li, Meng; Lu, Mei-song

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer HB-EGF over-expression in A2780/Taxol, A2780/CDDP cells and the matched xenografts. Black-Right-Pointing-Pointer CRM197 induces enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. Black-Right-Pointing-Pointer CRM197 arrests A2780/Taxol and A2780/CDDP cells at G0/G1 phase. Black-Right-Pointing-Pointer CRM197 suppressed the A2780/Taxol and A2780/CDDP growth of xenografts. -- Abstract: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to represent possible chemotherapeutic agent for ovarian cancer. However, the effect of CRM197 on the resistant ovarian carcinoma cells has not been sufficiently elucidated. Here, we found that HB-EGF was over-expressed in a paclitaxel-resistant human ovarian carcinoma cell line (A2780/Taxol) and a cisplatin-resistant cell line (A2780/CDDP), as well as the xenograft mouse tissue samples with these cells. To investigate the possible significance of the HB-EGF over-expression in A2780/Taxol and A2780/CDDP cells, we inhibited HB-EGF expression by CRM197 to investigate the effect of CRM197 treatment on these cells. We observed that CRM197 significantly induced anti-proliferative activity in a dose-dependent manner with the cell-cycle arrest at the G0/G1 phase and enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. The sensitive ovarian carcinoma parental cell line (A2780), A2780/Taxol and A2780/CDDP cells formed tumors in nude mice, and enhanced tumorigenicity was observed in drug-resistant tumors. Furthermore, we observed that CRM197 significantly suppressed the growth of drug-resistant ovarian cancer xenografts in vivo (p < 0.001). These results suggest that CRM197 as an HB-EGF-targeted agent has potent anti-tumor activity in paclitaxel- and cisplatin-resistant ovarian cancer which over-express HB-EGF.

  2. Cellular Uptake, DNA Binding and Apoptosis Induction of Cytotoxic Trans-[PtCl2(N,N-dimethylamine)(Isopropylamine)] in A2780cisR Ovarian Tumor Cells

    PubMed Central

    Pérez, José M.; Montero, Eva I.; Quiroga, Adoración G.; Fuertes, Miguel A; Alonso, Carlos

    2001-01-01

    Trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] is a novel trans-platinum compound that shows cytotoxic activity in several cisplatin resistant cell lines. The aim of this paper was to analyse, by means of molecular cell biology techniques and total reflection X-ray fluorescence (TXRF), the cytotoxic activity, the induction of apoptosis, the cellular uptake and the DNA binding of trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] in the cisplatin resistant cell line A2780cisR. The results show that this drug is more cytotoxic and induces a higher amount of apoptotic cells than cisplatin in A2780cisR cells. However, the intracellular accumulation and extent of binding to DNA of trans-[PtCl2(N,N-dimethylamine)( isopropylamine)] is lower than that of cis-DDP. Moreover, trans-[PtCl2(N,N-dimethylamine)(isopropylaminae)] is partially inactivated by intracellular levels of glulathione. The result suggest that circumvention of ciplatin resistance by trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] in A2780cisR cells might be related with the ability of this drug to induce apoptosis. PMID:18475973

  3. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro

    PubMed Central

    Xu, Ya-si; Feng, Jian-guo; Zhang, Dan; Zhang, Bo; Luo, Min; Su, Dan; Lin, Neng-ming

    2014-01-01

    Aim: To investigate the effects of S-allylcysteine (SAC), a water-soluble garlic derivative, on human ovarian cancer cells in vitro. Methods: Human epithelial ovarian cancer cell line A2780 was tested. Cell proliferation was examined with CCK-8 and colony formation assays. Cell cycle was analyzed with flow cytometry. Cell apoptosis was studied using Hoechst 33258 staining and Annexin V/PI staining with flow cytometry. The migration and invasion of A2780 cells were examined with transwell and wound healing assays. The expression of relevant proteins was detected with Western blot assays. Results: SAC (1−100 mmol/L) inhibited the proliferation of A2780 cells in dose- and time-dependent manners (the IC50 value was approximately 25 mmol/L at 48 h, and less than 6.25 mmol/L at 96 h). Furthermore, SAC dose-dependently inhibited the colony formation of A2780 cells. Treatment of A2780 cells with SAC resulted in G1/S phase arrest and induced apoptosis, accompanied by decreased expression of pro-caspase-3, Parp-1 and Bcl-2, and increased expression of active caspase-3 and Bax. SAC treatment significantly reduced the migration of A2780 cells, and markedly decreased the protein expression of Wnt5a, p-AKT and c-Jun, which were the key proteins involved in proliferation and metastasis. Conclusion: SAC suppresses proliferation and induces apoptosis in A2780 ovarian cancer cells in vitro. PMID:24362328

  4. Single pre-treatment with hypericin, a St. John's wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells.

    PubMed

    Jendželovská, Zuzana; Jendželovský, Rastislav; Hiľovská, Lucia; Kovaľ, Ján; Mikeš, Jaromír; Fedoročko, Peter

    2014-10-01

    St. John's wort (SJW, Hypericum perforatum L.) is a commonly used natural antidepressant responsible for the altered toxicity of some anticancer agents. These interactions have been primarily attributed to the hyperforin-mediated induction of some pharmacokinetic mechanisms. However, as previously demonstrated by our group, hypericin induces the expression of two ABC transporters: multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP). Because cisplatin (CDDP) and mitoxantrone (MTX) are potential substrates of ABC transporters, we investigated the effect of 24h hypericin pre-treatment on the cytotoxicity of CDDP and MTX in human cancer cell lines. CDDP-sensitive and -resistant ovarian adenocarcinoma cell lines A2780/A2780cis, together with HL-60 promyelocytic leukemia cells and ABCG2-over-expressing cBCRP subclone, were used in our experiments. We present CDDP cytotoxicity attenuated by hypericin pre-treatment in both A2780 and A2780cis cells and MTX cytotoxicity in HL-60 cells. In contrast, hypericin potentiated MTX-induced death in cBCRP cells. Interestingly, hypericin did not restore cell proliferation in rescued cells. Nevertheless, hypericin did increase the expression of MRP1 transporter in A2780 and A2780cis cells indicating the impact of hypericin on certain resistance mechanisms. Additionally, our results indicate that hypericin may be the potential substrate of BCRP transporter. In conclusion, for the first time, we report the ability of hypericin to affect the onset and/or progress of CDDP- and MTX-induced cell death, despite strong cell cycle arrest. Thus, hypericin represents another SJW metabolite that might be able to affect the effectiveness of anti-cancer drugs and that could interact with ABC transporters, particularly with BCRP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Silencing dishevelled-1 sensitizes paclitaxel-resistant human ovarian cancer cells via AKT/GSK-3β/β-catenin signalling.

    PubMed

    Zhang, Kun; Song, Haixing; Yang, Ping; Dai, Xiaozhen; Li, Ya; Wang, Lan; Du, Jun; Pan, Kejian; Zhang, Tao

    2015-04-01

    Expression of dishevelled-1 (DVL1) has recently been linked to cancer progression, however, its role in resistance to cancer therapy is unclear. In this study, we aimed to explore the function of DVL1 in paclitaxel-resistant human ovarian cancer cells. The MTT assay was used to assess effects of DVL1 silencing on sensitivity of cells that were otherwise resistant to paclitaxel (Taxol). Western blotting and immunofluorescence staining were used to examine effects of DVL1 on AKT/GSK-3β/β-catenin signalling. Dishevelled-1 was found to be over-expressed in a paclitaxel-resistant cell line derived from human ovarian cancer cell line A2780 (A2780/Taxol line) as well as parental A2780 cells. Down-regulation of DVL1 (using the inhibitor 3289-8625 or siRNA (siDVL1) against DVL1) sensitized A2780/Taxol cells to paclitaxel. Over-expression of DVL1 in A2780 cells increased protein levels of P-gp, BCRP and Bcl-2, which are known targets of β-catenin. Silencing DVL1 in A2780/Taxol cells also reduced levels of these proteins, and led to accumulation of β-catenin. In addition, DVL1 aberrantly activated AKT/GSK-3β/β-catenin signalling. Inactivation of AKT signalling attenuated DVL1-mediated inhibition of GSK-3β and accumulation of β-catenin, in both A2780 and A2780/Taxol cells. Taken together, these results suggest that silencing DVL1 sensitized A2780/Taxol cells to paclitaxel, by down-regulating AKT/GSK-3β/β-catenin signalling, providing a novel strategy for chemosensitization of ovarian cancer to paclitaxel-induced cytotoxicity. © 2015 John Wiley & Sons Ltd.

  6. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines.

    PubMed

    Dai, Zhiqin; Yin, Jie; He, Haojie; Li, Wenrui; Hou, Chunmei; Qian, Xiaohong; Mao, Ning; Pan, Lingya

    2010-11-01

    Resistance to platinum-based chemotherapy is the major obstacle to successful treatment of ovarian cancer. It is evident that mitochondrial defects and the dysfunctions of oxidative phosphorylation and energy production in ovarian cancer cells were directly related to their resistance to platinum drugs. Using 2-D DIGE, we compared mitochondrial proteins from two platinum-sensitive human ovarian cancer cell lines (SKOV3 and A2780) with that of four platinum-resistant sublines (SKOV3/CDDP, SKOV3/CBP, A2780/CDDP, and A2780/CBP). Among the 236 differentially expressed spots, five mitochondrial proteins (ATP-α, PRDX3, PHB, ETF, and ALDH) that participate in the electron transport respiratory chain were identified through mass spectrometry. All of them are downregulated in one or two of the platinum-resistant cell lines. Three proteins (ATP-α, PRDX3, and PHB) were validated by using western blot and immunohistochemistry. There is a significant decrease of PHB in tumor tissues from ovarian cancer patients who were resistant to platinum-based chemotherapies. This is the first direct mitochondrial proteomic comparison between platinum-sensitive and resistant ovarian cancer cells. These studies demonstrated that 2-D DIGE-based proteomic analysis could be a powerful tool to investigate limited mitochondrial proteins, and the association of PHB expression with platinum resistance indicates that mitochondria defects may contribute to platinum resistance in ovarian cancer cells.

  7. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells.

    PubMed

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-12-12

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1-2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH⁺/CD133⁺ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH⁺/CD133⁺ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH⁺/CD133⁺ subpopulation of cells.

  8. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    PubMed Central

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. PMID:27973444

  9. Sodium/proton exchanger isoform 1 regulates intracellular pH and cell proliferation in human ovarian cancer.

    PubMed

    Sanhueza, Carlos; Araos, Joaquín; Naranjo, Luciano; Toledo, Fernando; Beltrán, Ana R; Ramírez, Marco A; Gutiérrez, Jaime; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2017-01-01

    Cancer cells generate protons (H(+)) that are extruded to the extracellular medium mainly via the Na(+)/H(+) exchanger 1 (NHE1), which regulates intracellular pH (pHi) and cell proliferation. In primary cultures of human ascites-derived ovarian cancer cells (haOC) we assayed whether NHE1 was required for pHi modulation and cell proliferation. Human ovary expresses NHE1, which is higher in haOC and A2780 (ovarian cancer cells) compared with HOSE cells (normal ovarian cells). Basal pHi and pHi recovery (following a NH4Cl pulse) was higher in haOC and A2780, compared with HOSE cells. Zoniporide (NHE1 inhibitor) caused intracellular acidification and pHi recovery was independent of intracellular buffer capacity, but reduced in NHE1 knockdown A2780 cells. Zoniporide reduced the maximal proliferation capacity, cell number, thymidine incorporation, and ki67 (marker of proliferation) fluorescence in haOC cells. SLC9A1 (for NHE1) amplification associated with lower overall patient survival. In conclusion, NHE1 is expressed in human ovarian cancer where it has a pro-proliferative role. Increased NHE1 expression and activity constitute an unfavourable prognostic factor in these patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. NCX-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols.

    PubMed

    Bratasz, Anna; Selvendiran, Karuppaiyah; Wasowicz, Tomasz; Bobko, Andrey; Khramtsov, Valery V; Ignarro, Louis J; Kuppusamy, Periannan

    2008-02-26

    Ovarian carcinoma is the leading cause of mortality among gynecological cancers in the world. The high mortality rate is associated with lack of early diagnosis and development of drug resistance. The antitumor efficacy and mechanism of NCX-4040, a nitric oxide-releasing aspirin derivative, against ovarian cancer is studied. NCX-4040, alone or in combination with cisplatin (cis-diamminedichloroplatinum, cDDP), was studied in cisplatin-sensitive (A2780 WT) and cisplatin-resistant (A2780 cDDP) cell lines as well as xenograft tumors grown in nude mice. Electron paramagnetic resonance (EPR) was used for measurements of nitric oxide and redox state. Immunoblotting analysis of A2780 cDDP tumor xenografts from mice was used for mechanistic studies. Cells treated with NCX-4040 (25 microM) showed a significant reduction of cell viability (A2780 WT, 34.9 +/- 8.7%; A2780 cDDP, 41.7 +/- 7.6%; p < 0.05). Further, NCX-4040 significantly enhanced the sensitivity of A2780 cDDP cells (cisplatin alone, 80.6 +/- 11.8% versus NCX-4040+cisplatin, 26.4 +/- 7.6%; p < 0.01) and xenograft tumors (cisplatin alone, 74.0 +/- 4.4% versus NCX-4040+cisplatin, 56.4 +/- 7.8%; p < 0.05), to cisplatin treatment. EPR imaging of tissue redox and thiol measurements showed a 5.5-fold reduction (p < 0.01) of glutathione in NCX-4040-treated A2780 cDDP tumors when compared to untreated controls. Immunoblotting analysis of A2780 cDDP tumor xenografts from mice treated with NCX-4040 and cisplatin revealed significant downregulation of pEGFR (Tyr845 and Tyr992) and pSTAT3 (Tyr705 and Ser727) expression. The results suggested that NCX-4040 could resensitize drug-resistant ovarian cancer cells to cisplatin possibly by depletion of cellular thiols. Thus NCX-4040 appears to be a potential therapeutic agent for the treatment of human ovarian carcinoma and cisplatin-resistant malignancies.

  11. Inhibition of heat shock protein (Hsp) 90 potentiates the antiproliferative and pro-apoptotic effects of 2-(4'fluoro-phenylamino)-4H-1,3-thiazine[6,5-b]indole in A2780cis cells.

    PubMed

    Solárová, Zuzana; Kello, Martin; Varinská, Lenka; Budovská, Mariana; Solár, Peter

    2017-01-01

    Ovarian carcinoma is initially sensitive to platinum-based therapy, but become resistant over time. The study of cancer sensitizing substance is therefore the major challenge for a number of scientific groups. Our experiments were carried out on human ovarian adenocarcinoma A2780cis cells resistant to cisplatin and their response to 2-(4'fluoro-phenylamino)-4H-1,3-thiazine[6,5-b]indole (thiazine[6,5-b]indole) and/or heat shock protein (Hsp) 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) using proliferation assay, cell cycle analysis and monitoring of apoptosis were examined. A2780cis cells revealed the same fold of resistance to Hsp90 inhibitor 17-DMAG as it is declared for cisplatin (18 times), but only 3.2 times for thiazine[6,5-b]indole. Our results showed that the combination of thiazine[6,5-b]indole and 17-DMAG significantly reduced proliferation of A2780cis cells and led to their accumulation in G2/M phase of the cell cycle. Moreover, both thiazine[6,5-b]indole as well as 17-DMAG increased the number of annexin V positive A2780cis cells in time dependent manner. Interestingly, thiazine[6,5-b]indole treatment significantly activated also caspase-3 compared to untreated or 17-DMAG-treated cells and reduced mitochondrial membrane potential (MMP) of A2780cis cells with more significant decline after combined treatment. In this regard, the incubation of A2780cis cells with thiazine[6,5-b]indole induced PARP protein cleavage as well as an increased level of Bad protein with more pronounced changes after combined treatment. Importantly, Hsp70 protein was not upregulated in A2780cis cells neither by individual treatment nor by mutual combination. Our results signify antiproliferative and pro-apoptotic effects of novel thiazine[6,5-b]indole potentiated by Hsp90 inhibitor 17-DMAG in ovarian adenocarcinoma cells resistant to cisplatin and therefore represents new strategy in cancer treatment.

  12. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment

    PubMed Central

    Yuan, Yu-Guo; Peng, Qiu-Ling; Gurunathan, Sangiliyandi

    2017-01-01

    Background Gemcitabine (GEM) is widely used as an anticancer agent in several types of solid tumors. Silver nanoparticles (AgNPs) possess unique cytotoxic features and can induce apoptosis in a variety of cancer cells. In this study, we investigated whether the combination of GEM and AgNPs can exert synergistic cytotoxic effects in the human ovarian cancer cell line A2780. Methods We synthesized AgNPs using resveratrol as a reducing and stabilizing agent. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer effects of a combined treatment with GEM and AgNPs were evaluated using a series of cellular assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. Apoptosis was confirmed by TUNEL assay. Results In this study, combined treatment with GEM and AgNPs significantly inhibited viability and proliferation in A2780 cells. Moreover, the levels of apoptosis in cells treated with a combination of GEM and AgNPs were significantly higher compared with those in cells treated with GEM or AgNPs alone. Our data suggest that GEM and AgNPs exhibit potent apoptotic activity in human ovarian cancer cells. Combined treatment with GEM and AgNPs showed a significantly higher cytotoxic effect in ovarian cancer cells compared with that induced by either of these agents alone. Conclusion Our study demonstrated that the interaction between GEM and AgNPs was cytotoxic in ovarian cancer cells. Combined treatment with GEM and AgNPs caused increased cytotoxicity and apoptosis in A2780 cells. This treatment may have therapeutic potential as targeted therapy for the treatment of ovarian cancer. To our knowledge, this study could provide evidence that AgNPs can enhance responsiveness to GEM in ovarian cancer cells and that AgNPs can potentially be used as chemosensitizing agents in ovarian cancer therapy. PMID:28919750

  13. Synergism from combinations of tris(benzimidazole) monochloroplatinum(II) chloride with capsaicin, quercetin, curcumin and cisplatin in human ovarian cancer cell lines.

    PubMed

    Arzuman, Laila; Beale, Philip; Chan, Charles; Yu, Jun Q; Huq, Fazlul

    2014-10-01

    In the present study, synergism in activity from the sequenced combinations of monofunctional platinum tris(benzimidazole)monochloroplatinum(II) chloride (coded as LH4) with capsaicin, quercetin, curcumin and cisplatin was investigated as a function of sequence of administration in a number of human ovarian tumor models. Cellular accumulations of platinum and the levels of platinum-DNA binding were also determined for the 0/0 h and 4/0 sequences of administration. LH4 was found to be more active against the resistant A2780(cisR) and A2780(ZD0473R) cell lines than the parent A2780 cell line. As applied to combinations of LH4 with phytochemicals capsaicin, quercetin and curcumin, bolus administration was found to be most synergistic in both the parent A2780 and the resistant A2780(cisR) cell lines. For the combinations of LH4 with cisplatin, additiveness was observed in both the resistant cell lines but mild synergism was observed in the parent cell line. Greater activity of designed monofunctional platinum LH4 against resistant tumor models and synergism from combinations with phytochemicals indicate that the compound has the potential for development as a novel platinum-based anticancer drug.

  14. Nerve growth factor induces the expression of chaperone protein calreticulin in human epithelial ovarian cells.

    PubMed

    Vera, C; Tapia, V; Kohan, K; Gabler, F; Ferreira, A; Selman, A; Vega, M; Romero, C

    2012-07-01

    Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation. © Georg Thieme Verlag KG Stuttgart · New York.

  15. [Expression and significance of heparin binding-epidermal growth factor-like growth factor in paclitaxel-resistant ovarian cancer].

    PubMed

    Tang, Xiaohan; Lu, Meisong; Li, Cuiping; Deng, Suo; Li, Meng

    2014-07-01

    To examine the expression of heparin binding-epidermal growth factor-like growth factor (HB- EGF) in paclitaxel- resistant ovarian cancer and elucidate the relationship between HB-EGF and the resistance of ovarian cancer to paclitaxel. The human ovarian carcinoma cell line A2780 and the paclitaxel- resistant human ovarian carcinoma cell line A2780/Taxol were cultured in vitro. Western blot was used to dectect the expression of HB-EGF protein in A2780 and A2780/Taxol groups. The A2780 cells were treated with cross- reacting material 197 (CRM197 and A2780 + CRM197 group) or dimethyl sulphoxide (DMSO; A2780 group), while the A2780/Taxol cells were treated with CRM197 (A2780/Taxol+CRM197 group) or DMSO (A2780/Taxol group). The effects of CRM197 on growth and proliferation was tested by methyl thiazolyl tetrazolium ( MTT) and the results were showed as absorbance (A). The effects of CRM197 on cell cycles was tested by flow cytometry, while the effects of CRM197 on apoptosis was examined by caspase- 3 activity assay and the results were showed as p- nitroaniline(pNa). In animal experiment, four groups of cells were inoculated to BALB/c nude mouse subcutaneously to observe tumor formation ability following CRM197 treatment. Immunohistochemistry was used to determine the expression of HB-EGF protein in A2780 and A2780/Taxol group. The expression level of HB-EGF protein in A2780/Taxol group (2.11 ± 0.41) was significantly higher than that of A2780 group (0.75 ± 0.20; P < 0.01). The inhibition effect of CRM197 on the cell growth of A2780+CRM197 and A2780/Taxol+CRM197 group was accompanied by the acceleration of CRM197 concentration(P < 0.01). When CRM197≥1 µg/ml, the inhibition effect of CRM197 on the cell growth of A2780/Taxol+CRM197 group was significantly higher than that in A2780/Taxol group(P < 0.05). In cell cycle experiment, CRM197 induced the cell-cycle arrest at the G0/G1 phase in A2780+CRM197 cells[(67 ± 4)%] compared with A2780 cells[(54 ± 6)%; P < 0

  16. TLR4 induces tumor growth and inhibits paclitaxel activity in MyD88-positive human ovarian carcinoma in vitro

    PubMed Central

    WANG, AN-CONG; MA, YUE-BING; WU, FENG-XIA; MA, ZHI-FANG; LIU, NAI-FU; GAO, RONG; GAO, YONG-SHENG; SHENG, XIU-GUI

    2014-01-01

    In ovarian cancer patients, chemotherapy resistance is the principal factor restricting long-term treatment. Paclitaxel (Pac) has been previously reported to be a ligand to Toll-like receptor 4 (TLR4). It was determined that TLR4 signaling is divided into the following two pathways: Myeloid differentiation factor 88 (MyD88)-dependent and MyD88-independent. The present study investigated the effect of TLR4 ligation by Pac in MyD88-positive (MyD88+) and MyD88-negative (MyD88−) human ovarian cancer cell lines. An RNA interference expression vector was specifically constructed to target TLR4 mRNA, which was stably transfected into the human ovarian cancer cell lines (SKOV3, OVCAR3, A2780 and 3AO). Cytokines, including interleukin (IL)-6 and IL-8, were detected. Cell proliferation and apoptosis were assessed in the cells transfected with scramble control and TLR4 shRNA to explore the possible functions of TLR4 in ovarian cancer cell growth. It was found that lipopolysaccharide and Pac significantly increase the secretion of IL-6 and IL-8 in the SKOV3 cell line. Similarly, Pac resulted in a significant upregulation of IL-6 and IL-8 in OVCAR3 cells, but not in A2780 and 3AO cells. These results suggested that in MyD88+ ovarian cancer cell lines, TLR4 depletion shows increased sensitivity to Pac treatment in inhibiting cell proliferation compared with in cells without TLR4 knockdown. On the contrary, such changes were not found in MyD88− cells (A2780 and 3AO). TLR4 negatively regulates Pac chemotherapy, particularly in terms of cell proliferation, and TLR4 may be a novel treatment target in Pac-resistant ovarian cancer. PMID:24527095

  17. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells.

    PubMed

    Pašukonienė, Vita; Mlynska, Agata; Steponkienė, Simona; Poderys, Vilius; Matulionytė, Marija; Karabanovas, Vitalijus; Statkutė, Urtė; Purvinienė, Rasa; Kraśko, Jan Aleksander; Jagminas, Arūnas; Kurtinaitienė, Marija; Strioga, Marius; Rotomskis, Ričardas

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) emerge as a promising tool for early cancer diagnostics and targeted therapy. However, both toxicity and biological activity of SPIONs should be evaluated in detail. The aim of this study was to synthesize superparamagnetic cobalt ferrite nanoparticles (Co-SPIONs), and to investigate their uptake, toxicity and effects on cancer stem-like properties in human pancreatic cancer cell line MiaPaCa2 and human ovarian cancer cell line A2780. Co-SPIONs were produced by Massart's co-precipitation method. The cells were treated with Co-SPIONs at three different concentrations (0.095, 0.48, and 0.95μg/mL) for 24 and 48h. Cell viability and proliferation were analyzed after treatment. The stem-like properties of cells were assessed by investigating the cell clonogenicity and expression of cancer stem cell-associated markers, including CD24/ESA in A2780 cell line and CD44/ALDH1 in MiaPaCa2 cell line. Magnetically activated cell sorting was used for the separation of magnetically labeled and unlabeled cells. Both cancer cell lines accumulated Co-SPIONs, however differences in response to nanoparticles were observed between MiaPaCa2 and A2780 cell. In particular, A2780 cells were more sensitive to exposition to Co-SPIONs than MiaPaCa2 cells, indicating that a safe concentration of nanoparticles must be estimated individually for a particular cell type. Higher doses of Co-SPIONs decreased both the clonogenicity and ESA marker expression in A2780 cells. Co-SPIONs are not cytotoxic to cancer cells, at least when used at a concentration of up to 0.95μg/mL. Co-SPIONs have a dose-dependent effect on the clonogenic potential and ESA marker expression in A2780 cells. Magnetic detection of low concentrations of Co-SPIONS in cancer cells is a promising tool for further applications of these nanoparticles in cancer diagnosis and treatment; however, extensive research in this field is needed. Copyright © 2014 Lithuanian University of

  18. Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel

    PubMed Central

    Mo, Qing-qing; Chen, Ping-bo; Jin, Xin; Chen, Qian; Tang, Lan; Wang, Bei-bei; Li, Ke-zhen; Wu, Peng; Fang, Yong; Wang, Shi-xuan; Zhou, Jian-feng; Ma, Ding; Chen, Gang

    2013-01-01

    Aim: Hec1, a member of the Ndc80 kinetochore complex, is highly expressed in cancers. The aim of this study was to explore the role and mechanism of action of Hec1 with respect to the cytotoxicity of paclitaxel in ovarian cancer. Methods: Thirty ovarian cancer samples and 6 normal ovarian samples were collected. Hec1 expression in these samples was determined with immunohistochemistry. Ovarian cancer cell lines A2780, OV2008, C13K, SKOV3, and CAOV3 and A2780/Taxol were examined. Cell apoptosis and cell cycle analysis were detected with flow cytometric technique. siRNA was used to delete Hec1 in the cells. The expression of related mRNAs and proteins was measured using RT-PCR and Western blot analysis, respectively. Results: Hec1 expression was significantly higher in ovarian cancer samples than in normal ovarian samples, and was associated with paclitaxel-resistance and poor prognosis. Among the 6 ovarian cancer cell lines examined, Hec1 expression was highest in paclitaxel-resistant A2780/Taxol cells, and lowest in A2780 cells. Depleting Hec1 in A2780/Taxol cells with siRNA decreased the IC50 value of paclitaxel by more than 10-fold (from 590±26.7 to 45.6±19.4 nmol/L). Depleting Hec1 in A2780 cells had no significant effect on the paclitaxel sensitivity. In paclitaxel-treated A2780/Taxol cells, depleting Hec1 significantly increased the cleaved PARP and Bax protein levels, and decreased the Bcl-xL protein level. Conclusion: Hec1 overexpression is associated with the progression and poor prognosis of ovarian cancer. Inhibition of Hec1 expression can sensitize ovarian cancer cells to paclitaxel. PMID:23474708

  19. Encapsulation in PLGA-PEG enhances 9- nitro-camptothecin cytotoxicity to human ovarian carcinoma cell line through apoptosis pathway

    PubMed Central

    Ahmadi, F.; Derakhshandeh, K.; Jalalizadeh, A.; Mostafaie, A.; Hosseinzadeh, L.

    2015-01-01

    Ovarian cancer is the fifth leading cause of the cancer-related death among women. 9-nitrocamptothecin (9-NC) is a water-insoluble derivative of camptothecin used for the treatment of patients with advanced ovarian cancer. Previous studies showed that the encapsulation of 9-NC in poly (lactic-co-glycolic acid, PLGA) nanoparticles increased the cytotoxic effect of the drug on different cancer cell lines. In the present study, the cytotoxic effects of 9-NC, 9-NC-loaded PLGA and PLGA-polyethylene glycol (PLGA-PEG) nanoparticles with varying degree of PEG (5, 10, and 15%) were evaluated on human ovarian carcinoma cell line. Furthermore, the mode of cell death induced by 9-NC and the optimized 9-NC-loaded PLGA-PEG nanoparticles on A2780 cell line were investigated. 9-NC incorporating nanoparticles were prepared by nanopercipitation method and their physicochemical characteristics were evaluated using standard methods. The results showed that activation of caspase-3 and -9 significantly increased by free 9-NC and PLGA-PEG loaded nanoparticles in A2780 cells. In contrast to the free drug which increased the activation of caspase-8, 9-NC-loaded PLGA-PEG nanoparticles did not alter the activation of caspase-8. Collectively, it appears that apoptosis induced by 9-NC incorporated in PLGA-PEG 5% occurred through the activation of caspase-9 rather than activation of caspase-8 which is the mediator of extrinsic pathway. Moreover, our results confirmed that 9-NC in nanoparticles at the level of gene expression potentiated down-regulation of Bcl-2, up regulation of Bax, and Smac/DIABLO leading to a decrease in mitochondrial membrane potential. Taken together, our results showed that 9-NC incorporated in PLGA-PEG 5% nanoparticles is able to induce apoptosis in A2780 human ovarian carcinoma cells and has the potential for the treatment of ovarian carcinoma. PMID:26487893

  20. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145.

    PubMed

    Zhou, Junbo; Gong, Jian; Ding, Chun; Chen, Guiqin

    2015-08-01

    Ovarian cancer is one of the most malignant types of cancer of the female human reproductive track, posing a severe threat to the health of the female population. Numerous previous studies have demonstrated that microRNA (miR)-145 is downregulated in ovarian cancer, and that quercetin can inhibit the growth of cancer cells via regulating the expression of miRs. Therefore, the present study investigated the effect of quercetin on the expression of miR-145 in SKOV-3 and A2780 human ovarian cancer cell lines. The results revealed that the expression levels of cleaved caspase-3 in the SKOV-3 and A2780 cells were significantly increased following treatment to induce overexpression of miR-145 compared with treatment with quercetin alone (P<0.01). However, the expression of cleaved caspase-3 in the anti-miR-145 (miR-145 inhibitor) group of cells was markedly decreased compared with that in the miR-145 overexpression group (P<0.01). Taken together, the results suggested that treatment with quercetin induced the apoptosis of human ovarian carcinoma cells through activation of the extrinsic death receptor mediated and intrinsic mitochondrial apoptotic pathways.

  1. OVCA1 inhibits the proliferation of epithelial ovarian cancer cells by decreasing cyclin D1 and increasing p16.

    PubMed

    Kong, Fandou; Tong, Rui; Jia, Lingyu; Wei, Wei; Miao, Xiaoyan; Zhao, Xinyu; Sun, Wenping; Yang, Guang; Zhao, Chunyan

    2011-08-01

    OVCA1, a tumor suppressor gene, is deleted or lower expressed in about 80% of ovarian cancer. Over expression of OVCA1 in human ovarian cancer A2780 cells inhibits cell proliferation and arrests cells in G1 stage. However, the fact that the molecular mechanism of OVCA1 inhibits cell growth is presently elusive. Here we investigated the potential signaling pathway induced by over-expression of OVCA1. Our results show that over-expression of human OVCA1 in ovarian cancer cells A2780 leads to down-regulation of cyclin D1, and up-regulation of p16, but no effect on the expression of NF-κB. It indicates that OVCA1 could inhibit the proliferation of ovarian cancer cell A2780 by p16/cyclin D1 pathway, but not by NF-κB.

  2. 3-Hydroxyterphenyllin, a natural fungal metabolite, induces apoptosis and S phase arrest in human ovarian carcinoma cells

    PubMed Central

    Wang, Yaomin; Compton, Casey; Rankin, Gary O.; Cutler, Stephen J.; Rojanasakul, Yon; Tu, Youying; Chen, Yi Charlie

    2017-01-01

    In the present study, we evaluated 3-Hydroxyter-phenyllin (3-HT) as a potential anticancer agent using the human ovarian cancer cells A2780/CP70 and OVCAR-3, and normal human epithelial ovarian cells IOSE-364 as an in vitro model. 3-HT suppressed proliferation and caused cytotoxicity against A2780/CP70 and OVCAR-3 cells, while it exhibited lower cytotoxicity in IOSE-364 cells. Subsequently, we found that 3-HT induced S phase arrest and apoptosis in a dose-independent manner. Further investigation revealed that S phase arrest was related with DNA damage which mediated the ATM/p53/Chk2 pathway. Downregulation of cyclin D1, cyclin A2, cyclin E1, CDK2, CDK4 and Cdc25C, and the upregulation of Cdc25A and cyclin B1 led to the accumulation of cells in S phase. The apoptotic effect was confirmed by Hoechst 33342 staining, depolarization of mitochondrial membrane potential and activation of cleaved caspase-3 and PARP1. Additional results revealed both intrinsic and extrinsic apoptotic pathways were involved. The intrinsic apoptotic pathway was activated through decreasing the protein levels of Bcl2, Bcl-xL and procaspase-9 and increasing the protein level of Puma. The induction of DR5 and DR4 indicated that the extrinsic apoptotic pathway was also activated. Induction of ROS and activation of ERK were observed in ovarian cancer cells. We therefore concluded that 3-HT possessed anti-proliferative effect on A2780/CP70 and OVCAR-3 cells, induced S phase arrest and caused apoptosis. Taken together, we propose that 3-HT shows promise as a therapeutic candidate for treating ovarian cancer. PMID:28259974

  3. 3-Hydroxyterphenyllin, a natural fungal metabolite, induces apoptosis and S phase arrest in human ovarian carcinoma cells.

    PubMed

    Wang, Yaomin; Compton, Casey; Rankin, Gary O; Cutler, Stephen J; Rojanasakul, Yon; Tu, Youying; Chen, Yi Charlie

    2017-03-02

    In the present study, we evaluated 3-Hydroxyter-phenyllin (3-HT) as a potential anticancer agent using the human ovarian cancer cells A2780/CP70 and OVCAR-3, and normal human epithelial ovarian cells IOSE-364 as an in vitro model. 3-HT suppressed proliferation and caused cytotoxicity against A2780/CP70 and OVCAR-3 cells, while it exhibited lower cytotoxicity in IOSE-364 cells. Subsequently, we found that 3-HT induced S phase arrest and apoptosis in a dose-independent manner. Further investigation revealed that S phase arrest was related with DNA damage which mediated the ATM/p53/Chk2 pathway. Downregulation of cyclin D1, cyclin A2, cyclin E1, CDK2, CDK4 and Cdc25C, and the upregulation of Cdc25A and cyclin B1 led to the accumulation of cells in S phase. The apoptotic effect was confirmed by Hoechst 33342 staining, depolarization of mitochondrial membrane potential and activation of cleaved caspase-3 and PARP1. Additional results revealed both intrinsic and extrinsic apoptotic pathways were involved. The intrinsic apoptotic pathway was activated through decreasing the protein levels of Bcl2, Bcl-xL and procaspase-9 and increasing the protein level of Puma. The induction of DR5 and DR4 indicated that the extrinsic apoptotic pathway was also activated. Induction of ROS and activation of ERK were observed in ovarian cancer cells. We therefore concluded that 3-HT possessed anti-proliferative effect on A2780/CP70 and OVCAR-3 cells, induced S phase arrest and caused apoptosis. Taken together, we propose that 3-HT shows promise as a therapeutic candidate for treating ovarian cancer.

  4. Monofunctional Platinum-containing Pyridine-based Ligand Acts Synergistically in Combination with the Phytochemicals Curcumin and Quercetin in Human Ovarian Tumour Models.

    PubMed

    Arzuman, Laila; Beale, Philip; Yu, Jun Q; Huq, Fazlul

    2015-05-01

    With the idea that platinum compounds that bind with DNA differently than cisplatin may be better-able to overcome platinum resistance in ovarian tumor, the monofunctional platinum complex tris(imidazo(1,2-α)pyridine) chloroplatinum(II) chloride (coded as LH6) has been synthesized and investigated for its activity, alone and in combination with the phytochemicals curcumin and quercetin, against human ovarian A2780, A2780(cisR) and A2780(ZD0473R) cancer cell lines. LH6 is found to be more active than cisplatin against the resistant cell lines and its bolus combinations with curcumin and quercetin are found to produce more pronounced cell kill. Whereas platinum accumulation from cisplatin is found to increase almost linearly with time, that from LH6 reaches a maximum at 4 h and is somewhat lowered at 24 h. It is possible that the presence of bulky hydrophobic imidazo (1,2-α-pyridine) ligand in LH6 facilitates its rapid uptake through the cytoplasmic membrane. Lower platinum accumulation at 24 h than at 4 h for LH6 can be seen to imply that efflux processes may be more dominant as the period of incubation is increased. When platinum-DNA binding levels at 24 h are compared, cisplatin is found to be associated with the higher level in the parent A2780 cell line and LH6 in the resistant A2780(cisR) cell line, in line with greater activity of cisplatin in the parent cell line and that of LH6 in the resistant cell line. If the observed in vitro activity of LH6 is confirmed in vivo, it can be seen to have the potential for development as novel platinum based anticancer drug.

  5. Downregulation of glypican-3 expression increases migration, invasion, and tumorigenicity of human ovarian cancer cells.

    PubMed

    Liu, Ying; Zheng, Dongping; Liu, Mingming; Bai, Jiao; Zhou, Xi; Gong, Baolan; Lü, Jieyu; Zhang, Yi; Huang, Hui; Luo, Wenying; Huang, Guangrong

    2015-09-01

    Glypican-3 (GPC3) is a membrane of heparan sulfate proteoglycan family involved in cell proliferation, adhesion, migration, invasion, and differentiation during the development of the majority of mesodermal tissues and organs. GPC3 is explored as a potential biomarker for hepatocellular carcinoma screening. However, as a tumor-associated antigen, its role in ovarian cancer remains elusive. In this report, the expression levels of GPC3 in the various ovarian cancer cells were determined with quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and GPC3 expression in ovarian cancer UCI 101 and A2780 cells was knocked down by siRNA transfection, and the effects of GPC3 knockdown on in vitro cell proliferation, migration, and invasion were respectively analyzed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and Transwell migration assay. Additionally, the effect of GPC3 knockdown on in vivo tumorigenesis were investigated in athymic nude mice. The results indicated that GPC3 knockdown significantly promoted cell proliferation and increased cell migration and invasion by upregulation of matrix metalloproteinase (MMP)-2 and MMP-9 expression and downregulation of tissue inhibitor of metalloproteinase-1 expression. Additionally, GPC3 knockdown also increased in vivo tumorigenicity of UCI 101 and A2780 cells and final tumor weights and volumes after subcutaneous cell injection in the nude mice. The results of immunohistochemical staining and Western blotting both demonstrated a lower expression of GPC3 antigen in the tumors of GPC3 knockdown groups than that of negative control groups. Moreover, transforming growth factor-β2 protein expression in the tumors of GPC3 knockdown groups was significantly increased, which at least contributed to tumor growth in the nude mice. Taken together, these findings suggest that GPC3 knockdown promotes the progression of human ovarian cancer cells by increasing their migration, invasion

  6. Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy

    PubMed Central

    Sui, Hongying; Shi, Caixia; Yan, Zhipeng; Li, Hucheng

    2015-01-01

    Background Ovarian cancer is the leading cause of death in women with gynecological malignancy worldwide. Despite multiple new approaches to treatment, relapse remains almost inevitable in patients with advanced disease. The poor outcome of advanced ovarian cancer treated with conventional therapy stimulated the search for new strategies to improve therapeutic efficacy. Although epidermal growth factor receptor (EGFR) and poly(ADP-ribose) polymerase (PARP) inhibitors have known activity in advanced ovarian cancer, the effect of combined therapy against EGFR and PARP in this population has not been reported. In the current study, we investigated the mechanisms of erlotinib used alone or in combination with olaparib (AZD2281), a potent inhibitor of PARP, in an EGFR-overexpressing ovarian tumor xenograft model. Methods A2780 (EGFR-overexpressing, BRCA1/2 wild-type) cells were subcutaneously injected into nude mice, which were then randomly assigned to treatment with vehicle, erlotinib, AZD2281, or erlotinib + AZD2281, for up to 3 weeks. All mice were then sacrificed and tumor tissues were subjected to Western blot analysis and monodansylcadervarine staining (for analysis of autophagy). Results Erlotinib could slightly inhibit growth of A2780 tumor xenografts, and AZD2281 alone had similar effects on tumor growth. However, the combination treatment had a markedly enhanced antitumor effect. Western blot analysis revealed that treatment with erlotinib could significantly reduce the phosphorylation level of ERK1/2 and AKT in A2780 tumor tissue. Of interest, monodansylcadervarine staining showed that the autophagic effects were substantially enhanced when the agents were combined, which may be due to downregulation of apoptosis. Conclusion These results suggest that combination of a selective EGFR inhibitor and a PARP inhibitor is effective in ovarian cancer A2780 xenografts, and depends on enhanced autophagy. PMID:26124641

  7. Costunolide induces apoptosis in platinum-resistant human ovarian cancer cells by generating reactive oxygen species.

    PubMed

    Yang, Yeong-In; Kim, Ji-Hyun; Lee, Kyung-Tae; Choi, Jung-Hye

    2011-12-01

    The acquired resistance to platinum-based drugs has become an obstacle in the management of ovarian cancer. We investigated the apoptosis-inducing effect of costunolide, a natural sesquiterpene lactone, in platinum-resistant human ovarian cancer cells, along with the molecular mechanism of action. Costunolide and cisplatin were examined in platinum-resistant human ovarian cancer cells. MTT assay for cell viability, PI staining for cell cycle profiling, and Annexin V assay for apoptosis analysis. ROS production and protein expression was assessed by H(2)DCFDA staining and Western blotting, respectively. Combination effect was determined using the Combination Index (CI) method. It was found that costunolide is more potent than cisplatin in inhibiting cell growth in three platinum-resistant ovarian cancer cell lines (MPSC1(PT), A2780(PT), and SKOV3(PT)). Costunolide induced apoptosis of platinum-resistant cells in a time- and dose-dependent manner and suppressed tumor growth in SKOV3(PT)-bearing mouse model. In addition, costunolide triggered the activation of caspase-3, -8, and -9. Pretreatment with caspase inhibitors neutralized the pro-apoptotic activity of costunolide. We further demonstrated that costunolide induced a significant increase in intracellular reactive oxygen species (ROS). Additionally, the antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated the costunolide-induced production of ROS, activation of caspases, down-regulation of Bcl-2, and apoptosis in platinum-resistant ovarian cancer cells. Moreover, costunolide synergized with cisplatin to induce cell death in platinum-resistant ovarian cancer cells. Taken together, these data suggest that costunolide, alone or in combination with cisplatin, may be of therapeutic potential in platinum-resistant ovarian cancer. Copyright © 2011. Published by Elsevier Inc.

  8. Radiation survival parameters of antineoplastic drug-sensitive and -resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine

    SciTech Connect

    Louie, K.G.; Behrens, B.C.; Kinsella, T.J.; Hamilton, T.C.; Grotzinger, K.R.; McKoy, W.M.; Winker, M.A.; Ozols, R.F.

    1985-05-01

    The optimum integration of chemotherapy and irradiation is of potential clinical significance in the treatment of ovarian cancer. A series of human ovarian cancer cell lines have been developed in which dose-response relationships to standard anticancer drugs have been determined, and the patterns of cross-resistance between these drugs and irradiation have been established. By stepwise incubation with drugs, sublines of A2780, a drug-sensitive cell line, have been made 100-fold, 10-fold, and 10-fold more resistant to Adriamycin (2780AD), melphalan (2780ME), and cisplatin (2780CP). Two additional cell lines, NIH:OVCAR-3nu(Ag+) and NIH:OVCAR-4(Ag+), were established from drug-refractory patients. 2780ME, 2780CP, OVCAR-3nu(Ag+), and OVCAR-4(Ag+) are all cross-resistant to irradiation, with DOS of 146, 187, 143, and 203, respectively. However, 2780AD remains sensitive to radiation, with a DO of 111, which is similar to that of A2780 (101). Glutathione (GSH) levels are elevated in 2780ME, 2780CP, OVCAR-3nu(Ag+), and OVCAR-4(Ag+) to 4.58, 6.13, 12.10, and 15.14 nmol/10(6) cells as compared to A2780, with 1.89 nmol/10(6) cells. However, the GSH level in 2780AD is only minimally higher than that in A2780 (2.94 nmol/10(6) cells). Buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly increases the radiation sensitivity of 2780ME (changing the DO from 143 to 95) and 2780CP to a lesser extent, suggesting that intracellular GSH levels may play an important role in the radiation response of certain neoplastic cells.

  9. DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer.

    PubMed

    Piotrowska, Hanna; Myszkowski, Krzysztof; Abraszek, Joanna; Kwiatkowska-Borowczyk, Eliza; Amarowicz, Ryszard; Murias, Marek; Wierzchowski, Marcin; Jodynis-Liebert, Jadwiga

    2014-05-01

    DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin

    PubMed Central

    Cai, J; Yang, C; Yang, Q; Ding, H; Jia, J; Guo, J; Wang, J; Wang, Z

    2013-01-01

    Drug resistance remains a major clinical obstacle to successful treatment in ovarian cancer patients, and the evidence of microRNAs involvement in drug resistance has been emerging recently. In this report, we investigated the role of let-7e in the development of cisplatin-resistant ovarian cancer. On the cellular level, let-7e expression was significantly reduced in cisplatin-resistant human epithelial ovarian cancer (EOC) cell line A2780/CP compared with parental A2780 cell and decreased in a concentration-dependent manner in A2780, SKOV3 and ES2 cells treated with cisplatin. Overexpression of let-7e by transfection of agomir could resensitize A2780/CP and reduce the expression of cisplatin-resistant-related proteins enhancer of zeste 2 (EZH2) and cyclin D1 (CCND1), whereas let-7e inhibitors increased resistance to cisplatin in parental A2780 cells. Quantitative methylation-specific PCR analysis showed hypermethylation of the CpG island adjacent to let-7e in A2780/CP cells, and demethylation treatment with 5-aza-CdR or transfection of pYr-let-7e-shRNA plasmid containing unmethylated let-7e DNA sequence could restore let-7e expression and partly reduce the chemoresistance. In addition, cisplatin combined with let-7e agomirs inhibited the growth of A2780/CP xenograft more effectively than cisplatin alone. Diminished expression of EZH2 and CCND1 and higher cisplatin concentrations in tumor tissue of mice subjected to administration of let-7e agomirs in addition to cisplatin were revealed by immunohistochemistry and atomic absorption spectroscopy, respectively. Taken together, our findings suggest that let-7e may act as a promising therapeutic target for improvement of the sensibility to cisplatin in EOC. PMID:24100610

  11. Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation.

    PubMed

    Chen, Tze-Chien; Yu, Ming-Chih; Chien, Chih-Chiang; Wu, Ming-Shun; Lee, Yu-Chieh; Chen, Yen-Chou

    2016-03-01

    Nilotinib (AMN) induces apoptosis in various cancer cells; however the effect of AMN on human ovarian cancer cells is still unclear. A reduction in cell viability associated with the occurrence of apoptotic characteristics was observed in human SKOV-3 ovarian cancer cells under AMN but not sorafenib (SORA) or imatinib (STI) stimulation. Activation of apoptotic pathway including increased caspase (Casp)-3 and poly(ADP-ribose) polymerase 1 (PARP1) protein cleavage by AMN was detected with disrupted mitochondrial membrane potential (MMP) accompanied by decreased Bcl-2 protein and increased cytosolic cytochrome (Cyt) c/cleaved Casp-9 protein expressions was found, and AMN-induced cell death was inhibited by peptidyl Casp inhibitors, VAD, DEVD and LEHD. Increased phosphorylated c-Jun N-terminal kinase (JNK) protein expression was detected in AMN- but not SORA- or STI-treated SKOV-3 cells, and the JNK inhibitors, SP600125 and JNKI, showed slight but significant enhancement of AMN-induced cell death in SKOV-3 cells. The intracellular peroxide level was elevated by AMN and H2O2, and N-acetylcysteine (NAC) prevented H2O2- but not AMN-induced peroxide production and apoptosis in SKOV-3 cells. AMN induction of apoptosis with increased intracellular peroxide production and JNK protein phosphorylation was also identified in human A2780 ovarian cancer cells, cisplatin-resistant A2780CP cells, and clear ES-2 cells. The evidence supporting AMN effectively reducing the viability of human ovarian cancer cells via mitochondrion-dependent apoptosis is provided.

  12. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells.

    PubMed

    Cho, Yoon Jin; Woo, Jeong-Hwa; Lee, Jae-Seung; Jang, Dae Sik; Lee, Kyung-Tae; Choi, Jung-Hye

    2016-09-01

    Triterpenoids echinocystic acid and its glycosides, isolated from several Eclipta prostrata, have been reported to possess various biological activities such as anti-inflammatory, anti-bacterial, and anti-diabetic activity. However, the cytotoxicity of the triterpenoids in human cancer cells and their molecular mechanism of action are poorly understood. In the present study, we found that eclalbasaponin II with one glucose moiety has potent cytotoxicity in three ovarian cancer cells and two endometrial cancer cells compared to an aglycone echinocystic acid and eclalbasaponin I with two glucose moiety. Eclalbasaponin II treatment dose-dependently increased sub G1 population. Annexin V staining revealed that eclalbasaponin II induced apoptosis in SKOV3 and A2780 ovarian cancer cells. In addition, eclalbasaponin II-induced cell death was associated with characteristics of autophagy; an increase in acidic vesicular organelle content and elevation of the levels of LC3-II. Interestingly, autophagy inhibitor BaF1 suppressed the eclalbasaponin II-induced apoptosis. Moreover, eclalbasaponin II activated JNK and p38 signaling and inhibited the mTOR signaling. We further demonstrated that pre-treatment with a JNK and p38 inhibitor and mTOR activator attenuated the eclalbasaponin II-induced autophagy. This suggests that eclalbasaponin II induces apoptotic and autophagic cell death through the regulation of JNK, p38, and mTOR signaling in human ovarian cancer cells. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells

    PubMed Central

    HE, ZHIPING; LI, BO; RANKIN, GARY O.; ROJANASAKUL, YON; CHEN, YI CHARLIE

    2015-01-01

    Ovarian cancer is a disease that continues to cause mortality in female individuals worldwide. Ovarian cancer is challenging to treat due to emerging resistance to chemotherapy, therefore, the identification of effective novel chemotherapeutic agents is important. Polyphenols have demonstrated potential in reducing the risk of developing numerous types of cancer, as well reducing the risk of cancer progression, due to their ability to reduce cell viability and vascular endothelial growth factor (VEGF) expression. In the present study, eight phenolic compounds were screened in two human ovarian cancer cell lines (OVCAR-3 and A2780/CP70) to determine their effect on proliferation suppression and VEGF protein secretion inhibition, in comparison to cisplatin, a conventional chemotherapeutic agent. The current study identified that 40 μM gallic acid (GA) exhibited the greatest inhibitory effect on OVCAR-3 cell viability, compared with all of the phenolic compounds investigated. Similarly to cisplatin, baicalein, GA, nobiletin, tangeretin and baicalin were all identified to exhibit significant VEGF inhibitory effects from ELISA results. Furthermore, western blot analysis indicated that GA effectively decreased the level of the VEGF-binding protein hypoxia-inducible factor-1α in the ovarian cancer cell line. Considering the results of the present study, GA appears to inhibit cell proliferation and, thus, is a potential agent for the treatment of ovarian cancer. PMID:25663929

  14. Human Leukocyte Antigen-Presented Macrophage Migration Inhibitory Factor is a Surface Biomarker and Potential Therapeutic Target for Ovarian Cancer

    PubMed Central

    Patterson, Andrea M; Kaabinejadian, Saghar; McMurtrey, Curtis P; Bardet, Wilfried; Jackson, Ken W; Zuna, Rosemary E; Husain, Sanam; Adams, Gregory P; MacDonald, Glen; Dillon, Rachelle L.; Ames, Harold; Buchli, Rico; Hawkins, Oriana E; Weidanz, Jon A; Hildebrand, William H

    2015-01-01

    T cells recognize cancer cells via human leukocyte antigen (HLA)/peptide complexes and, when disease overtakes these immune mechanisms, immunotherapy can exogenously target these same HLA/peptide surface markers. We previously identified an HLA-A2-presented peptide derived from macrophage migration inhibitory factor (MIF) and generated antibody RL21A against this HLA-A2/MIF complex. The objective of the current study was to assess the potential for targeting the HLA-A2/MIF complex in ovarian cancer. First, MIF peptide FLSELTQQL was eluted from the HLA-A2 of the human cancerous ovarian cell lines SKOV3, A2780, OV90, and FHIOSE118hi and detected by mass spectrometry. By flow cytometry, RL21A was shown to specifically stain these four cell lines in the context of HLA-A2. Next, partially matched HLA-A*02:01+ ovarian cancer (n=27) and normal fallopian tube (n=24) tissues were stained with RL21A by immunohistochemistry to assess differential HLA-A2/MIF complex expression. Ovarian tumor tissues revealed significantly increased RL21A staining compared to normal fallopian tube epithelium (p<0.0001), with minimal staining of normal stroma and blood vessels (p<0.0001 and p<0.001 compared to tumor cells) suggesting a therapeutic window. We then demonstrated the anti-cancer activity of toxin-bound RL21A via the dose-dependent killing of ovarian cancer cells. In summary, MIF-derived peptide FLSELTQQL is HLA-A2-presented and recognized by RL21A on ovarian cancer cell lines and patient tumor tissues, and targeting of this HLA-A2/MIF complex with toxin-bound RL21A can induce ovarian cancer cell death. These results suggest that the HLA-A2/MIF complex should be further explored as a cell-surface target for ovarian cancer immunotherapy. PMID:26719579

  15. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells.

    PubMed

    Wan, Jing; Shi, Fang; Xu, Zhanzhan; Zhao, Min

    2015-12-01

    Eukaryotic initiation factor 4E (eIF4E) plays an important role in cap-dependent translation. The overexpression of eIF4E gene has been found in a variety of human malignancies. In this study, we attempted to identify the potential effects of eIF4E and explore the possibility of eIF4E as a therapeutic target for the treatment of human ovarian cancer. First the activation of eIF4E protein was detected with m7-GTP cap binding assays in ovarian cancer and control cells. Next, the eIF4E-shRNA expression plasmids were used to specifically inhibit eIF4E activity in ovarian cancer cells line A2780 and C200. The effects of knockdown eIF4E gene on cell proliferation, migration and invasion were investigated in vitro. Moreover, the changes of cell cycle and apoptosis of ovarian cancer cells were detected by flow cytometry. Finally, we investigated the effect of knockdown of eIF4E on the chemosensitivity of ovarian cancer cells to cisplatin in vitro. Our results show there is elevated activation of eIF4E in ovarian cancer cells compared with normal human ovarian epithelial cell line. The results of BrdU incorporation and FCM assay indicate that knockdown of eIF4E efficiently suppressed cell growth and induce cell cycle arrest in G1 phase and subsequent apoptosis in ovarian cancer cells. From Transwell assay analysis, knockdown eIF4E significantly decrease cellular migration and invasion of ovarian cancer cells. We also confirmed that knockdown eIF4E could synergistically enhance the cytotoxicity effects of cisplatin to cancer cells and sensitized cisplatin-resistant C200 cells in vitro. This study demonstrates that the activation of eIF4E gene is an essential component of the malignant phenotype in ovarian cancer, and aberration of eIF4E expression is associated with proliferation, migration, invasion and chemosensitivity to cisplatin in ovarian cancer cells. Knockdown eIF4E gene can be used as a potential therapeutic target for the treatment of human ovarian cancer.

  16. Anti-Tumor Effects of Atractylenolide-I on Human Ovarian Cancer Cells

    PubMed Central

    Long, Fangyi; Wang, Ting; Jia, Ping; Wang, Huafei; Qing, Yi; Xiong, Tingting; He, Mengjie; Wang, Xiaoli

    2017-01-01

    Background The aim of this study was to investigate the effects of Atractylenolide-I (AT-I), a naturally occurring sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, on human ovarian cancer cells. Material/Methods The viability and anchorage-independent growth of ovarian cancer cells were evaluated using MTT and colony formation assay, respectively. Cell cycle and apoptosis were detected with flow cytometry analysis. The level of cyclin B1 and CDK1 was measured using qPCR and ELISA analysis. The expression of Bax, cleaved caspase-9, cleaved caspase-3, cytochrome c, AIF, and Bcl-2, and phosphorylation level of PI3K, AKT, and mTOR were determined with Western blot analysis. Results AT-I decreased the cell viability and suppressed anchorage-independent growth of A2780 cells. Cell cycle was arrested in G2/M phase transition by AT-I treatment, which was related to decreased expression of cyclin B1 and CDK1 in a dose-dependent manner. In addition, the treatment induced apoptosis, as shown by up-regulation of Bax, cleaved caspase-9, cleaved caspase-3, and cytosolic release of cytochrome c and AIF, and down-regulation of Bcl-2, in a dose-dependent manner. Then, the effects of AT-I on PI3K/Akt/mTOR pathways were examined to further investigate the underlying anti-cancer mechanism of AT-I, and the results showed that treatment with AT-I significantly decreased the phosphorylation level of PI3K, Akt, and mTOR. Conclusions This study demonstrated that AT-I induced cell cycle arrest and apoptosis through inhibition of PI3K/Akt/mTOR pathway in ovarian cancer cells. These results suggest that AT-I might be a potential therapeutic agent in the treatment of ovarian cancer. PMID:28141785

  17. Antitumor properties of salinomycin on cisplatin-resistant human ovarian cancer cells in vitro and in vivo: involvement of p38 MAPK activation.

    PubMed

    Zhang, Bei; Wang, Xueya; Cai, Fengfeng; Chen, Weijie; Loesch, Uli; Zhong, Xiao Yan

    2013-04-01

    In order to search for alternative agents to overcome chemoresistance during the treatment of ovarian cancer, this study aimed to examine the anticancer effects and action mechanism of salinomycin, a selective inhibitor of cancer stem cells, on cisplatin-resistant human ovarian cancer cell lines in vitro and in vivo. The concentration- (0.01-200 µM) and time‑dependent (24-72 h) growth inhibitory effects of salinomycin were observed in the ovarian cancer cell lines OV2008, C13, A2780, A2780-cp, SKOV3 and OVCAR3, by measuring cell viability using the resazurin reduction assay. The IC50 (24 h) range of salinomycin on the six cell lines was found to be 1.7-7.4 µM. After cisplatin-resistant C13 cells were treated with salinomycin, the percentage of apoptotic cells determined by flow cytometry was significantly increased, in a concentration- and time‑dependent manner. However, no cell cycle arrest was detected in the G1/G0, S and G2/M phases in the salinomycin‑treated and control cells. The Bio-Plex phosphoprotein 5-plex assay (Akt, IκB-α, ERK1/2, JNK and p38 MAPK) demonstrated a marked time- and concentration‑dependent increase in the phosphorylation of p38 MAPK, subsequent to salinomycin treatment. Moreover, salinomycin significantly suppressed tumor growth in a tumor xenograft model. These findings suggested that salinomycin efficiently inhibits the cisplatin-resistant human ovarian cancer cell line growth through the induction of apoptosis, potentially associated with the p38 MAPK activation.

  18. Short-term serum deprivation confers sensitivity to taxanes in platinum-resistant human ovarian cancer cells.

    PubMed

    Isonishi, Seiji; Saito, Motoaki; Saito, Misato; Tanaka, Tadao

    2011-12-01

    Based on the evidences showing that serum deprivation provokes apoptosis in a variety of cells, we have investigated the effect of serum deprivation on drug sensitivity. After human ovarian cancer cells were preincubated in 0.5 % serum containing medium for 12 hours, cellular drug sensitivities were determined by colony-forming assay. Serum deprivation treatment resulted in significant increase in paclitaxel sensitivity by factors of mean ± SD, 148.6 ± 28.1 and 10.1 ± 1.0 (n = 3; P < 0.001) fold in platinum-resistant C13 and CP70 cells, respectively. Similarly, serum deprivation induced significant docetaxel sensitivity in these cell lines. However, no enhancement effect of serum deprivation was observed in platinum-sensitive 2008 and A2780 cells. Serum deprivation did not have any effect on the sensitivities to cisplatin, vincristin, and doxorubicin in all of these cells. More than 7-fold increase of apoptotic cells were observed in C13 or CP70 cells when they were treated by serum deprivation followed by paclitaxel compared with the treatment of either serum deprivation or paclitaxel alone. Confocal laser microscopy using rhodamine 123 and flow cytometric analysis with 3,3'-dihexyloxacarbocyanine iodide revealed that serum deprivation decreased mitochondrial membrane potential in C13 or CP70 cells, whereas no change was observed in 2008 and A2780 cells. This indicates that serum deprivation induced depolarization specifically in platinum-resistant cells. Electron microscopy revealed that serum deprivation caused regeneration of mitochondrial matrix structure in C13 or CP70 cells where mitochondria were usually destructed and disappeared. These results indicate that serum deprivation confers taxane hypersensitivity specifically in platinum-resistant cells by recovering their impaired mitochondrial functions. The evidence might be clinically beneficial for the development of new chemotherapeutic technology, particularly for the patients with platinum

  19. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    PubMed

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer.

  20. Tetramethoxychalcone, a Chalcone Derivative, Suppresses Proliferation, Blocks Cell Cycle Progression, and Induces Apoptosis of Human Ovarian Cancer Cells

    PubMed Central

    Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer. PMID:25180593

  1. Organometallic Half-Sandwich Dichloridoruthenium(II) Complexes with 7-Azaindoles: Synthesis, Characterization and Elucidation of Their Anticancer Inactivity against A2780 Cell Line

    PubMed Central

    Štarha, Pavel; Hanousková, Lucie; Trávníček, Zdeněk

    2015-01-01

    A series of organometallic half-sandwich dichloridoruthenium(II) complexes of the general formula [Ru(η6-p-cym)(naza)Cl2] (1–8; p-cym = p-cymene; naza = 7-azaindole or its derivatives) was synthesised and fully characterized by elemental analysis, mass spectrometry, and infrared and multinuclear NMR spectroscopy. A single-crystal X-ray structural analysis of [Ru(η6-p-cym)(2Me4Claza)Cl2] (6) revealed a typical piano-stool geometry with an N7-coordination mode of 2-methyl-4-chloro-7-azaindole (2Me4Claza). The complexes have been found to be inactive against human ovarian cancer cell line A2780 up to the highest applied concentration (IC50 > 50.0 μM). An inactivity of the complexes is caused by their instability in water-containing solvents connected with a release of the naza N-donor ligand, as proved by the detailed 1H NMR, mass spectrometry and fluorescence experiments. PMID:26606245

  2. [Reverse of the resistance to paclitaxel of the heparin binding-epidermal growth factor-like growth factor inhibitor in ovarian cancer].

    PubMed

    Tang, X H; Lu, M S; Deng, S; Li, M

    2017-02-25

    Objective: To investigate the effect and mechanism of CRM197, the heparin binding-epidermal growth factor-like growth factor (HB-EGF) inhibitor, on the reverse of the resistance of ovarian cancer to paclitaxel. Methods: (1)The effect of CRM197 on the 50% inhibitory concentrations (IC(50)) of human ovarian carcinoma cell line A2780 and paclitaxel-resistant ovarian carcinoma cell line A2780/Taxol was tested by methyl thiazolyl tetrazolium (MTT) assay. Western blot was used to detect the effect of CRM197 on the expression of HB-EGF, epidermal growth factor receptor (EGFR) and plasma membrane glycoprotein (P-gp) protein in A2780 and A2780/Taxol cells. Real-time PCR was used to examine the MDR1 mRNA expression in these cells. (2) A2780/Taxol cells were divided into 4 groups, including the cells transfected with empty vector and saline treatment (empty vector group), MDR1 small interference RNA (siRNA) vector and saline treatment (MDR1 siRNA group), empty vector and CRM197 treatment (empty vector+CRM197 group) and MDR1 siRNA vector and CRM197 treatment (MDR1 siRNA+CRM197 group), respectively. Flow cytometry was used to detecte the effect of intracellular rhodomine 123 (Rh123) accumulation, and caspase-3 activity assay was used to test the effect of apoptosis in four groups of A2780/Taxol cells. (3) In experiments in vivo, A2780/Taxol cells were inoculated to nude mouse subcutaneously to determine the EGFR and P-gp protein expression following CRM197 treatment by immunohistochemistry. Results: (1) In vitro, MTT examination showed that the IC(50) of A2780/Taxol cells to paclitaxel in A2780/Taxol+CRM197 group [(6.4±0.3) μmol/L] was significantly lower than the IC(50) in A2780/Taxol group [ (34.1±0.5) μmol/L, P<0.01], and the reveral fold of CRM197 was 5.3. The expression level of HB-EGF protein in A2780/Taxol+CRM197 group (1.44±0.29) was significantly lower than HB-EGF protein in A2780/Taxol group (2.72±0.32), respectively (P<0.05). The expression level of EGFR

  3. Impact of system L amino acid transporter 1 (LAT1) on proliferation of human ovarian cancer cells: a possible target for combination therapy with anti-proliferative aminopeptidase inhibitors.

