Science.gov

Sample records for a2780 identifikacia novych

  1. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    SciTech Connect

    Barghout, Samir H.; Zepeda, Nubia; Xu, Zhihua

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas amore » few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.« less

  2. Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp.

    PubMed

    Zhao, Ran; Qin, Wenjun; Qin, Ruihuan; Han, Jing; Li, Can; Wang, Yisheng; Xu, Congjian

    2017-01-01

    Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal β1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.

  3. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs.

    PubMed

    Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2017-03-18

    Ovarian cancer is the deadliest gynecological malignancy in women, and fifth leading cause of death. Despite advances made in chemotherapy and surgery, the average time of clinical remission is approximately 2 years and the 5-year survival rate is 45%. Thus, there is an urgent need for the development of a novel therapeutic approach to ovarian cancer treatment. We investigated the effect of a specific nutrient mixture (EPQ) containing ascorbic acid, lysine, proline, green tea extract, and quercetin on human ovarian cancer cell A-2780 in vivo and in vitro. Athymic female nude mice (n = 12) were all inoculated intraperitoneally (IP) with 2 × 10⁶ cells in 0.1 mL of phosphate buffered saline (PBS) and randomly divided into two groups. Upon injection, the Control group (n = 6) was fed a regular diet and the EPQ group (n = 6) a regular diet supplemented with 0.5% EPQ. Four weeks later, the mice were sacrificed and tumors that developed in the ovary were excised, weighed, and processed for histology. Lungs were inspected for metastasis. In vitro, A-2780 cells were cultured in Dulbecco modified Eagle medium supplemented with 10% FBS and antibiotics. At near confluence, cells were treated with EPQ in triplicate at concentrations between 0 and 1000 μg/mL. Cell proliferation was measured via MTT assay, MMP-9 secretion via gelatinase zymography, invasion through Matrigel and morphology via hematoxylin and eosin (H & E) staining. All Control mice developed large ovarian tumors, whereas 5 out of 6 mice in the EPQ group developed no tumors, and one, a small tumor. Control mice also showed lung metastasis in 6 out of 6 mice, while no lung metastasis was evident in EPQ mice. Zymography demonstrated only MMP-9 expression, which EPQ inhibited in a dose-dependent fashion, with virtual total block at 250 μg/mL concentration. EPQ significantly inhibited invasion through Matrigel with total block at 250 μg/mL concentration. MTT showed dose-dependent inhibition of cell

  4. Antiproliferative effects of TSA, PXD‑101 and MS‑275 in A2780 and MCF7 cells: Acetylated histone H4 and acetylated tubulin as markers for HDACi potency and selectivity.

    PubMed

    Androutsopoulos, Vasilis P; Spandidos, Demetrios A

    2017-12-01

    Inhibition of histone deacetylase enzymes (HDACs) has been well documented as an attractive target for the development of chemotherapeutic drugs. The present study investigated the effects of two prototype hydroxamic acid HDAC inhibitors, namely Trichostatin A (TSA) and Belinostat (PXD‑101) and the benzamide Entinostat (MS‑275) in A2780 ovarian carcinoma and MCF7 breast adenocarcinoma cells. The three HDACi inhibited the proliferation of A2780 and MCF7 cells at comparable levels, below the µM range. Enzyme inhibition assays in a cell‑free system showed that TSA was the most potent inhibitor of total HDAC enzyme activity followed by PXD‑101 and MS‑275. Incubation of A2780 and MCF7 cells with the hydroxamates TSA and PXD‑101 for 24 h resulted in a dramatic increase of acetylated tubulin induction (up to 30‑fold for TSA). In contrast to acetylated tubulin, western blot analysis and flow cytometry indicated that the induction of acetylated histone H4 was considerably smaller. The benzamide MS‑275 exhibited nearly a 2‑fold induction of acetylated histone H4 and an even smaller induction of acetylated tubulin in A2780 and MCF7 cells. Taken together, these data suggest that although the three HDACi were equipotent in inhibiting proliferation of MCF7 and A2780 cells, only the benzamide MS‑275 did not induce acetylated tubulin expression, a marker of class IIb HDACs.

  5. Glycosides of naphthohydroquinones and anthraquinones isolated from the aerial parts of Morinda parvifolia Bartl. ex DC (Rubiaceae) increase p53 mRNA expression in A2780 cells.

    PubMed

    Su, Xianming; Zhang, Jian; Li, Changkang; Li, Fenghua; Wang, Hongqing; Gu, Haifeng; Li, Baoming; Chen, Ruoyun; Kang, Jie

    2018-05-11

    Eight previously undescribed naphthohydroquinone glycosides, namely morindaparvins H-O, together with four known anthraquinone glycosides were isolated from the n-BuOH extract of the aerial parts of Morinda parvifolia Bartl. ex DC (Rubiaceae). The structures of morindaparvins H-O were elucidated on the basis of spectroscopic analysis. To our knowledge, this is the first isolation of quinone glycosides from the plant M. parvifolia. The results showed that all 12 compounds at the concentration of 50 μM significantly increased p53 mRNA expression in A2780 cells compared with the blank control group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: In Vitro Evaluation on HeLa, A2780-ADR, and H69-AR Cells.

    PubMed

    Sriraman, Shravan Kumar; Pan, Jiayi; Sarisozen, Can; Luther, Ed; Torchilin, Vladimir

    2016-02-01

    Current research in cancer therapy is beginning to shift toward the use of combinational drug treatment regimens. However, the efficient delivery of drug combinations is governed by a number of complex factors in the clinical setting. Therefore, the ability to synchronize the pharmacokinetics of the individual therapeutic agents present in combination not only to allow for simultaneous tumor accumulation but also to allow for a synergistic relationship at the intracellular level could prove to be advantageous. In this work, we report the development of a novel folic acid-targeted liposomal formulation simultaneously co-loaded with C6 ceramide and doxorubicin [FA-(C6+Dox)-LP]. In vitro cytotoxicity assays showed that the FA-(C6+Dox)-LP was able to significantly reduce the IC50 of Dox when compared to that after the treatment with the doxorubicin-loaded liposomes (Dox-LP) as well as the untargeted drug co-loaded (C6+Dox)-LP on HeLa, A2780-ADR, and H69-AR cells. The analysis of the cell cycle distribution showed that while the C6 liposomes (C6-LP) did not cause cell cycle arrest, all the Dox-containing liposomes mediated cell cycle arrest in HeLa cells in the G2 phase at Dox concentrations of 0.3 and 1 μM and in the S phase at the higher concentrations. It was also found that this arrest in the S phase precedes the progression of the cells to apoptosis. The targeted FA-(C6+Dox)-LP were able to significantly enhance the induction of apoptotic events in HeLa cell monolayers as compared to the other treatment groups. Next, using time-lapse phase holographic imaging microscopy, it was found that upon treatment with the FA-(C6+Dox)-LP, the HeLa cells underwent rapid progression to apoptosis after 21 h as evidenced by a drastic drop in the average area of the cells after loss of cell membrane integrity. Finally, upon evaluation in a HeLa spheroid cell model, treatment with the FA-(C6+Dox)-LP showed significantly higher levels of cell death compared to those with C6-LP and

  7. SciTech Connect

    Tang, Xiao-han; Deng, Suo; Li, Meng

    Highlights: Black-Right-Pointing-Pointer HB-EGF over-expression in A2780/Taxol, A2780/CDDP cells and the matched xenografts. Black-Right-Pointing-Pointer CRM197 induces enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. Black-Right-Pointing-Pointer CRM197 arrests A2780/Taxol and A2780/CDDP cells at G0/G1 phase. Black-Right-Pointing-Pointer CRM197 suppressed the A2780/Taxol and A2780/CDDP growth of xenografts. -- Abstract: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to represent possible chemotherapeutic agent for ovarian cancer. However, the effect of CRM197 on the resistant ovarian carcinoma cells has not been sufficiently elucidated. Here, we found that HB-EGF wasmore » over-expressed in a paclitaxel-resistant human ovarian carcinoma cell line (A2780/Taxol) and a cisplatin-resistant cell line (A2780/CDDP), as well as the xenograft mouse tissue samples with these cells. To investigate the possible significance of the HB-EGF over-expression in A2780/Taxol and A2780/CDDP cells, we inhibited HB-EGF expression by CRM197 to investigate the effect of CRM197 treatment on these cells. We observed that CRM197 significantly induced anti-proliferative activity in a dose-dependent manner with the cell-cycle arrest at the G0/G1 phase and enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. The sensitive ovarian carcinoma parental cell line (A2780), A2780/Taxol and A2780/CDDP cells formed tumors in nude mice, and enhanced tumorigenicity was observed in drug-resistant tumors. Furthermore, we observed that CRM197 significantly suppressed the growth of drug-resistant ovarian cancer xenografts in vivo (p < 0.001). These results suggest that CRM197 as an HB-EGF-targeted agent has potent anti-tumor activity in paclitaxel- and cisplatin-resistant ovarian cancer which over-express HB-EGF.« less

  8. Cellular glutathione level does not predict ovarian cancer cells' resistance after initial or repeated exposure to cisplatin.

    PubMed

    Nikounezhad, Nastaran; Nakhjavani, Maryam; Shirazi, Farshad H

    2017-05-01

    Cisplatin resistance development is a major obstacle in ovarian cancer treatment. One of the most important mechanisms underlying cisplatin resistance is drug detoxification by glutathione. In the present study, the importance of initial or repeated exposure to cisplatin in glutathione dependent resistance was investigated. To this purpose, some cisplatin sensitive and resistant variants of human ovarian cancer cell lines providing an appropriate range of cisplatin sensitivity were selected. Clonogenic survival assay was performed to evaluate cisplatin resistance and intracellular contents of reduced (GSH) and oxidized (GSSG) glutathione were analyzed using an HPLC method. Our results indicated that the intracellular GSH and GSSG concentrations were nearly equal in A2780 and A2780CP cells, while the A2780CP cells showed 14 times more resistance than the A2780 cells after initial exposure to cisplatin. A2780-R1 and A2780-R3 cells which have been repeatedly exposed to cisplatin also showed no significant difference in glutathione content, even though A2780-R3 was about two times more resistant than A2780-R1. Moreover, intracellular GSH/GSSG ratio decreased in the resistant cells, reflecting a shift towards a more oxidizing intracellular environment indicative of oxidative stress. As a conclusion, it seems that although the intracellular glutathione concentration increases after repeated exposure to cisplatin, there is no clear correlation between the intracellular GSH content in ovarian cancer cells and their resistance to cisplatin neither after initial nor after repeated exposure to this drug.

  9. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance.

    PubMed

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-05-10

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells.

  10. MCT1 promotes the cisplatin-resistance by antagonizing Fas in epithelial ovarian cancer.

    PubMed

    Yan, Chunxiao; Yang, Fan; Zhou, Chunxia; Chen, Xuejun; Han, Xuechuan; Liu, Xueqin; Ma, Hongyun; Zheng, Wei

    2015-01-01

    This study was designed to investigate the role of MCT1 in the development of cisplatin-resistant ovarian cancer and its possible relationship with Fas. We found the expression of MCT1 was obviously increased both in cisplatin-resistant ovarian cancer tissue and A2780/CP cells compared with sensitive ovarian cancer tissue and cell lines A2780. And in A2780 cells treated with Cisplatin, the expression of MCT1 increased in a concentration-dependent manner, MCT1 knockdown attenuates cisplatin-induced cell viability. In A2780 and A2780/CP cells transfected with MCT1 siRNA, the activation of several downstream targets of Fas, including FasL and FAP-1 were largely prevented, whereas the expression of Caspase-3 was increased, accompanying with increased abundance of Fas. Coimmunoprecipitation and immunofluorescence showed that there is interaction between endogenous MCT1 with Fas in vivo and in vitro. In vivo, depletion of MCT1 by shRNA reverses cisplatin-resistance and the expression of Fas. This study showed that down regulation of MCT1 promote the sensibility to Cisplatin in ovarian cancer cell line. And this effect appeared to be mediated via antagonizing the effect of Fas.

  11. MCT1 promotes the cisplatin-resistance by antagonizing Fas in epithelial ovarian cancer

    PubMed Central

    Yan, Chunxiao; Yang, Fan; Zhou, Chunxia; Chen, Xuejun; Han, Xuechuan; Liu, Xueqin; Ma, Hongyun; Zheng, Wei

    2015-01-01

    This study was designed to investigate the role of MCT1 in the development of cisplatin-resistant ovarian cancer and its possible relationship with Fas. We found the expression of MCT1 was obviously increased both in cisplatin-resistant ovarian cancer tissue and A2780/CP cells compared with sensitive ovarian cancer tissue and cell lines A2780. And in A2780 cells treated with Cisplatin, the expression of MCT1 increased in a concentration-dependent manner, MCT1 knockdown attenuates cisplatin-induced cell viability. In A2780 and A2780/CP cells transfected with MCT1 siRNA, the activation of several downstream targets of Fas, including FasL and FAP-1 were largely prevented, whereas the expression of Caspase-3 was increased, accompanying with increased abundance of Fas. Coimmunoprecipitation and immunofluorescence showed that there is interaction between endogenous MCT1 with Fas in vivo and in vitro. In vivo, depletion of MCT1 by shRNA reverses cisplatin-resistance and the expression of Fas. This study showed that down regulation of MCT1 promote the sensibility to Cisplatin in ovarian cancer cell line. And this effect appeared to be mediated via antagonizing the effect of Fas. PMID:26045776

  12. Anti-proliferative ambuic acid derivatives from Hawaiian endophytic fungus Pestalotiopsis sp. FT172.

    PubMed

    Li, Chun-Shun; Yang, Bao-Jun; Turkson, James; Cao, Shugeng

    2017-08-01

    Five previously undescribed ambuic acid derivatives, pestallic acids A-E and three known analogs were isolated from the cultured broth of Pestalotiopsis sp. FT172. The structures of the pestallic acids A-E were determined through the analysis of HRMS and NMR spectroscopic data. The absolute configurations (ACs) of pestallic acids B-E were assigned by comparison of the experimental electric circular dichroism (ECD) spectra or the optical rotations with those in the literature. All compounds were tested against A2780 and cisplatin resistant A2780 (A2780CisR) cell lines. Pestallic acid E and (+)-ambuic acid showed potent activities with IC 50 values from 3.3 to 17.0 μM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metabolomic Profiling of the Synergistic Effects of Melittin in Combination with Cisplatin on Ovarian Cancer Cells

    PubMed Central

    Alonezi, Sanad; Tusiimire, Jonans; Wallace, Jennifer; Dufton, Mark J.; Parkinson, John A.; Young, Louise C.; Clements, Carol J.; Park, Jin-Kyu; Jeon, Jong-Woon; Ferro, Valerie A.; Watson, David G.

    2017-01-01

    Melittin, the main peptide present in bee venom, has been proposed as having potential for anticancer therapy; the addition of melittin to cisplatin, a first line treatment for ovarian cancer, may increase the therapeutic response in cancer treatment via synergy, resulting in improved tolerability, reduced relapse, and decreased drug resistance. Thus, this study was designed to compare the metabolomic effects of melittin in combination with cisplatin in cisplatin-sensitive (A2780) and resistant (A2780CR) ovarian cancer cells. Liquid chromatography (LC) coupled with mass spectrometry (MS) was applied to identify metabolic changes in A2780 (combination treatment 5 μg/mL melittin + 2 μg/mL cisplatin) and A2780CR (combination treatment 2 μg/mL melittin + 10 μg/mL cisplatin) cells. Principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) multivariate data analysis models were produced using SIMCA-P software. All models displayed good separation between experimental groups and high-quality goodness of fit (R2) and goodness of prediction (Q2), respectively. The combination treatment induced significant changes in both cell lines involving reduction in the levels of metabolites in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, purine and pyrimidine metabolism, and the arginine/proline pathway. The combination of melittin with cisplatin that targets these pathways had a synergistic effect. The melittin-cisplatin combination had a stronger effect on the A2780 cell line in comparison with the A2780CR cell line. The metabolic effects of melittin and cisplatin in combination were very different from those of each agent alone. PMID:28420117

  14. Aberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer

    PubMed Central

    Stefanou, Dimitra T.; Bamias, Aristotelis; Episkopou, Hara; Kyrtopoulos, Soterios A.; Likka, Maria; Kalampokas, Theodore; Photiou, Stylianos; Gavalas, Nikos; Sfikakis, Petros P.; Dimopoulos, Meletios A.; Souliotis, Vassilis L.

    2015-01-01

    Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that

  15. Exosomes as mediators of platinum resistance in ovarian cancer

    PubMed Central

    Crow, Jennifer; Atay, Safinur; Banskota, Samagya; Artale, Brittany; Schmitt, Sarah; Godwin, Andrew K

    2017-01-01

    Exosomes have been implicated in the cell-cell transfer of oncogenic proteins and genetic material. We speculated this may be one mechanism by which an intrinsically platinum-resistant population of epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells. To explore this possibility we utilized a platinum-sensitive cell line, A2780 and exosomes derived from its resistant subclones, and an unselected, platinum-resistant EOC line, OVCAR10. A2780 cells demonstrate a ~2-fold increase in viability upon treatment with carboplatin when pre-exposed to exosomes from platinum-resistant cells as compared to controls. This coincided with increased epithelial to mesenchymal transition (EMT). DNA sequencing of EOC cell lines revealed previously unreported somatic mutations in the Mothers Against Decapentaplegic Homolog 4 (SMAD4) within platinum-resistant cells. A2780 cells engineered to exogenously express these SMAD4 mutations demonstrate up-regulation of EMT markers following carboplatin treatment, are more resistant to carboplatin, and release exosomes which impart a ~1.7-fold increase in resistance in naive A2780 recipient cells as compared to controls. These studies provide the first evidence that acquired SMAD4 mutations enhance the chemo-resistance profile of EOC and present a novel mechanism in which exchange of tumor-derived exosomes perpetuates an EMT phenotype, leading to the development of subpopulations of platinum-refractory cells. PMID:28060758

  16. Exosomes as mediators of platinum resistance in ovarian cancer.

    PubMed

    Crow, Jennifer; Atay, Safinur; Banskota, Samagya; Artale, Brittany; Schmitt, Sarah; Godwin, Andrew K

    2017-02-14

    Exosomes have been implicated in the cell-cell transfer of oncogenic proteins and genetic material. We speculated this may be one mechanism by which an intrinsically platinum-resistant population of epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells. To explore this possibility we utilized a platinum-sensitive cell line, A2780 and exosomes derived from its resistant subclones, and an unselected, platinum-resistant EOC line, OVCAR10. A2780 cells demonstrate a ~2-fold increase in viability upon treatment with carboplatin when pre-exposed to exosomes from platinum-resistant cells as compared to controls. This coincided with increased epithelial to mesenchymal transition (EMT). DNA sequencing of EOC cell lines revealed previously unreported somatic mutations in the Mothers Against Decapentaplegic Homolog 4 (SMAD4) within platinum-resistant cells. A2780 cells engineered to exogenously express these SMAD4 mutations demonstrate up-regulation of EMT markers following carboplatin treatment, are more resistant to carboplatin, and release exosomes which impart a ~1.7-fold increase in resistance in naive A2780 recipient cells as compared to controls. These studies provide the first evidence that acquired SMAD4 mutations enhance the chemo-resistance profile of EOC and present a novel mechanism in which exchange of tumor-derived exosomes perpetuates an EMT phenotype, leading to the development of subpopulations of platinum-refractory cells.

  17. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

    PubMed

    Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.

  18. Tetramethoxychalcone, a Chalcone Derivative, Suppresses Proliferation, Blocks Cell Cycle Progression, and Induces Apoptosis of Human Ovarian Cancer Cells

    PubMed Central

    Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer. PMID:25180593

  19. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Bilan; Wei, Xiawei; Men, Ke; Zheng, Fengjin; Zhou, Yingfeng; Zheng, Yu; Gou, Maling; Huang, Meijuan; Guo, Gang; Huang, Ning; Qian, Zhiyong; Wei, Yuquan

    2012-10-01

    Encapsulation of hydrophobic agents in polymer micelles can improve the water solubility of cargos, contributing to develop novel drugs. Quercetin (QU) is a hydrophobic agent with potential anticancer activity. In this work, we encapsulated QU into biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles and tried to provide proof-of-principle for treating ovarian cancer with this nano-formulation of quercetin. These QU loaded MPEG-PCL (QU/MPEG-PCL) micelles with drug loading of 6.9% had a mean particle size of 36 nm, rendering the complete dispersion of quercetin in water. QU inhibited the growth of A2780S ovarian cancer cells on a dose dependent manner in vitro. Intravenous administration of QU/MPEG-PCL micelles significantly suppressed the growth of established xenograft A2780S ovarian tumors through causing cancer cell apoptosis and inhibiting angiogenesis in vivo. Furthermore, the anticancer activity of quercetin on ovarian cancer cells was studied in vitro. Quercetin treatment induced the apoptosis of A2780S cells associated with activating caspase-3 and caspase-9. MCL-1 downregulation, Bcl-2 downregulation, Bax upregulation and mitochondrial transmembrane potential change were observed, suggesting that quercetin may induce apoptosis of A2780S cells through the mitochondrial apoptotic pathway. Otherwise, quercetin treatment decreased phosphorylated p44/42 mitogen-activated protein kinase and phosphorylated Akt, contributing to inhibition of A2780S cell proliferation. Our data suggested that QU/MPEG-PCL micelles were a novel nano-formulation of quercetin with a potential clinical application in ovarian cancer therapy.

  20. SciTech Connect

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 andmore » p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.« less

  1. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs.

    PubMed

    Chen, Shuo; Jiao, Jin-Wen; Sun, Kai-Xuan; Zong, Zhi-Hong; Zhao, Yang

    2015-01-01

    Accumulating studies reveal that aberrant microRNA (miRNA) expression can affect the development of chemotherapy drug resistance by modulating the expression of relevant target proteins. The aim of this study was to investigate the role of miR-133b in the development of drug resistance in ovarian cancer cells. We examined the levels of miR-133b expression in ovarian carcinoma tissues and the human ovarian carcinoma cell lines (A2780, A2780/DDP and A2780/Taxol, respectively). We determined the cell viability of these cell lines treated with cisplatin or paclitaxel in the presence or absence of miR-133b or anti-miR-133b transfection using the MTT assay. Reverse transcription polymerase chain reaction and Western blotting were used to assess the mRNA and protein expression levels of two drug-resistance-related genes: glutathione S-transferase (GST)-π and multidrug resistance protein 1 (MDR1). The dual-luciferase reporter assay was used to detect the promoter activity of GST-π in the presence and absence of miR-133b. The expression of miR-133b was significantly lower in primary resistant ovarian carcinomas than in the chemotherapy-sensitive carcinomas (P<0.05), and the same results were found in primary resistant ovarian cell lines (A2780/Taxol and A2780/DDP) compared to the chemotherapy-sensitive cell line (A2780; P<0.05). Following miR-133b transfection, four cell lines showed increased sensitivity to paclitaxel and cisplatin, while anti-miR-133b transfection reduced cell sensitivity to paclitaxel and cisplatin. Dual-luciferase reporter assay showed that miR-133b interacted with the 3'-untranslated region of GST-π. Compared to controls, the mRNA and protein levels of MDR1 and GST-π were downregulated after miR-133b transfection and upregulated after anti-miR-133b transfection. MicroRNA-133b may reduce ovarian cancer drug resistance by silencing the expression of the drug-resistance-related proteins, GST-π and MDR1. In future, the combination of miR-133b with

  2. Enhanced anti-cancer activities of a gold(III) pyrrolidinedithiocarbamato complex incorporated in a biodegradable metal-organic framework.

    PubMed

    Sun, Raymond Wai-Yin; Zhang, Ming; Li, Dan; Li, Mian; Wong, Alice Sze-Tsai

    2016-10-01

    An anti-cancer active gold(III) pyrrolidinedithiocarbamato complex [(PDTC)Au III Cl 2 ] (1) has been synthesized and characterized by means of X-ray crystallography. Compared to the pyrrolidinedithiocarbamate ligand itself, this gold(III) complex displays an up to 33-fold higher anti-cancer potency towards a panel of cancer cell lines including the cisplatin-resistant ovarian carcinoma cell line (A2780cis). As demonstrated by a set of Transwell® assay-based cytotoxicity experiments, incorporating this gold(III) complex in a zinc-based biodegradable metal-organic framework (MOF) displays a significant enhancement in anti-cancer activity towards A2780cis than the gold(III) complex alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antiproliferative Cardenolide Glycosides of Elaeodendron alluaudianum from the Madagascar Rainforest1

    PubMed Central

    Hou, Yanpeng; Cao, Shugeng; Brodie, Peggy; Callmander, Martin; Ratovoson, Fidisoa; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.; Rakotonandrasana, Stephan; TenDyke, Karen; Suh, Edward M.; Kingston, David G. I.

    2010-01-01

    Bioassay-guided fractionation of an ethanol extract of a Madagascar collection of Elaeodendron alluaudianum led to the isolation of two new cardenolide glycosides (1 and 2). The 1H and 13C NMR spectra of both compounds were fully assigned using a combination of 2D NMR experiments, including 1H-1H COSY, HSQC, HMBC, and ROESY sequences. Both compounds 1 and 2 were tested against the A2780 human ovarian cancer cell line and the U937 human histiocytic lymphoma cell line assays, and showed significant antiproliferative activity with IC50 values of 0.12 and 0.07 μM against the A2780 human ovarian cancer cell line, and 0.15 and 0.08 μM against the U937 human histiocytic lymphoma cell line, respectively. PMID:19058971

  4. Unsymmetric Mono- and Dinuclear Platinum(IV) Complexes Featuring an Ethylene Glycol Moiety: Synthesis, Characterization, and Biological Activity

    PubMed Central

    Pichler, Verena; Heffeter, Petra; Valiahdi, Seied M.; Kowol, Christian R.; Egger, Alexander; Berger, Walter; Jakupec, Michael A.; Galanski, Markus; Keppler, Bernhard K.

    2014-01-01

    Eight novel mononuclear and two dinuclear platinum(IV) complexes were synthesized and characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, mass spectrometry, and reversed-phase HPLC (log kw) and in one case by X-ray diffraction. Cytotoxicity of the compounds was studied in three human cancer cell lines (CH1, SW480, and A549) by means of the MTT assay, featuring IC50 values to the low micromolar range. Furthermore a selected set of compounds was investigated in additional cancer cell lines (P31 and P31/cis, A2780 and A2780/cis, SW1573, 2R120, and 2R160) with regard to their resistance patterns, offering a distinctly different scheme compared to cisplatin. To gain further insights into the mode of action, drug uptake, DNA synthesis inhibition, cell cycle effects, and induction of apoptosis were determined for two characteristic substances. PMID:23194425

  5. The role of topotecan for extending the platinum-free interval in recurrent ovarian cancer: an in vitro model.

    PubMed

    Horowitz, Neil S; Hua, Jun; Gibb, Randall K; Mutch, David G; Herzog, Thomas J

    2004-07-01

    Topotecan, a novel topoisomerase-I inhibitor, is an active agent of second-line chemotherapy for extending the platinum-free interval (PFI) and improving the chances of a response to platinum in recurrent ovarian cancer patients. The aim of this study was to understand the molecular mechanism of topotecan-based second-line chemotherapy through an in vitro cell culture model and to gain clinical insight into sequencing issues for second-line treatment with novel agents versus retreatment with platinum. The human ovarian cancer cell line A2780 and the cisplatin resistance cell line A2780-CR were separately seeded in 6-well cell culture plates and then exposed to multiple concentrations of cisplatin plus paclitaxel or topotecan for 7 days. Surviving cells were recovered and cultured in drug-free media for 3 weeks and then replated in a 96-well microtiter plate. The LD(50) for these cells was determined by a cytotoxic MTT assay after exposure to multiple clinically relevant concentrations of cisplatin or topotecan. Surviving cells were cultured in drug-free media for an additional 4 weeks at which time the LD(50) was reassessed for each cell population by a second MTT assay. Using RT-PCR and Northern blot hybridization to measure mRNA expression, the molecular profile of these cells in terms of resistance was evaluated for the multidrug-resistant gene (MDR-1), multidrug-resistant protein (MRP), Topoisomerase-I, and beta-Actin. The LD(50) to cisplatin was unchanged in A2780-CR cells treated by topotecan. Those A2780-CR cells originally exposed to higher concentrations of cisplatin became more resistant to cisplatin in the MTT assays, while those A2780-CR cell lines treated with a combination of lower cisplatin concentrations and paclitaxel became more sensitive to cisplatin in the MTT assay (P < 0.01). The second MTT assay demonstrated that the LD(50) for cisplatin in every cell line decreased significantly after a 4-week drug-free interval (P < 0.01). There was no

  6. Metabolomic Profiling of the Effects of Melittin on Cisplatin Resistant and Cisplatin Sensitive Ovarian Cancer Cells Using Mass Spectrometry and Biolog Microarray Technology

    PubMed Central

    Alonezi, Sanad; Tusiimire, Jonans; Wallace, Jennifer; Dufton, Mark J.; Parkinson, John A.; Young, Louise C.; Clements, Carol J.; Park, Jin Kyu; Jeon, Jong Woon; Ferro, Valerie A.; Watson, David G.