    PubMed

    Fan, Xuetao; Ross, Douglas D; Arakawa, Hiroshi; Ganapathy, Vadivel; Tamai, Ikumi; Nakanishi, Takeo

    2010-09-15

    Amino acids activate nutrient signaling via the mammalian target of rapamycin (mTOR), we therefore evaluated the relationship between amino acid transporter gene expression and proliferation in human ovarian cancer cell lines. Expression of three cancer-associated amino acid transporter genes, LAT1, ASCT2 and SN2, was measured by qRT-PCR and Western blot. The effects of silencing the LAT1 gene and its inhibitor BCH on cell growth were evaluated by means of cell proliferation and colony formation assays. The system L amino acid transporter LAT1 was up-regulated in human ovarian cancer SKOV3, IGROV1, A2780, and OVCAR3 cells, compared to normal ovarian epithelial IOSE397 cells, whereas ASCT2 and SN2 were not. BCH reduced phosphorylation of p70S6K, a down-stream effector of mTOR, in SKOV3 and IGROV1 cells, and decreased their proliferation by 30% and 28%, respectively. Although proliferation of SKOV3 (S1) or IGROV1 (I10) cells was unaffected by LAT1-knockdown, plating efficiency in colony formation assays was significantly reduced in SKOV3(S1) and IGROV1(I10) cells to 21% and 52% of the respective plasmid transfected control cells, SKOV3(SC) and IGROV(IC), suggesting that LAT1 affects anchorage-independent cell proliferation. Finally, BCH caused 10.5- and 4.3-fold decrease in the IC(50) value of bestatin, an anti-proliferative aminopeptidase inhibitor, in IGROV1 and A2780 cells, respectively, suggesting that the combined therapy is synergistic. Our findings indicate that LAT1 expression is increased in human ovarian cancer cell lines; LAT1 may be a target for combination therapy with anti-proliferative aminopeptidase inhibitors to combat ovarian cancer.

  4. Aberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer

    PubMed Central

    Stefanou, Dimitra T.; Bamias, Aristotelis; Episkopou, Hara; Kyrtopoulos, Soterios A.; Likka, Maria; Kalampokas, Theodore; Photiou, Stylianos; Gavalas, Nikos; Sfikakis, Petros P.; Dimopoulos, Meletios A.; Souliotis, Vassilis L.

    2015-01-01

    Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that

  5. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer.

    PubMed

    Stefanou, Dimitra T; Bamias, Aristotelis; Episkopou, Hara; Kyrtopoulos, Soterios A; Likka, Maria; Kalampokas, Theodore; Photiou, Stylianos; Gavalas, Nikos; Sfikakis, Petros P; Dimopoulos, Meletios A; Souliotis, Vassilis L

    2015-01-01

    Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that

  6. Gene expression profiling of human ovarian tumours

    PubMed Central

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; LiVolsi, V A; Johnson, S W

    2006-01-01

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers. PMID:16969345

  7. Gene expression profiling of human ovarian tumours.

    PubMed

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; Livolsi, V A; Johnson, S W

    2006-10-23

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT-PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.

  8. Photoacoustic characterization of human ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2010-02-01

    Ovarian cancer has a five-year survival rate of only 30%, which represents the highest mortality of all gynecologic cancers. The reason for that is that the current imaging techniques are not capable of detecting ovarian cancer early. Therefore, new imaging techniques, like photoacoustic imaging, that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. Using a coregistered photoacoustic and ultrasound imaging system we have studied thirty-one human ovaries ex vivo, including normal and diseased. In order to compare the photoacoustic imaging results from all the ovaries, a new parameter using the RF data has been derived. The preliminary results show higher optical absorption for abnormal and malignant ovaries than for normal postmenopausal ones. To estimate the quantitative optical absorption properties of the ovaries, additional ultrasound-guided diffuse optical tomography images have been acquired. Good agreement between the two techniques has been observed. These results demonstrate the potential of a co-registered photoacoustic and ultrasound imaging system for the diagnosis of ovarian cancer.

  9. Influence of reducing agents on the cytotoxic activity of platinum(IV) complexes: induction of G2/M arrest, apoptosis and oxidative stress in A2780 and cisplatin resistant A2780cis cell lines.

    PubMed

    Pichler, Verena; Göschl, Simone; Schreiber-Brynzak, Ekaterina; Jakupec, Michael A; Galanski, Markus; Keppler, Bernhard K

    2015-07-01

    The concept of Pt(IV) prodrug design is one advanced strategy to increase the selectivity for cancer cells and to reduce systemic toxicity in comparison to established platinum-based chemotherapy. Pt(IV) complexes are thought to be activated by reduction via physiological reductants, such as ascorbic acid or glutathione. Nevertheless, only few investigations on the link between the reduction rate, which is influenced by the reductant, and the ligand sphere of the Pt(IV) metal centre have been performed so far. Herein, we investigated a set of Pt(IV) compounds with varying rates of reduction with respect to their cytotoxicity and drug accumulation in A2780 and A2780cis ovarian cancer cell lines, their influence on the cell cycle, efficiency of triggering apoptosis, and ability to interfere with plasmid DNA (pUC19). The effects caused by Pt(IV) compounds were compared without or with extracellularly added ascorbic acid and glutathione (or its precursor N-acetylcysteine) to gain understanding of the impact of increased levels of the reductant on the activity of such complexes. Our results demonstrate that reduction is required prior to plasmid interaction. Furthermore, the rate of reduction is crucial for the efficiency of this set of Pt(IV) compounds. The substances that are reduced least likely showed similar performances, whereas the fastest reducing substance was negatively affected by an increased extracellular level of reducing agents, with reduced cytotoxicity and lower efficiency in inducing apoptosis and G2/M arrest. These results confirm the connection between reduction and activity, and prove the strong impact of the reduction site on the activity of Pt(IV) complexes.

  10. BRCA1 Regulates Follistatin Function in Ovarian Cancer and Human Ovarian Surface Epithelial Cells

    PubMed Central

    Sneed, Rosie; Salamanca, Clara; Li, Xin; Xu, Jingwen; Kumar, Deepak; Rosen, Eliot M.; Saha, Tapas

    2012-01-01

    Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells. PMID:22685544

  11. Successful cryopreservation of human ovarian cortex tissues using supercooling.

    PubMed

    Moriguchi, Hisashi; Zhang, Yue; Mihara, Makoto; Sato, Chifumi

    2012-01-01

    The development of new method to cryopreserve human ovarian cortex tissues without damage is needed for the improvement of quality of life (QOL) of female cancer patients. Here we show novel cryopreservation method of human ovarian cortex tissues by using supercooling (S.C.) procedure. Our method will be helpful in order to preserve fertility of female cancer patients.

  12. Successful cryopreservation of human ovarian cortex tissues using supercooling

    PubMed Central

    Moriguchi, Hisashi; Zhang, Yue; Mihara, Makoto; Sato, Chifumi

    2012-01-01

    The development of new method to cryopreserve human ovarian cortex tissues without damage is needed for the improvement of quality of life (QOL) of female cancer patients. Here we show novel cryopreservation method of human ovarian cortex tissues by using supercooling (S.C.) procedure. Our method will be helpful in order to preserve fertility of female cancer patients. PMID:22844578

  13. Histone modifications silence the GATA transcription factor genes in ovarian cancer.

    PubMed

    Caslini, C; Capo-chichi, C D; Roland, I H; Nicolas, E; Yeung, A T; Xu, X-X

    2006-08-31

    Altered expression of GATA factors was found and proposed as the underlying mechanism for dedifferentiation in ovarian carcinogenesis. In particular, GATA6 is lost or excluded from the nucleus in 85% of ovarian tumors and GATA4 expression is absent in majority of ovarian cancer cell lines. Here, we evaluated their DNA and histone epigenetic modifications in five ovarian epithelial and carcinoma cell lines (human 'immortalized' ovarian surface epithelium (HIO)-117, HIO-114, A2780, SKOV3 and ES2). GATA4 and GATA6 gene silencing was found to correlate with hypoacetylation of histones H3 and H4 and loss of histone H3/lysine K4 tri-methylation at their promoters in all lines. Conversely, histone H3/lysine K9 di-methylation and HP1gamma association were not observed, excluding reorganization of GATA genes into heterochromatic structures. The histone deacetylase inhibitor trichostatin A, but not the DNA methylation inhibitor 5'-aza-2'-deoxycytidine, re-established the expression of GATA4 and/or GATA6 in A2780 and HIO-114 cells, correlating with increased histone H3 and H4 acetylation, histone H3 lysine K4 methylation and DNase I sensitivity at the promoters. Therefore, altered histone modification of the promoter loci is one mechanism responsible for the silencing of GATA transcription factors and the subsequent loss of a target gene, the tumor suppressor Disabled-2, in ovarian carcinogenesis.

  14. Preclinical humanized mouse model with ectopic ovarian tissues

    PubMed Central

    FU, SHILONG; WANG, JUE; SUN, WU; XU, YI; ZHOU, XIAOYU; CHENG, WENJUN

    2014-01-01

    The aim of the present study was to establish human ovarian stroma within the mouse subcutaneously, in order for the resulting stroma to serve as a useful preclinical tool to study the progression of human ovarian cancer in a humanized ovarian microenvironment. Normal human ovarian tissues were subcutaneously implanted into severe combined immunodeficient (SCID) mice and then the implants were identified by immunohistochemistry. The implants became vascularized and retained their original morphology for about 4 weeks following implantation. Immunohistochemical staining for cytokeratin-7 confirmed the ovarian origin of the epithelial cells. CD34 staining demonstrated human-derived vessels. Positive estrogen receptor and partially-positive progesterone receptor staining indicated the estrogen and progesterone dependence of the implants. Only vascular pericytes expressed α-smooth muscle actin, indicating the normal ovarian origin of the xenografts. Human ovarian tissue successfully survived in SCID mice and retained its original properties. This humanized mouse model may be used as preclinical tool to investigate ovarian cancer. PMID:25120592

  15. Second harmonic generation in human ovarian neoplasias

    NASA Astrophysics Data System (ADS)

    Lamonier, L.; Bottcher-Luiz, F.; Pietro, L.; Andrade, L. A. L. A.; de Thomaz, A. A.; Machado, C. L.; Cesar, C. L.

    2010-02-01

    Metastasis is the main cause of death in cancer patients; it requires a complex process of tumor cell dissemination, extra cellular matrix (ECM) remodeling, cell invasion and tumor-host interactions. Collagen is the major component of ECM; its fiber polymerization or degradation evolves in parallel with the evolution of the cancerous lesions. This study aimed to identify the collagen content, spatial distribution and fiber organization in biopsies of benign and malignant human ovarian tissues. Biopsies were prepared in slides without dyes and were exposed to 800nm Ti:Sapphire laser (Spectra Physics, 100 fs pulse duration, 800mW average power, 80MHz repetition rate). The obtained images were recorded at triplets, corresponding to clear field, multiphoton and second harmonic generation (SHG) mycroscopy. Data showed considerable anisotropy in malignant tissues, with regions of dense collagen arranged as individual fibers or in combination with immature segmental filaments. Radial fiber alignment or regions with minimal signal were observed in the high clinical grade tumors, suggesting degradation of original fibers or altered polymerization state of them. These findings allow us to assume that the collagen signature will be a reliable and a promising marker for diagnosis and prognosis in human ovarian cancers.

  16. Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts

    PubMed Central

    2015-01-01

    A disodium phosphonooxymethyl prodrug of the antitumor agent triptolide was prepared from the natural product in three steps (39% yield) and displayed excellent aqueous solubility at pH 7.4 (61 mg/mL) compared to the natural product (17 μg/mL). The estimated shelf life (t90) for hydrolysis of the prodrug at 4 °C and pH 7.4 was found to be two years. In a mouse model of human colon adenocarcinoma (HT-29), the prodrug administered intraperitoneally was effective in reducing or eliminating xenograft tumors at dose levels as low as 0.3 mg/kg when given daily and at 0.9 mg/kg when given less frequently. When given via intraperitoneal and oral routes at daily doses of 0.6 and 0.9 mg/kg, the prodrug was also effective and well tolerated in a mouse model of human ovarian cancer (A2780). PMID:26596892

  17. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts.

    PubMed

    Houba, P H; Boven, E; Erkelens, C A; Leenders, R G; Scheeren, J W; Pinedo, H M; Haisma, H J

    1998-12-01

    The prodrug N-[4-(daunorubicin-N-carbonyl-oxymethyl)phenyl] O-beta-glucuronyl carbamate (DNR-GA3) was synthesized for specific activation by human beta-glucuronidase, released in necrotic areas of tumour lesions. In vitro, DNR-GA3 was 18 times less toxic than daunorubicin (DNR) and the prodrug was completely activated to the parent drug by human beta-glucuronidase. The maximum tolerated dose of DNR-GA3 in nude mice bearing s.c. human ovarian cancer xenografts was 6-10 times higher than that of DNR. The prodrug was cleared more rapidly from the circulation (elimination t1/2 = 20 min) than the parent drug (elimination t1/2 = 720 min). The anti-tumour effects of DNR-GA3 and DNR were investigated in four different human ovarian cancer xenografts OVCAR-3, FMa, A2780 and MRI-H-207 at a mean tumour size between 100 and 200 mm3. In three out of four of these tumour lines, the prodrug given i.v. at the maximum tolerated dose ranging from 150 to 250 mg kg(-1) resulted in a maximum tumour growth inhibition from 82% to 95%. The standard treatment with DNR at a dose of 8 mg kg(-1) given i.v. weekly x 2 resulted only in a maximum tumour growth inhibition from 40% to 47%. Tumour line FMa did not respond to DNR, nor to DNR-GA3. Treatment with DNR-GA3 was also given to mice with larger tumours that would contain more necrosis (mean size 300-950 mm3). The specific growth delay by DNR-GA3 was extended from 2.1 to 4.4 in OVCAR-3 xenografts and from 4.4 to 6.0 in MRI-H-207 xenografts. Our data indicate that DNR-GA3 is more effective than DNR and may be especially of use for treatment of tumours with areas of necrosis.

  18. Safety assessment of ovarian cryopreservation and transplantation in nude mice bearing human epithelial ovarian cancer.

    PubMed

    Zhu, Gen-Hai; Wang, Sheng-Tan; Yang, Zhao-Xin; Cai, Jun-Hong; Chen, Chun-Ying; Yao, Mao-Zhong; Hong, Lan; He, Guo-Li; Yang, Shu-Ying

    2012-01-01

    Nude mice with orthotopic transplantation of human ovarian epithelial cancer were used to investigate screening criteria for paraneoplastic normal ovarian tissue and the security of the freezing and thawing for ovarian tissue transplantation. Expression of CK-7, CA125, P53, survivin, MMP-2/TIMP- 2 in paraneoplastic normal ovarian tissues were detected by RT-PCR as well as immunohistochemistry. The tissues of the groups with all negative indicators of RT-PCR, all negative indicators of immunohistochemistry, negative expression of CK-7, CA125 and survivin, positive expression of CK-7, CA125 and survivin, cancer tissues and normal ovarian tissues of nude mice were used for freezing and thawing transplantation, to analyze overt and occult carcinogenesis rates after transplantation. When all indicators or the main indicators, CK-7, CA125 and survivin, were negative, tumorigenesis did not occur after transplantation. In addition the occult carcinogenesis rate was lower than in the group with positive expression of CK-7, CA125 and survivin (P<0.01). After subcutaneous and orthotopic transplantation of ovarian tissues, rates did not change (P>0.05). There was no statistical significance among rates after transplantation of ovarian tissues which were obtained under different severity conditions (P>0.05). Negative expression of CK-7, CA125 and survivin can be treated as screening criteria for security of ovarian tissues for transplantation. Immunohistochemical methods can be used as the primary detection approach. Both subcutaneous and orthotopic transplantation are safe. The initial severity does not affect the carcinogenesis rate after tissue transplantation. Freezing and thawing ovarian tissue transplantation in nude mice with human epithelial ovarian carcinoma is feasible and safe.

  19. Cross-reacting material 197 reverses the resistance to paclitaxel in paclitaxel-resistant human ovarian cancer.

    PubMed

    Tang, Xiao-Han; Deng, Suo; Li, Meng; Lu, Mei-Song

    2016-04-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been proven to be a promising chemotherapeutic target for ovarian cancer. Our previous studies have demonstrated that inhibition of HB-EGF by the special inhibitor, cross-reacting material 197 (CRM197), potently inhibits the anti-tumor activity in paclitaxel-resistant ovarian cancer. Here, we found that inhibition of HB-EGF by CRM197 significantly reverses the resistance to paclitaxel in paclitaxel-resistant ovarian carcinoma cell line (A2780/Taxol). A2780/Taxol cells over-expressed HB-EGF and epidermal growth factor receptor (EGFR) and CRM197 notably suppressed the expression of HB-EGF and EGFR. Experiments performed in vitro and in vivo further suggested that CRM197 markedly down-regulated the ATP-binding cassette sub-family B member 1 (ABCB1/MDR1) messenger RNA (mRNA) expression (P = 0.01), plasma membrane glycoprotein (P-gp) protein (P = 0.009), and P-gp-mediated efflux (P = 0.007) through inhibition of nuclear factor-κB (NF-κB) expression, which were classical chemoresistance-related targets with respect to paclitaxel therapy. Meanwhile, inhibition of HB-EGF enhanced caspase-3 activity to induce apoptosis via MDR1 inhibition in A2780/Taxol cells (P = 0.038). Collectively, HB-EGF is a molecular target for the resistance of ovarian cancer to paclitaxel and CRM197 as a HB-EGF-targeted agent might be a chemosensitizing agent for paclitaxel-resistant ovarian carcinoma. Our findings provide novel possible mechanisms for HB-EGF to be a target to restore the chemosensitivity to paclitaxel.

  20. Distribution and pharmacokinetics of the prodrug daunorubicin-GA3 in nude mice bearing human ovarian cancer xenografts.

    PubMed

    Houba, P H; Boven, E; van der Meulen-Muileman, I H; Leenders, R G; Scheeren, J W; Pinedo, H M; Haisma, H J

    1999-03-15

    N-[4-daunorubicin-N-carbonyl (oxymethyl)phenyl] O-beta-glucuronyl carbamate (DNR-GA3) is a glucuronide prodrug of daunorubicin (DNR) which induced a better tumor growth delay than DNR when studied at equitoxic doses in three human ovarian cancer xenografts. These results suggested that the prodrug DNR-GA3 was selectively activated by human beta-glucuronidase present in tumor tissue. We determined the pharmacokinetics and distribution of DNR-GA3 in nude mice bearing human ovarian cancer xenografts (OVCAR-3, FMa, A2780, and MRI-H-207). Administration of DNR at 10 mg/kg i.v. (maximum tolerated dose) to OVCAR-3-bearing mice resulted in a peak plasma concentration of the drug of 12.18 microM (t = 1 min). DNR-GA3 at 100 mg/kg i.v. (approximately 50% of the maximum tolerated dose [MTD]) resulted in a peak plasma concentration of DNR that was 28-fold lower than that after DNR itself; in normal tissues, prodrug injection resulted in 5- to 23-fold lower DNR concentrations. DNR showed a relatively poor uptake into OVCAR-3 tumors with a peak concentration of 2.05 nmol x g(-1) after injection. In the same xenograft, DNR-GA3 resulted in a significantly higher DNR peak concentration of 3.45 nmol x g(-1) (P < 0.05). The higher area under the curve of DNR in tumor tissue after DNR-GA3 than after DNR itself would be the result of prodrug activation by beta-glucuronidase. In this respect, a considerably higher beta-glucuronidase activity was found in tumor tissue when compared to plasma. The specific activation of DNR-GA3 by beta-glucuronidase at the tumor site relative to normal organs leads to a more tumor-selective therapy, resulting in greater efficacy without increased toxicity.

  1. Inflammation and Human Ovarian Follicular Dynamics

    PubMed Central

    Boots, Christina E.

    2016-01-01

    Inflammation is a biologic process that mediates tissue effects including vasodilation, hyperemia, edema, collagenolysis and cell proliferation through complex immunologic pathways. In regards to the ovary, inflammation has key physiologic roles in ovarian folliculogenesis and ovulation. On the other hand inflammatory processes are subject to underlying pathology and if pushed, pro-inflammatory conditions may have a negative impact on ovarian follicular dynamics. Obesity and polycystic ovary syndrome (PCOS) serve as examples of conditions associated with chronic endogenous production of low-grade pro-inflammatory cytokines. Both conditions negatively impact ovarian folliculogenesis and ovulation. The pages that follow summarize the role of inflammation in normal ovarian follicular dynamics and evidence for its role in mediating the negative effects of obesity and PCOS on ovarian follicular dynamics. The review concludes with a summary supporting a role for lifestyle factors that favorably impact inflammatory process involved in obesity and PCOS to improve ovarian function. PMID:26132931

  2. Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells

    PubMed Central

    Liu, Zeng; Zhu, Yuan-Yuan; Li, Zhao-Yuan; Ning, Si-Qing

    2016-01-01

    The aim of the present study was to evaluate the efficacy of paclitaxel combined with curcumin (CUR) against drug resistance in ovarian cancer cells. PLGA-phospholipid-PEG nanoparticles were prepared using the nano precipitation method. The size and morphology of the nanoparticles were determined using a transmission electron microscope and particle size analyzer. The encapsulation efficiency of nanoparticles was determined using the ultrafiltration centrifugation method. The dialysis method was used to study the release of PLGA-phospholipid-PEG nanoparticles. ADM was used to induce the A2780 cell line (human ovarian cancer cell line) to establish the model of the multidrug-resistant (MDR) cell line, and the protein activity of P-glycoprotein (P-gp) in the A2780 cell line and A2780/ADM resistant cell line was determined using western blot analysis. The results showed that, the prepared nanoparticles were uniform in size, with a size of approximately 100 nm, and round in shape. Additionally, the nanoparticles had a more gentle and slow release than the free drug release. The results of the protein trace printing experiment showed that the P-gp content of the drug-resistant cell line was significantly reduced by the CUR nanoparticles. In conclusion, PLGA-phospholipid nanoparticles containing taxol and CUR have improved solubility and stability together with a slow release effect. In addition, CUR was able to overcome the MDR of tumor cells by elevating the paclitaxel concentration in the tumor cells to improve the antitumor activity of this combination. PMID:27895754

  3. Hormonal and histologic findings in human cryopreserved ovarian autografts.

    PubMed

    Dittrich, Ralf; Mueller, Andreas; Maltaris, Theodoros; Hoffmann, Inge; Magener, Achim; Oppelt, Patricia G; Beckmann, Matthias W

    2009-04-01

    This is the first report showing a hormonal and histologic discrepancy in cryopreserved human ovarian tissue 11 months after orthotopic autotransplantation. The presence of antral follicles was observed although the hormonal values had returned to castrated levels.

  4. An Introduction to The Royan Human Ovarian Tissue Bank

    PubMed Central

    Abtahi, Naeimeh Sadat; Ebrahimi, Bita; Fathi, Rouhollah; Khodaverdi, Sepideh; Mehdizadeh Kashi, Abolfazl; Valojerdi, Mojtaba Rezazadeh

    2016-01-01

    From December 2000 until 2010, the researchers at Royan Institute conducted a wide range of investigations on ovarian tissue cryopreservation with the intent to provide fertility pres- ervation to cancer patients that were considered to be candidates for these services. In 2010, Royan Institute established the Royan Human Ovarian Tissue Bank as a subgroup of the Embryology Department. Since its inception, approximately 180 patients between the ages of 747 years have undergone consultations. Ovarian samples were cryopreserved from 47 patients (age: 7-35 years) diagnosed with cervical adenocarcinoma (n=9); breast carcinoma (n=7), Ewing’s sarcoma (n=7), opposite side ovarian tumor (n=7), endometrial adenocarci- noma (n=4), malignant colon tumors (n=3), as well as Hodgkin’s lymphoma, major thalas- semia and acute lymphoblastic leukemia (n=1-2 patients for each disease). Additionally, two patients requested ovarian tissue transplantation after completion of their treatments. PMID:27441061

  5. Modulators of Response to Tumor Necrosis-Factor-Related Apoptosis Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    DTIC Science & Technology

    2010-04-01

    antibody, MORAb-003. Methods: FRα expression was examined in ovarian cell lines (SKOV3ip1, IGROV, HeyA8, A2780-par, and HIO -180) with fluorescence...IGROVand SKOV3ip1 cell lines both expressed high levels of FRα compared with the non-transformed ( HIO -180) cells. HeyA8 and A2780-par cell lines lacked

  6. [The Mechanisms by which Bax Induces the Apoptosis of Human Ovarian Cancer Cells].

    PubMed

    Zeng, Jun; Yang, Jing; Chen, Deng-bang; Cao, Kang

    2015-09-01

    The purpose of this study was to observe the apoptosis of A2780 cells transfected with the recombinant plasmid of pcDNA-Bax and to observe the release of cytochrome C from the mitochondria. The recombinant plasmid of pcDNA-Bax was constructed and transfected into A2784 cells. The Hoechst 33258 stain method was applied to evaluate the apoptosis of the transfected cells and MTT mothod was used to test the cell viability. Western blot analysis was performed to determine the overexpression of Bax and the release of cytochrome C from the mitochondria. The recombinant plasmid of pcDNA-Bax was successfully constructed by using endonuclease digestion and the sequence analysis. The apoptosis of A2780 cells was induced after transfected with pcDNA3. 1-Bax as demonstrated with Hoechst staining. The cell viability were decreased in the pcDNA3. 1-Bax transfected group by MTT assay. The release of cytochrome C from the mitochondria was observed when using Western blotting analysis. And the caspase-9 and the caspase-3 were activated. Our data suggestted that Bax exhibited potent pro-apoptotic activity against the ovarian cancer cells. This study is a foundation for the further research in the pro-apoptotic activity of Bax.

  7. Docosahexaenoic Acid Modulates Invasion and Metastasis of Human Ovarian Cancer via Multiple Molecular Pathways

    PubMed Central

    Wang, Ying-Chun; Wu, Yi-Nan; Wang, Su-Li; Lin, Qing-Hua; He, Ming-Fang; Liu, Qiao-lin; Wang, Jin-Hua

    2016-01-01

    Objective We investigated the effect of docosahexaenoic acid (DHA) on the invasion and metastasis of ovarian cancer cells (A2780, HO8910, and SKOV-3). Methods Cytotoxicity assay was performed to determine the optimal doses of DHA in this experiment. The effects of DHA on invasion ability were assessed by invasion assay. The expressions of messenger RNA and/or proteins associated with invasion or metastasis were detected by quantitative Real Time-Polymerase Chain Reaction or Western blot. The effect of DHA on cell metastasis was assessed in xenograft model of zebrafish. Results Docosahexaenoic acid and α-linolenic acid could reduce the cell vitalities in dose-dependent manner. However, DHA inhibited the invasion and metastasis of ovarian cancer cells, but α-linolenic acid did not (**P < 0.01). Docosahexaenoic acid could downregulate the expressions of WAVE3, vascular endothelial cell growth factor, and MMP-9, and upregulate KISS-1, TIMP-1, and PPAR-γ, which negatively correlated with cell invasion and metastasis (*P < 0.05). Docosahexaenoic acid restrained the development of subintestinal vessels and cancer cell metastasis in xenograft model of zebrafish (**P < 0.01). Conclusions Docosahexaenoic acid inhibited the invasion and metastasis of ovarian cancer cells in vitro and in vivo through the modulation of NF-κB signaling pathway, suggesting that DHA is a promising candidate for ovarian cancer therapy. PMID:27258728

  8. Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid by gonadotropins in human immortalized ovarian surface epithelium and ovarian cancer cells.

    PubMed

    Choi, Jung-Hye; Choi, Kyung-Chul; Auersperg, Nelly; Leung, Peter C K

    2006-06-01

    Although gonadotropin-releasing hormone (GnRH) has been shown to play a role as an autocrine/ paracrine regulator of cell growth in ovarian surface epithelium and ovarian cancer, the factors which regulate the expression of GnRH and its receptor in these cells are not well characterized. In the present study, we employed real-time PCR to determine the potential regulatory effect of gonadotropins on the expression levels of GnRH I (the mammalian GnRH), GnRH II (a second form of GnRH) and their common receptor (GnRHR) in immortalized ovarian surface epithelial (IOSE-80 and IOSE-80PC) cells and ovarian cancer cell lines (A2780, BG-1, CaOV-3, OVCAR-3 and SKOV-3). The cells were treated with increasing concentrations (100 and 1000 ng/ml) of recombinant follicle-stimulating hormone (FSH) or luteinizing hormone (LH) for 24 h. Treatment with FSH or LH reduced GnRH II mRNA levels in both IOSE cell lines and in three out of five ovarian cancer cell lines (A2780, BG-1 and OVCAR-3). A significant decrease in GnRHR mRNA levels was observed in IOSE and ovarian cancer cells, except CaOV-3 cells, following treatment with FSH or LH. In contrast, treatment with either FSH or LH had no effect on GnRH I mRNA levels in these cells, suggesting that gonadotropins regulate the two forms of GnRH and its receptor differentially. In separate experiments, the effect of gonadotropins on the anti-proliferative action of GnRH I and GnRH II agonists in IOSE-80, OVCAR-3 and SKOV-3 cells was investigated. The cells were pretreated with FSH or LH (100 ng/ml) for 24 h after which they were treated with either GnRH I or GnRH II (100 ng/ml) for 2 days, and cell growth was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay. Pretreatment of the cells with FSH or LH significantly reversed the growth inhibitory effect of GnRH I and GnRH II agonists in these cell types. These results provide the first demonstration of a potential interaction between gonadotropins and the

  9. Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3

    PubMed Central

    Selvendiran, Karuppaiyah; Bratasz, Anna; Kuppusamy, M. Lakshmi; Tazi, Mia F.; Rivera, Brian K.; Kuppusamy, Periannan

    2010-01-01

    Signal transducer and activator of transcription 3 (STAT3) is activated in a variety of human cancers, including ovarian cancer. The molecular mechanism by which the STAT3 is activated in cancer cells is poorly understood. We observed that human ovarian xenograft tumors (A2780) in mice were severely hypoxic (pO2 ∼ 2 mmHg). We further observed that hypoxic exposure significantly increased the phosphorylation of STAT3 (pSTAT3) at the Tyr705 residue in A2780 cell line. The pSTAT3 (Tyr705) level was highly dependent on cellular oxygenation levels, with a significant increase at <2% O2, and without any change in the pSTAT3 (Ser727) or total STAT3 levels. The pSTAT3 (Tyr705) elevation following hypoxic exposure could be reversed within 12 hr after returning the cells to normoxia. The increased level of pSTAT3 was partly mediated by increased levels of reactive oxygen species generation in the hypoxic cancer cells. Conventional chemotherapeutic drugs cisplatin and taxol were far less effective in eliminating the hypoxic ovarian cancer cells suggesting a role for pSTAT3 in cellular resistance to chemotherapy. Inhibition of STAT3 by AG490 followed by treatment with cisplatin or taxol resulted in a significant increase in apoptosis suggesting that hypoxia-induced STAT3 activation is responsible for chemoresistance. The results have important clinical implications for the treatment of hypoxic ovarian tumors using STAT3-specific inhibitors. PMID:19623660

  10. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells

    PubMed Central

    Wang, Dongmei; Zhao, Zhenwen; Caperell-Grant, Andrea; Yang, Gong; Mok, Samuel C.; Liu, Jinsong; Bigsby, Robert M.; Xu, Yan

    2009-01-01

    Epithelial ovarian cancer (EOC) arises from the epithelial layer covering the surface of ovaries and intra-peritoneal metastasis is commonly observed at diagnosis. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule, is potentially involved in EOC tumorigenesis. We have found that S1P is elevated in human EOC ascites. We show that physiologically relevant concentrations of S1P stimulate migration and invasion of EOC cells, but inhibit migration of human ovarian surface epithelial (HOSE) cells. In addition, S1P inhibits lysophosphatidic acid (LPA)-induced cell migration in HOSE, but not in EOC cells. We have provided the first line of evidence that the expression levels of S1P receptor subtypes are not the only determinants for how cells respond to S1P. Even though S1P1 is expressed and functional in HOSE cells, the inhibitory effect mediated by S1P2 is dominant in those cells. The cellular pre-existing stress fibers are also important determinants for the migratory response to S1P. Differential S1P-induced morphology changes are noted in EOC and HOSE cells. Pre-existing stress fibers in HOSE cells are further enhanced by S1P treatment, resulting in the negative migratory response to S1P. By contrast, EOC cells lost stress fibers and S1P treatment induces filopodium-like structures at cell edges, which correlates with increased cell motility. In addition, inhibition of the protein kinase C pathway is likely to be involved in the inhibitory effect of S1P on LPA-induced cell migration in HOSE cells. These findings are important for the development of new therapeutics targeting S1P and LPA in EOC. PMID:18645009

  11. Combinations of platinums and selected phytochemicals as a means of overcoming resistance in ovarian cancer.

    PubMed

    Huq, Fazlul; Yu, Jun Q; Beale, Philip; Chan, Charles; Arzuman, Lalia; Nessa, Meher U; Mazumder, Mohammed E H

    2014-01-01

    Cancer sufferers are often found to use herbal products along with targeted therapy although not much information (whether beneficial or harmful) is available about the effects of such combinations. In this study, we investigated synergism from the combination of platinum drugs and a number of tumour-active phytochemicals including curcumin, epigallocatechin-3-gallate, thymoquinone, genistein, resveratrol, betulinic acid and ursolic acid in three human ovarian cancer cell lines A2780, A2780(cisR) and A2780(ZD0473R), as a function of concentration and the sequence of administration. Both the dose-effect curves and combination indices show that the binary combinations of platinum drugs with the phytochemicals exert concentration- and sequence-dependent synergism in the cell lines. Generally the degree of synergism is found to be greater in sequenced administration such as 0/2 h, 2/0 h, 0/4 h and 4/0 h than the bolus. The variation in the nature of the combined drug action from being highly synergistic to antagonistic with the change in sequence of administration clearly indicates that the action of one drug modulates that of the other (towards the induction or inhibition of apoptosis). We have also used sequenced combinations of platinum drugs and bortezomib (a proteasome inhibitor that prevents cisplatin-induced proteasomal degration of copper transporter CTR1) to enhance cellular platinum accumulation and the level of platinum-DNA binding especially in the resistant human ovarian tumour models. Proteomic studies to identify the key proteins associated with platinum resistance are ongoing. We have identified 59 proteins associated with platinum resistance in ovarian tumor models.

  12. 8-bromo-7-methoxychrysin induces apoptosis by regulating Akt/FOXO3a pathway in cisplatin-sensitive and resistant ovarian cancer cells

    PubMed Central

    DING, QING; CHEN, YI; ZHANG, QING; GUO, YANLING; HUANG, ZHI; DAI, LIQING; CAO, SUDAN

    2015-01-01

    8-bromo-7-methoxychrysin (BrMC), a novel chrysin analog, was reported to have anti-cancer activities. The aim of the present study was to investigate the molecular mechanism of 8-bromo-7-methoxychrysin (BrMC)-induced apoptosis via the Akt/forkhead box O3a (FOXO3a) pathway in cisplatin (DDP)-sensitive and -resistant ovarian cancer cells. The human ovarian cancer cell lines A2780 and A2780/DDP were cultured in vitro. Various molecular techniques were used to assess the expression of FOXO3a and B cell lymphoma 2 (Bcl-2)-interacting mediator of cell death (Bim) in cisplatin-sensitive and -resistant ovarian cancer cells. Different concentrations of BrMC induced apoptosis in cisplatin-sensitive and -resistant ovarian cancer cells. BrMC-induced apoptotic cell death occurred mainly by the activation of Akt, which was accompanied by the overexpression of transcription factor FOXO3a, with a concomitant increase in the expression levels of Bim. Silencing Bim expression by using small interfering RNA, attenuated the induction of apoptosis by BrMC treatment. The results indicated that BrMC-induced apoptosis in cisplatin-sensitive and -resistant ovarian cancer cells may occur via the regulation of Akt/FOXO3a, leading to Bim transcription. PMID:26151347

  13. [Reversal effect of MDR1 and MDR3 gene silencing on resistance of A2780/taxol cells to paclitaxel].

    PubMed

    Xiao, Lan; Gao, Rui; Lu, Shi; Lu, Mei-Song; Liang, Ming-Lin; Ren, Li-Rong; Wang, Ze-Hua

    2007-06-01

    To investigate the reversal effect of MDR1 and MDR3 gene silencing on resistance of A2780/taxol cells to paclitaxel. shRNA plasmid vector specifically targeting MDR1 and MDR3 genes was transfected into A2780/taxol cells. The early stage cell apoptosis and the effect of intracellular rhodamine 123 (Rh123) accumulation were detected by flow cytometry (FCM). The late stage cell apoptosis rate was detected by terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL). The 50% inhibition concentration (IC(50)) of paclitaxel on A2780/taxol cells was determined by methyl thiazolyl tetrazolium (MTT) assay. MDR1 and MDR3 mRNA were assessed by RT-PCR, and caspase-3 protein was detected by western blot. After treatment with MDR1 and MDR3 shRNA plasmid vector, early apoptosis rate of A2780/taxol cells was (20.21 +/- 0.56)% and (10.87 +/- 1.24)%, respectively. MDR1 and MDR3 shRNA could increase cellular Rh123 accumulation (116.6 +/- 8.1 and 98.4 +/- 3.8, respectively). The late stage apoptosis rates detected by TUNEL displayed the same tendency as FCM results did. The IC(50) for paclitaxel of A2780/taxol cells was decreased significantly. The mRNA levels of MDR1 and MDR3 in A2780/taxol cells were decreased by (73.3 +/- 0.8)% and (51.6 +/- 0.4)% of control, and the reduction of MDR1 and MDR3 mRNA was in a time-dependent manner. The expression of caspase-3 protein of MDR1 and MDR3 shRNA vector transfected group in A2780/taxol cells was significantly increased [(80.8 +/- 2.6)% and (72.0 +/- 4.7)%, respectively]. MDR1 and MDR3 gene silencing could recover sensitivity of A2780/taxol cells to paclitaxel and induce cell apoptosis, thus reversing cell resistance to paclitaxel.

  14. Aurora-A Oncogene in Human Ovarian Cancer

    DTIC Science & Technology

    2006-11-01

    in Human Ovarian Cancer 5b. GRANT NUMBER W81XWH-05-1-0021 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Jin Q. Cheng, M.D...this project : 1) examine the clinicalpathological significance and the mechanism of Aurora-A overexpression/activation in ovarian cancer; 2) determine...kinase is required to localize D-TACC to centro- somes and to regulate astral microtubules. J Cell Biol 2002;156:437–51. 33. Castro A, Mandart E, Lorca T

  15. Human controlled ovarian hyperstimulation outcome is a polygenic trait.

    PubMed

    de Castro, Francisco; Morón, Francisco J; Montoro, Luis; Galán, José J; Hernández, Dámaso Pérez; Padilla, Elisa Sánchez-Casas; Ramírez-Lorca, Reposo; Real, Luis M; Ruiz, Agustín

    2004-05-01

    This study aimed to evaluate the association between follicle-stimulating hormone (FSH) hormone efficacy and FSHR, CYP19, ESR1 and ESR2 genes using single nucleotide polymorphism analyses. One hundred and seventy women with conserved ovarian function undergoing controlled ovarian stimulation (COS) with daily exogenous recombinant FSH administration. Women were categorized as poor responders to FSH (three or less ovarian follicles observed at the end of cycle) or normal responders (more than three follicles). The outcome is the number of normal/poor responders as defined by the number of follicles obtained during COS. The DNA markers studied are located in genes related to the FSH mechanism of action (FSH receptor, CYP19 aromatase and oestrogen receptors alpha and beta genes). We conducted an association study between the COS outcome and selected DNA markers using two-point and multi-locus genetic association studies. Genotype pattern tracking in extreme phenotypes and multi-locus analysis using Sumstat and PM algorithms provided significant evidences of genetic interaction between FSHR, ESR1 and ESR2 markers in relation to COS outcome (P = 0.0015). Our results support the hypothesis that a discrete set of genes, related to the FSH hormone mechanism of action, controls the ovarian response to FSH in humans. An oligogenic model including specific FSHR, ESR1 and ESR2 genotype patterns may partially explain the poor response to FSH hormone during controlled ovarian stimulation treatments. The existence of genetic heterogeneity is also suspected. Copyright 2004 Lippincott Williams & Wilkins

  16. Localization of gonadotropin binding sites in human ovarian neoplasms

    SciTech Connect

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A. )

    1989-10-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms.

  17. MT-4 Suppresses Resistant Ovarian Cancer Growth through Targeting Tubulin and HSP27

    PubMed Central

    Pai, Hui Chen; Kumar, Sunil; Shen, Chien-Chang; Liou, Jing Ping; Pan, Shiow Lin; Teng, Che Ming

    2015-01-01

    Objective In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines. Methods To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization was determined using a tubulin binding assay. Results MT-4 (2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol), a derivative of moscatilin, can inhibit both sensitive A2780 and multidrug-resistant NCI-ADR/res cell growth and viability. MT-4 inhibited tubulin polymerization to induce G2/M arrest followed by caspase-mediated apoptosis. Further studies indicated that MT-4 is not a substrate of P-glycoprotein (p-gp). MT-4 also caused G2/M cell cycle arrest, accompanied by the upregulation of cyclin B, p-Thr161 Cdc2/p34, polo-like kinase 1 (PLK1), Aurora kinase B, and phospho-Ser10-histone H3 protein levels. In addition, we found that p38 MAPK pathway activation was involved in MT-4-induced apoptosis. Most importantly, MT-4 also decreased heat shock protein 27 expression and reduced its interaction with caspase-3, which inured cancer cells to chemotherapy resistance. Treatment of cells with SB203580 or overexpression of dominant negative (DN)-p38 or wild-type HSP27 reduced PARP cleavage caused by MT-4. MT-4 induced apoptosis through regulation of p38 and HSP27. Our xenograft models also show the in vivo efficacy of MT-4. MT-4 inhibited both A2780 and NCI-ADR/res cell growth in vitro and in vivo. Conclusion These findings indicate that MT-4 could be a potential lead compound for the treatment of multidrug-resistant ovarian cancer. PMID:25874627

  18. E-cadherin Expression in Ovarian Cancer in the Laying Hen, Gallus Domesticus, compared to Human Ovarian Cancer

    PubMed Central

    Ansenberger, Kristine; Zhuge, Yan; Lagman, Jo Ann J.; Richards, Cassandra; Barua, Animesh; Bahr, Janice M.; Hales, Dale Buchanan

    2010-01-01

    Objective Epithelial ovarian carcinoma (EOC) is a leading cause of cancer deaths in women. Until recently, a significant lack of an appropriate animal model has hindered the discovery of early detection markers for ovarian cancer. The aging hen serves as an animal model because it spontaneously develops ovarian adenocarcinomas similar in histological appearance to the human disease. E-cadherin is an adherens protein that is down-regulated in many cancers, but has been shown to be up-regulated in primary human ovarian cancer. Our objective was to evaluate E-cadherin expression in the hen ovary and compare its expression to human ovarian cancer. Methods White Leghorn hens aged 185 weeks (cancerous and normal) were used for sample collection. A human ovarian tumor tissue array was used for comparison to the human disease. E-cadherin mRNA and protein expression were analyzed in cancerous and normal hen ovaries by immunohistochemistry (IHC), Western blot, and quantitative real-time PCR (qRT-PCR). Tissue fixed in neutral buffered formalin was used for IHC. Protein from tissue frozen in liquid nitrogen was analyzed by Western blot. RNA was extracted from tissue preserved in RNAlater and analyzed by qRT-PCR. The human ovarian tumor tissue array was used for IHC. Results E-cadherin mRNA and protein expression were significantly increased in cancerous hen ovaries as compared to ovaries of normal hens by qRT-PCR and Western blot. Similar expression of E-cadherin was observed by IHC in both human and hen ovarian cancer tissues. Similar E-cadherin expression was also observed in primary ovarian tumor and peritoneal metastatic tissue from cancerous hens. Conclusions Our findings suggest that the up-regulation of E-cadherin is an early defining event in ovarian cancer and may play a significant role in the initial development of the primary ovarian tumor. E-cadherin also appears to be important in the development of secondary tumors within the peritoneal cavity. Our data suggest

  19. Modulation of intracellular pH in human ovarian cancer.

    PubMed

    Sanhueza, C; Araos, J; Naranjo, L; Villalobos, R; Westermeier, F; Salomon, C; Beltrán, A R; Ramírez, M A; Gutiérrez, J; Pardo, F; Leiva, A; Sobrevia, L

    2016-01-01

    To sustain tumor growth, the cancer cells need to adapt to low levels of oxygen (i.e., hypoxia) in the tumor tissue and to the tumor-associated acidic microenvironment. In this phenomenon, the activation of the sodium/proton exchanger 1 (NHE1) at the plasma membrane and the hypoxia-inducible factor (HIF) are critical for the control of the intracellular pH (pHi) and for hypoxia adaptation, respectively. Interestingly, both of these mechanisms end in sustaining cancer cell proliferation. However, regulatory mechanisms of pHi in human ovary tissue and in malignant ascites are unknown. Additionally, a potential role of NHE1 in the modulation of H(+) efflux in human ovarian cancer cells is unknown. In this review, we discussed the characteristics of tumor microenvironment of primary human ovarian tumors and tumor ascites, in terms of pHi regulatory mechanisms and oxygen level. The findings described in the literature suggest that NHE1 may likely play a role in pHi regulation and cell proliferation in human ovarian cancer, potentially involving HIF2α activation. Since ovarian cancer is the fifth cause of prevalence of women cancer in Chile and is usually of late diagnosis, i.e., when the disease jeopardizes peritoneal cavity and other organs, resulting in reduced patient survival, new efforts are required to improve patient-life span and for a better understanding of the pathophysiology of the disease. The potential advantage of the use of amiloride and amiloride-derivatives for cancer treatment in terms of NHE1 expression and activity is also discussed as a therapeutic approach in human ovarian cancer.

  20. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice

    PubMed Central

    Chen, Xi; Zhang, Xiao-Yu; Shen, Yang; Fan, Li-Li; Ren, Mu-Lan; Wu, Yong-Ping

    2016-01-01

    Peptide hormone-based targeted therapy to tumors has been studied extensively. Our previous study shows that somatostatin receptor expresses high level on drug-resistant human ovarian cancer. The paclitaxel-octreotide conjugate (POC) exhibits enhanced growth inhibition, as well as reduced toxicity, in paclitaxel-resistant human ovarian cancer cells. The aim of this study was to investigate the effect of targeted cytotoxicity and potential reversal mechanism of resistance in paclitaxel-resistant human ovarian cancer cells xenografted into nude mice. The SSTR2 shows higher expression levels in tumor tissue. Moreover, fluorescein-labeled POC displays favorable targeting in tumor cells. POC presents the perfect efficacy in inhibiting tumor growth and exerts lower or no toxic effects on normal tissues. Real-time PCR and Western Blotting has demonstrated that the mRNA and protein expressions of SSTR2 in POC group were significantly higher, while MDR1, α-tubulin, βIII-tubulin, VEGF and MMP-9 were significantly lower than in the other treatment groups and controls. Combined with the previous study in vitro, this study evaluates an effective approach on the treatment of paclitaxel-resistant ovarian cancer which expresses somatostatin receptor SSTR. Our investigation has also revealed the possible molecular mechanism of POC in treating the ovarian cancer, and therefore, provided a theoretical basis for the clinical application of this newly-invented compound. PMID:27825139

  1. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice.

    PubMed

    Chen, Xi; Zhang, Xiao-Yu; Shen, Yang; Fan, Li-Li; Ren, Mu-Lan; Wu, Yong-Ping

    2016-12-13

    Peptide hormone-based targeted therapy to tumors has been studied extensively. Our previous study shows that somatostatin receptor expresses high level on drug-resistant human ovarian cancer. The paclitaxel-octreotide conjugate (POC) exhibits enhanced growth inhibition, as well as reduced toxicity, in paclitaxel-resistant human ovarian cancer cells. The aim of this study was to investigate the effect of targeted cytotoxicity and potential reversal mechanism of resistance in paclitaxel-resistant human ovarian cancer cells xenografted into nude mice. The SSTR2 shows higher expression levels in tumor tissue. Moreover, fluorescein-labeled POC displays favorable targeting in tumor cells. POC presents the perfect efficacy in inhibiting tumor growth and exerts lower or no toxic effects on normal tissues. Real-time PCR and Western Blotting has demonstrated that the mRNA and protein expressions of SSTR2 in POC group were significantly higher, while MDR1, α-tubulin, βIII-tubulin, VEGF and MMP-9 were significantly lower than in the other treatment groups and controls. Combined with the previous study in vitro, this study evaluates an effective approach on the treatment of paclitaxel-resistant ovarian cancer which expresses somatostatin receptor SSTR. Our investigation has also revealed the possible molecular mechanism of POC in treating the ovarian cancer, and therefore, provided a theoretical basis for the clinical application of this newly-invented compound.

  2. Characterization of human ovarian carcinomas in a SCID mouse model.

    PubMed

    Xu, Y; Silver, D F; Yang, N P; Oflazoglu, E; Hempling, R E; Piver, M S; Repasky, E A

    1999-02-01

    This study characterizes a murine model which is promising for the study of the growth and natural history of ovarian cancer and for testing of new therapies for its treatment. Intact portions of 20 different human ovarian cancer surgical specimens were implanted in over 60 severe combined immunodeficient (SCID) mice using techniques previously developed in our laboratory. Growth of xenografts was evaluated by gross examination and histopathologic analysis. Confirmation of the human origin of the tumor outgrowth was obtained using in situ hybridization analysis. By histological evaluation, all of the patients' tumors showed evidence of invasive growth in at least 1 of the mice implanted with portions of each surgical specimen and these tumors remained morphologically similar to the parent tumors for a long period of time. Furthermore, 65% (13/20) of the xenografts grew rapidly enough (i.e., reached a diameter of 1-2 cm within 2-6 months) to allow passage to subsequent SCID mice. Among the passaged xenografts, 3 eventually developed metastases in a distribution pattern similar to that of naturally occurring ovarian cancer and 2 developed ascites without evidence of further metastatic spread. Upon evaluation of sera from tumor-bearing mice, human antibodies presumably derived from immunoglobulin-secreting cells present in the original tumor specimen were identified. In support of this, human B cells and plasma cells could be seen within the tumor xenograft for more than 6 months following implantation. In summary, transplantation of surgical specimens from ovarian cancer patients into SCID mice results in an attractive model for the study of the natural history of ovarian cancer and may also be useful for analysis or new experimental therapeutic approaches for the treatment of this disease.

  3. Ovarian hormones through Wnt signalling regulate the growth of human and mouse ovarian cancer initiating lesions

    PubMed Central

    Nagendra, Prathima B.; Goad, Jyoti; Nielsen, Sarah; Rassam, Loui; Lombard, Janine M.; Nahar, Pravin; Tanwar, Pradeep S.

    2016-01-01

    Ovarian cancer (OC) is the most deadly gynaecological disease largely because the majority of patients are asymptomatic and diagnosed at later stages when cancer has spread to other vital organs. Therefore, the initial stages of this disease are poorly characterised. Women with BRCA1/2 mutations have a genetic predisposition for developing OC, but not all of these women develop the disease. Epidemiological findings show that lifestyle factors such as contraceptive use and pregnancy, a progesterone dominant state, decrease the risk of getting OC. How ovarian hormones modify the risk of OC is currently unclear. Our study identifies activated Wnt signalling to be a marker for precursor lesions of OC and successfully develops a mouse model that mimics the earliest events in pathogenesis of OC by constitutively activating βcatenin. Using this model and human OC cells, we show that oestrogen promotes and progesterone suppresses the growth of OC cells. PMID:27588493

  4. Differential cellular responses induced by dorsomorphin and LDN-193189 in chemotherapy-sensitive and chemotherapy-resistant human epithelial ovarian cancer cells.

    PubMed

    Ali, Jennifer L; Lagasse, Brittany J; Minuk, Ainsley J; Love, Allison J; Moraya, Amani I; Lam, Linda; Arthur, Gilbert; Gibson, Spencer B; Morrison, Ludivine Coudière; Werbowetski-Ogilvie, Tamra E; Fu, Yangxin; Nachtigal, Mark W

    2015-03-01

    Inherent or acquired drug resistance is a major contributor to epithelial ovarian cancer (EOC) mortality. Novel drugs or drug combinations that produce EOC cell death or resensitize drug resistant cells to standard chemotherapy may improve patient treatment. After conducting drug tolerability studies for the multikinase inhibitors dorsomorphin (DM) and it is structural analogue LDN-193189 (LDN), these drugs were tested in a mouse intraperitoneal xenograft model of EOC. DM significantly increased survival, whereas LDN showed a trend toward increased survival. In vitro experiments using cisplatin (CP)-resistant EOC cell lines, A2780-cp or SKOV3, we determined that pretreatment or cotreatment with DM or LDN resensitized cells to the killing effect of CP or carboplatin (CB). DM was capable of blocking EOC cell cycle and migration, whereas LDN produced a less pronounced effect on cell cycle and no effect on migration. Subsequent analyses using primary human EOC cell samples or additional established EOC cells lines showed that DM or LDN induced a dose-dependent autophagic or cell death response, respectively. DM induced a characteristic morphological change with the appearance of numerous LC3B-containing acidic vacuoles and an increase in LC3BII levels. This was coincident with a decrease in cell growth and the altered cell cycle consistent with DM-induced cytostasis. By contrast, LDN produced a caspase 3-independent, reactive oxygen species-dependent cell death. Overall, DM and LDN possess drug characteristics suitable for adjuvant agents used to treat chemotherapy-sensitive and -resistant EOC.

  5. Human papillomavirus genotyping and integration in ovarian cancer Saudi patients

    PubMed Central

    2013-01-01

    Background Human papillomavirus (HPV) is associated with different malignancies but its role in the pathogenesis of ovarian cancer is controversial. This study investigated the prevalence, genotyping and physical state of HPV in ovarian cancer Saudi patients. Methods Hundred formalin fixed paraffin embedded (FFPE) ovarian carcinoma tissues and their normal adjacent tissues (NAT) were included in the study. HPV was detected by nested polymerase chain reaction (PCR) using degenerated HPVL1 consensus primer pairs MY09/MY11 and GP5+/GP6 + to amplify a broad spectrum of HPV genotypes in a single reaction. The HPV positive samples were further genotyped using DNA sequencing. The physical state of the virus was identified using Amplification of Papillomavirus Oncogene Transcripts (APOT) assay in the samples positive for HPV16 and/or HPV18. Results High percentage of HPV (42%) was observed in ovarian carcinoma compared to 8% in the NAT. The high-risk HPV types 16, 18 and 45 were highly associated with the advanced stages of tumor, while low-risk types 6 and 11 were present in NAT. In malignant tissues, HPV-16 was the most predominant genotype followed by HPV-18 and -45. The percentage of viral integration into the host genome was significantly high (61.1%) compared to 38.9% episomal in HPV positive tumors tissues. In HPV18 genotype the percentage of viral integration was 54.5% compared to 45.5% episomal. Conclusion The high risk HPV genotypes in ovarian cancer may indicate its role in ovarian carcinogenesis. The HPV vaccination is highly recommended to reduce this type of cancer. PMID:24252426

  6. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    PubMed

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  7. Effects and mechanism of RhoC downregulation in suppressing ovarian cancer stem cell proliferation, drug resistance, invasion and metastasis.

    PubMed

    Sang, Xiu-Bo; Sun, Kai-Xuan; Wang, Li-Li; Chen, Shuo; Wu, Dan-Dan; Zong, Zhi-Hong; Zhao, Yang

    2016-12-01

    Cancer stem cells are considered to be the root cause of tumor initiation, metastasis, recurrence and therapeutic resistance. Recent studies have reported that RhoC plays a critical role in regulating cancer stem cells; however, its function in ovarian cancer stem cells (OCSCs) remains unknown. The ovarian cancer cell line A2780, and the paclitaxel-resistant A2780 cell line (A2780-PTX) were obtained. A2780 cells were used to isolate and identify the highly invasive A2780-PM cells, and A2780-PTX cells were used to isolate and identify the highly drug-resistant and highly invasive A2780-PTX-PM cells by Transwell assay. MTT, Transwell and wound healing assays were used to compare the differences in cell proliferation, invasion and migration ability among the four cell lines. Immunofluorescence was used to detect the expression of stem cell markers CD117 and CD133. OCSCs were sorted by flow cytometry. Following si-RhoC transfection of the OCSCs, cell proliferation, drug resistance, invasion and migration ability and RhoC, CD117 and CD133 expression levels were assayed. RT-PCR was used to assess RhoC, CD117, CD133 and matrix metalloproteinase 9 (MMP9) mRNA expression levels. A2780-PM and A2780‑PTX-PM cells exhibited higher cell proliferation, drug resistance, and invasion and migration ability than the A2780 and A2780-PTX cell lines. Furthermore, CD133 and CD117 expression levels were higher in the A2780-PM and A2780‑PTX-PM cells than levels in the A2780 and A2780-PTX cells. Transfection of si-RhoC in OCSCs suppressed the proliferation, drug resistance, invasion, migration and CD117 and CD133 expression levels. Furthermore, the expression levels of RhoC, CD117, CD133, MDR1, and MMP9 mRNA were downregulated in the transfected population. Taken together, our results demonstrated that RhoC downregulation may inhibit the proliferation, drug resistance, invasion and migration of OCSCs, and RhoC may play an important role in the formation of OCSCs.

  8. Adolescent Premature Ovarian Insufficiency Following Human Papillomavirus Vaccination

    PubMed Central

    Ward, Harvey Rodrick Grenville

    2014-01-01

    Three young women who developed premature ovarian insufficiency following quadrivalent human papillomavirus (HPV) vaccination presented to a general practitioner in rural New South Wales, Australia. The unrelated girls were aged 16, 16, and 18 years at diagnosis. Each had received HPV vaccinations prior to the onset of ovarian decline. Vaccinations had been administered in different regions of the state of New South Wales and the 3 girls lived in different towns in that state. Each had been prescribed the oral contraceptive pill to treat menstrual cycle abnormalities prior to investigation and diagnosis. Vaccine research does not present an ovary histology report of tested rats but does present a testicular histology report. Enduring ovarian capacity and duration of function following vaccination is unresearched in preclinical studies, clinical and postlicensure studies. Postmarketing surveillance does not accurately represent diagnoses in adverse event notifications and can neither represent unnotified cases nor compare incident statistics with vaccine course administration rates. The potential significance of a case series of adolescents with idiopathic premature ovarian insufficiency following HPV vaccination presenting to a general practice warrants further research. Preservation of reproductive health is a primary concern in the recipient target group. Since this group includes all prepubertal and pubertal young women, demonstration of ongoing, uncompromised safety for the ovary is urgently required. This matter needs to be resolved for the purposes of population health and public vaccine confidence. PMID:26425627

  9. Slow-freezing versus vitrification for human ovarian tissue cryopreservation.

    PubMed

    Klocke, Silke; Bündgen, Nana; Köster, Frank; Eichenlaub-Ritter, Ursula; Griesinger, Georg

    2015-02-01

    Ovarian tissue can be cryopreserved prior to chemotherapy using either the slow-freezing or the vitrification method; however, the data on the equality of the procedures are still conflicting. In this study, a comparison of the cryo-damage of human ovarian tissue induced by either vitrification or slow-freezing was performed. Ovarian tissue from 23 pre-menopausal patients was cryopreserved with either slow-freezing or vitrification. After thawing/warming, the tissue was histologically and immunohistochemically analyzed and cultured in vitro. During tissue culture the estradiol release was assessed. No significant difference was found in the proportion of high-quality follicles after thawing/warming in the slow-freezing and vitrification group, respectively (72.7 versus 66.7 %, p = 0.733). Estradiol secretion by the ovarian tissue was similar between groups during 18 days in vitro culture (area-under-the-curve 5,411 versus 13,102, p = 0.11). Addition of Sphingosine-1-Phosphate or Activin A to the culture medium did not alter estradiol release in both groups. The proportion of Activated Caspase-3 or 'Proliferating-Cell-Nuclear-Antigen' positive follicles at the end of the culture period was similar between slow-freezing and vitrification. Slow-freezing and vitrification result in similar morphological integrity after cryopreservation, a similar estradiol release in culture, and similar rates of follicular proliferation and apoptosis after culture.

  10. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology.

    PubMed

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-08-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  11. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    PubMed Central

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  12. Experimental therapy of ovarian cancer with synthetic makaluvamine analog: in vitro and in vivo anticancer activity and molecular mechanisms of action.

    PubMed

    Chen, Tao; Xu, Yi; Guo, He; Liu, Yanling; Hu, Pingting; Yang, Xinying; Li, Xiaoguang; Ge, Shichao; Velu, Sadanandan E; Nadkarni, Dwayaja H; Wang, Wei; Zhang, Ruiwen; Wang, Hui

    2011-01-01

    The present study was designed to determine the biological effects of novel marine alkaloid analog 7-(4-fluorobenzylamino)-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one (FBA-TPQ) on human ovarian cancer cells for its anti-tumor potential and the underlying mechanisms as a novel chemotherapeutic agent. Human ovarian cancer cells (A2780 and OVCAR-3), and Immortalized non-tumorigenic human Ovarian Surface Epithelial cells (IOSE-144), were exposed to FBA-TPQ for initial cytotoxicity evaluation (via MTS assay kit, Promega). The detailed in-vitro (cell level) and in-vivo (animal model) studies on the antitumor effects and possible underlying mechanisms of action of the compounds were then performed. FBA-TPQ exerted potent cytotoxicity against human ovarian cancer A2780 and OVCAR-3 cells as an effective inhibitor of cell growth and proliferation, while exerting lesser effects on non-tumorigenic IOSE-144 cells. Further study in the more sensitive OVCAR-3 cell line showed that it could potently induce cell apoptosis (Annexin V-FITC assay), G2/M cell cycle arrest (PI staining analysis) and also dose-dependently inhibit OVCAR-3 xenograft tumors' growth on female athymic nude mice (BALB/c, nu/nu). Mechanistic studies (both in vitro and in vivo) revealed that FBA-TPQ might exert its activity through Reactive Oxygen Species (ROS)-associated activation of the death receptor, p53-MDM2, and PI3K-Akt pathways in OVCAR-3 cells, which is in accordance with in vitro microarray (Human genome microarrays, Agilent) data analysis (GEO accession number: GSE25317). In conclusion, FBA-TPQ exhibits significant anticancer activity against ovarian cancer cells, with minimal toxicity to non-tumorigenic human IOSE-144 cells, indicating that it may be a potential therapeutic agent for ovarian cancer.

  13. FAU regulates carboplatin resistance in ovarian cancer.

    PubMed

    Moss, Esther L; Mourtada-Maarabouni, Mirna; Pickard, Mark R; Redman, Charles W; Williams, Gwyn T

    2010-01-01

    The development of chemotherapy resistance by cancer cells is complex, using different mechanisms and pathways. The gene FAU (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene) was identified through functional expression cloning and previous data have shown that overexpression enhances apoptosis in several cell types. We demonstrate that the expression of FAU was reduced in the A2780cis (cisplatin resistant subclone of A2780) cell line compared with the A2780 ovarian cancer cell line, and was directly related to the cell line's sensitivity to carboplatin. Downregulation of FAU in the A2780 cell line by transfection with two predesigned short-interfering RNAs (siRNAs) to FAU resulted in a significant increase in resistance to carboplatin-induced cell death. Downregulation resulted in increased cell viability and reduced apoptosis after 72 hr of drug treatment compared with the negative controls (Kruskal-Wallis P = 0.0002). Transfection of the A2780cis cell line with the pcDNA3 plasmid containing FAU was associated with increased sensitivity to carboplatin-induced apoptosis, with decreased cell viability and increased apoptosis (Mann Whitney P < 0.0001). The expression of FAU was examined by quantitative real-time reverse transcriptase polymerase chain reaction in normal and malignant ovarian tissue. A significant reduction in the expression of FAU was seen in the malignant compared with normal ovarian samples (Kruskal-Wallis P = 0.0261). These data support a role for FAU in the regulation of platinum-resistance in ovarian cancer. Further research is needed into the apoptotic pathway containing FAU to investigate the potential for targeted therapies to increase or restore the platinum sensitivity of ovarian cancer.

  14. Telomerase Activity in Human Ovarian Carcinoma

    NASA Astrophysics Data System (ADS)

    Counter, Christopher M.; Hirte, Hal W.; Bacchetti, Silvia; Harley, Calvin B.

    1994-04-01

    Telomeres fulfill the dual function of protecting eukaryotic chromosomes from illegitimate recombination and degradation and may aid in chromosome attachment to the nuclear membrane. We have previously shown that telomerase, the enzyme which synthesizes telomeric DNA, is not detected in normal somatic cells and that telomeres shorten with replicative age. In cells immortalized in vitro, activation of telomerase apparently stabilizes telomere length, preventing a critical destabilization of chromosomes, and cell proliferation continues even when telomeres are short. In vivo, telomeres of most tumors are shorter than telomeres of control tissues, suggesting an analogous role for the enzyme. To assess the relevance of telomerase and telomere stability in the development and progression of tumors, we have measured enzyme activity and telomere length in metastatic cells of epithelial ovarian carcinoma. We report that extremely short telomeres are maintained in these cells and that tumor cells, but not isogenic nonmalignant cells, express telomerase. Our findings suggest that progression of malignancy is ultimately dependent upon activation of telomerase and that telomerase inhibitors may be effective antitumor drugs.

  15. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.

    PubMed

    Fan, Li; Ma, Yalin; Liu, Ying; Zheng, Dongping; Huang, Guangrong

    2014-11-15

    The polyphenolic flavonoid silymarin that is the milk thistle extract has been found to possess an anti-cancer effect against various human epithelial cancers. In this study, to explore the regulative effect of silymarin on human ovarian cancer line A2780s and PA-1 cells, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay and flow cytometry were respectively used to determine the inhibitory effect of silymarin on the both cell lines, and to measure their cell cycle progression. Apoptosis induction and mitochondrial membrane potential damage were separately detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assay and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide staining. Additionally, western blotting was applied to determine cytochrome C release and expression levels of p53, p21, p27, p16, CDK2, Bax, Bcl-2, procaspase-9, procaspase-3, cleaved caspase-9 and caspase-3 proteins. The activity of caspase-9 and caspase-3 was measured using Caspase-Glo-9 and Caspase-Glo-3 assay. The results indicated that silymarin effectively suppressed cell growth in a dose- and time-dependent manner, and arrested cell cycle progression at G1/S phase in A2780s and PA-1 cells via up-regulation of p53, p21, and p27 protein expression, and down-regulation of CDK2 protein expression. Additionally, silymarin treatment for 24h at 50 and 100µg/ml resulted in a reduction of mitochondrial membrane potential and cytochrome C release, and significantly induced apoptosis in A2780s and PA-1 cells by increasing Bax and decreasing Bcl-2 protein expression, and activation of caspase-9 and caspase-3. Therefore, silymarin is a possible potential candidate for the prevention and treatment of ovarian cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Comparison of the effects of human and chicken ghrelin on chicken ovarian hormone release.

    PubMed

    Sirotkin, Alexander V; Harrath, Abdel Halim; Grossmann, Roland

    2016-11-01

    The aim of the present experiments was to examine the species-specific and cell-specific effects of ghrelin on chicken ovarian hormone release. For this purpose, we compared the effects of chicken and human ghrelin on the release of estradiol (E), testosterone (T), progesterone (P) and arginine-vasotocin (AVT) by cultured fragments of chicken ovarian follicles and on the release of T and AVT by cultured ovarian granulosa cells. In cultured chicken ovarian fragments, both human and chicken ghrelin promoted E release. T output was stimulated by chicken ghrelin but not by human ghrelin. No effect of either human or chicken ghrelin on P release was observed. Human ghrelin promoted but chicken ghrelin suppressed AVT release by chicken ovarian fragments. In cultured ovarian granulosa cells, human ghrelin inhibited while chicken ghrelin stimulated T release. Both human and chicken ghrelin suppressed AVT output by chicken granulosa cells. These data confirm the involvement of ghrelin in the control of ovarian secretory activity and demonstrate that the effect of ghrelin is species-specific. The similarity of avian ghrelin on avian ovarian granulosa cells and ovarian fragments (containing both granulosa and theca cells) suggests that ghrelin can influence chicken ovarian hormones primarily by acting on granulosa cells.

  17. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene.

    PubMed

    Chalikonda, S; Kivlen, M H; O'Malley, M E; Eric Dong, X D; McCart, J A; Gorry, M C; Yin, X-Y; Brown, C K; Zeh, H J; Guo, Z S; Bartlett, D L

    2008-02-01

    In this study, we assessed the ability of a highly tumor-selective oncolytic vaccinia virus armed with a yeast cytosine deaminase gene to infect and lyse human and murine ovarian tumors both in vitro and in vivo. The virus vvDD-CD could infect, replicate in and effectively lyse both human and mouse ovarian cancer cells in vitro. In two different treatment schedules involving either murine MOSEC or human A2780 ovarian carcinomatosis models, regional delivery of vvDD-CD selectively targeted tumor cells and ovarian tissue, effectively delaying the development of either tumor or ascites and leading to significant survival advantages. Oncolytic virotherapy using vvDD-CD in combination with the prodrug 5-fluorocytosine conferred an additional long-term survival advantage upon tumor-bearing immunocompetent mice. These findings demonstrate that a tumor-selective oncolytic vaccinia combined with gene-directed enzyme prodrug therapy is a highly effective strategy for treating advanced ovarian cancers in both syngeneic mouse and human xenograft models. Given the biological safety, tumor selectivity and oncolytic potency of this armed oncolytic virus, this dual therapy merits further investigation as a promising new treatment for metastatic ovarian cancer.

  18. In vitro activity of titanocenedichloride versus cisplatin in four ovarian carcinoma cell lines evaluated by a microtiter plate ATP bioluminescence assay.

    PubMed

    Kurbacher, C M; Bruckner, H W; Andreotti, P E; Kurbacher, J A; Sass, G; Krebs, D

    1995-10-01

    Titanocenedichloride (MKT 4) is a novel anticancer drug with a broad spectrum of activity in mammalian tumors. We investigated the anticancer efficacy of MKT 4 versus cisplatin and its chemomodulation by buthionine sulfoximine (BSO) in four different human ovarian carcinoma (OvCA) cell lines derived from both primary (A2780. OTN 14) and recurrent tumors (SKOV-3 and OV-MZ-1b) using an in vitro microplate ATP bioluminescence assay (ATP-TCA). Sensitivity against cisplatin was higher in A2780 and OTN 14 compared with MKT 4, whereas the opposite was found in SKOV-3 and OV-MZ-1b cells. In A2780, SKOV-3 and OV-MZ-1b, the cytotoxicity of both agents could be effectively improved by BSO with supraadditive effects observed for MKT 4 in all three cell lines. In OTN 14, however, BSO treatment failed to increase the cytotoxicity of both cisplatin and MKT 4. These results suggest antineoplastic activity of MKT 4 in cisplatin-sensitive and mainly in cisplatin-resistant OvCA cells which can be significantly modulated by BSO-mediated glutathione depletion. Since antineoplastic activity of both cisplatin and MKT-4 observed in OTN 14 could not be reversed by BSO, other mechanisms of drug resistance different from the glutathione redox cycle are likely to be important for both metal compounds.

  19. Pentamethylpyrromethene boron difluoride complexes in human ovarian cancer photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Morgan, Lee R.; Chaudhuri, Aulena; Gillen, Laura E.; Boyer, Joseph H.; Wolford, Lionel T.

    1990-07-01

    Quasiaromatic heterocycles (QAM) such as substituted 1 , 3 , 5 , 7 , 8-pentamethylpyrromethene boron difluorides (PMP-BF2) and - (dimethoxyphosphinylmethyl, methyl) bimane have been evaluated for their abilities to produce cellular toxicities when used in photodynamic therapy (PDT) for ovarian cancer. The most active QAH tested to date has been the disodiuxn salt of PMP-2,6-disulfonate--BF2 (PMPDS-BF2). Human ovarian cancer cells from fifteen different patients have been grown in culture. Cells were obtained from biopsy material and grown in RPMI medium with 10% FBA plus penicillin and streptomycin. Cells were harvested and as single cell suspensions exposed to PMP-BF2 complexes or bimanes in concentrations of 0.004-0.4 ug/106 cells/ml of medium. Initially the cells were exposed to the chemicals for 30 minutes in a 5% CO2 incubator (37°C) with gentle shaking. The cells were washed with plain RPMI medium, then resuspended in the enriched RPMI medium and exposed to a sunlamp for 10-20 minutes. Cells were then allowed to grow in an soft agar culture media at 37°C (5% C02) for 14 days. When compared to controls (only light or only chemicals) there was 100% inhibition of all cellular growth for PMPDSBF2 at the 0.4 ug/mi concentrations. There was variations in concentrations of the chemical needed to produce 100% inhibition when the 15 different ovarian cancer cell specimens were compared at all concentrations. PMP-BF2 complexes are characterized by extremely high extinction coefficients, superior laser activity and little if any triplet-triplet absorption. The biamanes share these properties however are less active in ovarian cancer cell The lasing properties of PMP-BF2, and bimanes will be compared to their PDT effectiveness.

  20. Laparoscopic optical coherence tomography imaging of human ovarian cancer

    PubMed Central

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Winkler, Amy M.; Korde, Vrushali; Hatch, Kenneth D.; Davis, John R.; Brewer, Molly A.; Barton, Jennifer K.

    2011-01-01

    Objectives Ovarian cancer is the fourth leading cause of cancer-related death among women in the US largely due to late detection secondary to unreliable symptomology and screening tools without adequate resolution. Optical coherence tomography (OCT) is a recently emerging imaging modality with promise in ovarian cancer diagnostics, providing non-destructive subsurface imaging at imaging depths up to 2 mm with near-histological grade resolution (10–20 μm). In this study, we developed the first ever laparoscopic OCT (LOCT) device, evaluated the safety and feasibility of LOCT, and characterized the microstructural features of human ovaries in vivo. Methods A custom LOCT device was fabricated specifically for laparoscopic imaging of the ovaries in patients undergoing oophorectomy. OCT images were compared with histopathology to identify preliminary architectural imaging features of normal and pathologic ovarian tissue. Results Thirty ovaries in 17 primarily peri or post-menopausal women were successfully imaged with LOCT: 16 normal, 5 endometriosis, 3 serous cystadenoma, and 4 adenocarcinoma. Preliminary imaging features developed for each category reveal qualitative differences in the homogeneous character of normal post-menopausal ovary, the ability to image small subsurface inclusion cysts, and distinguishable features for endometriosis, cystadenoma, and adenocarcinoma. Conclusions We present the development and successful implementation of the first laparoscopic OCT probe. Comparison of OCT images and corresponding histopathology allowed for the description of preliminary microstructural features for normal ovary, endometriosis, and benign and malignant surface epithelial neoplasms. These results support the potential of OCT both as a diagnostic tool and imaging modality for further evaluation of ovarian cancer pathogenesis. PMID:19481241

  1. Erythropoietin inhibits apoptosis induced by photodynamic therapy in ovarian cancer cells.

    PubMed

    Solár, Peter; Koval, Ján; Mikes, Jaromír; Kleban, Ján; Solárová, Zuzana; Lazúr, Ján; Hodorová, Ingrid; Fedorocko, Peter; Sytkowski, Arthur J

    2008-08-01

    Recombinant human erythropoietin is widely used to treat anemia associated with cancer and with the myelosuppressive effects of chemotherapy, particularly platinum-based regimens. Erythropoietin is the principal regulator of erythroid cell proliferation, differentiation, and apoptosis. Recently, the antiapoptotic and proliferative effects of erythropoietin on nonhematopoietic cells were also established. We now show the effect of erythropoietin treatment on the response of A2780 and SKOV3 ovarian carcinoma cell lines to photodynamic therapy (PDT) using hypericin. SKOV3 exhibited an increased resistance to hypericin when cells were treated with erythropoietin. This resistance was reversed by treatment of SKOV3 cells with the specific Janus kinase 2 kinase inhibitor AG490 or the tyrosine kinase inhibitor genistein. These results support a role for the specific erythropoietin-induced Janus kinase 2/STAT signal transduction pathway in PDT resistance. Evidence of erythropoietin signaling was obtained by the demonstration of Akt phosphorylation in both A2780 and SKOV3 cells. Erythropoietin-treated SKOV3 cells exhibited decreased apoptosis induced by hypericin, an effect that was blocked by the phosphoinositide 3-kinase/Akt inhibitor wortmannin. These results may have important implications for ovarian cancer patients undergoing PDT and receiving erythropoietin.

  2. Geldanamycin, an inhibitor of Hsp90, increases paclitaxel-mediated toxicity in ovarian cancer cells through sustained activation of the p38/H2AX axis.

    PubMed

    Mo, Qingqing; Zhang, Yu; Jin, Xin; Gao, Yue; Wu, Yuan; Hao, Xing; Gao, Qinglei; Chen, Pingbo

    2016-11-01

    Paclitaxel is a mitotic inhibitor used in ovarian cancer chemotherapy. Unfortunately, due to the rapid genetic and epigenetic changes in adaptation to stress induced by anticancer drugs, cancer cells are often able to become resistant to single or multiple anticancer agents. However, it remains largely unknown how paclitaxel resistance happens. In this study, we generated a cell line of acquired resistance to paclitaxel therapy, A2780T, which is cross-resistant to other antimitotic drugs, such as PLK1 inhibitor or AURKA inhibitor. Immunoblotting revealed significant alterations in cell-cycle-related and apoptotic-related proteins involved in key signaling pathways. In particular, phosphorylation of p38, which activates H2AX, was significantly decreased in A2780T cells compared to the parental A2780 cells. Geldanamycin (GA), an inhibitor of Hsp90, sustained activation of the p38/H2AX axis, and A2780T cells were shown to be more sensitive to GA compared to A2780 cells. Furthermore, treatment of A2780 and A2780T cells with GA significantly enhanced sensitivity to paclitaxel. Meanwhile, GA cooperated with paclitaxel to suppress tumor growth in a mouse ovarian cancer xenograft model. In conclusion, GA may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by inactivation of p38/H2AX axis.

  3. Selection of suitable reference genes for gene expression studies in normal human ovarian tissues, borderline ovarian tumours and ovarian cancer.

    PubMed

    Ofinran, Olumide; Bose, Ujjal; Hay, Daniel; Abdul, Summi; Tufatelli, Cristina; Khan, Raheela

    2016-12-01

    The use of reference genes is the most common method of controlling the variation in mRNA expression during quantitative polymerase chain reaction, although the use of traditional reference genes, such as β‑actin, glyceraldehyde‑3‑phosphate dehydrogenase or 18S ribosomal RNA, without validation occasionally leads to unreliable results. Therefore, the present study aimed to evaluate a set of five commonly used reference genes to determine the most suitable for gene expression studies in normal ovarian tissues, borderline ovarian and ovarian cancer tissues. The expression stabilities of these genes were ranked using two gene stability algorithms, geNorm and NormFinder. Using geNorm, the two best reference genes in ovarian cancer were β‑glucuronidase and β‑actin. Hypoxanthine phosphoribosyltransferase‑1 and β‑glucuronidase were the most stable in ovarian borderline tumours, and hypoxanthine phosphoribosyltransferase‑1 and glyceraldehyde‑3‑phosphate dehydrogenase were the most stable in normal ovarian tissues. NormFinder ranked β‑actin the most stable in ovarian cancer, and the best combination of two genes was β‑glucuronidase and β‑actin. In borderline tumours, hypoxanthine phosphoribosyltransferase‑1 was identified as the most stable, and the best combination was hypoxanthine phosphoribosyltransferase‑1 and β‑glucuronidase. In normal ovarian tissues, β‑glucuronidase was recommended as the optimum reference gene, and the most optimum pair of reference genes was hypoxanthine phosphoribosyltransferase‑1 and β‑actin. To the best of our knowledge, this is the first study to investigate the selection of a set of reference genes for normalisation in quantitative polymerase chain reactions in different ovarian tissues, and therefore it is recommended that β‑glucuronidase, β‑actin and hypoxanthine phosphoribosyltransferase‑1 are the most suitable reference genes for such analyses.

  4. Metabolomic Profiling of the Effects of Melittin on Cisplatin Resistant and Cisplatin Sensitive Ovarian Cancer Cells Using Mass Spectrometry and Biolog Microarray Technology

    PubMed Central

    Alonezi, Sanad; Tusiimire, Jonans; Wallace, Jennifer; Dufton, Mark J.; Parkinson, John A.; Young, Louise C.; Clements, Carol J.; Park, Jin Kyu; Jeon, Jong Woon; Ferro, Valerie A.; Watson, David G.

    2016-01-01

    In the present study, liquid chromatography-mass spectrometry (LC-MS) was employed to characterise the metabolic profiles of two human ovarian cancer cell lines A2780 (cisplatin-sensitive) and A2780CR (cisplatin-resistant) in response to their exposure to melittin, a cytotoxic peptide from bee venom. In addition, the metabolomics data were supported by application of Biolog microarray technology to examine the utilisation of carbon sources by the two cell lines. Data extraction with MZmine 2.14 and database searching were applied to provide metabolite lists. Principal component analysis (PCA) gave clear separation between the cisplatin-sensitive and resistant strains and their respective controls. The cisplatin-resistant cells were slightly more sensitive to melittin than the sensitive cells with IC50 values of 4.5 and 6.8 μg/mL respectively, although the latter cell line exhibited the greatest metabolic perturbation upon treatment. The changes induced by melittin in the cisplatin-sensitive cells led mostly to reduced levels of amino acids in the proline/glutamine/arginine pathway, as well as to decreased levels of carnitines, polyamines, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD+). The effects on energy metabolism were supported by the data from the Biolog assays. The lipid compositions of the two cell lines were quite different with the A2780 cells having higher levels of several ether lipids than the A2780CR cells. Melittin also had some effect on the lipid composition of the cells. Overall, this study suggests that melittin might have some potential as an adjuvant therapy in cancer treatment. PMID:27754384

  5. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  6. Migration and invasion is inhibited by silencing ROR1 and ROR2 in chemoresistant ovarian cancer.

    PubMed

    Henry, C E; Llamosas, E; Djordjevic, A; Hacker, N F; Ford, C E

    2016-05-30

    Ovarian cancer survival remains poor despite recent advances in our understanding of genetic profiles. Unfortunately, the majority of ovarian cancer patients have recurrent disease after chemotherapy and lack other treatment options. Wnt signalling has been extensively implicated in cancer progression and chemoresistance. Therefore, we investigated the previously described Wnt receptors ROR1 and ROR2 as regulators of epithelial-to-mesenchymal transition (EMT) in a clinically relevant cell line model. The parental A2780- and cisplatin-resistant A2780-cis cell lines were used as a model of ovarian cancer chemoresistance. Proliferation, adhesion, migration and invasion were measured after transient overexpression of ROR1 and ROR2 in the parental A2780 cell line, and silencing of ROR1 and ROR2 in the A2780-cis cell line. Here we show that ROR1 and ROR2 expression is increased in A2780-cis cells, alongside β-catenin-independent Wnt targets. Knockdown of ROR1 and ROR2 significantly inhibited cell migration and invasion and simultaneous knockdown of ROR1 and ROR2 significantly sensitised cells to cisplatin, whilereas ROR overexpression in the parental cell line increased cell invasion. Therefore, ROR1 and ROR2 have the potential as novel drug targets in metastatic and recurrent ovarian cancer patients.

  7. Downregulation of vimentin expression increased drug resistance in ovarian cancer cells.

    PubMed

    Huo, Yi; Zheng, Zhiguo; Chen, Yuling; Wang, Qingtao; Zhang, Zhenyu; Deng, Haiteng

    2016-07-19

    Cisplatin and other platinum-based drugs have been widely used in the treatment of ovarian cancer, but most patients acquire the drug resistance that greatly compromises the efficacy of drugs. Understanding the mechanism of drug resistance is important for finding new therapeutic approaches. In the present study, we found that the expression of vimentin was downregulated in drug-resistant ovarian cancer cell lines A2780-DR and HO-8910 as compared to their respective control cells. Overexpression of vimentin in A2780-DR cells markedly increased their sensitivity to cisplatin, whereas knockdown of vimentin in A2780, HO-8910-PM and HO-8910 cells increased the resistance to cisplatin, demonstrating that vimentin silencing enhanced cisplatin resistance in ovarian cancer cells. Quantitative proteomic analysis identified 95 differentially expressed proteins between the vimentin silenced A2780 cells (A2780-VIM-KN) and the control cells, in which downregulation of endocytic proteins and the upregulation of exocytotic proteins CHMP2B and PDZK1 were proposed to contribute the decreased cisplatin accumulation in vimentin knockdown cells. Silencing of vimentin induced upregulation of cancer stem cell markers and both A2780-DR and A2780-VIM-KN cells were more facile to form spheroids than control cells under serum-free culture condition. Our results also revealed that vimentin knockdown increased the 14-3-3 mediated retention of Cdc25C in the cytoplasm, leading to inactivation of Cdk1 and the prolonged G2 phase arrest that allowed the longer period of time for cells to repair cisplatin-damaged DNA. Taken together, we demonstrated that vimentin silencing enhanced cells' resistance to cisplatin via prolonged G2 arrest and increased exocytosis, suggesting that vimentin is a potential target for treatment of drug resistant ovarian cancer.

  8. Downregulation of vimentin expression increased drug resistance in ovarian cancer cells

    PubMed Central

    Huo, Yi; Zheng, Zhiguo; Chen, Yuling; Wang, Qingtao; Zhang, Zhenyu; Deng, Haiteng

    2016-01-01

    Cisplatin and other platinum-based drugs have been widely used in the treatment of ovarian cancer, but most patients acquire the drug resistance that greatly compromises the efficacy of drugs. Understanding the mechanism of drug resistance is important for finding new therapeutic approaches. In the present study, we found that the expression of vimentin was downregulated in drug-resistant ovarian cancer cell lines A2780-DR and HO-8910 as compared to their respective control cells. Overexpression of vimentin in A2780-DR cells markedly increased their sensitivity to cisplatin, whereas knockdown of vimentin in A2780, HO-8910-PM and HO-8910 cells increased the resistance to cisplatin, demonstrating that vimentin silencing enhanced cisplatin resistance in ovarian cancer cells. Quantitative proteomic analysis identified 95 differentially expressed proteins between the vimentin silenced A2780 cells (A2780-VIM-KN) and the control cells, in which downregulation of endocytic proteins and the upregulation of exocytotic proteins CHMP2B and PDZK1 were proposed to contribute the decreased cisplatin accumulation in vimentin knockdown cells. Silencing of vimentin induced upregulation of cancer stem cell markers and both A2780-DR and A2780-VIM-KN cells were more facile to form spheroids than control cells under serum-free culture condition. Our results also revealed that vimentin knockdown increased the 14-3-3 mediated retention of Cdc25C in the cytoplasm, leading to inactivation of Cdk1 and the prolonged G2 phase arrest that allowed the longer period of time for cells to repair cisplatin-damaged DNA. Taken together, we demonstrated that vimentin silencing enhanced cells' resistance to cisplatin via prolonged G2 arrest and increased exocytosis, suggesting that vimentin is a potential target for treatment of drug resistant ovarian cancer. PMID:27322682

  9. Upregulated CTHRC1 promotes human epithelial ovarian cancer invasion through activating EGFR signaling.

    PubMed

    Ye, Jun; Chen, Wei; Wu, Zhi-Yong; Zhang, Jin-Hui; Fei, He; Zhang, Li-Wen; Wang, Ya-Hui; Chen, Ya-Ping; Yang, Xiao-Mei

    2016-12-01

    Epithelial ovarian cancer (EOC) is the major cause of deaths from gynecologic malignancies, and metastasis is the main cause of cancer related death. Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein that has the ability to inhibit collagen matrix synthesis. In this study, we found that high CTHRC1 expression was associated with poor prognosis of EOC. In vitro experiments showed that CTHRC1 promoted migration and invasion of ovarian cancer cells. CTHRC1 had no effect on ovarian cancer cells viability. Additionally, EGFR inhibitors reduced the promotion effects of CTHRC1 on EOC cell invasion. After silencing of CTHRC1, downregulated expression of phosphorylation of EGFR/ERK1/2/AKT was observed in ovarian cancer cells. Taken together, our results suggest a role for CTHRC1 in the progression of ovarian cancer and identified CTHRC1 as a potentially important predictor for human ovarian cancer prognosis.

  10. Expression and roles of Slit/Robo in human ovarian cancer.

    PubMed

    Dai, Cai Feng; Jiang, Yi Zhou; Li, Yan; Wang, Kai; Liu, Pei Shu; Patankar, Manish S; Zheng, Jing

    2011-05-01

    The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.

  11. Ovarian control of pituitary hormone secretion in early human pregnancy.

    PubMed

    Emmi, A M; Skurnick, J; Goldsmith, L T; Gagliardi, C L; Schmidt, C L; Kleinberg, D; Weiss, G

    1991-06-01

    To determine the influence of ovarian relaxin on the secretion of pituitary GH and PRL in vivo, we evaluated circulating serum hormone levels in 17 pregnant patients with functional corpora lutea (group I) and compared them to levels in 10 patients with premature ovarian failure (POF; group II) who became pregnant with egg donation and did not have corpora lutea. Group II patients had exogenous hormonal support. Serum relaxin (RLX), GH, PRL, estradiol (E2), and progesterone levels were measured weekly by RIA from weeks 4-8 of pregnancy. Analysis of variance and covariance were used to determine hormonal relationships. Serum RLX was present in the natural pregnancy group, with a mean of 1.94 micrograms/L over the study period. Serum RLX was undetectable in the POF patients (less than 0.16 micrograms/L). No significant difference in PRL or progesterone levels between the two groups was noted. E2 levels showed an upward trend in both groups with time and were significantly higher in patients of the POF group than in group I women (P = 0.001). GH levels were significantly higher in the natural cycle patients (P = 0.02) despite lower E2 levels. These data provide additional support for the concept that RLX production in early pregnancy originates from the corpus luteum. They suggest that a luteal product, probably RLX, stimulates GH secretion in early pregnancy. This is a previously undescribed role for RLX in pituitary physiology during human pregnancy.

  12. Excessive Ovarian Production of Nerve Growth Factor Facilitates Development of Cystic Ovarian Morphology in Mice and Is a Feature of Polycystic Ovarian Syndrome in Humans

    PubMed Central

    Dissen, Gregory A.; Garcia-Rudaz, Cecilia; Paredes, Alfonso; Mayer, Christine; Mayerhofer, Artur; Ojeda, Sergio R.

    2009-01-01

    Although ovarian nerve growth factor (NGF) facilitates follicular development and ovulation, an excess of the neurotrophin in the rodent ovary reduces ovulatory capacity and causes development of precystic follicles. Here we show that ovarian NGF production is enhanced in patients with polycystic ovarian syndrome (PCOS) and that transgenically driven overproduction of NGF targeted to the ovary results in cystic morphology, when accompanied by elevated LH levels. NGF levels are increased in the follicular fluid from PCOS ovaries and in the culture medium of granulosa cells from PCOS patients, as compared with non-PCOS patients. Ovaries from transgenic mice carrying the NGF gene targeted to thecal-interstitial cells by the 17α-hydroxylase gene promoter produce more NGF than wild-type (WT) ovaries and are hyperinnervated by sympathetic nerves. Antral follicle growth is arrested resulting in accumulation of intermediate size follicles, many of which are apoptotic. Peripubertal transgenic mice respond to a gonadotropin challenge with a greater increase in plasma 17-hydroxyprogesterone, estradiol, and testosterone levels than WT controls. Transgenic mice also exhibit a reduced ovulatory response, delayed puberty, and reduced fertility, as assessed by a prolonged interval between litters, and a reduced number of pups per litter. Sustained, but mild, elevation of plasma LH levels results in a heightened incidence of ovarian follicular cysts in transgenic mice as compared with WT controls. These results suggest that overproduction of ovarian NGF is a component of polycystic ovarian morphology in both humans and rodents and that a persistent elevation in plasma LH levels is required for the morphological abnormalities to appear. PMID:19264868

  13. Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans.

    PubMed

    Dissen, Gregory A; Garcia-Rudaz, Cecilia; Paredes, Alfonso; Mayer, Christine; Mayerhofer, Artur; Ojeda, Sergio R

    2009-06-01

    Although ovarian nerve growth factor (NGF) facilitates follicular development and ovulation, an excess of the neurotrophin in the rodent ovary reduces ovulatory capacity and causes development of precystic follicles. Here we show that ovarian NGF production is enhanced in patients with polycystic ovarian syndrome (PCOS) and that transgenically driven overproduction of NGF targeted to the ovary results in cystic morphology, when accompanied by elevated LH levels. NGF levels are increased in the follicular fluid from PCOS ovaries and in the culture medium of granulosa cells from PCOS patients, as compared with non-PCOS patients. Ovaries from transgenic mice carrying the NGF gene targeted to thecal-interstitial cells by the 17alpha-hydroxylase gene promoter produce more NGF than wild-type (WT) ovaries and are hyperinnervated by sympathetic nerves. Antral follicle growth is arrested resulting in accumulation of intermediate size follicles, many of which are apoptotic. Peripubertal transgenic mice respond to a gonadotropin challenge with a greater increase in plasma 17-hydroxyprogesterone, estradiol, and testosterone levels than WT controls. Transgenic mice also exhibit a reduced ovulatory response, delayed puberty, and reduced fertility, as assessed by a prolonged interval between litters, and a reduced number of pups per litter. Sustained, but mild, elevation of plasma LH levels results in a heightened incidence of ovarian follicular cysts in transgenic mice as compared with WT controls. These results suggest that overproduction of ovarian NGF is a component of polycystic ovarian morphology in both humans and rodents and that a persistent elevation in plasma LH levels is required for the morphological abnormalities to appear.

  14. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    PubMed

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  15. Induction of ovarian function by using short-term human menopausal gonadotrophin in patients with ovarian failure following cytotoxic chemotherapy for haematological malignancy.

    PubMed

    Chatterjee, R; Mills, W; Katz, M; McGarrigle, H H; Goldstone, A H

    1993-07-01

    Currently no treatment has proved successful in inducing ovarian steroidogenic and/or gametogenic recovery in patients with haematological malignancies treated by cytotoxic chemotherapy once biochemical failure becomes manifest i.e., when FSH levels exceed 40 IU/L. This paper reports two such cases with classical biochemical ovarian failure in which ovarian function was induced by brief stimulation with Human Menopausal Gonadotrophin (HMG).

  16. The prevalence of human papillomavirus in ovarian cancer: a systematic review.

    PubMed

    Rosa, Maria Inês; Silva, Geraldo Doneda; de Azedo Simões, Priscyla Waleska Targino; Souza, Meriene Viquetti; Panatto, Ana Paula Ronzani; Simon, Carla Sasso; Madeira, Kristian; Medeiros, Lidia Rossi

    2013-03-01

    We performed a systematic review and a meta-analysis to estimate the prevalence of human papillomavirus (HPV) in ovarian cancer. A comprehensive search of the Cochrane Library, MEDLINE, CANCERLIT, LILACS, Grey literature and EMBASE was performed for articles published from January 1990 to March 2012. The following MeSH (Medical Subject Headings) terms were searched: "ovarian tumor" or "ovarian cancers" and "HPV" or "human papillomavirus." Included were case-control and cross-sectional studies, prospective or retrospective, that evaluated clinical ovarian cancer and provided a clear description of the use of in situ hybridization, Southern blot hybridization, and polymerase chain reaction. The statistical analysis was performed using REVMAN 5.0. In total, 24 primary studies were included in this meta-analysis. Studies from 11 countries on 3 continents contained data on HPV and ovarian cancer, including 889 subjects. Overall, the HPV prevalence in patients with ovarian cancer was 17.5 (95% confidence interval [CI], 15.0%-20.0%). Human papillomavirus prevalence ranged from 4.0% (95% CI, 1.7%-6.3%) in Europe to 31.4% (95% CI, 26.9%-35.9%) in Asia. An aggregate of 4 case-control studies from Asia showed an odds ratio of 2.48 (95% CI, 0.64-9.57). We found a high prevalence of HPV-positive DNA in ovarian cancer cases, but the role of HPV in ovarian cancer remains inconclusive. Further studies are needed to control case to answer this question.

  17. Enhancement of Neoangiogenesis and Follicle Survival by Sphingosine-1-Phosphate in Human Ovarian Tissue Xenotransplants

    PubMed Central

    Oktay, Kutluk

    2011-01-01

    Ovarian transplantation is one of the key approaches to restoring fertility in women who became menopausal as a result of cancer treatments. A major limitation of human ovarian transplants is massive follicular loss during revascularization. Here we investigated whether sphingosine-1-phosphate or its receptor agonists could enhance neoangiogenesis and follicle survival in ovarian transplants in a xenograft model. Human ovarian tissue xenografts in severe-combined-immunodeficient mice were treated with sphingosine-1-phosphate, its analogs, or vehicle for 1–10 days. We found that sphingosine-1-phosphate treatment increased vascular density in ovarian transplants significantly whereas FTY720 and SEW2871 had the opposite effect. In addition, sphingosine-1-phosphate accelerated the angiogenic process compared to vehicle-treated controls. Furthermore, sphingosine-1-phosphate treatment was associated with a significant proliferation of ovarian stromal cell as well as reduced necrosis and tissue hypoxia compared to the vehicle-treated controls. This resulted in a significantly lower percentage of apoptotic follicles in sphingosine-1-phosphate-treated transplants. We conclude that while sphingosine-1-phosphate promotes neoangiogenesis in ovarian transplants and reduces ischemic reperfusion injury, sphingosine-1-phosphate receptor agonists appear to functionally antagonize this process. Sphingosine-1-phosphate holds great promise to clinically enhance the survival and longevity of human autologous ovarian transplants. PMID:21559342

  18. In vitro sensitivity of human ovarian tumours to chemotherapeutic agents.

    PubMed Central

    Wilson, A. P.; Neal, F. E.

    1981-01-01

    The in vitro chemosensitivity of primary monolayer cultures of human ovarian tumours to a wide range of chemotherapeutic agents has been determined using 3H-leucine incorporation as an index of cytotoxicity. Of 67 specimens received, 35 have been successfully cultured and tested for chemosensitivity. Drugs tested included alkylating agents, antibiotics, antimitotics, antimetabolites and progestogens. The overall incidence of efficacy of the drugs corresponded with the incidence which might be expected from data on the clinical response rates produced by the various drugs. Cultures from the tumour cells of treated patients generally showed greater resistance than tumours of untreated patients. Correlation between in vitro results and in vivo response was positive in all 8 patients receiving first-line chemotherapy and in 57% (4/7) patients receiving second-line chemotherapy. PMID:6791675

  19. miR-214 promotes radioresistance in human ovarian cancer cells by targeting PETN.

    PubMed

    Zhang, Qin; Zhang, Shuxiang

    2017-08-31

    Ovarian cancer is one of the leading causes of death among gynecological malignancies. Increasing evidence indicate that dysregulation of microRNAs (miRNAs) plays an important role in tumor radioresistance. The aim of the present study is to investigate whether microRNA-214 (miR-214) was involved in radioresistance of human ovarian cancer. Here, we showed that miR-214 was significantly up-regulated in ovarian cancer tissues and radioresistance ovarian cancer cell lines. Transfection of miR-214 agomir in radiosensitive ovarian cancer cell lines promoted them for resistance to ionizing radiation, whereas transfection of miR-214 antagomir in radioresistance ovarian cancer cell lines sensitized them to ionizing radiation again. Furthermore, we found miR-214 effectively promoted tumor radioresistance in xenograft animal experiment. Western blotting and quantitative real-time PCR demonstrated that miR-214 negatively regulated PTEN in radioresistance ovarian cancer cell lines and ovarian cancer tissues. Taken together, our data conclude that miR-214 contributes to radioresistance of ovarian cancer by directly targeting PTEN. © 2017 The Author(s).

  20. Inhibition of ovarian cancer cell growth by a novel TAK1 inhibitor LYTAK1.

    PubMed

    Ying, Liu; Chunxia, Yin; Wei, Liu

    2015-09-01

    Transforming growth factor-β-activating kinase 1 (TAK1) has been implicated in promoting ovarian cancer progression. Here, we evaluated the anti-ovarian cancer effect of LYTAK1, a novel and specific TAK1 inhibitor. Established or primary human ovarian cancer cells were treated with LYTAK1, and its cytotoxicity and underlying mechanisms were analyzed using in vitro and in vivo assays. We demonstrated that LYTAK1 blocked TAK1-nuclear factor kappa B activation, and potently inhibited growth of established (SKOV3, CaOV3 and A2780 lines) or primary (patient-derived) human ovarian cancer cells, where TAK1 was over-expressed and over-activated. While the normal ovarian epithelial cells (IOSE-80), with low TAK1 expression, were minimally affected by the same LYTAK1 treatment. In ovarian cancer cells, LYTAK1 mainly induced necrosis (but not apoptosis), which was associated with mitochondrial permeability transition pore (mPTP) opening, the latter was evidenced by mitochondrial membrane potential reduction. Inhibition of mPTP, either by its inhibitor sanglifehrin A or cyclosporine A, as well as by siRNA-mediated knockdown of cyclophilin-D or voltage-dependent anion channel, attenuated LYTAK1-induced necrosis and cytotoxicity in ovarian cancer cells. In vivo, LYTAK1 oral administration suppressed growth of SKOV3 xenografts in nude mice, and its activity could be further enhanced by co-treatment of paclitaxel (Taxol). These data reveal the therapeutic potential of LYTAK1 as an agent targeting the pro-oncogenic TAK1 in ovarian cancer.

  1. Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-κB and MAPK/ERK mediated YB-1 activity in A2780/T cells.

    PubMed

    Zhao, Bo-xin; Sun, Ya-bin; Wang, Sheng-qi; Duan, Lian; Huo, Qi-lu; Ren, Fei; Li, Guo-feng

    2013-01-01

    The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multi-drug resistance (MDR), leading chemotherapy failure of patients suffered with cancer. Grape seed procyanidin(GSP) is a natural polyphenol supplement with anti-inflammatory effect. Present study assessed a new use of GSP on the MDR reversal activity and its possible molecular mechanisms in MDR1-overpressing paclitaxel resistant ovarian cancer cells. Our results showed GSP significantly enhanced the cytotoxicity of paclitaxel and adriamycin in paclitaxel resistant A2780/T cells but its parental A2780 cells. Furthermore, GSP strongly inhibited P-gp expression by blocking MDR1 gene transcription, as well as, increased the intracellular accumulation of the P-gp substrate rhodamine-123 in A2780/T cells. Nuclear factor-κB(NF-κB) activity, IκB degradation level and NF-κB/p65 nuclear translocation induced by lipopolysaccharide (LPS) and receptor activator for nuclear factor-κB ligand (RANKL) were markedly inhibited by pre-treatment with GSP. Meanwhile, GSP inhibited MAPK/ERK pathway by decreasing the phosphorylation of ERK1/2, resulting in reduced the Y-box binding protein 1 (YB-1) activation with blocking its nuclear translocation. Moreover, the up-regulation of P-gp expression, the activation of AKT/NF-κB and MAPK/ERK pathway induced by LPS was attenuated by GSP administration. Compared with PDTC and U1026, inhibitor of NF-κB and MAPK/ERK respectively, GSP showed the same tendency of down-regulating NF-κB and MAPK/ERK mediated YB-1 activities. Thus, GSP reverses P-gp associated MDR by inhibiting the function and expression of P-gp through down-regulation of NF-κB activity and MAPK/ERK pathway mediated YB-1 nuclear translocation, offering insight into the mechanism of reversing MDR by natural polyphenol supplement compounds. GSP could be a new potential MDR reversal agent used for combination therapy with chemotherapeutics in clinic.

  2. A morphometric approach to the study of human ovarian organogenesis.

    PubMed

    Sforza, C; Forabosco, A

    1998-01-01

    This study deals with the morphometric approach used to describe the quantitative characteristics of human ovaries during their final histogenesis. Fixed ovaries ranging from the 20th fetal week to the 8th postnatal month were used. They were measured using a high precision caliper, were embedded in toto in epoxide resin, and systematically cut (1 microm-thick sections) orthogonal to the major axis of the organ. The surface areas were automatically measured, at low magnification, and ovarian volume was calculated using the Cavalieri method. The volume fractions of ovarian medulla, primitive cortical tissue, primordial, primary, secondary and Graafian follicles, and stroma were calculated by differential point counting at higher magnification. At the same magnification, the position of the different follicle categories in the cortex was estimated as percentage distance of the follicle from the cortico-medullary boundary. The number in unit cortex volume of the oocyte nuclei in primordial and primary follicles were derived by diameter analysis according to the Schwartz-Saltykov method, and the total follicle number for each ovary was obtained. The diameter of nuclear, cellular and follicular profiles of primary and primordial follicles in sections was also measured. Ovarian volume was about 30 mm3 at 20 fetal weeks and 287 mm3 at the 8th postnatal month, with a 9.5-fold increment. Irrespective of age, the cortex occupied most of the organs, ranging from 90% at 20 prenatal weeks (about 27 mm3) to 85% at 8 postnatal months (about 245 mm3). In the cortex, the interstitium or stroma intermingled with the germinal component: primitive cortical tissue was found in all ovaries, and its absolute volume remained unmodified between the 20th fetal week and birth. In the analyzed fetal stages, the total number of primordial follicles had its largest modification, with a 1.3-fold increment between the 20th-25th fetal weeks. Hereafter, the number increased at a slower rate (about

  3. Overexpression of miRNA-221 promotes cell proliferation by targeting the apoptotic protease activating factor-1 and indicates a poor prognosis in ovarian cancer

    PubMed Central

    Li, Jie; Li, Qiang; Huang, He; Li, Yinguang; Li, Li; Hou, Wenhui; You, Zeshan

    2017-01-01

    MicroRNAs are a class of small non-coding, endogenous RNAs involved in cancer development and progression. MicroRNA-221 (mir-221) has been reported to have both an oncogenic and tumor-suppressive role in human tumors, but the role of miR-221 in ovarian cancer is poorly understood. In the present study, the expression levels of miR-221 and the apoptosis protease activating factor 1 (APAF1) protein in 63 samples of ovarian cancer tissues and the cell lines, IOSE25, A2780, OVCAR3, SKOV3 and 3AO were detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. Cell proliferation was measured using Cell Counting kit-8 (CCK-8); cell migration and invasion were detected using a Transwell assay; cell apoptosis was evaluated by flow cytometry and Hoechst staining, and a luciferase assay was performed to verify a putative target site of miR-221 in the 3′-UTR of APAF1 mRNA. Expression of miR-221 was upregulated in ovarian cancer tissues. Patients with increased miR-221 expression levels had a reduced disease-free survival (P=0.0014) and overall survival (P=0.0058) compared with those with low miR-221 expression. Transfection of SKOV3 and A2780 cell lines with miR-221 inhibitor induced APAF1 protein expression, suppressed cell proliferation and migration and promoted tumor cell apoptosis. In conclusion, the APAF1 gene was confirmed as a direct target of miR-221 and overexpression of APAF1 suppressed ovarian cancer cell proliferation and induced cell apoptosis in vitro. These findings indicate that miR-221-APAF1 should be studied further as a potential new diagnostic or prognostic biomarker for ovarian cancer. PMID:28350128

  4. CASZ1 is a novel promoter of metastasis in ovarian cancer

    PubMed Central

    Wu, Yi-Ying; Chang, Chia-Lin; Chuang, Yuan-Jhe; Wu, Jia-En; Tung, Chia-Hao; Chen, Yeong-Chang; Chen, Yuh-Ling; Hong, Tse-Ming; Hsu, Keng-Fu

    2016-01-01

    Epithelial ovarian cancer (EOC) carries the highest mortality rate of all gynecologic malignancies. This high mortality rate is attributed to the fact that most cases of ovarian cancer are detected at late stages when metastases are already present. Through microarray analysis, we previously demonstrated that castor zinc finger 1 (CASZ1) is up-regulated in EOC cells. In contrast to its role in EOC, CASZ1 functions a tumor suppressor in neuroblastoma. Human CASZ1 is predominantly expressed in 2 alternatively spliced isoforms: CASZ1a and CASZ1b. In the present study, we investigated the role of CASZ1 in ovarian cancer cell migration and invasion and assessed the value of CASZ1 expression as a prognostic indicator of metastasis in human ovarian cancer. We used a lentivirus expressing CASZ1-shRNA and a plasmid expressing CASZ1 from a CMV promoter to knockdown and overexpress CASZ1, respectively, in the MCAS, RMUG-S, TOV21G, and A2780CP70 ovarian cancer cell lines. mRNA expression levels in tumor tissues and cell lines were measured using quantitative real-time PCR, and CASZ1 protein expression in EOC and paired metastatic tumor tissues was analyzed using immunohistochemistry. We found that CASZ1 was highly expressed in EOC tissues and ovarian cancer cell lines and that CASZ1 knockdown suppressed cell migration and invasion in EOC cells. CASZ1a and CASZ1b exerted similar effects on cell migration and invasion in EOC cells. In addition, CASZ1 promoted the epithelial-mesenchymal transition in EOC cells, and CASZ1 knockdown suppressed cancer metastasis in vivo. Furthermore, CASZ1 protein levels were elevated in human metastatic ovarian tumor tissues. Together, these results indicate that CASZ1 is a novel promoter of EOC metastasis and is highly up-regulated in metastatic EOC tumors. PMID:27429842

  5. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Virant-Klun, Irma; Gupta, Satish K; Dominguez, Roberto; Svetlikova, Marta; Xu, Fei

    2009-03-01

    It is still widely believed that while oocytes in invertebrates and lower vertebrates are periodically renewed throughout life, oocytes in humans and higher vertebrates are formed only during the fetal/perinatal period. However, this dogma is questioned, and clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal from ovarian stem cells (OSCs) in adult human ovaries, and of the role of third-party bone marrow-derived cells (monocyte-derived tissue macrophages and T lymphocytes) could help provide a better understanding of the causes of ovarian infertility, its prevention, and potential treatment. We have reported differentiation of distinct cell types from OSC and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. OSCs are also capable of producing neural/neuronal cells in vitro after sequential stimulation with sex steroid combinations. Hence, OSC represent a unique type of totipotent adult stem cells, which could be utilized for autologous treatment of premature ovarian failure and also for autologous stem cell therapy of neurodegenerative diseases without use of allogeneic embryonic stem cells or somatic cell nuclear transfer. The in vivo application of sex steroid combinations may augment the proliferation of existing neural stem cells and their differentiation into mature neuronal cells (systemic regenerative therapy). Such treatment may also stimulate the transdifferentiation of autologous neural stem cell precursors into neural stem cells useful for topical or systemic regenerative treatment.

  6. Dub3 expression correlates with tumor progression and poor prognosis in human epithelial ovarian cancer.

    PubMed

    Zhou, Bo; Shu, Bin; Xi, Tao; Su, Ning; Liu, Jing

    2015-03-01

    Dub3 is a deubiquitinating enzyme. It is highly expressed in tumor-derived cell lines and has an established role in tumor proliferation. However, the role of Dub3 in human ovarian cancer remains unclear. Expression of Dub3 was evaluated in ovarian cancer tissues and cell lines by immunohistochemistry and Western blot analysis. The relationship between Dub3 expression and clinicopathological characteristics was analyzed. Using RNA interference, the effects of Dub3 on cell proliferation and apoptosis were investigated in ovarian cancer cell line. All normal ovary tissues exhibited very little or no Dub3 immunoreactivity. High levels of Dub3 expression were examined by immunohistochemical analysis in 13.3% of cystadenomas, in 30.0% of borderline tumors, and in 58.9% of ovarian carcinomas, respectively. Dub3 expression was significantly associated with lymph node metastasis and clinical staging (P<0.05). Multivariate survival analysis indicated that Dub3 expression was an independent prognostic indicator of the survival of patients with ovarian cancer. Furthermore, the expression of Cdc25A was closely correlated with that of Dub3 in cancer cells and tissues. Knockdown of Dub3 could inhibit the proliferation of ovarian cancer cells and increase cell apoptosis. These data indicate that the Dub3 might be a valuable biomarker for the prediction of ovarian cancer prognosis and Dub3 inhibition might be a potential strategy for ovarian cancer treatment.

  7. The effects of selenium on tumor growth in epithelial ovarian carcinoma.

    PubMed

    Park, Jin Sun; Ryu, Ji Yoon; Jeon, Hye-Kyung; Cho, Young Jae; Park, Young Ae; Choi, Jung-Joo; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo

    2012-07-01

    Epidemiological studies suggest that selenium protects against the development of several cancers. Selenium (sodium selenite) has been reported to interfere with cell growth and proliferation, and to induce cell death. In this study, we tested whether selenium could have growth-inhibiting effect in ovarian cancer cells and an orthotopic animal model. Cell growth in selenium-treated cells was determined in human ovarian cancer cells, A2780, HeyA8, and SKOV3ip1 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Animal experiment of selenium with paclitaxel was performed using SKOV3ip1 cells in nude mice to evaluate their inhibiting effect for tumor growth. In addition, another animal experiment of paclitaxel with or without selenium was performed to assess the effect of survival and food intake in mice. The in vitro growth of selenium-treated cells was significantly decreased dose-dependently in A2780, HeyA8, and SKOV3ip1 cells. Therapy experiment in mice was started 1 week after injection of the SKOV3ip1 cells. Treatment with selenium (1.5 mg/kg, 3 times/week) and paclitaxel injection showed no addictive effect of the inhibition of tumor growth. However, combination of selenium and paclitaxel showed the slightly increased food intake compared with paclitaxel alone. Although selenium has growth-inhibiting effect in ovarian carcinoma cells in vitro, there is no additive effect on tumor growth in mice treated with combination of paclitaxel and selenium. However, food intake is slightly higher in selenium-treated mice during chemotherapy.

  8. Ovarian stimulation using human chorionic gonadotrophin impairs blastocyst implantation and decidualization by altering ovarian hormone levels and downstream signaling in mice.

    PubMed

    Ezoe, Kenji; Daikoku, Takiko; Yabuuchi, Akiko; Murata, Nana; Kawano, Hiroomi; Abe, Takashi; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2014-11-01

    Ovarian stimulation induced by follicle-stimulating hormone and human chorionic gonadotrophin (hCG) is commonly used in assisted reproductive technology to increase embryo production. However, recent clinical and animal studies have shown that ovarian stimulation disrupts endometrial function and embryo development and adversely affects pregnancy outcomes. How ovarian stimulation impairs pregnancy establishment and the precise mechanisms by which this stimulation reduces the chances of conception remain unclear. In this study, we first demonstrated that ovarian stimulation using hCG alone impairs implantation, decidualization and fetal development of mice by generating abnormal ovarian hormone levels. We also showed that ovarian hormone levels were altered because of changes in the levels of the enzymes involved in their synthesis in the follicles and corpora lutea. Furthermore, we determined that anomalous ovarian hormone secretion induced by ovarian stimulation alters the spatiotemporal expression of progesterone receptors and their downstream genes, especially in the uterine epithelium. Epithelial estrogenic signaling and cell proliferation were promoted on the day of implantation in stimulated mice and these changes led to the failure of uterine transition from the prereceptive to the receptive state. Collectively, our findings indicate that ovarian stimulation using hCG induces an imbalance in steroid hormone secretion, which causes a failure of the development of uterine receptivity and subsequent implantation and decidualization by altering the expression of steroid receptors and their downstream signaling associated with embryo implantation.

  9. Piperlongumine Induces Apoptosis and Synergizes with Cisplatin or Paclitaxel in Human Ovarian Cancer Cells

    PubMed Central

    Chen, Xiu-Xiu; Wang, Huan; Jiang, Qi-Wei; Pan, Shi-Shi; Qiu, Jian-Ge; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Zheng, Fei-Yun; Yan, Xiao-Jian

    2014-01-01

    Piperlongumine (PL), a natural alkaloid from Piper longum L., possesses the highly selective and effective anticancer property. However, the effect of PL on ovarian cancer cells is still unknown. In this study, we firstly demonstrate that PL selectively inhibited cell growth of human ovarian cancer cells. Furthermore, PL notably induced cell apoptosis, G2/M phase arrest, and accumulation of the intracellular reactive oxidative species (ROS) in a dose- and time-dependent manner. Pretreatment with antioxidant N-acety-L-cysteine could totally reverse the PL-induced ROS accumulation and cell apoptosis. In addition, low dose of PL/cisplatin or paclitaxel combination therapies had a synergistic antigrowth effect on human ovarian cancer cells. Collectively, our study provides new therapeutic potential of PL on human ovarian cancer. PMID:24895529

  10. Interleukin-6 as a therapeutic target in human ovarian cancer

    PubMed Central

    Coward, Jermaine; Kulbe, Hagen; Chakravarty, Probir; Leader, David; Vassileva, Vessela; Leinster, D. Andrew; Thompson, Richard; Schioppa, Tiziana; Nemeth, Jeffery; Vermeulen, Jessica; Singh, Naveena; Avril, Norbert; Cummings, Jeff; Rexhepaj, Elton; Jirström, Karin; Gallagher, William M; Brennan, Donal J.; McNeish, Iain A.; Balkwill, Fran

    2011-01-01

    Purpose We investigated whether inhibition of IL-6 has therapeutic activity in ovarian cancer via abrogation of a tumor-promoting cytokine network. Experimental Design We combined pre-clinical and in silico experiments with a phase II clinical trial of the anti-IL-6 antibody siltuximab in patients with platinum-resistant ovarian cancer. Results Automated immunohistochemistry on tissue microarrays from 221 ovarian cancer cases demonstrated that intensity of IL-6 staining in malignant cells significantly associated with poor prognosis. Treatment of ovarian cancer cells with siltuximab reduced constitutive cytokine and chemokine production and also inhibited IL-6 signalling, tumor growth, the tumor-associated macrophage infiltrate and angiogenesis in IL-6-producing intraperitoneal ovarian cancer xenografts. In the clinical trial, the primary endpoint was response rate as assessed by combined RECIST and CA125 criteria. One patient of eighteen evaluable had a partial response, whilst seven others had periods of disease stabilization. In patients treated for six months, there was a significant decline in plasma levels of IL-6-regulated CCL2, CXCL12 and VEGF. Gene expression levels of factors that were reduced by siltuximab treatment in the patients significantly correlated with high IL-6 pathway gene expression and macrophage markers in microarray analyses of ovarian cancer biopsies. Conclusions IL-6 stimulates inflammatory cytokine production, tumor angiogenesis and the tumor macrophage infiltrate in ovarian cancer and these actions can be inhibited by a neutralising anti-IL-6 antibody in pre-clinical and clinical studies. PMID:21795409

  11. Interleukin-6 as a therapeutic target in human ovarian cancer.

    PubMed

    Coward, Jermaine; Kulbe, Hagen; Chakravarty, Probir; Leader, David; Vassileva, Vessela; Leinster, D Andrew; Thompson, Richard; Schioppa, Tiziana; Nemeth, Jeffery; Vermeulen, Jessica; Singh, Naveena; Avril, Norbert; Cummings, Jeff; Rexhepaj, Elton; Jirström, Karin; Gallagher, William M; Brennan, Donal J; McNeish, Iain A; Balkwill, Frances R

    2011-09-15

    We investigated whether inhibition of interleukin 6 (IL-6) has therapeutic activity in ovarian cancer via abrogation of a tumor-promoting cytokine network. We combined preclinical and in silico experiments with a phase 2 clinical trial of the anti-IL-6 antibody siltuximab in patients with platinum-resistant ovarian cancer. Automated immunohistochemistry on tissue microarrays from 221 ovarian cancer cases showed that intensity of IL-6 staining in malignant cells significantly associated with poor prognosis. Treatment of ovarian cancer cells with siltuximab reduced constitutive cytokine and chemokine production and also inhibited IL-6 signaling, tumor growth, the tumor-associated macrophage infiltrate and angiogenesis in IL-6-producing intraperitoneal ovarian cancer xenografts. In the clinical trial, the primary endpoint was response rate as assessed by combined RECIST and CA125 criteria. One patient of eighteen evaluable had a partial response, while seven others had periods of disease stabilization. In patients treated for 6 months, there was a significant decline in plasma levels of IL-6-regulated CCL2, CXCL12, and VEGF. Gene expression levels of factors that were reduced by siltuximab treatment in the patients significantly correlated with high IL-6 pathway gene expression and macrophage markers in microarray analyses of ovarian cancer biopsies. IL-6 stimulates inflammatory cytokine production, tumor angiogenesis, and the tumor macrophage infiltrate in ovarian cancer and these actions can be inhibited by a neutralizing anti-IL-6 antibody in preclinical and clinical studies. ©2011 AACR.

  12. PTN signaling: Components and mechanistic insights in human ovarian cancer.

    PubMed

    Sethi, Geetika; Kwon, Youngjoo; Burkhalter, Rebecca J; Pathak, Harsh B; Madan, Rashna; McHugh, Sarah; Atay, Safinur; Murthy, Smruthi; Tawfik, Ossama W; Godwin, Andrew K

    2015-12-01

    Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA-mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although, it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study, we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (P < 0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA-mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian

  13. PTN Signaling: Components and Mechanistic Insights in Human Ovarian Cancer

    PubMed Central

    Sethi, Geetika; Kwon, Youngjoo; Burkhalter, Rebecca J; Pathak, Harsh B.; Madan, Rashna; McHugh, Sarah; Atay, Safinur; Murthy, Smruthi; Tawfik, Ossama W.; Godwin, Andrew K.

    2015-01-01

    Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (p<0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian

  14. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue.

    PubMed

    Laronda, Monica M; Duncan, Francesca E; Hornick, Jessica E; Xu, Min; Pahnke, Jennifer E; Whelan, Kelly A; Shea, Lonnie D; Woodruff, Teresa K

    2014-08-01

    In vitro follicle growth (IVFG) is an investigational fertility preservation technique in which immature follicles are grown in culture to produce mature eggs that can ultimately be fertilized. Although progress has been made in growing primate primary and secondary follicles in vitro, it has been a relatively greater challenge to isolate and culture primordial follicles. The purpose of this study was to develop methods to grow human primordial follicles in vitro using alginate hydrogels. We obtained human ovarian tissue for research purposes through the National Physicians Cooperative from nationwide sites and used it to test two methods for culturing primordial follicles. First, primordial follicles were isolated from the ovarian cortex and encapsulated in alginate hydrogels. Second, 1 mm × 1 mm pieces of 500 μm-thick human ovarian cortex containing primordial follicles were encapsulated in alginate hydrogels, and survival and follicle development within the tissue was assessed for up to 6 weeks. We found that human ovarian tissue could be kept at 4 °C for up to 24 h while still maintaining follicle viability. Primordial follicles isolated from ovarian tissue did not survive culture. However, encapsulation and culture of ovarian cortical pieces supported the survival, differentiation, and growth of primordial and primary follicles. Within several weeks of culture, many of the ovarian tissue pieces had formed a defined surface epithelium and contained growing preantral and antral follicles. The early stages of in vitro human follicle development require the support of the native ovarian cortex.

  15. Characterization of cell surface antigens reactive with autologous antibodies from human ovarian neoplasms

    SciTech Connect

    Kutteh, W.H.

    1986-03-01

    Autologous antibodies eluted from membrane fragments of ovarian epithelial neoplasms have been prepared from cyst and ascites fluids. The predominant membrane-bound immunoglobulin, IgG, was present in a range of 18 to 4275 ng of membrane-bound IgG/ml fluid. The autologous antibodies were strongly reactive with human ovarian neoplastic cell lines and fresh ovarian tumor tissue but not with normal human ovaries, other non-ovarian normal or neoplastic tissue or non-ovarian human cell lines. Human ovarian serous cystadenocarcinoma cell lined number2774 was surface labeled with /sup 125/Iodine using lactoperoxidose. Cells were washed and solubilized with Triton X-100. Membrane antigens were prepared and precipitated with autologous antibodies. Precipitates were washed, electrophoresed on 7.5% polyacrylamide gels and analyzed for radioactivity. Three major bands of activity (molecular weights: 180,000; 160,000 and 120,000) were precipitated with autologous antibodies from two patients with serous cystadenocarcinoma and two patients with papillary adenocarcinoma, but not with normal serum or autologous antibodies from a plural effusion of a patient with colon disease.

  16. Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer

    PubMed Central

    Wang, Huimin; Tan, Mingzi; Schwab, Carlton L.; Deng, Lu; Gao, Jian; Hao, Yingying; Li, Xiao; Gao, Song; Liu, Juanjuan; Lin, Bei

    2016-01-01

    Overexpression of Human epididymis protein 4 (HE4) related with a role in ovarian cancer tumorigenesis while little is known about the molecular mechanism alteration by HE4 up regulation. Here we reported that overexpressed HE4 promoted ovarian cancer cells proliferation, invasion and metastasis. Furthermore, human whole genome gene expression profile microarrays revealed that 231 differentially expressed genes (DEGs) were altered in response to HE4, in which MAPK signaling, ECM receptor, cell cycle, steroid biosynthesis pathways were involved. The findings suggested that overexpressed HE4 played an important role in ovarian cancer progression and metastasis and that HE4 has the potential to serve as a novel therapeutic target for ovarian cancer. PMID:26575020

  17. Effect of AURKA Gene Expression Knockdown on Angiogenesis and Tumorigenesis of Human Ovarian Cancer Cell Lines.

    PubMed

    Wang, Cong; Yan, Qin; Hu, Minmin; Qin, Di; Feng, Zhenqing

    2016-12-01

    Ovarian cancer is one of the most common malignant gynecological cancers. Higher expression of AURKA has been found in immortalized human ovarian epithelial cells in previous studies, implying the relationship between AURKA and ovarian cancer pathogenesis. We investigated the effect of AURKA on angiogenesis and tumorigenesis of human ovarian cancer cells. Firstly, the expression of AURKA in HO8910 and SKOV3 ovarian cancer cell lines was knocked down using a vector expressing a short hairpin small interfering RNA (shRNA). Next, the effect of knockdown of AURKA on cell angiogenesis, proliferation, migration, and invasion was determined by microtubule formation assay, proliferation assay, transwell migration, and invasion assays. In addition, the effect of AURKA knockdown on angiogenesis and tumorigenesis was also determined in a chicken chorioallantoic membrane (CAM) model and in nude mice. The results of the microtubule formation assay indicated that knockdown of AURKA significantly inhibited ovarian cancer cell-induced angiogenesis of endothelial cells compared to its control (P < 0.001). Knockdown of AURKA also significantly inhibited cell proliferation, migration, and invasion of HO8910 and SKOV3 cells in vitro. Furthermore, the Matrigel plug assay showed that knockdown of AURKA significantly repressed ovarian cancer cell-induced angiogenesis in nude mice (P < 0.05), and the CAMs model also showed that AURKA knockdown significantly attenuated the angiogenesis (P < 0.001) and tumorigenesis (P < 0.001) of HO8910 cells compared to the control. Finally, the tumorigenicity assay in vivo further indicated that AURKA shRNA reduced tumorigenesis in nude mice inoculated with ovarian cancer cells (P < 0.001). These results suggest the potential role of AURKA in angiogenesis and tumorigenesis of ovarian cancer, which may provide a potential therapeutic target for the disease.

  18. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging

    PubMed Central

    Orsinger, Gabriel V.; Watson, Jennifer M.; Gordon, Michael; Nymeyer, Ariel C.; de Leon, Erich E.; Brownlee, Johnathan W.; Hatch, Kenneth D.; Chambers, Setsuko K.; Barton, Jennifer K.; Kostuk, Raymond K.; Romanowski, Marek

    2014-01-01

    Abstract. Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis. PMID:24676382

  19. Effect of Human Ovarian Tissue Vitrification/Warming on the Expression of Genes Related to Folliculogenesis.

    PubMed

    Shams Mofarahe, Zahra; Ghaffari Novin, Marefat; Jafarabadi, Mina; Salehnia, Mojdeh; Noroozian, Mohsen; Ghorbanmehr, Nassim

    2015-01-01

    Ovarian tissue cryopreservation is an alternative strategy to preserve the fertility of women predicted to undergo premature ovarian failure. This study was designed to evaluate the expression of folliculogenesis-related genes, including factor in the germline alpha (FIGLA), growth differentiation factor-9 (GDF-9), follicle-stimulating hormone receptor (FSHR), and KIT LIGAND after vitrification/warming of human ovarian tissue. Human ovarian tissue samples were collected from five transsexual women. In the laboratory, the ovarian medullary part was removed by a surgical blade, and the cortical tissue was cut into small pieces. Some pieces were vitrified and warmed and the others were considered as non-vitrified group (control). Follicular normality was assessed with morphological observation by a light microscope, and the expression of FIGLA, KIT LIGAND, GDF-9,, and FSHR genes was examined using real-time RT-PCR in both the vitrified and non-vitrified groups. Overall, 85% of the follicles preserved their normal morphologic feature after warming. The percentage of normal follicles and the expression of FIGLA, KIT LIGAND, GDF-9, and FSHR genes were similar in both vitrified and non-vitrified groups (P > 0.05). Vitrification/warming of human ovarian tissue had no remarkable effect on the expression of folliculogenesis-related genes.

  20. The nerve growth factor alters calreticulin translocation from the endoplasmic reticulum to the cell surface and its signaling pathway in epithelial ovarian cancer cells.

    PubMed

    Vera, Carolina Andrea; Oróstica, Lorena; Gabler, Fernando; Ferreira, Arturo; Selman, Alberto; Vega, Margarita; Romero, Carmen Aurora

    2017-02-28

    Ovarian cancer is the seventh most common cancer among women worldwide, causing approximately 120,000 deaths every year. Immunotherapy, designed to boost the body's natural defenses against cancer, appears to be a promising option against ovarian cancer. Calreticulin (CRT) is an endoplasmic reticulum (ER) resident chaperone that, translocated to the cell membrane after ER stress, allows cancer cells to be recognized by the immune system. The nerve growth factor (NGF) is a pro-angiogenic molecule overexpressed in this cancer. In the present study, we aimed to determine weather NGF has an effect in CRT translocation induced by cytotoxic and ER stress. We treated A2780 ovarian cancer cells with NGF, thapsigargin (Tg), an ER stress inducer and mitoxantrone (Mtx), a chemotherapeutic drug; CRT subcellular localization was analyzed by immunofluorescence followed by confocal microscopy. In order to determine NGF effect on Mtx and Tg-induced CRT translocation from the ER to the cell membrane, cells were preincubated with NGF prior to Mtx or Tg treatment and CRT translocation to the cell surface was determined by flow cytometry. In addition, by western blot analyses, we evaluated proteins associated with the CRT translocation pathway, both in A2780 cells and human ovarian samples. We also measured NGF effect on cell apoptosis induced by Mtx. Our results indicate that Mtx and Tg, but not NGF, induce CRT translocation to the cell membrane. NGF, however, inhibited CRT translocation induced by Mtx, while it had no effect on Tg-induced CRT exposure. NGF also diminished cell death induced by Mtx. NGF effect on CRT translocation could have consequences in immunotherapy, potentially lessening the effectiveness of this type of treatment.

  1. Laparoscopic optical coherence tomographic imaging of human ovarian cancer

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Korde, Vrushali; Winkler, Amy M.; Hatch, Kenneth; Brewer, Molly; Barton, Jennifer K.