    2016-01-01

    In the present study, liquid chromatography-mass spectrometry (LC-MS) was employed to characterise the metabolic profiles of two human ovarian cancer cell lines A2780 (cisplatin-sensitive) and A2780CR (cisplatin-resistant) in response to their exposure to melittin, a cytotoxic peptide from bee venom. In addition, the metabolomics data were supported by application of Biolog microarray technology to examine the utilisation of carbon sources by the two cell lines. Data extraction with MZmine 2.14 and database searching were applied to provide metabolite lists. Principal component analysis (PCA) gave clear separation between the cisplatin-sensitive and resistant strains and their respective controls. The cisplatin-resistant cells were slightly more sensitive to melittin than the sensitive cells with IC50 values of 4.5 and 6.8 μg/mL respectively, although the latter cell line exhibited the greatest metabolic perturbation upon treatment. The changes induced by melittin in the cisplatin-sensitive cells led mostly to reduced levels of amino acids in the proline/glutamine/arginine pathway, as well as to decreased levels of carnitines, polyamines, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD+). The effects on energy metabolism were supported by the data from the Biolog assays. The lipid compositions of the two cell lines were quite different with the A2780 cells having higher levels of several ether lipids than the A2780CR cells. Melittin also had some effect on the lipid composition of the cells. Overall, this study suggests that melittin might have some potential as an adjuvant therapy in cancer treatment. PMID:27754384

  7. Discovery of imidazo[1,2- a ]-pyridine inhibitors of pan-PI3 kinases that are efficacious in a mouse xenograft model

    SciTech Connect

    Han, Wooseok; Menezes, Daniel L.; Xu, Yongjin

    Alterations in PI3K/AKT signaling are known to be implicated with tumorigenesis. The PI3 kinases family of lipid kinases has been an attractive therapeutic target for cancer treatment. Imidazopyridine compound 1, a potent, selective, and orally available pan-PI3K inhibitor, identified by scaffold morphing of a benzothiazole hit, was further optimized in order to achieve efficacy in a PTEN-deleted A2780 ovarian cancer mouse xenograft model. With a hypothesis that a planar conformation between the core and the 6-heteroaryl ring will allow for the accommodation of larger 5'-substituents in a hydrophobic area under P-loop, SAR efforts focused on 5'-alkoxy heteroaryl rings at themore » 6-position of imidazopyridine and imidazopyridazine cores that have the same dihedral angle of zero degrees. 6'-Alkoxy 5'-aminopyrazines in the imidazopyridine series were identified as the most potent compounds in the A2780 cell line. Compound 14 with 1,1,1-trifluoroisopropoxy group at 6'-position demonstrated excellent potency and selectivity, good oral exposure in rats and in vivo efficacy in A2780 tumor-bearing mouse. Also, we disclose the X-ray co-crystal structure of one enantiomer of compound 14 in PI3Kα, confirming that the trifluoromethyl group fits nicely in the hydrophobic hot spot under P-loop.« less

  8. Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells

    PubMed Central

    Kryeziu, Kushtrim; Pirker, Christine; Englinger, Bernhard; van Schoonhoven, Sushilla; Spitzwieser, Melanie; Mohr, Thomas; Körner, Wilfried; Weinmüllner, Regina; Tav, Koray; Grillari, Johannes; Cichna-Markl, Margit; Berger, Walter; Heffeter, Petra

    2016-01-01

    As an environmental poison, arsenic is responsible for many cancer deaths. Paradoxically, arsenic trioxide (ATO) presents also a powerful therapy used to treat refractory acute promyelocytic leukemia (APL) and is intensively investigated for treatment of other cancer types. Noteworthy, cancer therapy is frequently hampered by drug resistance, which is also often associated with enhancement of tumor aggressiveness. In this study, we analyzed ATO-selected cancer cells (A2780ATO) for the mechanisms underlying their enhanced tumorigenicity and aggressiveness. These cells were characterized by enhanced proliferation and spheroid growth as well as increased tumorigenicity of xenografts in SCID mice. Noteworthy, subsequent studies revealed that overexpression of Met receptor was the underlying oncogenic driver of these effects, as A2780ATO cells were characterized by collateral sensitivity against Met inhibitors. This finding was also confirmed by array comparative genomic hybridization (array CGH) and whole genome gene expression arrays, which revealed that Met overexpression by chronic ATO exposure was based on the transcriptional regulation via activation of AP-1. Finally, it was shown that treatment with the Met inhibitor crizotinib was also effective against A2780ATO cell xenografts in vivo, indicating that targeting of Met presents a promising strategy for the treatment of Met-overexpressing tumors after either arsenic exposure or failure to ATO treatment. PMID:27036042

  9. Discovery of imidazo[1,2-a]-pyridine inhibitors of pan-PI3 kinases that are efficacious in a mouse xenograft model.

    PubMed

    Han, Wooseok; Menezes, Daniel L; Xu, Yongjin; Knapp, Mark S; Elling, Robert; Burger, Matthew T; Ni, Zhi-Jie; Smith, Aaron; Lan, Jiong; Williams, Teresa E; Verhagen, Joelle; Huh, Kay; Merritt, Hanne; Chan, John; Kaufman, Susan; Voliva, Charles F; Pecchi, Sabina

    2016-02-01

    Alterations in PI3K/AKT signaling are known to be implicated with tumorigenesis. The PI3 kinases family of lipid kinases has been an attractive therapeutic target for cancer treatment. Imidazopyridine compound 1, a potent, selective, and orally available pan-PI3K inhibitor, identified by scaffold morphing of a benzothiazole hit, was further optimized in order to achieve efficacy in a PTEN-deleted A2780 ovarian cancer mouse xenograft model. With a hypothesis that a planar conformation between the core and the 6-heteroaryl ring will allow for the accommodation of larger 5'-substituents in a hydrophobic area under P-loop, SAR efforts focused on 5'-alkoxy heteroaryl rings at the 6-position of imidazopyridine and imidazopyridazine cores that have the same dihedral angle of zero degrees. 6'-Alkoxy 5'-aminopyrazines in the imidazopyridine series were identified as the most potent compounds in the A2780 cell line. Compound 14 with 1,1,1-trifluoroisopropoxy group at 6'-position demonstrated excellent potency and selectivity, good oral exposure in rats and in vivo efficacy in A2780 tumor-bearing mouse. Also, we disclose the X-ray co-crystal structure of one enantiomer of compound 14 in PI3Kα, confirming that the trifluoromethyl group fits nicely in the hydrophobic hot spot under P-loop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer.

    PubMed

    Schinagl, Alexander; Thiele, Michael; Douillard, Patrice; Völkel, Dirk; Kenner, Lukas; Kazemi, Zahra; Freissmuth, Michael; Scheiflinger, Friedrich; Kerschbaumer, Randolf J

    2016-11-08

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, which was shown to be upregulated in cancers and to exhibit tumor promoting properties. Unlike other cytokines, MIF is ubiquitously present in the circulation and tissue of healthy subjects. We recently described a previously unrecognized, disease-related isoform of MIF, designated oxMIF, which is present in the circulation of patients with different inflammatory diseases. In this article, we report that oxMIF is also linked to different solid tumors as it is specifically expressed in tumor tissue from patients with colorectal, pancreatic, ovarian and lung cancer. Furthermore, oxMIF can be specifically targeted by a subset of phage display-derived fully human, monoclonal anti-MIF antibodies (mAbs) that were shown to neutralize pro-tumorigenic activities of MIF in vivo. We further demonstrate that anti-oxMIF mAbs sensitize human cancer cell lines (LNCaP, PC3, A2780 and A2780ADR) to the action of cytotoxic drugs (mitoxantrone, cisplatin and doxorubicin) in vitro and in an A2780 xenograft mouse model of ovarian cancer. We conclude that oxMIF is the disease related isoform of MIF in solid tumors and a potential new diagnostic marker and drug target in cancer.

  11. Synthesis, crystal structure and anticancer activity of tetrakis(N-isopropylimidazolidine-2-selenone)platinum(II) chloride

    NASA Astrophysics Data System (ADS)

    Ahmad, Saeed; Altoum, Ali Osman S.; Vančo, Ján; Křikavová, Radka; Trávníček, Zdeněk; Dvořák, Zdeněk; Altaf, Muhammad; Sohail, Manzar; Isab, Anvarhusein A.

    2018-01-01

    A Platinum(II) complex of N-isopropylimidazolidine-2-selenone (i-PrImSe), [Pt(i-PrImSe)4]Cl2 (1) was prepared and characterized by elemental analysis, IR and NMR (1H, 13C, 77Se &195Pt) spectroscopy, and X-ray crystallography. The structure of 1 consists of [Pt(i-PrImSe)4]2+ complex ion and chloride counter ions. The platinum(II) atom adopts a distorted square planar geometry. The in vitro antitumor activity of 1 as well as cisplatin, was evaluated by MTT assay against human; ovarian carcinoma A2780 and its cisplatin-resistant subline A2780R, prostate cancer 22Rv1 and breast cancer MCF-7 cell lines. The title complex displayed the activity against the A2780 cells (IC50 = 30.8 μM) at the level comparable to cisplatin (IC50 = 26.8 μM). The interaction studies with sulfur-containing biomolecules revealed its ability to form a variety of intermediates and oxidized species with L-cysteine and reduced glutathione.

  12. PG545 enhances anti-cancer activity of chemotherapy in ovarian models and increases surrogate biomarkers such as VEGF in preclinical and clinical plasma samples.

    PubMed

    Winterhoff, Boris; Freyer, Luisa; Hammond, Edward; Giri, Shailendra; Mondal, Susmita; Roy, Debarshi; Teoman, Attila; Mullany, Sally A; Hoffmann, Robert; von Bismarck, Antonia; Chien, Jeremy; Block, Matthew S; Millward, Michael; Bampton, Darryn; Dredge, Keith; Shridhar, Viji

    2015-05-01

    Despite the utility of antiangiogenic drugs in ovarian cancer, efficacy remains limited due to resistance linked to alternate angiogenic pathways and metastasis. Therefore, we investigated PG545, an anti-angiogenic and anti-metastatic agent which is currently in Phase I clinical trials, using preclinical models of ovarian cancer. PG545's anti-cancer activity was investigated in vitro and in vivo as a single agent, and in combination with paclitaxel, cisplatin or carboplatin using various ovarian cancer cell lines and tumour models. PG545, alone, or in combination with chemotherapeutics, inhibited proliferation of ovarian cancer cells, demonstrating synergy with paclitaxel in A2780 cells. PG545 inhibited growth factor-mediated cell migration and reduced HB-EGF-induced phosphorylation of ERK, AKT and EGFR in vitro and significantly reduced tumour burden which was enhanced when combined with paclitaxel in an A2780 model or carboplatin in a SKOV-3 model. Moreover, in the immunocompetent ID8 model, PG545 also significantly reduced ascites in vivo. In the A2780 maintenance model, PG545 initiated with, and following paclitaxel and cisplatin treatment, significantly improved overall survival. PG545 increased plasma VEGF levels (and other targets) in preclinical models and in a small cohort of advanced cancer patients which might represent a potential biomarker of response. Our results support clinical testing of PG545, particularly in combination with paclitaxel, as a novel therapeutic strategy for ovarian cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Two new ortho benzoquinones from Uncaria rhynchophylla.

    PubMed

    Zhang, Qian; Chen, Lei; Hu, Le-Jian; Liu, Wen-Yuan; Feng, Feng; Qu, Wei

    2016-03-01

    The present study was designed to determine the chemical constituents of the stems and hooks of Uncaria rhynchophylla. The chemical constituents were isolated and purified from CH2Cl2 fraction by chromatography. Their structures were elucidated by spectroscopic analyses. Their cytotoxicity was tested using MTT method. Two new ortho benzoquinones, 3-diethylamino-5-methoxy-1, 2-benzoquinone (1) and 3-ethylamino-5-methoxy-1, 2-benzoquinone (2), together with a known compound isorhynchophyllic acid (3) were isolated from U. rhynchophylla. These compounds were evaluated for their cytotoxicity against cancer cells A549, HepG2 and A2780. Compounds 1 and 2 were new ortho benzoquinones and showed weak antiproliferative activities on A549, HepG2 and A2780 cells. Compound 3 significantly inhibited the proliferation of A549, HepG2 and A2780 cells with IC50 values being 5.8, 12.8 and 11.8 µmol·L(-1), respectively. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    PubMed

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer. © 2017 International Federation for Cell Biology.

  15. Ovarian cancer stem cells.

    PubMed

    Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J

    2012-01-01

    Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for

  16. RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines.

    PubMed

    Narendrula, Rashmi; Mispel-Beyer, Kyle; Guo, Baoqing; Parissenti, Amadeo M; Pritzker, Laura B; Pritzker, Ken; Masilamani, Twinkle; Wang, Xiaohui; Lannér, Carita

    2016-02-24

    Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced "RNA disruption" is, the extent to which it is associated with drug response or what the underlying mechanisms are. Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor. All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3'-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption. Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues and is

  17. EDD enhances cell survival and cisplatin resistance and is a therapeutic target for epithelial ovarian cancer

    PubMed Central

    Bradley, Amber; Zheng, Hui; Eblen, Scott T.

    2014-01-01

    The E3 ubiquitin ligase EDD is overexpressed in recurrent, platinum-resistant ovarian cancers, suggesting a role in tumor survival and/or platinum resistance. EDD knockdown by small interfering RNA (siRNA) induced apoptosis in A2780ip2, OVCAR5 and ES-2 ovarian cancer cells, correlating with loss of the prosurvival protein myeloid cell leukemia sequence 1 (Mcl-1) through a glycogen synthase kinase 3 beta-independent mechanism. SiRNA to EDD or Mcl-1 induced comparable levels of apoptosis in A2780ip2 and ES-2 cells. Stable overexpression of Mcl-1 protected cells from apoptosis following EDD knockdown, accompanied by a loss of endogenous, but not exogenous, Mcl-1 protein, suggesting that EDD regulated Mcl-1 synthesis. Indeed, EDD knockdown induced a 1.87-fold decrease in Mcl-1 messenger RNA and EDD transfection enhanced murine Mcl-1 promoter-driven luciferase expression 5-fold. To separate EDD survival and potential cisplatin resistance functions, we generated EDD shRNA stable cell lines that could survive initial EDD knockdown and showed that these cells were 4- to 21-fold more sensitive to cisplatin. Moreover, transient EDD overexpression in COS-7 cells was sufficient to promote cisplatin resistance 2.4-fold, dependent upon its E3 ligase activity. In vivo, mouse intraperitoneal ES-2 and A2780ip2 xenograft experiments showed that mice treated with EDD siRNA by nanoliposomal delivery [1,2-dioleoyl-sn-glycero-3-phophatidylcholine (DOPC)] and cisplatin had significantly less tumor burden than those treated with control siRNA/DOPC alone (ES-2, 77.9% reduction, P = 0.004; A2780ip2, 75.9% reduction, P = 0.042) or control siRNA/DOPC with cisplatin in ES-2 (64.4% reduction, P = 0.035), with a trend in A2780ip2 (60.3% reduction, P = 0.168). These results identify EDD as a dual regulator of cell survival and cisplatin resistance and suggest that EDD is a therapeutic target for ovarian cancer. PMID:24379240

  18. Preclinical evaluation of olaparib and metformin combination in BRCA1 wildtype ovarian cancer.

    PubMed

    Hijaz, M; Chhina, J; Mert, I; Taylor, M; Dar, S; Al-Wahab, Z; Ali-Fehmi, R; Buekers, T; Munkarah, A R; Rattan, R

    2016-08-01

    BRCA mutated ovarian cancers show increased responsiveness to PARP inhibitors. PARP inhibitors target DNA repair and provide a second hit to BRCA mutated tumors, resulting in "synthetic lethality". We investigated a combination of metformin and olaparib to provide "synthetic lethality" in BRCA intact ovarian cancer cells. Ovarian cancer cell lines (UWB1.289, UWB1.289.BRCA, SKOV3, OVCAR5, A2780 and C200) were treated with a combination of metformin and olaparib. Cell viability was assessed by MTT and colony formation assays. Flow cytometry was used to detect cell cycle events. In vivo studies were performed in SKOV3 or A2780 xenografts in nude mice. Animals were treated with single agent, metformin or olaparib or combination. Molecular downstream effects were examined by immunohistochemistry. Compared to single drug treatment, combination of olaparib and metformin resulted in significant reduction of cell proliferation and colony formation (p<0.001) in ovarian cancer cells. This treatment was associated with a significant S-phase cell cycle arrest (p<0.05). Combination of olaparib and metformin significantly inhibited SKOV3 and A2780 ovarian tumor xenografts which were accompanied with decreased Ki-index (p<0.001). Metformin did not affect DNA damage signaling, while olaparib induced adenosine monophosphate activated kinase activation; that was further potentiated with metformin combination in vivo. Combining PARP inhibitors with metformin enhances its anti-proliferative activity in BRCA mutant ovarian cancer cells. Furthermore, the combination showed significant activity in BRCA intact cancer cells in vitro and in vivo. This is a promising treatment regimen for women with epithelial ovarian cancer irrespective of BRCA status. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.

    PubMed

    Fan, Li; Ma, Yalin; Liu, Ying; Zheng, Dongping; Huang, Guangrong

    2014-11-15

    The polyphenolic flavonoid silymarin that is the milk thistle extract has been found to possess an anti-cancer effect against various human epithelial cancers. In this study, to explore the regulative effect of silymarin on human ovarian cancer line A2780s and PA-1 cells, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay and flow cytometry were respectively used to determine the inhibitory effect of silymarin on the both cell lines, and to measure their cell cycle progression. Apoptosis induction and mitochondrial membrane potential damage were separately detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assay and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide staining. Additionally, western blotting was applied to determine cytochrome C release and expression levels of p53, p21, p27, p16, CDK2, Bax, Bcl-2, procaspase-9, procaspase-3, cleaved caspase-9 and caspase-3 proteins. The activity of caspase-9 and caspase-3 was measured using Caspase-Glo-9 and Caspase-Glo-3 assay. The results indicated that silymarin effectively suppressed cell growth in a dose- and time-dependent manner, and arrested cell cycle progression at G1/S phase in A2780s and PA-1 cells via up-regulation of p53, p21, and p27 protein expression, and down-regulation of CDK2 protein expression. Additionally, silymarin treatment for 24h at 50 and 100µg/ml resulted in a reduction of mitochondrial membrane potential and cytochrome C release, and significantly induced apoptosis in A2780s and PA-1 cells by increasing Bax and decreasing Bcl-2 protein expression, and activation of caspase-9 and caspase-3. Therefore, silymarin is a possible potential candidate for the prevention and treatment of ovarian cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells.

    PubMed

    Hu, Jianguo; Meng, Ying; Zhang, Zhanqin; Yan, Qiuting; Jiang, Xingwei; Lv, Zilan; Hu, Lina

    2017-02-01

    MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.

  1. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy.

    PubMed

    Pastorek, Michal; Simko, Veronika; Takacova, Martina; Barathova, Monika; Bartosova, Maria; Hunakova, Luba; Sedlakova, Olga; Hudecova, Sona; Krizanova, Olga; Dequiedt, Franck; Pastorekova, Silvia; Sedlak, Jan

    2015-07-01

    One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.

  2. Effects of X-shaped reduction-sensitive amphiphilic block copolymer on drug delivery.

    PubMed

    Xiao, Haijun; Wang, Lu

    2015-01-01

    To study the effects of X-shaped amphiphilic block copolymers on delivery of docetaxel (DTX) and the reduction-sensitive property on drug release, a novel reduction-sensitive amphiphilic copolymer, (PLGA)2-SS-4-arm-PEG2000 with a Gemini-like X-shape, was successfully synthesized. The formation of nanomicelles was proved with respect to the blue shift of the emission fluorescence as well as the fluorescent intensity increase of coumarin 6-loaded particles. The X-shaped polymers exhibited a smaller critical micelle concentration value and possessed higher micellar stability in comparison with those of linear ones. The size of X-shaped (PLGA)2-SS-4-arm-PEG2000 polymer nanomicelles (XNMs) was much smaller than that of nanomicelles prepared with linear polymers. The reduction sensitivity of polymers was confirmed by the increase of micellar sizes as well as the in vitro drug release profile of DTX-loaded XNMs (DTX/XNMs). Cytotoxicity assays in vitro revealed that the blank XNMs were nontoxic against A2780 cells up to a concentration of 50 µg/mL, displaying good biocompatibility. DTX/XNMs were more toxic against A2780 cells than other formulations in both dose- and time-dependent manners. Cellular uptake assay displayed a higher intracellular drug delivery efficiency of XNMs than that of nanomicelles prepared with linear polymers. Besides, the promotion of tubulin polymerization induced by DTX was visualized by immunofluorescence analysis, and the acceleration of apoptotic process against A2780 cells was also imaged using a fluorescent staining method. Therefore, this X-shaped reduction-sensitive (PLGA)2-SS-4-arm-PEG2000 copolymer could effectively improve the micellar stability and significantly enhance the therapeutic efficacy of DTX by increasing the cellular uptake and selectively accelerating the drug release inside cancer cells.

  3. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles.

    PubMed

    Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming

    2017-09-01

    Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment.

  4. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles

    PubMed Central

    Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming

    2017-01-01

    Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment. PMID:28947984

  5. Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein.

    PubMed Central

    Scanlon, K J; Jiao, L; Funato, T; Wang, W; Tone, T; Rossi, J J; Kashani-Sabet, M

    1991-01-01

    The c-fos gene product Fos has been implicated in many cellular processes, including signal transduction, DNA synthesis, and resistance to antineoplastic agents. A fos ribozyme (catalytic RNA) was designed to evaluate the effects of suppressing Fos protein synthesis on expression of enzymes involved in DNA synthesis, DNA repair, and drug resistance. DNA encoding the fos ribozyme (fosRb) was cloned into the pMAMneo expression plasmid, and the resultant vector was transfected into A2780DDP cells resistant to the chemotherapeutic agent cisplatin. The parental drug-sensitive A2780S cells were transfected with the pMMV vector containing the c-fos gene. Morphological alterations were accompanied by significant changes in pharmacological sensitivity in both c-fos- and fosRb-transfected cells. pMAMneo fosRb transfectants revealed decreased c-fos gene expression, concomitant with reduced thymidylate (dTMP) synthase, DNA polymerase beta, topoisomerase I, and metallothionein IIA mRNAs. In contrast, c-myc expression was elevated after fos ribozyme action. Insertion of a mutant ribozyme, mainly capable of antisense activity, into A2780DDP cells resulted in smaller reductions in c-fos gene expression and in cisplatin resistance than the active ribozyme. These studies establish a role for c-fos in drug resistance and in mediating DNA synthesis and repair processes by modulating expression of genes such as dTMP synthase, DNA polymerase beta, and topoisomerase I. These studies also suggest the utility of ribozymes in the analysis of cellular gene expression. Images PMID:1660142

  6. MT-4 suppresses resistant ovarian cancer growth through targeting tubulin and HSP27.

    PubMed

    Pai, Hui Chen; Kumar, Sunil; Shen, Chien-Chang; Liou, Jing Ping; Pan, Shiow Lin; Teng, Che Ming

    2015-01-01

    In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines. To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization was determined using a tubulin binding assay. MT-4 (2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol), a derivative of moscatilin, can inhibit both sensitive A2780 and multidrug-resistant NCI-ADR/res cell growth and viability. MT-4 inhibited tubulin polymerization to induce G2/M arrest followed by caspase-mediated apoptosis. Further studies indicated that MT-4 is not a substrate of P-glycoprotein (p-gp). MT-4 also caused G2/M cell cycle arrest, accompanied by the upregulation of cyclin B, p-Thr161 Cdc2/p34, polo-like kinase 1 (PLK1), Aurora kinase B, and phospho-Ser10-histone H3 protein levels. In addition, we found that p38 MAPK pathway activation was involved in MT-4-induced apoptosis. Most importantly, MT-4 also decreased heat shock protein 27 expression and reduced its interaction with caspase-3, which inured cancer cells to chemotherapy resistance. Treatment of cells with SB203580 or overexpression of dominant negative (DN)-p38 or wild-type HSP27 reduced PARP cleavage caused by MT-4. MT-4 induced apoptosis through regulation of p38 and HSP27. Our xenograft models also show the in vivo efficacy of MT-4. MT-4 inhibited both A2780 and NCI-ADR/res cell growth in vitro and in vivo. These findings indicate that MT-4 could be a potential lead compound for the treatment of multidrug-resistant ovarian cancer.

  7. Functional activation of mutant p53V172F by platinum analogs in cisplatin-resistant human tumor cells is dependent on serine-20 phosphorylation

    PubMed Central

    Xie, Xiaolei; He, Guangan; Siddik, Zahid H.

    2017-01-01

    Dysfunctionality of the p53 tumor suppressor is a major cause of therapeutic drug resistance in cancer. Recently we reported that mutant, but otherwise functional, p53V172F was inactivated in cisplatin-resistant 2780CP/Cl-16 and 2780CP/Cl-24 human ovarian tumor cells by increased recruitment of the inhibitor MDM4. The current study demonstrates that, unlike cisplatin, platinum analogs oxaliplatin and DACH-diacetato-dichloro-Pt(IV) (DAP), strongly stabilize and activate p53V172F in resistant cells, as indicated by prolonged p53 half-life and transactivation of targets p21 (CDKN1A) and MDM2. This increase in MDM2 reduced MDM4 levels in cell lysates as well as the p53 immunocomplex and prevented reversion of p53 to the inactive p53-MDM2-MDM4 bound state. Phosphorylation of p53 at Ser15 was demonstrated by all three drugs in sensitive A2780 and corresponding resistant 2780CP/Cl-16 and 2780CP/Cl-24 cell lines. However, cisplatin induced Ser20 phosphorylation in A2780 cells only, but not in resistant cells; in contrast, both DAP and oxaliplatin induced this phosphorylation in all three cell lines. The inference that Ser20 phosphorylation is more important for p53 activation was confirmed by ectopic expression of a phosphomimetic (S20D) mutant p53 that displayed reduced binding, relative to wild-type p53, to both MDM2 and MDM4 in p53-knockout A2780 cells. In consonance, temporal studies demonstrated drug-induced Ser15 phosphorylation coincided with p53 stabilization, whereas Ser20 phosphorylation coincided with p53 transactivation. Implications Cisplatin fails to activate the pathway involved in phosphorylating mutant p53V172F at Ser20 in resistant cells, but this phosphorylation is restored by oxaliplatin and DAP that reactivates p53 function and circumvents cisplatin resistance. PMID:28031409

  8. Overcoming chemotherapy resistance of ovarian cancer cells by liposomal cisplatin: molecular mechanisms unveiled by gene expression profiling.

    PubMed

    Koch, Martin; Krieger, Michaela L; Stölting, Daniel; Brenner, Norbert; Beier, Manfred; Jaehde, Ulrich; Wiese, Michael; Royer, Hans-Dieter; Bendas, Gerd

    2013-04-15

    Previously we reported that liposomal cisplatin (CDDP) overcomes CDDP resistance of ovarian A2780cis cancer cells (Krieger et al., Int. J. Pharm. 389, 2010, 10-17). Here we find that the cytotoxic activity of liposomal CDDP is not associated with detectable DNA platination in resistant ovarian cancer cells. This suggests that the mode of action of liposomal CDDP is different from the free drug. To gain insight into mechanisms of liposomal CDDP activity, we performed a transcriptome analysis of untreated A2780cis cells, and A2780cis cells in response to exposure with IC50 values of free or liposomal CDDP. A process network analysis of upregulated genes showed that liposomal CDDP induced a highly different gene expression profile in comparison to the free drug. p53 was identified as a key player directing transcriptional responses to free or liposomal CDDP. The free drug induced expression of essential genes of the intrinsic (mitochondrial) apoptosis pathway (BAX, BID, CASP9) most likely through p38MAPK activation. In contrast, liposomal CDDP induced expression of genes from DNA damage pathways and several genes of the extrinsic pathway of apoptosis (TNFRSF10B-DR5, CD70-TNFSF7). It thus appears that liposomal CDDP overcomes CDDP resistance by inducing DNA damage and in consequence programmed cell death by the extrinsic pathway. Predictions from gene expression data with respect to apoptosis activation were confirmed at the protein level by an apoptosis antibody array. This sheds new light on liposomal drug carrier approaches in cancer and suggests liposomal CDDP as promising strategy for the treatment of CDDP resistant ovarian carcinomas. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Dinuclear RuII(bipy)2 Derivatives: Structural, Biological, and in Vivo Zebrafish Toxicity Evaluation.

    PubMed

    Lenis-Rojas, Oscar A; Roma-Rodrigues, Catarina; Fernandes, Alexandra R; Marques, Fernanda; Pérez-Fernández, David; Guerra-Varela, Jorge; Sánchez, Laura; Vázquez-García, Digna; López-Torres, Margarita; Fernández, Alberto; Fernández, Jesús J

    2017-06-19

    Ruthenium-based drugs exhibit interesting properties as potential anticancer pharmaceuticals. We herein present the synthesis and characterization of a new family of ruthenium complexes with formulas [{Ru(bipy) 2 } 2 (μ-L)][CF 3 SO 3 ] 4 (L = bptz, 1a) and [{Ru(bipy) 2 } 2 (μ-L)][CF 3 SO 3 ] 2 (L = arphos, 2a; dppb, 3a; dppf, 4a), which were synthesized from the Ru(II) precursor compound cis-Ru(bipy) 2 Cl 2 . The complexes were characterized by elemental analysis, mass spectrometry, 1 H and 31 P{ 1 H} NMR, IR spectroscopy, and conductivity measurements. The molecular structures for three Ru(II) compounds were determined by single-crystal X-ray diffraction. The newly developed compounds interact with CT-DNA by intercalation, in particular, 2a, 3a, and 4a, which also seemed to induce some extent of DNA degradation. This effect seemed to be related with the formation of reactive oxygen species. The cytotoxic activity was evaluated against A2780, MCF7, and MDAMB231 human tumor cells. Compounds 2a and 4a were the most cytotoxic with activity compared to cisplatin (∼2 μM, 72 h) in the A2780 cisplatin sensitive cells. All the compounds induced A2780 cell death by apoptosis, however, to a lesser extent for compounds 4a and 2a. For these compounds, the mechanism of cell death in addition to apoptosis seemed to involve autophagy. In vivo toxicity was evaluated using the zebrafish embryo model. LC 50 estimates varied from 5.397 (3a) to 39.404 (1a) mg/L. Considering the in vivo toxicity in zebrafish embryos and the in vitro cytotoxicity in cancer cells, compound 1a seems to be the safest having no effect on dechirionation and presenting a good antiproliferative activity against ovarian carcinoma cells.

  10. Meroterpenoids and isoberkedienolactone from endophytic fungus Penicillium sp. associated with Dysosma versipellis.

    PubMed

    Li, Jun-Wei; Duan, Rui-Gang; Zou, Jian-Hua; Chen, Ri-Dao; Chen, Xiao-Guang; Dai, Jun-Gui

    2014-06-01

    Seven meroterpenoids and five small-molecular precursors were isolated from Penicillium sp., an endophytic fungus from Dysosma versipellis. The structures of new compounds, 11beta-acetoxyisoaustinone (1) and isoberkedienolactone (2) were elucidated based on analysis of the spectral data, and the absolute configuration of 2 was established by TDDFT ECD calculation with satisfactory match to its experimental ECD data. Meroterpenoids originated tetraketide and pentaketide precursors, resepectively, were found to be simultaneously produced in specific fungus of Penicillium species. These compounds showed weak cytotoxicity in vitro against HCT-116, HepG2, BGC-823, NCI-H1650, and A2780 cell lines with IC 50 > 10 micromol x L(-1).

  11. In Vitro Antitumor Active Gold(I) Triphenylphosphane Complexes Containing 7-Azaindoles

    PubMed Central

    Štarha, Pavel; Trávníček, Zdeněk; Drahoš, Bohuslav; Dvořák, Zdeněk

    2016-01-01

    A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (1–8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh3)] (7) and [Au(2Me4Claza)(PPh3)]·½H2O (8′). The in vitro cytotoxicity of the complexes 1–8 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8–3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0–29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G2-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using 1H and 31P-NMR spectroscopy (studied in the 50% DMF-d7/50% D2O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H2O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules. PMID:27973440

  12. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2012-10-01

    from co-culture with EL4 -ROR1neg and EL4 -ROR1+ tumor targets. Ovarian cancer cell lines (A2780, EFO21, EFO27, IGROV1, OC314, and UPN251) were...profiled for ROR1 expression in normoxia (20% O2) and hypoxia (1% O2). Four-hour CRA was used to evaluate cytotoxicity against the OvCa and EL4 tumor...loaded aAPC for negative controls. EL4 is a murine T cell lymphoma cell line used to test specificity of CAR+ T cells with limited allo-reactivity

  13. Four diterpenoid inhibitors of Cdc25B phosphatase from a marine anemone.

    PubMed

    Cao, Shugeng; Foster, Caleb; Lazo, John S; Kingston, David G I

    2005-10-15

    Three new diterpenoids and one known diterpenoid have been isolated from a sea anemone of the order Actiniara, and the structures of the new compounds, actiniarins A-C (1-3) were established on the basis of extensive 1D and 2D NMR spectroscopic data interpretation. Compound 1 has a six-membered ring hemiacetal ring, and the equilibrium of this ring is discussed. All the isolates were evaluated for their inhibition of Cdc25B and for cytotoxicity against the A2780 ovarian cancer cell line.

  14. FRET Imaging Trackable Long Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy

    DTIC Science & Technology

    2015-11-01

    difference between treatment with 2P-EPI and P- EPI until day 35 when tumor started regrowth in P-EPI group , and four of the tumors grew back to ~1200...A2780 ovarian tumors were randomly assigned to four groups (n = 5 for each group ). P-EPI and 2P-EPIwere administered via tail veinwith dose 5mg/kg...and P-EPI until day 35 when tumor started re- growth in P-EPI group , and four of the tumors grew back to ~1200% at day 80 (p b 0.01) (Fig. 3). On the

  15. Antiproliferative Cardenolides of an Elaeodendron sp. from the Madagascar Rain Forest

    PubMed Central

    Cao, Shugeng; Brodie, Peggy J.; Miller, James S.; Ratovoson, Fidy; Callmander, Martin W.; Randrianasolo, Sennen; Rakotobe, Etienne; Rasamison, Vincent E.; Suh, Edward M.; TenDyke, Karen; Kingston, David G. I.

    2008-01-01

    Bioassay-guided fractionation of an ethanol extract obtained from the Madagascar plant Elaeodendron sp. led to the isolation of two new cardenolides, elaeodendrosides T and U (1 and 2). The structures of the new compounds were elucidated using 1D and 2D NMR experiments, and mass spectrometry. Compounds 1, 3, 4, and 5 showed significant antiproliferative activity against A2780 human ovarian cancer cells with IC50 values of 0.085, 0.019, 0.19, and 0.10 µM, respectively, while compounds 2 and 6 were less active. PMID:17547460

  16. Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer

    DTIC Science & Technology

    2013-07-01

    from the A2780cp20 cell line . Task 2: Determine if ALDH1-positive cells survive chemotherapy in the tumor microenvironment. We have previously... lines . Anti- endoglin siRNAs were used to downregulate expression in ES2 and HeyA8MDR. In vitro, the effects of endoglin-knockdown individually and...ES2 or HeyA8MDR cell lines were administered chitosan-encapsulated anti- ENG siRNA or control siRNA with and without carboplatin. As described in the

  17. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    PubMed

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  18. Gold(I) Complexes of 9-Deazahypoxanthine as Selective Antitumor and Anti-Inflammatory Agents

    PubMed Central

    Vančo, Ján; Gáliková, Jana; Hošek, Jan; Dvořák, Zdeněk; Paráková, Lenka; Trávníček, Zdeněk

    2014-01-01

    The gold(I) mixed-ligand complexes involving O-substituted derivatives of 9-deazahypoxanthine (HLn) and triphenylphosphine (PPh3) with the general formula [Au(Ln)(PPh3)] (1–5) were prepared and thoroughly characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopy, ESI+ mass spectrometry, single crystal X-ray (HL5 and complex 2) and TG/DTA analyses. Complexes 1–5 were evaluated for their in vitro antitumor activity against nine human cancer lines, i.e. MCF7 (breast carcinoma), HOS (osteosarcoma), A549 (adenocarcinoma), G361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) and THP-1 (monocytic leukaemia), for their in vitro anti-inflammatory activity using a model of LPS-activated macrophages, and for their in vivo antiedematous activity by λ-carrageenan-induced hind paw edema model on rats. The results showed that the complexes 1–5 exhibit selective in vitro cytotoxicity against MCF7, HOS, 22Rv1, A2780 and A2780R, with submicromolar IC50 values for 2 against the MCF7 (0.6 µM) and HOS (0.9 µM). The results of in vitro cytotoxicity screening on primary culture of human hepatocytes (HEP220) revealed up to 30-times lower toxicity of compounds against healthy cells as compared with cancer cells. Additionally, the complexes 1–5 significantly influence the secretion and expression of pro-inflammatory cytokines TNF-α and IL-1β by a similar manner as a commercially used anti-arthritic drug Auranofin. The tested complexes also significantly influence the rate and overall volume of the edema, caused by the intraplantar application of λ-carrageenan polysaccharide to rats. Based on these promising results, the presented compounds could qualify to become feasible candidates for advanced testing as potential antitumor and anti-inflammatory drug-like compounds. PMID:25333949

  19. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo.

    PubMed

    Rattan, Ramandeep; Graham, Rondell P; Maguire, Jacie L; Giri, Shailendra; Shridhar, Viji

    2011-05-01

    Ovarian cancer is the most lethal gynecologic cancer in women. Its high mortality rate (68%) reflects the fact that 75% of patients have extensive (>stage III) disease at diagnosis and also the limited efficacy of currently available therapies. Consequently, there is clearly a great need to develop improved upfront and salvage therapies for ovarian cancer. Here, we investigated the efficacy of metformin alone and in combination with cisplatin in vivo. A2780 ovarian cancer cells were injected intraperitoneally in nude mice; A2780-induced tumors in nude mice, when treated with metformin in drinking water, resulted in a significant reduction of tumor growth, accompanied by inhibition of tumor cell proliferation (as assessed by immunohistochemical staining of Ki-67, Cyclin D1) as well as decreased live tumor size and mitotic cell count. Metformin-induced activation of AMPK/mTOR pathway was accompanied by decreased microvessel density and vascular endothelial growth factor expression. More importantly, metformin treatment inhibited the growth of metastatic nodules in the lung and significantly potentiated cisplatin-induced cytotoxicity resulting in approximately 90% reduction in tumor growth compared with treatment by either of the drugs alone. Collectively, our data show for the first time that, in addition to inhibiting tumor cell proliferation, metformin treatment inhibits both angiogenesis and metastatic spread of ovarian cancer. Overall, our study provides a strong rationale for use of metformin in ovarian cancer treatment.

  20. Bioactive compounds from Stuhlmannia moavi from the Madagascar dry forest.

    PubMed

    Liu, Yixi; Harinantenaina, Liva; Brodie, Peggy J; Bowman, Jessica D; Cassera, Maria B; Slebodnick, Carla; Callmander, Martin W; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E; Applequist, Wendy; Birkinshaw, Chris; Lewis, Gwilym P; Kingston, David G I

    2013-12-15

    Bioassay-directed fractionation of the leaf and root extracts of the antiproliferative Madagascar plant Stuhlmannia moavi afforded 6-acetyl-5,8-dihydroxy-2-methoxy-7-methyl-1,4-naphthoquinone (stuhlmoavin, 1) as the most active compound, with an IC50 value of 8.1 μM against the A2780 human ovarian cancer cell line, as well as the known homoisoflavonoid bonducellin (2) and the stilbenoids 3,4,5'-trihydroxy-3'-methoxy-trans-stilbene (3), piceatannol (4), resveratrol (5), rhapontigenin (6), and isorhapontigenin (7). The structure elucidation of all compounds was based on NMR and mass spectroscopic data, and the structure of 1 was confirmed by a single crystal X-ray analysis. Compounds 2-5 showed weak A2780 activities, with IC50 values of 10.6, 54.0, 41.0, and 74.0 μM, respectively. Compounds 1-3 also showed weak antimalarial activity against Plasmodium falciparum with IC50 values of 23, 26, and 27 μM, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Triphenyltin derivatives of sulfanylcarboxylic esters.

    PubMed

    Casas, José S; Couce, María D; Sánchez, Agustín; Seoane, Rafael; Sordo, José; Perez-Estévez, Antonio; Vázquez-López, Ezequiel

    2018-03-01

    The reaction of 3-(aryl)-2-sulfanylpropenoic acids [H 2 xspa; x: p=3-phenyl-, f=3-(2-furyl)-, t=3-(2-thienyl)-] with methanol or ethanol gave the corresponding methyl (Hxspme) or ethyl (Hxspee) esters. The reaction of these esters (HL) with triphenyltin(IV) hydroxide gave compounds of the type [SnPh 3 L], which were isolated and characterized as solids by elemental analysis, IR spectroscopy and mass spectrometry and in solution by multinuclear ( 1 H, 13 C and 119 Sn) NMR spectroscopy. The structures of [SnPh 3 (pspme)], [SnPh 3 (fspme)] and [SnPh 3 (fspee)] were determined by X-ray diffractometry and the antimicrobial activity against E. coli, S. aureus, B. subtilis, P. aeruginosa, Resistant P. aeruginosa (a strain resistant to 'carbapenem'), and C. albicans was tested and the in vitro cytotoxic activity against the HeLa-229, A2780 and A2780cis cell lines was determined for all compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Arafa, El-Shaimaa A; Zhu, Qianzheng; Barakat, Bassant M; Wani, Gulzar; Zhao, Qun; El-Mahdy, Mohamed A; Wani, Altaf A

    2009-12-01

    Combination of innocuous dietary components with anticancer drugs is an emerging new strategy for cancer chemotherapy to increase antitumor responses. Tangeretin is a citrus flavonoid known to inhibit cancer cell proliferation. Here, we show an enhanced response of A2780/CP70 and 2008/C13 cisplatin-resistant human ovarian cancer cells to various combination treatments of cisplatin and tangeretin. Pretreatment of cells with tangeretin before cisplatin treatment synergistically inhibited cancer cell proliferation. This combination was effective in activating apoptosis via caspase cascade as well as arresting cell cycle at G(2)-M phase. Moreover, phospho-Akt and its downstream substrates, e.g., NF-kappaB, phospho-GSK-3beta, and phospho-BAD, were downregulated upon tangeretin-cisplatin treatment. The tangeretin-cisplatin-induced apoptosis in A2780/CP70 cells was increased by phosphoinositide-3 kinase (PI3K) inhibition and siRNA-mediated Akt silencing, but reduced by overexpression of constitutively activated Akt and GSK-3beta inhibition. The overall results indicated that tangeretin exposure preconditions cisplatin-resistant human ovarian cancer cells for a conventional response to low-dose cisplatin-induced cell death occurring through downregulation of PI3K/Akt signaling pathway. Thus, effectiveness of tangeretin combinations, as a promising modality in the treatment of resistant cancers, warrants systematic clinical studies.

  3. Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis.

    PubMed

    Lord, Rianne M; Allison, Simon J; Rafferty, Karen; Ghandhi, Laura; Pask, Christopher M; McGowan, Patrick C

    2016-08-16

    This report presents the first known p-cymene ruthenium quinaldamide complexes which are stabilised by a hydrogen-bridging atom, [{(p-cym)Ru(II)X(N,N)}{H(+)}{(N,N)XRu(II)(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br). These complexes are formed by a reaction of [p-cymRu(μ-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 ⇔ NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H(+), which are counter-balanced by a PF6 counterion. X-ray crystallographic analysis is presented for six new structures with OO distances of 2.420(4)-2.448(15) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatin-resistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4'-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index >1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis.

  4. Quantitative Evaluation of Cisplatin Uptake in Sensitive and Resistant Individual Cells by Single-Cell ICP-MS (SC-ICP-MS).

    PubMed

    Corte Rodríguez, M; Álvarez-Fernández García, R; Blanco, E; Bettmer, J; Montes-Bayón, M

    2017-11-07

    One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.

  5. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer.

    PubMed

    Brandhonneur, N; Hatahet, T; Amela-Cortes, M; Molard, Y; Cordier, S; Dollo, G

    2018-04-01

    We evaluate poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles embedding inorganic molybdenum octahedral cluster for photodynamic therapy of cancer (PDT). Tetrabutyl ammonium salt of Mo 6 Br 14 cluster unit, (TBA) 2 Mo 6 Br 14 , presents promising photosensitization activity in the destruction of targeted cancer cells. Stable cluster loaded nanoparticles (CNPs) were prepared by solvent displacement method showing spherical shapes, zeta potential values around -30 mV, polydispersity index lower than 0.2 and sizes around 100 nm. FT-IR and DSC analysis revealed the lack of strong chemical interaction between the cluster and the polymer within the nanoparticles. In vitro release study showed that (TBA) 2 Mo 6 Br 14 was totally dissolved in 20 min, while CNPs were able to control the release of encapsulated cluster. In vitro cellular viability studies conducted on A2780 ovarian cancer cell line treated up to 72 h with cluster or CNPs did not show any sign of toxicity in concentrations up to 20 µg/ml. This concentration was selected for photo-activation test on A2780 cells and CNPs were able to generate oxygen singlet resulting in a decrease of the cellular viability up to 50%, respectively compared to non-activated conditions. This work presents (TBA) 2 Mo 6 Br 14 as a novel photosensitizer for PDT and suggests PLGA nanoparticles as an efficient delivery system intended for tumor targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells

    PubMed Central

    Zhang, Jinming; Wang, Lu; Fai Chan, Hon; Xie, Wei; Chen, Sheng; He, Chengwei; Wang, Yitao; Chen, Meiwan

    2017-01-01

    One of the promising strategies to overcome tumor multidrug resistance (MDR) is to deliver anticancer drug along with P-glycoprotein (P-gp) inhibitor simultaneously. To enhance the cancer cellular internalization and implement the controlled drug release, herein an iRGD peptide-modified lipid-polymer hybrid nanosystem (LPN) was fabricated to coload paclitaxel (PTX) and tetrandrine (TET) at a precise combination ratio. In this co-delivery system, PTX was covalently conjugated to poly (D,L-lactide-co-glycolide) polymeric core by redox-sensitive disulfide bond, while TET was physically capsulated spontaneously for the aim to suppress P-gp in advance by the earlier released TET in cancer cells. As a result, the PTX+TET/iRGD LPNs with a core-shell structure possessed high drug loading efficiency, stability and redox-sensitive drug release profiles. Owing to the enhanced cellular uptake and P-gp suppression mediated by TET, significantly more PTX accumulated in A2780/PTX cells treated with PTX+TET/iRGD LPNs than either free drugs or non-iRGD modified LPNs. As expected, PTX+TET/iRGD LPNs presented the highest cytotoxicity against A2780/PTX cells and effectively promoted ROS production, enhanced apoptosis and cell cycle arrests particularly. Taken together, the co-delivery system demonstrated great promise as potential treatment for MDR-related tumors based on the synergistic effects of P-gp inhibition, enhanced endocytosis and intracellular sequentially drug release. PMID:28470171

  7. Near infrared light-mediated photoactivation of cytotoxic Re(i) complexes by using lanthanide-doped upconversion nanoparticles.

    PubMed

    Hu, Ming; Zhao, Jixian; Ai, Xiangzhao; Budanovic, Maja; Mu, Jing; Webster, Richard D; Cao, Qian; Mao, Zongwan; Xing, Bengang

    2016-09-13

    Platinum-based chemotherapy, although it has been well proven to be effective in the battle against cancer, suffers from limited specificity, severe side effects and drug resistance. The development of new alternatives with potent anticancer effects and improved specificity is therefore urgently needed. Recently, there are some new chemotherapy reagents based on photoactive Re(i) complexes which have been reported as promising alternatives to improve specificity mainly attributed to the spatial and temporal activation process by light irradiation. However, most of them respond to short-wavelength light (e.g. UV, blue or green light), which may cause unwanted photo damage to cells. Herein, we demonstrate a system for near-infrared (NIR) light controlled activation of Re(i) complex cytotoxicity by integration of photoactivatable Re(i) complexes and lanthanide-doped upconversion nanoparticles (UCNPs). Upon NIR irradiation at 980 nm, the Re(i) complex can be locally activated by upconverted UV light emitted from UCNPs and subsequently leads to enhanced cell lethality. Cytotoxicity studies showed effective inactivation of both drug susceptible human ovarian carcinoma A2780 cells and cisplatin resistant subline A2780cis cells by our UCNP based system with NIR irradiation, and there was minimum light toxicity observed in the whole process, suggesting that such a system could provide a promising strategy to control localized activation of Re(i) complexes and therefore minimize potential side effects.

  8. The effect of CA125 on metastasis of ovarian cancer: old marker new function

    PubMed Central

    Yang, Weiwei; Wang, Hongyan; Huo, Qianyu; Yang, Jie; Yu, Xiaoxu; Liu, Yunde; Xu, Chen; Bao, Huijing

    2017-01-01

    CA125 has been used extensively to screen for neoplasms, especially in ovarian cancer. The serum CA125 level can be used as a better prognosis evaluation and it may dynamic monitoring the disease progression. We explored the effect of CA125 on ovarian cancer cell migration and its underlying mechanism. Transwell assays showed that exposure to 0.2 μg/ml or 0.4 μg/ml CA125 for 48 h increased migration of A2780 and OVCAR-3 ovarian cancer cells. This effect of CA125 was blocked addition of 200 ng/ml DKK-1, a Wnt pathway inhibitor. Conversely, addition of CA125 reversed the inhibitory effect of Wnt inhibition in A2780 cells pretreated with DKK-1. Examination of CA125 levels in serum from 97 ovarian cancer patients revealed no relationship between a patient's age or CA125 level currently used clinically for ovarian cancer diagnosis and metastasis. However, using receiver operating characteristic (ROC) curves, we identified a new cut-off value for the serum CA125 concentration (82.9 U/ml) that is predictive of metastasis. The area under the curve is 0.632. This new cut-off value has the potential to serve as a clinically useful indicator of metastasis in ovarian cancer patients. PMID:28637006

  9. The effect of CA125 on metastasis of ovarian cancer: old marker new function.

    PubMed

    Yuan, Qin; Song, Jiayin; Yang, Weiwei; Wang, Hongyan; Huo, Qianyu; Yang, Jie; Yu, Xiaoxu; Liu, Yunde; Xu, Chen; Bao, Huijing

    2017-07-25

    CA125 has been used extensively to screen for neoplasms, especially in ovarian cancer. The serum CA125 level can be used as a better prognosis evaluation and it may dynamic monitoring the disease progression. We explored the effect of CA125 on ovarian cancer cell migration and its underlying mechanism. Transwell assays showed that exposure to 0.2 μg/ml or 0.4 μg/ml CA125 for 48 h increased migration of A2780 and OVCAR-3 ovarian cancer cells. This effect of CA125 was blocked addition of 200 ng/ml DKK-1, a Wnt pathway inhibitor. Conversely, addition of CA125 reversed the inhibitory effect of Wnt inhibition in A2780 cells pretreated with DKK-1. Examination of CA125 levels in serum from 97 ovarian cancer patients revealed no relationship between a patient's age or CA125 level currently used clinically for ovarian cancer diagnosis and metastasis. However, using receiver operating characteristic (ROC) curves, we identified a new cut-off value for the serum CA125 concentration (82.9 U/ml) that is predictive of metastasis. The area under the curve is 0.632. This new cut-off value has the potential to serve as a clinically useful indicator of metastasis in ovarian cancer patients.

  10. Synthesis and antitumor activity of some substituted indazole derivatives.

    PubMed

    Abbassi, Najat; Rakib, El Mostapha; Chicha, Hakima; Bouissane, Latifa; Hannioui, Abdellah; Aiello, Cinzia; Gangemi, Rosaria; Castagnola, Patrizio; Rosano, Camillo; Viale, Maurizio

    2014-06-01

    Some new N-[6-indazolyl]arylsulfonamides and N-[alkoxy-6-indazolyl]arylsulfonamides were prepared by the reduction of 2-alkyl-6-nitroindazoles with SnCl2 in different alcohols, followed by coupling the corresponding amine with arylsulfonyl chlorides in pyridine. The newly synthesized compounds were evaluated for their antiproliferative and apoptotic activities against two human tumor cell lines: A2780 (ovarian carcinoma) and A549 (lung adenocarcinoma). Preliminary in vitro pharmacological studies revealed that N-(2-allyl-2H-indazol-6-yl)-4-methoxybenzenesulfonamide 4 and N-[7-ethoxy-2-(4-methyl-benzyl)-2H-indazol-6-yl]-4-methyl-benzenesulfonamide 9 exhibited significant antiproliferative activity against the A2780 and A549 cell lines with IC50 values in the range from 4.21 to 18.6 µM, and also that they trigger apoptosis in a dose-dependent manner. Furthermore, both active compounds were able to cause an arrest of cells in the G2/M phase of the cell cycle, typical but not exclusive of tubulin interacting agents, although only infrequent interactions with the microtubule network were observed by immunofluorescence microscopy, while docking analysis showed a possible different behavior between the two active compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145.