    2009-02-01

    Ovarian cancer is the fourth leading cause of cancer-related death among women. If diagnosed at early stages, 5-year survival rate is 94%, but drops to 68% for regional disease and 29% for distant metastasis; only 19% of cases are diagnosed at early, localized stages. Optical coherence tomography is a recently emerging non-destructive imaging technology, achieving high axial resolutions (10-20 µm) at imaging depths up to 2 mm. Previously, we studied OCT in normal and diseased human ovary ex vivo. Changes in collagen were suggested with several images that correlated with changes in collagen seen in malignancy. Areas of necrosis and blood vessels were also visualized using OCT, indicative of an underlying tissue abnormality. We recently developed a custom side-firing laparoscopic OCT (LOCT) probe fabricated for in vivo imaging. The LOCT probe, consisting of a 38 mm diameter handpiece terminated in a 280 mm long, 4.6 mm diameter tip for insertion into the laparoscopic trocar, is capable of obtaining up to 9.5 mm image lengths at 10 µm axial resolution. In this pilot study, we utilize the LOCT probe to image one or both ovaries of 17 patients undergoing laparotomy or transabdominal endoscopy and oophorectomy to determine if OCT is capable of differentiating normal and neoplastic ovary. We have laparoscopically imaged the ovaries of seventeen patients with no known complications. Initial data evaluation reveals qualitative distinguishability between the features of undiseased post-menopausal ovary and the cystic, non-homogenous appearance of neoplastic ovary such as serous cystadenoma and endometroid adenocarcinoma.

  2. Laparoscopic optical coherence tomographic imaging of human ovarian cancer

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Hatch, Kenneth; Brewer, Molly; Barton, Jennifer K.

    2008-02-01

    Ovarian cancer is the fourth leading cause of cancer-related death among women in the United States. If diagnosed at an early stage, the 5-year survival rate is 94%, but drops to 68% for regional disease and 29% for distant metastasis; only 19% of all cases are diagnosed at the early, localized stage. Optical coherence tomography is a recently emerging non-destructive imaging technology, achieving high axial resolutions (10-20 microns) at imaging depths up to 2 mm. Previously, we studied OCT imaging in normal and diseased human ovary ex vivo to determine the features OCT is capable of resolving. Changes in collagen were suggested with several of the images that correlated with changes in collagen seen in malignancy. Areas of necrosis and blood vessels were also visualized using OCT, indicative of an underlying tissue abnormality. We recently developed a custom side-firing laparoscopic OCT (LOCT) probe fabricated specifically for in vivo laparoscopic imaging. The LOCT probe consists of a 38 mm diameter handpiece terminated in an 280 mm long, 4.6 mm diameter tip for insertion into the laparoscopic trocar and is capable of obtaining up to 9.5 mm image lengths at 10 micron axial resolution. In this study, we utilize the LOCT probe to image one or both ovaries of 20 patients undergoing laparotomy or transabdominal endoscopy and oophorectomy to determine if OCT is capable of identifying and/or differentiating normal and neoplastic ovary. To date, we have laparoscopically imaged the ovaries of ten patients successfully with no known complications.

  3. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer.

    PubMed

    Giri, Shailendra; Karakoti, Ajay; Graham, Rondell P; Maguire, Jacie L; Reilly, Christopher M; Seal, Sudipta; Rattan, Ramandeep; Shridhar, Viji

    2013-01-01

    Ovarian cancer (OvCa) is the fifth most common cause of death from all cancers among women in United Sates and the leading cause of death from gynecological malignancies. While most OvCa patients initially respond to surgical debulking and chemotherapy, 75% of patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with OvCa. In this context, we have developed and engineered Nanoceria (NCe), nanoparticles of cerium oxide, possessing anti-oxidant properties, to be used as a therapeutic agent in OvCa. We show for the first time that NCe significantly inhibited production of reactive oxygen species (ROS) in A2780 cells, attenuated growth factor (SDF1, HB-EGF, VEGF(165) and HGF) mediated cell migration and invasion of SKOV3 cells, without affecting the cell proliferation. NCe treatment also inhibited VEGF(165) induced proliferation, capillary tube formation, activation of VEGFR2 and MMP2 in human umbilical vascular endothelial cells (HUVEC). NCe (0.1 mg/kg body weigh) treatment of A2780 ovarian cancer cells injected intra-peritoneally in nude mice showed significant reduction (p<0.002) in tumor growth accompanied by decreased tumor cell proliferation as evident from reduced tumor size and Ki67 staining. Accumulation of NCe was found in tumors isolated from treated group using transmission electron microscopy (TEM) and inductively coupled plasma mass spectroscopy (ICP-MS). Reduction of the tumor mass was accompanied by attenuation of angiogenesis, as observed by reduced CD31 staining and specific apoptosis of vascular endothelial cells. Collectively, these results indicate that cerium oxide based NCe is a novel nanoparticle that can potentially be used as an anti-angiogenic therapeutic agent in ovarian cancer.

  4. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    PubMed Central

    2010-01-01

    Background Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Methods Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKTSer473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Results Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell

  5. High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells.

    PubMed

    Zhao, Z; Xu, Y; Lu, J; Xue, J; Liu, P

    2017-08-14

    HO-1 has been proved to be associated with tumor aggressivity and poor prognosis in various cancers. Our study provides the first study to demonstrate the relationship of HO-1 expression and clinical characteristics in ovarian cancer patients. Immunohistochemistry and western blotting were used to examine the expression of HO-1 in tissue species and fresh tissues. CCK-8 was used to investigate cell viability. Transwell chamber was performed to estimate migration and invasion capacities in A2780 and Skov-3 cells. Immunohistochemistry and western blotting showed that the expression of HO-1 was higher in ovarian cancer tissues than normal ovarian tissues. High expression of HO-1 was significantly associated with serous ovarian cancer, high FIGO stage, lymph node metastasis, and non-optimal debulking. Patients with high expression of HO-1 exhibited an unfavorable prognosis. In vitro inducing the expression of HO-1 promoted the proliferation and metastasis of A2780 and Skov-3 cells, with the increased expressions of mesenchymal marker (Vimentin), epithelial-mesenchymal transition-associated transcript factor (Zeb-1), anti-apoptotic protein (Bcl-2), and the decreased expressions of epithelial marker (Keratin) and pro-apoptotic protein (Bax). Meanwhile, after incubating A2780 and Skov-3 together with HO-1 inhibitor, above results could be reversed. HO-1 might be a potential marker for prediction of ovarian cancer prognosis and a target for ovarian cancer treatment.

  6. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation

    PubMed Central

    Li, Yan; Wang, Kai; Jiang, Yi-Zhou; Chang, Xin-Wen; Dai, Cai-Feng

    2017-01-01

    Purpose The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, mediates a broad spectrum of biological processes, including ovarian growth and ovulation. Recently, we found that an endogenous AhR ligand (ITE) can inhibit ovarian cancer proliferation and migration via the AhR. Here, we tested whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an exogenous AhR ligand) may exert similar anti-ovarian cancer activities using human ovarian cancer and non-cancerous human ovarian surface epithelial cells. Methods Two human ovarian cancer cell lines (SKOV-3 and OVCAR-3) and one human ovarian surface epithelial cell line (IOSE-385) were used. Cell proliferation and migration activities were determined using crystal violet and FluoroBlok insert system assays, respectively. AhR protein expression was assessed by Western blotting. Expression of cytochrome P450, family 1, member A1 (CYP1A1) and member B1 (CYP1B1) mRNA was assessed by qPCR. Small interfering RNAs (siRNAs) were used to knock down AhR expression. Results We found that TCDD dose-dependently suppressed OVCAR-3 cell proliferation, with a maximum effect (~70 % reduction) at 100 nM. However, TCDD did not affect SKOV-3 and IOSE-385 cell proliferation and migration. The estimated IC50 of TCDD for inhibiting OVCAR-3 cell proliferation was 4.6 nM. At 10 nM, TCDD time-dependently decreased AhR protein levels, while it significantly increased CYP1A1 and CYP1B1 mRNA levels in SKOV-3, OVCAR-3 and IOSE-385 cells, indicating activation of AhR signaling. siRNA-mediated AhR knockdown readily blocked TCDD-mediated suppression of OVCAR-3 cell proliferation. Conclusion Our data indicate that TCDD can suppress human ovarian cancer cell proliferation via the AhR signaling pathway and that TCDD exhibits an anti-proliferative activity in at least a subset of human ovarian cancer cells. PMID:25404385

  7. Characteristics of Human Amniotic Fluid Mesenchymal Stem Cells and Their Tropism to Human Ovarian Cancer

    PubMed Central

    Li, Liru; Wang, Dejun; Zhou, Jun; Cheng, Yan; Liang, Tian; Zhang, Guangmei

    2015-01-01

    The mesenchymal stem cells (MSCs) derived from amniotic fluid (AF) have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs) and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I), but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II). RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn’t have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer. PMID:25880317

  8. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    PubMed

    Li, Liru; Wang, Dejun; Zhou, Jun; Cheng, Yan; Liang, Tian; Zhang, Guangmei

    2015-01-01

    The mesenchymal stem cells (MSCs) derived from amniotic fluid (AF) have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs) and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I), but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II). RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  9. Replacement of sodium with choline in slow-cooling media improves human ovarian tissue cryopreservation.

    PubMed

    Talevi, Riccardo; Barbato, Vincenza; Mollo, Valentina; Fiorentino, Ilaria; De Stefano, Cristoforo; Guarino, Fabio Maria; Gualtieri, Roberto

    2013-10-01

    Ovarian tissue cryopreservation is a promising technique for fertility preservation in young female cancer patients and efforts have been made to improve its effectiveness. During cooling and thawing, sodium ions significantly contribute to the 'solute effect' that plays a major role in disrupting cell membranes. Choline ions, which do not cross the cell membrane, should not contribute to the intracellular solute load. The present study assessed the effects of sodium substitution with choline in slow-cooling freezing media on human ovarian cortical strip cryopreservation. A total of 629 follicles (fresh control n=266; cryopreserved n=363), collected from ovarian biopsies of 11 women (22-40years) during laparoscopic surgery, were studied by light microscopy, immunohistochemistry and transmission electron microscopy to evaluate their morphology, apoptosis and ultrastructure. The results demonstrate that choline substitution leads to: (i) an improved preservation of oocytes and follicular cells; (ii) the recovery of a higher percentage of grade-1 follicles negative for p53, p21 and Apaf-1 apoptotic markers; (iii) a reduced mitochondrial damage as observed at an ultrastructural level; and (iv) a better preservation of ovarian tissue stroma. In conclusion, the use of choline-based media may represent a valuable tool to improve human ovarian tissue cryopreservation. Ovarian tissue cryopreservation is a promising fertility preservation approach for cancer patients before undergoing treatments that irreversibly reduce the ovarian reserve. Autotransplantation of ovarian cortical strips has resulted in viable offspring in animal models and human. Worldwide, 20 live births have been reported thus far following autotransplantation of frozen-thawed ovarian tissue. However, currently the success rate of this technology is far from being satisfactory. This could be due to inappropriate cryopreservation procedures that might impair the physiology of ovarian follicles. Sodium ions

  10. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Bilan; Wei, Xiawei; Men, Ke; Zheng, Fengjin; Zhou, Yingfeng; Zheng, Yu; Gou, Maling; Huang, Meijuan; Guo, Gang; Huang, Ning; Qian, Zhiyong; Wei, Yuquan

    2012-10-01

    Encapsulation of hydrophobic agents in polymer micelles can improve the water solubility of cargos, contributing to develop novel drugs. Quercetin (QU) is a hydrophobic agent with potential anticancer activity. In this work, we encapsulated QU into biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles and tried to provide proof-of-principle for treating ovarian cancer with this nano-formulation of quercetin. These QU loaded MPEG-PCL (QU/MPEG-PCL) micelles with drug loading of 6.9% had a mean particle size of 36 nm, rendering the complete dispersion of quercetin in water. QU inhibited the growth of A2780S ovarian cancer cells on a dose dependent manner in vitro. Intravenous administration of QU/MPEG-PCL micelles significantly suppressed the growth of established xenograft A2780S ovarian tumors through causing cancer cell apoptosis and inhibiting angiogenesis in vivo. Furthermore, the anticancer activity of quercetin on ovarian cancer cells was studied in vitro. Quercetin treatment induced the apoptosis of A2780S cells associated with activating caspase-3 and caspase-9. MCL-1 downregulation, Bcl-2 downregulation, Bax upregulation and mitochondrial transmembrane potential change were observed, suggesting that quercetin may induce apoptosis of A2780S cells through the mitochondrial apoptotic pathway. Otherwise, quercetin treatment decreased phosphorylated p44/42 mitogen-activated protein kinase and phosphorylated Akt, contributing to inhibition of A2780S cell proliferation. Our data suggested that QU/MPEG-PCL micelles were a novel nano-formulation of quercetin with a potential clinical application in ovarian cancer therapy.

  11. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    PubMed

    Egan, Karl; Crowley, Darragh; Smyth, Paul; O'Toole, Sharon; Spillane, Cathy; Martin, Cara; Gallagher, Michael; Canney, Aoife; Norris, Lucy; Conlon, Niamh; McEvoy, Lynda; Ffrench, Brendan; Stordal, Britta; Keegan, Helen; Finn, Stephen; McEneaney, Victoria; Laios, Alex; Ducrée, Jens; Dunne, Eimear; Smith, Leila; Berndt, Michael; Sheils, Orla; Kenny, Dermot; O'Leary, John

    2011-01-01

    Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  12. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells

    PubMed Central

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-01-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. PMID:27377320

  13. Mutation analysis of the c-mos proto-oncogene in human ovarian teratomas.

    PubMed Central

    de Foy, K. A.; Gayther, S. A.; Colledge, W. H.; Crockett, S.; Scott, I. V.; Evans, M. J.; Ponder, B. A.

    1998-01-01

    Female transgenic mice lacking a functional c-mos proto-oncogene develop ovarian teratomas, indicating that c-mos may behave as a tumour-suppressor gene for this type of tumour. We have analysed the entire coding region of the c-MOS gene in a series of human ovarian teratomas to determine whether there are any cancer-causing alterations. DNA from twenty teratomas was analysed by single-strand conformational analysis (SSCA) and heteroduplex analysis (HA) to screen for somatic and germline mutations. In nine of these tumours the entire gene was also sequenced. A previously reported polymorphism and a single new sequence variant were identified, neither of which we would predict to be disease-causing alterations. These results suggest that mutations in the coding region of the c-MOS gene do not play a significant role in the genesis of human ovarian teratomas. Images Figure 1 PMID:9635841

  14. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.

  15. Methylation of SFRPs and APC genes in ovarian cancer infected with high risk human papillomavirus.

    PubMed

    Al-Shabanah, Othman Abdulla; Hafez, Mohamed Mahmoud; Hassan, Zeinab Korany; Sayed-Ahmed, Mohamed Mohamed; Abozeed, Waleed Nabeel; Alsheikh, Abdulmalik; Al-Rejaie, Salem Saleh

    2014-01-01

    Secreted frizzled-related protein (SFRP) genes, new tumor suppressor genes, are negative regulators of the Wnt pathway whose alteration is associated with various tumors. In ovarian cancer, SFRPs genes promoter methylation can lead to gene inactivation. This study investigated mechanisms of SFRP and adenomatous polyposis coli (APC) genes silencing in ovarian cancer infected with high risk human papillomavirus. DNA was extracted from 200 formalin-fixed paraffin-embedded ovarian cancer and their normal adjacent tissues (NAT) and DNA methylation was detected by methylation specific PCR (MSP). High risk human papillomavirus (HPV) was detected by nested PCR with consensus primers to amplify a broad spectrum of HPV genotypes. The percentages of SFRP and APC genes with methylation were significantly higher in ovarian cancer tissues infected with high risk HPV compared to NAT. The methylated studied genes were associated with suppression in their gene expression. This finding highlights the possible role of the high risk HPV virus in ovarian carcinogenesis or in facilitating cancer progression by suppression of SFRP and APC genes via DNA methylation.

  16. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    PubMed Central

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-01-01

    Abstract. A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer. PMID:26822943

  17. [RuII(η⁵-C₅H₅)(bipy)(PPh₃)]⁺, a promising large spectrum antitumor agent: cytotoxic activity and interaction with human serum albumin.

    PubMed

    Tomaz, Ana Isabel; Jakusch, Tamás; Morais, Tânia S; Marques, Fernanda; de Almeida, Rodrigo F M; Mendes, Filipa; Enyedy, Eva A; Santos, Isabel; Pessoa, João Costa; Kiss, Tamás; Garcia, M Helena

    2012-12-01

    Ruthenium complexes hold great potential as alternatives to cisplatin in cancer chemotherapy. We present results on the in vitro antitumor activity of an organometallic 'Ru(II)Cp' complex, [Ru(II)Cp(bipy)(PPh(3))][CF(3)SO(3)], designated as TM34 (PPh(3) = triphenylphosphine; bipy = 2,2'-bipyridine), against a panel of human tumor cell lines with different responses to cisplatin treatment, namely ovarian (A2780/A2780cisR, cisplatin sensitive and resistant, respectively), breast (MCF7) and prostate (PC3) adenocarcinomas. TM34 is very active against all tumorigenic cell lines, its efficacy largely surpassing that of cisplatin (CisPt). The high activity of TM34 towards CisPt resistant cell lines possibly suggests a mechanism of action distinct from that of CisPt. The effect of TM34 on the activity of the enzyme poly(ADP-ribose) polymerase 1 (PARP-1) involved in DNA repair mechanisms and apoptotic pathways was also evaluated, and it was found to be a strong PARP-1 ruthenium inhibitor in the low micromolar range (IC(50)=1.0 ± 0.3 μM). TM34 quickly binds to human serum albumin forming a 1:1 complex with a conditional stability constant (log K'~4.0), comparable to that of the Ru(III) complex in clinical trial KP1019. This indicates that TM34 can be efficiently transported by this protein, possibly being involved in its distribution and delivery if the complex is introduced in the blood stream. Albumin binding does not affect TM34 activity, yielding an adduct that maintains cytotoxic properties (against A2780 and A2780cisR cells). Altogether, the properties herein evaluated suggest that TM34 could be an anticancer agent of highly relevant therapeutic value. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The effect of Setarud (IMODTM) on angiogenesis in transplanted human ovarian tissue to nude mice

    PubMed Central

    Hormozi, Maryam; Talebi, Saeed; Khorram Khorshid, Hamid Reza; Zarnani, Amir-Hassan; Kamali, Koorosh; Jeddi-Tehrani, Mahmood; Soltangoraee, Haleh; Akhondi, Mohammad Mehdi

    2015-01-01

    Background: One of the promising methods in fertility preservation among women with cancer is cryopreservation of ovarian cortex but there are many drawbacks such as apoptosis and considerable reduction of follicular density in the transplanted ovary. One solution to reduce ischemic damage is enhancing angiogenesis after transplantation of ovarian cortex tissue. Objective: The aim of this study was to investigate the effect of Setarud, on angiogenesis in transplanted human ovarian tissue. Materials and Methods: In this case control study, twenty four nude mice were implanted subcutaneously, with human ovarian tissues, from four women. The mice were randomly divided into two groups (n=12): the experimental group was treated with Setarud, while control group received only vehicle. Each group was divided into three subgroups (n=4) based on the graft recovery days post transplantation (PT). The transplanted fragments were removed on days 2, 7, and 30 PT and the expression of Angiopoietin-1, Angiopoietin-2, and Vascular endothelial growth factor at both gene and protein levels and vascular density were studied in the grafted ovarian tissues. Results: On the 2nd and 7th day PT, the level of Angiopoietin-1 gene expression in case group was significantly lower than that in control group, while the opposite results were obtained for Angiopoietin-2 and Vascular endothelial growth factor. These results were also confirmed at the protein level. The density of vessels in Setarud group elevated significantly on day 7 PT compared to pre-treatment state. Conclusion: Our results showed that administration of Setarud may stimulates angiogenesis in transplanted human ovarian tissues, although further researches are needed before a clear judgment is made. PMID:26644788

  19. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer

    PubMed Central

    Wen, Wei; Liang, Wei; Wu, Jun; Kowolik, Claudia M.; Buettner, Ralf; Scuto, Anna; Hsieh, Meng-Yin; Hong, Hao; Brown, Christine E.; Forman, Stephen J.; Horne, David; Morgan, Robert; Wakabayashi, Mark; Dellinger, Thanh H.; Han, Ernest S.; Yim, John H.; Jove, Richard

    2015-01-01

    JAK/STAT3 is one of the major signaling pathways that is aberrantly activated in ovarian cancer and associated with tumor progression and poor prognosis in ovarian cancer patients. In this study, we evaluated the therapeutic potential of targeting JAK/STAT3 signaling in ovarian cancer using a peritoneal dissemination mouse model. We developed this mouse model by injecting a metastatic human ovarian cancer cell line, SKOV3-M-Luc, into the peritoneal cavity of immunodeficient mice. This model displayed a phenotype similar to late stage ovarian cancer, including extensive peritoneal metastasis and ascites production. The constitutive activation of STAT3 in human ovarian cancer cells appeared to be mediated by an autocrine-cytokine loop involving the IL-6 family of cytokines and JAK1 kinase. shRNA-mediated knockdown of JAK1 or STAT3 in ovarian cancer cells led to reduced tumor growth, decreased peritoneal dissemination and diminished ascites production, suggesting a critical role of STAT3 in ovarian cancer progression. Similar results were obtained when a small-molecule inhibitor (JAKi) of the JAK1 kinase was used to treat ovarian cancer in this model. In addition, we found that the expression level of IL-6 was correlated with activation of STAT3 in ovarian cancer cells both in vitro and in vivo, suggesting a potential application of IL-6 as a biomarker. Altogether, our results demonstrate that targeting JAK1/STAT3, using shRNA knockdown or a small molecule inhibitor, effectively suppressed ovarian tumor progression and, therefore, could be a potential novel therapeutic approach for treating advanced ovarian cancer. PMID:25319391

  20. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer.

    PubMed

    Wen, Wei; Liang, Wei; Wu, Jun; Kowolik, Claudia M; Buettner, Ralf; Scuto, Anna; Hsieh, Meng-Yin; Hong, Hao; Brown, Christine E; Forman, Stephen J; Horne, David; Morgan, Robert; Wakabayashi, Mark; Dellinger, Thanh H; Han, Ernest S; Yim, John H; Jove, Richard

    2014-12-01

    JAK/STAT3 is one of the major signaling pathways that is aberrantly activated in ovarian cancer and associated with tumor progression and poor prognosis in patients with ovarian cancer. In this study, we evaluated the therapeutic potential of targeting JAK/STAT3 signaling in ovarian cancer using a peritoneal dissemination mouse model. We developed this mouse model by injecting a metastatic human ovarian cancer cell line, SKOV3-M-Luc, into the peritoneal cavity of immunodeficient mice. This model displayed a phenotype similar to late-stage ovarian cancer, including extensive peritoneal metastasis and ascites production. The constitutive activation of STAT3 in human ovarian cancer cells appeared to be mediated by an autocrine cytokine loop involving the IL6 family of cytokines and JAK1 kinase. shRNA-mediated knockdown of JAK1 or STAT3 in ovarian cancer cells led to reduced tumor growth, decreased peritoneal dissemination, and diminished ascites production, suggesting a critical role of STAT3 in ovarian cancer progression. Similar results were obtained when a small-molecule inhibitor (JAKi) of the JAK1 kinase was used to treat ovarian cancer in this model. In addition, we found that the expression level of IL6 was correlated with activation of STAT3 in ovarian cancer cells both in vitro and in vivo, suggesting a potential application of IL6 as a biomarker. Altogether, our results demonstrate that targeting JAK1/STAT3, using shRNA knockdown or a small-molecule inhibitor, effectively suppressed ovarian tumor progression and, therefore, could be a potential novel therapeutic approach for treating advanced ovarian cancer.

  1. Human chorionic gonadotropin β subunit affects the expression of apoptosis-regulating factors in ovarian cancer.

    PubMed

    Szczerba, Anna; Śliwa, Aleksandra; Kubiczak, Marta; Nowak-Markwitz, Ewa; Jankowska, Anna

    2016-01-01

    Expression of human chorionic gonadotropin, especially its free β subunit (hCGβ) were shown to play an important role in cancer growth, invasion and metastasis. It is postulated that hCGβ is one of the factors determining cancer cell survival. To test this hypothesis, we applied two models: an in vitro model of ovarian cancer using OVCAR-3 and SKOV-3 cell lines transfected with the CGB5 gene and an in vivo model of ovarian cancer tissues. The material was tested against changes in expression level of genes encoding factors involved in apoptosis: BCL2, BAX and BIRC5. Overexpression of hCGβ was found to cause a decrease in expression of the analyzed genes in the transfected cells compared with the control cells. In ovarian cancer tissues, high expression of CGB was related to significantly lower BCL2 but higher BAX and BIRC5 transcript levels. Moreover, a low BCL2/BAX ratio, characteristic of advanced stages of ovarian cancer, was revealed. Since tumors were discriminated by a significantly lower LHCGR level than the level noted in healthy fallopian tubes and ovaries, it may be stated that the effect of hCGβ on changes in the expression of apoptosis-regulating agents observed in ovarian cancer is LHCGR-independent. The results of the study suggest that the biological effects evoked by hCGβ are related to apoptosis suppression.

  2. Increasing sensitivity to DNA damage is a potential driver for human ovarian cancer

    PubMed Central

    Jin, Yimei; Xu, Xin; Wang, Xuemeng; Kuang, Henry; Osterman, Michael; Feng, Shi; Han, Deqiang; Wu, Yu; Li, Mo; Guo, Hongyan

    2016-01-01

    Ovarian cancer is one of the most common cancers among women, accounting for more deaths than any other gynecological diseases. However, the survival rate for ovarian cancer has not essentially improved over the past thirty years. Thus, to understand the molecular mechanism of ovarian tumorigenesis is important for optimizing the early diagnosis and treating this disease. In this study, we observed obvious DNA lesions, especially DNA double strand breaks (DSBs) accompanying cell cycle checkpoint activation, in the human epithelial ovarian cancer samples, which could be due to the impaired DNA response machinery. Following this line, we found that these DNA damage response-deficient primary cancer cells were hypersensitive to DNA damage and lost their ability to repair the DNA breaks, leading to genomic instability. Of note, three key DNA damage response factors, RNF8, Ku70, and FEN1 exhibited dramatically decreased expression level, implying the dysfunctional DNA repair pathways. Re-expression of wild type RNF8, Ku70, or FEN1 in these cells restored the DNA lesions and also partially rescued the cells from death. Our current study therefore proposes that accumulated DNA lesions might be a potential driver of ovarian cancer and the impaired DNA damage responders could be the targets for clinical treatment. PMID:27391345

  3. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression.

    PubMed

    So, Wai-Kin; Fan, Qianlan; Lau, Man-Tat; Qiu, Xin; Cheng, Jung-Chien; Leung, Peter C K

    2014-11-03

    Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.

  4. Metabolomic Profiling of the Synergistic Effects of Melittin in Combination with Cisplatin on Ovarian Cancer Cells

    PubMed Central

    Alonezi, Sanad; Tusiimire, Jonans; Wallace, Jennifer; Dufton, Mark J.; Parkinson, John A.; Young, Louise C.; Clements, Carol J.; Park, Jin-Kyu; Jeon, Jong-Woon; Ferro, Valerie A.; Watson, David G.

    2017-01-01

    Melittin, the main peptide present in bee venom, has been proposed as having potential for anticancer therapy; the addition of melittin to cisplatin, a first line treatment for ovarian cancer, may increase the therapeutic response in cancer treatment via synergy, resulting in improved tolerability, reduced relapse, and decreased drug resistance. Thus, this study was designed to compare the metabolomic effects of melittin in combination with cisplatin in cisplatin-sensitive (A2780) and resistant (A2780CR) ovarian cancer cells. Liquid chromatography (LC) coupled with mass spectrometry (MS) was applied to identify metabolic changes in A2780 (combination treatment 5 μg/mL melittin + 2 μg/mL cisplatin) and A2780CR (combination treatment 2 μg/mL melittin + 10 μg/mL cisplatin) cells. Principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) multivariate data analysis models were produced using SIMCA-P software. All models displayed good separation between experimental groups and high-quality goodness of fit (R2) and goodness of prediction (Q2), respectively. The combination treatment induced significant changes in both cell lines involving reduction in the levels of metabolites in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, purine and pyrimidine metabolism, and the arginine/proline pathway. The combination of melittin with cisplatin that targets these pathways had a synergistic effect. The melittin-cisplatin combination had a stronger effect on the A2780 cell line in comparison with the A2780CR cell line. The metabolic effects of melittin and cisplatin in combination were very different from those of each agent alone. PMID:28420117

  5. Exosomes as mediators of platinum resistance in ovarian cancer

    PubMed Central

    Crow, Jennifer; Atay, Safinur; Banskota, Samagya; Artale, Brittany; Schmitt, Sarah; Godwin, Andrew K

    2017-01-01

    Exosomes have been implicated in the cell-cell transfer of oncogenic proteins and genetic material. We speculated this may be one mechanism by which an intrinsically platinum-resistant population of epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells. To explore this possibility we utilized a platinum-sensitive cell line, A2780 and exosomes derived from its resistant subclones, and an unselected, platinum-resistant EOC line, OVCAR10. A2780 cells demonstrate a ~2-fold increase in viability upon treatment with carboplatin when pre-exposed to exosomes from platinum-resistant cells as compared to controls. This coincided with increased epithelial to mesenchymal transition (EMT). DNA sequencing of EOC cell lines revealed previously unreported somatic mutations in the Mothers Against Decapentaplegic Homolog 4 (SMAD4) within platinum-resistant cells. A2780 cells engineered to exogenously express these SMAD4 mutations demonstrate up-regulation of EMT markers following carboplatin treatment, are more resistant to carboplatin, and release exosomes which impart a ~1.7-fold increase in resistance in naive A2780 recipient cells as compared to controls. These studies provide the first evidence that acquired SMAD4 mutations enhance the chemo-resistance profile of EOC and present a novel mechanism in which exchange of tumor-derived exosomes perpetuates an EMT phenotype, leading to the development of subpopulations of platinum-refractory cells. PMID:28060758

  6. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3).

    PubMed

    Kaplan, Fuat; Teksen, Fulya

    2016-03-01

    In this study, we studied the apoptotic and cytotoxic effects of salinomycin on human ovarian cancer cell line (OVCAR-3) as salinomycin is known as a selectively cancer stem cell killer agent. We used immortal human ovarian epithelial cell line (IHOEC) as control group. Ovarian cancer cells and ovarian epithelial cells were treated by different concentrations of salinomycin such as 0.1, 1, and 40 μM and incubated for 24, 48, and 72 h. Dimethylthiazol (MTT) cell viability assay was performed to determine cell viability and toxicity. On the other hand, the expression levels of some of the apoptosis-related genes, namely anti-apoptotic Bcl-2, apoptotic Bax, and Caspase-3 were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, Caspase-3 protein level was also determined. As a result, we concluded that incubation of human OVCAR-3 by 0.1 μM concentration of salinomycin for 24 h killed 40 % of the cancer cells by activating apoptosis but had no effect on normal cells. The apoptotic Bax gene expression was upregulated but anti-apoptotic Bcl-2 gene expression was downregulated. Active Caspase-3 protein level was increased significantly (p < 0.05).

  7. Tyrosine kinase A receptor (trkA): a potential marker in epithelial ovarian cancer.

    PubMed

    Tapia, Verónica; Gabler, Fernando; Muñoz, Marcela; Yazigi, Roberto; Paredes, Alfonso; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2011-04-01

    To evaluate the role of trkA receptor as a potential tumor marker in serous epithelial ovarian cancer and its relationship with the angiogenic factors expression as vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). Additionally, to examine whether NGF and VEGF secreted by epithelial ovarian cancer (EOC) explants and from epithelial ovarian cancer cell line (A2780) are involved in the process of angiogenesis, such as cellular proliferation, migration and differentiation of the human endothelial cell line (EA.hy926). The mRNA levels of VEGF, NGF and trkA receptors were measured using PCR in 60 ovarian samples. Cellular localization and semi-quantitative estimation of VEGF, NGF, total trkA and p-trkA was performed using IHC in epithelial cells. NGF, total trkA and p-trkA protein were also evaluated in endothelial cells from the same tissues. Human endothelial cell line EA.hy926 was cultured with conditioned media obtained from both EOC explants and from the A2780 cell line, with or without NGF stimulus. Significantly higher levels of NGF, total trkA and p-trkA protein expressions were observed in epithelial and endothelial cells in poorly differentiated EOC versus normal ovary. Interestingly, the p-trkA receptor expression level showed the most significant difference and its presence was only found in borderline tumor and EOC samples indicating the importance of trkA receptor in EOC as a potential tumor marker. A significant increase in proliferation, migration and differentiation of EA.hy926 cells was observed with NGF, and this effect was significantly reverted when NGF was immuno-blocked and when a trkA inhibitor was used, showing that NGF is an important angiogenic factor in EOC by activating its trkA receptor. These results indicate that p-trkA may be considered as a new potential tumor marker in EOC, and that NGF may also act as a direct angiogenic factor in EOC. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Anti-proliferative and pro-apoptotic effects from sequenced combinations of andrographolide and cisplatin on ovarian cancer cell lines.

    PubMed

    Yunos, Nurhanan M; Mutalip, Siti S M; Jauri, Muhammad H; Yu, Jun Q; Huq, Fazlul

    2013-10-01

    Andrographolide (Andro) is a diterpenoid that is isolated from Andrographis paniculata and reported to be active against several cancer cell lines. However, few in-depth studies have been carried out on its effects on ovarian cancer cell lines alone or in combination with cisplatin (Cis), which is commonly used to treat ovarian cancer. The aim of this study was to determine the anti-proliferative and apoptotic effects of Andro administered alone and in combination with Cis in the ovarian A2780 and A2780(cisR) cancer cell lines using five different sequences of administration (Cis/Andro h): 0/0h, 4/0 h, 0/4 h, 24/0 h and 0/24 h. The results were evaluated in terms of medium-effect dose (Dm) and combination indices (CI) using the CalcuSyn software. Unlike Cis, whose activity was lower in the resistant A2780(cisR) cell line than in the parent A2780 cell line, Andro was found to be three times more active in the A2780(cisR) cell line as compared to that in A2780 cell line. Synergism was observed when Cis and Andro were administered using the sequences 0/4 h and 4/0 h. The percentage of apoptotic cell death was found to be greater for the 0/4 h combination of Andro and Cis as compared to those values from single-drug treatments. The results may be clinically significant if confirmed in vivo.

  9. Proteome profiling of human epithelial ovarian cancer cell line TOV-112D.

    PubMed

    Gagné, Jean-Philippe; Gagné, Pierre; Hunter, Joanna M; Bonicalzi, Marie-Eve; Lemay, Jean-François; Kelly, Isabelle; Le Page, Cécile; Provencher, Diane; Mes-Masson, Anne-Marie; Droit, Amaud; Bourgais, David; Poirier, Guy G

    2005-07-01

    A proteome profiling of the epithelial ovarian cancer cell line TOV-112D was initiated as a protein expression reference in the study of ovarian cancer. Two complementary proteomic approaches were used in order to maximise protein identification: two-dimensional gel electrophoresis (2DE) protein separation coupled to matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and one-dimensional gel electrophoresis (1DE) coupled to liquid-chromatography tandem mass spectrometry (LC MS/MS). One hundred and seventy-two proteins have been identified among 288 spots selected on two-dimensional gels and a total of 579 proteins were identified with the 1DE LC MS/MS approach. This proteome profiling covers a wide range of protein expression and identifies several proteins known for their oncogenic properties. Bioinformatics tools were used to mine databases in order to determine whether the identified proteins have previously been implicated in pathways associated with carcinogenesis or cell proliferation. Indeed, several of the proteins have been reported to be specific ovarian cancer markers while others are common to many tumorigenic tissues or proliferating cells. The diversity of proteins found and their association with known oncogenic pathways validate this proteomic approach. The proteome 2D map of the TOV-112D cell line will provide a valuable resource in studies on differential protein expression of human ovarian carcinomas while the 1DE LC MS/MS approach gives a picture of the actual protein profile of the TOV-112D cell line. This work represents one of the most complete ovarian protein expression analysis reports to date and the first comparative study of gene expression profiling and proteomic patterns in ovarian cancer.

  10. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro.

    PubMed

    Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Zhang, Lin; Owusu, Lawrence; Liu, Likun; Zhang, Jing; Tang, Yawei; Li, Weiling

    2017-06-09

    Cryptotanshinone, a natural compound isolated from the roots of Salvia miltiorrhiza Bge. (Danshen), is a commonly used traditional Chinese medicine to treat high blood pressure in some countries. It has been shown that Cryptotanshinone induces cancer cells apoptosis and impairs cell migration and invasion. However, the antiproliferation and chemosensitization effects of Cryptotanshinone on ovarian cancer and the underlying mechanism are not fully elucidated. In this study, we evaluated the inhibitory effect of Cryptotanshinone on ovarian cancer cells and explored the underlying molecular mechanism. Additionally, the chemosensitization potential of Cryptotanshinone was evaluated in combination with cisplatin. MTT assay was used for cell viability assessment of ovarian cancer A2780 cells treated with Cryptotanshinone and/ or cisplatin. Flow cytometry was used for apoptosis analysis. Wound healing and transwell assays were used for migratory and invasive potential assessment of Cryptotanshinone-treated ovarian cancer cells. Western blot was used to investigate proteins involved in the mechanisms for metastasis and apoptosis. γH2AX immunocytochemistry was used to detect DNA damage in A2780 cells exposed to Cryptotanshinone and/or cisplatin. Cryptotanshinone significantly induced ovarian cancer A2780 cells apoptosis by activating caspase cascade. Additionally, wound healing and transwell assays revealed that Cryptotanshinone could suppress migration and invasion of ovarian cancer cells and dramatically inhibited MMP-2 and MMP-9 expression. Furthermore, Cryptotanshinone could sensitize A2780 cells to cisplatin treatment in a dose-dependent manner. Our data confirmed the anti-tumor effect of Cryptotanshinone on ovarian cancer cells and provided new findings that Cryptotanshinone could sensitize ovarian cancer cells to chemotherapy. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors.

    PubMed

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  12. Correlating optical coherence elastography based strain measurements with collagen content of the human ovarian tissue.

    PubMed

    Nandy, Sreyankar; Salehi, Hassan S; Wang, Tianheng; Wang, Xiaohong; Sanders, Melinda; Kueck, Angela; Brewer, Molly; Zhu, Quing

    2015-10-01

    In this manuscript, the initial feasibility of a catheter based phase stabilized swept source optical coherence tomography (OCT) system was studied for characterization of the strain inside different human ovarian tissue groups. The ovarian tissue samples were periodically compressed with 500 Hz square wave signal along the axial direction between the surface of an unfocused transducer and a glass cover slide. The displacement and corresponding strain were calculated during loading from different locations for each tissue sample. A total of 27 ex vivo ovaries from 16 patients were investigated. Statistically significant difference (p < 0.001) was observed between the average displacement and strain of the normal and malignant tissue groups. A sensitivity of 93.2% and a specificity of 83% were achieved using 25 microstrain (με) as the threshold. The collagen content of the tissues was quantified from the Sirius Red stained histological sections. The average collagen area fraction (CAF) obtained from the tissue groups were found to have a strong negative correlation (R = -0.75, p < 0.0001) with the amount of strain inside the tissue. This indicates much softer and degenerated tissue structure for the malignant ovaries as compared to the dense, collagen rich structure of the normal ovarian tissue. The initial results indicate that the swept source OCT system can be useful for estimating the elasticity of the human ovarian tissue.

  13. Identification and chromosomal localizations of signal transduction genes associated with human ovarian cancer metastasis.

    PubMed

    Xin, Zhu; Shenhua, Xu; Hanzhou, Mou; Linhui, Gu; Chihong, Zhu; Xianglin, Liu

    2012-12-01

    Gene chip technology can be used to identify and localize signal transduction genes associated with metastasis. We used the human genome U133A gene chip to detect differences in gene expression profiles among high (H) and low (L) metastatic human ovarian cancer cell lines (HO-8910PM, HO-8910), and normal ovarian tissues (C), to identify metastasis-associated signal transduction genes and determine their chromosomal localizations. A total of 37 signal transduction genes showed more than twofold differences in expression levels between the H and L metastatic ovarian cancer cell lines; of these, 21 genes were up-regulated [signal log ratio (SLR)≥1], and 16 genes were down-regulated (SLR≤-1). Most genes were located on chromosome 1 (7 genes, 18.9%), followed by chromosome 8 (5 genes, 13.5%), then chromosomes 6, 11, and 17 (3 genes each, 8.1%). A total of 21 of the differentially expressed genes (56.7%) were localized on the short arm of the chromosome (q). The disruption of signal transduction gene expression may be an important factor associated with ovarian cancer metastasis. The affected signal transduction genes were localized to chromosomes 1, 8, 6, 11, and 17.

  14. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  15. A human monoclonal antibody specific to placental alkaline phosphatase, a marker of ovarian cancer

    PubMed Central

    Ravenni, Niccolò; Weber, Marcel; Neri, Dario

    2014-01-01

    Placental alkaline phosphatase (PLAP) is a promising ovarian cancer biomarker. Here, we describe the isolation, affinity-maturation and characterization of two fully human monoclonal antibodies (termed B10 and D9) able to bind to human PLAP with a dissociation constant (Kd) of 10 and 30 nM, respectively. The ability of B10 and D9 antibodies to recognize the native antigen was confirmed by Biacore analysis, FACS and immunofluorescence studies using ovarian cancer cell lines and freshly-frozen human tissues. A quantitative biodistribution study in nude mice revealed that the B10 antibody preferentially localizes to A431 tumors, following intravenous administration. Anti-PLAP antibodies may serve as a modular building blocks for the development of targeted therapeutic products, armed with cytotoxic drugs, radionuclides or cytokines as payloads. PMID:24247025

  16. Novel cytotoxic agents from an unexpected source: bile acids and ovarian tumor apoptosis.

    PubMed

    Horowitz, Neil S; Hua, Jun; Powell, Matthew A; Gibb, Randall K; Mutch, David G; Herzog, Thomas J

    2007-11-01

    Unique biologic activities have been identified for the 4 different bile acids: cholic acid (CA, chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and ursodeoxycholic acid (UDCA). The aim of this study was to examine and compare the effects of these 4 bile acids on the human ovarian cancer cell lines A2780 and A2780-CP-R(cisplatin-resistant) and to evaluate mechanisms of action. Antiproliferative effects were determined by the cytotoxic MTT assay. Cells undergoing apoptosis were identified by morphologic analysis of cells stained using Diff-Quick and nuclear staining with DAPI and by quantitative nucleosome ELISA assay. Cells were lysed in buffer after 24 h of exposure to three different concentrations of bile acid (50 mM, 200 mM, and 400 mM) and protein concentrations were determined. Cell extracts containing 25 mg of protein were assayed for protein kinase C (PKC) enzyme activity. None of the bile acids stimulated proliferation of ovarian cancer cells. CA and UDCA had only minimal cytotoxic effect even at maximum concentrations. In contrast, DCA and CDCA administration resulted in statistically significant dose-dependent cytotoxicity in both platinum sensitive and platinum-resistant cell lines (p<0.05). Cells incubated with DCA and CDCA exhibited morphologic features characteristic of apoptosis. The quantitative nucleosome ELISA assay demonstrated over 10 times increased nucleosome levels after cells were treated for 24 h by DCA and CDCA at 200 mM and 400 mM as compared to CA or UDCA treatment and to untreated controls (p<0.01). All 4 bile acids reduced PKC activity at concentrations of 200 and 400 mM (p<0.01). CDCA and DCA have significant cytotoxic activity in ovarian cancer cells via induction of apoptosis. The mechanism of apoptosis appears to be mediated by alternative kinases distinct from PKC. CDCA and DCA may have clinical utility in the treatment of ovarian cancer pending in vivo confirmation of activity especially in cisplatin-resistant disease.

  17. Ecteinascidin-743, a new marine natural product with potent antitumor activity on human ovarian carcinoma xenografts.

    PubMed

    Valoti, G; Nicoletti, M I; Pellegrino, A; Jimeno, J; Hendriks, H; D'Incalci, M; Faircloth, G; Giavazzi, R

    1998-08-01

    The antitumor activity of ecteinascidin (ET)-743, a novel marine natural product, was evaluated against a panel of human ovarian carcinoma xenografts characterized by different malignant behaviors and drug responsiveness in nude mice. These tumor models included three xenografts transplanted s.c. (HOC18, HOC22-S, and MNB-PTX-1) into nude mice, representing different levels of sensitivity to cisplatinum (DDP), which was used as reference drug for ovarian carcinoma, and two other xenografts (HOC22 and HOC8), which are highly malignant in the peritoneal cavity of nude mice, representing the growth pattern of this neoplasm. At the maximum tolerated dose of 0.2 mg/kg using an intermittent schedule of one i.v. injection every 4 days, ET-743 was highly active against HOC22-S (sensitive to DDP), inducing long-lasting, complete regressions, and against HOC18 (marginally sensitive to DDP), inducing partial tumor regressions. Moreover, significant growth delay was observed in mice bearing late-stage HOC18 tumor (400-mg tumor weight; nonresponsive to DDP). ET-743, however, was not active against MNB-PTX-1, a tumor that is highly resistant to chemotherapy, including DDP. In the i.p. ovarian carcinoma xenograft model, ET-743 at the maximum tolerated dose induced complete tumor remissions in all mice bearing HOC22 tumor, with 25% histopathologically confirmed cures, and produced marginal tumor growth delay against HOC8. These results indicate that ET-743 is a potent drug against ovarian carcinoma xenografts, being equally as active or more efficacious than DDP in the same tumor line. Our findings with human ovarian carcinoma xenografts justify clinical assessment of this drug with this tumor target.

  18. Adolescent Premature Ovarian Insufficiency Following Human Papillomavirus Vaccination: A Case Series Seen in General Practice.

    PubMed

    Little, Deirdre Therese; Ward, Harvey Rodrick Grenville

    2014-01-01

    Three young women who developed premature ovarian insufficiency following quadrivalent human papillomavirus (HPV) vaccination presented to a general practitioner in rural New South Wales, Australia. The unrelated girls were aged 16, 16, and 18 years at diagnosis. Each had received HPV vaccinations prior to the onset of ovarian decline. Vaccinations had been administered in different regions of the state of New South Wales and the 3 girls lived in different towns in that state. Each had been prescribed the oral contraceptive pill to treat menstrual cycle abnormalities prior to investigation and diagnosis. Vaccine research does not present an ovary histology report of tested rats but does present a testicular histology report. Enduring ovarian capacity and duration of function following vaccination is unresearched in preclinical studies, clinical and postlicensure studies. Postmarketing surveillance does not accurately represent diagnoses in adverse event notifications and can neither represent unnotified cases nor compare incident statistics with vaccine course administration rates. The potential significance of a case series of adolescents with idiopathic premature ovarian insufficiency following HPV vaccination presenting to a general practice warrants further research. Preservation of reproductive health is a primary concern in the recipient target group. Since this group includes all prepubertal and pubertal young women, demonstration of ongoing, uncompromised safety for the ovary is urgently required. This matter needs to be resolved for the purposes of population health and public vaccine confidence.

  19. Chromosomal localisation of two putative 11p oncosuppressor genes involved in human ovarian tumours.

    PubMed Central

    Viel, A.; Giannini, F.; Tumiotto, L.; Sopracordevole, F.; Visentin, M. C.; Boiocchi, M.

    1992-01-01

    In this study, 44 primary or metastatic human ovarian tumours were tested for allelic deletions on the short arm of chromosome 11. Analysis of 12 polymorphic loci by Southern blotting evidenced loss of heterozygosity (LOH) in at least one locus in 41% of cases. Moreover, two hot spots of deletions were tentatively mapped on 11p13 and 11p15.5. Our results demonstrated that LOH at 11p is a common event in ovarian carcinomas and were indicative of the possible existence in 11p of two oncosuppressor genes involved in ovarian carcinogenesis. The similarity observed with 11p allelic losses in Wilms tumours, clustered in 11p13 and 11p15.5 too, suggests that deletion and possibly inactivation of the same growth regulatory genes (WT genes) could also contribute to development of the malignant phenotype in ovarian carcinomas. Finally, a statistically significant association (P = 0.005) between 11p deletions and hepatic involvement was suggested by the analysis of distribution of 11p LOH relative to different clinical and pathological parameters of the tumour patients. Images Figure 1 PMID:1360809

  20. Acetaminophen Enhances Cisplatin- and Paclitaxel-mediated Cytotoxicity to SKOV3 Human Ovarian Carcinoma

    PubMed Central

    Wu, Y. Jeffrey; Neuwelt, Alexander J.; Muldoon, Leslie L.; Neuwelt, Edward A.

    2013-01-01

    Background Ovarian cancer is commonly treated with cisplatin/paclitaxel but many tumors become resistant. Acetaminophen reduced glutathione and enhanced chemotherapy efficacy in treating hepatic cancer. The objective of this study was to examine if acetaminophen enhances the cytotoxicity of cisplatin/paclitaxel in ovarian cancer. Materials and Methods SKOV3 human ovarian carcinoma cells in vitro and a subcutaneous tumor nude rat model were used and treated with cisplatin/paclitaxel with or without acetaminophen. Results In vitro, acetaminophen enhanced apoptosis induced by cisplatin and paclitaxel with similar effects on glutathione, reactive oxygen species and mitochondrial membrane potential but different effects on nuclear factor erythroid 2-related factor 2 (NRF2) translocation. In vivo, acetaminophen was uniformly distributed in tissue and significantly reduced hepatic glutathione. Acetaminophen enhanced cisplatin chemotherapeutic effect by reducing tumor recurrence Conclusion Our results suggest that acetaminophen as a chemoenhancing adjuvant could improve the efficacy of cisplatin and paclitaxel in treating patients with ovarian carcinoma and other tumor types. PMID:23749887

  1. Pathway-Specific Engineered Mouse Allograft Models Functionally Recapitulate Human Serous Epithelial Ovarian Cancer

    PubMed Central

    Szabova, Ludmila; Bupp, Sujata; Kamal, Muhaymin; Householder, Deborah B.; Hernandez, Lidia; Schlomer, Jerome J.; Baran, Maureen L.; Yi, Ming; Stephens, Robert M.; Annunziata, Christina M.; Martin, Philip L.; Van Dyke, Terry A.

    2014-01-01

    The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM) models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC) closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1–deficient tumors and development of relevant biomarkers. PMID:24748377

  2. Distribution volumes of macromolecules in human ovarian and endometrial cancers--effects of extracellular matrix structure.

    PubMed

    Haslene-Hox, Hanne; Oveland, Eystein; Woie, Kathrine; Salvesen, Helga B; Tenstad, Olav; Wiig, Helge

    2015-01-01

    Elements of the extracellular matrix (ECM), notably collagen and glucosaminoglycans, will restrict part of the space available for soluble macromolecules simply because the molecules cannot occupy the same space. This phenomenon may influence macromolecular drug uptake. To study the influence of steric and charge effects of the ECM on the distribution volumes of macromolecules in human healthy and malignant gynecologic tissues we used as probes 15 abundant plasma proteins quantified by high-resolution mass spectrometry. The available distribution volume (VA) of albumin was increased in ovarian carcinoma compared with healthy ovarian tissue. Furthermore, VA of plasma proteins between 40 and 190 kDa decreased with size for endometrial carcinoma and healthy ovarian tissue, but was independent of molecular weight for the ovarian carcinomas. An effect of charge on distribution volume was only found in healthy ovaries, which had lower hydration and high collagen content, indicating that a condensed interstitium increases the influence of negative charges. A number of earlier suggested biomarker candidates were detected in increased amounts in malignant tissue, e.g., stathmin and spindlin-1, showing that interstitial fluid, even when unfractionated, can be a valuable source for tissue-specific proteins. We demonstrate that the distribution of abundant plasma proteins in the interstitium can be elucidated by mass spectrometry methods and depends markedly on hydration and ECM structure. Our data can be used in modeling of drug uptake, and give indications on ECM components to be targeted to increase the uptake of macromolecular substances. Copyright © 2015 the American Physiological Society.

  3. COX2 and PGE2 mediate EGF-induced E-cadherin-independent human ovarian cancer cell invasion.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2014-08-01

    Elevated expression of cyclooxygenase 2 (COX2 (PTGS2)) has been reported to occur in human ovarian cancer and to be associated with poor prognosis. We have previously demonstrated that COX2-derived prostaglandin E2 (PGE2) promotes human ovarian cancer cell invasion. We had also demonstrated that epidermal growth factor (EGF) induces human ovarian cancer cell invasion by downregulating the expression of E-cadherin through various signaling pathways. However, it remains unclear whether COX2 and PGE2 are involved in the EGF-induced downregulation of E-cadherin expression and cell invasion in human ovarian cancer cells. In this study, we showed that EGF treatment induces COX2 expression and PGE2 production in SKOV3 and OVCAR5 human ovarian cancer cell lines. Interestingly, COX2 is not required for the EGF-induced downregulation of E-cadherin expression. In addition, EGF treatment activates the phosphatidylinositol-3-kinase (PI3K)/Akt and cAMP response element-binding protein (CREB) signaling pathways, while only the PI3K/Akt pathway is involved in EGF-induced COX2 expression. Moreover, we also showed that EGF-induced cell invasion is attenuated by treatment with a selective COX2 inhibitor, NS-398, as well as PGE2 siRNA. This study demonstrates an important role for COX2 and its derivative, PGE2, in the mediation of the effects of EGF on human ovarian cancer cell invasion.

  4. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase ( p < 0.05) in expression of apoptotic genes ( Bcl2, Bax, p53) and 13.2- to 27.1-fold increase ( p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  5. L-Carnosine Prevents the Pro-cancerogenic Activity of Senescent Peritoneal Mesothelium Towards Ovarian Cancer Cells.

    PubMed

    Mikuła-Pietrasik, Justyna; Książek, Krzysztof

    2016-02-01

    L-Carnosine inhibits senescence of somatic cells and displays anticancer activity. Here we analyzed if L-carnosine (20 mM) retards senescence of human peritoneal mesothelial cells (HPMCs) and inhibits progression of ovarian cancer cells. Experiments were performed with primary HPMCs established from patients undergoing abdominal surgery and with three ovarian cancer cell lines: A2780, OVCAR-3 and SKOV-3. L-Carnosine retards senescence of HPMCs plausibly via inhibition of mitochondria-related oxidative stress. Prolonged exposure of HPMCs to L-carnosine prevented senescent HPMC-dependent exacerbation of cancer cell adhesion, migration, invasion and proliferation, which may be linked with decreased secretion of various pro-cancerogenic agents by HPMCs. Cancer cells exposed directly to L-carnosine displayed reduced viability, increased frequency of apoptosis and unaltered proliferation. L-carnosine may be a valuable anticancer drug, especially in the context of prevention and therapy of intraperitoneal ovarian cancer metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Luteinizing hormone receptors in human ovarian follicles and corpora lutea during the menstrual cycle

    SciTech Connect

    Yamoto, M.; Nakano, R.; Iwasaki, M.; Ikoma, H.; Furukawa, K.

    1986-08-01

    The binding of /sup 125/I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of /sup 125/I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of /sup 125/I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate that the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle.

  7. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug☆

    PubMed Central

    Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram

    2015-01-01

    Objective Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. Methods The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Results Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Conclusions Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. PMID:25172764

  8. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug.

    PubMed

    Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram

    2014-11-01

    Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Role of human epididymis protein 4 in chemoresistance and prognosis of epithelial ovarian cancer.

    PubMed

    Lee, Seungho; Choi, Seowon; Lee, Yookyung; Chung, Donghae; Hong, Suntaek; Park, Nohhyun

    2017-01-01

    Human epididymis protein 4 (HE4) is a novel biomarker for epithelial ovarian cancer. This study was designed to evaluate the role of HE4 in chemo-response against anti-cancer drugs and prognosis of epithelial ovarian cancer. HE4-depleted cells and HE4-overexpressing cells were generated. The effect of HE4 gene silencing and overexpression was examined using a cell viability assay after exposure to chemotherapeutic agents and the signaling pathway. We studied the expression of HE4 in ovarian cancer tissue and the prognostic significance. Cytoplasmic staining was graded for intensity and percentage of positive cells. The grades were multiplied to determine an H-score. Knockdown of HE4 in OVCAR-3 cells resulted in reduction in cell growth and increased sensitivity to paclitaxel and cisplatin compared to control cells. This effect originated from the decreased activation of cell-growth-related signaling, such as AKT and Erk mediated by epidermal growth factor (EGF), while overexpression of HE4 resulted in enhanced cell growth and suppressed the anti-tumorigenic activity of paclitaxel. Activation of AKT and Erk pathways was enhanced in HE4-overexpressing cells compared to control cells. Based on the results of multivariate analysis, the risk of death was significantly higher in patients with an H-score > 4. HE4 induces chemoresistance against anti-cancer drugs and activates the AKT and Erk pathways to enhance tumor survival. HE4 expression in ovarian cancer tissue is associated with a worse prognosis for epithelial ovarian cancer patients. © 2016 Japan Society of Obstetrics and Gynecology.

  10. A small molecule SMAC mimic LBW242 potentiates TRAIL- and anticancer drug-mediated cell death of ovarian cancer cells.

    PubMed

    Petrucci, Eleonora; Pasquini, Luca; Bernabei, Manuela; Saulle, Ernestina; Biffoni, Mauro; Accarpio, Fabio; Sibio, Simone; Di Giorgio, Angelo; Di Donato, Violante; Casorelli, Assunta; Benedetti-Panici, Pierluigi; Testa, Ugo

    2012-01-01

    Ovarian cancer remains a leading cause of death in women and development of new therapies is essential. Second mitochondria derived activator of caspase (SMAC) has been described to sensitize for apoptosis. We have explored the pro-apoptotic activity of LBW242, a mimic of SMAC/DIABLO, on ovarian cancer cell lines (A2780 cells and its chemoresistant derivative A2780/ADR, SKOV3 and HEY cells) and in primary ovarian cancer cells. The effects of LBW242 on ovarian cancer cell lines and primary ovarian cancer cells was determined by cell proliferation, apoptosis and biochemical assays. LBW242 added alone elicited only a moderate pro-apoptotic effect; however, it strongly synergizes with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or anticancer drugs in inducing apoptosis of both ovarian cancer cell lines and primary ovarian cancer cells. Mechanistic studies show that LBW242-induced apoptosis in ovarian cancer cells is associated with activation of caspase-8. In line with this mechanism, c-FLIP overexpression inhibits LBW242-mediated apoptosis. LBW242 sensitizes ovarian cancer cells to the antitumor effects of TRAIL and anticancer drugs commonly used in clinic. These observations suggest that the SMAC/DIABLO mimic LBW242 could be of value for the development of experimental strategies for treatment of ovarian cancer.

  11. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells.

    PubMed

    Parikh, G; Varadinova, M; Suwandhi, P; Araki, T; Rosenwaks, Z; Poretsky, L; Seto-Young, D

    2010-09-01

    Vitamin D Receptor (VDR) is expressed in both animal and human ovarian tissue, however, the role of vitamin D in human ovarian steroidogenesis is unknown. Cultured human ovarian cells were incubated in tissue culture medium supplemented with appropriate substrates, with or without 50 pM-150 pM or 50 nM-150 nM of 1,25-(OH)2D3, and in the presence or absence of insulin. Progesterone, testosterone, estrone, estradiol, and IGFBP-1 concentrations in conditioned tissue culture medium were measured. Vitamin D receptor was present in human ovarian cells. 1,25-(OH)2D3 stimulated progesterone production by 13% (p<0.001), estradiol production by 9% (p<0.02), and estrone production by 21% (p<0.002). Insulin and 1,25-(OH)2D3 acted synergistically to increase estradiol production by 60% (p<0.005). 1,25-(OH)2D3 alone stimulated IGFBP-1 production by 24% (p<0.001), however, in the presence of insulin, 1,25-(OH)2D3 enhanced insulin-induced inhibition of IGFBP-1 production by 13% (p<0.009). Vitamin D stimulates ovarian steroidogenesis and IGFBP-1 production in human ovarian cells likely acting via vitamin D receptor. Insulin and vitamin D synergistically stimulate estradiol production. Vitamin D also enhances inhibitory effect of insulin on IGFBP-1 production.

  12. New Blocking Antibodies Impede Adhesion, Migration and Survival of Ovarian Cancer Cells, Highlighting MFGE8 as a Potential Therapeutic Target of Human Ovarian Carcinoma

    PubMed Central

    Tibaldi, Lorenzo; Notebaert, Sofie; Dewulf, Melissa; Ngo, Thu Hoa; Zuany-Amorim, Claudia; Amzallag, Nathalie; Bernard-Pierrot, Isabelle; Sastre-Garau, Xavier; Théry, Clotilde

    2013-01-01

    Milk Fat Globule – EGF – factor VIII (MFGE8), also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadherin has been shown to promote survival, epithelial to mesenchymal transition and phagocytosis. A protumoral function of MFGE8 has consequently been documented for a few types of human cancers, including melanoma, a subtype of breast cancers, and bladder carcinoma. Inhibiting the functions of MFGE8 could thus represent a new type of therapy for human cancers. Here, we show by immunohistochemistry on a collection of human ovarian cancers that MFGE8 is overexpressed in 45% of these tumors, and we confirm that it is specifically overexpressed in the triple-negative subtype of human breast cancers. We have established new in vitro assays to measure the effect of MFGE8 on survival, adhesion and migration of human ovarian and triple-negative breast cancer cell lines. Using these assays, we could identify new MFGE8-specific monoclonal antibodies, which efficiently blocked these three tumor-promoting effects of MFGE8. Our results suggest future use of MFGE8-blocking antibodies as new anti-cancer therapeutics in subgroups of ovarian carcinoma, and triple-negative breast carcinoma patients. PMID:23977342

  13. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer

    PubMed Central

    Lee, Hyun Hee; Bellat, Vanessa

    2017-01-01

    Ovarian cancer (OVC) patients who receive chemotherapy often acquire drug resistance within one year. This can lead to tumor reoccurrence and metastasis, the major causes of mortality. We report a transient increase of a small distinctive CXCR4High/CD24Low cancer stem cell population (CXCR4High) in A2780 and SKOV-3 OVC cell lines in response to cisplatin, doxorubicin, and paclitaxel, treatments. The withdrawal of the drug challenges reversed this cell-state transition. CXCR4High exhibits dormancy in drug resistance and mesenchymal-like invasion, migration, colonization, and tumor formation properties. The removal of this cell population from a doxorubicin-resistant A2780 lineage (A2780/ADR) recovered the sensitivity to drug treatments. A cytotoxic peptide (CXCR4-KLA) that can selectively target cell-surface CXCR4 receptor was further synthesized to investigate the therapeutic merits of targeting CXCR4High. This peptide was more potent than the conventional CXCR4 antagonists (AMD3100 and CTCE-9908) in eradicating the cancer stem cells. When used together with cytotoxic agents such as doxorubicin and cisplatin, the combined drug-peptide regimens exhibited a synergistic cell-killing effect on A2780, A2780/ADR, and SKOV-3. Our data suggested that chemotherapy could establish drug-resistant and tumor-initiating properties of OVC via reversible CXCR4 cell state transition. Therapeutic strategies designed to eradicate rather than antagonize CXCR4High might offer a far-reaching potential as supportive chemotherapy. PMID:28196146

  14. Profiling of cytokines in human epithelial ovarian cancer ascites

    PubMed Central

    Matte, Isabelle; Lane, Denis; Laplante, Claude; Rancourt, Claudine; Piché, Alain

    2012-01-01

    Background The behavior of tumor cells is influenced by the composition of the surrounding tumor environment. The importance of ascites in ovarian cancer (OC) progression is being increasingly recognized. The characterization of soluble factors in ascites is essential to understand how this environment affects OC progression. The development of cytokine arrays now allows simultaneous measurement of multiple cytokines per ascites using a single array. Methods We applied a multiplex cytokine array technology that simultaneously measures the level of 120 cytokines in ascites from 10 OC patients. The ascites concentration of a subset (n = 5) of cytokines that was elevated based on the multiplex array was validated by commercially available ELISA. The ascites level of these 5 cytokines was further evaluated by ELISA in a cohort of 38 patients. Kaplan-Meier analysis was used to assess the association of cytokine expression with progression-free survival (PFS) in this cohort. Results We observed a wide variability of expression between different cytokines and levels of specific cytokines also varied in the 10 malignant ascites tested. Fifty-three (44%) cytokines were not detected in any of the 10 ascites. The level of several factors including, among others, angiogenin, angiopoietin-2, GRO, ICAM-1, IL-6, IL-6R, IL-8, IL-10, leptin, MCP-1, MIF NAP-2, osteprotegerin (OPG), RANTES, TIMP-2 and UPAR were elevated in most malignant ascites. Higher levels of OPG, IL-10 and leptin in OC ascites were associated with shorter PFS. IL-10 was shown to promote the anti-apoptotic activity of malignant ascites whereas OPG did not. Conclusion Our data demonstrated that there is a complex network of cytokine expression in OC ascites. Characterization of cytokine profiles in malignant ascites may provide information from which to prioritize key functional cytokines and understand the mechanism by which they alter tumor cells behavior. A better understanding of the cytokine network is

  15. Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment.

    PubMed

    Bondì, Maria Luisa; Emma, Maria Rita; Botto, Chiara; Augello, Giuseppa; Azzolina, Antonina; Di Gaudio, Francesca; Craparo, Emanuela Fabiola; Cavallaro, Gennara; Bachvarov, Dimcho; Cervello, Melchiorre

    2017-02-22

    Curcumin is a natural molecule with proved anticancer efficacy on several human cancer cell lines. However, its clinical application has been limited due to its poor bioavailability. Nanocarrier-based drug delivery approaches could make curcumin dispersible in aqueous media, thus overtaking the limits of its low solubility. The aim of this study was to increase the bioavailability and the antitumoral activity of curcumin, by entrapping it into nanostructured lipid carriers (NLCs). For this purpose here we describe the preparation and characterization of three kinds of curcumin-loaded NLCs. The nanosystems allowed the achievement of a controlled release of curcumin, the amounts of curcumin released after 24 h from Compritol-Captex, Compritol-Miglyol, and Compritol NLCs being, respectively, equal to 33, 28, and 18% w/w on the total entrapped curcumin. Considering the slower curcumin release profile, Compritol NLCs were chosen to perform successive in vitro studies on ovarian cancer cell lines. The results show that curcumin-loaded NLCs maintain anticancer activity, and reduce cell colony survival more effectively than free curcumin. As an example, the ability of A2780S cells to form colonies was decreased after treatment with 5 μM free curcumin by 50% ± 6, whereas, at the same concentration, the delivery of curcumin with NLC significantly (p < 0.05) inhibited colony formation to approximately 88% ± 1, therefore potentiating the activity of curcumin to inhibit A2780S cell growth. The obtained results clearly suggest that the entrapment of curcumin into NLCs increases curcumin efficacy in vitro, indicating the potential use of NLCs as curcumin delivery systems.

  16. The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells.

    PubMed

    Whitworth, Jenny M; Londoño-Joshi, Angelina I; Sellers, Jeffrey C; Oliver, Patsy J; Muccio, Donald D; Atigadda, Venkatram R; Straughn, J Michael; Buchsbaum, Donald J

    2012-04-01

    Retinoids are important modulators of cell growth, differentiation, and proliferation. 9cUAB30, 9cUAB124, and 9cUAB130 are three novel retinoid compounds that show cytotoxic effects in other malignancies. We evaluated these novel retinoids in combination with chemotherapy against ovarian cancer stem cells (CSCs) in vitro and in an ex vivo model. A2780 cells were plated in 96-well plates and treated with retinoid, carboplatin, or combination therapy. Cell viability was evaluated using ATPLite assay. The A2780 cell line was also analyzed for CSCs by evaluating ALDH activity using flow cytometry. A2780 cells treated ex vivo with retinoids and chemotherapy were injected into the flank of athymic nude mice in order to evaluate subsequent tumor initiating capacity. A2780 cells were sensitive to treatment with retinoids and carboplatin. The best treatment resulted from the combination of retinoid 9cUAB130 and carboplatin. Untreated A2780 cells demonstrated ALDH activity in 3.3% of the cell population. Carboplatin treatment enriched ALDH activity to 27.3%, while 9cUAB130±carboplatin maintained the ALDH positive levels similar to untreated controls (2.3% and 6.7%, respectively). Similar results were found in tumorsphere-forming conditions. Flank injections of ex vivo treated A2780 cells resulted in 4/4 mice developing tumors at 40 days in the untreated group, while 0/4 tumors developed in the 9cUAB130 and carboplatin treated group. Combination treatment with carboplatin and retinoids reduced cell-viability, reduced CSC marker expression, and inhibited tumorigenicity, making it a more effective treatment when compared with carboplatin alone. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Methylation Imprinting of H19 and SNRPN Genes in Human Benign Ovarian Teratomas

    PubMed Central

    Miura, K.; Obama, M.; Yun, K.; Masuzaki, H.; Ikeda, Y.; Yoshimura, S.; Akashi, T.; Niikawa, N.; Ishimaru, T.; Jinno, Y.

    1999-01-01

    Summary In humans, studies of female germ cells are very limited by ethics. The current study investigated the usefulness of benign ovarian teratomas as a substitute for ova in analyses of imprinted genes. Twenty-five human benign ovarian teratomas were typed with 45 microsatellite DNA markers and classified according to their genotypic features. Two oppositely imprinted genes, H19 and SNRPN, were then chosen for analysis of their methylation states in these tumors. These analyses revealed that benign ovarian teratomas consist of a mixture of genetically and epigenetically heterogeneous cell populations. In contrast to previous reports, we could document only one case rising from germ cells by meiosis-II nondisjunction. H19 and SNRPN were methylated in individual teratomas to various degrees, ranging from normal somatic cell to expected ovum levels. The allele with residual methylation of H19 was consistent with that methylated in the patient's blood DNA, thus being of paternal origin. Degrees of H19 hypomethylation and SNRPN hypermethylation increased as the cellular origin of the tumors advanced in oogenesis and were closely correlated in individual teratomas. These results could be best explained by the assumption that the primary imprinting is a progressively organized process and suggest that the establishment of primary imprints on different genes might be mechanistically linked, even when those genes are oppositely imprinted. PMID:10521301

  18. Free fatty acid receptor (FFAR) agonists inhibit proliferation of human ovarian cancer cells.

    PubMed

    Hopkins, Mandi M; Meier, Kathryn E

    2017-07-01

    Many cellular actions of omega-3 fatty acids are mediated by two G protein-coupled receptors, FFA1 and FFA4, free fatty acid receptor (FFAR) family members that are activated by these dietary constituents. FFAR agonists inhibit proliferation of human prostate and breast cancer cells. Since omega-3 fatty acids can inhibit ovarian cancer cell growth, the current study tested the potential role of FFARs in the response. OVCAR3 and SKOV3 human ovarian cancer cell lines express mRNA for FFA1; FFA4 mRNA was detected at low levels in SKOV3 but not OVCAR3. Lysophosphatidic acid (LPA) and epidermal growth factor (EGF) stimulated proliferation of both cell lines; these responses were inhibited by eicosopentaneoic acid (EPA) and by GW9508, a synthetic FFAR agonist. The LPA antagonist Ki16425 also inhibited LPA- and EGF-induced proliferation; FFAR agonists had no further effect when added with Ki16425. The results suggest that FFARs are potential targets for ovarian cancer therapy. Copyright © 2017. Published by Elsevier Ltd.

  19. Recognition of serous ovarian tumors in human samples by multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Adur, Javier; Pelegati, Vitor B.; Costa, Leverson F. L.; Pietro, Luciana; de Thomaz, Andre A.; Almeida, Diogo B.; Bottcher-Luiz, Fatima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2011-09-01

    We used a multimodal nonlinear optics microscopy, specifically two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG/THG) microscopies, to observe pathological conditions of ovarian tissues obtained from human samples. We show that strong TPEF + SHG + THG signals can be obtained in fixed samples stained with hematoxylin and eosin (H&E) stored for a very long time, and that H&E staining enhanced the THG signal. We then used the multimodal TPEF-SHG-THG microscopies in a stored file of H&E stained samples of human ovarian cancer to obtain complementary information about the epithelium/stromal interface, such as the transformation of epithelium surface (THG) and the overall fibrillary tissue architecture (SHG). This multicontrast nonlinear optics microscopy is able to not only differentiate between cancerous and healthy tissue, but can also distinguish between normal, benign, borderline, and malignant specimens according to their collagen disposition and compression levels within the extracellular matrix. The dimensions of the layers of epithelia can also be measured precisely and automatically. Our data demonstrate that optical techniques can detect pathological changes associated with ovarian cancer.

  20. Lack of a correlation between micronucleus formation and radiosensitivity in established and primary cultures of human tumours.

    PubMed Central

    Villa, R.; Zaffaroni, N.; Gornati, D.; Costa, A.; Silvestrini, R.

    1994-01-01

    The radiation-induced genotoxic damage in three established cell lines and 15 primary cultures of human malignant melanoma and ovarian carcinoma showing different radiosensitivity was tested by the cytokinesis-block micronucleus assay. A dose-related increase in micronucleus frequency was observed in all the cell systems. The mean number of micronuclei per Gy of ionising radiation per binucleated cell was respectively 0.44 +/- 0.0075 and 0.43 +/- 0.04 for M14 and JR8 malignant melanoma cell lines and 0.19 +/- 0.013 for the A2780 ovarian cancer cell line. The number of micronuclei did not rank the cell lines in the same order of radiosensitivity as clonogenic cell survival, which showed a surviving fraction at 2 Gy of 0.38 +/- 0.02 for JR8, 0.34 +/- 0.05 for M14 and 0.22 +/- 0.007 for A2780. As regards primary tumour cultures, no correlation was observed between micronucleus induction and surviving fraction at 2 Gy. In conclusion, the discrepancy we observed between micronucleus formation and cell death raises doubts about the potential of the micronucleus assay as a preclinical means to predict radiosensitivity. Images Figure 1 PMID:7981062

  1. Classification and analysis of human ovarian tissue using full field optical coherence tomography

    PubMed Central

    Nandy, Sreyankar; Sanders, Melinda; Zhu, Quing

    2016-01-01

    In this study, a full field optical coherence tomography (FFOCT) system was used to analyze and classify normal and malignant human ovarian tissue. 14 ovarian tissue samples (7 normal, 7 malignant) were imaged with the FFOCT system and five features were extracted by analyzing the normalized image histogram from 56 FFOCT images, based on the differences in the morphology of the normal and malignant tissue samples. A generalized linear model (GLM) classifier was trained using 36 images, and sensitivity of 95.3% and specificity of 91.1% was obtained. 20 images were used to test the model, and a sensitivity of 91.6% and specificity of 87.7% was obtained. PMID:28018734

  2. Classification and analysis of human ovarian tissue using full field optical coherence tomography.

    PubMed

    Nandy, Sreyankar; Sanders, Melinda; Zhu, Quing

    2016-12-01

    In this study, a full field optical coherence tomography (FFOCT) system was used to analyze and classify normal and malignant human ovarian tissue. 14 ovarian tissue samples (7 normal, 7 malignant) were imaged with the FFOCT system and five features were extracted by analyzing the normalized image histogram from 56 FFOCT images, based on the differences in the morphology of the normal and malignant tissue samples. A generalized linear model (GLM) classifier was trained using 36 images, and sensitivity of 95.3% and specificity of 91.1% was obtained. 20 images were used to test the model, and a sensitivity of 91.6% and specificity of 87.7% was obtained.

  3. Differential expression of a human kallikrein 5 (KLK5) splice variant in ovarian and prostate cancer.

    PubMed

    Kurlender, Lisa; Yousef, George M; Memari, Nader; Robb, John-Desmond; Michael, Iacovos P; Borgoño, Carla; Katsaros, Dionyssios; Stephan, Carsten; Jung, Klaus; Diamandis, Eleftherios P

    2004-01-01

    The presence of more than one mRNA form is common among kallikrein genes. We identified an mRNA transcript of the human kallikrein gene 5 (KLK5), denoted KLK5 splice variant 1 (KLK5-SV1). This variant has a different 5'-splice site, but encodes the same protein as the classical KLK5 transcript. RT-PCR analysis of this variant transcript expression in 29 human tissues indicated highest expression in the cervix, salivary gland, kidney, mammary gland, and skin. Comparative analysis of the expression levels of KLK5-SV1, another splice variant named KLK5 splice variant 2 (KLK5-SV2), and the classical KLK5 form showed that out of all three mRNA transcripts, the classical form is predominantly expressed (found in more tissues and at higher expression levels) followed by KLK5-SV1. KLK5-SV1 is expressed at high levels in ovarian, pancreatic, breast and prostate cancer cell lines. KLK5-SV1 was also found to be expressed in 9/10 ovarian cancer tissues, but it was not found in one normal ovarian tissue tested. Hormonal regulation experiments suggest that KLK5-SV1 is regulated by steroid hormones in the BT-474 breast cancer cell line. Furthermore, this variant had significantly higher expression in normal prostate tissues compared to their matched cancer tissue counterparts. KLK5-SV1 may have clinical utility in various malignancies and should be further explored as a potential new biomarker for prostate and ovarian cancer.

  4. Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells.

    PubMed

    Deng, Youlin; Zhang, Junhui; Wang, Zhongliang; Yan, Zhengjian; Qiao, Min; Ye, Jixing; Wei, Qiang; Wang, Jing; Wang, Xin; Zhao, Lianggong; Lu, Shun; Tang, Shengli; Mohammed, Maryam K; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Zou, Yulong; Liao, Junyi; Qi, Hongbo; Haydon, Rex C; Luu, Hue H; He, Tong-Chuan; Tang, Liangdan

    2015-12-07

    Ovarian cancer is the most lethal gynecologic malignancy with an overall cure rate of merely 30%. Most patients experience recurrence within 12-24 months of cure and die of progressively chemotherapy-resistant disease. Thus, more effective anti-ovarian cancer therapies are needed. Here, we investigate the possibility of repurposing antibiotic monensin as an anti-ovarian cancer agent. We demonstrate that monensin effectively inhibits cell proliferation, migration and cell cycle progression, and induces apoptosis of human ovarian cancer cells. Monensin suppresses multiple cancer-related pathways including Elk1/SRF, AP1, NFκB and STAT, and reduces EGFR expression in ovarian cancer cells. Monensin acts synergistically with EGFR inhibitors and oxaliplatin to inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Xenograft studies confirm that monensin effectively inhibits tumor growth by suppressing cell proliferation through targeting EGFR signaling. Our results suggest monensin may be repurposed as an anti-ovarian cancer agent although further preclinical and clinical studies are needed.

  5. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides.

    PubMed

    Dharap, S S; Qiu, B; Williams, G C; Sinko, P; Stein, S; Minko, T

    2003-08-28

    Novel targeted proapoptotic anticancer drug delivery systems were developed and evaluated. Poly(ethyleneglycol) (PEG) conjugates were used as carriers. Camptothecin (CPT) was used as an anticancer agent-apoptosis inductor. Two types of molecular targets were investigated: (1) an extracellular membrane receptor specific to ovarian cancer and (2) intracellular controlling mechanisms of apoptosis. Synthetic peptides similar to luteinizing hormone-releasing hormone (LHRH) and BCL-2 homology 3 (BH3) peptide were used as a targeting moiety and a suppressor of cellular antiapoptotic defense, respectively. Three different conjugates (CPT-PEG, CPT-PEG-BH3 and CPT-PEG-LHRH) were synthesized and examined in A2780 human ovarian cancer cells. Cytotoxicity, expression of genes encoding BCL-2, BCL-XL, SMAC, APAF-1 proteins and caspases 3 and 9, the activity of caspases 3 and 9 and apoptosis induction were studied. Taken together the results indicate much higher cytotoxicity and apoptosis-inducing activity of PEG-CPT conjugates when compared to free CPT. Moreover, the effects of targeted CPT-PEG-BH3 and CPT-PEG-LHRH conjugates were more pronounced than the non-targeted PEG-CPT conjugate. The results confirmed the feasibility of this new two-tier molecular targeting strategy for enhancing the efficacy of cancer chemotherapy.

  6. Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells

    NASA Astrophysics Data System (ADS)

    Mohajer, Salman; Ara, Mohammad Hossein Majles; Serahatjoo, Leila

    2016-07-01

    We investigate linear and nonlinear optical properties of standard human ovarian cancer cells (cell line: A2780cp) in vitro. Cells were treated by graphene quantum dots (GQDs) with two special concentrations. Nontoxicity of GQDs was examined in standard biological viability tests. Cancerous cells were fixed on a glass slide; then, interaction of light with biofilms was studied in linear and nonlinear regimes. Absorption spectra of untreated biofilms and biofilms with two different concentrations of GQDs was studied by UV-visible spectrophotometer. Optical behavior of biofilms in a linear regime of intensity (with low-intensity laser exposure) was reported using a simple optical setup. After that, we compared the attenuation of light in biofilm of cancerous cells with and without GQDs. Nonlinear behavior of these biofilms was investigated by a Z-scan setup using a continued wave He-Ne laser. Results showed that GQDs decreased the extinction coefficient and changed the sign and exact value of the nonlinear refractive index of malignant ovarian cells noticeably. The nonlinear refractive index of studied cells with no GQDs treatment was in the order of 10-8 (cm2/w) with a positive sign. This quantity changed to the same order of magnitude with a negative sign after GQDs treatment. Thus, GQDs can be used for cancer diagnosis under laser irradiation.

  7. miR-214-mediated downregulation of RNF8 induces chromosomal instability in ovarian cancer cells.

    PubMed

    Wang, Zheng; Yin, Hao; Zhang, Yuanwei; Feng, Yukun; Yan, Zhaofeng; Jiang, Xiaohua; Bukhari, Ihtisham; Iqbal, Furhan; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Defective DNA damage response (DDR) is frequently associated with carcinogenesis. Abrogation of DDR leads to chromosomal instability, a most common characteristic of tumors. However, the molecular mechanisms underlying regulation of DDR are still elusive. The ubiquitin ligase RNF8 mediates the ubiquitination of γH2AX and recruits 53BP1 and BRCA1 to DNA damage sites which promotes DDR and inhibits chromosomal instability. Though RNF8 is a key player involved in DDR, regulation of its expression is still poorly understood. Here, we show that miR-214 could abrogate DDR by repressing RNF8 expression through direct binding to 3'-untranslated region (3' UTR) of RNF8 mRNA in human ovarian cancer cells. Antagonizing miR-214 by expressing its inhibitors in A2780 cells significantly increased RNF8 expression and thus promoted DNA damage repair. Consistent with the role of miR-214 in regulating RNF8 expression, the impaired DNA repair induced by miR-214 overexpression can be rescued by overexpressing RNF8 mRNA lacking the 3' UTR. Together, our results indicate that down-regulation of RNF8 mediated by miR-214 impedes DNA damage response to induce chromosomal instability in ovarian cancers, which may facilitate the understanding of mechanisms underlying chromosomal instability.

  8. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis

    PubMed Central

    Huang, Haizhi; Chen, Allen Y.; Rojanasakul, Yon; Ye, Xingqian; Rankin, Gary O.; Chen, Yi Charlie

    2015-01-01

    Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks. PMID:26113875

  9. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis.

    PubMed

    Huang, Haizhi; Chen, Allen Y; Rojanasakul, Yon; Ye, Xingqian; Rankin, Gary O; Chen, Yi Charlie

    2015-05-01

    Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.

  10. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    PubMed

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho

    2016-09-01

    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  11. The role of human epididymis protein 4 in the diagnosis of epithelial ovarian cancer.

    PubMed

    Jia, L-T; Zhang, Y-C; Li, J; Tian, Y; Li, J-F

    2016-03-01

    Epithelial ovarian cancer is one of the most lethal female genital tract cancers. Early diagnosis of EOC would benefit the patients a lot. Human epididymis protein 4 (HE4) has been regarded as a new powerful biomarker in diagnosis of EOC; we hope to obtain system knowledge of HE4 and understand the role of HE4 in diagnosis of epithelial ovarian cancer (EOC). We searched Pubmed, Embase, Medline, and Chinese National Knowledge Infrastructure (CNKI) for articles that included HE4's origin, characteristics, detection methods, clinical efficacy alone or combined with CA125, the risk of malignancy index, and the risk of ovarian malignancy algorithm. The diagnostic performance for the EOC and the role in the recurrence and procession in EOC were also discussed. We got 83 most related articles and found that there were significantly difference existing among the studies, such as the clinical characteristics of patients, the methodology for measuring HE4, the different cut-offs for HE4 and so on. HE4 is a promising biomarker for the early diagnosis of EOC. However, each lab should establish its own reference internal of HE4.

  12. Human cord blood mononuclear cell transplantation for the treatment of premature ovarian failure in nude mice

    PubMed Central

    Dang, Jianhong; Jin, Zhijun; Liu, Xiaojun; Hu, Dian; Wang, Zhifeng

    2015-01-01

    Objective: This study explored the potential of human cord blood mononuclear cell (HCMNC) transplantation as a treatment for premature ovarian failure (POF) in a nude mouse model. Methods: Female nude mice were randomly divided into three groups; a normal control group (n = 35), a POF group (POF plus vehicle, n = 35) and a POF plus cell transplantation group (HCMNCs were implanted into the ovaries, n = 35). HCMNCs were isolated by Ficoll density gradient centrifugation and labeled with BrdU. Four weeks after transplantation, the nude mice were sacrificed to determine serum levels of E2, FSH and LH as indicators of ovarian function, and the ovaries were examined both histologically and immunochemically. Results: The transplanted HCMNCs survived in the transplantation group and were detected by BrdU. In the transplantation group, serum levels of E2 significantly increased while serum levels of FSH and LH significantly decreased compared to the POF control group. Additionally, the transplantation group had a recovery in follicle number. Conclusion: HCMNCs can be successfully transplanted into the ovaries of nude mice and can improve ovarian function in POF. PMID:26064319

  13. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo

    PubMed Central

    GAO, SAINAN; FAN, CHAO; HUANG, HUA; ZHU, CHANGLAI; SU, MIN; ZHANG, YUQUAN

    2016-01-01

    Ovarian cancer is the leading cause of mortality due to gynecological malignancy, and vasculogenic mimicry (VM) formation is correlated with poor prognosis. In a previous study, the present authors observed that human chorionic gonadotropin (HCG) could promote VM formation in three-dimensional OVCAR-3 cell cultures. In order to investigate whether HCG could promote VM formation in ovarian cancer in vivo, the role of OVCAR-3 cells overexpressing or depleted of chorionic gonadotropin, beta polypeptide 5 (CGB5, which is the fifth subunit of β-HCG and was identified as the key part of HCG) were injected into nude mice in the present study, while BeWo cells were used as a positive control. The results demonstrated that overexpressed CGB5 promoted xenografts tumor formation in nude mice, and the results of hematoxylin and eosin and cluster of differentiation (CD)34-periodic acid-Schiff dual staining revealed that CGB5 promoted VM formation. Furthermore, reverse transcription-polymerase chain reaction and immunochemistry staining demonstrated that the expression of the vascular markers CD31, vascular endothelial growth factor and factor VIII was also upregulated in the CGB5-overexpressing xenografts tumors. In addition, the expression of luteinizing hormone receptor (LHR), the receptor of CGB5, was increased in CGB5-overexpressing cells. In conclusion, CGB5 may promote tumor growth and VM formation via activation of the LHR signal transduction pathway, which may support a novel strategy for ovarian cancer therapy. PMID:27347165

  14. Expression of cyclin D1 correlates with malignancy in human ovarian tumours.

    PubMed Central

    Barbieri, F.; Cagnoli, M.; Ragni, N.; Pedullà, F.; Foglia, G.; Alama, A.

    1997-01-01

    Cyclin D1 is a cell cycle regulator of G1 progression that has been suggested to play a relevant role in the pathogenesis of several human cancer types. In the current study, the expression of cyclin D1 has been investigated in a series of 33 patients, with benign (10 patients), borderline (five patients) and malignant (18 patients) ovarian disease. Cyclin D1 protein and mRNA content were analysed by Western blotting and reverse transcriptase polymerase chain reaction respectively. The levels of cyclin D1 protein were undetectable in patients with benign disease, detectable in the majority of patients with borderline disease and elevated in those with ovarian carcinomas, being significantly related to the degree of malignancy (carcinoma vs benign, P = 0.0001; benign vs borderline, P = 0.0238). A significant relationship between cyclin D1 expression and tumour proliferative activity was also found (P = 0.000001). Moreover, eight benign lesions, two borderline tumours and 11 carcinomas proved to be suitable for the analysis of cyclin D1 transcript, and emerging data demonstrated significant agreement between protein abundance and mRNA expression. Results from the current study suggest that cyclin D1 expression is associated with the degree of transformation and most probably plays a role in the early development of ovarian malignancy. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:9155044

  15. Clinicopathology of EpCAM and EGFR in Human Epithelial Ovarian Carcinoma

    PubMed Central

    Zheng, Jingying; Zhao, Lijing; Wang, Yi; Zhao, Shuhua; Cui, Manhua

    2017-01-01

    Abstract The objective of this study was to explore the expression of EpCAM and EGFR in human epithelial ovarian cancer (EOC) and their correlation with clinicopathological parameters. The protein expression levels of epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR) were evaluated by immunohistochemistry in formalin-fixed paraffin-embedded specimens from 30 patients with epithelial ovarian carcinoma and 15 normal ovary tissues. Clinicopathological characteristics were gathered by retrospective review of the patients’ files. The correlation between EpCAM and EGFR expression, as well as their association with clinical pathological parameters were investigated. The SPSS 17.0 package was used to perform statistical analyses. The positive expression rates of EpCAM and EGFR were significantly elevated in epithelial ovarian cancer tissues than in normal ovary tissues. The positive expressions of EpCAM and EGFR in EOC were associated with International Federation of Gynecology and Obstetrics (FIGO) stage and tumor differentiation, lymph node metastasis. Spearman correlation analysis demonstrated a significant positive association between EpCAM and EGFR expression in EOC. The co-expression of EpCAM and EGFR may play an important role in the carcinogenesis of EOC and might provide a promising molecular therapeutic target. PMID:28401199

  16. Toward in-vivo photoacoustic imaging of human ovarian tissue for cancer detection

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Kumavor, Patrick; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2011-03-01

    Currently, most of the cancers in the ovary are detected when they have already metastasized to other parts of the body. As a result, ovarian cancer has the highest mortality of all gynecological cancers with a 5-year survival rate of 30% or less [1]. The reason is the lack of reliable symptoms as well as the lack of efficacious screening techniques [2,3]. Thus, there is an urgent need to improve the current diagnostic techniques. We have investigated the potential role of co-registered photoacoustic and ultrasound imaging in ovarian cancer detection. In an effort to bring this technique closer to clinical application, we have developed a co-registered ultrasound and photoacoustic transvaginal probe. A fiber coupling assembly has been developed to deliver the light from around the transducer for reflection geometry imaging. Co-registered ultrasound and photoacoustic images of swine ovaries through vagina wall muscle and human ovaries using the aforementioned probe, demonstrate the potential of photoacoustic imaging to non-invasively detect ovarian cancer in vivo.

  17. Sohlh2 inhibits human ovarian cancer cell invasion and metastasis by transcriptional inactivation of MMP9.

    PubMed

    Zhang, Haiyu; Hao, Chunyan; Wang, Yang; Ji, Shufang; Zhang, Xiaoli; Zhang, Wenfang; Zhao, Qinghao; Sun, Jinhao; Hao, Jing

    2016-07-01

    Identifying key mediators of cancer invasion and metastasis is crucial to the development of new and more effective therapies. We previously identified Sohlh2 as an important inhibitor of ovarian cancer cell proliferation. However, the function of Sohlh2 in cell migration and invasion remains unknown. In this paper, we report a novel Sohlh2 to MMP9 signaling pathway in the invasive ovarian cancer. Using immunohistochemistry staining, we revealed Sohlh2 expression was inversely correlated with the invasive human ovarian cancers. In vitro experiments, forced expression of Sohlh2 led to a significant reduction in cancer cell migration and invasion. Conversely, silencing of Sohlh2 enhanced ovarian cancer cell migration and invasion. Experiments using nude mice demonstrated that the ectopic Sohlh2 expression inhibited the HO8910 cell capability of the metastasis to the lungs and livers. Ectopic overexpression of Sohlh2 in the invasive HO8910 cells reduced the MMP9 expression, whereas Sohlh2 knockdown from the non-invasive, SKOV3 cells increased the MMP9 expression. Promoter activation and binding analyses indicated that Sohlh2 repressed the MMP9 expression by directly acting on the MMP9 gene promoter. Inhibition of MMP9 dramatically blocked the Sohlh2 knockdown-enhanced SKOV3 cell invasion, and ectopic expression of MMP9 compensated for the anti-invasive activity of Sohlh2 in HO8910 cells. Overall, these results demonstrate for the first time that Sohlh2 functions as a tumor metastasis suppressor. Modulation of Sohlh2 expression has the potential to be a target for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

    PubMed Central

    Horiuchi, Akiko; Wang, Cuiju; Kikuchi, Norihiko; Osada, Ryosuke; Nikaido, Toshio; Konishi, Ikuo

    2006-01-01

    BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no significant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma. PMID:19690636

  19. Generation and characterization of human monoclonal antibody HMD4 against ovarian carcinoma and the study of radioimmunoimaging in nude mice

    SciTech Connect

    Qian, H.N.; Cui, H.; Feng, J.; Fu, T.Y.; Wei, P.; Fu, Z.Y. )

    1990-01-01

    Lymphocytes from regional lymph nodes of patients with ovarian carcinoma were immortalized by fusing them with a nonsecreting cell line of murine myeloma (Sp2/0-Ag14). By early cloning and recloning a hybrid cell line, named HMD4, was established. It has secreted human IgG for more than 15 months stably. Chromosome analysis corresponded with the characterization of human-mouse hybridoma. Large quantities of ascites were obtained after hybrid cells injection into the primed nude mice. Human IgG of light chain was detected and purified from the ascites. Twenty-six of 43 (60.5%) epithelial ovarian cancers were positively stained with HMD4 by ABC immunoperoxidase methods while nonepithelial ovarian cancers and almost all benign tumors and normal tissues were negative. The molecular weight of the antigen recognized by HMD4 was 55KDa determined by Western blotting. 131I labeled HMD4 was administered intraperitoneally to nude mice bearing human ovarian epithelial adenocarcinoma; 131I labeled normal human IgG and normal murine IgG were used as controls. Measurements of T/NT and T/B ratios of 131I-HMD4 were done. Radioimaging showed HMD4 clearly localized on tumor regions at 48 and 72 hours and the biodistribution and metabolism of the labeled HMD4 corresponded with the images. The above results indicate that HMD4 was specific to ovarian carcinoma, a hopeful clue for clinical applications.

  20. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines

    PubMed Central

    Peasland, A; Wang, L-Z; Rowling, E; Kyle, S; Chen, T; Hopkins, A; Cliby, W A; Sarkaria, J; Beale, G; Edmondson, R J; Curtin, N J

    2011-01-01

    Background: The ataxia telangiectasia mutated and Rad3-related kinase (ATR) has a key role in the signalling of stalled replication forks and DNA damage to cell cycle checkpoints and DNA repair. It has long been recognised as an important target for cancer therapy but inhibitors have proved elusive. As NU6027, originally developed as a CDK2 inhibitor, potentiated cisplatin in a CDK2-independent manner we postulated that it may inhibit ATR. Methods: Cellular ATR kinase activity was determined by CHK1 phosphorylation in human fibroblasts with inducible dominant-negative ATR-kinase dead expression and human breast cancer MCF7 cells. Cell cycle effects and chemo- and radiopotentiation by NU6027 were determined in MCF7 cells and the role of mismatch repair and p53 was determined in isogenically matched ovarian cancer A2780 cells. Results: NU6027 is a potent inhibitor of cellular ATR activity (IC50=6.7 μ) and enhanced hydroxyurea and cisplatin cytotoxicity in an ATR-dependent manner. NU6027 attenuated G2/M arrest following DNA damage, inhibited RAD51 focus formation and increased the cytotoxicity of the major classes of DNA-damaging anticancer cytotoxic therapy but not the antimitotic, paclitaxel. In A2780 cells sensitisation to cisplatin was greatest in cells with functional p53 and mismatch repair (MMR) and sensitisation to temozolomide was greatest in p53 mutant cells with functional MMR. Importantly, NU6027 was synthetically lethal when DNA single-strand break repair is impaired either through poly(ADP-ribose) polymerase (PARP) inhibition or defects in XRCC1. Conclusion: NU6027 inhibits ATR, impairing G2/M arrest and homologous recombination thus increasing sensitivity to DNA-damaging agents and PARP inhibitors. It provides proof of concept data for clinical development of ATR inhibitors. PMID:21730979

  1. Human kallikrein 5: a potential novel serum biomarker for breast and ovarian cancer.

    PubMed

    Yousef, George M; Polymeris, Mary-Ellen; Grass, Linda; Soosaipillai, Antoninus; Chan, Pak-Cheung; Scorilas, Andreas; Borgoño, Carla; Harbeck, Nadia; Schmalfeldt, Barbara; Dorn, Julia; Schmitt, Manfred; Diamandis, Eleftherios P

    2003-07-15

    The kallikrein family is a group of 15 serine protease genes clustered on chromosome 19q13.4. Human kallikrein (hK) gene 5 (KLK5) is a member of this family and encodes for a secreted serine protease (hK5). KLK5 was shown to be differentially expressed at the mRNA level in breast and ovarian cancer. Until now, detection of hK5 protein in either biological fluids or tissues has not been described due to lack of suitable reagents and methods. The aim of this study was to develop immunological reagents and a sensitive and specific fluorometric immunoassay (ELISA) for hK5, to examine the presence of hK5 in human tissues and biological fluids, and to study the possible clinical utility of hK5 as a biomarker for endocrine-related malignancies. Recombinant hK5 protein was produced and purified using a Pichia pastoris yeast expression system. The protein was used as an immunogen to generate mouse and rabbit polyclonal anti-hK5 antibodies. A sandwich-type microplate immunoassay (ELISA) was developed using these antibodies, coupled with a time-resolved fluorometric detection technique. The ELISA assay was then used to measure hK5 in various biological fluids, tissue extracts, and serum samples from normal individuals and patients with various malignancies. The hK5 ELISA immunoassay has a lower detection limit of 0.1 micro g/liter, is specific for hK5, and has no cross-reactivity with other homologous kallikreins. The dynamic range is 0.1-25 micro g/liter, and within-run and between-run coefficients of variation within this range are <10%. hK5 is found in many tissues, with the highest expression levels seen in the skin, breast, salivary gland, and esophagus. hK5 is present at relatively high levels in milk of lactating women. Whereas the levels of hK5 are almost undetectable in serum of normal individuals (male and female) and patients with diverse malignancies, higher concentrations were found in a proportion of patients with ovarian (69%) and breast (49%) cancer. High

  2. Human kallikrein 14: a new potential biomarker for ovarian and breast cancer.

    PubMed

    Borgoño, Carla A; Grass, Linda; Soosaipillai, Antoninus; Yousef, George M; Petraki, Constantina D; Howarth, David H C; Fracchioli, Stefano; Katsaros, Dionyssios; Diamandis, Eleftherios P

    2003-12-15

    Human kallikrein gene 14 (KLK14) is a recently discovered member of the tissue kallikrein family of secreted serine proteases, which includes hK3/prostate-specific antigen, the best cancer biomarker to date. Given that KLK14 is hormonally regulated, differentially expressed in endocrine-related cancers, and a prognostic marker for breast and ovarian cancer at the mRNA level, we hypothesize that its encoded protein, hK14, like hK3/prostate-specific antigen, may constitute a new biomarker for endocrine-related malignancies. The objective of this study was to generate immunological reagents for hK14, to develop an ELISA and immunohistochemical techniques to study its expression in normal and cancerous tissues and biological fluids. Recombinant hK14 was produced in Pichia pastoris, purified by affinity chromatography, and injected into mice and rabbits for polyclonal antibody generation. Using the mouse and rabbit antisera, a sandwich-type immunofluorometric ELISA and immunohistochemical methodologies were developed for hK14. The ELISA was sensitive (detection limit of 0.1 micro g/liter), specific for hK14, linear from 0 to 20 micro g/liter with between-run and within-run coefficients of variation of <10%. hK14 was quantified in human tissue extracts and biological fluids. Highest levels were observed in the breast, skin, prostate, seminal plasma, and amniotic fluid, with almost undetectable levels in normal serum. hK14 concentration was higher in 40% of ovarian cancer tissues compared with normal ovarian tissues. Serum hK14 levels were elevated in a proportion of patients with ovarian (65%) and breast (40%) cancers. Immunohistochemical analyses indicated strong cytoplasmic staining of hK14 by the epithelial cells of normal and malignant skin, ovary, breast, and testis. In conclusion, we report the first ELISA and immunohistochemical assays for hK14 and describe its distribution in tissues and biological fluids. Our preliminary data indicate that hK14 is a potential

  3. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle

    SciTech Connect

    Shima, K.; Kitayama, S.; Nakano, R.

    1987-05-01

    Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3 beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.

  4. Competitive inhibition of amino acid transport in human preovulatory ovarian follicles.

    PubMed

    Jóźwik, Maciej; Jóźwik, Marcin; Milewska, Anna Justyna; Battaglia, Frederick C; Jóźwik, Michał

    2017-10-01

    To date we have yet to examine whether amino acid (AA) transport in human ovarian follicles is affected by competitive inhibition. In contrast, transplacental transfer of AAs in late-gestation sheep is characterized by reciprocal competition. This phenomenon has been described by algebraic equations of umbilical uptake of AAs based on maternal arterial concentrations. In the present translational study at a university teaching hospital, we verified whether these equations apply to the transport of AAs from blood to follicular fluid (FF) in human preovulatory follicles. For this purpose we used our data on AA concentrations in blood and FF measured earlier by high-performance liquid chromatography in specimens from 14 patients undergoing oocyte retrieval for in vitro fertilization after controlled ovarian stimulation. The main outcome measure was statistical significance of Spearman correlation coefficients for measured versus calculated concentrations of 8 AAs: isoleucine, leucine, valine, phenylalanine, methionine, threonine, lysine, and arginine. Equations for umbilical uptake provided a highly accurate description of blood-to-FF transport for 7 AAs with the exception of lysine: R ≥ 0.899 (p < 0.0001) for the branched-chain AAs, R = 0.829 (p = 0.0003) for threonine, R = 0.754 (p = 0.0019) for arginine, and R = 0.631 (p = 0.0156) for phenylalanine and methionine. We conclude that these equations indicate competitive inhibition between the AAs studied. Our study strongly suggests that many AA transport systems operating in the placenta should also be active in the cells of the preovulatory follicle. Future studies on AA fluxes in human ovarian follicles must consider possible competitive inhibition. AA: amino acid; FF: follicular fluid; HPLC: high-performance liquid chromatography.

  5. The opioid growth factor (OGF) and low dose naltrexone (LDN) suppress human ovarian cancer progression in mice.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-08-01

    The opioid growth factor (OGF) and its receptor, OGFr, serve as a tonically active inhibitory axis regulating cell proliferation in normal cells and a variety of cancers, including human ovarian cancer. Blockade of OGF and OGFr with the nonselective opioid receptor antagonist naltrexone (NTX) upregulates expression of OGF and OGFr. Administration of a low dosage of NTX (LDN) blocks endogenous opioids from opioid receptors for a short period of time (4-6 h) each day, providing a window of 18-20 h for the upregulated opioids and receptors to interact. The present study investigated the repercussions of upregulating the OGF-OGFr axis by treatment with OGF or LDN on human ovarian tumorigenesis in vivo. Female nude mice were transplanted intraperitoneally with SKOV-3 human ovarian cancer cells and treated on a daily basis with OGF (10 mg/kg), LDN (0.1 mg/kg), or an equivalent volume of vehicle (saline). Tumor burden, as well as DNA synthesis, apoptosis, and angiogenesis was assessed in tumor tissue following 40 days of treatment. OGF and LDN markedly reduced ovarian tumor burden (tumor nodule number and weight). The mechanism of action was targeted to an inhibition of tumor cell proliferation and angiogenesis; no changes in cell survival were noted. This study shows that a native opioid pathway can suppress human ovarian cancer in a xenograft model, and provides novel non-toxic therapies for the treatment of this lethal neoplasia. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Preclinical evaluation of olaparib and metformin combination in BRCA1 wildtype ovarian cancer.

    PubMed

    Hijaz, M; Chhina, J; Mert, I; Taylor, M; Dar, S; Al-Wahab, Z; Ali-Fehmi, R; Buekers, T; Munkarah, A R; Rattan, R

    2016-08-01

    BRCA mutated ovarian cancers show increased responsiveness to PARP inhibitors. PARP inhibitors target DNA repair and provide a second hit to BRCA mutated tumors, resulting in "synthetic lethality". We investigated a combination of metformin and olaparib to provide "synthetic lethality" in BRCA intact ovarian cancer cells. Ovarian cancer cell lines (UWB1.289, UWB1.289.BRCA, SKOV3, OVCAR5, A2780 and C200) were treated with a combination of metformin and olaparib. Cell viability was assessed by MTT and colony formation assays. Flow cytometry was used to detect cell cycle events. In vivo studies were performed in SKOV3 or A2780 xenografts in nude mice. Animals were treated with single agent, metformin or olaparib or combination. Molecular downstream effects were examined by immunohistochemistry. Compared to single drug treatment, combination of olaparib and metformin resulted in significant reduction of cell proliferation and colony formation (p<0.001) in ovarian cancer cells. This treatment was associated with a significant S-phase cell cycle arrest (p<0.05). Combination of olaparib and metformin significantly inhibited SKOV3 and A2780 ovarian tumor xenografts which were accompanied with decreased Ki-index (p<0.001). Metformin did not affect DNA damage signaling, while olaparib induced adenosine monophosphate activated kinase activation; that was further potentiated with metformin combination in vivo. Combining PARP inhibitors with metformin enhances its anti-proliferative activity in BRCA mutant ovarian cancer cells. Furthermore, the combination showed significant activity in BRCA intact cancer cells in vitro and in vivo. This is a promising treatment regimen for women with epithelial ovarian cancer irrespective of BRCA status. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Use of a surrogate marker (human secreted alkaline phosphatase) to monitor in vivo tumor growth and anticancer drug efficacy in ovarian cancer xenografts.

    PubMed

    Bao, R; Selvakumaran, M; Hamilton, T C

    2000-09-01

    A limitation to preclinical evaluation of possible anticancer therapy is the objective assessment of efficacy, especially in the presence of small tumor burden or inaccessible disease. This study is designed to test whether human secreted alkaline phosphatase (SEAP) could be used as a soluble marker for in vivo tumor burden. A SEAP expression construct under control of the CMV promoter was created. The SEAP activity in the conditioned medium was evaluated at 24 h and 48 h after the A2780 cell line was transiently transfected with the SEAP vector using Superfect reagent. Stable transfection of A2780 was accomplished by selection of transfectants in G418. SEAP activity of the stable transfectant was determined in conditioned medium and its relationship to tumor cell number was examined. A highly expressing stable transfectant was implanted into immunocompromised mice (2 x 10(6) subcutaneously and 5 x 10(6) intraperitoneally) and peripheral blood was obtained by orbital puncture every 5 days. The relationship between blood SEAP activity and tumor burden was studied. The usefulness of this marker in preclinical assessment of anticancer drug efficacy was evaluated by studying the plasma SEAP activity in xenografted mice treated or not treated with paclitaxel. After transient transfection of the A2780 cell line (5 x 10(5)) with the plasmid, SEAP activity was found in the medium at 24 h (482.0 +/- 2.0 ng/ml) and 48 h (1296.0 +/- 1.0 ng/ml). The in vitro study using a stable transfectant demonstrated that SEAP activity was linearly related to cell numbers (r = 0.99). The in vivo study demonstrated that SEAP was detectable in plasma one day postinjection, long before measurable tumor or detectable intraperitoneal tumor was present. Once detectable SC tumor was present, the SEAP activity correlated well with tumor volume (r = 0. 94-0.97). The plasma SEAP level was reduced after xenografted mice were treated with paclitaxel (20 mg/kg, weekly x5) compared with untreated mice

  8. In vitro evaluation of the anti-apoptotic drug Z-VAD-FMK on human ovarian granulosa cell lines for further use in ovarian tissue transplantation.

    PubMed

    Fransolet, Maïté; Henry, Laurie; Labied, Soraya; Noël, Agnès; Nisolle, Michelle; Munaut, Carine

    2015-10-01

    Because ovarian granulosa cells are essential for oocyte survival, we examined three human granulosa cell lines as models to evaluate the ability of the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) to prevent primordial follicle loss after ovarian tissue transplantation. To validate the efficacy of Z-VAD-FMK, three human granulosa cell lines (GC1a, HGL5, COV434) were treated for 48 h with etoposide (50 μg/ml) and/or Z-VAD-FMK (50 μM) under normoxic conditions. To mimic the ischemic phase that occurs after ovarian fragment transplantation, cells were cultured without serum under hypoxia (1 % O(2)) and treated with Z-VAD-FMK. The metabolic activity of the cells was evaluated by WST-1 assay. Cell viability was determined by FACS analyses. The expression of apoptosis-related molecules was assessed by RT-qPCR and Western blot analyses. Our assessment of metabolic activity and FACS analyses in the normoxic experiments indicate that Z-VAD-FMK protects granulosa cells from etoposide-induced cell death. When cells are exposed to hypoxia and serum starvation, their metabolic activity is reduced. However, Z-VAD-FMK does not provide a protective effect. In the hypoxic experiments, the number of viable cells was not modulated, and we did not observe any modifications in the expressions of apoptosis-related molecules (p53, Bax, Bcl-xl, and poly (ADP-ribose) polymerase (PARP)). The death of granulosa cell lines was not induced in our ischemic model. Therefore, a protective effect of Z-VAD-FMK in vitro for further use in ovarian tissue transplantation could not be directly confirmed. It will be of interest to potentially use Z-VAD-FMK in vivo in xenograft models.

  9. Parthenogenesis in human oocytes that were collected from resected ovarian tissue and matured in vitro.

    PubMed

    Lee, Ho-Joon; Teixeira, Jose

    2009-01-01

    Currently, a major hurdle in the progress of human embryonic stem (hES) cell research is the lack of human oocytes with which to perform experiments. The collection process is a logistical and ethical challenge and usually involves the use of excess oocytes donated after assisted reproduction procedures. We collected resected human ovarian tissue after routine surgical procedures. Oocytes were isolated from the tissue and matured in vitro to the meiosis II (MII) stage, when the first polar body is extruded. With the large antral and smaller preantral follicles, the efficiencies of the maturation were nearly 50% and 25%, respectively. The quality of the matured oocytes was assessed by inducing parthenogenesis and >50% of the in vitro matured oocytes were competent enough to develop pronuclei and 33% developed at least to the two-cell stage 48 h after activation. Parthenotes continued to develop by 72 h but with significant blastomere fragmentation. These results provide evidence that resected ovarian tissue, which is normally discarded, may be a suitable alternative source for oocytes in hES cell research.

  10. Human endometrial mesenchymal stem cells exhibit intrinsic anti-tumor properties on human epithelial ovarian cancer cells

    PubMed Central

    Bu, Shixia; Wang, Qian; Zhang, Qiuwan; Sun, Junyan; He, Biwei; Xiang, Charlie; Liu, Zhiwei; Lai, Dongmei

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal tumor of all gynecologic tumors. There is no curative therapy for EOC thus far. The tumor-homing ability of adult mesenchymal stem cells (MSCs) provide the promising potential to use them as vehicles to transport therapeutic agents to the site of tumor. Meanwhile, studies have showed the intrinsic anti-tumor properties of MSCs against various kinds of cancer, including epithelial ovarian cancer. Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a novel source for adult MSCs and exert restorative function in some diseases. Whether EnSCs endow innate anti-tumor properties on EOC cells has never been reported. By using tumor-bearing animal model and ex vivo experiments, we found that EnSCs attenuated tumor growth by inducing cell cycle arrest, promoting apoptosis, disturbing mitochondria membrane potential and decreasing pro-angiogenic ability in EOC cells in vitro and/or in vivo. Furthermore, EnSCs decreased AKT phosphorylation and promoted nuclear translocation of Forkhead box O-3a (FoxO3a) in EOC cells. Collectively, our findings elucidated the potential intrinsic anti-tumor properties of EnSCs on EOC cells in vivo and in vitro. This research provides a potential strategy for EnSC-based anti-cancer therapy against epithelial ovarian cancer. PMID:27845405

  11. Serum human epididymis protein 4 (HE4) and Risk for Ovarian Malignancy Algorithm (ROMA) as new diagnostic and prognostic tools for epithelial ovarian cancer management

    PubMed Central

    Bandiera, Elisabetta; Romani, Chiara; Specchia, Claudia; Zanotti, Laura; Galli, Claudio; Ruggeri, Giuseppina; Tognon, Germana; Bignotti, Eliana; Tassi, Renata A.; Odicino, Franco; Caimi, Luigi; Sartori, Enrico; Santin, Alessandro D.; Pecorelli, Sergio; Ravaggi, Antonella

    2011-01-01

    BACKGROUND The aim of this work was to analyze the diagnostic and prognostic value of serum human epididymis protein 4 (HE4) and Risk for Ovarian Malignancy Algorithm (ROMA) in epithelial ovarian cancer (EOC). METHODS Preoperative serum samples of 419 women (140 healthy controls, 131 ovarian benign cysts, 34 endometriosis, 114 EOC) were tested for CA125 and HE4 using fully automated methods (Abbott ARCHITECT) and validated cut-off values. RESULTS For the discrimination of benign masses from EOC, in pre-menopausal women the sensitivity and specificity were 92.3% and 59.4% for CA125, 84.6% and 94.2% for HE4, and 84.6% and 81.2% for ROMA while in post-menopausal women the sensitivity and specificity were 94.3% and 82.3% for CA125, 78.2% and 99.0% for HE4, 93.1% and 84.4% for ROMA. In patients with EOC, elevated CA125, HE4 and ROMA levels were associated with advanced FIGO stage, sub-optimally debulking, ascites, positive cytology, lymph node involvement and advanced age (all p≤0.05). Elevated HE4 and ROMA (both p≤0.01), but not CA125 (p=0.0579), were associated with undifferentiated tumours. In multivariable analysis, elevated HE4 and ROMA (all p≤0.05) were independent prognostic factors for shorter overall survival, disease free survival and progression free survival. CONCLUSIONS and IMPACT This study underlines the high specificity of HE4 in discriminating endometriosis and ovarian benign cysts from EOC and the high sensitivity of CA125 in detecting EOC. We demonstrated HE4 and ROMA as independent prognostic factors. Multicenter studies are needed to draw firm conclusions about the applicability of HE4 and ROMA in clinical practice. PMID:22028406

  12. Therapeutic effect of a radiolabeled monoclonal antibody on human ovarian cancer xenograft in nude mice

    SciTech Connect

    Manetta, A.; Satyaswaroop, P.G.; Hamilton, T.; Ozols, R.; Mortel, R.

    1989-03-01

    The therapeutic value of 131I-OC125, a radiolabeled monoclonal antibody directed against a human ovarian tumor associated antigen CA125, was examined in an ascites forming intraperitoneal human ovarian carcinoma nude mouse model. Nude mice were injected intraperitoneally with NIH:OVCAR3 cells. Twenty-one days after tumor transplantation, groups of animals were injected intraperitoneally as follows: Group 1 with 200 microCi of 131I-OC125 (n = 20), Group 2 with 200 microCi of 131I (n = 17), Group 3 with 200 microCi of 131I-IgG (n = 21), Group 4 with 60 micrograms of OC125 (n = 18), and Group 5 was left untreated (n = 21). Survival of the tumor-bearing animals was used as the endpoint of the experiment. Mean survivals were found to be 52 +/- 18 days for the 131I-OC125 group, 53 +/- 16 days for the 131I-IgG group, 49 +/- 13 days for the 131I group, 47 +/- 24 days for the OC125 group, and 47 +/- 15 days for the untreated control. These results would indicate no therapeutic advantage of 131I-OC125 over controls in this animal model. However, other approaches using single as well as multiple radiolabeled monoclonal antibodies need to be tested in this model in order to definitely establish the efficacy of this treatment modality.

  13. PG545 enhances anti-cancer activity of chemotherapy in ovarian models and increases surrogate biomarkers such as VEGF in preclinical and clinical plasma samples.

    PubMed

    Winterhoff, Boris; Freyer, Luisa; Hammond, Edward; Giri, Shailendra; Mondal, Susmita; Roy, Debarshi; Teoman, Attila; Mullany, Sally A; Hoffmann, Robert; von Bismarck, Antonia; Chien, Jeremy; Block, Matthew S; Millward, Michael; Bampton, Darryn; Dredge, Keith; Shridhar, Viji

    2015-05-01

    Despite the utility of antiangiogenic drugs in ovarian cancer, efficacy remains limited due to resistance linked to alternate angiogenic pathways and metastasis. Therefore, we investigated PG545, an anti-angiogenic and anti-metastatic agent which is currently in Phase I clinical trials, using preclinical models of ovarian cancer. PG545's anti-cancer activity was investigated in vitro and in vivo as a single agent, and in combination with paclitaxel, cisplatin or carboplatin using various ovarian cancer cell lines and tumour models. PG545, alone, or in combination with chemotherapeutics, inhibited proliferation of ovarian cancer cells, demonstrating synergy with paclitaxel in A2780 cells. PG545 inhibited growth factor-mediated cell migration and reduced HB-EGF-induced phosphorylation of ERK, AKT and EGFR in vitro and significantly reduced tumour burden which was enhanced when combined with paclitaxel in an A2780 model or carboplatin in a SKOV-3 model. Moreover, in the immunocompetent ID8 model, PG545 also significantly reduced ascites in vivo. In the A2780 maintenance model, PG545 initiated with, and following paclitaxel and cisplatin treatment, significantly improved overall survival. PG545 increased plasma VEGF levels (and other targets) in preclinical models and in a small cohort of advanced cancer patients which might represent a potential biomarker of response. Our results support clinical testing of PG545, particularly in combination with paclitaxel, as a novel therapeutic strategy for ovarian cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ovarian cancer

    MedlinePlus

    ... cancer, CT scan Ovarian cancer dangers Ovarian growth worries Uterus Ovarian cancer Ovarian cancer metastasis References Coleman ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  15. FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells.

    PubMed

    Choi, Eun Jung; Seo, Eun Jin; Kim, Dae Kyoung; Lee, Su In; Kwon, Yang Woo; Jang, Il Ho; Kim, Ki-Hyung; Suh, Dong-Soo; Kim, Jae Ho

    2016-01-19

    Ovarian cancer has the highest mortality rate of all gynecological cancers with a high recurrence rate. It is important to understand the nature of recurring cancer cells to terminally eliminate ovarian cancer. The winged helix transcription factor Forkhead box P1 (FOXP1) has been reported to function as either oncogene or tumor-suppressor in various cancers. In the current study, we show that FOXP1 promotes cancer stem cell-like characteristics in ovarian cancer cells. Knockdown of FOXP1 expression in A2780 or SKOV3 ovarian cancer cells decreased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment, whereas overexpression of FOXP1 in A2780 or SKOV3 ovarian cancer cells increased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment. In addition, overexpression of FOXP1 increased promoter activity of ABCG2, OCT4, NANOG, and SOX2, among which the increases in ABCG2, OCT4, and SOX2 promoter activity were dependent on the presence of FOXP1-binding site. In xenotransplantation of A2780 ovarian cancer cells into nude mice, knockdown of FOXP1 expression significantly decreased tumor size. These results strongly suggest FOXP1 functions as an oncogene by promoting cancer stem cell-like characteristics in ovarian cancer cells. Targeting FOXP1 may provide a novel therapeutic opportunity for developing a relapse-free treatment for ovarian cancer patients.

  16. Human lymphatic endothelial cells contribute to epithelial ovarian carcinoma metastasis by promoting lymphangiogenesis and tumour cell invasion

    PubMed Central

    XIE, YIHONG; ZHONG, YANPING; GAO, TING; ZHANG, XINYING; LI, LI; RUAN, HEYUN; LI, DANRONG

    2016-01-01

    The microenvironment of a tumour is an important factor in ovarian cancer metastasis. The present study aimed to simulate the in vivo microenvironment of an ovarian carcinoma using a co-culture system consisting of human lymphatic endothelial cells (HLECs) and human ovarian carcinoma cells with directional high lymphatic metastasis (SKOV3-PM4s) in order to investigate the role of both cell types in ovarian carcinoma metastasis. The SKOV3-PM4s cultured in the HLEC-conditioned medium exhibited increased numbers of pseudopodia and mitotic figures, proliferated at a faster rate and exhibited enhanced invasion and migratory abilities. Furthermore, the HLECs cultured in SKOV3-PM4-conditioned medium exhibited significant morphological alterations and vacuolisation of the cytoplasm, as well as increased invasion, migratory and tube forming abilities. In addition, spontaneous fusion of the SKOV3-PM4s and HLECs was observed in the co-culture system using laser confocal microscopy. The gelatin zymography assay demonstrated that matrix metalloproteinase-2, which was downregulated in the SKOV3-PM4s, was upregulated in the co-culture system. The results of the present study suggested that the invasion ability of the SKOV3-PM4s was increased in the in vitro co-culture system of SKOV3-PM4 and HLECs. Therefore, alterations in the cell microenvironment may represent a novel strategy for ovarian cancer therapy. PMID:27168777

  17. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness.

    PubMed

    Maggiora, Piera; Lorenzato, Annalisa; Fracchioli, Stefano; Costa, Barbara; Castagnaro, Massimo; Arisio, Riccardo; Katsaros, Dionyssios; Massobrio, Marco; Comoglio, Paolo M; Flavia Di Renzo, Maria

    2003-08-15

    RON is a member of the receptor tyrosine kinase gene family that includes the MET oncogene, whose germline mutations have been causally related to human tumorigenesis. In vitro, RON and MET receptors cross-talk, synergize in intracellular signaling, and cooperate in inducing morphogenic responses. Here we show that the RON and MET oncogenes were expressed in 55% and 56% of human ovarian carcinomas, respectively, and were significantly coexpressed in 42% (P < 0.001). In ovarian carcinoma samples and cell lines we did not find mutations in RON and MET gene kinase domain, nor coexpression of RON and MET receptor ligands (MSP and HGF, respectively). We show that motility and invasiveness of ovarian cancer cells coexpressing MET and RON receptors were elicited by HGF and, to a lesser extent, by MSP. More interestingly, invasion of both reconstituted basement membrane and collagen gel was greatly enhanced by the simultaneous addition of the two ligands. These data suggest that coexpression of the MET and RON receptors confer a selective advantage to ovarian cancer cells and might promote ovarian cancer progression.

  18. Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop.

    PubMed

    Coffman, Lan G; Choi, Yun-Jung; McLean, Karen; Allen, Benjamin L; di Magliano, Marina Pasca; Buckanovich, Ronald J

    2016-02-09

    The tumor microenvironment is critical to cancer growth and therapy resistance. We previously characterized human ovarian carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are multi-potent cells that can differentiate into tumor microenvironment components including fibroblasts, myofibroblasts and adipocytes. We previously reported CA-MSCs, compared to normal MSCs, express high levels of BMP proteins and promote tumor growth by increasing numbers of cancer stem-like cells (CSCs). We demonstrate here that ovarian tumor cell-secreted Hedgehog (HH) induces CA-MSC BMP4 expression. CA-MSC-derived BMP4 reciprocally increases ovarian tumor cell HH expression indicating a positive feedback loop. Interruption of this loop with a HH pathway inhibitor or BMP4 blocking antibody decreases CA-MSC-derived BMP4 and tumor-derived HH preventing enrichment of CSCs and reversing chemotherapy resistance. The impact of HH inhibition was only seen in CA-MSC-containing tumors, indicating the importance of a humanized stroma. These results are reciprocal to findings in pancreatic and bladder cancer, suggesting HH signaling effects are tumor tissue specific warranting careful investigation in each tumor type. Collectively, we define a critical positive feedback loop between CA-MSC-derived BMP4 and ovarian tumor cell-secreted HH and present evidence for the further investigation of HH as a clinical target in ovarian cancer.

  19. ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells.

    PubMed

    Xie, Qi; Su, Jing; Jiao, Bingxuan; Shen, Luyan; Ma, Liwei; Qu, Xianzhi; Yu, Chunyan; Jiang, Xianrui; Xu, Ye; Sun, Liankun

    2016-12-01

    Bcl-2, which belongs to the Bcl-2 family, is frequently overexpressed in various types of cancer cells and contributes to drug resistance. However, the function of Bcl-2 in cisplatin resistance in human ovarian cancer cells is not fully understood. In this study, we found that the pharmacological inhibitor ABT737 or genetic knockdown of Bcl-2 increased cisplatin cytotoxicity in cisplatin-resistant ovarian cancer cells. Additionally, treatment with ABT737 or Bcl-2 siRNA increased cisplatin-induced free Ca2+ levels in the cytosol and mitochondria, which increased endoplasmic reticulum (ER)-associated and mitochondria-mediated apoptosis. In addition, ABT737 or Bcl-2 siRNA increased the ER-mitochondria contact sites induced by cisplatin in cisplatin-resistant SKOV3/DDP ovarian cancer cells. Consistently with the in vitro results, ABT737 potently synergized with cisplatin in inhibiting the growth of human ovarian cancer xenografts in nude mice. Collectively, these results indicate that pharmacological inhibitors or genetic knockdown of Bcl-2 may be a potential strategy for improving cisplatin treatment of ovarian cancer.

  20. Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop

    PubMed Central

    Coffman, Lan G.; Choi, Yun-Jung; McLean, Karen; Allen, Benjamin L.; di Magliano, Marina Pasca; Buckanovich, Ronald J.

    2016-01-01

    The tumor microenvironment is critical to cancer growth and therapy resistance. We previously characterized human ovarian carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are multi-potent cells that can differentiate into tumor microenvironment components including fibroblasts, myofibroblasts and adipocytes. We previously reported CA-MSCs, compared to normal MSCs, express high levels of BMP proteins and promote tumor growth by increasing numbers of cancer stem-like cells (CSCs). We demonstrate here that ovarian tumor cell-secreted Hedgehog (HH) induces CA-MSC BMP4 expression. CA-MSC-derived BMP4 reciprocally increases ovarian tumor cell HH expression indicating a positive feedback loop. Interruption of this loop with a HH pathway inhibitor or BMP4 blocking antibody decreases CA-MSC-derived BMP4 and tumor-derived HH preventing enrichment of CSCs and reversing chemotherapy resistance. The impact of HH inhibition was only seen in CA-MSC-containing tumors, indicating the importance of a humanized stroma. These results are reciprocal to findings in pancreatic and bladder cancer, suggesting HH signaling effects are tumor tissue specific warranting careful investigation in each tumor type. Collectively, we define a critical positive feedback loop between CA-MSC-derived BMP4 and ovarian tumor cell-secreted HH and present evidence for the further investigation of HH as a clinical target in ovarian cancer. PMID:26755648

  1. Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

    PubMed Central

    Motamedian, Ehsan; Ghavami, Ghazaleh; Sardari, Soroush

    2015-01-01

    Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods: Metabolism of cisplatin resistant and sensitive A2780 epithelial ovarian cancer cells and normal ovarian epithelium has been studied using a generic human genome-scale metabolic model and transcription data. Result: The results demonstrate that the most different metabolisms belong to resistant and normal models, and the different reactions are involved in various metabolic pathways. However, large portion of distinct reactions are related to extracellular transport for three cell lines. Capability of metabolic models to secrete lactate was investigated to find the origin of Warburg effect. Computational results introduced SLC25A10 gene, which encodes mitochondrial dicarboxylate transporter involved in exchanging of small metabolites across the mitochondrial membrane that may play key role in high growing capacity of sensitive and resistant cancer cells. The metabolic models were also used to find single and combinatorial targets that reduce the cancer cells growth. Effect of proposed target genes on growth and oxidative phosphorylation of normal cells were determined to estimate drug side-effects. Conclusion: The deletion results showed that although the cisplatin did not cause resistant cancer cells death, but it shifts the cancer cells to a more vulnerable metabolism. PMID:25945240

  2. Orthotopic xenografts of human melanoma and colonic and ovarian carcinoma in sheep to evaluate radioimmunotherapy.

    PubMed Central

    Turner, J. H.; Rose, A. H.; Glancy, R. J.; Penhale, W. J.