    PubMed

    Zhou, Junbo; Gong, Jian; Ding, Chun; Chen, Guiqin

    2015-08-01

    Ovarian cancer is one of the most malignant types of cancer of the female human reproductive track, posing a severe threat to the health of the female population. Numerous previous studies have demonstrated that microRNA (miR)-145 is downregulated in ovarian cancer, and that quercetin can inhibit the growth of cancer cells via regulating the expression of miRs. Therefore, the present study investigated the effect of quercetin on the expression of miR-145 in SKOV-3 and A2780 human ovarian cancer cell lines. The results revealed that the expression levels of cleaved caspase-3 in the SKOV-3 and A2780 cells were significantly increased following treatment to induce overexpression of miR-145 compared with treatment with quercetin alone (P<0.01). However, the expression of cleaved caspase-3 in the anti-miR-145 (miR-145 inhibitor) group of cells was markedly decreased compared with that in the miR-145 overexpression group (P<0.01). Taken together, the results suggested that treatment with quercetin induced the apoptosis of human ovarian carcinoma cells through activation of the extrinsic death receptor mediated and intrinsic mitochondrial apoptotic pathways.

  12. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells.

    PubMed

    Gouveia, Marisol; Figueira, João; Jardim, Manuel G; Castro, Rita; Tomás, Helena; Rissanen, Kari; Rodrigues, João

    2018-06-17

    Here and for the first time, we show that the organometallic compound [Ru(η⁵-C₅H₅)(PPh₃)₂Cl] (RuCp) has potential to be used as a metallodrug in anticancer therapy, and further present a new approach for the cellular delivery of the [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragment via coordination on the periphery of low-generation poly(alkylidenimine) dendrimers through nitrile terminal groups. Importantly, both the RuCp and the dendrimers functionalized with [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragments present remarkable toxicity towards a wide set of cancer cells (Caco-2, MCF-7, CAL-72, and A2780 cells), including cisplatin-resistant human ovarian carcinoma cell lines (A2780 cis R cells). Also, RuCp and the prepared metallodendrimers are active against human mesenchymal stem cells (hMSCs), which are often found in the tumor microenvironment where they seem to play a role in tumor progression and drug resistance.

  13. NOXA-Induced Alterations in the Bax/Smac Axis Enhance Sensitivity of Ovarian Cancer Cells to Cisplatin

    PubMed Central

    Lin, Chao; Zhao, Xin-yu; Li, Lei; Liu, Huan-yi; Cao, Kang; Wan, Yang; Liu, Xin-yu; Nie, Chun-lai; Liu, Lei; Tong, Ai-ping; Deng, Hong-xin; Li, Jiong; Yuan, Zhu; Wei, Yu-quan

    2012-01-01

    Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy. PMID:22590594

  14. Organometallic rhodium(III) and iridium(III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands.

    PubMed

    Pettinari, Riccardo; Marchetti, Fabio; Pettinari, Claudio; Condello, Francesca; Petrini, Agnese; Scopelliti, Rosario; Riedel, Tina; Dyson, Paul J

    2015-12-21

    A series of half-sandwich cyclopentadienyl rhodium(III) and iridium(III) complexes of the type [Cp*M(curc/bdcurc)Cl] and [Cp*M(curc/bdcurc)(PTA)][SO3CF3], in which Cp* = pentamethylcyclopentadienyl, curcH = curcumin and bdcurcH = bisdemethoxycurcumin as O^O-chelating ligands, and PTA = 1,3,5-triaza-7-phosphaadamantane, is described. The X-ray crystal structures of three of the complexes, i.e. [Cp*Rh(curc)(PTA)][SO3CF3] (5), [Cp*Rh(bdcurc)(PTA)][SO3CF3] (6) and [Cp*Ir(bdcurc)(PTA)][SO3CF3] (8), confirm the expected "piano-stool" geometry. With the exception of 5, the complexes are stable under pseudo-physiological conditions and are moderately cytotoxic to human ovarian carcinoma (A2780 and A2780cisR) cells and also to non-tumorigenic human embryonic kidney (HEK293) cells, but lack the cancer cell selectivity observed for related arene ruthenium(II) complexes.

  15. Potential Anticancer Heterometallic Fe-Au and Fe-Pd Agents: Initial Mechanistic Insights

    PubMed Central

    Lease, Nicholas; Vasilevski, Vadim; Carreira, Monica; de Almeida, Andreia; Sanaú, Mercedes; Hirva, Pipsa; Casini, Angela; Contel, Maria

    2013-01-01

    A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenyl-phosphanes [{Cp-P(Ph2)=N-Ph}2Fe] (1), [{Cp-P(Ph2)=N-CH2-2-NC5H4}2Fe] (2) and [{Cp-P(Ph2)=N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)] and [{PdCl2}2(2)]. The complexes have been evaluated for their antripoliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a non-tumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin. PMID:23786413

  16. Development of EGFR Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Patel, Niravkumar R.; Cacaccio, Joseph; Rawal, Yashesh H.; Davis, Barbara J.; Amiji, Mansoor M.; Coleman, Timothy P.

    2014-01-01

    Purpose Platinum-based chemotherapy is the treatment of choice for malignant epithelial ovarian cancers, but generalized toxicity and platinum resistance limits its use. Theranostic nanoemulsion with a novel platinum prodrug, myrisplatin, and the pro-apoptotic agent, C6-ceramide, were designed to overcome these limitations. Methods The nanoemulsions, including ones with an EGFR binding peptide and gadolinium, were made using generally regarded as safe grade excipients and a high shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3, A2780 and A2780CP. Results The nanoemulsion with particle size <150 nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and EGFR-targeted nanoemulsions; improved cytotoxicity was observed for the these nanoemulsions with the latter showing a 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist®. Conclusion The myrisplatin/C6-ceramide nanoemulsion synergistically enhanced in vitro cytotoxicity. An EGFR binding peptide addition further increased in vitro cytotoxicity in EGFR positive cancer cells. The diagnostic version showed MR imaging similar to the clinically relevant Magnevist® and may be suitable as a theranostic for ovarian cancer. PMID:24643932

  17. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy.

    PubMed

    Chen, Tao; Li, Mian; Zhang, Ruiwen; Wang, Hui

    2009-07-01

    The present study was designed to determine the effects of artemisinin (ARS) and its derivatives on human ovarian cancer cells, to evaluate their potential as novel chemotherapeutic agents used alone or in combination with a conventional cancer chemotherapeutic agent, and to investigate their underlying mechanisms of action. Human ovarian cancer cells (A2780 and OVCAR-3), and immortalized non-tumourigenic human ovarian surface epithelial cells (IOSE144), were exposed to four ARS compounds for cytotoxicity testing. The in vitro and in vivo antitumour effects and possible underlying mechanisms of action of dihydroartemisinin (DHA), the most effective compound, were further determined in ovarian cancer cells. ARS compounds exerted potent cytotoxicity to human ovarian carcinoma cells, with minimal effects on non-tumourigenic ovarian surface epithelial (OSE) cells. DHA inhibited ovarian cancer cell growth when administered alone or in combination with carboplatin, presumably through the death receptor- and, mitochondrion-mediated caspase-dependent apoptotic pathway. These effects were also observed in in vivo ovarian A2780 and OVCAR-3 xenograft tumour models. In conclusion, ARS derivatives, particularly DHA, exhibit significant anticancer activity against ovarian cancer cells in vitro and in vivo, with minimal toxicity to non-tumourigenic human OSE cells, indicating that they may be promising therapeutic agents for ovarian cancer, either used alone or in combination with conventional chemotherapy.

  18. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy

    PubMed Central

    Chen, Tao; Li, Mian; Zhang, Ruiwen; Wang, Hui

    2009-01-01

    The present study was designed to determine the effects of artemisinin (ARS) and its derivatives on human ovarian cancer cells, to evaluate their potential as novel chemotherapeutic agents used alone or in combination with a conventional cancer chemotherapeutic agent, and to investigate their underlying mechanisms of action. Human ovarian cancer cells (A2780 and OVCAR-3), and immortalized non-tumourigenic human ovarian surface epithelial cells (IOSE144), were exposed to four ARS compounds for cytotoxicity testing. The in vitro and in vivo antitumour effects and possible underlying mechanisms of action of dihydroartemisinin (DHA), the most effective compound, were further determined in ovarian cancer cells. ARS compounds exerted potent cytotoxicity to human ovarian carcinoma cells, with minimal effects on non-tumourigenic ovarian surface epithelial (OSE) cells. DHA inhibited ovarian cancer cell growth when administered alone or in combination with carboplatin, presumably through the death receptor- and, mitochondrion-mediated caspase-dependent apoptotic pathway. These effects were also observed in in vivo ovarian A2780 and OVCAR-3 xenograft tumour models. In conclusion, ARS derivatives, particularly DHA, exhibit significant anticancer activity against ovarian cancer cells in vitro and in vivo, with minimal toxicity to non-tumourigenic human OSE cells, indicating that they may be promising therapeutic agents for ovarian cancer, either used alone or in combination with conventional chemotherapy. PMID:18466355

  19. Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature.

    PubMed Central

    Armour, A.; Mairs, R. J.; Gaze, M. N.; Wheldon, T. E.

    1994-01-01

    Successful imaging or treatment of neuroblastoma with 131I-meta-iodobenzylguanidine (131I-mIBG) depends on the selectivity of active (type 1) uptake of mIBG in neuroblastoma cells relative to passive (type 2) uptake present in most normal tissues. This study investigates the effects of moderately elevated temperature (39-41 degrees C) on the cellular uptake of 131I-mIBG in two neuroblastoma cell lines [SK-N-BE(2c) and IMR-32] and in a non-neuronal (ovarian carcinoma) cell line (A2780). In SK-N-BE(2c), a cell line with high active uptake capacity, the specific (type 1) uptake was reduced by 75% (P < 0.001) at 39 degrees C. Both IMR-32 and A2780 have a low capacity for accumulation of mIBG by active uptake. These cell lines demonstrated a statistically significant increase in accumulation at 39 degrees C, mainly as a result of increased non-specific transport. At 41 degrees C uptake of 131I-mIBG was reduced in all cell lines. Thus, the active component of mIBG uptake is more vulnerable to increased temperature than the passive component. It seems probable that moderately increased temperature will have an unfavourable effect on the therapeutic differential for targeted radiotherapy of neuroblastoma using radiolabelled mIBG. PMID:8080728

  20. Spectroscopy, electrochemistry and antiproliferative properties of Au(iii), Pt(ii) and Cu(ii) complexes bearing modified 2,2':6',2''-terpyridine ligands.

    PubMed

    Maroń, Anna; Czerwińska, Katarzyna; Machura, Barbara; Raposo, Luis; Roma-Rodrigues, Catarina; Fernandes, Alexandra R; Małecki, Jan G; Szlapa-Kula, Agata; Kula, Slawomir; Krompiec, Stanisław

    2018-05-08

    Structural, spectroscopic and electrochemical properties of six complexes [AuCl(L1)](PF6)2·CH3CN (1), [AuCl(L2)](PF6)2 (2), [PtCl(L1)](BPh4)·CH3CN (3), [PtCl(L2)](SO3CF3) (4), [CuCl2(L1)] (5) and [CuCl2(L2)]·CH3CN (6) with modified 2,2':6',2''-terpyridine ligands, 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (L1) and 4'-(4-methoxynaphthalen-1-yl)-2,2':6',2''-terpyridine (L2) were thoroughly investigated and a significant role of the substituent (4-methoxyphenyl or 4-methoxynaphthalen-1-yl) and the metal center was demonstrated. The naphthyl-based substituent was found to increase the emission quantum yield of the luminescent Au(iii) and Pt(ii) complexes. Furthermore, the antiproliferative potential of the reported complexes was examined towards human colorectal (HCT116) and ovarian (A2780) carcinoma cell lines as well as towards normal human fibroblasts. The Au(iii) complex 2 and Cu(ii) complex 5 were found to have a higher antiproliferative effect on HCT116 colorectal and A2780 ovarian carcinoma cells when compared with the Pt(ii) complex with the same ligand (4). The order of cytotoxicity in both cell lines is 2 > 6 > 1 > 3 > 4. Complex 2 seems to be more cytotoxic towards HCT116 and A2780 cancer cell lines with IC50 values 300× and 130× higher in normal human fibroblasts compared to the respective cancer cells. The viability loss induced by the complexes agrees with Hoechst 33258 staining and the typical morphological apoptotic characteristics like chromatin condensation and nuclear fragmentation and flow cytometry assay. The induction of apoptosis correlates with the induction of reactive oxygen species (ROS). Fluorescence microscopy analysis indicates that after 3 h of incubation, complexes 1-4 are localized inside HCT116 cells and the high levels of internalization correlate with their cytotoxicity.

  1. Adenovirus‑mediated overexpression of cystic fibrosis transmembrane conductance regulator enhances invasiveness and motility of serous ovarian cancer cells.

    PubMed

    Xu, Jiao; Lin, Liangbo; Yong, Min; Dong, Xiaojing; Yu, Tinghe; Hu, Lina

    2016-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate‑binding cassette transporter family, members of which are involved in several types of cancer. Previous studies by our group reported that CFTR was highly expressed in serous ovarian cancer (SOC) tissues, and that knockdown of CFTR suppressed the proliferation of ovarian cancer in vitro and in vivo. Thus, the aim of the present study was to construct a recombinant adenoviral vector for the expression of the human CFTR gene in order to study the role of CFTR overexpression in the malignant invasion and migration of SOC cells in vitro. The present study then focused on the mechanisms of the role of CFTR in the migratory and invasive malignant properties of SOC cells. The CFTR gene was inserted into an adenoviral vector by using the AdEasy system in order to obtain the Ad‑CFTR overexpression vector, which was used to transfect the A2780 SOC cell line. Reverse-transcription polymerase chain reaction, western blot analysis and immunofluorescence were performed to detect the expression and localization of CFTR. Cell invasion and motility of the transfected cells compared with those of control cells were observed using Transwell and wound healing assays. A ~4,700 bp fragment of the CFTR gene was confirmed to be correctly cloned in the adenoviral vector and amplification of Ad‑CFTR was observed in HEK293 cells during package. After 48 h of transfection with Ad‑CFTR, ~90% of A2780 cells were red fluorescence protein‑positive. Immunofluorescence showed that following transfection, CFTR expression was increased and CFTR was located in the cell membrane and cytoplasm. CFTR overexpression was shown to enhance the invasion and motility of A2780 cells in vitro. Furthermore, the effects of CFTR overexpression on the activation c‑Src signaling were observed by western blot analysis. CFTR overexpressing cells showed the lowest activity of phospho‑Src (Tyr530

  2. Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells

    PubMed Central

    2012-01-01

    Introduction The taxanes paclitaxel and docetaxel are widely used in the treatment of breast, ovarian, and other cancers. Although their cytotoxicity has been attributed to cell-cycle arrest through stabilization of microtubules, the mechanisms by which tumor cells die remains unclear. Paclitaxel has been shown to induce soluble tumor necrosis factor alpha (sTNF-α) production in macrophages, but the involvement of TNF production in taxane cytotoxicity or resistance in tumor cells has not been established. Our study aimed to correlate alterations in the TNF pathway with taxane cytotoxicity and the acquisition of taxane resistance. Methods MCF-7 cells or isogenic drug-resistant variants (developed by selection for surviving cells in increasing concentrations of paclitaxel or docetaxel) were assessed for sTNF-α production in the absence or presence of taxanes by enzyme-linked immunosorbent assay (ELISA) and for sensitivity to docetaxel or sTNF-α by using a clonogenic assay (in the absence or presence of TNFR1 or TNFR2 neutralizing antibodies). Nuclear factor (NF)-κB activity was also measured with ELISA, whereas gene-expression changes associated with docetaxel resistance in MCF-7 and A2780 cells were determined with microarray analysis and quantitative reverse transcription polymerase chain reaction (RTqPCR). Results MCF-7 and A2780 cells increased production of sTNF-α in the presence of taxanes, whereas docetaxel-resistant variants of MCF-7 produced high levels of sTNF-α, although only within a particular drug-concentration threshold (between 3 and 45 nM). Increased production of sTNF-α was NF-κB dependent and correlated with decreased sensitivity to sTNF-α, decreased levels of TNFR1, and increased survival through TNFR2 and NF-κB activation. The NF-κB inhibitor SN-50 reestablished sensitivity to docetaxel in docetaxel-resistant MCF-7 cells. Gene-expression analysis of wild-type and docetaxel-resistant MCF-7, MDA-MB-231, and A2780 cells identified changes

  3. Choerosponins A and B, Two New Cytotoxic Bridged-Ring Ketones and the Determination of Their Absolute Configurations.

    PubMed

    Li, Chang-Wei; Han, Bing; Cai, Bing; Cui, Cheng-Bin

    2017-03-27

    Bioactivity-directed fractionation of antitumor compounds from the stem barks of Choerospondias axillaries (Roxb.) Burtt et Hill (Anacardiaceae) afforded two new cytotoxic bridged-ring ketones, choerosponins A ( 1 ) and B ( 2 ), and their structures were elucidated by spectroscopic methods; their stereochemistry was determined by NOE difference experiments, CD spectra and the modified Mosher's method. Compound 1 has a rare dioxatricyclo skeleton. Flow cytometry and SRB methods were employed to evaluate the antitumor activity of the two compounds against tsFT210, HCT-15, HeLa, A2780 and MCF-7 cell lines, and both of them showed strong cytotoxicity. MTT and paper disc methods were also used to evaluate their anti-hypoxia and antibacterial activities, and both of them showed no apparent activities.

  4. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    PubMed

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  5. Synthesis and in Vitro and in Vivo Evaluation of Phosphoinositide-3-kinase Inhibitors.

    PubMed

    Burger, Matthew T; Knapp, Mark; Wagman, Allan; Ni, Zhi-Jie; Hendrickson, Thomas; Atallah, Gordana; Zhang, Yanchen; Frazier, Kelly; Verhagen, Joelle; Pfister, Keith; Ng, Simon; Smith, Aaron; Bartulis, Sarah; Merrit, Hanne; Weismann, Marion; Xin, Xiaohua; Haznedar, Joshua; Voliva, Charles F; Iwanowicz, Ed; Pecchi, Sabina

    2011-01-13

    Phospoinositide-3-kinases (PI3K) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. A series of 2-morpholino, 4-substituted, 6-(3-hydroxyphenyl) pyrimidines have been reported as potent inhibitors of PI3Ks. Herein, we describe the structure-guided optimization of these pyrimidines with a focus on replacing the phenol moiety, while maintaining potent target inhibition and improving in vivo properties. A series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines, which potently inhibit PI3K, were discovered. Within this series a compound, 17, was identified with suitable pharmacokinetic (PK) properties, which allowed for the establishment of a PI3K PK/pharmacodynamic-efficacy relationship as determined by in vivo inhibition of AKT(Ser473) phosphorylation and tumor growth inhibition in a mouse A2780 tumor xenograft model.

  6. Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class I PI3 Kinase Inhibitor for Treating Cancer.

    PubMed

    Burger, Matthew T; Pecchi, Sabina; Wagman, Allan; Ni, Zhi-Jie; Knapp, Mark; Hendrickson, Thomas; Atallah, Gordana; Pfister, Keith; Zhang, Yanchen; Bartulis, Sarah; Frazier, Kelly; Ng, Simon; Smith, Aaron; Verhagen, Joelle; Haznedar, Joshua; Huh, Kay; Iwanowicz, Ed; Xin, Xiaohua; Menezes, Daniel; Merritt, Hanne; Lee, Isabelle; Wiesmann, Marion; Kaufman, Susan; Crawford, Kenneth; Chin, Michael; Bussiere, Dirksen; Shoemaker, Kevin; Zaror, Isabel; Maira, Sauveur-Michel; Voliva, Charles F

    2011-10-13

    Phosphoinositide-3-kinases (PI3Ks) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. Herein we describe the structure guided optimization of a series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines where the pharmacokinetic properties were improved by modulating the electronics of the 6-position heterocycle, and the overall druglike properties were fine-tuned further by modification of the 4-position substituent. The resulting 2,4-bismorpholino 6-heterocyclic pyrimidines are potent class I PI3K inhibitors showing mechanism modulation in PI3K dependent cell lines and in vivo efficacy in tumor xenograft models with PI3K pathway deregulation (A2780 ovarian and U87MG glioma). These efforts culminated in the discovery of 15 (NVP-BKM120), currently in Phase II clinical trials for the treatment of cancer.

  7. Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class I PI3 Kinase Inhibitor for Treating Cancer

    PubMed Central

    2011-01-01

    Phosphoinositide-3-kinases (PI3Ks) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. Herein we describe the structure guided optimization of a series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines where the pharmacokinetic properties were improved by modulating the electronics of the 6-position heterocycle, and the overall druglike properties were fine-tuned further by modification of the 4-position substituent. The resulting 2,4-bismorpholino 6-heterocyclic pyrimidines are potent class I PI3K inhibitors showing mechanism modulation in PI3K dependent cell lines and in vivo efficacy in tumor xenograft models with PI3K pathway deregulation (A2780 ovarian and U87MG glioma). These efforts culminated in the discovery of 15 (NVP-BKM120), currently in Phase II clinical trials for the treatment of cancer. PMID:24900266

  8. Synthesis and in Vitro and in Vivo Evaluation of Phosphoinositide-3-kinase Inhibitors

    PubMed Central

    2010-01-01

    Phospoinositide-3-kinases (PI3K) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. A series of 2-morpholino, 4-substituted, 6-(3-hydroxyphenyl) pyrimidines have been reported as potent inhibitors of PI3Ks. Herein, we describe the structure-guided optimization of these pyrimidines with a focus on replacing the phenol moiety, while maintaining potent target inhibition and improving in vivo properties. A series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines, which potently inhibit PI3K, were discovered. Within this series a compound, 17, was identified with suitable pharmacokinetic (PK) properties, which allowed for the establishment of a PI3K PK/pharmacodynamic−efficacy relationship as determined by in vivo inhibition of AKTSer473 phosphorylation and tumor growth inhibition in a mouse A2780 tumor xenograft model. PMID:24900252

  9. Antiproliferative Diterpenes from a Malleastrum sp. from the Madagascar dry forest[1

    PubMed Central

    Liu, Yixi; Wiedle, C. Houston; Brodie, Peggy J.; Callmander, Martin W.; Rakotondrajaona, R.; Rakotobe, Etienne; Rasamison, Vincent E.

    2015-01-01

    An ethanol extract of leaves of the plant species Malleastrum sp. collected in northern Madagascar afforded the new clerodane diterpene 18-oxo-cleroda-3,13-dien-16,15-olide (1), together with the three known clerodane diterpenes 16,18-dihydroxykolavenic acid lactone (2), solidagolactone (3) and (−)-kolavenol (4), and the known labdane diterpene 3-oxo-ent-Iabda-8(17),13-dien-15,16-olide (5). Compounds 1, 3, and 4 showed moderate antiproliferative activities against the A2780 ovarian cancer cell line, with the IC50 values of 3.01 ± 0.8, 7.84 ± 0.2, and 17.9 ± 3 μM, respectively. The structure elucidations of all compounds were carried out based on analysis of NMR and mass spectroscopic data. The relative stereochemistry of compound 1 was determined by NOESY NMR spectrum. PMID:26594745

  10. Cytotoxic cassaine diterpenoid-diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii.

    PubMed

    Du, Dan; Qu, Jing; Wang, Jia-Ming; Yu, Shi-Shan; Chen, Xiao-Guang; Xu, Song; Ma, Shuang-Gang; Li, Yong; Ding, Guang-Zhi; Fang, Lei

    2010-10-01

    Detailed phytochemical investigation from the leaves of Erythrophleum fordii resulted in the isolation of 13 compounds, including three cassaine diterpenoid-diterpenoid amide dimers (1, 3 and 5), and seven cassaine diterpenoid amides (6 and 8-13), together with three previously reported ones, erythrophlesins D (2), C (4) and 3beta-hydroxynorerythrosuamide (7). Compounds 1, 3 and 5 are further additions to the small group of cassaine diterpenoid dimers represented by erythrophlesins A-D. Their structures were determined by analysis of extensive one- and two-dimensional NMR experiments and ESIMS methods. Cytotoxic activities of the isolated compounds were tested against HCT-8, Bel-7402, BGC-823, A549 and A2780 human cancer cell lines in the MTT test. Results showed that compounds 1 and 3-5 exhibited significantly selective cytotoxic activities (IC(50)<10 microM) against these cells, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug.

    PubMed

    Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram

    2014-11-01

    Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. C6 –C8 Bridged Epothilones: Consequences of Installing a Conformational Lock at the Edge of the Macrocycle

    PubMed Central

    Jiang, Yi; Banerjee, Abhijit; Brodie, Peggy J.; Bane, Susan; Kingston, David G. I.; Liotta, Dennis C.

    2011-01-01

    A series of conformationally restrained epothilone analogs with a short bridge between the methyl groups at C6 and C8 was designed to mimic the binding pose assigned to our recently reported EpoA-microtubule binding model. A versatile synthetic route to these bridged epothilone analogs has been successfully devised and implemented. Biological evaluation of the compounds against A2780 human ovarian cancer and PC3 prostate cancer cell lines suggested that the introduction of a bridge between C6-C8 reduced potency by 25–1000 fold in comparison with natural epothilone D. Tubulin assembly measurements indicate these bridged epothilone analogs to be mildly active, but without significant microtubule stabilization capacity. Molecular mechanics and DFT energy evaluations suggest the mild activity of the bridged epo-analogs may be due to internal conformational strain. PMID:22127984

  13. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    PubMed

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Potentiation by Tumor Necrosis Factor of Mitoxantrone Cytotoxicity to Human Ovarian Cancer Cell Lines

    PubMed Central

    Parodi, Silvio; Billi, Giovanna; Oliva, Cristina; Venturing, Marco; Noviello, Elvira; Conte, PierFranco

    1992-01-01

    The cytotoxic activity of human recombinant tumor necrosis factor (rHuTNF) (from 0.01 to 10000 U/ml) was assayed on six human ovarian cancer cell lines and one human cervical carcinoma cell line using a crystal violet assay. rHuTNF was cytotoxic to four cell lines (A2780, A2774, SW626, PAD, while 3 cell lines (IGROV1, SKOV3, Mel80) were marginally sensitive to its activity. However, under the same experimental conditions rHuTNF markedly enhanced the cytotoxicity of mitoxantrone, a chemotherapeutic drug targeted at DNA topoisomerase II, in six cell lines. The potentiation of mitoxantrone cytotoxicity was not caused by increased drug accumulation after rHuTNF treatment. No significant increase in cytotoxicity to Me180 cell line was seen when rHuTNF was added to mitoxantrone. PMID:1517145

  15. Chemoenzymatic synthesis and cytotoxicity of oenanthotoxin and analogues.

    PubMed

    Sommerwerk, Sven; Heller, Lucie; Siewert, Bianka; Csuk, René

    2015-09-01

    We developed a synthetic scheme for the synthesis of naturally occurring (14R)-oenanthotoxin and several analogs. Key-steps of this synthesis were an efficient homo-coupling of alkynes and a chemoenzymatic resolution of racemic oenanthotoxin using novozyme 435 and vinyl acetate. The compounds were screened for their cytotoxic activity using a photometric sulforhodamine B assays and several human tumor cell lines. Oenanthotoxin and many derivatives thereof were cytotoxic to tumor cell lines as well as to non-malignant mouse fibroblasts. The highest activity was determined for human ovarian cancer cells A2780 with EC50 = 3.8 μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions.