    1998-01-01

    Extrapolation to humans from experimental radioimmunotherapy in nude mouse xenograft models is confounded by large relative tumour size and small volume of distribution in mice allowing tumour uptake of radiolabelled antibodies unattainable in patients. Our large animal model of human tumours in cyclosporin-immunosuppressed sheep demonstrated tumour uptake of targeted radiolabelled monoclonal antibodies comparable with uptakes reported in clinical trials. Sheep immunosuppression with daily intravenous cyclosporin augmented by oral ketoconazole maintained trough blood levels of cyclosporin within the range 1000-1500 ng ml(-1). Human tumour cells were transplanted orthotopically by inoculation of 10(7) cells: SKMEL melanoma subcutaneously; LS174T and HT29 colon carcinoma into bowel, peritoneum and liver; and JAM ovarian carcinoma into ovary and peritoneum. Tumour xenografts grew at all sites within 3 weeks of inoculation, preserving characteristic morphology without evidence of necrosis or host rejection. Lymphatic metastasis was demonstrated in regional nodes draining xenografts of melanoma and ovarian carcinoma. Colonic LS1 74T xenografts produced mucin and carcinoembryonic antigen (CEA). The anti-CEA IgG1 monoclonal antibody A5B7 was radiolabelled with iodine-131 and administered intravenously to sheep. Peak uptake at 5 days in orthotopic human tumour transplants in gut was 0.027% DI g(-1) (percentage of injected dose per gram) and 0.034% DI g(-1) in hepatic metastases with tumour to blood ratios of 2-2.5. Non-specific tumour uptake in melanoma was 0.003% DI g(-1). Uptake of radiolabelled monoclonal antibody in human tumours in our large animal model is comparable with that observed in patients and may be more realistic than nude mice xenografts for prediction of clinical efficacy of radioimmunotherapy. Images Figure 1 Figure 2 Figure 3 PMID:9716032

  3. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis

    PubMed Central

    Turola, Elena; Petta, Salvatore; Vanni, Ester; Milosa, Fabiola; Valenti, Luca; Critelli, Rosina; Miele, Luca; Maccio, Livia; Calvaruso, Vincenza; Fracanzani, Anna L.; Bianchini, Marcello; Raos, Nazarena; Bugianesi, Elisabetta; Mercorella, Serena; Di Giovanni, Marisa; Craxì, Antonio; Fargion, Silvia; Grieco, Antonio; Cammà, Calogero; Cotelli, Franco; Villa, Erica

    2015-01-01

    ABSTRACT Contrasting data exist on the effect of gender and menopause on the susceptibility, development and liver damage progression in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether menopause is associated with the severity of liver fibrosis in individuals with NAFLD and to explore the issue of ovarian senescence in experimental liver steatosis in zebrafish. In 244 females and age-matched males with biopsy-proven NAFLD, we assessed anthropometric, biochemical and metabolic features, including menopausal status (self-reported); liver biopsy was scored according to ‘The Pathology Committee of the NASH Clinical Research Network’. Young and old male and female zebrafish were fed for 24 weeks with a high-calorie diet. Weekly body mass index (BMI), histopathological examination and quantitative real-time PCR analysis on genes involved in lipid metabolism, inflammation and fibrosis were performed. In the entire cohort, at multivariate logistic regression, male gender [odds ratio (OR): 1.408, 95% confidence interval (95% CI): 0.779-2.542, P=0.25] vs women at reproductive age was not associated with F2-F4 fibrosis, whereas a trend was observed for menopause (OR: 1.752, 95% CI: 0.956-3.208, P=0.06). In women, menopause (OR: 2.717, 95% CI: 1.020-7.237, P=0.04) was independently associated with F2-F4 fibrosis. Similarly, in overfed zebrafish, old female fish with failing ovarian function [as demonstrated by extremely low circulating estradiol levels (1.4±0.1 pg/µl) and prevailing presence of atretic follicles in the ovaries] developed massive steatosis and substantial fibrosis (comparable with that occurring in males), whereas young female fish developed less steatosis and were totally protected from the development of fibrosis. Ovarian senescence significantly increases the risk of fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis. PMID:26183212

  4. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer

    PubMed Central

    Ma, Zebiao; Wang, Xiaojing; He, Jiehua

    2017-01-01

    Epithelial ovarian cancer (EOC) is one of the deadly gynecological malignancies. The function of protein kinase CK2α (CK2α) in EOC is still unknown. Our study aimed to investigate the relationship between the protein expression of CK2α and the tumor progression, the prognosis of human EOC. In this study, we analyzed the expression levels of CK2α through Western blot, using EOC cell lines like A2780, HO8910, COV644, OVCAR3, SKOV3, and the primary normal ovarian surface epithelial (NOSE) cells. Furthermore, OVCAR3 and SKOV3 EOC cells were employed as a cellular model to study the role of CK2α on cell growth, migration, invasion, apoptosis, and cell cycle distribution. In addition, we investigated CK2α protein expression in tumor tissues from patients with EOC by immunohistochemistry and analyzed the association between CK2α expression and clinicopathologic parameters and prognosis of EOC patients. And we found that compared with NOSE cells, CK2α protein expression was increased in A2780, HO8910, OVCAR3, and SKOV3 ovarian cancer cell lines. Decreased CK2α expression suppressed OVCAR3 and SKOV3 cell growth and induced more apoptosis. CK2α knockdown using specific siRNAs inhibited migration and invasion ability of OVCAR3 and SKOV3 cells. In addition, high CK2α protein expression was found in 68.4% (80/117) of EOC patients. Increased CK2α expression of was significantly correlated with FIGO staging and peritoneal cytology. Patients with higher CK2α expression had a significantly poorer overall survival compared with those with lower CK2α expression. Multi-variate Cox regression analysis proved that increased CK2α expression was an independent prognostic marker for EOC. Taken together, our data displayed that CK2α may play a role in tumor aggressive behavior of EOC and could be used as a marker for predicting prognosis of EOC patient. High CK2α expression might predict poor patient survival. PMID:28355289

  5. Individuality in FGF1 expression significantly influences platinum resistance and progression-free survival in ovarian cancer

    PubMed Central

    Smith, G; Ng, M T H; Shepherd, L; Herrington, C S; Gourley, C; Ferguson, M J; Wolf, C R

    2012-01-01

    Background: Ovarian cancer is frequently advanced at presentation when treatment is rarely curative. Response to first-line platinum-based chemotherapy significantly influences survival, but clinical response is unpredictable and is frequently limited by the development of drug-resistant disease. Methods: We used qRT–PCR analysis to assess intertumour differences in the expression of fibroblast growth factor 1 (FGF1) and additional candidate genes in human ovarian tumours (n=187), and correlated individuality in gene expression with tumour histology, chemotherapy response and survival. We used MTT assays to assess platinum chemosensitivity in drug-sensitive and drug-resistant ovarian cell lines. Results: Marked intertumour differences in gene expression were observed, with each tumour having a unique gene expression profile. Nine genes, including FGF1 (P=1.7 × 10−5) and FGFR2 (P=0.003), were differentially expressed in serous and nonserous tumours. MDM2 (P=0.032) and ERBB2 (P=0.064) expression was increased in platinum-sensitive patients, and FGF1 (adjusted log-rank test P=0.006), FGFR2 (P=0.04) and PDRFRB expression (P=0.037) significantly inversely influenced progression-free survival. Stable FGF1 gene knockdown in platinum-resistant A2780DPP cells re-sensitised cells to both cisplatin and carboplatin. Conclusion: We show for the first time that FGF1 is differentially expressed in high-grade serous ovarian tumours, and that individuality in FGF1 expression significantly influences progression-free survival and response to platinum-based chemotherapy. PMID:22990650

  6. Chikusetsusaponin IVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells.

    PubMed

    Chen, Xin; Wu, Qiu-Shuang; Meng, Fan-Cheng; Tang, Zheng-Hai; Chen, Xiuping; Lin, Li-Gen; Chen, Ping; Qiang, Wen-An; Wang, Yi-Tao; Zhang, Qing-Wen; Lu, Jin-Jian

    2016-12-01

    Panacis Japonici Rhizoma (PJR) is one of the most famous Chinese medical herbs that is known for exhibiting potential anti-cancer effects. This study aims to isolate and investigate the anti-cancer potential of saponins from PJR in ovarian cancer cells. The compounds were separated by comprehensive chromatographic methods. By comparison of the 1H- and 13C NMR data, as well as the HR-ESI-MS data, with the corresponding references, the structures of compounds were determined. MTT assay was performed to evaluate cell viability, along with flow cytometry for cell cycle analysis. JC-1 staining, Annexin V-PI double staining as well as Hoechst 33; 342 staining were used for detecting cell apoptosis. Western blot analysis was conducted to determine the relative protein level. Transwell assays were performed to investigate the effect of the saponin on cell migration and invasion and zymography experiments were used to detect the enzymatic activities. Eleven saponins were isolated from PJR and their anti-proliferative effects were evaluated in human ovarian cancer cells. Chikusetsusaponin IVa methyl ester (1) exhibited the highest anti-proliferative potential among these isolates with the IC50 values at less than 10 µM in both ovarian cancer A2780 and HEY cell lines. Compound 1 induced G1 cell cycle arrest accompanied with an S phase decrease, and down-regulated the expression of cyclin D1, CDK2, and CDK6. Further study showed that compound 1 effectively decreased the cell mitochondrial membrane potential, increased the annexin V positive cells and nuclear chromatin condensation, as well as enhanced the expression of cleaved PARP, Bax and cleaved-caspase 3 while decreasing that of Bcl-2. Moreover, compound 1 suppressed the migration and invasion of HEY and A2780 cells, down-regulated the expression of Cdc42, Rac, RohA, MMP2 and MMP9, and decreased the enzymatic activities of MMP2 and MMP9. These results provide a comprehensive evaluation of compound 1 as a potential agent

  7. Overexpression of Lewis y antigen promotes human epididymis protein 4-mediated invasion and metastasis of ovarian cancer cells.

    PubMed

    Zhuang, Huiyu; Hu, Zhenhua; Tan, Mingzi; Zhu, Liancheng; Liu, Juanjuan; Liu, Dawo; Yan, Limei; Lin, Bei

    2014-10-01

    To study Human epididymis protein 4 (HE4) surface fucosylation and to determine the effects and significance of Lewis y antigen on HE4-mediated invasion and metastasis of ovarian cancer cells, we investigated four types of ovarian cancer cells and found that six fucosylated antigens (Lewis y, Lewis x, Lewis a, Lewis b, sLewis a, and sLewis x) were identified on HE4 in ovarian cancer cells. Moreover, modification of the type II sugar chain (Lewis y, Lewis x, and sLewis x) was significantly higher than the type I sugar chain (Lewis a, Lewis b, sLewis a) of the lactose series. To confirm the effects of Lewis y antigen on HE4-mediated invasion and metastasis of ovarian cancer cells, the CaoV-3 cells with high Lewis y antigen on the HE4 surface and ES-2 cells, with high Lewis x antigen but low Lewis y antigen, were investigated. We found that the expression levels of HE4 and Lewis y increased in both cell lines while the level of Lewis x didn't have any change after transfection. Furthermore, the high expression of Lewis y antigen significantly enhanced the HE4-mediated invasion and metastasis of ovarian cancer cells. The invasion and metastasis capacities were significantly decreased after Lewis y antibody blocking. This study demonstrates that overexpression of the Lewis y antigen on HE4 promotes ovarian cancer cell invasion and metastasis, which is likely to be used as a target for the clinical treatment of ovarian cancer. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    SciTech Connect

    Woods, Dori C.; Johnson, A.L.

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  9. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.

    PubMed

    Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie

    2014-03-01

    What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings

  10. Preclinical activity of melflufen (J1) in ovarian cancer

    PubMed Central

    Viktorsson, Kristina; Velander, Ebba; Nygren, Peter; Uustalu, Maria; Juntti, Therese; Lewensohn, Rolf; Larsson, Rolf; Spira, Jack; De Vlieghere, Elly; Ceelen, Wim P.; Gullbo, Joachim

    2016-01-01

    Ovarian cancer carries a significant mortality. Since symptoms tend to be minimal, the disease is often diagnosed when peritoneal metastases are already present. The standard of care in advanced ovarian cancer consists of platinum-based chemotherapy combined with cytoreductive surgery. Unfortunately, even after optimal cytoreduction and adjuvant chemotherapy, most patients with stage III disease will develop a recurrence. Intraperitoneal administration of chemotherapy is an alternative treatment for patients with localized disease. The pharmacological and physiochemical properties of melflufen, a peptidase potentiated alkylator, raised the hypothesis that this drug could be useful in ovarian cancer and particularily against peritoneal carcinomatosis. In this study the preclinical effects of melflufen were investigated in different ovarian cancer models. Melflufen was active against ovarian cancer cell lines, primary cultures of patient-derived ovarian cancer cells, and inhibited the growth of subcutaneous A2780 ovarian cancer xenografts alone and when combined with gemcitabine or liposomal doxorubicin when administered intravenously. In addition, an intra- and subperitoneal xenograft model showed activity of intraperitoneal administered melflufen for peritoneal carcinomatosis, with minimal side effects and modest systemic exposure. In conclusion, results from this study support further investigations of melflufen for the treatment of peritoneal carcinomatosis from ovarian cancer, both for intravenous and intraperitoneal administration. PMID:27528037

  11. CAP1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation.

    PubMed

    Hua, Minhui; Yan, Sujuan; Deng, Yan; Xi, Qinghua; Liu, Rong; Yang, Shuyun; Liu, Jian; Tang, Chunhui; Wang, Yingying; Zhong, Jianxin

    2015-04-01

    Adenylate cyclase-associated protein 1 (CAP1) regulates both actin filaments and the Ras/cAMP pathway in yeast, and has been found play a role in cell motility and in the development of certain types of cancer. In the present study, we investigated CAP1 gene expression in human epithelial ovarian cancer (EOC). Western blot analysis and immunohistochemistry were performed using EOC tissue samples and the results revealed that CAP1 expression increased with the increasing grade of EOC. In the normal ovarian tissue samples however, CAP1 expression was barely detected. Using Pearson's χ2 test, it was demonstrated that CAP1 expression was associated with the histological grade and Ki-67 expression. Kaplan-Meier analysis revealed that a higher CAP1 expression in patients with EOC was associated with a poorer prognosis. In in vitro experiments using HO-8910 EOC cells, the expression of CAP1 was knocked down using siRNA. The proliferation of the HO-8910 cells was then determined by cell cycle analysis and cell proliferation assay using the cell counting kit-8 and flow cytometry. The results revealed that the loss of CAP1 expression inhibited cell cycle progression. These findings suggest that a high expression of CAP1 is involved in the pathogenesis of EOC, and that the downregulation of CAP1 in tumor cells may be a therapeutic target for the treatment of patients with EOC.

  12. Ultrasound image attributes of human ovarian dominant follicles during natural and oral contraceptive cycles

    PubMed Central

    Birtch, Rebecca L; Baerwald, Angela R; Olatunbosun, Olufemi A; Pierson, Roger A

    2005-01-01

    Background Computer-assisted analyses were used to examine ultrasound image attributes of human dominant ovarian follicles that developed during natural and oral contraceptive (OC) cycles. We hypothesized that image attributes of natural cycle follicles would quantitatively differ from those in OC cycles and that OC cycle follicles would possess image attributes indicative of atresia. Methods Dominant ovarian follicles of 18 clinically normal women were compared using transvaginal ultrasonography for the 7 days before ovulation during a natural cycle (n = 9) or the 7 days before peak estradiol in women using OC (n = 11). Follicles were analyzed using region and line techniques designed to compare the image attributes numerical pixel value (NPV), pixel heterogeneity (PH) and area under the curve (AUC). Results NPV was higher in OC cycle follicles with region analysis and tended to be higher with line analysis (p = 0.005 and p = 0.06, respectively). No differences were observed in two other image attributes (AUC and PH), measured with either technique, between natural and OC cycle follicles. Conclusion The increased NPV value of OC cycle follicles and lack of differences in PH and AUC values between natural cycle and OC cycle follicles did not support the hypothesis that OC cycle follicles would show ultrasonographically detectable signs of atresia. Image attributes observed in OC cycle follicles were not clearly indicative of atresia nor were they large enough to preclude preovulatory physiologic status in OC cycle follicles. PMID:15829004

  13. Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells.

    PubMed

    Safaei, Roohangiz; Katano, Kuniyuki; Larson, Barrett J; Samimi, Goli; Holzer, Alison K; Naerdemann, Wiltrud; Tomioka, Mika; Goodman, Murray; Howell, Stephen B

    2005-01-15

    We sought to identify the subcellular compartments in which cisplatin [cis-diamminedichloroplatinum (DDP)] accumulates in human ovarian carcinoma cells and define its export pathways. Deconvoluting digital microscopy was used to identify the subcellular location of fluorescein-labeled DDP (F-DDP) in 2008 ovarian carcinoma cells stained with organelle-specific markers. Drugs that block vesicle movement were used to map the traffic pattern. F-DDP accumulated in vesicles and were not detectable in the cytoplasm. F-DDP accumulated in the Golgi, in vesicles belonging to the secretory export pathway, and in lysosomes but not in early endosomes. F-DDP extensively colocalized with vesicles expressing the copper efflux protein, ATP7A, whose expression modulates the cellular pharmacology of DDP. Inhibition of vesicle trafficking with brefeldin A, wortmannin, or H89 increased the F-DDP content of vesicles associated with the pre-Golgi compartments and blocked the loading of F-DDP into vesicles of the secretory pathway. The importance of the secretory pathway was confirmed by showing that wortmannin and H89 increased whole cell accumulation of native DDP. F-DDP is extensively sequestered into vesicular structures of the lysosomal, Golgi, and secretory compartments. Much of the distribution to other compartments occurs via vesicle trafficking. F-DDP detection in the vesicles of the secretory pathway is consistent with a major role for this pathway in the efflux of F-DDP and DDP from the cell.

  14. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization

    PubMed Central

    Adhikary, Till; Wortmann, Annika; Hoffmann, Nathalie; Bieringer, Tim; Nist, Andrea; Stiewe, Thorsten; Jansen, Julia M.; Wagner, Uwe; Müller-Brüsselbach, Sabine; Müller, Rolf

    2016-01-01

    Macrophages occur as resident cells of fetal origin or as infiltrating blood monocyte-derived cells. Despite the critical role of tumor-associated macrophages (TAMs) in tumor progression, the contribution of these developmentally and functionally distinct macrophage subsets and their alteration by the tumor microenvironment are poorly understood. We have addressed this question by comparing TAMs from human ovarian carcinoma ascites, resident peritoneal macrophages (pMPHs) and monocyte-derived macrophages (MDMs). Our study revealed striking a similarity between TAMs and pMPHs, which was considerably greater that the resemblance of TAMs and MDMs, including their transcriptomes, their inflammation-related activation state, the presence of receptors mediating immune functions and the expression of tumor-promoting mediators. Consistent with these results, TAMs phagocytized bacteria, presented peptide antigens and activated cytotoxic T cells within their pathophysiological environment. These observations support the notion that tumor-promoting properties of TAMs may reflect, at least to some extent, normal features of resident macrophages rather than functions induced by the tumor microenvironment. In spite of these surprising similarities between TAMs and pMPHs, bioinformatic analyses identified a TAM-selective signature of 30 genes that are upregulated relative to both pMPHs and MDMs. The majority of these genes is linked to extracellular matrix (ECM) remodeling, supporting a role for TAMs in cancer cell invasion and ovarian cancer progression. PMID:27659538

  15. Nivolumab effectively inhibit platinum-resistant ovarian cancer cells via induction of cell apoptosis and inhibition of ADAM17 expression.

    PubMed

    Sun, L-M; Liu, Y-C; Li, W; Liu, S; Liu, H-X; Li, L-W; Ma, R

    2017-03-01

    Nivolumab is an anti-PD-1 (anti-programmed death-1) monoclonal antibody. It has achieved an overall response rate of 17% in Phase 1 clinical trial for patient with platinum-resistant ovarian cancer (PROC). However, its underlying mechanism has not been fully explored yet. The aim of the study is to investigate the efficiency of nivolumab to inhibit PROC cells and its possible mechanism. Firstly, methylthiazolyl tetrazolium bromide (MTT) assay was performed to determine the IC50 values of cisplatin in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. The results showed that IC50 (half maximal inhibitory concentration) values of cisplatin were significantly decreased in a time-dependent manner in A2780, A2780/DDP, SKOV3, and SKOV3/DDP cells. Secondly, MMT assay was used once again to measure anti-tumor effects of nivolumab in A2780/DDP cells. The results showed that anti-tumor effects of nivolumab increased in a dose- and time-dependent manner. Thirdly, A2780/DDP cells were treated with nivolumab in combination with cisplatin for 48 h. The results demonstrated that nivolumab increased the anti-tumor effects of cisplatin in A2780/DDP cells. Notably, the combined treatment effectively reversed cisplatin resistance in PROC cells. Also, nivolumab induced cell apoptosis and cell-cycle arrest in G0/G1 phase in PROC cells. FACS and Western blot were performed to measure cell apoptosis and Bcl-2 and Bax expression respectively. The results showed that combined treatment significantly increased cell apoptosis rate, down-regulated Bcl-2, and unregulated Bax expression in PROC cells. Additionally, the expression levels of ADAM17 were significantly decreased in a dose-dependent manner in PROC cells, which were treated with nivolumab. Therefore, all the results demonstrated that the combined treatment with nivolumab and cisplatin effectively inhibited PROC cells via induction of cell apoptosis and inhibition of ADAM17 expression.

  16. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets.

    PubMed

    Baghbani, Fatemeh; Moztarzadeh, Fathollah

    2017-05-01

    Ultrasound-responsive perfluorocarbon nanoemulsions are a class of new multifunctional smart nanocarriers which combine diagnostic properties with therapeutic properties and release their drug payload in a controlled manner in response to ultrasound. Therefore, combination therapy using chemotherapeutic and chemosensitizing agents co-entrapped in these nanocarriers seems beneficial for cancer treatment. In the present study, multifunctional smart alginate/perfluorohexane nanodroplets were developed for co-delivery of doxorubicin and curcumin (a strong chemosensitizer). The nanodroplets with the average particle size of 55.1nm were synthesized via nanoemulsion process. The entrapment efficiency of doxorubicin was 92.3%. To improve curcumin entrapment into the alginate shell, Span 60 was added to the formulation as a co-surfactant and finally curcumin entrapment of about 40% was achieved. Ultrasound-mediated drug release kinetic was evaluated at two different frequencies of 28kHz (low frequency) and 1MHz (high frequency). Low frequency ultrasound resulted in higher triggered drug release from nanodroplets. The nanodroplets showed strong ultrasound contrast via droplet to bubble transition as confirmed via B-mode ultrasound imaging. Enhanced cytotoxicity in adriamycin-resistant A2780 ovarian cancer cells was observed for Dox-Cur-NDs compared to Dox-NDs because of the synergistic effects of doxorubicin and curcumin. However, ultrasound irradiation significantly increased the cytotoxicity of Dox-Cur-NDs. Finally, in vivo ovarian cancer treatment using Dox/Cur-NDs combined with ultrasound irradiation resulted in efficient tumor regression. According to the present study, nanotherapy of multidrug resistant human ovarian cancer using ultrasound responsive doxorubicin/curcumin co-loaded alginate-shelled nanodroplets combined with ultrasound irradiation could be a promising modality for the future of cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Human steroidogenic factor-1 (hSF-1) regulates progesterone biosynthesis and growth of ovarian surface epithelial cancer cells.

    PubMed

    Ramayya, M S; Sheng, M; Moroz, K; Hill, S M; Rowan, B G

    2010-03-01

    The majority of cancers derived from ovarian surface epithelial (OSE) cells are lethal. Estrogens promote proliferation of OSE cells, whereas progesterone inhibits proliferation and promotes apoptosis of OSE cells. Human steroidogenic factor-1 (hSF-1) induction of the steroidogenic acute regulatory protein (StAR) gene, and the steroidogenic enzymes CYP11A1 and HSD3B2 is central to progesterone biosynthesis. Whereas hSF-1 and StAR are expressed in human ovarian surface epithelial (HOSE) cells, hSF-1 and StAR protein were not expressed in a panel of malignant ovarian cancer cell lines (SKOV-3, BG-1, and Caov-3), and in human OSE cells immortalized by SV40 large T antigen (IOSE-121). Transient expression of hSF-1 in SKOV-3 cells activated the expression of StAR, p450scc and 3betaHSD-II mRNAs, and induced progesterone biosynthesis. Additionally, hSF-1 suppressed proliferation and promoted apoptosis of SKOV-3 cells and suppressed SKOV-3 cell growth induced by ERalpha and estradiol. These findings suggest that hSF-1 is central to progesterone biosynthesis in OSE cells. Human SF-1 may decrease OSE cancer cell numbers directly by apoptosis, and indirectly by opposing estradiol-induced proliferation. These findings are consistent with the hypothesis, that down-regulation of hSF-1 contributes to progression of ovarian epithelial cancers.

  18. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics.

    PubMed

    Ding, Chenyue; Li, Hong; Wang, Yun; Wang, Fuxin; Wu, Huihua; Chen, Rulei; Lv, Jinghuan; Wang, Wei; Huang, Boxian

    2017-07-27

    Many reports have shown that various kinds of stem cells have the ability to recover premature ovarian aging (POA) function. Transplantation of human amniotic epithelial cells (hAECs) improves ovarian function damaged by chemotherapy in a mice model. Understanding of how to evaluate the distinct effects of adult stem cells in curing POA and how to choose stem cells in clinical application is lacking. To build a different degrees of POA model, mice were administered different doses of cyclophosphamide: light dose (70 mg/kg, 2 weeks), medium dose (70 mg/kg, 1 week; 120 mg/kg, 1 week), and high dose (120 mg/kg, 2 weeks). Enzyme-linked immunosorbent assay detected serum levels of sex hormones, and hematoxylin and eosin staining allowed follicle counting and showed the ovarian tissue structure. DiIC18(5)-DS was employed to label human amniotic mesenchymal stem cells (hAMSCs) and hAECs for detecting the cellular retention time in ovaries by a live imaging system. Proliferation of human ovarian granule cells (ki67, AMH, FSHR, FOXL2, and CYP19A1) and immunological rejection of human peripheral blood mononuclear cells (CD4, CD11b, CD19, and CD56) were measured by flow cytometry (fluorescence-activated cell sorting (FACS)). Distinction of cellular biological characteristics between hAECs and hAMSCs was evaluated, such as collagen secretory level (collagen I, II, III, IV, and VI), telomerase activity, pluripotent markers tested by western blot, expression level of immune molecules (HLA-ABC and HLA-DR) analyzed by FACS, and cytokines (growth factors, chemotactic factors, apoptosis factors, and inflammatory factors) measured by a protein antibody array methodology. After hAMSCs and hAECs were transplanted into a different degrees of POA model, hAMSCs exerted better therapeutic activity on mouse ovarian function in the high-dose administration group, promoting the proliferation rate of ovarian granular cells from premature ovarian failure patients, but also provoking immune

  19. Smilax china L. rhizome extract inhibits nuclear factor-κB and induces apoptosis in ovarian cancer cells.

    PubMed

    Hu, Li-ling; Chen, Dong-sheng; Wang, Yan-yan; Qin, You; Huang, Pu; Yu, Li-xiu; Liao, Jing; Hua, Xiao-li

    2015-12-01

    To study the antitumor effects and associated mechanisms of extract of the Smilax china L. rhizome (SCR) on ovarian cancer cells. Ovarian cancer cells A2780 were treated with different concentrations of SCR extract (SCRE), and compared with controls. Effects on cell growth were evaluated by cell counting kit-8 (CCK-8) assay; proliferation effects by EdU incorporation assay; cell cycle by propidium iodide staining; apoptosis by annexin V-fluorescein isothiocyanate/propidium iodide; cellular distribution of nuclear factor-κB (NF-κB) by immunofluorescence; protein levels of NF-κB, caspase-3, poly-adenosine diphosphate (ADP)-ribose polymerase (PARP), Bcl-2-associated X protein (Bax), cellular inhibitor of apoptosis (cIAP)-1, anti-X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma-extra large (Bcl-XL), B-cell lymphoma-2 (Bcl-2) and AKT by Western blotting; and effects of SCRE combined with cisplatin or adriamycin on A2780 cells by CCK-8 assay. SCRE suppressed A2780 cell proliferation in a dose-dependent manner (P<0.05,P<0.01), arrested cells in G2/M phase and induced apoptosis by activating caspase-3, PARP and Bax. SCRE treatment also correlated with inhibition of NF-κB and downregulation of Bcl-2, Bcl-XL, cIAP-1, XIAP and AKT. SCRE can promote chemosensitivity to cisplatin and adriamycin in A2780 cells (P<0.01). SCR effectively inhibits NF-κB, induces apoptosis and reduces chemoresistance to cisplatin and adriamycin in ovarian cancer cells, which might be its molecular basis for treating ovarian cancer.

  20. Premature ovarian failure 3 years after menarche in a 16-year-old girl following human papillomavirus vaccination.

    PubMed

    Little, Deirdre Therese; Ward, Harvey Rodrick Grenville

    2012-09-30

    Premature ovarian failure in a well adolescent is a rare event. Its occurrence raises important questions about causation, which may signal other systemic concerns. This patient presented with amenorrhoea after identifying a change from her regular cycle to irregular and scant periods following vaccinations against human papillomavirus. She declined the oral contraceptives initially prescribed for amenorrhoea. The diagnostic tasks were to determine the reason for her secondary amenorrhoea and then to investigate for possible causes of the premature ovarian failure identified. Although the cause is unknown in 90% of cases, the remaining chief identifiable causes of this condition were excluded. Premature ovarian failure was then notified as a possible adverse event following this vaccination. The young woman was counselled regarding preservation of bone density, reproductive implications and relevant follow-up. This event could hold potential implications for population health and prompts further inquiry.

  1. The human ovarian cancer cell line CABA I: A peculiar genetic evolution.

    PubMed

    Giusti, Ilaria; Cervelli, Carla; D'Ascenzo, Sandra; Di Francesco, Marianna; Ligas, Claudio; D'Alessandro, Elvira; Papola, Franco; Dolo, Vincenza

    2016-04-01

    The objective of this study was to study the human ovarian cancer cell line CABA I by means of short tandem repeats (STR) profiling and cytogenetic analysis in order to prevent future misidentification or cross-contamination and verify its stability during in vitro cultivation. To this end, cells at passages 18 and 38 were analyzed using cytogenetic techniques in order to verify possible chromosomal aberrations and the karyotypic evolution of this cell line; GTG-banding and FISH were also performed. For STR analysis, DNA was extracted using the automated extractor MagNA pure and analyzed by means of PowerPlex 16 HS. STR profiles were analyzed by GeneMapper 3.2.1 software. Whereas comparative cytogenetic analysis of CABA I cells at passage 18 and 38 has demonstrated considerable genetic instability, we found that STR profiles were essentially unaltered in both analyzed passages, suggesting that the STR profile is reliable and could be used for the regular authentication of CABA I over time. It should be emphasized, however, that of the 16 loci generally used in human STR profiles, only 3 were properly detectable in CABA I. The data highlight that the CABA I cell line demonstrates an anomalous STR profile that does not fully adjust the criteria currently used for the identification of human cells; in spite of this, it remains stable during the in vitro maintainance. Moreover, the genetic instability of the CABA I cell line overlaps with those observed in vivo in tumor cells, making it a suitable candidate to analyze, in vitro, the peculiar genetic evolution of ovarian cancer cells.

  2. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer.

    PubMed

    Peng, Dong-Xian; Luo, Min; Qiu, Li-Wen; He, Yuan-Li; Wang, Xue-Feng

    2012-04-01

    Dysregulation of microRNAs (miRNAs) has been found to be associated with a variety of diseases, including epithelial ovarian cancer (EOC). Recently, miR-100 was reported to be downregulated in human ovarian carcinoma, however, the clinical significance and functional roles of miR-100 expression in human EOC are unclear. TaqMan real-time quantitative RT-PCR assay was performed to detect the expression of miR-100 in 98 EOC tissues and 15 adjacent normal epithelial tissues. The relationship between miR-100 expression and clinicopathological factors in 98 EOC patients was statistically analyzed. The effect of miR-100 expression on patient survival was determined. Finally, the role of miR-100 in EOC cell growth and its possible mechanisms were analyzed with miR-100 precursor or inhibitor-transfected cells. We showed that the level of miR-100 was significantly lower in EOC tissues compared to adjacent normal tissues. Low miR-100 expression was found to be closely correlated with advanced FIGO stage, higher serum CA125 expression level and lymph node involvement. Also, low miR-100 expression was correlated with shorter overall survival of EOC patients, and multivariate analysis showed that the status of miR-100 expression was an independent predictor of overall survival in EOC. Additionally, miR-100 could affect the growth of EOC cells by post-transcriptionally regulating polo-like kinase 1 (PLK1) expression. Together, these results suggest that low miR-100 expression may be an independent poor prognostic factor and miR-100 can function as a tumor suppressor by targeting PLK1 in human EOCs.

  3. The human ovarian cancer cell line CABA I: A peculiar genetic evolution

    PubMed Central

    GIUSTI, ILARIA; CERVELLI, CARLA; D'ASCENZO, SANDRA; DI FRANCESCO, MARIANNA; LIGAS, CLAUDIO; D'ALESSANDRO, ELVIRA; PAPOLA, FRANCO; DOLO, VINCENZA

    2016-01-01

    The objective of this study was to study the human ovarian cancer cell line CABA I by means of short tandem repeats (STR) profiling and cytogenetic analysis in order to prevent future misidentification or cross-contamination and verify its stability during in vitro cultivation. To this end, cells at passages 18 and 38 were analyzed using cytogenetic techniques in order to verify possible chromosomal aberrations and the karyotypic evolution of this cell line; GTG-banding and FISH were also performed. For STR analysis, DNA was extracted using the automated extractor MagNA pure and analyzed by means of PowerPlex 16 HS. STR profiles were analyzed by GeneMapper 3.2.1 software. Whereas comparative cytogenetic analysis of CABA I cells at passage 18 and 38 has demonstrated considerable genetic instability, we found that STR profiles were essentially unaltered in both analyzed passages, suggesting that the STR profile is reliable and could be used for the regular authentication of CABA I over time. It should be emphasized, however, that of the 16 loci generally used in human STR profiles, only 3 were properly detectable in CABA I. The data highlight that the CABA I cell line demonstrates an anomalous STR profile that does not fully adjust the criteria currently used for the identification of human cells; in spite of this, it remains stable during the in vitro maintainance. Moreover, the genetic instability of the CABA I cell line overlaps with those observed in vivo in tumor cells, making it a suitable candidate to analyze, in vitro, the peculiar genetic evolution of ovarian cancer cells. PMID:26934856

  4. Ovarian transcriptomes as a tool for a global approach of genes modulated by gonadotropic hormones in human ovarian granulosa cells.

    PubMed

    Friedmann, Sarit; Sarit, Freimann; Dantes, Ada; Ada, Dantes; Amsterdam, Abraham; Abraham, Amsterdam

    2005-04-01

    Follicle-stimulating hormone (FSH) is a key stimulant for the development of the ovarian follicle, while luteinizing hormone (LH) plays a major role in triggering ovulation and luteinization. Both FSH and LH are glycoprotein hormones that share the same alpha subunit but bind to specific seven transmembrane-domain G coupled receptors located on the cell membrane of the granulosa cells, which comprise the main somatic population of the ovarian follicle. These hormone-receptor complexes may trigger different signaling cascades, but the entire repertoire of genes modulated by these hormones is far from being understood, in particular on the transcriptional level. The development of DNA micro-arrays technique, using the entire genome profile of some mammalian species, allows a global approach and screening of multiple signal transduction pathways. This method opened new insights into the cellular and molecular events that control ovulation and desensitization of the corpus luteum to hyperstimulation by gonadotropic hormones. In addition, this technique permitted the discovery of novel members of the EGF family, such as epiregulin and amphiregulin, that were found to be expressed in the gonadotropin-stimulated cells and were discovered to play a crucial role in the mechanism of ovulation. However, because of the pitfalls in interpreting the data other approaches, for example, Northern blots and RT-PCR must be conducted in parallel to verify the validity of the data.

  5. A systems biology approach to identify microRNAs contributing to cisplatin resistance in human ovarian cancer cells.

    PubMed

    Liu, Weisha; Wang, Shuyuan; Zhou, Shunheng; Yang, Feng; Jiang, Wei; Zhang, Qingyuan; Wang, Lihong

    2017-09-01

    Cisplatin (CDDP)-based chemotherapy is a standard first-line therapy for ovarian cancer. However, drug resistance remains a major obstacle to its efficacy. Recently, increasing evidence suggested that the aberrant expression of microRNAs (miRNAs) may contribute to drug resistance. Here, we proposed a systems biology analysis strategy to identify the novel miRNAs potentially involved in CDDP resistance in human ovarian cancer cells. Firstly, we identified the candidate miRNAs associated with CDDP resistance using NCI-60 data. Next, the differentially expressed genes (DEGs) in the CDDP-resistant ovarian cancer cell line OVCAR-8R were obtained. After mapping the DEGs to a human protein-protein interaction network, a CDDP resistance-related sub-network for ovarian cancer was constructed, and subsequently the functional gene modules were identified. Then, based on the experimentally validated miRNA regulations to target genes, 4 candidate miRNAs (miR-24-3p, miR-192-5p, miR-139-5p and miR-155-5p) were identified to potentially contribute to ovarian cancer cell chemoresistance to CDDP through mediating OVCAR-8R cell CDDP resistance-related gene modules, which participated in functions that were closely related to "apoptosis", "cell cycle" and "adhesion". In addition, we predicted the therapeutic drugs that might reduce or reverse CDDP resistance by targeting these 4 identified miRNAs. This study revealed the underlying mechanism of CDDP resistance, and provided novel potential drug targets and therapeutics for CDDP-resistant ovarian cancer patients.

  6. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice

    PubMed Central

    Hong, Hao; Brown, Christine E.; Ostberg, Julie R.; Priceman, Saul J.; Chang, Wen-Chung; Weng, Lihong; Lin, Paul; Wakabayashi, Mark T.; Jensen, Michael C.; Forman, Stephen J.

    2016-01-01

    New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer. PMID:26761817

  7. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    PubMed

    Hong, Hao; Brown, Christine E; Ostberg, Julie R; Priceman, Saul J; Chang, Wen-Chung; Weng, Lihong; Lin, Paul; Wakabayashi, Mark T; Jensen, Michael C; Forman, Stephen J

    2016-01-01

    New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  8. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    SciTech Connect

    Kim, Soyeon; Lee, Jae-Jung; Heo, Dae Seog

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma} ligands

  9. Data on the association of CMPK1 with clinicopathological features and biological effect in human epithelial ovarian cancer.

    PubMed

    Zhou, Daibing; Zhang, Lingyun; Lin, Qunbo; Ren, Weimin; Xu, Guoxiong

    2017-08-01

    Human epithelial ovarian cancer (EOC) is the most lethal gynecological disease. However, the molecular mechanisms by which transforming growth factor-β (TGF-β) regulates ovarian tumor progression markers remain unclear. The present data show cytidine monophosphate kinase (CMPK) as an EOC biomarker and are related to the article entitled "Cytidine monophosphate kinase is inhibited by the TGF-β signalling pathway through the upregulation of miR-130b-3p in human epithelial ovarian cancer" [1]. CMPK, as well as cystatin B [2] and β-2-microglobulin [3], is overexpressed in human epithelial-type ovarian tumors. CMPK is an enzyme required for nucleic acid biosynthesis [4] and is regulated by the TGF-β signaling pathway in EOC cells [1]. Furthermore, the data show the effect of CMPK-shRNA on EOC cell apoptosis and TGF-β-induced Smad2 phosphorylation. CMPK expression in two EOC cell lines OVCAR-3 and SK-OV-3 is regulated by multiple miRNAs and some of these miRNAs may affect EOC chemoresistance [5].

  10. MiR-197 induces Taxol resistance in human ovarian cancer cells by regulating NLK.

    PubMed

    Zou, Dongling; Wang, Dong; Li, Rong; Tang, Ying; Yuan, Li; Long, Xingtao; Zhou, Qi

    2015-09-01

    Chemotherapy is the preferred therapeutic approach for the therapy of advanced ovarian cancer, but 5-year survival rate remains low due to the development of drug resistance. Increasing evidence has documented that microRNAs (miRNAs) act important roles in drug resistance in a variety types of cancer. However, the roles of miRNA in regulating Taxol resistance in ovarian cancer and the detailed mechanism are less reported. We used Taqman probe stem loop real-time PCR to accurately measure the levels of miR-197 in normal ovarian cells, ovarian cancer cells, and Taxol-resistant ovarian cancer cells and found that miR-197 was significantly increased in Taxol-resistant ovarian cancer cells. Enforced expression of miR-197 can promote Taxol resistance, cell proliferation, and invasion of ovarian cancer cells. Meanwhile, repression of miR-197 in ovarian cancer cells can sensitize its response to Taxol and also induced attenuated cell proliferation and invasion ability. Furthermore, investigation of the detailed mechanism showed that the promotion of miR-197 on drug resistance in ovarian cancer cells was partially mediated by downregulating NLK, a negative regulator of WNT signaling pathway. Taken together, our work first demonstrated that miR-197 can confer drug resistance to Taxol, by regulating tumor suppressor, NLK expression in ovarian cancer cells.

  11. Xenotransplantation of cryopreserved human ovarian tissue--a systematic review of MII oocyte maturation and discussion of it as a realistic option for restoring fertility after cancer treatment.

    PubMed

    Dittrich, Ralf; Lotz, Laura; Fehm, Tanja; Krüssel, Jan; von Wolff, Michael; Toth, Bettina; van der Ven, Hans; Schüring, Andreas N; Würfel, Wolfgang; Hoffmann, Inge; Beckmann, Matthias W

    2015-06-01

    To systematically review the reporting of MII (MII) oocyte development after xenotransplantation of human ovarian tissue. Systematic review in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Not applicable. Not applicable. Formation of MII oocytes after xenotransplantation of human ovarian tissue. Any outcome reported in Pubmed. Six publications were identified that report on formation of MII oocytes after xenotransplantation of human ovarian tissue. Xenografting of human ovarian tissue has proved to be a useful model for examining ovarian function and follicle development in vivo. With human follicles that have matured through xenografting, the possibility of cancer transmission and relapse can also be eliminated, because cancer cells are not able to penetrate the zona pellucida. The reported studies have demonstrated that xenografted ovarian tissue from a range of species, including humans, can produce antral follicles that contain mature (MII) oocytes, and it has been shown that mice oocytes have the potential to give rise to live young. Although some ethical questions remain unresolved, xenotransplantation may be a promising method for restoring fertility. This review furthermore describes the value of xenotransplantation as a tool in reproductive biology and discusses the ethical and potential safety issues regarding ovarian tissue xenotransplantation as a means of recovering fertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Loss of estrogen receptor beta isoform expression and its correlation with aberrant DNA methylation of the 5'-untranslated region in human epithelial ovarian carcinoma.

    PubMed

    Suzuki, Fumihiko; Akahira, Jun-Ichi; Miura, Ikumi; Suzuki, Takashi; Ito, Kiyoshi; Hayashi, Shin-Ichi; Sasano, Hironobu; Yaegashi, Nobuo

    2008-12-01

    Evidence exists that sex steroids such as estrogens affect epithelial ovarian cancer. The expression profiles of the estrogen receptors (ER) and ERbeta in particular have not been fully described. Therefore, in our present study, we examined the methylation status of the promoters 0K and 0N, and the expression of ERbeta isoforms in human epithelial ovarian carcinoma. We then correlated methylation status with ER expression status. Twelve ovarian carcinoma cell lines, six primary cultures of ovarian surface epithelial cells (OSE), and 64 cases of ovarian carcinoma tissues were examined. Bisulfite sequencing and quantitative reverse transcription-polymerase chain reaction were used to evaluate methylation status and expression of ERbeta isoforms. The relative abundance of exon 0N, ERbeta1, ERbeta2, and ERbeta4 mRNA was significantly lower in ovarian cancer cell lines and tissues than in their corresponding normal counterparts. However, ERbeta5 mRNA level was relatively higher in the cancers, in clear cell adenocarcinoma in particular, than in the normal ovary. Bisulfite sequencing analysis demonstrated that the two promoters of the ERbeta gene exhibited distinct methylation patterns. Promoter 0N was unmethylated in OSE, rarely methylated in normal ovarian tissues, and extensively methylated in ovarian cancer cell lines and tissues (11/15 cell lines and 18/32 cancer tissues were extensively methylated). The promoter 0K was, however, unmethylated in both normal and malignant ovarian cells and tissues. A significant correlation between promoter 0N hypermethylation and the loss of exon 0N, ERbeta1, ERbeta2, and ERbeta4 mRNA expression was detected in ovarian carcinoma cells and tissues. Treatment of ovarian carcinoma cells with 5-aza-2' deoxycytidine resulted in reexpression of the ERbeta gene. The results of our present study suggest that ERbeta is inactivated mainly through aberrant DNA methylation. This process may play an important role in the pathogenesis of

  13. Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells.

    PubMed

    Sadava, David; Coleman, Aaron; Kane, Susan E

    2002-11-01

    Multi-drug resistance due in part to membrane pumps such as P-glycoprotein (Pgp) is a major clinical problem in human cancers. We tested the ability of liposomally-encapsulated daunorubicin (DR) to overcome resistance to this drug. A widely used breast carcinoma cell line originally selected for resistance in doxorubicin (MCF7ADR) was 4-fold resistant to DR compared to the parent MCF7 cells (IC50 79 nM vs. 20 nM). Ovarian carcinoma cells (SKOV3) were made resistant by retroviral transduction of MDR1 cDNA and selection in vinblastine. The resulting SKOV3MGP1 cells were 130-fold resistant to DR compared to parent cells (IC50 5700 nM vs. 44 nM). Small-cell lung carcinoma cells (H69VP) originally selected for resistance to etoposide were 6-fold resistant to DR compared to H69 parent cells (IC50 180 nM vs. 30 nM). In all three cases, encapsulation of DR in liposomes as Daunoxome (Gilead) did not change the IC50 of parent cells relative to free DR. However, liposomal DR overcame resistance in MCF7ADR breast carcinoma cells (IC50 20 nM), SKOV3MGP1 ovarian carcinoma cells (IC50 237 nM) and H69VP small-cell lung carcinoma cells (IC50 27 nM). Empty liposomes did not affect the IC50 for free DR in the three resistant cell lines, nor did empty liposomes affect the IC50 for other drugs that are part of the multi-drug resistance phenotype (etoposide, vincristine) in lung carcinoma cells. These data indicate the possible value of liposomal DR in overcoming Pgp-mediated drug resistance in human cancer.

  14. Reversing drug resistance of cisplatin by hsp90 inhibitors in human ovarian cancer cells

    PubMed Central

    Zhang, Zhengmao; Xie, Zhen; Sun, Guangyu; Yang, Pingfang; Li, Jia; Yang, Hongfang; Xiao, Shuang; Liu, Yang; Qiu, Hongbing; Qin, Lijun; Zhang, Chao; Zhang, Fenghua; Shan, Baoen

    2015-01-01

    Objective: To investigate the mechanisms for reversing drug resistance of cisplatin (DDP) by Hsp90 inhibitors (geldanamycin (GA), 17-AAG, 17-DMAG) in human ovarian cancer. Methods: Cell proliferation rate in DDP resistant human ovarian cancer cell line SKOV3/DDP and its parent cell line SKOV3 after treatment with Hsp90 inhibitors and/or DDP were tested by MTT assay, and the reversing fold (RF) of DDP by Hsp90 inhibitors was calculated. Cell cycle and cell apoptosis status after treatment were analyzed by flow cytometry. The expression of multiple drug resistance related genes was analyzed by RT-PCR and Western-blot. Results: All three tested Hsp90 inhibitors synergistically inhibited the cell proliferation of SKOV3 with DDP and enhanced the sensitivity of SKOV3/DDP cells to DDP. The RF of DDP by Hsp90 inhibitors were all more than two fold. GA caused cell cycle arrest in G2/M phasein SKOV3 cells. 17-AAG increased cell apoptosis but did not change cell cycle in SKOV3/DDP cells. The mRNA and protein expression levels of various drug resistant related genes including LRP, GST-π, p53, bcl-2, survivin, ERCC1, XRCC1, BRCA1 and BRCA2 were more dramatically altered by Hsp90 inhibitors and DDP in combination compared to Hsp90 inhibitors or DDP treatment alone. Conclusions: Exposure of SKOV3/DDP cells to Hsp90 inhibitors and DDP in combination results in synergistic cytotoxic and pro-apoptotic effects. Hsp90 inhibitors reverse the drug resistance of SKOV3/DDP cells to DDP by modifying the expression of multiple drug resistance related genes. PMID:26221207

  15. Regulation of copper transporter 2 expression by copper and cisplatin in human ovarian carcinoma cells.

    PubMed

    Blair, Brian G; Larson, Christopher A; Adams, Preston L; Abada, Paolo B; Safaei, Roohangiz; Howell, Stephen B

    2010-06-01

    Down-regulation of copper transporter 1 (CTR1) reduces uptake and sensitivity, whereas down-regulation of CTR2 enhances both. Cisplatin (DDP) triggers the rapid degradation of CTR1 and thus limits its own accumulation. We sought to determine the effect of DDP and copper on the expression of CTR2. Changes in CTR1 and CTR2 mRNA and protein levels in human ovarian carcinoma 2008 cells and ATOX1(+/+) and ATOX1(-/-) mouse embryo fibroblasts in response to exposure to DDP and copper were measured by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and deconvolution microscopy. DDP triggered rapid degradation of CTR1 in 2008 human ovarian cancer cells. However, it increased the expression of CTR2 mRNA and protein levels. Expression of CTR2 was heavily modulated by changes in intracellular copper concentration; copper depletion produced rapid disappearance of CTR2, whereas excess copper increased the level of CTR2 protein. This increase was associated with an increase in CTR2 mRNA and prolongation of the CTR2 half-life. Consistent with prior observations that short hairpin RNA interference-mediated knockdown of CTR2 enhanced DDP uptake and tumor cell kill, reduction of CTR2 by copper starvation also enhanced DDP uptake and cytotoxicity. Comparison of the ability of copper and DDP to modulate the expression of CTR1 in ATOX1(+/+) and ATOX1(-/-) indicated that ATOX1 participates in the regulation of CTR2 expression. Unlike CTR1, the expression of CTR2 is increased rather than decreased by DDP. Therefore, these two copper transporters have opposite effects on DDP sensitivity. CTR2 expression is regulated by copper availability via the copper-dependent regulator ATOX1.

  16. Regulation of Copper Transporter 2 Expression by Copper and Cisplatin in Human Ovarian Carcinoma Cells

    PubMed Central

    Blair, Brian G.; Larson, Christopher A.; Adams, Preston L.; Abada, Paolo B.; Safaei, Roohangiz

    2010-01-01

    Down-regulation of copper transporter 1 (CTR1) reduces uptake and sensitivity, whereas down-regulation of CTR2 enhances both. Cisplatin (DDP) triggers the rapid degradation of CTR1 and thus limits its own accumulation. We sought to determine the effect of DDP and copper on the expression of CTR2. Changes in CTR1 and CTR2 mRNA and protein levels in human ovarian carcinoma 2008 cells and ATOX1(+/+) and ATOX1(−/−) mouse embryo fibroblasts in response to exposure to DDP and copper were measured by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and deconvolution microscopy. DDP triggered rapid degradation of CTR1 in 2008 human ovarian cancer cells. However, it increased the expression of CTR2 mRNA and protein levels. Expression of CTR2 was heavily modulated by changes in intracellular copper concentration; copper depletion produced rapid disappearance of CTR2, whereas excess copper increased the level of CTR2 protein. This increase was associated with an increase in CTR2 mRNA and prolongation of the CTR2 half-life. Consistent with prior observations that short hairpin RNA interference-mediated knockdown of CTR2 enhanced DDP uptake and tumor cell kill, reduction of CTR2 by copper starvation also enhanced DDP uptake and cytotoxicity. Comparison of the ability of copper and DDP to modulate the expression of CTR1 in ATOX1(+/+) and ATOX1(−/−) indicated that ATOX1 participates in the regulation of CTR2 expression. Unlike CTR1, the expression of CTR2 is increased rather than decreased by DDP. Therefore, these two copper transporters have opposite effects on DDP sensitivity. CTR2 expression is regulated by copper availability via the copper-dependent regulator ATOX1. PMID:20194531

  17. Comparison of In Vitro- and Chorioallantoic Membrane (CAM)-Culture Systems for Cryopreserved Medulla-Contained Human Ovarian Tissue

    PubMed Central

    Isachenko, Vladimir; Mallmann, Peter; Petrunkina, Anna M.; Rahimi, Gohar; Nawroth, Frank; Hancke, Katharina; Felberbaum, Ricardo; Genze, Felicitas; Damjanoski, Ilija; Isachenko, Evgenia

    2012-01-01

    At present, there are three ways to determine effectively the quality of the cryopreservation procedure using ovarian tissue before the re-implantation treatment: evaluation of follicles after post-thawing xenotransplantation to SCID mouse, in-vitro culture in a large volume of culture medium under constant agitation and culture on embryonic chorio-allantoic membrane within a hen's eggs. The aim of this study was to compare the two methods, culture in vitro and culture on embryonic chorioallantoic membrane (CAM) of cryopreserved human ovarian medulla-contained and medulla-free cortex. Ovarian fragments were divided into small pieces (1.5–2.0×1.0–1.2×0.8–1.5) of two types, cortex with medulla and medulla-free cortex, frozen, thawed and randomly divided into the following four groups. Group 1: medulla-free cortex cultured in vitro for 8 days in large volume of medium with mechanical agitation, Group 2: medulla-containing cortex cultured in vitro, Group 3: medulla-free cortex cultured in CAM-system for 5 days, Group 4: medulla-containing cortex cultured in CAM-system. The efficacy of the tissue culture was evaluated by the development of follicles and by intensiveness of angiogenesis in the tissue (von Willebrand factor and Desmin). For Group 1, 2, 3 and 4, respectively 85%, 85%, 87% and 84% of the follicles were morphologically normal (P>0.1). The immunohistochemical analysis showed that angiogenesis detected by von Willebrand factor was lower in groups 1 and 3 (medulla-free cortex). Neo-vascularisation (by Desmin) was observed only in ovarian tissue of Group 4 (medulla-contained cortex after CAM-culture). It appears that the presence of medulla in ovarian pieces is beneficial for post-thaw development of cryopreserved human ovarian tissue. For medical practice it is recommended for evaluation of post-warming ovarian tissue to use the CAM-system as a valuable alternative to xenotransplantation and for cryopreservation of these tissues to prepare ovarian

  18. Gemcitabine as a molecular targeting agent that blocks the Akt cascade in platinum-resistant ovarian cancer

    PubMed Central

    2014-01-01

    Background Gemcitabine (2′, 2′ –difluorodeoxycytidine) is one of many nonplatinum drugs that exhibit activity in recurrent, platinum-resistant ovarian cancer. However, the molecular mechanisms by which Gemcitabine treatment inhibits the proliferation of platinum-resistant ovarian cancer cells still remain unclear. We investigated whether Gemcitabine increases the efficacy of Cisplatin in platinum-resistant ovarian cancer models in vitro and in vivo. Methods We used Cisplatin-resistant Caov-3 cells, A2780CP cells and Cisplatin-sensitive A2780 cells to examine the sensitivity of the cell viability of Cisplatin and Gemcitabine using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and the sensitivity of the invasive activity of Cisplatin and Gemcitabine using an invasion assay with Matrigel. We examined the Akt kinase activity and matrix metalloproteinase 9 (MMP9) expression following Cisplatin and Gemcitabine treatment using a Western blot analysis and the mRNA expression of vascular endothelial growth factor (VEGF) using semi-quantitative RT-PCR. Moreover, we evaluated the effects of Cisplatin and Gemcitabine on the intra-abdominal dissemination of ovarian cancer in vivo. Results Gemcitabine significantly inhibited Cisplatin-induced Akt activation in the Caov-3 and A2780CP cells, but not in the A2780 cells. In the presence of Gemcitabine, Cisplatin-induced growth inhibition and apoptosis were significantly enhanced in the Caov-3 and A2780CP cells. Co-treatment with Cisplatin and Gemcitabine almost completely inhibited invasion of both types of cells through the Matrigel; however, neither Cisplatin nor Gemcitabine alone inhibited the invasion of both types of cells. Gemcitabine inhibited not only the Cisplatin-induced activation of Akt, but also the MMP9 and mRNA expression of VEGF. Moreover, treatment with Gemcitabine increased the efficacy of Cisplatin-induced growth inhibition of the intra

  19. Gemcitabine as a molecular targeting agent that blocks the Akt cascade in platinum-resistant ovarian cancer.

    PubMed

    Kawaguchi, Hiroshi; Terai, Yoshito; Tanabe, Akiko; Sasaki, Hiroshi; Takai, Masaaki; Fujiwara, Satoe; Ashihara, Keisuke; Tanaka, Yoshimichi; Tanaka, Tomohito; Tsunetoh, Satoshi; Kanemura, Masanori; Ohmichi, Masahide

    2014-04-09

    Gemcitabine (2', 2' -difluorodeoxycytidine) is one of many nonplatinum drugs that exhibit activity in recurrent, platinum-resistant ovarian cancer. However, the molecular mechanisms by which Gemcitabine treatment inhibits the proliferation of platinum-resistant ovarian cancer cells still remain unclear. We investigated whether Gemcitabine increases the efficacy of Cisplatin in platinum-resistant ovarian cancer models in vitro and in vivo. We used Cisplatin-resistant Caov-3 cells, A2780CP cells and Cisplatin-sensitive A2780 cells to examine the sensitivity of the cell viability of Cisplatin and Gemcitabine using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and the sensitivity of the invasive activity of Cisplatin and Gemcitabine using an invasion assay with Matrigel. We examined the Akt kinase activity and matrix metalloproteinase 9 (MMP9) expression following Cisplatin and Gemcitabine treatment using a Western blot analysis and the mRNA expression of vascular endothelial growth factor (VEGF) using semi-quantitative RT-PCR. Moreover, we evaluated the effects of Cisplatin and Gemcitabine on the intra-abdominal dissemination of ovarian cancer in vivo. Gemcitabine significantly inhibited Cisplatin-induced Akt activation in the Caov-3 and A2780CP cells, but not in the A2780 cells. In the presence of Gemcitabine, Cisplatin-induced growth inhibition and apoptosis were significantly enhanced in the Caov-3 and A2780CP cells. Co-treatment with Cisplatin and Gemcitabine almost completely inhibited invasion of both types of cells through the Matrigel; however, neither Cisplatin nor Gemcitabine alone inhibited the invasion of both types of cells. Gemcitabine inhibited not only the Cisplatin-induced activation of Akt, but also the MMP9 and mRNA expression of VEGF. Moreover, treatment with Gemcitabine increased the efficacy of Cisplatin-induced growth inhibition of the intra-abdominal dissemination and production of

  20. The incidence and mortality of ovarian cancer and their relationship with the Human Development Index in Asia

    PubMed Central

    Razi, Saeid; Ghoncheh, Mahshid; Mohammadian-Hafshejani, Abdollah; Aziznejhad, Hojjat; Mohammadian, Mahdi; Salehiniya, Hamid

    2016-01-01

    Background The incidence and mortality estimates of ovarian cancer based on human development are essential for planning by policy makers. This study is aimed at investigating the standardised incidence rates (SIR) and standardised mortality rates (SMR) of ovarian cancer and their relationship with the Human Development Index (HDI) in Asian countries. Methods This study was an ecologic study in Asia for assessment of the correlation between SIR, age standardised rates (ASR), and HDI and their details, including life expectancy at birth, mean years of schooling, and gross national income (GNI) per capita. We used the correlation bivariate method for assessment of the correlation between ASR and HDI, and its details. Statistical significance was assumed if P < 0.05. All reported P-values were two-sided. Statistical analyses were performed using SPSS (Version 15.0, SPSS Inc.). Results The highest SIR of ovarian cancer was observed in Singapore, Kazakhstan, and Brunei respectively. Indonesia, Brunei, and Afghanistan had the highest SMR. There was a positive correlation between the HDI and SIR (r = 0.143, p = 0.006). Correlation between SMR of ovarian cancer and HDI was not significant (r = 0.005, p = 052.0). Conclusion According to the findings of this study, between the HDI and SIR, there was a positive correlation, but there was no correlation between the SMR and HDI. PMID:27110284

  1. Plasma prorenin response to human chorionic gonadotropin in ovarian-hyperstimulated women: correlation with the number of ovarian follicles and steroid hormone concentrations.

    PubMed Central

    Itskovitz, J; Sealey, J E; Glorioso, N; Rosenwaks, Z

    1987-01-01

    Plasma prorenin and active renin were measured before and after human chorionic gonadotropin (hCG) administration in two groups of patients undergoing ovarian stimulation for 4-6 days with follicle-stimulating hormone alone or in combination with luteinizing hormone, for in vitro fertilization. Baseline total plasma renin (prorenin plus active renin; n = 12) averaged 25 +/- 8 ng/ml per hr (mean +/- SD). Total renin did not change during ovarian stimulation but it increased to 46 +/- 16 ng/ml per hr (P less than 0.05) 1 or 2 days later, just before hCG administration. Thirty-six hours after hCG administration, just before laparoscopy and egg retrieval, total renin was 123 +/- 97 ng/ml per hr; a peak of 182 +/- 143 ng/ml per hr occurred 2-6 days later--i.e., during the luteal phase of the menstrual cycle. In eight of the patients who did not conceive, total renin returned to baseline 14 days after hCG administration. In four who conceived, a nadir was reached (57 +/- 13 ng/ml per hr) 8-12 days after hCG administration and then total renin increased again as the plasma beta hCG measurement began to rise. By day 16 it averaged 225 +/- 157 ng/ml per hr. In a second group of five patients active renin and prorenin were measured separately. Active renin comprised less than 20% of the total renin at all times. It was unchanged until day 4 after hCG administration and then increased significantly only when plasma progesterone was high. Thus, the initial response to hCG was entirely due to an increase in prorenin. A highly significant correlation was observed between the number of follicles and the total renin increases on the day of aspiration (r = 0.93, P less than 0.001) and at the peak (r = 0.89, P less than 0.001). After hCG administration, a temporal relationship was observed between the rise in total renin and plasma estradiol and progesterone levels. These results demonstrate that plasma prorenin increases markedly after administration of hCG and that the rise is

  2. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART?

    PubMed Central

    2012-01-01

    Background The purpose of the study was to determine the incidence of gene expression of Oct-4 and DAZL, which are typical markers for stem cells, in human granulosa cells during ovarian stimulation in women with normal FSH levels undergoing IVF or ICSI and to discover any clinical significance of such expression in ART. Methods Twenty one women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded separately and granulosa cells were analyzed for each patient separately using quantitative reverse-transcription–polymerase chain reaction analysis for Oct-4 and DAZL gene expression with G6PD gene as internal standard. Results G6PD and Oct-4 mRNA was detected in the granulosa cells in 47.6% (10/21). The median of Oct-4 mRNA/G6PD mRNA was 1.75 with intra-quarteral range from 0.10 to 98.21. The OCT-4 mRNA expression was statistically significantly correlated with the number of oocytes retrieved; when the Oct-4 mRNA expression was higher, then more than six oocytes were retrieved (p=0.037, Wilcoxon rank-sum). No detection of DAZL mRNA was found in granulosa cells. There was no additional statistically significant correlation between the levels of Oct-4 expression and FSH basal levels or estradiol peak levels or dosage of FSH for ovulation induction. No association was found between the presence or absence of Oct-4 mRNA expression in granulosa cells and ovarian response to gonadotropin stimulation. Also, no influence on pregnancy was observed between the presence or absence of Oct-4 mRNA expression in granulosa cells or to its expression levels accordingly. Conclusions Expression of OCT-4 mRNA, which is a typical stem cell marker and absence of expression of DAZL mRNA, which is a typical germ cell marker, suggest that a subpopulation of luteinized granulosa cells in healthy ovarian follicles (47.6%) consists of stem cells

  3. Antiproliferative effect of methyl-beta-cyclodextrin in vitro and in human tumour xenografted athymic nude mice.

    PubMed Central

    Grosse, P. Y.; Bressolle, F.; Pinguet, F.

    1998-01-01

    The anti-tumour activity of methyl-beta-cyclodextrin (MEBCD), a cyclic oligosaccharide known for its interaction with the plasma membrane, was investigated in vitro and in vivo and compared with that of doxorubicin (DOX) in the human tumour models MCF7 breast carcinoma and A2780 ovarian carcinoma. In vitro proliferation was assessed using the MTT assay. In vivo studies were carried out using xenografted Swiss nude mice injected weekly i.p. with MEBCD at 300 or 800 mg kg(-1) or DOX at 2 mg kg(-1), during 2 months. Under these conditions, MEBCD was active against MCF7 and A2780 cell lines and tumour xenografts. For each tumour model, the tumoral volume of the xenografted mice treated with MEBCD was at least twofold reduced compared with the control group. In the MCF7 model, MEBCD (800 mg kg(-1)) was more active than DOX (2 mg kg(-1)). After 56 days of treatment with MEBCD, no toxicologically meaningful differences were observed in macroscopic and microscopic parameters compared with controls. The accumulation of MEBCD in normal and tumour tissues was also assessed using a chromatographic method. Results indicated that after a single injection of MEBCD, tumour, liver and kidneys accumulated the highest concentrations of MEBCD. These results provided a basis for the potential therapeutic application of MEBCD in cancer therapy. PMID:9820174

  4. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons.

    PubMed

    Keta, Otilija; Todorović, Danijela; Popović, Nataša; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan; Ristić-Fira, Aleksandra

    2014-06-29

    Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features.

  5. Prevalence of high-risk human papillomavirus infection in women with ovarian endometriosis.

    PubMed

    Heidarpour, Mitra; Derakhshan, Maryam; Derakhshan-Horeh, Marzieh; Kheirollahi, Majid; Dashti, Sepideh

    2017-01-01

    In this study, we aimed to determine the prevalence of human papillomavirus (HPV) in ovarian endometriosis and ovarian tissue from women without endometriosis. Understanding the pathogenesis of the disease could help us design preventative strategies as well as novel and appropriate treatment approaches in this regard. In this cross-sectional study, formalin-fixed and paraffin-embedded tissue sections from 50 and 49 ovaries with and without endometriosis, respectively, were evaluated for the presence of high-risk HPV using the polymerase chain reaction technique. Prevalence of HPV infection and other related characteristics of the studied population were compared. High-risk HPV infection was detected in 13 (26%) and five (10.2%) of the samples with and without endometriosis, respectively (P = 0.041, χ(2)  = 3.16). Mean age and parity were not significantly different in subjects with and without HPV infection in the two studied groups (P = 0.7 and P = 0.06 for age in case and control groups, respectively; and P = 0.32 and P = 0.09 for parity in case and control groups, respectively). The results of our study indicated a higher rate of high-risk HPV infection among patients with endometriosis. The findings could provide us baseline information for future studies regarding the pathogenesis of endometriosis and the role of viral infection and their possible impact on future cancer development in this group of patients. © 2016 Japan Society of Obstetrics and Gynecology.

  6. Sequential combination of flavopiridol with Taxol synergistically suppresses human ovarian carcinoma growth.

    PubMed

    Song, Yue; Xin, Xing; Zhai, Xingyue; Xia, Zhijun; Shen, Keng

    2015-01-01

    The purpose is to investigate the effects of the sequential combination treatment of Taxol and flavopiridol on human ovarian carcinoma in vitro and in vivo. Cell viabilities were determined using the cell counting kit and by flow cytometry. RT-PCR, TUNEL, and immunoblotting assays were used to detect cellular apoptotic activities following treatments. Tumor growth and microvessel density (MVD) detection of mice bearing SKOV3 cells were studied. Taxol or flavopiridol alone was cytotoxic against SKOV3 cells in vitro with a viability rate of 38.2 ± 1.3 % for 1 µmol/L Taxol and 44.3 ± 5.9 % for 300 nM flavopiridol. Sequential combination treatment with Taxol and flavopiridol resulted in a viability rate of 9.1 ± 0.8 %. The apoptotic rate of SKOV3 cells was 15.7 ± 1.7, 9.4 ± 0.4 and 51.1 ± 2.5 % for Taxol, flavopiridol, and combination of Taxol and flavopiridol, respectively. Significant synergisms were observed in SKOV3 cells in vitro, following the sequential combination of Taxol for 24 h followed by flavopiridol for 24 h, which resulted in the most substantial cell death and the highest apoptotic rate. All treatments showed significant suppression of tumor growth at the end point of the in vivo study. All treatments significantly reduce the value of MVD. Sequential combination treatment with Taxol and flavopiridol exerted synergistic cytotoxic activities against SKOV3 cells in vitro and significantly suppress the tumor growth of mice bearing SKOV3 cells. It should be further explored as a potential clinically useful regimen against ovarian cancer.

  7. Ovarian Cycle Effects on Immediate Reward Selection Bias in Humans: A Role for Estradiol

    PubMed Central

    Smith, Christopher T.; Sierra, Yecenia; Oppler, Scott H.