    PubMed

    Wiemann, Jana; Heller, Lucie; Csuk, René

    2018-04-25

    The promising combination of natural product leads and their derivatization by isocyanide-based multicomponent reactions (IMCRs) has gained interest in accessing diversity-oriented libraries with auspicious pharmacological potential. Therefore, a set of 34 Ugi and 3 Passerini products was successfully synthesized starting from naturally occurring triterpenoids, i.e. oleanolic acid (OA) and maslinic acid (MA), followed by a biological evaluation of the novel α-acylamino carboxamides and the α-acyloxy carboxamides in colorimetric SRB assays to determine their cytotoxic potential. Especially, the MA-Ugi products 6a, 6b and 7b showed a remarkable cytotoxicity for A2780 ovarian carcinoma cells in a low μM range. Compounds 6a and 7b induced programmed cell death in part through the apoptosis pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Anti-inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots

    PubMed Central

    Zhou, Huiping; Lutterodt, Herman; Cheng, Zhihong; Yu, Liangli (Lucy)

    2009-01-01

    Trifolirhizin, a pterocarpan flavonoid, was isolated from the roots of Sophora flavescens, and its chemical structure was confirmed by1H and 13C NMR and MS spectra. Its anti-inflammatory activity was examined in lipopolysaccharide (LPS)-stimulated mouse J774A.1 macrophages. Trifolirhizin not only dose-dependently inhibited LPS-induced expression of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but also inhibited lipopolysaccharide (LPS)-induced expression of cyclooxygenase-2 (COX-2). In addition, trifolirhizin showed in vitro inhibitory effects on the growth of human A2780 ovarian and H23 lung cancer cells. These results suggest that trifolirhizin possesses potential anti-inflammatory and anti-cancer activities. PMID:19402641

  18. A New N-methoxypyridone from the Co-Cultivation of Hawaiian Endophytic Fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062.

    PubMed

    Li, Chunshun; Sarotti, Ariel M; Yang, Baojun; Turkson, James; Cao, Shugeng

    2017-07-12

    A new N -methoxypyridone analog ( 1 ), together with four known compounds, was isolated from the co-culture of Hawaiian endophytic fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062. The structure of the new compound was elucidated as 11 S -hydroxy-1-methoxyfusaricide ( 1 ) by extensive spectroscopic analysis and comparison with the literature. The absolute configuration of 1 was determined by comparison with the experimental and calculated ECD spectra. The absolute configuration of compound 3 was investigated and renamed as (+)-epipyridone by comparison of the optical rotation and CD spectrum with those of 1 . The other known compounds were identified as epicoccarine B ( 2 ), D8646-2-6 ( 4 ), and iso-D8646-2-6 ( 5 ). Compounds 4 and 5 showed modest inhibitory activity towards pathogenic fungi. Epicoccarine B ( 2 ) inhibited A2780 and TK-10 with an IC 50 value of 22 μM.

  19. Sequential combination therapy of ovarian cancer with cisplatin and γ-secretase inhibitor MK-0752.

    PubMed

    Chen, XiuXiu; Gong, LiHua; Ou, RongYing; Zheng, ZhenZhen; Chen, JinYan; Xie, FengFeng; Huang, XiaoXiu; Qiu, JianGe; Zhang, WenJi; Jiang, QiWei; Yang, Yang; Zhu, Hua; Shi, Zhi; Yan, XiaoJian

    2016-03-01

    Ovarian cancer is one of the most lethal of women cancers and lack potent therapeutic options. There have many evidences demonstrate the Notch signaling has deregulation in variety of human malignancies.MK-0752 is a novel potent γ-secretase inhibitor and now assessed in clinical trial for treatment of several types of cancer, our objective was to investigate the anticancer effects and mechanisms of MK-0752 alone or combined with cisplatin in ovarian cancer. Cell lines used: A2780, OVCAR3, SKOV3, HO8910PM, the effects of MK-0752 and cisplatin on cell proliferation were measured by MTT assay. The effect of combination treatment was examined by isobologram analysis. The distribution of cell cycle and cell apoptosis were analyzed using PI and Annexin V-FITC/PI staining by flow cytometric analysis. The mechanism in biochemistry was analyzed by using Western blot. Mouse xenograft model of A2780 was established to observe the anti-ovarian cancer effects in vivo setting, nude mice were randomized into four groups (n=6 per group) and treated every 4 days with control (solvent) group, MK-0752(25mg/kg) group, cisplatin (2mg/kg)group, combination group (both of MK-0752 and cisplatin). MK-0752 alone actively induced cell growth inhibition, G2/M phase cell cycle arrest and apoptosis with down-regulation of Notch1 and its downstream effectors including Hes1, XIAP, c-Myc and MDM2 in a dose- and time-dependent manner. Moreover, sequential combination of cisplatin prior to MK-0752 significantly promoted cell apoptosis and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Our data supports the sequential combination of cisplatin prior to MK-0752 is a highly promising novel experimental therapeutic strategy against ovarian cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.

    PubMed

    Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta

    2015-07-01

    Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi

    2015-01-01

    Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide-silver (rGO-Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO-Ag were evaluated in ovarian cancer cells. The synthesized rGO-Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO-Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO-Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. T. amurensis plant extract-mediated rGO-Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO-Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be

  2. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    PubMed

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines.

    PubMed

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-09-09

    Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT-PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients.

  4. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines

    PubMed Central

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-01-01

    Background: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Methods: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Results: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Conclusions: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients. PMID:25010864

  5. ¹⁸FDG a PET tumor diagnostic tracer is not a substrate of the ABC transporter P-glycoprotein.

    PubMed

    Krasznai, Zoárd T; Trencsényi, György; Krasznai, Zoltán; Mikecz, Pál; Nizsalóczki, Enikő; Szalóki, Gábor; Szabó, Judit P; Balkay, László; Márián, Teréz; Goda, Katalin

    2014-11-20

    2-[(18)F]fluoro-2-deoxy-d-glucose ((18)FDG) is a tumor diagnostic radiotracer of great importance in both diagnosing primary and metastatic tumors and in monitoring the efficacy of the treatment. P-glycoprotein (Pgp) is an active transporter that is often expressed in various malignancies either intrinsically or appears later upon disease progression or in response to chemotherapy. Several authors reported that the accumulation of (18)FDG in P-glycoprotein (Pgp) expressing cancer cells (Pgp(+)) and tumors is different from the accumulation of the tracer in Pgp nonexpressing (Pgp(-)) ones, therefore we investigated whether (18)FDG is a substrate or modulator of Pgp pump. Rhodamine 123 (R123) accumulation experiments and ATPase assay were used to detect whether (18)FDG is substrate for Pgp. The accumulation and efflux kinetics of (18)FDG were examined in two different human gynecologic (A2780/A2780AD and KB-3-1/KB-V1) and a mouse fibroblast (3T3 and 3T3MDR1) Pgp(+) and Pgp(-) cancer cell line pairs both in cell suspension and monolayer cultures. We found that (18)FDG and its derivatives did not affect either the R123 accumulation in Pgp(+) cells or the basal and the substrate stimulated ATPase activity of Pgp supporting that they are not substrates or modulators of the pump. Measuring the accumulation and efflux kinetics of (18)FDG in different Pgp(+) and Pgp(-) cell line pairs, we have found that the Pgp(+) cells exhibited significantly higher (p⩽0.01) (18)FDG accumulation and slightly faster (18)FDG efflux kinetics compared to their Pgp(-) counterparts. The above data support the idea that expression of Pgp may increase the energy demand of cells resulting in higher (18)FDG accumulation and faster efflux. We concluded that (18)FDG and its metabolites are not substrates of Pgp. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. SciTech Connect

    Moradi, Hamid; Murugkar, Sangeeta; Ahmad, Abrar

    Purpose: To improve classification by reducing batch effect in samples from the ovarian carcinoma cell lines A2780s (parental wild type) and A2780cp (cisplatin cross-radio-resistant), before, right after, and 24 hours after irradiation to 10Gy. Methods: Spectra were acquired with a home built confocal Raman microscope in 3 distinct runs of six samples: unirradiated s&cp (control pair), then 0h and 24h after irradiation. The Raman spectra were noise reduced, then background subtracted with SMIRF algorithm. ∼35 cell spectra were collected from each sample in 1024 channels from 700cm-1 to 1618cm-1. The spectra were analyzed by regularized multiclass LDA. For feature reductionmore » the spectra were grouped into 3 overlapping group pairs: s-cp, 0Gy–10Gy0h and 0Gy10–Gy24h. The three features, the three differences of the mean spectra were mapped to the analysis sub-space by the inverse regularized covariance matrix. The batch effect noticeably confounded the dose and time effect. Results: To remove the batch effect, the 2+2=4D subspace extended by the covariance matrix of the means of the 0Gy control groups was subtracted from the spectra of each sample. Repeating the analysis on the spectra with the control group variability removed, the batch effect was dramatically reduced in the dose and time directions enabling sharp linear discrimination. The cell type classification also improved. Conclusions: We identified a efficient batch effect removal technique crucial to the applicability of Raman microscopy to radiosensitivity studies both on cell cultures and potential clinical diagnostic applications.« less

  7. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy.

    PubMed

    Zhao, Jing; Xu, Youwei; Wang, Changyuan; Ding, Yanfang; Chen, Manyu; Wang, Yifei; Peng, Jinyong; Li, Lei; Lv, Li

    2017-07-01

    Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus ® copolymers entrapping the poorly soluble anticancer drug dioscin. In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus ® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus ® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus ® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein. The average size of the optimized mixed micelle was 67.15 nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration-time curve (AUC) than the free dioscin solution. Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.

  8. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner

    PubMed Central

    Rattan, R; Giri, S; Hartmann, LC; Shridhar, V

    2011-01-01

    Abstract Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)-activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express -α1, -β1, -γ1 and -γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo-responsive and -resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co-carboxylase (ACC) and enhanced β-oxidation of fatty acid and (4) attenuated mTOR-S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin-mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK-ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down-regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild-type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti-proliferative therapeutic that can act through both AMPK-dependent as well as AMPK-independent pathways. PMID:19874425

  9. The nerve growth factor alters calreticulin translocation from the endoplasmic reticulum to the cell surface and its signaling pathway in epithelial ovarian cancer cells.

    PubMed

    Vera, Carolina Andrea; Oróstica, Lorena; Gabler, Fernando; Ferreira, Arturo; Selman, Alberto; Vega, Margarita; Romero, Carmen Aurora

    2017-04-01

    Ovarian cancer is the seventh most common cancer among women worldwide, causing approximately 120,000 deaths every year. Immunotherapy, designed to boost the body's natural defenses against cancer, appears to be a promising option against ovarian cancer. Calreticulin (CRT) is an endoplasmic reticulum (ER) resident chaperone that, translocated to the cell membrane after ER stress, allows cancer cells to be recognized by the immune system. The nerve growth factor (NGF) is a pro-angiogenic molecule overexpressed in this cancer. In the present study, we aimed to determine weather NGF has an effect in CRT translocation induced by cytotoxic and ER stress. We treated A2780 ovarian cancer cells with NGF, thapsigargin (Tg), an ER stress inducer and mitoxantrone (Mtx), a chemotherapeutic drug; CRT subcellular localization was analyzed by immunofluorescence followed by confocal microscopy. In order to determine NGF effect on Mtx and Tg-induced CRT translocation from the ER to the cell membrane, cells were preincubated with NGF prior to Mtx or Tg treatment and CRT translocation to the cell surface was determined by flow cytometry. In addition, by western blot analyses, we evaluated proteins associated with the CRT translocation pathway, both in A2780 cells and human ovarian samples. We also measured NGF effect on cell apoptosis induced by Mtx. Our results indicate that Mtx and Tg, but not NGF, induce CRT translocation to the cell membrane. NGF, however, inhibited CRT translocation induced by Mtx, while it had no effect on Tg-induced CRT exposure. NGF also diminished cell death induced by Mtx. NGF effect on CRT translocation could have consequences in immunotherapy, potentially lessening the effectiveness of this type of treatment.

  10. BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy.

    PubMed

    Lee, F Y; Borzilleri, R; Fairchild, C R; Kim, S H; Long, B H; Reventos-Suarez, C; Vite, G D; Rose, W C; Kramer, R A

    2001-05-01

    BMS-247550, a novel epothilone derivative, is being developed by Bristol-Myers Squibb Company (BMS) as an anticancer agent for the treatment of patients with malignant tumors. BMS-247550 is a semisynthetic analogue of the natural product epothilone B and has a mode of action analogous to that of paclitaxel (i.e., microtubule stabilization). In vitro, it is twice as potent as paclitaxel in inducing tubulin polymerization. Like paclitaxel, BMS-247550 is a highly potent cytotoxic agent capable of killing cancer cells at low nanomolar concentrations. Importantly, BMS-247550 retains its antineoplastic activity against human cancers that are naturally insensitive to paclitaxel or that have developed resistance to paclitaxel, both in vitro and in vivo. Tumors for which BMS-247550 demonstrated significant antitumor activity encompass both paclitaxel-sensitive and -refractory categories, i.e., (a) paclitaxel-resistant: HCT116/VM46 colorectal (multidrug resistant), Pat-21 breast and Pat-7 ovarian carcinoma (clinical isolates; mechanisms of resistance not fully known), and A2780Tax ovarian carcinoma (tubulin mutation); (b) paclitaxel-insensitive: Pat-26 human pancreatic carcinoma (clinical isolate) and M5076 murine fibrosarcoma; and (c) paclitaxel sensitive: A2780 ovarian, LS174T, and HCT116 human colon carcinoma. In addition, BMS-247550 is p.o. efficacious against preclinical human tumor xenografts grown in immunocompromised mice or rats. Schedule optimization studies indicate that BMS-247550 is efficacious when administered frequently (every 2 days x 5) or intermittently (every 4 days x 3 or every 8 days x 2). These efficacy data demonstrate that BMS-247550 has the potential to surpass Taxol in both clinical efficacy and ease of use (i.e., less frequent treatment schedule and/or oral administration).

  11. Anti-tumor effects of osthole on ovarian cancer cells in vitro.

    PubMed

    Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling

    2016-12-04

    Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    PubMed

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  13. Enhancement of the Effect of Methyl Pyropheophorbide-a-Mediated Photodynamic Therapy was Achieved by Increasing ROS through Inhibition of Nrf2-HO-1 or Nrf2-ABCG2 Signaling.

    PubMed

    Tian, Si; Yong, Min; Zhu, Jiang; Zhang, Li; Pan, Li; Chen, Qing; Li, Kai-Ting; Kong, Yu-Han; Jiang, Yuan; Yu, Ting-He; Yu, Le-Hua; Bai, Ding-Qun

    2017-01-01

    Emerging evidence indicates that the transcription factor nuclear factor-E2-related factor 2 (Nrf2) plays an essential role in cellular defense against oxidative stress; its activation has been related to cytoprotection. Here, we investigated the role of Nrf2 in improving the efficacy of methyl pyropheophorbide-amediated photodynamic therapy (Mppa-PDT) via the downregulation of Nrf2. Human ovarian cancer A2780 cells and SKOV3 cells were treated with Mppa-PDT and siRNA transfection was performed to inhibit Nrf2. After treated with siRNA and Mppa-PDT, the cell viability was examined with CCK-8 assay; cell apoptosis was detected tested by flow cytometry with Annexin V-FITC/PI; the celluar reactive oxygen species (ROS) and mitochondrial membrane potential were measured with DCFHDA and JC-1 staining; expression of protein was assessed by western blot analysis. We found that Nrf2 translocated from the cytoplasm to the nucleus in vitro and in vivo, and the expression of Nrf2 and P-Nrf2 increased through a possible mechanism regulated by mitogen-activated protein kinase (MAPK) after Mppa-PDT treatment. Furthermore, cytotoxicity and apoptosis induced by Mppa-PDT increased after Nrf2down-regulation. Nrf2 down -regulation increased reactive oxygen species (ROS) levels by attenuating antioxidants or pumping Mppa out of cells,which resulted from the inhibition of Nrf2-HO-1 or Nrf2- ABCG2 signaling. In addition, SKOV3 cells exhibited increased resistance to Mppa-PDT, and the expression levels of P-Nrf2 and ABCG2 were higher in SKOV3 cells than in A2780 cells, suggesting that Nrf2-ABCG2 signaling might be involved in the intrinsic resistanceto Mppa-PDT. These results provided evidence that Nrf2 down-regulation can enhance the effect of Mppa-PDT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment.

    PubMed

    Bondì, Maria Luisa; Emma, Maria Rita; Botto, Chiara; Augello, Giuseppa; Azzolina, Antonina; Di Gaudio, Francesca; Craparo, Emanuela Fabiola; Cavallaro, Gennara; Bachvarov, Dimcho; Cervello, Melchiorre

    2017-02-22

    Curcumin is a natural molecule with proved anticancer efficacy on several human cancer cell lines. However, its clinical application has been limited due to its poor bioavailability. Nanocarrier-based drug delivery approaches could make curcumin dispersible in aqueous media, thus overtaking the limits of its low solubility. The aim of this study was to increase the bioavailability and the antitumoral activity of curcumin, by entrapping it into nanostructured lipid carriers (NLCs). For this purpose here we describe the preparation and characterization of three kinds of curcumin-loaded NLCs. The nanosystems allowed the achievement of a controlled release of curcumin, the amounts of curcumin released after 24 h from Compritol-Captex, Compritol-Miglyol, and Compritol NLCs being, respectively, equal to 33, 28, and 18% w/w on the total entrapped curcumin. Considering the slower curcumin release profile, Compritol NLCs were chosen to perform successive in vitro studies on ovarian cancer cell lines. The results show that curcumin-loaded NLCs maintain anticancer activity, and reduce cell colony survival more effectively than free curcumin. As an example, the ability of A2780S cells to form colonies was decreased after treatment with 5 μM free curcumin by 50% ± 6, whereas, at the same concentration, the delivery of curcumin with NLC significantly (p < 0.05) inhibited colony formation to approximately 88% ± 1, therefore potentiating the activity of curcumin to inhibit A2780S cell growth. The obtained results clearly suggest that the entrapment of curcumin into NLCs increases curcumin efficacy in vitro, indicating the potential use of NLCs as curcumin delivery systems.

  15. Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells.

    PubMed

    Erices, Rafaela; Bravo, Maria Loreto; Gonzalez, Pamela; Oliva, Bárbara; Racordon, Dusan; Garrido, Marcelo; Ibañez, Carolina; Kato, Sumie; Brañes, Jorge; Pizarro, Javier; Barriga, Maria Isabel; Barra, Alejandro; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Cuello, Mauricio A; Owen, Gareth I

    2013-12-01

    The use of the type 2 diabetics drug metformin has been correlated with enhanced progression-free survival in ovarian cancer. The literature has speculated that this enhancement is due to the high concentration of metformin directly causing cancer cell death. However, this explanation does not fit with clinical data reporting that the women exposed to constant micromolar concentrations of metformin, as present in the treatment of diabetes, respond better to chemotherapy. Herein, our aim was to examine whether micromolar concentrations of metformin alone could bring about cancer cell death and whether micromolar metformin could increase the cytotoxic effect of commonly used chemotherapies in A2780 and SKOV3 cell lines and primary cultured cancer cells isolated from the peritoneal fluid of patients with advanced ovarian cancer. Our results in cell lines demonstrate that no significant loss of viability or change in cell cycle was observed with micromolar metformin alone; however, we observed cytotoxicity with micromolar metformin in combination with chemotherapy at concentrations where the chemotherapy alone produced no loss in viability. We demonstrate that previous exposure and maintenance of metformin in conjunction with carboplatin produces a synergistic enhancement in cytotoxicity of A2780 and SKOV3 cells (55% and 43%, respectively). Furthermore, in 5 (44%) of the 11 ovarian cancer primary cultures, micromolar metformin improved the cytotoxic response to carboplatin but not paclitaxel or doxorubicin. In conclusion, we present data that support the need for a clinical study to evaluate the adjuvant maintenance or prescription of currently approved doses of metformin during the chemotherapeutic treatment of ovarian cancer.

  16. Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi

    2015-01-01

    Background Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide–silver (rGO–Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO–Ag were evaluated in ovarian cancer cells. Methods The synthesized rGO–Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO–Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). Results AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO–Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. Conclusion T. amurensis plant extract-mediated rGO–Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO–Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and

  17. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays

    PubMed Central

    Raghavan, Shreya; Ward, Maria R.; Rowley, Katelyn R.; Wold, Rachel M.; Takayama, Shuichi; Buckanovich, Ronald J.; Mehta, Geeta

    2015-01-01

    Background Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant3Din vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. Methods We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Results Spheroids had uniform geometry, with projected areas (42.60 × 103 μm–475.22 × 103 μm2 for A2780 spheroids and 37.24 × 103 μm2–281.01 × 103 μm2 for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell–cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70–80% viability) to cisplatin chemotherapy compared to 2D cultures (30–50% viability). Conclusions Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. PMID:25913133

  18. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging.

    PubMed

    Li, Xi; Mu, Jing; Liu, Fang; Tan, Eddy Wei Ping; Khezri, Bahareh; Webster, Richard D; Yeow, Edwin Kok Lee; Xing, Bengang

    2015-05-20

    Current anticancer chemotherapy often suffers from poor tumor selectivity and serious drug resistance. Proper vectors for targeted delivery and controlled drug release play crucial roles in improving the therapeutic selectivity to tumor areas and also overcoming the resistance of cancer cells. In this work, we developed a novel human serum albumin (HSA) protein-based nanocarrier system, which combines the photoactivatable Pt(IV) antitumor prodrug for realizing the controlled release and fluorescent light-up probe for evaluations of drug action and efficacy. The constructed Pt(IV)-probe@HSA platform can be locally activated by light irradiation to release the active Pt species, which results in enhanced cell death at both drug-sensitive A2780 and cisplatin-resistant A2780cis cell lines when compared to the free prodrug molecules. Simultaneously, the cytotoxicity caused by light controlled drug release would further lead to the cellular apoptosis and trigger the activation of caspases 3, one crucial protease enzyme in apoptotic process, which could cleave the recognition peptide moiety (DEVD) with a flanking fluorescent resonance energy transfer (FRET) pair containing near-infrared (NIR) fluorophore Cy5 and quencher Qsy21 on the HSA nanocarrier surface. The turn-on fluorescence in response to caspase-3 could be assessed by fluorescence microscopy and flow cytometry analysis. Our results supported the hypothesis that such a unique design may present a successful platform for multiple roles: (i) a biocompatible protein-based nanocarrier for drug delivery, (ii) the controlled drug release with strengthened therapeutic effects, (iii) real-time monitoring of antitumor drug efficacy at the earlier stage.

  19. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines.

    PubMed

    Marker, Sierra C; MacMillan, Samantha N; Zipfel, Warren R; Li, Zhi; Ford, Peter C; Wilson, Justin J

    2018-02-05

    Fifteen water-soluble rhenium compounds of the general formula [Re(CO) 3 (NN)(PR 3 )] + , where NN is a diimine ligand and PR 3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1 O 2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC 50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1 O 2 .

  20. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities

    PubMed Central

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  1. Role of Increased n-acetylaspartate Levels in Cancer

    PubMed Central

    Zand, Behrouz; Previs, Rebecca A.; Zacharias, Niki M.; Rupaimoole, Rajesha; Mitamura, Takashi; Nagaraja, Archana Sidalaghatta; Guindani, Michele; Dalton, Heather J.; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Hu, Wei; Pecot, Chad V.; Ivan, Cristina; Wu, Sherry Y.; McCullough, Christopher R.; Gharpure, Kshipra M.; Shoshan, Einav; Pradeep, Sunila; Mangala, Lingegowda S.; Rodriguez-Aguayo, Cristian; Wang, Ying; Nick, Alpa M.; Davies, Michael A.; Armaiz-Pena, Guillermo; Liu, Jinsong; Lutgendorf, Susan K.; Baggerly, Keith A.; Eli, Menashe Bar; Lopez-Berestein, Gabriel; Nagrath, Deepak; Bhattacharya, Pratip K.

    2016-01-01

    Background: The clinical and biological effects of metabolic alterations in cancer are not fully understood. Methods: In high-grade serous ovarian cancer (HGSOC) samples (n = 101), over 170 metabolites were profiled and compared with normal ovarian tissues (n = 15). To determine NAT8L gene expression across different cancer types, we analyzed the RNA expression of cancer types using RNASeqV2 data available from the open access The Cancer Genome Atlas (TCGA) website (http://www.cbioportal.org/public-portal/). Using NAT8L siRNA, molecular techniques and histological analysis, we determined cancer cell viability, proliferation, apoptosis, and tumor growth in in vitro and in vivo (n = 6–10 mice/group) settings. Data were analyzed with the Student’s t test and Kaplan-Meier analysis. Statistical tests were two-sided. Results: Patients with high levels of tumoral NAA and its biosynthetic enzyme, aspartate N-acetyltransferase (NAT8L), had worse overall survival than patients with low levels of NAA and NAT8L. The overall survival duration of patients with higher-than-median NAA levels (3.6 years) was lower than that of patients with lower-than-median NAA levels (5.1 years, P = .03). High NAT8L gene expression in other cancers (melanoma, renal cell, breast, colon, and uterine cancers) was associated with worse overall survival. NAT8L silencing reduced cancer cell viability (HEYA8: control siRNA 90.61%±2.53, NAT8L siRNA 39.43%±3.00, P < .001; A2780: control siRNA 90.59%±2.53, NAT8L siRNA 7.44%±1.71, P < .001) and proliferation (HEYA8: control siRNA 74.83%±0.92, NAT8L siRNA 55.70%±1.54, P < .001; A2780: control siRNA 50.17%±4.13, NAT8L siRNA 26.52%±3.70, P < .001), which was rescued by addition of NAA. In orthotopic mouse models (ovarian cancer and melanoma), NAT8L silencing reduced tumor growth statistically significantly (A2780: control siRNA 0.52 g±0.15, NAT8L siRNA 0.08 g±0.17, P < .001; HEYA8: control siRNA 0.79 g±0.42, NAT8L siRNA 0.24 g±0.18, P = .008, A

  2. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  3. Structure-activity relationships in cytotoxic Au(I)/Au(III) complexes derived from 2-(2'-pyridyl)benzimidazole.

    PubMed

    Maiore, Laura; Aragoni, Maria Carla; Deiana, Carlo; Cinellu, Maria Agostina; Isaia, Francesco; Lippolis, Vito; Pintus, Anna; Serratrice, Maria; Arca, Massimiliano

    2014-04-21

    Gold(I) and gold(III) complexes derived from 2-(2'-pyridyl)benzimidazole (pbiH) were proven to be a promising class of in vitro antitumor agents against A2780 human ovarian cancer cells. In this paper, a comparative electrochemical, UV-vis absorption, and emission spectroscopic investigation is reported on pbiH, the two mononuclear Au(III) complexes [(pbi)AuX2] (X = Cl (1), AcO (2)), the four mononuclear Au(I) derivatives [(pbiH)AuCl] (3), [(pbiH)Au(PPh3)]PF6 ((4(+))(PF6(-))), [(pbi)Au(PPh3)] (5), and [(pbi)Au(TPA)] (6), the three mixed-valence Au(III)/Au(I) complexes [(μ-pbi)Au2Cl3] (7), [(Ph3P)Au(μ-pbi)AuX2]PF6 (X = Cl ((8(+))(PF6(-))), AcO ((9(+))(PF6(-)))), and the binuclear Au(I)-Au(I) compound [(μ-pbi)Au2(PPh3)2]PF6 ((10(+))(PF6(-))). All complexes feature irreversible reduction processes related to the Au(III)/Au(I) or Au(I)/Au(0) processes and peculiar luminescent emission at about 360-370 nm in CH2Cl2, with quantum yields that are remarkably lower ((0.7-14.5) × 10(-2)) in comparison to that determined for the free pbiH ligand (31.5 × 10(-2)) in the same solvent. The spectroscopic and electrochemical properties of all complexes were interpreted on the grounds of time-dependent PBE0/DFT calculations carried out both in the gas phase and in CH2Cl2 implicitly considered within the IEF-PCM SCRF approach. The electronic structure of the complexes, and in particular the energy and composition of the Kohn-Sham LUMOs, can be related to the antiproliferative properties against the A2780 ovarian carcinoma cell line, providing sound quantitative structure-activity relationships and shedding a light on the role played by the global charge and nature of ancillary ligands in the effectiveness of Au-based antitumor drugs.

  4. Gold(III) complexes with 2-substituted pyridines as experimental anticancer agents: solution behavior, reactions with model proteins, antiproliferative properties.

    PubMed

    Maiore, Laura; Cinellu, Maria Agostina; Nobili, Stefania; Landini, Ida; Mini, Enrico; Gabbiani, Chiara; Messori, Luigi

    2012-03-01

    Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox(R))Cl(2)][PF(6)], [pyox(R)=(S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N'OH)Cl(2)], III, and [Au(N,N',O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2-carboxamide, N,N'H,OH, resulting from ring opening of bound pyox(R) ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC(50) values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Preclinical activity of melflufen (J1) in ovarian cancer

    PubMed Central

    Viktorsson, Kristina; Velander, Ebba; Nygren, Peter; Uustalu, Maria; Juntti, Therese; Lewensohn, Rolf; Larsson, Rolf; Spira, Jack; De Vlieghere, Elly; Ceelen, Wim P.; Gullbo, Joachim

    2016-01-01

    Ovarian cancer carries a significant mortality. Since symptoms tend to be minimal, the disease is often diagnosed when peritoneal metastases are already present. The standard of care in advanced ovarian cancer consists of platinum-based chemotherapy combined with cytoreductive surgery. Unfortunately, even after optimal cytoreduction and adjuvant chemotherapy, most patients with stage III disease will develop a recurrence. Intraperitoneal administration of chemotherapy is an alternative treatment for patients with localized disease. The pharmacological and physiochemical properties of melflufen, a peptidase potentiated alkylator, raised the hypothesis that this drug could be useful in ovarian cancer and particularily against peritoneal carcinomatosis. In this study the preclinical effects of melflufen were investigated in different ovarian cancer models. Melflufen was active against ovarian cancer cell lines, primary cultures of patient-derived ovarian cancer cells, and inhibited the growth of subcutaneous A2780 ovarian cancer xenografts alone and when combined with gemcitabine or liposomal doxorubicin when administered intravenously. In addition, an intra- and subperitoneal xenograft model showed activity of intraperitoneal administered melflufen for peritoneal carcinomatosis, with minimal side effects and modest systemic exposure. In conclusion, results from this study support further investigations of melflufen for the treatment of peritoneal carcinomatosis from ovarian cancer, both for intravenous and intraperitoneal administration. PMID:27528037

  6. Solid lipid nanoparticles for the delivery of 1,3,5-triaza-7-phosphaadamantane (PTA) platinum (II) carboxylates.

    PubMed

    Sguizzato, Maddalena; Cortesi, Rita; Gallerani, Eleonora; Drechsler, Markus; Marvelli, Lorenza; Mariani, Paolo; Carducci, Federica; Gavioli, Riccardo; Esposito, Elisabetta; Bergamini, Paola

    2017-05-01

    The use of solid lipid nanoparticles (SLN) is a promising route for the delivery of platinum complexes aimed to anticancer activity. This paper describes the production and characterization of SLN suitable for the loading of Pt complexes containing the biocompatible phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) as neutral ligand. After a screening of several lipidic phases, stearic acid-based SLN were identified as the most appropriate for the purpose. They were produced by emulsion-dilution method and then characterized in terms of dimension, polydispersity, time stability, pH balance and morphological aspect. Stearic acid SLN are designed as a system able to coordinate to platinum, acting as anionic carboxylic ligands, replacing the base carbonate of the Pt synthon [PtCO 3 (DMSO) 2 ], where also DMSO can subsequently be substituted by phosphinic ligands, namely PTA. SLN functionalised with Pt-PTA were produced and characterized by this synthetic route. The toxicity of plain SLN and the antiproliferative effect of SLN functionalised with Pt-PTA were evaluated on two human cancer cell lines K562 and A2780. The results indicate that SLN can be exploited as a delivery system for Pt complexes with potential anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants.

    PubMed

    Palici, Ionut F; Liktor-Busa, Erika; Zupkó, István; Touzard, Blaise; Chaieb, Mohamed; Urbán, Edit; Hohmann, Judit

    2015-12-01

    The aim of the present study was the evaluation of the antimicrobial and antiproliferative activities of selected Saharan species, which are applied in the traditional medicine but not studied thoroughly from chemical and pharmacological point of view. The studied plants, namely Anthyllis henoniana, Centropodia forskalii, Cornulaca monacantha, Ephedra alata var. alenda, Euphorbia guyoniana, Helianthemum confertum, Henophyton deserti, Moltkiopsis ciliata and Spartidium saharae were collected from remote areas of North Africa, especially from the Tunisian region of Sahara. After drying and applying the appropriate extraction methods, the plant extracts were tested in antimicrobial screening assay, performed on 19 Gram-positive and -negative strains of microbes. The inhibition zones produced by plant extracts were determined by disc-diffusion method. Remarkable antibacterial activities were exhibited by extracts of Ephedra alata var. alenda and Helianthemum confertum against B. subtilis, M. catarrhalis and methicillin-resistant and non-resistant S. aureus. Minimum inhibitory concentrations of these two species were also determined. Antiproliferative effects of the extracts were evaluated against 4 human adherent cell lines (HeLa, A431, A2780 and MCF7). Notable cell growth inhibition was found for extract of Helianthemum confertum and Euphorbia guyoniana. Our results provided data for selection of some plant species for further detailed pharmacological and phytochemical examinations.

  8. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    SciTech Connect

    Qiu, Jun-jun; Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 andmore » OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.« less

  9. Ultrasound-enhanced localized chemotherapy of drug-sensitive and multidrug resistant tumors

    NASA Astrophysics Data System (ADS)

    Rapoport, Natalya Y.; Gao, Zhonggao; Kamaev, Pavel; Christensen, Douglas A.

    2006-05-01

    A new modality of targeted tumor chemotherapy is based on the drug encapsulation in polymeric nanoparticles followed by a localized release at the tumor site triggered by focused ultrasound. Effect of 1 MHz and 3 MHz unfocused ultrasound applied locally to the tumor on the Doxorubicin (DOX) biodistribution and tumor growth rates was measured for ovarian carcinoma tumors in nu/nu mice. The bioeffects of ultrasound were investigated on the systemic and cellular levels. Growth rates of A2780 ovarian carcinoma tumors were substantially reduced by combining micellar drug delivery with tumor irradiation. Ultrasound effect was not thermal as manifested by intratumoral temperature measurements during sonication. Biodistribution studies showed that ultrasound did not enhance micelle extravasation. Main mechanisms of the ultrasound-enhanced chemotherapy included (i) passive targeting of drug-loaded micelles to the tumor interstitium; (ii) ultrasound-triggered localized drug release from micelles in the tumor volume; (iii) enhanced micelle and drug diffusion through the tumor interstitium; and (iv) ultrasound-triggered cell membrane damage resulting in the enhanced micelle and drug uptake by tumor cells.

  10. Tangeretin, a citrus pentamethoxyflavone, antagonizes ABCB1-mediated multidrug resistance by inhibiting its transport function.

    PubMed

    Feng, Sen-Ling; Yuan, Zhong-Wen; Yao, Xiao-Jun; Ma, Wen-Zhe; Liu, Liang; Liu, Zhong-Qiu; Xie, Ying

    2016-08-01

    Multidrug resistance (MDR) and tumor metastasis are the main causes of chemotherapeutic treatment failure and mortality in cancer patients. In this study, at achievable nontoxic plasma concentrations, citrus flavonoid tangeretin has been shown to reverse ABCB1-mediated cancer resistance to a variety of chemotherapeutic agents effectively. Co-treatment of cells with tangeretin and paclitaxel activated apoptosis as well as arrested cell cycle at G2/M-phase. Tangeretin profoundly inhibited the ABCB1 transporter activity since it significantly increased the intracellular accumulation of doxorubicin, and flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the expression of ABCB1. Moreover, it stimulated the ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. The molecular docking results indicated a favorable binding of tangeretin with the transmemberane region site 1 of homology modeled ABCB1 transporter. The overall results demonstrated that tangeretin could sensitize ABCB1-overexpressing cancer cells to chemotherapeutical agents by directly inhibiting ABCB1 transporter function, which encouraged further animal and clinical studies in the treatment of resistant cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Perfluorooctanoic acid stimulates ovarian cancer cell migration, invasion via ERK/NF-κB/MMP-2/-9 pathway.

    PubMed

    Li, Xiaozhao; Bao, Chunyu; Ma, Zhinan; Xu, Boqun; Liu, Xiaoqiu; Ying, Xiaoyan; Zhang, Xuesen

    2018-05-09

    As widely used in consumer products, perfluorooctanoic acid (PFOA) has become a common environmental pollutant, which has been detected in human serum and associated with cancers. Our previous study showed that PFOA is a carcinogen that promotes endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling. Here, we showed that PFOA (≥100 nM) treatment also stimulated A2780 ovarian cancer cell invasion and migration, which correlated with increased matrix metalloproteinases MMP-2/-9 expression, important proteases associated with tumor invasion and migration. Notably, PFOA treatment induced activation of ERK1/2/ NF-κB signaling. Pre-treatment with U0126, an ERK1/2inhibitor;or JSH-23, a NF-kB inhibitor, can reverse the PFOA-induced cell migration and invasion. Consistent with these results, inhibiting ERK1/2 or NF-κB signaling abolished PFOA-induced up-regulation of MMP-2/-9 expression. These results indicate that PFOA can stimulate ovarian cancer cell migration, invasion and MMP-2/-9 expression by up-regulating ERK/NF-κB pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway

    PubMed Central

    HUANG, HAIZHI; CHEN, ALLEN Y.; YE, XINGQIAN; LI, BINGYUN; ROJANASAKUL, YON; RANKIN, GARY O.; CHEN, YI CHARLIE

    2015-01-01

    Cisplatin is a commonly used drug for cancer treatment by crosslinking DNA, leading to apoptosis of cancer cells, resistance to cisplatin treatment often occurs, leading to relapse. Therefore, there is a need for the development of more effective treatment strategies that can overcome chemoresistance. Myricetin is a flavonoid from fruits and vegetables, showing anticancer activity in various cancer cells. In this study, we found myricetin exhibited greater cytotoxicity than cisplatin in two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and it was less cytotoxic to the normal ovarian cell line IOSE-364. Myricetin selectively induced apoptosis in both cisplatin-resistant cancer cell lines, but did not induce apoptosis in the normal ovarian cell line. It induced both Bcl-2 family-dependent intrinsic and DR5 dependent extrinsic apoptosis in OVCAR-3 cells. P53, a multifunctional tumor suppressor, regulated apoptosis in OVCAR-3 cells through a Bcl-2 family protein-dependent pathway. Myricetin did not induce cell cycle arrest in either ovarian cancer cell line. Because of its potency and selectivity against cisplatin-resistant cancer cells, myricetin could potentially be used to overcome cancer chemoresistance against platinum-based therapy. PMID:26315556

  13. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.

  14. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis.

    PubMed

    Wolfram, Ratna Kancana; Heller, Lucie; Csuk, René

    2018-05-25

    Triterpenoic acids, ursolic acid (1), oleanolic acid (2), glycyrrhetinic acid (3) and betulinic acid (4) were converted into their corresponding methyl 5-8 and benzyl esters 9-12 or benzyl amides 21-24. These derivatives served as starting materials for the synthesis of pink colored rhodamine B derivatives 25-36 which were screened for cytotoxicity in colorimetric SRB assays. All of the compounds were cytotoxic for a variety of human tumor cell lines. The activity of the benzyl ester derivatives 29-32 was lower than the cytotoxicity of the methyl esters 25-28. The benzyl amides 33-36 were the most cytotoxic compounds of this series. The most potential compound was a glycyrrhetinic acid rhodamine B benzyl amide 35. This compound showed activity against the different cancer cell lines in a two-digit to low three-digit nano-molar range. Staining experiments combined with fluorescence microscopy showed that this compound triggered apoptosis in A2780 ovarian carcinoma cells and acted as a mitocan. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Three new labdane-type diterpene glycosides from fruits of Rubus chingii and their cytotoxic activities against five humor cell lines.

    PubMed

    Zhong, Ruijian; Guo, Qing; Zhou, Guoping; Fu, Huizheng; Wan, Kaihua

    2015-04-01

    Three new labdane-type diterpene glycosides, 15,18-di-O-β-d-glucopyranosyl-13(E)-ent-labda-7(8),13(14)-diene-3β,15,18-triol (1), 15,18-di-O-β-d-glucopyranosyl-13(E)-ent-labda-8(9),13(14)-diene-3β,15,18-triol (2), and 15-O-β-d-apiofuranosyl-(1→2)-β-d-glucopyranosyl-18-O-β-d-glucopyranosyl-13(E)-ent-labda-8(9),13(14)-diene-3β,15,18-triol (3), were isolated from the fruits of Rubus chingii. Their structures were elucidated on the basis of spectroscopic data and chemical methods. The cytotoxic activities of compounds 1-3 were evaluated against five human tumor cell lines (HCT-8, BGC-823, A549, and A2780). Compounds 3 showed cytotoxic activity against A549 with an IC50 value of 2.32μM. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  16. Measurement of nitrogen in the body using a commercial PGNAA system--phantom experiments.

    PubMed

    Chichester, D L; Empey, E

    2004-01-01

    An industrial prompt-gamma neutron activation analysis (PGNAA) system, originally designed for the real-time elemental analyses of bulk coal on a conveyor belt, has been studied to examine the feasibility of using such a system for body composition analysis. Experiments were conducted to measure nitrogen in a simple, tissue equivalent phantom comprised of 2.7 wt% of nitrogen. The neutron source for these experiments was 365 MBq (18.38 microg) of 252Cf located within an engineered low Z moderator and it yielded a dose rate in the measurement position of 3.91 mSv/h; data were collected using a 2780 cm(3) NaI(Tl) cylindrical detector with a digital signal processor and a 512 channel MCA. Source, moderator and detector geometries were unaltered from the system's standard configuration, where they have been optimized for considerations such as neutron thermalization, measurement sensitivity and uniformity, background radiation and external dose minimization. Based on net counts in the 10.8 MeV PGNAA nitrogen photopeak and its escape peaks the dose dependent nitrogen count rate was 11,600 counts/mSv with an uncertainty of 3.0% after 0.32 mSv (4.9 min), 2.0% after 0.74 mSv (11.4 min) and 1.0% after 3.02 mSv (46.4 min).

  17. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy

    PubMed Central

    Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

    2010-01-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595

  18. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Yallapu, Murali M; Othman, Shadi F; Curtis, Evan T; Gupta, Brij K; Jaggi, Meena; Chauhan, Subhash C

    2011-03-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug-loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin-loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC-3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapeutic agent for cancer therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.

    PubMed

    Alvarez-Berríos, Merlis P; Castillo, Amalchi; Rinaldi, Carlos; Torres-Lugo, Madeline

    2014-01-01

    The proteasome inhibitor bortezomib (BZ) has shown promising results in some types of cancer, but in others it has had minimal activity. Recent studies have reported enhanced efficacy of BZ when combined with hyperthermia. However, the use of magnetic nanoparticles to induce hyperthermia in combination with BZ has not been reported. This novel hyperthermia modality has shown better potentiation of chemotherapeutics over other types of hyperthermia. We hypothesized that inducing hyperthermia via magnetic nanoparticles (MFH) would enhance the cytotoxicity of BZ in BZ-sensitive and BZ-resistant cancer cells more effectively than hyperthermia using a hot water bath (HWH). Studies were conducted using BZ in combination with MFH in two BZ-sensitive cell lines (MDA-MB-468, Caco-2), and one BZ-resistant cell line (A2780) at two different conditions, ie, 43°C for 30 minutes and 45°C for 30 minutes. These experiments were compared with combined application of HWH and BZ. The results indicate enhanced potentiation between hyperthermic treatment and BZ. MFH combined with BZ induced cytotoxicity in sensitive and resistant cell lines to a greater extent than HWH under the same treatment conditions. The observation that MFH sensitizes BZ-resistant cell lines makes this approach a potentially effective anticancer therapy platform.

  20. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    PubMed Central

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272

  1. Emodin Inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer Cells via ILK/GSK-3β/Slug Signaling Pathway

    PubMed Central

    Lu, Jingjing; Xu, Ying; Wei, Xuan; Zhao, Zhe; Xue, Jing

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite the anticancer capabilities of emodin observed in many cancers, including EOC, the underlying molecular mechanism remains to be elucidated. A crucial link has been discovered between the acquisition of metastatic traits and the epithelial-mesenchymal transition (EMT). The present study aimed to determine whether emodin could inhibit the EMT of EOC cells and explore the underlying mechanism. The CCK-8 assay and transwell assay showed that emodin effectively repressed the abilities of proliferation, invasion, and migration in A2780 and SK-OV-3 cells. The Western blot showed that emodin upregulated epithelial markers (E-cadherin and Claudin) while it downregulated mesenchymal markers (N-cadherin and Vimentin) and transcription factor (Slug) in a dose-dependent fashion. After transfection of siRNA-Slug, both Slug and N-cadherin were downregulated in EOC cells while E-cadherin was upregulated, which was intensified by emodin. Besides, emodin decreased the expression of ILK, p-GSK-3β, β-catenin, and Slug. Transfection of siRNA-ILK also achieved the same effects, which was further strengthened by following emodin treatment. Nevertheless, SB216763, an inhibitor of GSK-3β, could reverse the effects of emodin except for ILK expression. These findings suggest that emodin inhibited the EMT of EOC cells via ILK/GSK-3β/Slug signaling pathway. PMID:28097141

  2. Emodin Inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer Cells via ILK/GSK-3β/Slug Signaling Pathway.

    PubMed

    Lu, Jingjing; Xu, Ying; Wei, Xuan; Zhao, Zhe; Xue, Jing; Liu, Peishu

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite the anticancer capabilities of emodin observed in many cancers, including EOC, the underlying molecular mechanism remains to be elucidated. A crucial link has been discovered between the acquisition of metastatic traits and the epithelial-mesenchymal transition (EMT). The present study aimed to determine whether emodin could inhibit the EMT of EOC cells and explore the underlying mechanism. The CCK-8 assay and transwell assay showed that emodin effectively repressed the abilities of proliferation, invasion, and migration in A2780 and SK-OV-3 cells. The Western blot showed that emodin upregulated epithelial markers (E-cadherin and Claudin) while it downregulated mesenchymal markers (N-cadherin and Vimentin) and transcription factor (Slug) in a dose-dependent fashion. After transfection of siRNA-Slug, both Slug and N-cadherin were downregulated in EOC cells while E-cadherin was upregulated, which was intensified by emodin. Besides, emodin decreased the expression of ILK, p-GSK-3 β , β -catenin, and Slug. Transfection of siRNA-ILK also achieved the same effects, which was further strengthened by following emodin treatment. Nevertheless, SB216763, an inhibitor of GSK-3 β , could reverse the effects of emodin except for ILK expression. These findings suggest that emodin inhibited the EMT of EOC cells via ILK/GSK-3 β /Slug signaling pathway.

  3. Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells

    NASA Astrophysics Data System (ADS)

    Mohajer, Salman; Ara, Mohammad Hossein Majles; Serahatjoo, Leila

    2016-07-01

    We investigate linear and nonlinear optical properties of standard human ovarian cancer cells (cell line: A2780cp) in vitro. Cells were treated by graphene quantum dots (GQDs) with two special concentrations. Nontoxicity of GQDs was examined in standard biological viability tests. Cancerous cells were fixed on a glass slide; then, interaction of light with biofilms was studied in linear and nonlinear regimes. Absorption spectra of untreated biofilms and biofilms with two different concentrations of GQDs was studied by UV-visible spectrophotometer. Optical behavior of biofilms in a linear regime of intensity (with low-intensity laser exposure) was reported using a simple optical setup. After that, we compared the attenuation of light in biofilm of cancerous cells with and without GQDs. Nonlinear behavior of these biofilms was investigated by a Z-scan setup using a continued wave He-Ne laser. Results showed that GQDs decreased the extinction coefficient and changed the sign and exact value of the nonlinear refractive index of malignant ovarian cells noticeably. The nonlinear refractive index of studied cells with no GQDs treatment was in the order of 10-8 (cm2/w) with a positive sign. This quantity changed to the same order of magnitude with a negative sign after GQDs treatment. Thus, GQDs can be used for cancer diagnosis under laser irradiation.

  4. Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate.

    PubMed

    Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria

    2012-12-01

    Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.

  5. Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate

    PubMed Central

    Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B.; Fuxe, Jonas; Shoshan, Maria

    2012-01-01

    Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations. PMID:22954696

  6. lH-Pyrazolo[3,4-b]quinolin-3-amine derivatives inhibit growth of colon cancer cells via apoptosis and sub G1 cell cycle arrest.

    PubMed

    Karthikeyan, Chandrabose; Amawi, Haneen; Viana, Arabela Guedes; Sanglard, Leticia; Hussein, Noor; Saddler, Maria; Ashby, Charles R; Moorthy, N S Hari Narayana; Trivedi, Piyush; Tiwari, Amit K

    2018-07-15

    A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC 50 values ranging from 2.3 to 10.2 µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody

    PubMed Central

    Fecková, Barbora; Kimáková, Patrícia; Ilkovičová, Lenka; Szentpéteriová, Erika; Debeljak, Nataša; Solárová, Zuzana; Sačková, Veronika; Šemeláková, Martina; Bhide, Mangesh; Solár, Peter

    2016-01-01

    The erythropoietin receptor (EpoR) is a member of the cytokine receptor family. The interaction between erythropoietin (Epo) and EpoR is important for the production and maturation of erythroid cells, resulting in the stimulation of hematopoiesis. The fact that EpoR was also detected in neoplastic cells has opened the question about the relevance of anemia treatment with recombinant Epo in cancer patients. Numerous studies have reported pro-stimulating and anti-apoptotic effects of Epo in cancer cells, thus demonstrating EpoR functionality in these cells. By contrast, a previous study claims the absence of EpoR in tumor cells. This apparent discrepancy is based, according to certain authors, on the use of non-specific anti-EpoR antibodies. With the aim of bypassing the direct detection of EpoR with an anti-EpoR antibody, the present authors propose a far-western blot methodology, which in addition, confirms the interaction of Epo with EpoR. Applying this technique, the presence of EpoR and its interaction with Epo in human ovarian adenocarcinoma A2780 and normal human umbilical vein endothelial cells was confirmed. Furthermore, modified immunoprecipitation of EpoR followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis confirmed a 57 kDa protein as a human Epo-interacting protein in both cell lines. PMID:27446474

  8. Cytotoxic 14-Membered Macrolides from a Mangrove-Derived Endophytic Fungus, Pestalotiopsis microspora.

    PubMed

    Liu, Shuai; Dai, Haofu; Makhloufi, Gamall; Heering, Christian; Janiak, Christoph; Hartmann, Rudolf; Mándi, Attila; Kurtán, Tibor; Müller, Werner E G; Kassack, Matthias U; Lin, Wenhan; Liu, Zhen; Proksch, Peter

    2016-09-23

    Seven new 14-membered macrolides, pestalotioprolides C (2), D-H (4-8), and 7-O-methylnigrosporolide (3), together with four known analogues, pestalotioprolide B (1), seiricuprolide (9), nigrosporolide (10), and 4,7-dihydroxy-13-tetradeca-2,5,8-trienolide (11), were isolated from the mangrove-derived endophytic fungus Pestalotiopsis microspora. Their structures were elucidated by analysis of NMR and MS data and by comparison with literature data. Single-crystal X-ray diffraction analysis was used to confirm the absolute configurations of 1, 2, and 10, while Mosher's method and the TDDFT-ECD approach were applied to determine the absolute configurations of 5 and 6. Compounds 3-6 showed significant cytotoxicity against the murine lymphoma cell line L5178Y with IC50 values of 0.7, 5.6, 3.4, and 3.9 μM, respectively, while compound 5 showed potent activity against the human ovarian cancer cell line A2780 with an IC50 value of 1.2 μM. Structure-activity relationships are discussed. Coculture of P. microspora with Streptomyces lividans caused a roughly 10-fold enhanced accumulation of compounds 5 and 6 compared to axenic fungal control.

  9. Green Chemistry Approach for Synthesis of Effective Anticancer Palladium Nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Kim, EunSu; Han, Jae Woong; Park, Jung Hyun; Kim, Jin-Hoi

    2015-12-15

    The purpose of this study was to design and synthesize Palladium nanoparticles (PdNPs) using an environmentally friendly approach and evaluate the in vitro efficacy of PdNPs in human ovarian cancer A2780 cells. Ultraviolet-Visible (UV-Vis) spectroscopy was used to monitor the conversion of Pd(II) ions to Pd(0)NPs. X-ray diffraction (XRD) revealed the crystallinity of the as-synthesized PdNPs and Fourier transform infrared spectroscopy (FTIR) further confirmed the role of the leaf extract of Evolvulus alsinoides as a reducing and stabilizing agent for the synthesis of PdNPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed that the average size of the NPs was 5 nm. After a 24-h exposure to PdNPs, cell viability and light microscopy assays revealed the dose-dependent toxicity of the PdNPs. Furthermore, the dose-dependent cytotoxicity of the PdNPs was confirmed by lactate dehydrogenase (LDH), increased reactive oxygen species (ROS) generation, activation of PdNPs-induced autophagy, impairment of mitochondrial membrane potential (MMP), enhanced caspase-3 activity, and detection of TUNEL-positive cells. Our study demonstrates a single, simple, dependable and green approach for the synthesis of PdNPs using leaf extracts of Evolvulus alsinoides. Furthermore, the in vitro efficacy of PdNPs in human ovarian cancer cells suggests that it could be an effective therapeutic agent for cancer therapy.

  10. Transfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts

    PubMed Central

    2018-01-01

    We report the synthesis and characterization of four neutral organometallic tethered complexes, [Ru(η6-Ph(CH2)3-ethylenediamine-N-R)Cl], where R = methanesulfonyl (Ms, 1), toluenesulfonyl (Ts, 2), 4-trifluoromethylbenzenesulfonyl (Tf, 3), and 4-nitrobenzenesulfonyl (Nb, 4), including their X-ray crystal structures. These complexes exhibit moderate antiproliferative activity toward human ovarian, lung, hepatocellular, and breast cancer cell lines. Complex 2 in particular exhibits a low cross-resistance with cisplatin. The complexes show potent catalytic activity in the transfer hydrogenation of NAD+ to NADH with formate as hydride donor in aqueous solution (310 K, pH 7). Substituents on the chelated ligand decreased the turnover frequency in the order Nb > Tf > Ts > Ms. An enhancement of antiproliferative activity (up to 22%) was observed on coadministration with nontoxic concentrations of sodium formate (0.5–2 mM). Complex 2 binds to nucleobase guanine (9-EtG), but DNA appears not to be the target, as little binding to calf thymus DNA or bacterial plasmid DNA was observed. In addition, complex 2 reacts rapidly with glutathione (GSH), which might hamper transfer hydrogenation reactions in cells. Complex 2 induced a dose-dependent G1 cell cycle arrest after 24 h exposure in A2780 human ovarian cancer cells while promoting an increase in reactive oxygen species (ROS), which is likely to contribute to its antiproliferative activity.

  11. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities.

    PubMed

    Lajter, Ildikó; Vasas, Andrea; Béni, Zoltán; Forgo, Peter; Binder, Markus; Bochkov, Valery; Zupkó, István; Krupitza, Georg; Frisch, Richard; Kopp, Brigitte; Hohmann, Judit

    2014-03-28

    Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5β-hydroxy-8β-isovaleroyloxy-9α-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3β-acetoxy-8β-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1-5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1-5, evaluated in vitro using LPS- and TNF-α-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective.