    2014-01-01

    A variety of evidence suggests that, among humans, the individual tendency to choose immediate rewards (“Now”) over larger, delayed rewards (“Later”), or Now bias, varies with frontal dopamine (DA) levels. As cyclic elevations in estradiol (E+) modulate other frontal DA-dependent behaviors, we tested ovarian cycle effects on Now bias, and whether any such effects are E+ mediated. To do so, we quantified Now/Later choice behavior in naturally cycling adult females (n = 87; ages 18–40 years) during both the menstrual phase (MP; cycle day 1–2; low E+), and the follicular phase (FP; cycle day 11–12; high E+). Now bias decreased an average of 3.6% from MP to FP (p = 0.006). Measures of salivary E+ levels at each visit were available in a subsample of participants (n = 34). Participants with a verified E+ rise from MP to FP showed significantly greater decreases in Now bias at mid-cycle (n = 23) than those without a rise (n = 11; p = 0.03); Now bias decreased an average of 10.2% in the E+ rise group but increased an average of 7.9% in the no E+ rise group. The change in Now bias from MP to FP inversely correlated with the change in E+ (ρ = −0.39; p = 0.023), an effect driven by individuals with putatively lower frontal DA based on genotype at the Val158Met polymorphism in the COMT gene. This is the first demonstration that intertemporal choice varies across the ovarian cycle, with Now bias declining at mid-cycle, when fertility peaks. Moreover, our data suggest that the interacting effects of estradiol and frontal DA mediate this cycle effect on decision making. PMID:24741037

  8. Ovarian adipocytokines are associated with early in vitro human embryo development independent of the action of ovarian insulin.

    PubMed

    Li, Liyun; Ferin, Michel; Sauer, Mark V; Lobo, Roger A

    2012-12-01

    We aimed to characterize the association between levels of serum and follicular fluid (FF) adipocytokines, reflected by the leptin to adiponectin ratio (L:A ratio), and oocyte quality and in vitro embryo development in women undergoing assisted reproduction. We also aimed to assess whether follicular hormonal pathways mediate this interaction. We prospectively collected FF from up to four individual preovulatory follicles (n = 76) and fasting sera from women (n = 31) without endocrinopathies undergoing in vitro fertilization (IVF) at a university-based center for assisted reproduction. Leptin, total adiponectin, insulin, insulin-like growth factor 1 (IGF-1), and ovarian steriods were measured using enzyme immunoassay. Oocyte maturity, fertilization, and embryo development were assessed. FF leptin was similar to serum levels while FF adiponectin was lower. FF leptin (27.10 ± 4.05 ng/mL) and the L:A ratio (11.48E-3 ± 2.57E-3) were related to FF insulin (R (2) = 0.370 and 0.419, p < 0.001) but not to ovarian steroids or IGF-1, whereas FF adiponectin ( 4.22 ± 0.52 ug/mL) correlated only with leptin (R (2) = -0.138, p = 0.001). Oocytes from a high FF L:A ratio environment were 81 % (RR 1.81 [95%CI 0.97-3.37]) more likely to undergo successful cleavage and 117 % (RR 2.17 [95 % CI 1.06-4.44]) more likely to obtain viable cleavage morphology compared to a low FF L:A ratio environment, even when adjusted for FF insulin, an independent predictor of cleavage. Certain adipocytokines, particularly the L:A ratio in the FF of the preovulatory follicle, are related to successful in vitro embryo development. This action may be independent of FF insulin.

  9. Ovarian Cancer

    MedlinePlus

    ... deaths than other female reproductive cancers. The sooner ovarian cancer is found and treated, the better your chance for recovery. But ovarian cancer is hard to detect early. Women with ovarian ...

  10. Withaferin A Alone and in Combination with Cisplatin Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer Stem Cells

    PubMed Central

    Kakar, Sham S.; Ratajczak, Mariusz Z.; Powell, Karen S.; Moghadamfalahi, Mana; Miller, Donald M.; Batra, Surinder K.; Singh, Sanjay K.

    2014-01-01

    Currently, the treatment for ovarian cancer entails cytoreductive surgery followed by chemotherapy, mainly, carboplatin combined with paclitaxel. Although this regimen is initially effective in a high percentage of cases, unfortunately within few months of initial treatment, tumor relapse occurs because of platinum-resistance. This is attributed to chemo-resistance of cancer stem cells (CSCs). Herein we show for the first time that withaferin A (WFA), a bioactive compound isolated from the plant Withania somnifera, when used alone or in combination with cisplatin (CIS) targets putative CSCs. Treatment of nude mice bearing orthotopic ovarian tumors generated by injecting human ovarian epithelial cancer cell line (A2780) with WFA and cisplatin (WFA) alone or in combination resulted in a 70 to 80% reduction in tumor growth and complete inhibition of metastasis to other organs compared to untreated controls. Histochemical and Western blot analysis of the tumors revealed that inclusion of WFA (2 mg/kg) resulted in a highly significant elimination of cells expressing CSC markers - CD44, CD24, CD34, CD117 and Oct4 and downregulation of Notch1, Hes1 and Hey1 genes. In contrast treatment of mice with CIS alone (6 mg/kg) had opposite effect on those cells. Increase in cells expressing CSC markers and Notch1 signaling pathway in tumors exposed to CIS may explain recurrence of cancer in patients treated with carboplatin and paclitaxel. Since, WFA alone or in combination with CIS eliminates putative CSCs, we conclude that WFA in combination with CIS may present more efficacious therapy for ovarian cancer. PMID:25264898

  11. Telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells through upregulating PPARγ and downregulating MMP‑9 expression.

    PubMed

    Pu, Zhichen; Zhu, Min; Kong, Fandou

    2016-01-01

    The mortality rate of ovarian cancer is the highest of all gynecological malignancies. Telmisartan is a commonly used clinical angiotensin receptor blocker, which has antihypertensive, anti‑inflammatory and antithrombotic effects. In the present study, it was investigated whether telmisartan could exert anticancer effects on ovarian cancer cells through upregulating peroxisome proliferator‑activated receptor γ (PPARγ) and downregulating matrix metalloproteinase‑9 (MMP‑9) expression. A 3.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to analyze the proliferation of HEY cells. A Caspase‑3 Activity Assay kit and an Annexin V‑fluorescein isothiocyanate/propidium iodide kit were used to analyze the apoptosis of HEY cells. In addition, a gelatin zymography assay and reverse trancription‑quantitative polymerase chain reaction were included to analyze the expression of PPARγ and MMP‑9 in HEY cells. The data showed that telmisartan could significantly decrease cell viability and induce the apoptosis of HEY cells in a time‑ and dose‑dependent manner. Furthermore, telmisartan could also dose‑dependently increase the expression of PPARγ and decrease the expression of MMP‑9 in HEY cells. In addition, downregulation of the expression of PPARγ by small interfering (si)RNA could reduce the effect of telmisartan on ovarian cancer cells and increase the expression of MMP‑9. In conclusion, the results indicated that telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells by upregulating PPARγ and downregulating MMP‑9 expression.

  12. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer

    PubMed Central

    2012-01-01

    Background The epithelial to mesenchymal transition (EMT) is a molecular process through which an epithelial cell undergoes transdifferentiation into a mesenchymal phenotype. The role of EMT in embryogenesis is well-characterized and increasing evidence suggests that elements of the transition may be important in other processes, including metastasis and drug resistance in various different cancers. Methods Agilent 4 × 44 K whole human genome arrays and selected reaction monitoring mass spectrometry were used to investigate mRNA and protein expression in A2780 cisplatin sensitive and resistant cell lines. Invasion and migration were assessed using Boyden chamber assays. Gene knockdown of snail and slug was done using targeted siRNA. Clinical relevance of the EMT pathway was assessed in a cohort of primary ovarian tumours using data from Affymetrix GeneChip Human Genome U133 plus 2.0 arrays. Results Morphological and phenotypic hallmarks of EMT were identified in the chemoresistant cells. Subsequent gene expression profiling revealed upregulation of EMT-related transcription factors including snail, slug, twist2 and zeb2. Proteomic analysis demonstrated up regulation of Snail and Slug as well as the mesenchymal marker Vimentin, and down regulation of E-cadherin, an epithelial marker. By reducing expression of snail and slug, the mesenchymal phenotype was largely reversed and cells were resensitized to cisplatin. Finally, gene expression data from primary tumours mirrored the finding that an EMT-like pathway is activated in resistant tumours relative to sensitive tumours, suggesting that the involvement of this transition may not be limited to in vitro drug effects. Conclusions This work strongly suggests that genes associated with EMT may play a significant role in cisplatin resistance in ovarian cancer, therefore potentially leading to the development of predictive biomarkers of drug response or novel therapeutic strategies for overcoming drug resistance. PMID

  13. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells

    PubMed Central

    Zhang, Yanli; Kwok, Jamie Sui-Lam; Choi, Pui-Wah; Liu, Minghua; Yang, Junzheng; Singh, Margit; Ng, Shu-Kay; Welch, William R.; Muto, Michael G.; Tsui, Stephen KW; Sugrue, Stephen P.; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Unlike many other human solid tumors, ovarian tumors express many epithelial markers at a high level for cell growth and local invasion. The phosphoprotein Pinin plays a key role in epithelial cell identity. We showed that clinical ovarian tumors and ovarian cancer cell lines express a high level of Pinin when compared with normal ovarian tissues and immortalized normal ovarian surface epithelial cell lines. Pinin co-localized and physically interacted with transcriptional corepressor C-terminal binding proteins, CtBP1 and CtBP2, in the nuclei of cancer cells. Knockdown of Pinin in ovarian cancer cells resulted in specific reduction of CtBP1 protein expression, cell adhesion, anchorage-independent growth, and increased drug sensitivity. Whole transcriptomic comparison of next-generation RNA sequencing data between control ovarian cancer cell lines and cancer cell lines with respective knockdown of Pinin, CtBP1, and CtBP2 expression also showed reduced expression of CtBP1 mRNA in the Pinin knockdown cell lines. The Pinin knockdown cell lines shared significant overlap of differentially expressed genes and RNA splicing aberrations with CtBP1 knockdown and in a lesser degree with CtBP2 knockdown cancer cells. Hence, Pinin and CtBP are oncotargets that closely interact with each other to regulate transcription and pre-mRNA alternative splicing and promote cell adhesion and other epithelial characteristics of ovarian cancer cells. PMID:26871283

  14. FT-IR Microspectrometry Reveals the Variation of Membrane Polarizability due to Epigenomic Effect on Epithelial Ovarian Cancer

    PubMed Central

    Hsu, Morris M. H.; Huang, Pei-Yu; Lee, Yao-Chang; Fang, Yuang-Chuen; Chan, Michael W. Y.; Lee, Cheng-I

    2014-01-01

    Ovarian cancer, as well as other cancers, is primarily caused by methylation at cytosines in CpG islands, but the current marker for ovarian cancer is low in sensitivity and failed in early-stage detection. Fourier transform infrared (FT-IR) spectroscopy is powerful in analysis of functional groups within molecules, and infrared microscopy illustrates the location of specific groups within single cells. In this study, we applied HPLC and FT-IR microspectrometry to study normal epithelial ovarian cell line immortalized ovarian surface epithelium (IOSE), two epithelial ovarian cell lines (A2780 and CP70) with distinct properties, and the effect of a cancer drug 5-aza-2'-deoxycytidine (5-aza) without labeling. Our results reveal that inhibition of methylation on cytosine with 5-aza initiates the protein expression. Furthermore, paraffin-adsorption kinetic study allows us to distinguish hypermethylated and hypomethyated cells, and this assay can be a potential diagnosis method for cancer screening. PMID:25299694

  15. Transforming growth factor-β stimulates human ovarian cancer cell migration by up-regulating connexin43 expression via Smad2/3 signaling.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Zhao, Jianfang; Chang, Hsun-Ming; Leung, Peter C K

    2015-10-01

    Reduced connexin43 (Cx43) expression is frequently detected in different types of human cancer. Cx43 has been shown to regulate cancer cell migration in a cell-type dependent manner. In both primary and recurrent human ovarian cancer, overexpression of TGF-β ligand and its receptors have been detected. TGF-β can regulate Cx43 expression in other cell types and stimulate human ovarian cancer cell migration. However, whether Cx43 can be regulated by TGF-β and is involved in TGF-β-stimulated cell migration in human ovarian cancer cells remain unknown. In this study, we demonstrate that TGF-β up-regulates Cx43 in two human ovarian cancer cell lines, SKOV3 and OVCAR4. The stimulatory effect of TGF-β on Cx43 expression is blocked by inhibition of TGF-β receptor. Treatment with TGF-β activates Smad2 and Smad3 signaling pathways in both ovarian cancer cell lines. In addition, siRNA-mediated knockdown of Smad2 or Smd3 abolishes TGF-β-induced up-regulation of Cx43 expression. Moreover, knockdown of Cx43 attenuates TGF-β-stimulated cell migration. This study demonstrates an important role for Cx43 in mediating the effects of TGF-β on human ovarian cancer cell migration.

  16. Inovium Ovarian Rejuvenation Trials

    ClinicalTrials.gov

    2017-10-03

    Perimenopausal Disorder; Menopause; Menopause, Premature; Menopause Related Conditions; Menopause Premature Symptomatic; Menopause Premature Asymptomatic; Premature Ovarian Failure; Premature Ovarian Failure, Familial; Premature Ovarian Failure 2A; Premature Ovarian Failure 3; Premature Ovarian Failure 4; Premature Ovarian Failure 1; Premature Ovarian Failure 5; Premature Ovarian Failure 6; Premature Ovarian Failure 7; Premature Ovarian Failure 9; Premature Ovarian Failure 8; Infertility; Infertility, Female; Infertility Unexplained

  17. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans

    PubMed Central

    Nepomuceno, Angelito I.; Shao, Huanjie; Jing, Kai; Ma, Yibao; Petitte, James N.; Idowu, Michael O.; Muddiman, David C.; Fang, Xianjun

    2017-01-01

    Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously. Matched plasma, ovary, and oviduct tissue biospecimens derived from healthy, early-stage OVC, and late-stage OVC birds were quantitatively characterized by label-free proteomics. Over 2600 proteins were identified in this study, 348 of which were differentially expressed by more than twofold (p≤0.05) in early- and late-stage ovarian tumor tissue specimens relative to healthy ovarian tissues. Several of the 348 proteins are known to be differentially regulated in human cancers including B2M, CLDN3, EPCAM, PIGR, S100A6, S100A9, S100A11, and TPD52. Of particular interest was ovostatin 2 (OVOS2), a novel 165-kDa protease inhibitor found to be strongly upregulated in chicken ovarian tumors (p=0.0005) and matched plasma (p=0.003). Indeed, RT-quantitative PCR and Western blot analysis demonstrated that OVOS2 mRNA and protein were also upregulated in multiple human OVC cell lines compared to normal ovarian epithelia (NOE) cells and immunohistochemical staining confirmed overexpression of OVOS2 in primary human ovarian cancers relative to non-cancerous tissues. Collectively, these data provide the first evidence for involvement of OVOS2 in the pathogenesis of both chicken and human ovarian cancer. PMID:26159569

  18. A sandwiched biological fluorescent probe for the diagnosis of human ovarian tumor based on TiO2 nanoparticles.

    PubMed

    Zhu, Peisi; Huang, Shasheng; Li, Mengyao; Ding, Na; Peng, Bing; Kong, Lingmi; Bo, Yang

    2011-01-01

    In this paper, we report a novel biological fluorescent probe for the diagnosis of human ovarian tumor based on sandwiched TiO(2) nanoparticles. The fluorescence nanoparticles consist of a fluorescent molecule, tetramethyl rhodamine isothiocyanate (TRITC), sandwiched between titanium dioxide (TiO(2)) nanoparticles and nano-gold via reacting with each other. The antibodies HER2, labeled on the surface of the biofluorescence nanoparticles, have granted nanoparticles the privilege of aiming at peculiar tumor antigen. The specificity of antibody-nanoparticles interacting with cells was characterized by Laser Scanning Confocal Microscope. The results showed that these sandwiched nanoparticles were innocuous and stable, and the method offered potential advantages of sensitivity and simplicity due to high combing efficiency between nanoparticles and cells and provided an alternative method for the diagnosis of human ovarian tumor (HOT).

  19. Cationic chlorophyl derivatives with SOD mimicking activity suppress the proliferation of human ovarian cancer cells.

    PubMed

    Kobayashi, Y; Maniki, M; Nakamura, K

    1996-06-01

    Derivatives of chlorophyl, e.g. Fe-chlorin e6-Na, alpha, beta, gamma, delta-Tetraphenylporphine-tetrasulfonic acid disulfonic acid salt tetrahydrate (Fe-TPPTS) and alpha, beta, gamma, delta-Tetrakis (4-N-trimethylaminophenyl) porphine, tetra (p-toluensulfonate (Fe-TTMAPP), express SOD mimicking activity. Examination was made of suppressive effects of human cancer cell lines by derivatives of chlorophyl. Fe-TPPTS and Fe-TTMAPP suppressed proliferation of the human ovarian cancer cell lines but Fe-chlorin e6-Na failed to suppress the proliferation. Lipid peroxide was increased by application of Fe-TPPTS and Fe-TTMAPP, but decreased by application of Fe-chlorin e6-Na. SOD activity of the cancer cells did not change by application of these drugs. TPPTS and TTMAPP have a cationic charge but Fe-chlorin e6-Na has an anionic charge. It is suggested that charge of these drugs relates to the suppressive effects of the cancer cell proliferation.

  20. HER2 mediates epidermal growth factor-induced down-regulation of E-cadherin in human ovarian cancer cells.

    PubMed

    Cheng, Jung-Chien; Qiu, Xin; Chang, Hsun-Ming; Leung, Peter C K

    2013-04-26

    Overexpression of HER2 is correlated with a poor prognosis in many types of human cancers. Due to the interaction between HER2 and other ErbB receptors, HER2 is implicated in the EGF family of ligands-regulated tumor progression. In ovarian cancer, although the relationships between HER2 amplification and patient prognosis remain controversial, the underlying molecular mechanisms of HER2-mediated tumor progression are not fully understood. Our previous studies demonstrated that EGF induces ovarian cancer cell invasion by down-regulating E-cadherin expression through the up-regulation of its transcriptional repressors, Snail and Slug. It has been shown that overexpression of HER2 down-regulates E-cadherin expression in human mammary epithelial cells. However, whether HER2 mediates EGF-induced down-regulation of E-cadherin remains unknown. In this study, we examined the potential role of HER2 in EGF-induced down-regulation of E-cadherin and increased cell invasion. We show that EGF treatment induces the interaction of EGFR with HER2 and increases the activation of HER2 in human ovarian cancer cells; we also show that these effects are diminished by knockdown of EGFR. Importantly, treatment with HER2-specific tyrosine kinase inhibitor, AG825, and HER2 siRNA diminished the up-regulation of Snail and Slug as well as the down-regulation of E-cadherin by EGF. Finally, we also show that EGF-induced cell invasion was attenuated by treatment with HER2 siRNA. This study demonstrates an important role for HER2 in mediating the effects of EGF on Snail, Slug and E-cadherin expression as well as invasiveness in human ovarian cancer cells.

  1. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines.

    PubMed

    Miranda, C L; Stevens, J F; Helmrich, A; Henderson, M C; Rodriguez, R J; Yang, Y H; Deinzer, M L; Barnes, D W; Buhler, D R

    1999-04-01

    Six flavonoids [xanthohumol (XN), 2',4',6',4-tetrahydroxy-3'-prenylchalcone (TP); 2',4',6',4-tetrahydroxy-3'-geranylchalcone (TG); dehydrocycloxanthohumol (DX); dehydrocycloxanthohumol hydrate (DH); and isoxanthohumol (IX)] from hops (Humulus lupulus) were tested for their antiproliferative activity in human breast cancer (MCF-7), colon cancer (HT-29) and ovarian cancer (A-2780) cells in vitro. XN, DX and IX caused a dose-dependent (0.1 to 100 microM) decrease in growth of all cancer cells. After a 2-day treatment, the concentrations at which the growth of MCF-7 cells was inhibited by 50% (IC50) were 13.3, 15.7 and 15.3 microM for XN, DX and IX, respectively. After a 4-day treatment, the IC50 for XN, DX and IX were 3.47, 6.87 and 4.69 microM, respectively. HT-29 cells were more resistant than MCF-7 cells to these flavonoids. In A-2780 cells, XN was highly antiproliferative with IC50 values of 0.52 and 5.2 microM after 2 and 4 days of exposure, respectively. At 100 microM, all the hop flavonoids were cytotoxic in the three cell lines. Growth inhibition of XN- and IX-treated MCF-7 cells was confirmed by cell counting. XN and IX inhibited DNA synthesis in MCF-7 cells. As antiproliferative agents, XN (chalcone) and IX (flavanone isomer of XN) may have potential chemopreventive activity against breast and ovarian cancer in humans.

  2. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy.

    PubMed

    Pastorek, Michal; Simko, Veronika; Takacova, Martina; Barathova, Monika; Bartosova, Maria; Hunakova, Luba; Sedlakova, Olga; Hudecova, Sona; Krizanova, Olga; Dequiedt, Franck; Pastorekova, Silvia; Sedlak, Jan

    2015-07-01

    One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.

  3. Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma.

    PubMed

    Diamandis, Eleftherios P; Okui, Akira; Mitsui, Shinichii; Luo, Liu-Ying; Soosaipillai, Antoninus; Grass, Linda; Nakamura, Terukazu; Howarth, David J C; Yamaguchi, Nozomi

    2002-01-01

    Human kallikrein 11 (hK11) is a putative serine protease of the human kallikrein gene family. Currently, no methods are available for measuring hK11 in biological fluids and tissues. Our aim was to develop immunological reagents and assays for measuring hK11 and examine if the concentration of this kallikrein is altered in disease states. We produced recombinant hK11 protein in a baculovirus system and used it to develop monoclonal and polyclonal antibodies against hK11. We then developed an immunofluorometric procedure for measuring hK11 in biological fluids and tissue extracts with high sensitivity and specificity. We further quantified hK11 in various biological fluids and in serum of patients with various cancers. The hK11 immunofluorometric assay is highly sensitive (detection limit, 0.1 microg/l) and specific (no detectable cross-reactivity for other homologous kallikreins). We established the tissue expression pattern of hK11 at the protein level and found the highest levels in the prostate, followed by stomach, trachea, skin, and colon. We have immunohistochemically localized hK11 in epithelial cells of various organs. We further detected hK11 in amniotic fluid, milk of lactating women, cerebrospinal fluid, follicular fluid, and breast cancer cytosols. However, highest levels were seen in prostatic tissue extracts and seminal plasma. hK11 in seminal plasma and prostatic extracts is present at approximately 300-fold lower levels than prostate-specific antigen and at approximately the same levels as hK2. hK11 expression in breast cancer cell lines is up-regulated by estradiol. Elevated serum levels of hK11 were found in 70% of women with ovarian cancer and in 60% of men with prostate cancer. This is the first reported immunological assay for hK11. Analysis of this biomarker in serum may aid in the diagnosis and monitoring of ovarian and prostatic carcinoma.

  4. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk

    PubMed Central

    Salerno, Elise P.; Bedognetti, Davide; Mauldin, Ileana S.; Deacon, Donna H.; Shea, Sofia M.; Obeid, Joseph M.; Coukos, George; Gajewski, Thomas F.; Marincola, Francesco M.; Slingluff, Craig L.

    2016-01-01

    ABSTRACT We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8+ gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction. PMID:28123876

  5. Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells

    PubMed Central

    Prinetti, Alessandro; Millimaggi, Danilo; D'Ascenzo, Sandra; Clarkson, Matilda; Bettiga, Arianna; Chigorno, Vanna; Sonnino, Sandro; Pavan, Antonio; Dolo, Vincenza

    2005-01-01

    PTX (Paclitaxel®) is an antimitotic agent used in the treatment of a number of major solid tumours, particularly in breast and ovarian cancer. This study was undertaken to gain insight into the molecular alterations producing PTX resistance in ovarian cancer. PTX treatment is able to induce apoptosis in the human ovarian carcinoma cell line, CABA I. PTX-induced apoptosis in CABA I cells was accompanied by an increase in the cellular Cer (ceramide) levels and a decrease in the sphingomyelin levels, due to the activation of sphingomyelinases. The inhibition of acid sphingomyelinase decreased PTX-induced apoptosis. Under the same experimental conditions, PTX had no effect on Cer and sphingomyelin levels in the stable PTX-resistant ovarian carcinoma cell line, CABA-PTX. The acquisition of the PTX-resistant phenotype is accompanied by unique alterations in the complex sphingolipid pattern found on lipid extraction. In the drug-resistant cell line, the levels of sphingomyelin and neutral glycosphingolipids were unchanged compared with the drug-sensitive cell line. The ganglioside pattern in CABA I cells is more complex compared with that of CABA-PTX cells. Specifically, we found that the total ganglioside content in CABA-PTX cells was approximately half of that in CABA I cells, and GM3 ganglioside content was remarkably higher in the drug-resistant cell line. Taken together our findings indicate that: i) Cer generated by acid sphingomyelinase is involved in PTX-induced apoptosis in ovarian carcinoma cells, and PTX-resistant cells are characterized by their lack of increased Cer upon drug treatment, ii) PTX resistance might be correlated with an alteration in metabolic Cer patterns specifically affecting cellular ganglioside composition. PMID:16356169

  6. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed Central

    Yanagibashi, T.; Gorai, I.; Nakazawa, T.; Miyagi, E.; Hirahara, F.; Kitamura, H.; Minaguchi, H.

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression. Images Figure 1 Figure 2 Figure 3 PMID:9328139

  7. Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results.

    PubMed

    Willmann, Jürgen K; Bonomo, Lorenzo; Carla Testa, Antonia; Rinaldi, Pierluigi; Rindi, Guido; Valluru, Keerthi S; Petrone, Gianluigi; Martini, Maurizio; Lutz, Amelie M; Gambhir, Sanjiv S

    2017-07-01

    Purpose We performed a first-in-human clinical trial on ultrasound molecular imaging (USMI) in patients with breast and ovarian lesions using a clinical-grade contrast agent (kinase insert domain receptor [KDR] -targeted contrast microbubble [MBKDR]) that is targeted at the KDR, one of the key regulators of neoangiogenesis in cancer. The aim of this study was to assess whether USMI using MBKDR is safe and allows assessment of KDR expression using immunohistochemistry (IHC) as the gold standard. Methods Twenty-four women (age 48 to 79 years) with focal ovarian lesions and 21 women (age 34 to 66 years) with focal breast lesions were injected intravenously with MBKDR (0.03 to 0.08 mL/kg of body weight), and USMI of the lesions was performed starting 5 minutes after injection up to 29 minutes. Blood pressure, ECG, oxygen levels, heart rate, CBC, and metabolic panel were obtained before and after MBKDR administration. Persistent focal MBKDR binding on USMI was assessed. Patients underwent surgical resection of the target lesions, and tissues were stained for CD31 and KDR by IHC. Results USMI with MBKDR was well tolerated by all patients without safety concerns. Among the 40 patients included in the analysis, KDR expression on IHC matched well with imaging signal on USMI in 93% of breast and 85% of ovarian malignant lesions. Strong KDR-targeted USMI signal was present in 77% of malignant ovarian lesions, with no targeted signal seen in 78% of benign ovarian lesions. Similarly, strong targeted signal was seen in 93% of malignant breast lesions with no targeted signal present in 67% of benign breast lesions. Conclusion USMI with MBKDR is clinically feasible and safe, and KDR-targeted USMI signal matches well with KDR expression on IHC. This study lays the foundation for a new field of clinical USMI in cancer.

  8. Ovarian and breast cancer spheres are similar in transcriptomic features and sensitive to fenretinide.

    PubMed

    Wang, Haiwei; Zhang, Yuxing; Du, Yanzhi

    2013-01-01

    Cancer stem cells (CSCs) are resistant to chemotherapy and are ability to regenerate cancer cell populations, thus attracting much attention in cancer research. In this report, we first demonstrated that sphere cells from ovarian cancer cell line A2780 shared many features of CSCs, such as resistance to cisplatin and able to initiate tumors in an efficient manner. Then, we conducted cDNA microarray analysis on spheres from ovarian A2780 cells, and from breast MCF7 and SUM159 cells, and found that molecular pathways underlying spheres from these cancer cell lines were similar to a large extent, suggesting that similar mechanisms are involved in the genesis of CSCs in both ovarian and breast cancer types. In addition, we showed that spheres from these cancer types were highly sensitive to fenretinide, a stimulus of oxidative stress-mediated apoptosis in cancer cells. Thus, our results not only provide important insights into mechanisms underlying CSCs in ovarian and breast cancer, but also lead to the development of more sophisticated protocols of cancer therapy in near future.

  9. Ovarian and Breast Cancer Spheres Are Similar in Transcriptomic Features and Sensitive to Fenretinide

    PubMed Central

    Wang, Haiwei; Zhang, Yuxing; Du, Yanzhi

    2013-01-01

    Cancer stem cells (CSCs) are resistant to chemotherapy and are ability to regenerate cancer cell populations, thus attracting much attention in cancer research. In this report, we first demonstrated that sphere cells from ovarian cancer cell line A2780 shared many features of CSCs, such as resistance to cisplatin and able to initiate tumors in an efficient manner. Then, we conducted cDNA microarray analysis on spheres from ovarian A2780 cells, and from breast MCF7 and SUM159 cells, and found that molecular pathways underlying spheres from these cancer cell lines were similar to a large extent, suggesting that similar mechanisms are involved in the genesis of CSCs in both ovarian and breast cancer types. In addition, we showed that spheres from these cancer types were highly sensitive to fenretinide, a stimulus of oxidative stress-mediated apoptosis in cancer cells. Thus, our results not only provide important insights into mechanisms underlying CSCs in ovarian and breast cancer, but also lead to the development of more sophisticated protocols of cancer therapy in near future. PMID:24222909

  10. Development of EGFR Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Patel, Niravkumar R.; Cacaccio, Joseph; Rawal, Yashesh H.; Davis, Barbara J.; Amiji, Mansoor M.; Coleman, Timothy P.

    2014-01-01

    Purpose Platinum-based chemotherapy is the treatment of choice for malignant epithelial ovarian cancers, but generalized toxicity and platinum resistance limits its use. Theranostic nanoemulsion with a novel platinum prodrug, myrisplatin, and the pro-apoptotic agent, C6-ceramide, were designed to overcome these limitations. Methods The nanoemulsions, including ones with an EGFR binding peptide and gadolinium, were made using generally regarded as safe grade excipients and a high shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3, A2780 and A2780CP. Results The nanoemulsion with particle size <150 nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and EGFR-targeted nanoemulsions; improved cytotoxicity was observed for the these nanoemulsions with the latter showing a 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist®. Conclusion The myrisplatin/C6-ceramide nanoemulsion synergistically enhanced in vitro cytotoxicity. An EGFR binding peptide addition further increased in vitro cytotoxicity in EGFR positive cancer cells. The diagnostic version showed MR imaging similar to the clinically relevant Magnevist® and may be suitable as a theranostic for ovarian cancer. PMID:24643932

  11. Differential effects of rapalogues, dual kinase inhibitors on human ovarian carcinoma cells in vitro.

    PubMed

    Rogers-Broadway, Karly-Rai; Chudasama, Dimple; Pados, George; Tsolakidis, Dimitris; Goumenou, Anastasia; Hall, Marcia; Karteris, Emmanouil

    2016-07-01

    Ovarian cancer is the second most common gynaecological malignancy and was diagnosed in over 7,000 women in 2011 in the UK. There are currently no reliable biomarkers available for use in a regular screening assay for ovarian cancer and due to characteristic late presentation (78% in stages III and IV) ovarian cancer has a low survival rate (35% after 10 years). The mTOR pathway is a central regulator of growth, proliferation, apoptosis and angiogenesis; providing balance between available resources such as amino acids and growth factors, and stresses such as hypoxia, to control cellular behaviour accordingly. Emerging data links mTOR with the aetiopathogenesis of ovarian cancer. We hypothesised that mTOR inhibitors could play a therapeutic role in ovarian cancer treatment. In this study we began by validating the expression of four main mTOR pathway components, mTOR, DEPTOR, rictor and raptor, at gene and protein level in in vitro models of endometrioid (MDAH‑2774) and clear cell (SKOV3) ovarian cancer using qPCR and ImageStream technology. Using a wound healing assay we show that inhibition of the mTOR pathway using rapamycin, rapalogues, resveratrol and NVP BEZ-235 induces a cytostatic and not cytotoxic response up to 18 h in these cell lines. We extended these findings up to 72 h with a proliferation assay and show that the effects of inhibition of the mTOR pathway are primarily mediated by the dephosphorylation of p70S6 kinase. We show that mTOR inhibition does not involve alteration of mTOR pathway components or induce caspase 9 cleavage. Preclinical studies including ovarian tissue of ovarian cancer patients, unaffected controls and patients with unrelated gynaecological conditions show that DEPTOR is reliably upregulated in ovarian cancer.

  12. Chemotherapy drug response in ovarian cancer cells strictly depends on a cathepsin D-Bax activation loop

    PubMed Central

    Castino, Roberta; Peracchio, Claudia; Salini, Alessandra; Nicotra, Giuseppina; Trincheri, Nicol F; Démoz, Marina; Valente, Guido; Isidoro, Ciro

    2009-01-01

    The ovarian cancer cell lines A2780 (wild-type p53) and NIHOVCAR3 (mutated p53) showed, respectively, sensitivity and resistance towards several chemotherapy drugs. We hypothesized that the two cell lines differ in their ability to activate the intrinsic death pathway and have, therefore, dissected the lysosome-mitochondrion signalling pathway by pharmacological inhibition or genetic manipulation of key regulators and executioners. Biochemical and morphological confocal fluorescence studies showed that: (1) In A2780 cells bcl-2 is expressed at an undetectable level, whereas Bax is expressed at a rather high level; by contrast, bcl-2 is highly expressed and Bax is expressed at extremely low levels in NIHOVCAR3 cells; (2) Chemotherapy treatment reduced the expression of bcl-2 in NIHOVCAR3 cells, yet these cells resisted to drug toxicity; (3) Cathepsin D (CD), not cathepsin B or L, mediates the activation of the mitochondrial intrinsic death pathway in A2780 cells; (4) Lysosome leakage and cytosolic relocation of CD occurs in the chemosensitive A2780 cells, not in the chemoresistant NIHOVCAR3 cells; (5) Bax is essential for the permeabilization of both lysosomes and mitochondria in A2780 cells exposed to chemotherapy drugs; (6) CD activity is mandatory for the oligomerization of Bax on both mitochondrial and lysosomal membranes; (7) Bax activation did not occur in the resistant NIHOVCAR3 cells despite their high content in CD. The present data are consistent with a model in which on treatment with a cytotoxic drug the activation of a CD-Bax loop leads to the generalized permeabilization of lysosomes and eventually of mitochondria, thus reaching the point of no return, and culminates with the activation of the caspase cascade. Our data also imply that dysfunctional permeabilization of lysosomes contributes to the development of chemoresistance. PMID:18657225

  13. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    PubMed

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-09

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In utero exposure to cigarette smoke dysregulates human fetal ovarian developmental signalling.

    PubMed

    Fowler, Paul A; Childs, Andrew J; Courant, Frédérique; MacKenzie, Alasdair; Rhind, Stewart M; Antignac, Jean-Philippe; Le Bizec, Bruno; Filis, Panagiotis; Evans, Fergus; Flannigan, Samantha; Maheshwari, Abha; Bhattacharya, Siladitya; Monteiro, Ana; Anderson, Richard A; O'Shaughnessy, Peter J

    2014-07-01

    How does maternal cigarette smoking disturb development of the human fetal ovary? Maternal smoking increases fetal estrogen titres and dysregulates several developmental processes in the fetal ovary. Exposure to maternal cigarette smoking during gestation reduces human fetal ovarian cell numbers, germ cell proliferation and subsequent adult fecundity. The effects of maternal cigarette smoking on the second trimester human fetal ovary, fetal endocrine signalling and fetal chemical burden were studied. A total of 105 fetuses were studied, 56 from mothers who smoked during pregnancy and 49 from those who did not. Ovary, liver and plasma samples were collected from electively terminated, normally progressing, second trimester human fetuses. Circulating fetal hormones, levels of 73 fetal ovarian transcripts, protein localization, density of oocytes/primordial follicles and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in the fetal liver were determined. Circulating fetal estrogen levels were very high and were increased by maternal smoking (ANOVA, P = 0.055-0.004 versus control). Smoke exposure also dysregulated (two-way ANOVA, smoking versus gestation weeks interaction, P = 0.046-0.023) four fetal ovarian genes (cytochrome P450 scc [CYP11A1], NOBOX oogenesis homeobox [NOBOX], activator of apoptosis harakiri [HRK], nuclear receptor subfamily 2, group E, member 1 [NR2E1]), shifted the ovarian Inhibin βA/inhibin α ratio (NHBA/INHA) transcript ratio in favour of activin (ANOVA, P = 0.049 versus control) and reduced the proportion of dominant-negative estrogen receptor 2 (ERβ: ESR2) isoforms in half the exposed fetuses. PAHs, ligands for the aryl hydrocarbon receptor (AHR), were increased nearly 6-fold by maternal smoking (ANOVA, P = 0.011 versus control). A fifth transcript, COUP transcription factor 1 (nuclear receptor subfamily 2, group F, member 1: NR2F1, which contains multiple AHR-binding sites), was both significantly increased (ANOVA, P = 0.026 versus

  15. Vitamin D3 stimulates embryonic stem cells but inhibits migration and growth of ovarian cancer and teratocarcinoma cell lines.

    PubMed

    Abdelbaset-Ismail, Ahmed; Pedziwiatr, Daniel; Suszyńska, Ewa; Sluczanowska-Glabowska, Sylwia; Schneider, Gabriela; Kakar, Sham S; Ratajczak, Mariusz Z

    2016-04-18

    Deficiency in Vitamin D3 (cholecalciferol) may predispose to some malignancies, including gonadal tumors and in experimental models vitamin D3 has been proven to inhibit the growth of cancer cells. To learn more about the potential role of vitamin D3 in cancerogenesis, we evaluated the expression and functionality of the vitamin D receptor (VDR) and its role in metastasis of ovarian cancer cells and of murine and human teratocarcinoma cell lines. In our studies we employed murine embrynic stem cells (ESD3), murine (P19) and human (NTERA-2) teratocarcimona cells lines, human ovarian cancer cells (A2780) as well as purified murine and human purified very small embryonic like stem cells (VSELs). We evaluated expression of Vitamin D3 receptor (VDR) in these cells as well as effect of vitamin D3 exposure on cell proliferation and migration. We here provide also more evidence for the role of vitamin D3 in germline-derived malignancies, and this evidence supports the proposal that vitamin D3 treatment inhibits growth and metastatic potential of several germline-derived malignancies. We also found that the ESD3 murine immortalized embryonic stem cell line and normal, pluripotent, germline-marker-positive very small embryonic-like stem cells (VSELs) isolated from adult tissues are stimulated by vitamin D3, which suggests that vitamin D3 affects the earliest stages of embryogenesis. We found that however all normal and malignant germ-line derived cells express functional VDR, Vitamin D3 differently affects their proliferation and migration. We postulate that while Vitamin D3 as anticancer drug inhibits proliferation of malignant cells, it may protect normal stem cells that play an important role in development and tissue/organ regeneration.

  16. Higher Numbers of T-Bet+ Tumor-Infiltrating Lymphocytes Associate with Better Survival in Human Epithelial Ovarian Cancer.

    PubMed

    Xu, Yun; Chen, Lujun; Xu, Bin; Xiong, Yuqi; Yang, Min; Rui, Xiaohui; Shi, Liangrong; Wu, Changping; Jiang, Jingting; Lu, Binfeng

    2017-01-01

    T-bet, a member of the T-box family of transcription factors, is a key marker of type I immune response within the tumor microenvironment, and has been previously reported by us to serve as an important prognostic indicator for human gastric cancer patients and a potential biomarker for immunotherapy. In the present study, we aimed to assess the clinical significance and prognostic value of T-bet+ tumor-infiltrating lymphocytes in human epithelial ovarian cancer. The immunohistochemistry was used to analyze the infiltration density of T-bet+ lymphoid cells in human epithelial ovarian cancer tissues, and the flow cytometry analysis was used to further analyze the presence of T-bet+ tumor-infiltrating lymphocytes subgroups in cancer tissues. Our immunohistochemistry analysis showed increased number of T-bet+ lymphoid cells in the human epithelial ovarian cancer tissues, and the flow cytometry analysis further demonstrated the presence of T-bet+ tumor-infiltrating lymphocytes subgroups including CD4+ , CD8+ T cells and NK cells. In addition, we also observed a significant association of T-bet+ tumor-infiltrating lymphocytes density in the tumor nest of cancer with not only serum CA125 levels but also with distant metastasis. However no association was observed with other characteristics like patients' age, pathological type, FIGO stage, tumor site and tumor size. Furthermore, the survival analysis showed that higher density of T-bet+ tumor-infiltrating lymphocytes both in tumor nest and tumor stroma of cancer tissues was significantly associated with better patient survival. In addition, the density of T-bet+ tumor-infiltrating lymphocytes in tumor nest appeared to be an independent risk factor for predicting patients' postoperative prognoses. Our data indicated that the key transcription factor T-bet might play an important role in the type I immune cells mediated antitumor response, and the density of T-bet+ lymphocytes in human epithelial ovarian cancer tissues

  17. Nerve growth factor stimulates cellular proliferation of human epithelial ovarian cancer.

    PubMed

    Urzua, U; Tapia, V; Geraldo, M P; Selman, A; Vega, M; Romero, C

    2012-09-01

    Due to its ability to induce vascular endothelial growth factor expression and proliferation, migration, and vasculogenesis of endothelial cells, nerve growth factor (NGF) has been considered as an angiogenic factor in epithelial ovarian cancer (EOC). In this work, we evaluated the angiogenic and proliferative mRNA expression profiles of EOC and addressed the responsiveness of EOC explants to NGF stimulation. Twenty EOC samples were obtained from Obstetrics and Gynecology Department, University of Chile's Clinical Hospital. Global gene expression profiles of selected poorly differentiated serous EOC samples were obtained with DNA oligonucleotide microarrays. In addition, EOC explants were subjected to NGF stimulation and levels of p-AKT, BAX, BCL2, Ki-67, c-MYC, and FOXL2 proteins were determined by immunohistochemistry. Results showed that mRNAs coding for specific transcriptional regulators and antiapoptotic components of the NGF signaling pathway were upregulated in EOC cells. At the protein level, key members of the NGF pathway including p-AKT, BCL2/BAX, Ki-67, and c-MYC were found increased, while FOXL2 was decreased in response to NGF stimulation. These findings strongly suggest that NGF stimulates cellular proliferation of human EOC. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Induction of resistance to Aplidin in a human ovarian cancer cell line related to MDR expression.

    PubMed

    Tognon, Gianluca; Bernasconi, Sergio; Celli, Nicola; Faircloth, Glynn T; Cuevas, Carmen; Jimeno, José; Erba, Eugenio; D'Incalci, Maurizio

    2005-12-01

    Aplidin-resistant IGROV-1/APL cells were derived from the human ovarian cancer IGROV-1 cell line by exposing the cells to increasing concentration of Aplidin for eight months, starting from a concentration of 10 nM to a final concentration of 4 microM. IGROV-1/APL cell line possesses five fold relative resistance to Aplidin. IGROV-1/APL resistant cell line shows the typical MDR phenotype: (1) increased expression of membrane-associated P-glycoprotein, (2) cross-resistance to drugs like etoposide, doxorubicin, vinblastine, vincristine, taxol, colchicin and the novel anticancer drug Yondelis (ET-743). The Pgp inhibitor cyclosporin-A restored the sensitivity of IGROV-1/APL cells to Aplidin by increasing the drug intracellular concentration. The resistance to Aplidin was not due to the other proteins, such as LPR-1 and MRP-1, being expressed at the same level in resistant and parental cell line. The finding that cells over-expressing Pgp are resistant to Aplidin was confirmed in CEM/VLB 100 cells, that was found to be 5-fold resistant to Aplidin compared to the CEM parental cell line.

  19. [From human andro- and parthenogenesis (hydatidiform moles and benign ovarian teratomas) to cancer].

    PubMed

    Coullin, P

    2005-01-01

    Genomic imprinting is a process that appeared in mammals. This phenomenon blocks the normal development of parthenogenic and androgenic conceptuses, that is to say benign ovarian teratomas and hydatidiform moles respectively. Pathological modifications of these conceptuses depend on whether the chromosomes come from the mother or father. These pathologies are associated with an accidental anomaly during gametogenesis and/or fertilizing. These reproductive anomalies are sporadic and some familial cases may exist suggesting a genetic control of such diseases. The human andro- and parthenogenetic conceptuses, but more frequently the moles, may be invasive (choriocarcinoma). An imbalance of the imprinting genes may initiate the deregulation of other genes, including oncogenes and anti-oncogenes, which can explain the cancerous modification. Immunological and environmental factors must be also considered (presence of the only paternal chromosomes in the choriocarcinoma). Numerous works on this subject are published and some recent important discoveries underline the roles of genes HOX, Tim P3, E-cad and p-16, and the recurrent chromosome anomalies 7q21+and 8p21- in the mole to choriocarcinoma processing. Although these phenomena are complex and heterogeneous, the andro- and parthenogenote conceptuses are particularly interesting models with which to understand developmental disorders and cancerous progression.

  20. Comparison of nine media in the culture of human ovarian granulosa lutein cells.

    PubMed

    Bouraki, Genovefa; Metallinou, Chryssa; Simopoulou, Mara; Charalabopoulos, Konstantinos; Asimakopoulos, Byron

    2012-01-01

    Cultures of human ovarian granulosa lutein (hGL) cells are broadly used in experimental studies. The choice of the culture medium is important for the optimization of the conditions for culture of hGL cells. To compare the efficiency of a basic salt solution and eight different defined media on the culture of hGL cells. Cultures of the HGL-5 cell line were maintained for 72 hours with DMEM/F12, RPMI-1640, Ham'sF10, Modified Ham'sF10®, HTFXtra®, Global®, Complete Multiblast®, Universal® or Earle's balanced salt solution (EBSS). At the end of the culturing period, the attachment, the viability and the total number of cells were measured. Culture in DMEM/F12 led to the highest score of all studied parameters, followed by RPMI-1640. The lowest performance was recorded with Complete Multiblast® and EBSS. The use of the other media gave mediocre results. Among the media tested, DMEM/F12 appears to be the best choice for the culture of hGL cells.

  1. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons

    PubMed Central

    Keta, Otilija; Todorović, Danijela; Popović, Nataša; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan

    2014-01-01

    Introduction Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. Material and methods Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features. PMID:25097591

  2. Lifestyle factors associated with histologically derived human ovarian non-growing follicle count in reproductive age women†

    PubMed Central

    Peck, Jennifer D.; Quaas, Alexander M.; Craig, LaTasha B.; Soules, Michael R.; Klein, Nancy A.; Hansen, Karl R.

    2016-01-01

    STUDY QUESTION Are lifestyle factors (smoking, BMI, alcohol use and oral contraceptive pill use) associated with the human ovarian reserve as determined by the total ovarian non-growing follicle number? SUMMARY ANSWER Light to moderate alcohol use was significantly associated with greater ovarian non-growing follicle (NGF) count, whereas other lifestyle factors were not significantly related. WHAT IS KNOWN ALREADY A single previous investigation has suggested that smoking and alcohol use are associated with lower ovarian follicle density. However, this investigation utilized follicle density as the outcome of interest rather than the estimated total ovarian NGF count. STUDY DESIGN, SIZE, DURATION This cross-sectional investigation included a convenience sample of premenopausal women from two different academic sites, the University of Washington (n = 37, from 1999–2004) and the University of Oklahoma (n = 73, from 2004–2013), undergoing incidental oophorectomy at the time of hysterectomy (total n = 110, age range 21–52 years). PARTICIPANTS/MATERIALS, SETTING, METHODS Prior to undergoing oophorectomy, participants completed detailed questionnaires regarding lifestyle exposures. Following surgery, total ovarian NGF counts were determined with systematic random sampling rules and a validated fractionator/optical dissector technique. Associations between lifestyle factors and log-transformed ovarian follicle counts were determined using multivariable linear regression. MAIN RESULTS AND THE ROLE OF CHANCE After controlling for age, BMI, oral contraceptive pill (OCP) use, tobacco use and site of collection, cumulative alcohol use (measured in alcoholic drinks per day multiplied by years of drinking) was associated with ovarian NGF count. Women reporting light (>0 to <1 drink-years) and moderate (1–3 drink-years) alcohol use had greater NGF counts (β = 0.75, P = 0.04, and β = 1.00, P = 0.03; light and moderate use, respectively) as compared with non

  3. High expression of S100P is associated with unfavorable prognosis and tumor progression in patients with epithelial ovarian cancer

    PubMed Central

    Wang, Xiangyu; Tian, Tian; Li, Xukun; Zhao, Meng; Lou, Yanhui; Qian, Jingfeng; Liu, Zhihua; Chen, Hongyan; Cui, Zhumei

    2015-01-01

    Accumulating evidence has demonstrated that S100P is involved in the tumorigenesis and progression of multiple cancers. In the current study, we evaluated the expression of S100P in epithelial ovarian cancer and assessed its relevance to clinicopathological characteristics. Moreover, we investigated the biological effects of S100P using A2780 and SKOV3 cells. S100P expression was significantly increased in epithelial ovarian cancer specimens compared with fallopian tube tissues and normal ovary tissues. And high expression of S100P in epithelial ovarian cancer samples was significantly associated with tumor stage (P<0.001), serum CA125 level (P=0.026), residual tumor (P<0.001), ascites (P<0.001) and lymph nodes metastasis (P<0.001). Multivariate Cox analysis showed that S100P expression was an independent prognostic factor of overall survival (OS) and progression free survival (PFS) (P=0.017 and 0.031, respectively). Functional assays showed that overexpression of S100P promoted cell proliferation and cell cycle progression but did not affect cell migration and invasion in A2780 and SKOV3 cells. These data suggest that S100P may contribute to tumor development in epithelial ovarian cancer and could be a useful marker for the prognosis of epithelial ovarian cancer patients. PMID:26396916

  4. High expression of S100P is associated with unfavorable prognosis and tumor progression in patients with epithelial ovarian cancer.

    PubMed

    Wang, Xiangyu; Tian, Tian; Li, Xukun; Zhao, Meng; Lou, Yanhui; Qian, Jingfeng; Liu, Zhihua; Chen, Hongyan; Cui, Zhumei

    2015-01-01

    Accumulating evidence has demonstrated that S100P is involved in the tumorigenesis and progression of multiple cancers. In the current study, we evaluated the expression of S100P in epithelial ovarian cancer and assessed its relevance to clinicopathological characteristics. Moreover, we investigated the biological effects of S100P using A2780 and SKOV3 cells. S100P expression was significantly increased in epithelial ovarian cancer specimens compared with fallopian tube tissues and normal ovary tissues. And high expression of S100P in epithelial ovarian cancer samples was significantly associated with tumor stage (P<0.001), serum CA125 level (P=0.026), residual tumor (P<0.001), ascites (P<0.001) and lymph nodes metastasis (P<0.001). Multivariate Cox analysis showed that S100P expression was an independent prognostic factor of overall survival (OS) and progression free survival (PFS) (P=0.017 and 0.031, respectively). Functional assays showed that overexpression of S100P promoted cell proliferation and cell cycle progression but did not affect cell migration and invasion in A2780 and SKOV3 cells. These data suggest that S100P may contribute to tumor development in epithelial ovarian cancer and could be a useful marker for the prognosis of epithelial ovarian cancer patients.

  5. Type of gonadotropin used during controlled ovarian stimulation induces differential gene expression in human cumulus cells: A randomized study.

    PubMed

    Cruz, María; Requena, Antonio; Agudo, David; García-Velasco, Juan Antonio

    2017-08-01

    The cumulus-oocyte complex plays a central role in the regulation of folliculogenesis where it is important for the maturation, reprogramming, and fertilization of oocytes. Consequently, cumulus cell gene expression profiling is being explored as a promising method for assessing oocyte competence in the near future. Through DNA microarray technology, we analyzed the potential differences in the gene expression profiles of cumulus cells from preovulatory follicles after controlled ovarian stimulation using different types of gonadotropins. A prospective, randomized study was performed among 90 women participating in an oocyte donation program. Subjects were assigned to receive recombinant follicle-stimulating hormone (FSH), urinary FSH, or human menopausal gonadotropin (hMG). The gene expression profile in cumulus cells was analyzed according the type of gonadotropin received during ovarian stimulation. Furthermore, we also performed a gene ontology analysis to provide structural knowledge. Hierarchical clustering, principal component analysis, and gene enrichment analysis revealed greater differences between the urinary FSH and hMG groups compared to the rest of the pair-wise comparisons; recombinant FSH vs hMG and urinary FSH vs recombinant FSH. Data suggest that controlled ovarian stimulation induces specific gene expression profiles in human cumulus cells depending on the type of gonadotropin used. Registered at clinicaltrials.gov; identifier NCT022437032. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    SciTech Connect

    Ferramosca, Alessandra; Conte, Annalea; Guerra, Flora; Felline, Serena; Rimoli, Maria Grazia; Mollo, Ernesto; Zara, Vincenzo; Terlizzi, Antonio

    2016-05-13

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.

  7. VAV1 represses E-cadherin expression through the transactivation of Snail and Slug: a potential mechanism for aberrant epithelial to mesenchymal transition in human epithelial ovarian cancer.

    PubMed

    Wakahashi, Senn; Sudo, Tamotsu; Oka, Noriko; Ueno, Sayaka; Yamaguchi, Satoshi; Fujiwara, Kiyoshi; Ohbayashi, Chiho; Nishimura, Ryuichiro

    2013-09-01

    Ovarian cancer is the most lethal gynecological malignancy in the western world. Although patients with early-stage ovarian cancer generally have a good prognosis, approximately 20%-30% of patients will die of the disease, and 5-year recurrence rates are 25%-45%, highlighting the need for improved detection and treatment. We investigated the role of VAV1, a protein with guanine nucleotide exchange factor activity, which is associated with survival in patients with early-stage ovarian cancer (International of Obstetrics and Gynecology [FIGO] stages I and II). We analyzed 88 samples from patients with primary epithelial ovarian cancer, which were divided into FIGO stages I and II (n = 46), and III and IV (n = 42). Prognostic analysis revealed that upregulated VAV1 expression correlated significantly with poor prognosis in patients with early-stage epithelial ovarian cancer (P ≤ 0.05), but not with other clinicopathologic features. Stable overexpression of VAV1 in human high-grade serous ovarian cancer SKOV3 cells induced morphologic changes indicative of loss of intercellular adhesions and organized actin stress fibers. Western blotting and real-time reverse transcriptase-polymerase chain reaction demonstrated that these cells had downregulated E-cadherin protein and messenger RNA levels, respectively. This downregulation is associated with epithelial-mesenchymal transition (EMT) and invasive cancer. Furthermore, VAV1 overexpression in both SKOV3 and human ovarian surface epithelial cells demonstrated that its upregulation of an E-cadherin transcriptional repressor, Snail and Slug, was not confined to ovarian cancer cells. Conversely, knockdown of VAV1 by RNA interference reduced Snail and Slug. Our findings suggest that VAV1 may play a role in the EMT of ovarian cancer, and may serve as a potential therapeutic target.

  8. In-vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female non-human primates

    PubMed Central

    Zelinski, Mary B.; Murphy, Mark K.; Lawson, Maralee S.; Jurisicova, Andrea; Pau, K. Y. Francis; Toscano, Natalia P.; Jacob, Darla S.; Fanton, John K.; Casper, Robert F.; Dertinger, Stephen D.; Tilly, Jonathan L.

    2011-01-01

    Objective To determine if sphingosine-1-phosphate (S1P), or the S1P mimetic FTY720 shields ovaries of adult female rhesus monkeys from damage caused by 15 Gy of targeted radiotherapy, allowing for retention of long-term fertility; and, to evaluate if S1P protects human ovarian tissue xenografted into mice from radiation-induced damage. Design Research animal study. Setting Research laboratory and teaching hospital. Animal(s) Adult female rhesus macaques (8–14 years of age). Patient(s) Two women (24 and 27 years of age) undergoing gynecologic surgery for benign reasons, after informed consent and approval. Intervention(s) None. Main Outcome Measure(s) Ovarian histology, ovarian reserve measurements and fertility in mating trials. Result(s) Rapid ovarian failure was induced in female macaques by ovarian application of 15 Gy of radiation. Females given S1P or FTY720 by direct intraovarian cannulation for 1 week prior to ovarian irradiation rapidly resumed menstrual cycles due to maintenance of follicles, with greater beneficial effects achieved using FTY720. Monkeys given the S1P mimetic prior to ovarian irradiation also became pregnant in mating trials. Offspring conceived and delivered by radioprotected females developed normally, and showed no evidence of genomic instability as measured by micronucleus frequency in reticulocytes. Adult human ovarian cortical tissue xenografted into mice also exhibited a reduction in radiation-induced primordial oocyte depletion when pre-exposed to S1P. Conclusion(s) S1P and its analogs hold clinical promise as therapeutic agents to preserve both ovarian function and fertility in female cancer patients exposed to cytotoxic treatments. PMID:21316047

  9. Long Noncoding RNA MIR4697HG Promotes Cell Growth and Metastasis in Human Ovarian Cancer

    PubMed Central

    Zhang, Li-qian; Yang, Su-qing; Wang, Ying; Fang, Qiao; Chen, Xian-jun; Lu, Hong-sheng

    2017-01-01

    Ovarian cancer is one of the three most common gynecological malignant tumors worldwide. The prognosis of patients suffering from this malignancy remains poor because of limited therapeutic strategies. Herein, we investigated the role of a long noncoding RNA named MIR4697 host gene (MIR4697HG) in the cell growth and metastasis of ovarian cancer. Results showed that the transcriptional level of MIR4697HG in cancerous tissues increased twofold compared with that in adjacent noncancerous tissues. MIR4697HG was differentially expressed in ovarian cancer cell lines, with the highest levels in OVCAR3 and SKOV3 cells. MIR4697HG knockdown by specific shRNA significantly inhibited cell proliferation and colony formation in both OVCAR3 and SKOC3 cells. Consistently, in a xenograft model of ovarian cancer, MIR4697HG depletion also significantly restricted tumor volumes and weights. Furthermore, MIR4697HG knockdown inhibited cell migration and invasion capacities. Invasion ability was inhibited by 58% in SKOV3 cells and 40% in OVCAR3 cells, and migration ability was inhibited by 73% in SKOV3 cells and 62% in OVCAR3 cells after MIR4697HG knockdown. MIR4697HG knockdown also caused a decrease in matrix metalloprotease-9, phosphorylated ERK, and phosphorylated AKT. These data suggested that MIR4697HG promoted ovarian cancer growth and metastasis. The aggressive role of MIR4697HG in ovarian cancer may be related to the ERK and AKT signaling pathways. PMID:28168162

  10. Ets-1 regulates its target genes mainly by DNA methylation in human ovarian cancer.

    PubMed

    Wan, S M; Peng, P; Guan, T

    2013-11-01

    Ovarian cancer is the second most common gynaecological cancer worldwide, and its molecular mechanism has not been completely understood. Ets-1 is a member of the Ets transcription family and can play important roles in the regulation of extracellular matrix remodelling, invasion, angiogenesis and drug resistance in several malignancies, including ovarian cancer. In the current study, we downloaded two datasets from Gene Expression Omnibus database and sought to explore the regulation mechanism of Ets-1 in ovarian cancer by computational analysis of gene expression profiles. Microarray analysis identified a total of 548 genes that were regulated by Ets-1 in ovarian cancer. Functional annotation of these genes revealed that Ets-1 may be involved in several biological processes, both physiological and pathological, such as system development, response to stimulus, vascular endothelial growth factor (VEGF) production, morphogenesis, cell proliferation, cell adhesion and signal transduction. Further, DNA methylation analysis of the DEGs found that 26.5% (145) of them were differentially methylated genes in ovarian cancer. Our results provide insight into the mechanism of Ets-1 regulating the transcription of its target genes in the complex and multistep process of ovarian cancer progression.

  11. The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells.

    PubMed

    Chen, Mei-Chuan; Kuo, Yi-Chiu; Hsu, Chia-Ming; Chen, Yi-Lin; Shen, Chien-Chang; Teng, Che-Ming; Pan, Shiow-Lin

    2017-04-07

    Patients with ovarian cancer are typically diagnosed at an advanced stage, resulting in poor prognosis since there are currently no effective early-detection screening tests for women at average-risk for ovarian cancer. Here, we investigated the effects of MT-6, a derivative of moscatilin, in ovarian cancer cells. Our investigation showed that MT-6 inhibited the proliferation and viability of ovarian cancer cells with submicromolar IC50 values. MT-6-treated SKOV3 cells showed significant cell cycle arrest at G2/M phase, followed by an increase in the proportion of cells in a sub-G1 phase. In addition, MT-6 induced a concentration-dependent increase in mitotic markers, mitotic kinases, cell cycle regulators of G2/M transition, and apoptosis-related markers in ovarian cancer cells. MT-6 treatment also induced mitochondrial membrane potential loss, JNK activation, and DR5 expression. Cotreatment of cells with the JNK inhibitor SP600125 considerably attenuated MT-6-induced apoptosis, mitochondria membrane potential loss, DR5 upregulation, and suppression of cell viability. MT-6 also inhibited tumor growth in an SKOV3 xenograft model without significant body weight loss. Together, our findings suggest that MT-6 is a potent anticancer agent with tumor-suppressive activity in vitro and in vivo that could be further investigated for ovarian cancer therapy in the future.

  12. The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells

    PubMed Central

    Chen, Mei-Chuan; Kuo, Yi-Chiu; Hsu, Chia-Ming; Chen, Yi-Lin; Shen, Chien-Chang; Teng, Che-Ming; Pan, Shiow-Lin

    2017-01-01

    Patients with ovarian cancer are typically diagnosed at an advanced stage, resulting in poor prognosis since there are currently no effective early-detection screening tests for women at average-risk for ovarian cancer. Here, we investigated the effects of MT-6, a derivative of moscatilin, in ovarian cancer cells. Our investigation showed that MT-6 inhibited the proliferation and viability of ovarian cancer cells with submicromolar IC50 values. MT-6–treated SKOV3 cells showed significant cell cycle arrest at G2/M phase, followed by an increase in the proportion of cells in a sub-G1 phase. In addition, MT-6 induced a concentration-dependent increase in mitotic markers, mitotic kinases, cell cycle regulators of G2/M transition, and apoptosis-related markers in ovarian cancer cells. MT-6 treatment also induced mitochondrial membrane potential loss, JNK activation, and DR5 expression. Cotreatment of cells with the JNK inhibitor SP600125 considerably attenuated MT-6–induced apoptosis, mitochondria membrane potential loss, DR5 upregulation, and suppression of cell viability. MT-6 also inhibited tumor growth in an SKOV3 xenograft model without significant body weight loss. Together, our findings suggest that MT-6 is a potent anticancer agent with tumor-suppressive activity in vitro and in vivo that could be further investigated for ovarian cancer therapy in the future. PMID:28387244

  13. Effects of salinomycin on human ovarian cancer cell line OV2008 are associated with modulating p38 MAPK.

    PubMed

    Zhang, Bei; Wang, Xueya; Cai, Fengfeng; Chen, Weijie; Loesch, Uli; Bitzer, Johannes; Zhong, Xiao Yan

    2012-12-01

    This study investigated the anticancer effect and mechanism of salinomycin, a selective inhibitor of cancer stem cell, on human ovarian cancer cell line OV2008 in vitro and in vivo. The growth inhibitory effect of salinomycin on ovarian cancer cell line OV2008 was determined by measuring cell viability using the resazurin reduction assay. Apoptotic nuclear morphology was visualized by 4,6-diamino-2-phenylindole staining technique. The percentages of apoptotic cells and cell cycle parameters were detected by flow cytometry. The activity of p38 mitogen-activated protein kinase (p38 MAPK) was analyzed by Bio-Plex phosphoprotein assay. In vivo activity of salinomycin was assayed through tumor growth. Salinomycin caused concentration- (0.01-200 μM) and time-dependent (24-72 h) growth inhibitory effects in OV2008. Cell nuclear morphology observations showed that salinomycin-treated OV2008 cells displayed typical apoptotic characteristics. Salinomycin significantly increased the percentages of apoptotic cells in OV2008, showing a concentration- and time-dependent manner. There was no cell cycle arrest in the G1/G0, S, and G2/M phases between salinomycin-treated cells and control cells. Salinomycin also enhanced the phosphorylation of p38 MAPK. Moreover, salinomycin significantly inhibited the growth of the ovarian xenograft tumors. Salinomycin exhibited significant growth inhibition and induction of apoptosis in the human ovarian cancer cell line OV2008. The data suggested that salinomycin-induced apoptosis in OV2008 might be associated with activating p38 MAPK and merits further investigations.

  14. [Effect of estrogen or progesterone combined with paclitaxel on human ovarian cancer cell growth and Drosha expression].