  12. Sesquiterpenes from Neurolaena lobata and Their Antiproliferative and Anti-inflammatory Activities

    PubMed Central

    2014-01-01

    Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5β-hydroxy-8β-isovaleroyloxy-9α-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3β-acetoxy-8β-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1–5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1–5, evaluated in vitro using LPS- and TNF-α-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective. PMID:24476550

  13. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    PubMed

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  14. Design and synthesis of a series of bioavailable fatty acid synthase (FASN) KR domain inhibitors for cancer therapy.

    PubMed

    Lu, Tianbao; Schubert, Carsten; Cummings, Maxwell D; Bignan, Gilles; Connolly, Peter J; Smans, Karine; Ludovici, Donald; Parker, Michael H; Meyer, Christophe; Rocaboy, Christian; Alexander, Richard; Grasberger, Bruce; De Breucker, Sabine; Esser, Norbert; Fraiponts, Erwin; Gilissen, Ron; Janssens, Boudewijn; Peeters, Danielle; Van Nuffel, Luc; Vermeulen, Peter; Bischoff, James; Meerpoel, Lieven

    2018-05-08

    We designed and synthesized a new series of fatty acid synthase (FASN) inhibitors with potential utility for the treatment of cancer. Extensive SAR studies led to highly active FASN inhibitors with good cellular activity and oral bioavailability, exemplified by compound 34. Compound 34 is a potent inhibitor of human FASN (IC 50  = 28 nM) that effectively inhibits proliferation of A2780 ovarian cells (IC 50  = 13 nM) in lipid-reduced serum (LRS). This cellular activity can be rescued by addition of palmitate, consistent with an on-target effect. Compound 34 is also active in many other cell types, including PC3M (IC 50  = 25 nM) and LnCaP-Vancouver prostate cells (IC 50  = 66 nM), and is highly bioavailable (F 61%) with good exposure after oral administration. In a pharmacodynamics study in H460 lung xenograft-bearing mice, oral treatment with compound 34 results in elevated tumor levels of malonyl-CoA and decreased tumor levels of palmitate, fully consistent with the desired target engagement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles.

    PubMed

    Dufes, Christine; Muller, Jean-Marc; Couet, William; Olivier, Jean-Christophe; Uchegbu, Ijeoma F; Schätzlein, Andreas G

    2004-01-01

    The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug.

  16. Cytotoxic steroids from Monascus purpureus-fermented rice.

    PubMed

    Shang, Xiao-Ya; Li, Jin-Jie; Liu, Ming-Tao; Li, Shuai; Liu, Ying; Wang, Ye-Feng; Huang, Xiao; Jin, Zong-Lian

    2011-01-01

    Bioassay-guided fractionation of an EtOH extract of Monascus purpureus-fermented rice led to the isolation of two new steroids (22S, 23R, 24S)-20β,23α,25α-trihydroxy-16,22-epoxy-4,6,8(14)-trienergosta-3-one (1), the first example of a steroid possessing both a conjugated triene ketone system and a fused 4H-furan ring side chain within one molecule, and (22E, 24R)-3β,5α-dihydroxyergosta-23-methyl-7,22-dien-6-one (2), as well as two known compounds (22E, 24R)-3β,5α-dihydroxyergosta-7,22-dien-6-one (3) and (22E, 24R)-6β-methoxy-ergosta-7,22-diene-3β,5α-diol (4). Their structures were assigned by detailed interpretation of HRESIMS, 1D and 2D NMR spectroscopic data. The absolute stereochemistry of 1 was determined by single-crystal X-ray crystallography while the absolute stereochemistry of 2 was established by CD. Compounds 1-4 showed cytotoxic activity against the lung adenocarcinoma (A549) with IC(50) values of 0.08, 0.94, 12.6 and 13.5 μM, respectively. In addition, compounds 1 and 2 exhibited moderate activities against human ovarian cancer (A2780), with IC(50) values of 2.8 and 5.1 μM. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Deoxyschizandrin, Isolated from Schisandra Berries, Induces Cell Cycle Arrest in Ovarian Cancer Cells and Inhibits the Protumoural Activation of Tumour-Associated Macrophages.

    PubMed

    Lee, Kijun; Ahn, Ji-Hye; Lee, Kyung-Tae; Jang, Dae Sik; Choi, Jung-Hye

    2018-01-15

    Deoxyschizandrin, a major lignan of Schisandra berries, has been demonstrated to have various biological activities such as antioxidant, hepatoprotective, and antidiabetic effects. However, the anti-cancer effects of deoxyschizandrin are poorly characterized. In the present study, we investigated the anti-cancer effect of deoxyschizandrin on human ovarian cancer cell lines and tumour-associated macrophages (TAMs). Deoxyschizandrin induced G₀/G₁ phase cell cycle arrest and inhibited cyclin E expression in human ovarian cancer cells. Overexpression of cyclin E significantly reversed the deoxyschizandrin-induced cell growth inhibition. Interestingly, increased production of reactive oxygen species and decreased activation of Akt were observed in A2780 cells treated with deoxyschizandrin, and the antioxidant compromised the deoxyschizandrin-induced cell growth inhibition and Akt inactivation. Moreover, deoxyschizandrin-induced cell growth inhibition was markedly suppressed by Akt overexpression. In addition, deoxyschizandrin was found to inhibit the expression of the M2 phenotype markers CD163 and CD209 in TAMs, macrophages stimulated by the ovarian cancer cells. Moreover, expression and production of the tumour-promoting factors MMP-9, RANTES, and VEGF, which are highly enhanced in TAMs, was significantly suppressed by deoxyschizandrin treatment. Taken together, these data suggest that deoxyschizandrin exerts anti-cancer effects by inducing G₀/G₁ cell cycle arrest in ovarian cancer cells and reducing the protumoural phenotype of TAMs.

  18. New Abietane and Kaurane Type Diterpenoids from the Stems of Tripterygium regelii

    PubMed Central

    Fan, Dongsheng; Zhou, Shuangyan; Zheng, Zhiyuan; Zhu, Guo-Yuan; Yao, Xiaojun; Yang, Ming-Rong; Jiang, Zhi-Hong; Bai, Li-Ping

    2017-01-01

    Eleven new abietane type (1‒11), and one new kaurane (12), diterpenes, together with eleven known compounds (13–23), were isolated and identified from the stems of Tripterygium regelii, which has been used as a traditional folk Chinese medicine for the treatment of rheumatoid arthritis in China. The structures of new compounds were characterized by means of the interpretation of high-resolution electrospray ionization mass spectrometry (HRESIMS), extensive nuclear magnetic resonance (NMR) spectroscopic data and comparisons of their experimental CD spectra with calculated electronic circular dichroism (ECD) spectra. Compound 1 is the first abietane type diterpene with an 18→1 lactone ring. Compound 19 was isolated from the plants of the Tripterygium genus for the first time, and compounds 14–17 were isolated from T. regelii for the first time. Triregelin I (9) showed significant cytotoxicity against A2780 and HepG2 with IC50 values of 5.88 and 11.74 µM, respectively. It was found that this compound was inactive against MCF-7 cells. The discovery of these twelve new diterpenes not only provided information on chemical substances of T. regelii, but also contributed to the chemical diversity of natural terpenoids. PMID:28098763

  19. Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase.

    PubMed

    Paik, Johanna; Duncan, Tod; Lindahl, Tomas; Sedgwick, Barbara

    2005-11-15

    One of the major cytotoxic lesions generated by alkylating agents is DNA 3-alkyladenine, which can be excised by 3-alkyladenine DNA glycosylase (AAG). Inhibition of AAG may therefore result in increased cellular sensitivity to chemotherapeutic alkylating agents. To investigate this possibility, we have examined the role of AAG in protecting human tumor cells against such agents. Plasmids that express small interfering RNAs targeted to two different regions of AAG mRNA were transfected into HeLa cervical carcinoma cells and A2780-SCA ovarian carcinoma cells. Stable derivatives of both cell types with low AAG protein levels were sensitized to alkylating agents. Two HeLa cell lines with AAG protein levels reduced by at least 80% to 90% displayed a 5- to 10-fold increase in sensitivity to methyl methanesulfonate, N-methyl-N-nitrosourea, and the chemotherapeutic drugs temozolomide and 1,3-bis(2-chloroethyl)-1-nitrosourea. These cells showed no increase in sensitivity to UV light or ionizing radiation. After treatment with methyl methanesulfonate, AAG knockdown HeLa cells were delayed in S phase but accumulated in G2-M. Our data support the hypothesis that ablation of AAG activity in human tumor cells may provide a useful strategy to enhance the efficacy of current chemotherapeutic regimens that include alkylating agents.

  20. Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles.

    PubMed

    Ribeiro, A P C; Anbu, S; Alegria, E C B A; Fernandes, A R; Baptista, P V; Mendes, R; Matias, A S; Mendes, M; Guedes da Silva, M F C; Pombeiro, A J L

    2018-05-01

    Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO 3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC 50 (0.5 ± 0.1 μM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC 50 5.0 ± 0.1 μM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation.

    PubMed

    Sánchez-Carranza, Jessica Nayelli; Díaz, J Fernando; Redondo-Horcajo, Mariano; Barasoain, Isabel; Alvarez, Laura; Lastres, Pedro; Romero-Estrada, Antonio; Aller, Patricio; González-Maya, Leticia

    2018-06-01

    Paclitaxel (PTX) is currently used as a front-line chemotherapeutic agent for several types of cancer, including ovarian carcinoma; however, PTX-resistance frequently arises through multiple mechanisms. The development of new strategies using natural compounds and PTX in combination has been the aim of several prior studies, in order to enhance the efficacy of chemotherapy. In this study, we found the following: (i) gallic acid (GA), a phenolic compound, potentiated the capacity of PTX to decrease proliferation and to cause G2/M cycle arrest in the PTX-resistant A2780AD ovarian cancer cell line; (ii) GA exerted a pro-oxidant action by increasing the production of reactive oxygen species (ROS), and co-treatment with the antioxidant agent N‑acetyl-L‑cysteine (NAC) prevented GA+PTX-induced cell proliferation inhibition and G2/M phase arrest; (iii) PTX stimulated ERK phosphorylation/activation, and co-treatment with the MEK/ERK inhibitor PD98049 potentiated the proliferation inhibition and G2/M phase arrest; (iv) and finally, GA abrogated the PTX-induced stimulation of ERK phosphorylation, a response that was prevented by co-treatment with NAC. Taken together, these results indicate that GA sensitizes PTX-resistant ovarian carcinoma cells via the ROS‑mediated inactivation of ERK, and suggest that GA could represent a useful co-adjuvant to PTX in ovarian carcinoma treatment.

  2. Antiproliferative Compounds of Cyphostemma greveana from a Madagascar Dry Forest[1

    PubMed Central

    Cao, Shugeng; Hou, Yanpeng; Brodie, Peggy; Miller, James S.; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.

    2011-01-01

    Bioassay-guided fractionation of the EtOH extracts obtained from a plant identified as Cyphostemma greveana Desc. (Vitaceae) led to the identification of one macrolide, lasiodiplodin (1), three sesquiterpenoids, 12-hydroxy-15-oxo-selina-4,1l-diene (2), 1β,6α-dihydroxyeudesm-4(15)-ene (3), and (7R*)-opposit-4(15)-ene-1β,7-diol (5), and the new diterpenoid, 16,18-dihydroxykolavenic acid lactone (4). All the isolates were tested against the A2780 human ovarian cancer cell line, and compound 4 and a fraction containing 5 as the major constituent showed antiproliferative activities with IC50 values of 0.44 μM (0.14 μg/mL) and 0.045 μg/mL, respectively. A semisynthesis of compound 5 was carried out, but the pure synthetic compound was inactive, indicating that the activity of the fraction containing it must be due to a very minor and as yet unidentified substance. PMID:21480509

  3. Antiproliferative compounds of Cyphostemma greveana from a Madagascar dry forest.

    PubMed

    Cao, Shugeng; Hou, Yanpeng; Brodie, Peggy; Miller, James S; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E; Kingston, David G I

    2011-04-01

    Bioassay-guided fractionation of the EtOH extracts obtained from a plant identified as Cyphostemma greveana Desc. (Vitaceae) led to the identification of one macrolide, lasiodiplodin (1), three sesquiterpenoids, 12-hydroxy-15-oxoselina-4,11-diene (2), 1β,6α-dihydroxyeudesm-4(15)-ene (3), and (7R*)-opposit-4(15)-ene-1β,7-diol (5), and a new diterpenoid, 16,18-dihydroxykolavenic acid lactone (4). All the isolates were tested against the A2780 human ovarian cancer cell line, and compound 4 and a fraction containing 5 as the major constituent showed antiproliferative activities with IC(50) values of 0.44 μM (0.14 μg/ml) and 0.045 μg/ml, respectively. A partial synthesis of compound 5 was carried out, but the pure synthetic compound was inactive, indicating that the activity of the fraction containing it must be due to a very minor and as yet unidentified substance. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands.

    PubMed

    Kong, Yaqiong; Chen, Feng; Su, Zhi; Qian, Yong; Wang, Fang-Xin; Wang, Xiuxiu; Zhao, Jing; Mao, Zong-Wan; Liu, Hong-Ke

    2018-05-01

    Metal-arene complexes containing bioactive natural-product derived ligands can have new and unusual properties. We report the synthesis, characterization and antiproliferative activity of two new Ru(II) arene complexes with imidazole (dichlorido complex 1) or bipyridyl (chlorido complex 2) ligands conjugated to 18β-glycyrrhetinic acid, an active triterpenoid metabolite of Glycyrrhiza glabra. In general, the conjugated ligands and complexes showed only moderate activity against HeLa (cervical), MCF-7 (breast) and A2780 (ovarian) cancer cells, although the activity of complex 2 in the former two cell lines approached that of the drug cisplatin. Complex 2 (in contrast to complex 1) also exhibited significant activity towards both Gram-positive S. aureus and Gram-negative E. coil bacteria. Complex 2 can induce condensation of DNA and enhances the generation of intracellular reactive oxygen species (ROS). The conjugation of natural products to ligands in organometallic half-sandwich complexes provides a strategy to enhance their biological activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Preclinical activity of melflufen (J1) in ovarian cancer.

    PubMed

    Carlier, Charlotte; Strese, Sara; Viktorsson, Kristina; Velander, Ebba; Nygren, Peter; Uustalu, Maria; Juntti, Therese; Lewensohn, Rolf; Larsson, Rolf; Spira, Jack; De Vlieghere, Elly; Ceelen, Wim P; Gullbo, Joachim

    2016-09-13

    Ovarian cancer carries a significant mortality. Since symptoms tend to be minimal, the disease is often diagnosed when peritoneal metastases are already present. The standard of care in advanced ovarian cancer consists of platinum-based chemotherapy combined with cytoreductive surgery. Unfortunately, even after optimal cytoreduction and adjuvant chemotherapy, most patients with stage III disease will develop a recurrence. Intraperitoneal administration of chemotherapy is an alternative treatment for patients with localized disease. The pharmacological and physiochemical properties of melflufen, a peptidase potentiated alkylator, raised the hypothesis that this drug could be useful in ovarian cancer and particularily against peritoneal carcinomatosis. In this study the preclinical effects of melflufen were investigated in different ovarian cancer models. Melflufen was active against ovarian cancer cell lines, primary cultures of patient-derived ovarian cancer cells, and inhibited the growth of subcutaneous A2780 ovarian cancer xenografts alone and when combined with gemcitabine or liposomal doxorubicin when administered intravenously. In addition, an intra- and subperitoneal xenograft model showed activity of intraperitoneal administered melflufen for peritoneal carcinomatosis, with minimal side effects and modest systemic exposure. In conclusion, results from this study support further investigations of melflufen for the treatment of peritoneal carcinomatosis from ovarian cancer, both for intravenous and intraperitoneal administration.

  6. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice

    PubMed Central

    Diaconeasa, Zoriţa; Leopold, Loredana; Rugină, Dumitriţa; Ayvaz, Huseyin; Socaciu, Carmen

    2015-01-01

    The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs) obtained from two commercially available juices (blueberry and blackcurrant juices) on three tumor cell lines; B16F10 (murine melanoma), A2780 (ovarian cancer) and HeLa (cervical cancer). Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases. PMID:25622252

  7. General Characteristics and Cytotoxic Effects of Nano-Poly (Butyl Cyanoacrylate) Containing Carboplatin on Ovarian Cancer Cells

    PubMed Central

    Kanaani, Leila; Far, Meysam Ebrahimi; Kazemi, S Maryam; Choupani, Edris; Tabrizi, Maral Mazloumi; Shahmabadi, Hasan Ebrahimi; Khiyavi, Azim Akbarzadeh

    2017-01-01

    The initial response to treatment and subsequent development of resistance to carboplatin are very important challenges. Use of nano drug delivery is a new method to replace standard chemotherapy. In this research, both non-PEGylated and PEGylated nanoparticles (NPs) were prepared by mini-emulsion polymerization of poly (butyl cyanoacrylate) (PBCA) NPs. Characteristics such as size, polydispersity index (PDI), zeta potential, drug release, and stability were examined. In addition, infrared spectroscopy was used for description of the produced NPs. Then, cytotoxicity effects of both formulations were studied on the A2780CIS ovarian cancer cell line with incubation for 24, 48, and 72h. Examination of characteristics of loaded carboplatin on the PBCA NPs under suitable laboratory conditions showed a positive effect of PEG on their properties. Cytotoxicity studies demonstrated greater toxicity with both formulations of nano-drugs than the free drug. The results indicated that PBCA NPs can be considered as suitable candidates for nano-drugs in chemotherapy. PMID:28240014

  8. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands.

    PubMed

    Allison, Simon J; Sadiq, Maria; Baronou, Efstathia; Cooper, Patricia A; Dunnill, Chris; Georgopoulos, Nikolaos T; Latif, Ayşe; Shepherd, Samantha; Shnyder, Steve D; Stratford, Ian J; Wheelhouse, Richard T; Willans, Charlotte E; Phillips, Roger M

    2017-09-10

    Organometallic complexes offer the prospect of targeting multiple pathways that are important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and induction of reactive oxygen species. DNA damage induction was consistent with cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less active against non-cancer cells and shows activity in vivo in a loco-regional setting. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Bhor, R. D.; Pai, K. R.; Sen, D.; Mazumder, S.; Ghosh, Kartik; Kolekar, Y. D.; Ramana, C. V.

    2017-08-01

    Cobalt (Co) nanoparticles (NPs) were produced by a simple, one step hydrothermal method with the capping of oleic acid. Intrinsic structural, physiochemical and magnetic properties of Co NPs were investigated and demonstrated their applicability in biomedicine. X-ray diffraction, Raman spectroscopy and infrared (IR) spectroscopic studies confirm the single phase Co NPs with a high structural quality. The IR data revealed the capping of oleic acid via monodentate interaction. Small angle scattering studies suggest the existence of sticky hard sphere type of interaction among the Co NPs because of magnetic interaction which is further evidenced by electron microscopy imaging analyses. The Co NPs exhibit a ferromagnetic character over a wide range of temperature (20-300 K). The temperature dependence of magnetic parameters namely, saturation magnetization, remanent magnetization, coercivity and reduced remanent magnetization were determined and correlated with structure of Co NPs. The Cytotoxicity studies demonstrate that these Co NPs exhibit the mild anti-proliferative character against the cancer cells (cisplatin resistant ovarian cancer (A2780/CP70)) and safe nature towards the normal cells. Haemolytic behavior of human red blood cells (RBC) revealed (<5%) haemolysis signifying the compatibility of Co NPs with human RBC which is an essential feature in vivo biomedical applications without creating any harmful effects in the human blood stream.

  10. F14512, a polyamine-vectorized inhibitor of topoisomerase II, exhibits a marked anti-tumor activity in ovarian cancer.

    PubMed

    Thibault, Benoît; Clement, Emily; Zorza, Grégoire; Meignan, Samuel; Delord, Jean-Pierre; Couderc, Bettina; Bailly, Christian; Narducci, Fabrice; Vandenberghe, Isabelle; Kruczynski, Anna; Guilbaud, Nicolas; Ferré, Pierre; Annereau, Jean-Philippe

    2016-01-01

    Epithelial ovarian cancer is the fourth cause of death among cancer-bearing women and frequently associated with carboplatin resistance, underlining the need for more efficient and targeted therapies. F14512 is an epipodophylotoxin-core linked to a spermine chain which enters cells via the polyamine transport system (PTS). Here, we investigate this novel concept of vectorization in ovarian cancer. We compared the effects of etoposide and F14512 on a panel of five carboplatin-sensitive or resistant ovarian cancer models. We assessed the incorporation of F17073, a spermine-linked fluorescent probe, in these cells and in 18 clinical samples. We then showed that F14512 exhibits a high anti-proliferative and pro-apoptotic activity, particularly in cells with high levels of F17073 incorporation. Consistently, F14512 significantly inhibited tumor growth compared to etoposide, in a cisplatin-resistant A2780R subcutaneous model, at a dose of 1.25 mg/kg. In addition, ex vivo analysis indicated that 15 out of 18 patients presented a higher F17073 incorporation into tumor cells compared to normal cells. Overall, our data suggest that F14512, a targeted drug with a potent anti-tumor efficacy, constitutes a potential new therapy for highly PTS-positive and platinum-resistant ovarian cancer-bearing patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase ( p < 0.05) in expression of apoptotic genes ( Bcl2, Bax, p53) and 13.2- to 27.1-fold increase ( p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  12. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer.

    PubMed

    Kakar, Sham S; Worth, Christopher A; Wang, Zhenglong; Carter, Kelsey; Ratajczak, Mariusz; Gunjal, Pranesh

    Ovarian cancer is a highly aggressive and deadly disease. Currently, the treatment for ovarian cancer entails cytoreductive surgery followed by chemotherapy, mainly cisplatin or carboplatin combined with paclitaxel. Although this regimen is initially effective in a high percentage of cases, unfortunately, after few months of initial treatment, tumor relapse occurs due to platinum-resistance. DOXIL (liposomal preparation of doxorubicin) is a choice of drug for recurrent ovarian cancer. However, its response rate is very low and is accompanied by myocardial toxicity. Resistance to chemotherapy and recurrence of cancer is primarily attributed to the presence of cancer stem cells (CSCs), a small population of cells present in cancer. Effect of DOXIL and withaferin A (WFA), both alone and in combination, was investigated on cell proliferation of ovarian cancer cell line A2780 and tumor growth in SCID mice bearing i.p. ovarian tumors. ALDH1 cells were isolated from A2780 using cell sorter, and effect of DOXIL and WFA both alone and in combination on tumorigenic function of ALDH1 was studied using spheroids formation assays in vitro. Western blots were performed to examine the expression of ALDH1 and Notch 1 genes. In our studies, we showed, for the first time, that DOXIL when combined with withaferin A (WFA) elicits synergistic effect on inhibition of cell proliferation of ovarian cancer cells and inhibits the expression of ALDH1 protein, a marker for ALDH1 positive cancer stem cells (CSCs), and Notch1, a signaling pathway gene required for self-renewal of CSCs. Inhibition of expression of both ALDH1 and Notch1 genes by WFA was found to be dose dependent, whereas DOXIL (200 nM) was found to be ineffective. SCID mice, bearing i.p. ovarian tumors, were treated with a small dose of DOXIL (2 mg/kg) in combination with a sub-optimal dose of WFA (2 mg/kg) which resulted in a highly significant (60% to 70%) reduction in tumor growth, and complete inhibition of metastasis

  13. Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells.

    PubMed

    Zhou, Yuanyuan; Zheng, Xia; Lu, Jiaojiao; Chen, Wei; Li, Xu; Zhao, Le

    2018-01-01

    The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory network mediating the anti-Warburg effect of 20(S)-Rg3 was largely unknown. microRNA deep sequencing was performed to identify the 20(S)-Rg3-influenced microRNAs in SKOV3 ovarian cancer cells. miR-532-3p was overexpressed by mimic532-3p transfection in SKOV3 and A2780 cells or inhibited by inhibitor532-3p transfection in 20(S)-Rg3-treated cells to examine the changes in HK2 and PKM2 expression, glucose consumption, lactate production and cell growth. Dual-luciferase reporter assay was conducted to verify the direct binding of miR-532-3p to HK2. The methylation status in the promoter region of pre-miR-532-3p gene was examined by methylation-specific PCR. Expression changes of key molecules controlling DNA methylation including DNMT1, DNMT3A, DNMT3B, and TET1-3 were examined in 20(S)-Rg3-treated cells. DNMT3A was overexpressed in 20(S)-Rg3-treated cells to examine its influence on miR-532-3p level, HK2 and PKM2 expression, glucose consumption and lactate production. Deep sequencing results showed that 11 microRNAs were increased and 9 microRNAs were decreased by 20(S)-Rg3 in SKOV3 cells, which were verified by qPCR. More than 2-fold increase of miR-532-3p was found in 20(S)-Rg3-treated SKOV3 cells. Forced expression of miR-532-3p reduced HK2 and PKM2 expression, glucose consumption and lactate production in SKOV3 and A2780 ovarian cancer cells. Inhibition of miR-532-3p antagonized the suppressive effect of 20(S)-Rg3 on HK2 and PKM2 expression, glucose consumption and lactate production in ovarian cancer cells. Dual-luciferase reporter assay showed that miR-532-3p directly suppressed HK2 rather than PKM2. miR-532-3p level was controlled by the methylation in the promoter region of its host

  14. New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities.

    PubMed

    Abd El-All, Amira S; Magd-El-Din, Asmaa A; Ragab, Fatma A F; ElHefnawi, Mahmoud; Abdalla, Mohamed M; Galal, Shadia A; El-Rashedy, Ahmed A

    2015-07-01

    A newly synthesized series of anticancer compounds comprising thiazolo[3,2-a]pyrimidine derivatives 6a-q bearing a benzimidazole moiety was produced via a one-pot reaction of N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-2-cyanoacetamide 5 with 2-aminothiazole and an appropriate aromatic aldehyde. Compound 7 was obtained via the reaction of 4-(1H-benzo[d]imidazol-2yl)benzenamide 1 with carbon disulphide and methyl iodide in the presence of concentrated aqueous solution of NaOH, then treated with o-phenylenediamine to give N-(4-1H-benzo[d]imidazol-2-yl)phenyl)-1H-benzo[d]imidazol-2-amine 8. The structures of the newly synthesized compounds were confirmed by analytical and spectroscopic measurements (IR, MS, and (1) H NMR). The synthesized products were screened and studied for their in vitro antitumor activity against three human cancer cell lines (namely colorectal cancer cell line HCT116, human liver cancer cell line HepG2, and human ovarian cancer cell line A2780) and their Aurora A kinase and KSP inhibitory activities. All newly synthesized compounds revealed marked results comparable with the standard drug CK0106023. The compounds 6e and 6k of the thiazolopyrimidine derivatives were the most active compounds when tested against the three cell lines in comparison with the standard drug CK0106023, and showed potent dual KSP and Aurora A kinase inhibition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Physicochemical Properties, Antioxidant and Cytotoxic Activities of Crude Extracts and Fractions from Phyllanthus amarus

    PubMed Central

    Nguyen, Van Tang; Sakoff, Jennette A.; Scarlett, Christopher J.