    PubMed

    Yang, Yunjie; Han, Ke; Xie, Yulian

    2015-08-01

    To investigate the effect of estrogen (E2), progesterone(P4), and paclitaxel (taxol) on the growth of primary human ovarian cancer cells in vitro and the expression of Drosha. Human ovarian cancer cells were treated with estrogen, progesterone or in combination with paclitaxel in vitro. The inhibition rate of ovarian cancer cells was assessed by methyl thiazolyl tetrazolium (MTT) assay. Apoptosis rate and cell cycle were determined by FACS analysis. The relative abundence of Drosha expression was detected by real-time quantitative PCR (qRT-PCR) and Western blotting. The inhibition rate of the estrogen group, progesterone group, paclitaxel group, E2(+)Taxol group, P4(+)Taxol group was (31.53 ± 8.21)%, (25.22 ± 15.50)%, (46.71 ± 4.25)%, (69.46 ± 3.71)%, and (47.35 ± 39.02)%, respectively, significantly higher than that of the control group (0%, P<0.05 for all). Relative to the ER (-) in ovarian cancer cells,Drosha mRNA expression level of estrogen group, progesterone group, paclitaxel group, E2(+) Taxol group,and P4(+)Taxol group was 1.62 ± 0.10,1.60 ± 0.10,1.75 ± 0.16,1.95 ± 0.20, and 1.53 ± 0.06, respectively, significantly higher than that of the control group (1.00, P<0.05 for all). Relative to the ER (+)in ovarian cancer cells,the Drosha mRNA expression level of estrogen group, progesterone group, paclitaxel group, E2(+)taxol group, and P4(+)Taxol group was 1.03 ± 0.14, 1.60 ± 0.09, 1.75 ± 0.16, 1.60 ± 0.10, 1.53 ± 0.06, respectively except estrogen group, significantly higher than that of the control group (1.00, P<0.05). Relative to the ER (-) in ovarian cancer cells, the Drosha protein expression levels of the control group, estrogen group, progesterone group, paclitaxel group, E2(+) taxol group, and P4(+) Taxol group were 0.25 ± 0.05, 0.87 ± 0.30, 0.85 ± 0.38, 1.30 ± 0.21, 1.75 ± 0.83, 1.62 ± 0.82, respectively, with a significant difference between the experimental groups and the control group (P<0.05). Relative to the ER(+)ovarian

  15. The natural terthiophene α-terthienylmethanol induces S phase cell cycle arrest of human ovarian cancer cells via the generation of ROS stress.

    PubMed

    Preya, Umma Hafsa; Lee, Kyung-Tae; Kim, Nam-Jung; Lee, Jung-Yun; Jang, Dae Sik; Choi, Jung-Hye

    2017-06-25

    Ovarian cancer is the most lethal gynecological malignancy worldwide. Thiophenes such as terthiophene have been shown to have anti-tumor effects on several cancer cell lines, including ovarian cancer cells. However, the underlying mechanisms behind the anti-proliferative effect of thiophenes are poorly understood. In this study, we investigated the molecular mechanisms underlying the anti-proliferative effect of α-terthienylmethanol, a terthiophene isolated from Eclipta prostrata (False Daisy), on human ovarian cancer cells. We found that α-terthienylmethanol is a more potent inhibitor of cell growth than is cisplatin in human ovarian cancer cells. α-Terthienylmethanol induces cell cycle arrest in ovarian cancer cells, as shown by the accumulation of cells in S phase. In addition, α-terthienylmethanol induced a change in S phase-related proteins cyclin A, cyclin-dependent kinase 2, and cyclin D2. Knockdown of cyclin A using specific siRNAs significantly compromised α-terthienylmethanol-induced S phase arrest. We further demonstrated that α-terthienylmethanol induced an increase in intracellular ROS, and the antioxidant N-acetyl-l-cysteine significantly reversed the S phase arrest induced by α-terthienylmethanol. Moreover, α-terthienylmethanol significantly increased the levels of p-H2AX, a DNA damage marker. These results suggest that α-terthienylmethanol inhibits the growth of human ovarian cancer cells by S phase cell cycle arrest via induction of ROS stress and DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Activin B: detection by an immunoenzymometric assay in human serum during ovarian stimulation and late pregnancy.

    PubMed

    Vihko, K K; Bläuer, M; Kujansuu, E; Vilska, S; Albäck, T; Tuimala, R; Tuohimaa, P; Punnonen, R

    1998-04-01

    A recently developed immunoenzymometric assay for activin B has been characterized further by measurement during ovarian stimulation and pregnancy. The assay is based on a monoclonal anti-peptide antibody, anti-betaB(101-115). In addition to quantitative analyses, the antibody has been used for immunohistochemical localization of the activin betaB-subunit in human term placenta. Serum samples obtained from patients suffering from tubal factor infertility who were admitted for in-vitro fertilization (IVF) treatment protocols or from patients with proven fertility who were admitted for laparoscopic tubal ligation were collected. The aim was to correlate serum activin B concentrations with other parameters during IVF and with phases of the menstrual cycle. Serum samples obtained from healthy pregnant volunteers were studied to correlate activin B concentrations with clinical parameters. During the IVF treatment protocols, activin B was detectable in all patients studied, and a significant negative correlation was observed between serum activin B and oestradiol concentrations. On the other hand, no significant difference was observed in activin B concentrations when serum samples obtained from patients at different phases of the menstrual cycle were compared, and low concentrations of activin B were observed in the samples obtained from these patients. During pregnancy, a positive correlation was observed between serum activin B concentrations and gestational age. In immunohistochemical analyses of human placental tissue obtained from healthy parturients, the activin betaB-subunit was present in trophoblast, amniotic epithelial and Hofbauer cells. The results suggest a potential clinical application in female reproductive medicine for serum activin B measurements.

  17. Anti-tumor effects of osthole on ovarian cancer cells in vitro.

    PubMed

    Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling

    2016-12-04

    Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility

    PubMed Central

    2013-01-01

    Background Human amniotic fluid cells (hAFCs) may differentiate into multiple cell lineages and thus have a great potential to become a donor cell source for regenerative medicine. The ability of hAFCs to differentiate into germ cell and oocyte-like cells has been previously documented. Herein we report the potential use of hAFCs to help restore follicles in clinical condition involving premature ovarian failure. Results Human amniotic fluid was obtained via amniocentesis, yielding a subpopulation of cloned hAFCs that was able to form embryoid bodies (EBs) and differentiate into three embryonic germ layers. Moreover, culture of EBs in medium containing human follicular fluid (HFF) or a germ cell maturation factor cocktail (FAC), expressed germ cells markers such as BLIMP1, STELLA, DAZL, VASA, STRA8, SCP3, SCP1, and GDF9. Furthermore, one cell line was grown from clone cells transfected with lentivirus-GFP and displaying morphological characteristics of mesenchymal cells, had the ability to restore ovarian morphology following cell injection into the ovaries of mice sterilized by intraperitoneal injection of cyclophosphamide and busulphan. Restored ovaries displayed many follicle-enclosed oocytes at all stages of development, but no oocytes or follicles were observed in sterilized mice whose ovaries had been injected with medium only (control). Notably, identification of GFP-labeled cells and immunostaining with anti–human antigen-specific antibodies demonstrated that grafted hAFCs survived and differentiated into granulosa cells which directed oocyte maturation. Furthermore, labeling of ovarian tissue for anti-Müllerian hormone expression, a functional marker of folliculogenesis, was strong in hAFCs-transplanted ovaries but inexistent in negative controls. Conclusion These findings highlight the possibility of using human amniotic fluid-derived stem cells in regenerative medicine, in particular in the area of reproductive health. PMID:24006896

  19. Paris saponin II inhibits human ovarian cancer cell-induced angiogenesis by modulating NF-κB signaling.

    PubMed

    Yang, Mei; Zou, Juan; Zhu, Hongmei; Liu, Shanling; Wang, He; Bai, Peng; Xiao, Xue

    2015-05-01

    The clinical applications of Rhizoma paridis in traditional Chinese medicine are well known. However, the therapeutic potential of Rhizoma paridis and its active component such as Paris saponin I (polyphyllin D) and Paris saponin II (PSII) (formosanin C) in cancer treatments have not yet been fully explored. Recent studies have demonstrated that PSII and chemoagents exhibit comparable inhibitory affects against human ovarian cancer cell growth. Since NF-κB, a ubiquitous transcription factor that plays an important role in cancer biology, is often associated with gynecological cancers, in the present study, we evaluated the possibility that PSII modulates NF-κB activity and VEGF-mediated angiogenesis and elucidated the molecular mechanisms underlying such effects. We assessed the effects of PSII on NF-κB activity in SKOV3 tumor cells and on tumor cell induced-angiogenesis using standardized angiogenesis in vitro, ex vivo and in vivo assays, western blot analysis and kinase assay. We also assessed the effect of the super-engineered repressor of IĸBα and its effect, in combination with PSII treatment on tumor growth and angiogenesis in xenograft athymic mouse models of ovarian cancer (SKOV3 and SKOV3/mutant IĸBα cells) using color Doppler ultrasound and traditional immunohistochemistry. We showed that PSII suppressed NF-κB activation as a result of the reduction in IKKβ kinase activity on its substrate IκBα and the expression of IKKβ. Compromising NF-κB activation reduced the expression of NF-κB-downstream targets such as VEGF, Bcl-2 and Bcl-xL. Such inhibitory effects at molecular levels appear to compromise tumor growth and angiogenesis. Most importantly, the combination of PSII treatment and constitutive repression of IĸBα activity exhibited marked inhibitory effects against human ovarian cancer cell growth in a xenograft mouse model of ovarian cancer. For the first time, we provide evidence showing that PSII potently inhibits angiogenesis

  20. Quantity and clinical relevance of circulating endothelial progenitor cells in human ovarian cancer

    PubMed Central

    2010-01-01

    Background Circulating bone marrow-derived endothelial progenitor cells (EPCs) have been reported to participate in tumor angiogenesis and growth; however, the role of circulating EPCs in tumor progression is controversial. The role of circulating EPCs in ovarian cancer progression and angiogenesis has not yet been investigated. Methods The number of circulating EPCs in the peripheral blood in 25 healthy volunteers and 42 patients with ovarian cancer was determined by flow cytometry. EPCs were defined by co-expression of CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). In addition, we determined CD34 and VEGFR2 mRNA levels by real-time reverse transcription-polymerase chain reaction. Plasma levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were determined by enzyme-linked immunosorbent assay. Results Circulating levels of EPCs were significantly increased in ovarian cancer patients, correlating with tumor stage and residual tumor size. Higher levels of EPCs were detected in patients with stage III and IV ovarian cancer than in patients with stage I and II disease. After excision of the tumor, EPCs levels rapidly declined. Residual tumor size greater than 2 cm was associated with significantly higher levels of EPCs. In addition, high circulating EPCs correlated with poor overall survival. Pretreatment CD34 mRNA levels were not significantly increased in ovarian cancer patients compared with healthy controls; however, VEGFR2 expression was increased, and plasma levels of VEGF and MMP-9 were also elevated. Conclusions Our results demonstrate the clinical relevance of circulating EPCs in ovarian cancer. EPCs may be a potential biomarker to monitor ovarian cancer progression and angiogenesis and treatment response. PMID:20334653

  1. Eradication of chemotherapy-resistant CD44+ human ovarian cancer stem cells in mice by intraperitoneal administration of Clostridium perfringens enterotoxin.

    PubMed

    Casagrande, Francesca; Cocco, Emiliano; Bellone, Stefania; Richter, Christine E; Bellone, Marta; Todeschini, Paola; Siegel, Eric; Varughese, Joyce; Arin-Silasi, Dan; Azodi, Masoud; Rutherford, Thomas J; Pecorelli, Sergio; Schwartz, Peter E; Santin, Alessandro D

    2011-12-15

    Emerging evidence has suggested that the capability to sustain tumor formation, growth, and chemotherapy resistance in ovarian as well as other human malignancies exclusively resides in a small proportion of tumor cells termed cancer stem cells. During the characterization of CD44(+) ovarian cancer stem cells, we found a high expression of the genes encoding for claudin-4. Because this tight junction protein is the natural high-affinity receptor for Clostridium perfringens enterotoxin (CPE), we have extensively investigated the sensitivity of ovarian cancer stem cells to CPE treatment in vitro and in vivo. Real-time polymerase chain reaction and flow cytometry were used to evaluate claudin-3/-4 expression in ovarian cancer stem cells. Small interfering RNA knockdown experiments and MTS assays were used to evaluate CPE-induced cytotoxicity against ovarian cancer stem cell lines in vitro. C.B-17/SCID mice harboring ovarian cancer stem cell xenografts were used to evaluate CPE therapeutic activity in vivo. CD44(+) ovarian cancer stem cells expressed claudin-4 gene at significantly higher levels than matched autologous CD44(-) ovarian cancer cells, and regardless of their higher resistance to chemotherapeutic agents died within 1 hour after exposure to 1.0 μg/mL of CPE in vitro. Conversely, small-interfering RNA-mediated knockdown of claudin-3/-4 expression in CD44(+) cancer stem cells significantly protected cancer stem cells from CPE-induced cytotoxicity. Importantly, multiple intraperitoneal administrations of sublethal doses of CPE in mice harboring xenografts of chemotherapy-resistant CD44(+) ovarian cancer stem cells had a significant inhibitory effect on tumor progression leading to the cure and/or long-term survival of all treated animals (ie, 100% reduction in tumor burden in 50% of treated mice; P < .0001). CPE may represent an unconventional, potentially highly effective strategy to eradicate chemotherapy-resistant cancer stem cells. Copyright © 2011

  2. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine Dependent Arrest in the T Cell Signaling Cascade

    PubMed Central

    Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.

    2015-01-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921

  3. Human chorionic gonadotropin administration is associated with high pregnancy rates during ovarian stimulation and timed intercourse or intrauterine insemination

    PubMed Central

    Mitwally, Mohamed F; Abdel-Razeq, Sonya; Casper, Robert F

    2004-01-01

    Background There are different factors that influence treatment outcome after ovarian stimulation and timed-intercourse or intrauterine insemination (IUI). After patient age, it has been suggested that timing of insemination in relation to ovulation is probably the most important variable affecting the success of treatment. The objective of this study is to study the value of human chorionic gonadotropin (hCG) administration and occurrence of luteinizing hormone (LH) surge in timing insemination on the treatment outcome after follicular monitoring with timed-intercourse or intrauterine insemination, with or without ovarian stimulation. Methods Retrospective analysis of 2000 consecutive completed treatment cycles (637 timed-intercourse and 1363 intrauterine insemination cycles). Stimulation protocols included clomiphene alone or with FSH injection, letrozole (an aromatase inhibitor) alone or with FSH, and FSH alone. LH-surge was defined as an increase in LH level ≥200% over mean of preceding two days. When given, hCG was administered at a dose of 10,000 IU. The main outcome was clinical pregnancy rate per cycle. Results Higher pregnancy rates occurred in cycles in which hCG was given. Occurrence of an LH-surge was associated with a higher pregnancy rate with clomiphene treatment, but a lower pregnancy rate with FSH treatment. Conclusions hCG administration is associated with a favorable outcome during ovarian stimulation. Awaiting occurrence of LH-surge is associated with a better outcome with CC but not with FSH treatment. PMID:15239837

  4. Sequence variation at the human FOXO3 locus: A study of premature ovarian failure and primary amenorrhea

    PubMed Central

    Gallardo, Teresa D.; John, George B.; Bradshaw, Karen; Welt, Corrine; Reijo-Pera, Renee; Vogt, Peter H.; Touraine, Philippe; Bione, Silvia; Toniolo, Daniela; Nelson, Lawrence M.; Zinn, Andrew R.; Castrillon, Diego H.

    2008-01-01

    BACKGROUND The forkhead transcription factor Foxo3 is a master regulator and potent suppressor of primordial follicle activation. Loss of Foxo3 function in the mouse leads to premature ovarian failure due to global follicle activation. Here we show that the mouse Foxo3 locus is haploinsufficient, and that Foxo3−/+ females undergo early reproductive senescence consistent with an increased rate of primordial follicle utilization. Then, to determine if heterozygous or homozygous polymorphisms or mutations of the human orthologue FOXO3 contribute to premature ovarian failure (POF) or idiopathic primary amenorrhea (PA), we sequenced the exons and flanking splice sequences of the gene in a large number of women with idiopathic POF (N=273) or PA (N=29). A total of 8 single nucleotide polymorphisms (SNPs) were identified, revealing a substantial amount of genetic variation at this locus. Allelic frequencies in control samples excluded several of these variants as causal. For the remaining variants, site-directed mutagenesis was performed to assess their functional impact. These rare sequence variants were not associated with significant decreases in FOXO3 activity. CONCLUSIONS Taken together, our findings suggest that, despite the potential for FOXO3 haploinsufficiency to cause ovarian failure, FOXO3 mutations or common SNPs are not a common cause of either POF or PA. PMID:17959613

  5. Proliferation inhibition of cisplatin-resistant ovarian cancer cells using drugs screened by integrating a metabolic model and transcriptomic data.

    PubMed

    Motamedian, E; Taheri, E; Bagheri, F

    2017-09-03

    If screening to find effective drugs is possible, the inhibition of proliferation using existing drugs can be a practical strategy to control the drug resistance of cancer. Development of a system-oriented strategy to find effective drugs was the main aim of this research. An algorithm (transcriptional regulated flux balance analysis [TRFBA]) integrating a generic human metabolic model with transcriptomic data was used to identify genes affecting the growth of drug-resistant cancer cells. Drugs that inhibit activation of the target genes were found and their effect on the proliferation was experimentally evaluated. Experimental assessments demonstrated that TRFBA improves the prediction of cancer cell growth in comparison with previous algorithms. The algorithm was then used to propose the system-oriented strategy to search drugs effective in limiting the growth rate of the cisplatin-resistant A2780 epithelial ovarian cancer cell. Experimental evaluations resulted in the selection of azathioprine, terbinafine, hydralazine and sodium valproate that appropriately inhibit the proliferation of resistant cancer cells while minimally affecting normal cells. Furthermore, experimental data indicate that the selected drugs are synergistic and can be used in combination therapies. The proposed strategy was successful to identify drugs effective on the viability of resistant cancer cells. This strategy can enhance the potency of treatments for drug-resistant cancer cells and provides the possibility of using existing drugs. © 2017 John Wiley & Sons Ltd.

  6. [Effect of pulsed electromagnetic field with different frequencies on the proliferation, apoptosis and migration of human ovarian cancer cells].

    PubMed

    Wang, Qian; Wu, Wenchao; Chen, Xiaoying; He, Chenqi; Liu, Xiaojing

    2012-04-01

    Pulsed electromagnetic field (PEMF), a non-invasive physical treatment modality, is now used clinically to promote bone formation for osteoporosis. The patients after ectomy of ovarian cancer are easily complicated with osteoporosis. However, the safety parameters of PEMF treatment for the osteoporosis patients after resection of ovarian cancer remain unknown. Therefore, this study was designed to examine the effect of different frequency of PEMF on the proliferation, apoptosis and migration of human ovarian cancer cells (SKOV3 cells). Cultured SKOV3 cells were exposed to PEMF stimulation daily with radiation of 8 Hz, 16 Hz, 32 Hz and 64 Hz, respectively. We used sinusoidal waves with strength of 1 mT, twice a day with an interval of 12 hours. An exposure to the waves lasted 30 minutes, for 3 days, with those no PEMF stimulation serving as the control. The proliferation of cells was detected using EdU assay, and the apoptosis of cell was assessed with Annexin V-FITC fluorescence. The migration of cells was measured with the scratch wound assay. The data showed that exposure to PEMF of 1 mT, 8 Hz for 3 days could significantly inhibit the proliferation of SKOV3 cells and induce the apoptosis of the cells. The migrated distance and number were increased by 1 mT, 8 Hz or 32 Hz PEMF stimulation, but decreased by 1 mT, 16 Hz treatment. The results suggested that we should be careful about the safety of PEMF treatment and strictly choose the optical parameters in preventing or treating the osteoporosis of the patients after resection of ovarian cancer.

  7. Sequential genetic change at the TP53 and chemokine receptor CXCR4 locus during transformation of human ovarian surface epithelium.

    PubMed

    Archibald, K M; Kulbe, H; Kwong, J; Chakravarty, P; Temple, J; Chaplin, T; Flak, M B; McNeish, I A; Deen, S; Brenton, J D; Young, B D; Balkwill, F

    2012-11-29

    Early genetic events in the development of high-grade serous ovarian cancer (HGSOC) may define the molecular basis of the profound structural and numerical instability of chromosomes in this disease. To discover candidate genetic changes we sequentially passaged cells from a karyotypically normal hTERT immortalised human ovarian surface epithelial line (IOSE25) resulting in the spontaneous formation of colonies in soft agar. Cell lines transformed ovarian surface epithelium 1 and 4 (TOSE 1 and 4) established from these colonies had an abnormal karyotype and altered morphology, but were not tumourigenic in immunodeficient mice. TOSE cells showed loss of heterozygosity (LOH) at TP53, increased nuclear p53 immunoreactivity and altered expression profile of p53 target genes. The parental IOSE25 cells contained a missense, heterozygous R175H mutation in TP53, whereas TOSE cells had LOH at the TP53 locus with a new R273H mutation at the previous wild-type TP53 allele. Cytogenetic and array CGH analysis of TOSE cells also revealed a focal genomic amplification of CXCR4, a chemokine receptor commonly expressed by HGSOC cells. TOSE cells had increased functional CXCR4 protein and its abrogation reduced epidermal growth factor receptor (EGFR) expression, as well as colony size and number. The CXCR4 ligand, CXCL12, was epigenetically silenced in TOSE cells and its forced expression increased TOSE colony size. TOSE cells had other cytogenetic changes typical of those seen in HGSOC ovarian cancer cell lines and biopsies. In addition, enrichment of CXCR4 pathway in expression profiles from HGSOC correlated with enrichment of a mutated TP53 gene expression signature and of EGFR pathway genes. Our data suggest that mutations in TP53 and amplification of the CXCR4 gene locus may be early events in the development of HGSOC, and associated with chromosomal instability.

  8. Clonal composition of human ovarian cancer based on copy number analysis reveals a reciprocal relation with oncogenic mutation status.

    PubMed

    Sakai, Kazuko; Ukita, Masayo; Schmidt, Jeanette; Wu, Longyang; De Velasco, Marco A; Roter, Alan; Jevons, Luis; Nishio, Kazuto; Mandai, Masaki

    2017-10-01

    Intratumoral heterogeneity of cancer cells remains largely unexplored. Here we investigated the composition of ovarian cancer and its biological relevance. A whole-genome single nucleotide polymorphism array was applied to detect the clonal composition of 24 formalin-fixed, paraffin-embedded samples of human ovarian cancer. Genome-wide segmentation data consisting of the log2 ratio (log2R) and B allele frequency (BAF) were used to calculate an estimate of the clonal composition number (CC number) for each tumor. Somatic mutation profiles of cancer-related genes were also determined for the same 24 samples by next-generation sequencing. The CC number was estimated successfully for 23 of the 24 cancer samples. The mean ± SD value for the CC number was 1.7 ± 1.1 (range of 0-4). A somatic mutation in at least one gene was identified in 22 of the 24 ovarian cancer samples, with the mutations including those in the oncogenes KRAS (29.2%), PIK3CA (12.5%), BRAF (8.3%), FGFR2 (4.2%), and JAK2 (4.2%) as well as those in the tumor suppressor genes TP53 (54.2%), FBXW7 (8.3%), PTEN (4.2%), and RB1 (4.2%). Tumors with one or more oncogenic mutations had a significantly lower CC number than did those without such a mutation (1.0 ± 0.8 versus 2.3 ± 0.9, P = 0.0027), suggesting that cancers with driver oncogene mutations are less heterogeneous than those with other mutations. Our results thus reveal a reciprocal relation between oncogenic mutation status and clonal composition in ovarian cancer using the established method for the estimation of the CC number. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Cellular and biomolecular responses of human ovarian cancer cells to cytostatic dinuclear platinum(II) complexes.

    PubMed

    Lin, Miaoxin; Wang, Xiaoyong; Zhu, Jianhui; Fan, Damin; Zhang, Yangmiao; Zhang, Junfeng; Guo, Zijian

    2011-03-01

    Polynuclear platinum(II) complexes represent a class of potential anticancer agents that have shown promising pharmacological properties in preclinical studies. The nature of cellular responses induced by these complexes, however, is poorly understood. In this research, the cellular responses of human ovarian cancer COC1 cells to dinuclear platinum(II) complexes {[cis-Pt(NH₃)₂Cl]₂L¹}(NO₃)₂ (1) and {[cis-Pt(NH₃)₂Cl]₂L²}(NO₃)₂ (2) (L¹ = α,α'-diamino-p-xylene, L² = 4,4'-methylenedianiline) has been studied using cisplatin as a reference. The effect of platinum complexes on the proliferation, death mode, mitochondrial membrane potential, and cell cycle progression has been examined by MTT assay and flow cytometry. The activation of cell cycle checkpoint kinases (CHK1/2), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) of the cells by the complexes has also been analyzed using phospho-specific flow cytometry. Complex 1 is more cytotoxic than complex 2 and cisplatin at most concentrations; complex 2 and cisplatin are comparably cytotoxic. These complexes kill the cells through an apoptotic or apoptosis-like pathway characterized by exposure of phosphatidylserine and dissipation of mitochondrial membrane potential. Complex 1 shows the strongest inductive effect on the morphological changes of the cells, followed by cisplatin and complex 2. Complexes 1 and 2 arrest the cell cycle in G2 or M phase, while cisplatin arrests the cell cycle in S phase. The influence of these complexes on CHK1/2, ERK1/2, and p38 MAPK varies with the dose of the drugs or reaction time. Activation of phospho-ERK1/2 and phospho-p38 MAPK by these complexes is closely related to the cytostatic activity. The results demonstrate that dinuclear platinum(II) complexes can induce some cellular responses different from those caused by cisplatin.

  10. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer.

    PubMed

    Matassa, D S; Amoroso, M R; Lu, H; Avolio, R; Arzeni, D; Procaccini, C; Faicchia, D; Maddalena, F; Simeon, V; Agliarulo, I; Zanini, E; Mazzoccoli, C; Recchi, C; Stronach, E; Marone, G; Gabra, H; Matarese, G; Landriscina, M; Esposito, F

    2016-09-01

    Tumour cells have long been considered defective in mitochondrial respiration and mostly dependent on glycolytic metabolism. However, this assumption is currently challenged by several lines of evidence in a growing number of tumours. Ovarian cancer (OC) is one of the most lethal cancers worldwide, but it continues to be a poorly understood disease and its metabolic features are far to be elucidated. In this context, we investigated the role of tumour necrosis factor receptor-associated protein 1 (TRAP1), which is found upregulated in several cancer types and is a key modulator of tumour cell metabolism. Surprisingly, we found that TRAP1 expression inversely correlated with grade, stage and lower survival in a large cohort of OC patients. Accordingly, TRAP1 silencing induced resistance to cisplatin, resistant cells showed increased oxidative metabolism compared with their sensitive counterpart, and the bioenergetics cellular index of higher grade tumours indicated increased mitochondrial respiration. Strikingly, cisplatin resistance was reversible upon pharmacological inhibition of mitochondrial oxidative phosphorylation by metformin/oligomycin. At molecular level, increased oxidative metabolism in low TRAP1-expressing OC cells and tissues enhanced production of inflammatory mediators such as interleukin (IL)-6 and IL-8. Mechanistically, we identified members of the multidrug resistance complex (MDR) as key mediators of such metabolism-driven, inflammation-induced process. Indeed, treatment of OC cell lines with TNFα and IL6 induced a selective increase in the expression of TAP1 and multidrug resistance protein 1, whereas TAP1 silencing sensitized cells to cisplatin-induced apoptosis. Our results unveil a novel role for TRAP1 and oxidative metabolism in cancer progression and suggest the targeting of mitochondrial bioenergetics to increase cisplatin efficacy in human OC.

  11. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer

    PubMed Central

    Matassa, D S; Amoroso, M R; Lu, H; Avolio, R; Arzeni, D; Procaccini, C; Faicchia, D; Maddalena, F; Simeon, V; Agliarulo, I; Zanini, E; Mazzoccoli, C; Recchi, C; Stronach, E; Marone, G; Gabra, H; Matarese, G; Landriscina, M; Esposito, F

    2016-01-01

    Tumour cells have long been considered defective in mitochondrial respiration and mostly dependent on glycolytic metabolism. However, this assumption is currently challenged by several lines of evidence in a growing number of tumours. Ovarian cancer (OC) is one of the most lethal cancers worldwide, but it continues to be a poorly understood disease and its metabolic features are far to be elucidated. In this context, we investigated the role of tumour necrosis factor receptor-associated protein 1 (TRAP1), which is found upregulated in several cancer types and is a key modulator of tumour cell metabolism. Surprisingly, we found that TRAP1 expression inversely correlated with grade, stage and lower survival in a large cohort of OC patients. Accordingly, TRAP1 silencing induced resistance to cisplatin, resistant cells showed increased oxidative metabolism compared with their sensitive counterpart, and the bioenergetics cellular index of higher grade tumours indicated increased mitochondrial respiration. Strikingly, cisplatin resistance was reversible upon pharmacological inhibition of mitochondrial oxidative phosphorylation by metformin/oligomycin. At molecular level, increased oxidative metabolism in low TRAP1-expressing OC cells and tissues enhanced production of inflammatory mediators such as interleukin (IL)-6 and IL-8. Mechanistically, we identified members of the multidrug resistance complex (MDR) as key mediators of such metabolism-driven, inflammation-induced process. Indeed, treatment of OC cell lines with TNFα and IL6 induced a selective increase in the expression of TAP1 and multidrug resistance protein 1, whereas TAP1 silencing sensitized cells to cisplatin-induced apoptosis. Our results unveil a novel role for TRAP1 and oxidative metabolism in cancer progression and suggest the targeting of mitochondrial bioenergetics to increase cisplatin efficacy in human OC. PMID:27206315

  12. Human leukocyte antigen-E alleles and expression in patients with serous ovarian cancer

    PubMed Central

    Zheng, Hui; Lu, Renquan; Xie, Suhong; Wen, Xuemei; Wang, Hongling; Gao, Xiang; Guo, Lin

    2015-01-01

    Human leukocyte antigen-E (HLA-E) is one of the most extensively studied non-classical MHC class I molecules that is almost non-polymorphic. Only two alleles (HLA-E*0101 and HLA-E*0103) are found in worldwide populations, and suggested to be functional differences between these variants. The HLA-E molecule can contribute to the escape of cancer cells from host immune surveillance. However, it is still unknown whether HLA-E gene polymorphisms might play a role in cancer immune escape. To explore the association between HLA-E alleles and the susceptibility to serous ovarian cancer (SOC), 85 primary SOC patients and 100 healthy women were enrolled. Here, we indicated that high frequency of HLA-E*0103 allele existed in SOC patients by the allele-specific quantitative real-time PCR method. The levels of HLA-E protein expression in SOC patients with the HLA-E*0103 allele were higher than those with the HLA-E*0101 allele using immunohistochemistry analysis. The cell surface expression and functional differences between the two alleles were verified by K562 cells transfected with HLA-E*0101 or HLA-E*0103 allelic heavy chains. The HLA-E*0103 allele made the transfer of the HLA-E molecule to the cell surface easier, and HLA-E/peptides complex more stable. These differences ultimately influenced the function of natural killer cells, showing that the cells transfected with HLA-E*0103 allele inhibited natural killer cells to lysis. This study reveals a novel mechanism regarding the susceptibility to SOC, which is correlated with the HLA-E*0103 allele. PMID:25711417

  13. Chimeric NKG2D CAR-Expressing T Cell-Mediated Attack of Human Ovarian Cancer Is Enhanced by Histone Deacetylase Inhibition

    PubMed Central

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew

    2013-01-01

    Abstract NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4+ and CD8+ NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer. PMID:23297870

  14. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition.

    PubMed

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew; Powell, Daniel J

    2013-03-01

    NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4(+) and CD8(+) NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer.

  15. Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes

    DTIC Science & Technology

    2005-02-01

    later by injection with 5 U of human chorionic gonadotropin (hormones purchased from Sigma, St. Louis, MO). 1.5 days following the last hormone...AD Award Number: W81XWH-04-1-0063 TITLE: Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes...FUNDING NUMBERS Modeling Human Epithelial Ovarian Cancer in Mice by W81XWH-04-1-0063 Alteration of Expression of the BRCAI and/or P53 Genes 6. AUTHOR(S

  16. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells

    PubMed Central

    Huang, Wei; Zhou, Quan; Yuan, Xia; Ge, Ze-mei; Ran, Fu-xiang; Yang, Hua-yu; Qiang, Guang-liang; Li, Run-tao; Cui, Jing-rong

    2016-01-01

    Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome. PMID:27326257

  17. Effect of the WWOX gene on the regulation of the cell cycle and apoptosis in human ovarian cancer stem cells.

    PubMed

    Yan, Hongchao; Tong, Jianye; Lin, Xiaoman; Han, Qiuyu; Huang, Hongxiang

    2015-08-01

    In order to examine new ideas for gene therapy in ovarian cancer, the specific mechanism underlying the effects of the WW domain containing oxidoreductase (WWOX) gene on cell cycle regulation and apoptosis in human ovarian cancer stem cells was investigated. Ovarian cancer stem cells were transfected with a eukaryotic expression vector carrying the WWOX gene in vitro (recombinant plasmid) and cells transfected with the empty plasmid (empty plasmid) or untransfected cells were used as controls. Stably transfected cells were screened and amplified in culture and the WWOX protein was detected by western blot analysis in the three groups of cells. Western blot analysis was performed to detect the expression of cell cycle regulatory proteins cyclin E, cyclin-dependent kinase (CDK) 2, cyclin D1, CDK4 and apoptosis-related protein Wnt-5α and c-Jun N-terminal kinase (JNK), while polymerase chain reaction (PCR) was used to detect alterations in the mRNA expression levels of caspase-3. The results demonstrated that the WWOX protein was stably expressed in cells of the recombinant plasmid group, but was not detected in cells of the empty plasmid group and the control group. Cell proliferation at each time point decreased significantly in the recombinant plasmid group compared with the empty plasmid group and the control group. Flow cytometric analysis demonstrated that the proportion of cells in the G0/G1 phase in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. The rate of apoptosis in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. Western blot analysis demonstrated that the expression levels of cyclin E, CDK2, cyclin D1 and CDK4 in the recombinant plasmid group were significantly lower than those in the empty plasmid group and the control group; however, the expression levels of Wnt-5α and JNK were significantly higher

  18. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    SciTech Connect

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  19. Expressions of lysophosphatidic acid receptors in the development of human ovarian carcinoma

    PubMed Central

    Si, Jinge; Su, Yuanyuan; Wang, Yifeng; Yan, You-Liang; Tang, Ya-Ling

    2015-01-01

    Aim: To investigate the associations between the expressions of three lysophosphatidic acid (LPA) receptors (LPA1-3) and the development of ovarian carcinoma (OC). Method: Ovarian tissue specimens, including normal ovarian epithelium tissues, benign ovarian tumor tissues and OC tissues were collected from patients who underwent surgical resections between March 2012 and December 2014. Immunohistochemical staining was used to detect LPA receptor expressions in ovarian tissues. Reverse transcription-polymerase chain reaction and Western blotting were used to detect mRNA and protein expression of LPA receptors, respectively. Association analysis between LPA receptors protein expression and clinical pathological characteristics was conducted. The value of LPA2 and LPA3 in discriminating OC was confirmed by receiver-operator characteristic (ROC) curves analysis. Results: The positive expression rates of LPA2 and LPA3 in OC group was obviously higher than normal control and benign groups. The LPA2 and LPA3 mRNA and protein levels in OC group were higher than in normal control and benign groups. LPA2 and LPA3 mRNA expression levels were positively correlated with LPA2 and LPA3 protein expression in OC group. ROC curve analysis revealed that LPA2 yield a specificity of 96.3% and a sensitivity of 97.9%, and LPA3 yield a specificity of 98.5% and a sensitivity of 97.9% for the detection of OC. Conclusion: LPA2 and LPA3 were highly expressed in OC tissues, which may be involved in the development of OC. Further, LPA2 and LPA3 had higher sensitivity and specificity in distinguishing the OC from benign ovarian tumors, which could be potential diagnostic indictors in OC. PMID:26770382

  20. Cyclin A1 expression and paclitaxel resistance in human ovarian cancer cells.

    PubMed

    Huang, Kuan-Chun; Yang, Junzheng; Ng, Michelle C; Ng, Shu-Kay; Welch, William R; Muto, Michael G; Berkowitz, Ross S; Ng, Shu-Wing

    2016-11-01

    The development of intrinsic and acquired resistance to antineoplastic agents is a major obstacle to successful chemotherapy in ovarian cancers. Identification and characterisation of chemoresponse-associated biomarkers are of paramount importance for novel therapeutic development. Global RNA expression profiles were obtained by high-throughput microarray analysis. Cell cycle, proliferation rate, and paclitaxel sensitivity of ovarian cancer cells harbouring cyclin A1-inducible expression construct were compared with and without tetracycline induction, as well as when the cyclin A1 expression was suppressed by short inhibiting RNA (siRNA). Cellular senescence was evaluated by β-galactosidase activity staining. Global RNA expression profiling and subsequent correlation studies of gene expression level and drug response has identified that elevated expression of cyclin A1 (CCNA1) was significantly associated with cellular resistance to paclitaxel, doxorubicin and 5-fluorouracil. The role of cyclin A1 in paclitaxel resistance was confirmed in ovarian cancer cells that harbour an inducible cyclin A1 expression construct, which showed reduced paclitaxel-mediated growth inhibition and apoptosis when cyclin A1 expression was induced, whereas downregulation of cyclin A1 expression in the same cell lines using cyclin A1-specific siRNAs sensitised the cells to paclitaxel toxicity. However, ovarian cancer cells with ectopic expression of cyclin A1 demonstrated slowdown of proliferation and senescence-associated β-galactosidase activity. Our profiling and correlation studies have identified cyclin A1 as one chemoresistance-associated biomarker in ovarian cancer. The results of the characterisation studies suggest that cyclin A1 functions as an oncogene that controls proliferative and survival activities in tumourigenesis and chemoresistance of ovarian cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mutant p53 stimulates cell invasion through an interaction with Rad21 in human ovarian cancer cells.

    PubMed

    Ahn, Ji-Hye; Kim, Tae Jin; Lee, Jae Ho; Choi, Jung-Hye

    2017-08-22

    Missense mutations of TP53 are extremely common, and mutant p53 accumulation and gain-of-function play crucial roles in human ovarian cancer. Here, we investigated the role of mutant p53 in cell migration and invasion as well as its underlying molecular mechanisms in human ovarian cancer cells. Overexpression of mutant p53 significantly increased migration and invasion in p53-null SKOV3 cells. In contrast, knockdown of mutant p53 significantly compromised mutant p53-induced cell migration and invasion. Microarray analysis revealed that several migration/invasion-related genes, including S1PR1 (Sphingosine-1-phosphate receptor 1) and THBS1 (Thrombospodin 1), were significantly upregulated in SKOV3 cells that overexpressed mutant p53-R248 (SKOV3(R248)). We found that Rad21 is involved in the transcriptional regulation of the migration/invasion-related genes induced by mutant p53-R248. Knockdown of Rad21 significantly attenuated the mutant p53-R248-induced invasion and the expressions of S1PR1 and THBS1. Moreover, co-immunoprecipitation and chromatin immunoprecipitation assays revealed that mutant p53 interacts with Rad21 and binds to the Rad21-binding elements in the S1PR1 and THBS1 genes. Finally, downregulation of S1PR1 significantly attenuated the invasion driven by mutant p53-R248. These novel findings reveal that mutant p53-R248 maintains gain-of-function activity to stimulate cell invasion and induces the related gene expressions through an interaction with Rad21 in human ovarian cancer cells.

  2. Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro.

    PubMed

    Lande, Yechezkel; Fisch, Benjamin; Tsur, Abraham; Farhi, Jacob; Prag-Rosenberg, Roni; Ben-Haroush, Avi; Kessler-Icekson, Gania; Zahalka, Muayad A; Ludeman, Susan M; Abir, Ronit

    2017-01-01

    How chemotherapy affects dormant ovarian primordial follicles is unclear. The 'burnout' theory, studied only in mice, suggests cyclophosphamide enhances primordial follicle activation. Using 4-hydroperoxycyclophosphamide (4hc) and phosphoramide mustard (PM), this study assessed how the active cyclophosphamide metabolites 4-hydroxycyclophosphamide (4-OHC) and PM, affect human primordial follicles. Frozen-thawed human ovarian samples were sliced and cultured with basic culture medium (cultured controls) or with 4hc/PM (3 µmol/l/10 µmol/l) (treated samples) for 24-48 h. Follicular counts and classification, Ki67 and anti-Müllerian hormone (AMH) immunohistochemistry and an apoptosis assay were used for evaluation, and 17β-oestradiol and AMH were measured in spent media samples. Generally, there was primordial follicle decrease and elevated developing follicle rates in treated samples compared with cultured (P = 0.04 to P < 0.0005) and uncultured controls (P < 0.05 to P < 0.0001). No traces of apoptosis were found. There were almost twicethe levels of AMH and 17β-oestradiol in treated compared with untreated samples (AMH with 4hc 3 µmol/l; P = 0.04). All follicles stained positively for AMHincluded treated samples. Ki67 positive staining was noted in all samples. Cyclophosphamide metabolites seem to enhance human primordial follicle activation to developing follicles, in vitro. Study findings support the 'burnout' theory as the mechanism of chemotherapy-induced ovarian toxicity. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells

    PubMed Central

    Vogel, Rachel I.; Thayanithy, Venugopal; Wong, Phillip; Teoh, Deanna; Geller, Melissa A.; Steer, Clifford J.; Subramanian, Subbaya; Lou, Emil

    2016-01-01

    In this study, we demonstrated that hypoxic conditions stimulated an increase in tunneling nanotube (TNT) formation in chemoresistant ovarian cancer cells (SKOV3, C200). We found that suppressing the mTOR pathway using either everolimus or metformin led to suppression of TNT formation in vitro, verifying TNTs as a potential target for cancer-directed therapy. Additionally, TNT formation was detected in co-cultures including between platinum-resistant SKOV3 cells, between SKOV3 cells and platinum-chemosensitive A2780 cells, and between SKOV3 cells cultured with benign ovarian epithelial (IOSE) cells; these findings indicate that TNTs are novel conduits for malignant cell interactions and tumor cell interactions with other cells in the microenvironment. When chemoresistant C200 and parent chemosensitive A2780 cells were co-cultured, chemoresistant cells displayed a higher likelihood of TNT formation to each other than to chemosensitive malignant or benign epithelial cells. Hypoxia-induced TNT formation represents a potential mechanism for intercellular communication in ovarian cancer and other forms of invasive refractory cancers. PMID:27223082

  4. Autonomy of the epithelial phenotype in human ovarian surface epithelium: changes with neoplastic progression and with a family history of ovarian cancer.

    PubMed

    Dyck, H G; Hamilton, T C; Godwin, A K; Lynch, H T; Maines-Bandiera, S; Auersperg, N

    1996-12-20

    Epithelial ovarian carcinomas originate in the ovarian surface epithelium (OSE). In culture, OSE undergoes epithelio-mesenchymal conversion, an event mimicking a wound response, while ovarian carcinomas retain complex epithelial characteristics. To define the onset of this increased epithelial autonomy in ovarian neoplastic progression, we examined mesenchymal conversion in OSE from 25 women with no family histories (NFH-OSE) and 13 women with family histories (FH-OSE) of breast/ovarian cancer (including 8 with mutated BRCA1 or 17q linkage) and in 8 ovarian cancer lines. After 3-6 passages in monolayer culture, most NFH-OSE exhibited reduced keratin expression and high collagen type III expression. In contrast, keratin remained high but collagen expression was lower in p. 3-6 FH-OSE. This difference was lost in SV40-transformed lines, which all resembled FH-OSE. Most carcinoma lines remained epithelial and did not undergo mesenchymal conversion. In 3-dimensional (3-D) sponge culture, NFH-OSE cells dispersed and secreted abundant extracellular matrix (ECM). FH-OSE remained epithelial and did not secrete ECM. ECM production was also reduced in SV40-transformed lines. Carcinoma lines in 3-D formed epithelial cysts, aggregates and papillae and lacked ECM. Sponge contraction (a mesenchymal characteristic) was greater in NFH-OSE than in FH-OSE both before and after SV40 transformation and was absent in the cancer lines. Our results suggest that increased autonomy of epithelial characteristics is an early indicator of ovarian neoplastic progression and that phenotypic changes indicative of such autonomy are found already in overtly normal OSE from women with histories of familial breast/ovarian cancer.

  5. Ovarian Cancer

    MedlinePlus

    OVARIAN CANCER Get the Facts About Gynecologic Cancer There are five main types of cancer that affect a ... rare fallopian tube cancer.) This fact sheet about ovarian cancer is part of the Centers for Disease Control ...

  6. Converging Evidence for Efficacy from Parallel EphB4 Targeted Approaches in Ovarian Carcinoma

    PubMed Central

    Spannuth, Whitney A.; Mangala, Lingegowda S.; Stone, Rebecca L.; Carroll, Amy R.; Nishimura, Masato; Shahzad, Mian M.K.; Lee, Sun-Joo; Moreno-Smith, Myrthala; Nick, Alpa M.; Liu, Ren; Jennings, Nicholas B.; Lin, Yvonne G.; Merritt, William M.; Coleman, Robert L.; Vivas-Mejia, Pablo E.; Zhou, Yue; Krasnoperov, V.; Lopez-Berestein, Gabriel; Gill, Parkash S.; Sood, Anil K.

    2010-01-01

    EphB4 is a transmembrane receptor tyrosine kinase that plays an important role in neural plasticity and angiogenesis. EphB4 is overexpressed in ovarian cancer and is predictive of poor clinical outcome. However, the biological significance of EphB4 in ovarian cancer is not known and is the focus of the current study. Here, we examined the biological effects of two different methods of EphB4 targeting (a novel monoclonal antibody, EphB4-131 or siRNA) using several ovarian cancer models. EphB4 gene silencing significantly increased tumor cell apoptosis, and decreased migration (p<0.001) and invasion (p<0.001). Compared to controls, EphB4 siRNA-DOPC alone significantly reduced tumor growth in the A2780-cp20 (48%, p<0.05) and IGROV-af1 (61%, p<0.05) models. Combination therapy with EphB4 siRNA-DOPC and docetaxel resulted in the greatest reduction in tumor weight in both A2780-cp20 and IGROV-af1 models (89-95% reduction versus controls; p<0.05 for both groups). The EphB4-131 antibody, which reduced EphB4 protein level, decreased tumor growth by 80-83% (p<0.01 for both models) in the A2780-cp20 and IGROV-af1 models. Combination of EphB4-131 and docetaxel resulted in the greatest tumor reduction in both A2780-cp20 and IGROV-af1 models (94-98% reduction versus controls; p<0.05 for both groups). Compared to controls, EphB4 targeting resulted in reduced tumor angiogenesis (p<0.001), proliferation (p<0.001), and increased tumor cell apoptosis (p<0.001), which likely occurs through modulation of PI3K signaling. Collectively, these data identify EphB4 as a valuable therapeutic target in ovarian cancer and offer two new strategies for further development. PMID:20682653

  7. Expression of betaglycan, an inhibin coreceptor, in normal human ovaries and ovarian sex cord-stromal tumors and its regulation in cultured human granulosa-luteal cells.

    PubMed

    Liu, Jianqi; Kuulasmaa, Tiina; Kosma, Veli-Matti; Bützow, Ralf; Vänttinen, Teemu; Hydén-Granskog, Christel; Voutilainen, Raimo

    2003-10-01

    Activins and inhibins are often antagonistic in the regulation of ovarian function. TGFbeta type III receptor, betaglycan, has been identified as a coreceptor to enhance the binding of inhibins to activin type II receptor and thus to prevent the binding of activins to their receptor. In this study we characterized the expression and regulation pattern of betaglycan gene in normal ovaries and sex cord-stromal tumors and in cultured human granulosa-luteal cells from women undergoing in vitro fertilization. Expression of betaglycan mRNA was detected by RT-PCR or Northern blotting in normal ovarian granulosa, thecal, and stroma cells as well as in granulosa-luteal cells. Immunohistochemical analysis revealed positive staining for betaglycan in antral and preovulatory follicular granulosa and thecal cells and in corpora lutea of normal ovaries. Furthermore, betaglycan expression was detected in the vast majority of granulosa cell tumors, thecomas, and fibromas, with weaker staining in granulosa cell tumors compared with fibrothecomas. In cultured granulosa-luteal cells, FSH and LH treatment increased dose-dependently the accumulation of betaglycan mRNA, as did the protein kinase A activator dibutyryl cAMP and the protein kinase C inhibitor staurosporine. In contrast, the protein kinase C activator 12-O-tetradecanoyl phorbol 13-acetate had no significant effect on betaglycan mRNA levels. Treatment with prostaglandin E(2) and with its receptor EP2 subtype agonist butaprost increased betaglycan mRNA accumulation and progesterone secretion dose- and time-dependently. In summary, betaglycan gene is expressed in normal human ovarian steroidogenic cells and sex cord-stromal ovarian tumors. The accumulation of its mRNA in cultured granulosa-luteal cells is up-regulated by gonadotropins and prostaglandin E(2), probably via the protein kinase A pathway. The specific expression and regulation pattern of betaglycan gene may be related to the functional antagonism of inhibins to

  8. Constituents of the aerial parts of Eclipta prostrata and their cytotoxicity on human ovarian cancer cells in vitro.

    PubMed

    Kim, Ha-Yeong; Kim, Hye Mi; Ryu, Byeol; Lee, Jae-Seung; Choi, Jung-Hye; Jang, Dae Sik

    2015-11-01

    A new terthiophene, 3'-hydroxy-2,2':5',2″-terthiophene-3'-O-β-D-glucopyranoside (1) and a new oleanane-type saponin, echinocystic acid-3-O-(6-O-acetyl)-β-D-glucopyranoside (7) were isolated from the aerial parts of Eclipta prostrata L. Moreover, five thiophenes (2-6), seven triterpenoids (8-14), two coumestans (15 and 16), and four flavonoids (17-20) having previously known chemical structures were isolated during the same course of this study. All the isolates 1-20 were evaluated for their cytotoxicity against human ovarian cancer cells (SKOV3) using MTT assays.

  9. STROBE-compliant integrin through focal adhesion involve in cancer stem cell and multidrug resistance of ovarian cancer

    PubMed Central

    Wei, Luwei; Yin, Fuqiang; Zhang, Wei; Li, Li

    2017-01-01

    Abstract Cancer stem cells (CSCs) are considered to be the root of carcinoma relapse and drug resistance in ovarian cancer. Hunting for the potential CSC genes and explain their functions would be a feasible strategy to meet the challenge of the drug resistance in ovarian cancer. In this study, we performed bioinformatic approaches such as biochip data extraction and pathway enrichment analyses to elucidate the mechanism of the CSC genes in regulation of drug resistance. Potential key genes, integrins, were identified to be related to CSC in addition to their associations with drug resistance and prognosis in ovarian cancer. A total of 36 ovarian CSC genes involved in regulation of drug resistance were summarized, and potential drug resistance-related CSC genes were identified based on 3 independent microarrays retrieved from the Gene Expression Omnibus (GEO) Profiles. Pathway enrichment of CSC genes associated with drug resistance in ovarian cancer indicated that focal adhesion signaling might play important roles in CSC genes-mediated drug resistance. Integrins are members of the adhesion molecules family, and integrin subunit alpha 1, integrin subunit alpha 5, and integrin subunit alpha 6 (ITGA6) were identified as central CSC genes and their expression in side population cells, cisplatin-resistant SKOV3 (SKOV3/DDP2) cells, and cisplatin-resistant A2780 (A2780/DDP) cells were dysregulated as measured by real-time quantitative polymerase chain reaction. The high expression of ITGA6 in 287 ovarian cancer patients of TCGA cohort was significantly associated with poorer progression-free survival. This study provide the basis for further understanding of CSC genes in regulation of drug resistance in ovarian cancer, and integrins could be a potential biomarker for prognosis of ovarian cancer. PMID:28328815

  10. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy

    PubMed Central

    Zhang, Xi-Feng; Gurunathan, Sangiliyandi

    2016-01-01

    Ovarian cancer is one of the most important malignancies, and the origin, detection, and pathogenesis of epithelial ovarian cancer remain elusive. Although many cancer drugs have been developed to dramatically reduce the size of tumors, most cancers eventually relapse, posing a critical problem to overcome. Hence, it is necessary to identify possible alternative therapeutic approaches to reduce the mortality rate of this devastating disease. To identify alternative approaches, we first synthesized silver nanoparticles (AgNPs) using a novel bacterium called Bacillus clausii. The synthesized AgNPs were homogenous and spherical in shape, with an average size of 16–20 nm, which are known to cause cytotoxicity in various types of human cancer cells, whereas salinomycin (Sal) is able to kill cancer stem cells. Therefore, we selected both Sal and AgNPs to study their combined effect on apoptosis and autophagy in ovarian cancer cells. The cells treated with either Sal or AgNPs showed a dose-dependent effect with inhibitory concentration (IC)-50 values of 6.0 µM and 8 µg/mL for Sal and AgNPs, respectively. To determine the combination effect, we measured the IC25 values of both Sal and AgNPs (3.0 µM and 4 µg/mL), which showed a more dramatic inhibitory effect on cell viability and cell morphology than either Sal or AgNPs alone. The combination of Sal and AgNPs had more pronounced effect on cytotoxicity and expression of apoptotic genes and also significantly induced the accumulation of autophagolysosomes, which was associated with mitochondrial dysfunction and loss of cell viability. Our data show a strong synergistic interaction between Sal and AgNPs in tested cancer cells. The combination treatment increased the therapeutic potential and demonstrated the relevant targeted therapy for the treatment of ovarian cancer. Furthermore, we provide, for the first time, a mode of action for Sal and AgNPs in ovarian cancer cells: enhanced apoptosis and autophagy. PMID:27536105

  11. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy.

    PubMed

    Zhang, Xi-Feng; Gurunathan, Sangiliyandi

    2016-01-01

    Ovarian cancer is one of the most important malignancies, and the origin, detection, and pathogenesis of epithelial ovarian cancer remain elusive. Although many cancer drugs have been developed to dramatically reduce the size of tumors, most cancers eventually relapse, posing a critical problem to overcome. Hence, it is necessary to identify possible alternative therapeutic approaches to reduce the mortality rate of this devastating disease. To identify alternative approaches, we first synthesized silver nanoparticles (AgNPs) using a novel bacterium called Bacillus clausii. The synthesized AgNPs were homogenous and spherical in shape, with an average size of 16-20 nm, which are known to cause cytotoxicity in various types of human cancer cells, whereas salinomycin (Sal) is able to kill cancer stem cells. Therefore, we selected both Sal and AgNPs to study their combined effect on apoptosis and autophagy in ovarian cancer cells. The cells treated with either Sal or AgNPs showed a dose-dependent effect with inhibitory concentration (IC)-50 values of 6.0 µM and 8 µg/mL for Sal and AgNPs, respectively. To determine the combination effect, we measured the IC25 values of both Sal and AgNPs (3.0 µM and 4 µg/mL), which showed a more dramatic inhibitory effect on cell viability and cell morphology than either Sal or AgNPs alone. The combination of Sal and AgNPs had more pronounced effect on cytotoxicity and expression of apoptotic genes and also significantly induced the accumulation of autophagolysosomes, which was associated with mitochondrial dysfunction and loss of cell viability. Our data show a strong synergistic interaction between Sal and AgNPs in tested cancer cells. The combination treatment increased the therapeutic potential and demonstrated the relevant targeted therapy for the treatment of ovarian cancer. Furthermore, we provide, for the first time, a mode of action for Sal and AgNPs in ovarian cancer cells: enhanced apoptosis and autophagy.

  12. The Role of p27Kip1 in Dasatinib-Enhanced Paclitaxel Cytotoxicity in Human Ovarian Cancer Cells

    PubMed Central

    Mao, Weiqun; He, Guangan; Claret, Francois-Xavier; Xia, Weiya; Ahmed, Ahmed Ashour; Hung, Mien-Chie; Siddik, Zahid H.; Bast, Robert C.

    2011-01-01

    Background Less than 50% of ovarian cancers respond to paclitaxel. Effective strategies are needed to enhance paclitaxel sensitivity. Methods A library of silencing RNAs (siRNAs) was used to identify kinases that regulate paclitaxel sensitivity in human ovarian cancer SKOv3 cells. The effect of dasatinib, an inhibitor of Src and Abl kinases, on paclitaxel sensitivity was measured in ovarian cancer cells and HEY xenografts. The roles of p27Kip1, Bcl-2, and Cdk1 in apoptosis induced by dasatinib and paclitaxel were assessed using a terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL) assay, siRNA knockdown of gene expression, transfection with Bcl-2 and Cdk1 expression vectors, and flow cytometry. All statistical tests were two-sided. Results Src family and Abl kinases were identified as modulators of paclitaxel sensitivity in SKOv3 cells. The siRNA knockdown of Src, Fyn, or Abl1 enhanced paclitaxel-mediated growth inhibition in ovarian cancer cells compared with a control siRNA. HEY cells treated with dasatinib plus paclitaxel formed fewer colonies than did cells treated with either agent alone. Treatment of HEY xenograft–bearing mice with dasatinib plus paclitaxel inhibited tumor growth more than treatment with either agent alone (average tumor volume per mouse, dasatinib + paclitaxel vs paclitaxel: 0.28 vs 0.81 cm3, difference = 0.53 cm3, 95% confidence interval [CI] = 0.44 to 0.62 cm3, P = .014); dasatinib + paclitaxel vs dasatinib: 0.28 vs 0.55 cm3, difference = 0.27 cm3, 95% CI = 0.21 to 0.33 cm3, P = .035). Combined treatment induced more TUNEL-positive apoptotic cells than did either agent alone. The siRNA knockdown of p27Kip1 decreased dasatinib- and paclitaxel-induced apoptosis compared with a negative control siRNA (sub-G1 fraction, control siRNA vs p27Kip1 siRNA: 42.5% vs 20.1%, difference = 22.4%, 95% CI = 20.1% to 24.7%, P = .017). Studies with forced expression and siRNA knockdown of Bcl-2 and Cdk1 suggest that dasatinib

  13. RNASET2 silencing affects miRNAs and target gene expression pattern in a human ovarian cancer cell model.

    PubMed

    Turconi, Giovanna; Scaldaferri, Debora; Fabbri, Marco; Monti, Laura; Lualdi, Marta; Pedrini, Edoardo; Gribaldo, Laura; Taramelli, Roberto; Acquati, Francesco

    2016-12-01

    Ribonucleases (RNases) are hydrolytic enzymes endowed with the ability to either process or degrade ribonucleic acids. Among the many biological functions assigned to RNases, a growing attention has been recently devoted to the control of cancer growth, in the attempt to bring novel therapeutic approaches to clinical oncology. Indeed, several enzymes belonging to different ribonuclease families have been reported in the last decade to display a marked oncosuppressive activity in a wide range of experimental models. The human RNASET2 gene, the only member of the highly conserved T2/Rh/S family of endoribonucleolytic enzymes described in our species, has been shown to display oncosuppressive roles in both in vitro and in vivo models representing several human malignancies. In the present study, we extend previous findings obtained in ovarian cancer models to shed further light on the cell-autonomous roles played by this gene in the context of its oncosuppresive role and to show that RNASET2 silencing can significantly affect the transcriptional output in one of the most thoroughly investigated human ovarian cancer cell lines. Moreover, we report for the first time that RNASET2-mediated changes in the cell transcriptome are in part mediated by its apparent ability to affect the cell's microRNA expression pattern.

  14. Histological verification of the prehypogastric and ovarian ganglia confirms a bilaterally symmetrical organization of the ganglia comprising the aortic plexus in female human cadavers.

    PubMed

    Beveridge, Tyler S; Johnson, Marjorie; Power, Nicholas E; Allman, Brian L

    2016-05-01

    The aortic plexus is a network of sympathetic nerves positioned along the infrarenal abdominal aorta. Recently, we characterized the aortic plexus and its ganglia (inferior mesenteric, left/right spermatic, and prehypogastric ganglion) in males; however, the literature minimally describes its anatomy in females. In the present study, we conducted the first histological examination of the left and right ovarian ganglia, while also investigating whether females, like males, exhibit a prehypogastric ganglion. The ganglia were dissected from embalmed (n = 32) and fresh (n = 1) human cadavers, and H&E staining was used to confirm the presence of a left ovarian ganglion in 31/31 specimens, a right ovarian ganglion in 29/29 specimens and a prehypogastric ganglion in 25/28 specimens. Comparable to the topographic arrangement in males, there is a bilateral organization of the ganglia comprising the aortic plexus in females. More specifically, the left and right ovarian ganglia were positioned in close relation to their respective ovarian artery, whereas the prehypogastric ganglion was positioned within the right cord of the aortic plexus, contralateral to the inferior mesenteric ganglion. Using immunohistochemistry, it was shown that all ganglia from the fresh cadaver stained positive for tyrosine hydroxylase, thereby confirming their sympathetic nature. Having provided the first topographical and histological characterization of the ovarian and prehypogastric ganglia in females, future studies should seek to determine their specific function.

  15. Nuclear COMMD1 Is Associated with Cisplatin Sensitivity in Ovarian Cancer

    PubMed Central

    Wisman, G. Bea A.; Duiker, Evelien; Reyners, Anna K. L.; van der Zee, Ate G. J.; van de Sluis, Bart; van Vugt, Marcel A. T. M.

    2016-01-01

    Copper metabolism MURR1 domain 1 (COMMD1) protein is a multifunctional protein, and its expression has been correlated with patients’ survival in different types of cancer. In vitro studies revealed that COMMD1 plays a role in sensitizing cancer cell lines to cisplatin, however, the mechanism and its role in platinum sensitivity in cancer has yet to be established. We evaluated the role of COMMD1 in cisplatin sensitivity in A2780 ovarian cancer cells and the relation between COMMD1 expression and response to platinum-based therapy in advanced stage high-grade serous ovarian cancer (HGSOC) patients. We found that elevation of nuclear COMMD1 expression sensitized A2780 ovarian cancer cells to cisplatin-mediated cytotoxicity. This was accompanied by a more effective G2/M checkpoint, and decreased protein expression of the DNA repair gene BRCA1, and the apoptosis inhibitor BCL2. Furthermore, COMMD1 expression was immunohistochemically analyzed in two tissue micro-arrays (TMAs), representing a historical cohort and a randomized clinical trial-based cohort of advanced stage HGSOC tumor specimens. Expression of COMMD1 was observed in all ovarian cancer samples, however, specifically nuclear expression of COMMD1 was only observed in a subset of ovarian cancers. In our historical cohort, nuclear COMMD1 expression was associated with an improved response to chemotherapy (OR = 0.167; P = 0.038), although this association could not be confirmed in the second cohort, likely due to sample size. Taken together, these results suggest that nuclear expression of COMMD1 sensitize ovarian cancer to cisplatin, possibly by modulating the G2/M checkpoint and through controlling expression of genes involved in DNA repair and apoptosis. PMID:27788210

  16. Human C1q Induces Apoptosis in an Ovarian Cancer Cell Line via Tumor Necrosis Factor Pathway

    PubMed Central

    Kaur, Anuvinder; Sultan, Sami H. A.; Murugaiah, Valarmathy; Pathan, Ansar A.; Alhamlan, Fatimah S.; Karteris, Emmanouil; Kishore, Uday

    2016-01-01

    Complement protein C1q is the first recognition subcomponent of the complement classical pathway that plays a vital role in the clearance of immune complexes, pathogens, and apoptotic cells. C1q also has a homeostatic role involving immune and non-immune cells; these functions not necessarily involve complement activation. Recently, C1q has been shown to be expressed locally in the microenvironment of a range of human malignant tumors, where it can promote cancer cell adhesion, migration, and proliferation, without involving complement activation. C1q has been shown to be present in the ascitic fluid formed during ovarian cancers. In this study, we have examined the effects of human C1q and its globular domain on an ovarian cancer cell line, SKOV3. We show that C1q and the recombinant globular head modules induce apoptosis in SKOV3 cells in a time-dependent manner. C1q expression was not detectable in the SKOV3 cells. Exogenous treatment with C1q and globular head modules at the concentration of 10 µg/ml induced apoptosis in approximately 55% cells, as revealed by immunofluorescence microscopy and FACS. The qPCR and caspase analysis suggested that C1q and globular head modules activated tumor necrosis factor (TNF)-α and upregulated Fas. The genes of mammalian target of rapamycin (mTOR), RICTOR, and RAPTOR survival pathways, which are often overexpressed in majority of the cancers, were significantly downregulated within few hours of the treatment of SKOV3 cells with C1q and globular head modules. In conclusion, C1q, via its globular domain, induced apoptosis in an ovarian cancer cell line SKOV3 via TNF-α induced apoptosis pathway involving upregulation of Bax and Fas. This study highlights a potentially protective role of C1q in certain cancers. PMID:28066412

  17. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells.

    PubMed

    Ji, Chao; Cao, Cong; Lu, Shan; Kivlin, Rebecca; Amaral, Ashley; Kouttab, Nicola; Yang, Hui; Chu, Wenming; Bi, Zhigang; Di, Wen; Wan, Yinsheng

    2008-10-01

    Aquaporin (AQP) water channels are expressed in high-grade tumor cells of different tissue origins. Based on the involvement of AQPs in angiogenesis and cell migration as well as our previous studies which show that AQP3 is involved in human skin fibroblasts cell migration, in this study, we investigated whether AQP3 is expressed in cultured human ovarian cancer cell line CaOV3 cells, and whether AQP3 expression in these cells enhances cell migration and metastatic potential. Cultured CaOV3 cells were treated with EGF and/or various reagents and subjected to cell migration assay by phagokinetic track mobility assay or biochemical analysis for expression or activation of proteins by SDS-PAGE/Western blot analysis. In this study, we demonstrate that AQP3 is expressed in CaOV3 cells. EGF induces CaOV3 migration and up-regulates AQP3 expression. EGF-induced cell migration is inhibited by specific AQP3 siRNA knockdown or AQP3 water transport inhibitor CuSO4 and NiCl2. We also find that curcumin, a well known anti-ovarian cancer drug, down-regulates AQP3 expression and reduces cell migration in CaOV3, and the effects of curcumin are mediated, at least in part, by its inhibitory effects on EGFR and downstream AKT/ERK activation. Collectively, our results provide evidence for AQP3-facilitated ovarian cance