    2017-01-01

    Background: Phyllanthus amarus (P. amarus) has been used as a medicinal plant for the prevention and treatment of chronic ailments such as diabetes, hepatitis, and cancer. Methods: The physicochemical properties, antioxidant and cytotoxic activities of crude extracts and fractions from P. amarus were determined using spectrophotometric method. Results: The P. amarus methanol (PAM) extract had lower levels of residual moisture (7.40%) and water activity (0.24) and higher contents of saponins, phenolics, flavonoids, and proanthocyanidins (1657.86 mg escin equivalents, 250.45 mg gallic acid equivalents, 274.73 mg rutin equivalents and 61.22 mg catechin equivalents per g dried extract, respectively) than those of the P. amarus water (PAW) extract. The antioxidant activity of PAM extract was significantly higher (p < 0.05) than that of the PAW extract, PAM fractions, and phyllanthin (known as a major compound in the P. amarus). Higher cytotoxic activity of PAM extract based on MTT assay on different cell lines including MiaPaCa-2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), MCF-7 (breast), MCF-10A (normal breast), and U87, SJ-G2, SMA (glioblastoma) was observed in comparison to the PAW extract and PAM fractions. The cytotoxic potential of the PAW extract (200 μg/mL), based on the CCK-8 assay on a pancreatic cancer cell line (MiaCaPa2) was significantly lower (p < 0.05) than those of gemcitabine (50 nM) and a saponin-enriched extract from quillajia bark at 200 μg/mL (a commercial product), but was significantly higher than that of phyllanthin at 2 μg/mL. Conclusions: The results achieved from this study reveal that the PA extracts are a potential source for the development of natural antioxidant products and/or novel anticancer drugs. PMID:28930257

  16. Functional Significance of VEGFR-2 on Ovarian Cancer Cells

    PubMed Central

    Spannuth, Whitney A.; Nick, Alpa M.; Jennings, Nicholas B.; Armaiz-Pena, Guillermo N.; Mangala, Lingegowda S.; Danes, Christopher G.; Lin, Yvonne G.; Merritt, William M.; Thaker, Premal H.; Kamat, Aparna A.; Han, Liz Y.; Tonra, James R.; Coleman, Robert L.; Ellis, Lee M.; Sood, Anil K.

    2009-01-01

    Vascular endothelial growth factor receptor (VEGFR) has recently been discovered on ovarian cancer cells, but its functional significance is unknown and is the focus of the current study. By protein analysis, A2780-par and HeyA8 ovarian cancer cell lines expressed VEGFR-1 and HeyA8 and SKOV3ip1 expressed VEGFR-2. By in situ hybridization (ISH), 85% of human ovarian cancer specimens showed moderate to high VEGFR-2 expression while only 15% showed moderate to high VEGFR-1 expression. By immunofluorescence, little or no VEGFR-2 was detected in normal ovarian surface epithelial cells, whereas expression was detected in 75% of invasive ovarian cancer specimens. To differentiate between the effects of tumor versus host expression of VEGFR, nude mice were injected with SKOV3ip1 cells and treated with either human VEGFR-2 specific antibody (1121B), murine VEGFR-2 specific antibody (DC101), or the combination. Treatment with 1121B reduced SKOV3ip1 cell migration by 68% (p < 0.01) and invasion by 72% (p < 0.01), but exposure to VEGFR-1 antibody had no effect. Treatment with 1121B effectively blocked VEGF-induced phosphorylation of p130Cas. In vivo, treatment with either DC101 or 1121B significantly reduced tumor growth alone and in combination in the SKOV3ip1 and A2774 models. Decreased tumor burden after treatment with DC101 or 1121B correlated with increased tumor cell apoptosis, decreased proliferative index, and decreased microvessel density. These effects were significantly greater in the combination group (p<0.001). We show functionally active VEGFR-2 is present on most ovarian cancer cells. The observed anti-tumor activity of VEGF-targeted therapies may be mediated by both anti-angiogenic and direct anti-tumor effects. PMID:19058181

  17. Targeting Aurora Kinase with MK-0457 Inhibits Ovarian Cancer Growth

    PubMed Central

    Lin, Yvonne G.; Immaneni, Anand; Merritt, William M.; Mangala, Lingegowda S.; Kim, SeungWook; Shahzad, Mian M.K.; Tsang, Yvonne T.M.; Armaiz-Pena, Guillermo N.; Lu, Chunhua; Kamat, Aparna A.; Han, Liz Y.; Spannuth, WhitneyA.; Nick, Alpa M.; Landen, Charles N.; Wong, Kwong K.; Gray, Michael J.; Coleman, Robert L.; Bodurka, Diane C.; Brinkley, William R.; Sood, Anil K.

    2009-01-01

    Purpose The Aurora kinase family plays pivotal roles in mitotic integrity and cell cycle.We sought to determine the effects of inhibiting Aurora kinase on ovarian cancer growth in an orthotopic mouse model using a small molecule pan-Aurora kinase inhibitor, MK-0457. Experimental Design We examined cell cycle regulatory effects and ascertained the therapeutic efficacy of Aurora kinase inhibition both alone and combined with docetaxel using both in vitro and in vivo ovarian cancer models. Results In vitro cytotoxicity assays with HeyA8 and SKOV3ip1 cells revealed >10-fold greater docetaxel cytotoxicity in combination with MK-0457. After in vivo dose kinetics were determined using phospho-histone H3 status, therapy experiments with the chemosensitive HeyA8 and SKOV3ip1as well as the chemoresistant HeyA8-MDR and A2780-CP20 models showed that Aurora kinase inhibition alone significantly reduced tumor burden compared with controls (P values < 0.01). Combination treatment with docetaxel resulted in significantly improved reduction in tumor growth beyond that afforded by docetaxel alone (P ≤ 0.03). Proliferating cell nuclear antigen immunohistochemistry revealed that MK-0457 alone and in combination with docetaxel significantly reduced cellular proliferation (P values < 0.001). Compared with controls, treatment with MK-0457 alone and in combination with docetaxel also significantly increased tumor cell apoptosis by ∼3-fold (P < 0.01). Remarkably, compared with docetaxel monotherapy, MK-0457 combined with docetaxel resulted in significantly increased tumor cell apoptosis. Conclusions Aurora kinase inhibition significantly reduces tumor burden and cell proliferation and increases tumor cell apoptosis in this preclinical orthotopic model of ovarian cancer. The role of Aurora kinase inhibition in ovarian cancer merits further investigation in clinical trials. PMID:18765535

  18. Monepantel induces autophagy in human ovarian cancer cells through disruption of the mTOR/p70S6K signalling pathway

    PubMed Central

    Bahrami, Farnaz; Pourgholami, Mohammad H; Mekkawy, Ahmed H; Rufener, Lucien; Morris, David L

    2014-01-01

    We have recently shown that the novel anthelmintic drug monepantel (MPL) inhibits growth, proliferation and colony formation, arrests the cell cycle and induces cleavage of PARP-1 in ovarian cancer cell lines. Here we report on the mechanism behind the anticancer properties of MPL. The cytotoxic effect of MPL on ovarian cancer cells (OVCAR-3 and A2780) was investigated employing a panel of tests used for the detection of apoptosis and autophagy. Apoptosis and autophagy were defined by caspase activity, DNA-laddering, Annexin-V and acridine orange (AO) staining. Autophagy markers such as LC3B, SQSTM1/p62 and mammalian target of rapamycin (mTOR) pathway related proteins were assessed by western blotting and ELISA techniques. MPL did not activate caspases 3 or 8, nor did it alter the percentage of Annexin V positive stained cells. Failure to cause DNA laddering and the inability of z-VAD-fmk to block the MPL antiproliferative effects led to the ruling out of apoptosis as the mechanism behind MPL-induced cell death. On the other hand, accumulation of acidic vacuoles with distinct chromatin morphology and an increase in punctuate localization of green fluorescent protein-LC3B, and MPL-induced changes in the expression of SQSTM1/p62 were all indicative of MPL-induced autophagy. Consistent with this, we found inhibition of mTOR phosphorylation leading to suppression of the mTOR/p70S6K signalling pathway. Our findings provide the first evidence to show that MPL triggers autophagy through the deactivation of mTOR/p70S6K signalling pathway. PMID:25232497

  19. Triterpenoidal saponins from the fruits of Gleditsia caspica with proapoptotic properties.

    PubMed

    Shaheen, Usama; Ragab, Ehab A; Abdalla, Ashraf N; Bader, Ammar

    2018-01-01

    Three previously undescribed oleanane-type triterpenoidal saponins named caspicaosides L-N were isolated from the fruits of Gleditsia caspica Desf. The aglycons of these saponins were echinocystic acid, erythrodiol and 12-oleanene-3,28,30-triol. Caspicaoside L is a bisdesmosidic saponin acylated with two monoterpenic acids. It has a disaccharide moiety made up of glucose and arabinose attached to C-3 and pentasaccharide moiety linked to C-28 made up of one glucose, 2 xyloses, one inner rhamnose and one terminal rhamnose which was acylated with two identical monoterpenic acids. Caspicaoside M is a monodesmosidic saponin with a trisaccharide moiety at C-3 made up of glucose, xylose and arabinose, while caspicaoside N has a disaccharide moiety at C-3 made up of glucose and arabinose. Their structures were determined by extensive 1D and 2D (DQF-COSY, HSQC, TOCSY, 1 H- 13 C-HSQC-TOCSY, HMBC, ROESY, NOESY) NMR, HRESIMS analyses and chemical degradation. The cytotoxicity MTT-based assay showed that caspicaosides M, N and L, respectively, exhibited high cytotoxic activity with IC 50  ≤ 10 μM (72 h) at least against one of the three used cancer cell lines, MCF 7, A2780 and HT 29; and were 2-34 folds selective against the normal fibroblasts (MRC 5). All compounds also induced apoptosis and caused G 2 /M arrest in MCF 7 cells (24 h); thus showing pro-apoptotic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties† †Electronic supplementary information (ESI) available: Experimental procedures for syntheses and biological evaluation, supplementary Fig. 1–8 and Tables 1–6, X-ray crystallographic data, cif file. CCDC 1527404. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04213b

    PubMed Central

    Wang, Yong; Dansette, Patrick M.; Pigeon, Pascal; McGlinchey, Michael J.

    2017-01-01

    Organometallic compounds bearing the redox motif [ferrocenyl-ene-phenol] have very promising antiproliferative properties which have been further improved by incorporating pertinent substituents able to engender new mechanisms. Here we show that novel ferrociphenols bearing a hydroxypropyl chain exhibit strong antiproliferative effects, in most cases much better than those of cisplatin, tamoxifen, or of previously described ferrociphenols devoid of this terminal OH. This is illustrated, in the case of one of these compounds, by its IC50 values of 110 nM for MDA-MB-231 triple negative breast cancer cells and of 300 nM for cisplatin-resistant A2780cisR human ovarian cancer cells, and by its GI50 values lower than 100 nM towards a series of melanoma and renal cancer cell lines of the NCI-60 panel. Interestingly, oxidative metabolism of these hydroxypropyl-ferrociphenols yields two kinds of quinone methides (QMs) that readily react with various nucleophiles, such as glutathione, to give 1,6- and 1,8-adducts. Protonation of these quinone methides generates numerous reactive metabolites leading eventually to many rearrangement and cleavage products. This unprecedented and fully characterized metabolic profile involving a wide range of electrophilic metabolites that should react with cell macromolecules may be linked to the remarkable profile of antiproliferative activities of this new series. Indeed, the great diversity of unexpected reactive metabolites found upon oxidation will allow them to adapt to various situations present in the cancer cell. These data initiate a novel strategy for the rational design of anticancer molecules, thus opening the way to new organometallic potent anticancer drug candidates for the treatment of chemoresistant cancers. PMID:29629075

  1. IND2, a pyrimido[1”,2”:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells

    PubMed Central

    Karthikeyan, Chandrabose; Lee, Crystal; Moore, Joshua; Mittal, Roopali; Suswam, Esther A.; Abbott, Kodye L; Pondugula, Satyanarayana R.; Manne, Upender; Narayanan, Narayanan K.; Trivedi, Piyush; Tiwari, Amit K.

    2014-01-01

    Naturally occurring condensed quinolines have anticancer properties. In efforts to find active analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido[1”,2”:1,5]pyrazolo[3,4-b]quinoline framework (IND series). The compounds were evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145), breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2) cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse embryonic fibroblast (NIH/3T3), and human embryonic kidney cells (HEK293). IND-2, a 4-chloro-2-methyl pyrimido[1”,2”:1,5]pyrazolo[3,4-b]quinoline, exhibited more than tenfold selectivity and potent cytotoxic activity against colon cancer cells relative to the other cancer and non-cancer cells. With five additional colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo), IND-2 had similar cytotoxicity and selectivity, and submicromolar concentrations caused changes in the morphology of HCT-116 and HCT-15 cells. IND-2 did not activate the transactivating function of the pregnane X receptor (PXR), indicating that it does not induce PXR-regulated ABCB1 or ABCG2 transporters. Indeed, IND-2 was not a substrate of ABCB1 or ABCG2, and it induced cytotoxicity in HEK293 cells overexpressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. IND-2 was cytotoxic to resistant colon carcinoma S1-MI-80 cells, approximately three- and fivefold more than SN-38 and topotecan, respectively. In HCT-116 colon cancer cells, IND-2 produced concentration-dependent changes in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation. These findings suggest that, by increasing apoptosis, IND-2 has potential therapeutic efficacy for colorectal cancer. PMID:25537531

  2. Regulation of human MutYH DNA glycosylase by the E3 ubiquitin ligase mule.

    PubMed

    Dorn, Julia; Ferrari, Elena; Imhof, Ralph; Ziegler, Nathalie; Hübscher, Ulrich

    2014-03-07

    Oxidation of DNA is a frequent and constantly occurring event. One of the best characterized oxidative DNA lesions is 7,8-dihydro-8-oxoguanine (8-oxo-G). It instructs most DNA polymerases to preferentially insert an adenine (A) opposite 8-oxo-G instead of the appropriate cytosine (C) thus showing miscoding potential. The MutY DNA glycosylase homologue (MutYH) recognizes A:8-oxo-G mispairs and removes the mispaired A giving way to the canonical base excision repair that ultimately restores undamaged guanine (G). Here we characterize for the first time in detail a posttranslational modification of the human MutYH DNA glycosylase. We show that MutYH is ubiquitinated in vitro and in vivo by the E3 ligase Mule between amino acids 475 and 535. Mutation of five lysine residues in this region significantly stabilizes MutYH, suggesting that these are the target sites for ubiquitination. The endogenous MutYH protein levels depend on the amount of expressed Mule. Furthermore, MutYH and Mule physically interact. We found that a ubiquitination-deficient MutYH mutant shows enhanced binding to chromatin. The mutation frequency of the ovarian cancer cell line A2780, analyzed at the HPRT locus can be increased upon oxidative stress and depends on the MutYH levels that are regulated by Mule. This reflects the importance of tightly regulated MutYH levels in the cell. In summary our data show that ubiquitination is an important regulatory mechanism for the essential MutYH DNA glycosylase in human cells.

  3. Ascites interferes with the activity of lurbinectedin and trabectedin: Potential role of their binding to alpha 1-acid glycoprotein.

    PubMed

    Erba, E; Romano, M; Gobbi, M; Zucchetti, M; Ferrari, M; Matteo, C; Panini, N; Colmegna, B; Caratti, G; Porcu, L; Fruscio, R; Perlangeli, M V; Mezzanzanica, D; Lorusso, D; Raspagliesi, F; D'Incalci, M

    2017-11-15

    Trabectedin and its analogue lurbinectedin are effective drugs used in the treatment of ovarian cancer. Since the presence of ascites is a frequent event in advanced ovarian cancer we asked the question whether ascites could modify the activity of these compounds against ovarian cancer cells. The cytotoxicity induced by trabectedin or lurbinectedin against A2780, OVCAR-5 cell lines or primary culture of human ovarian cancer cells was compared by performing treatment in regular medium or in ascites taken from either nude mice or ovarian cancer patients. Ascites completely abolished the activity of lurbinectedin at up to 10nM (in regular medium corresponds to the IC90), strongly reduced that of trabectedin, inhibited the cellular uptake of lurbinectedin and, to a lesser extent, that of trabectedin. Since α1-acid glycoprotein (AGP) is present in ascites at relatively high concentrations, we tested if the binding of the drugs to this protein could be responsible for the reduction of their activity. Adding AGP to the medium at concentration range of those found in ascites, we reproduced the anticytotoxic effect of ascites. Erythromycin partially restored the activity of the drugs, presumably by displacing them from AGP. Equilibrium dialysis experiments showed that both drugs bind AGP, but the affinity of binding of lurbinectedin was much greater than that of trabectedin. KD values are 8±1.7 and 87±14nM for lurbinectedin and trabectedin, respectively. The studies intimate the possibility that AGP present in ascites might reduce the activity of lurbinectedin and to a lesser extent of trabectedin against ovarian cancer cells present in ascites. AGP plasma levels could influence the distribution of these drugs and thus they should be monitored in patients receiving these compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Li, Jing; Guo, Shuju; Su, Hua; Fan, Xiao

    2009-05-01

    To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 μg/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.

  5. Metabolomics Analysis of Metabolic Effects of Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibition on Human Cancer Cells

    PubMed Central

    Tolstikov, Vladimir; Nikolayev, Alexander; Dong, Sucai; Zhao, Genshi; Kuo, Ming-Shang

    2014-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide–consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry–based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level. PMID:25486521

  6. ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1

    PubMed Central

    Renes, Johan; de Vries, Elisabeth G E; Nienhuis, Edith F; Jansen, Peter L M; Müller, Michael

    1999-01-01

    The present study was performed to investigate the ability of the multidrug resistance protein (MRP1) to transport different cationic substrates in comparison with MDR1-P-glycoprotein (MDR1). Transport studies were performed with isolated membrane vesicles from in vitro selected multidrug resistant cell lines overexpressing MDR1 (A2780AD) or MRP1 (GLC4/Adr) and a MRP1-transfected cell line (S1(MRP)). As substrates we used 3H-labelled derivatives of the hydrophilic monoquaternary cation N-(4′,4′-azo-n-pentyl)-21-deoxy-ajmalinium (APDA), the basic drug vincristine and the more hydrophobic basic drug daunorubicin. All three are known MDR1-substrates. MRP1 did not mediate transport of these substrates per se. In the presence of reduced glutathione (GSH), there was an ATP-dependent uptake of vincristine and daunorubicin, but not of APDA, into GLC4/Adr and S1(MRP) membrane vesicles which could be inhibited by the MRP1-inhibitor MK571. ATP- and GSH-dependent transport of daunorubicin and vincristine into GLC4/Adr membrane vesicles was inhibited by the MRP1-specific monoclonal antibody QCRL-3. MRP1-mediated daunorubicin transport rates were dependent on the concentration of GSH and were maximal at concentrations ⩾10 mM. The apparent KM value for GSH was 2.7 mM. Transport of daunorubicin in the presence of 10 mM GSH was inhibited by MK571 with an IC50 of 0.4 μM. In conclusion, these results demonstrate that MRP1 transports vincristine and daunorubicin in an ATP- and GSH-dependent manner. APDA is not a substrate for MRP1. PMID:10188979

  7. Chemosensitizing effects of metformin on cisplatin- and paclitaxel-resistant ovarian cancer cell lines.

    PubMed

    Dos Santos Guimarães, Isabella; Ladislau-Magescky, Taciane; Tessarollo, Nayara Gusmão; Dos Santos, Diandra Zipinotti; Gimba, Etel Rodrigues Pereira; Sternberg, Cinthya; Silva, Ian Victor; Rangel, Leticia Batista Azevedo

    2017-11-21

    Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy. Primary cytoreductive surgery with adjuvant taxane-platinum chemotherapy is the standard treatment to fight ovarian cancer, however, their side effects are severe, and chemoresistance emerges at high rates. Therefore, EOC clinic urges for novel treatment strategies to reverse chemoresistance and to improve the survival rates. Metformin has been shown to act in synergy with certain anti-cancer agents, overcoming chemoresistance in various types of tumors. This paper aims to investigate the use of metformin as a new treatment option for cisplatin- and paclitaxel-resistant ovarian cancer. The effects of metformin alone or in combination with conventional drugs on resistant EOC cell lines were investigated using the MTT assay for cell proliferation; Flow Cytometry analysis for cell cycle and the mRNA expression was analyzed using the real-time PCR technique. We found that metformin exhibited antiproliferative effects in paclitaxel-resistant A2780-PR, and in cisplatin-resistant ACRP cell lines. The combined therapy containing conventional drugs and metformin improved the effect of the treatment in cell proliferation rate, especially in the resistant cells. We found that metformin, in clinical relevant doses, could significantly reduce the mRNA expression of inflammatory cytokines and NF-κB signaling pathway. Taken together, our observations suggest that metformin inhibits the inflammatory pathway induced by paclitaxel and cisplatin treatment. Furthermore, metformin in combination with paclitaxel or cisplatin improved the sensitivity in drug-resistant ovarian cancer cells. Therefore, metformin may be beneficial treatment strategy, particularly in patients with tumors refractory to platinum and taxanes. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. UCHL1 Is a Putative Tumor Suppressor in Ovarian Cancer Cells and Contributes to Cisplatin Resistance

    PubMed Central

    Jin, Chengmeng; Yu, Wei; Lou, Xiaoyan; Zhou, Fan; Han, Xu; Zhao, Na; Lin, Biaoyang

    2013-01-01

    Ubiquitin carboxyl terminal hydrolase 1 (UCHL1) catalyzes the hydrolysis of COOH-terminal ubiquityl esters and amides. It has been reported as either an oncogene or a tumor suppressor in cancers. However, UCHL1's role in ovarian cancer is still unclear. Therefore, we conducted an analysis to understand the role of UCHL1 in ovarian cancer. Firstly, we detected UCHL1 promoter methylation status in 7 ovarian cancer cell lines. 4 of them with UCHL1 silencing showed heavy promoter methylation while the other 3 with relative high UCHL1 expression showed little promoter methylation. Then we reduced UCHL1 expression in ovarian cancer cell line A2780 and IGROV1 and found that inhibition of UCHL1 promoted cell proliferation by increasing cells in S phases of cell cycle. Knockdown of UCHL1 also reduced cell apoptosis and contributed to cisplatin resistance. Furthermore, the expression level of UCHL1 in several ovarian cancer cell lines correlated negatively with their cisplatin resistance levels. Microarray data revealed that UCHL1 related genes are enriched in apoptosis and cell death gene ontology (GO) terms. Several apoptosis related genes were increased after UCHL1 knockdown, including apoptosis regulator BCL2, BCL11A, AEN and XIAP. Furthermore, we identified up-regulation of Bcl-2 and pAKT as well as down-regulation of Bax in UCHL1 knockdown cells, while no significant alteration of p53 and AKT1 was found. This study provides a new and promising strategy to overcome cisplatin resistance in ovarian cancer via UCHL1 mediated pathways. PMID:24155778

  9. IL6 induces TAM resistance via kinase-specific phosphorylation of ERα in OVCA cells.

    PubMed

    Wang, Yue; Niu, Xiu Long; Guo, Xiao Qin; Yang, Jing; Li, Ling; Qu, Ye; Xiu Hu, Cun; Mao, Li Qun; Wang, Dan

    2015-06-01

    About 40-60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone. © 2015 Society for Endocrinology.

  10. Physicochemical, Antioxidant, and Cytotoxic Properties of Xao Tam Phan (Paramignya trimera) Root Extract and Its Fractions.

    PubMed

    Nguyen, Van Tang; Sakoff, Jennette A; Scarlett, Christopher J

    2017-04-01

    Xao tam phan (Paramignya trimera (Oliv.) Guillaum) has been used as a medicinal plant for cancer prevention and treatment in recent years. The objective of this study was to determine the physicochemical, antioxidant, and cytotoxic properties of crude P. trimera root (PTR) extract and its fractions using MeOH as a solvent and microwave-assisted extraction as an advanced technique for preparation of the PTR extract. The results showed that the PTR extract had high contents of saponins, phenolics, flavonoids, and proanthocyanidins (7731.05 mg escin equiv. (EE), 238.13 mg gallic acid equiv. (GAE), 81.49 mg rutin equiv., and 58.08 mg catechin equiv. (CE)/g dried extract, resp.). Antioxidant activity of PTR extract was significantly higher (P < 0.05) than those of four its fractions and ostruthin, a key bioactive compound in the P. trimera, while potent cytotoxic capacity of PTR extract on various cancer cell lines in terms of MiaPaCa-2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), MCF-7 (breast), MCF-10A (normal breast), and U87, SJ-G2, SMA (glioblastoma) was observed with GI 50 values ranging from 15 to 32 μg/ml. Cytotoxic potential on pancreatic cancer cells of PTR extract (100 - 200 μg/ml) was significantly higher (P < 0.05) than those of its four fractions (50 μg/ml), ostruthin (20 μg/ml) and gemcitabine (50 nm), and being comparable to a saponin-enriched extract from quillajia bark, a commercial product. Based on the results achieved, we can conclude that the PTR extract is a potential source for application of in the nutraceutical, medical, and pharmaceutical industries. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  11. Synthesis, antiproliferative and apoptotic activities of N-(6(4)-indazolyl)-benzenesulfonamide derivatives as potential anticancer agents.

    PubMed

    Abbassi, Najat; Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Alaoui, Mdaghri; Hajjaji, Abdelouahed; Geffken, Detlef; Aiello, Cinzia; Gangemi, Rosaria; Rosano, Camillo; Viale, Maurizio

    2012-11-01

    Recently, it has been reported that compounds bearing a sulfonamide moiety possess many types of biological activities, including anticancer activity. The present work reports the synthesis and antiproliferative evaluation of some N-(6(4)-indazolyl)benzenesulfonamides and 7-ethoxy-N-(6(4)-indazolyl)benzenesulfonamides. All compounds were evaluated for their in vitro antiproliferative activity against three tumor cell lines: A2780 (human ovarian carcinoma) A549 (human lung adenocarcinoma) and P388 (murine leukemia). The results indicated that sulfonamides 2c, 3c, 6d, 8, 13, 3b and 16 were endowed with a pharmacologically interesting antiproliferative activity with compounds 2c and 3c showing the lower IC(50) (from 0.50 ± 0.09 to 1.83 ± 0.52 μM and from 0.58 ± 0.17 to 5.83 ± 1.83 μM, respectively). Moreover, these indazoles were able to trigger apoptosis through the upregulation of the typical apoptosis markers p53 and bax. As regard to the hypothetic targets of these compounds, a preliminary docking analysis showed that all compounds seemed to interact with β-tubulin, in particular compound 3b that showed the lower Ki. The cytofluorimetric analysis of the cell cycle phases indicates that all compounds, when administered at their IC(75), caused a block in the G2/M phase of the cell cycle with the generation of subpopulations of cells with a number of chromosome >4n. When the IC(50)s were applied we observed a prevalent block in the G0/G1 phase except for compounds 16 and 8 where a partial G2/M block was present with a concomitant decrease of cells in the G0/G1 and S phases of the cell cycle. Altogether these results suggest a possible, but not exclusive, interaction with microtubules. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Cytotoxicity and cellular response mechanisms of water-soluble platinum(II) complexes of lidocaine and phenylcyanamide derivatives.

    PubMed

    Tabrizi, Leila; Chiniforoshan, Hossein

    2017-02-01

    Three new platinum(II) complexes of lidocaine and phenylcyanamide derivative ligands of formula K[Pt(3,5-(NO 2 ) 2 pcyd) 2 (LC)], 1, K[Pt(3,5-(CF 3 ) 2 pcyd) 2 (LC)], 2, K[Pt(3,5-Cl 2 pcyd) 2 (LC)], 3 (LC: lidocaine, 3,5-(NO 2 ) 2 pcyd: 3,5-dinitro phenylcyanamide, 3,5-(CF 3 ) 2 pcyd: 3,5-bis(trifluoromethyl) phenylcyanamide, 3,5-Cl 2 pcyd: 3,5-dichloro phenylcyanamide) have been synthesized and fully characterized. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. The complexes 1-3 revealed a significant in vitro antiproliferative activity against human ovarian carcinoma (A2780), colorectal adenocarcinoma (HT29), breast (MCF-7), liver hepatocellular carcinoma (HepG-2) and lung adenocarcinoma (A549) cancer cell lines. All the complexes are more active than cisplatin and follow the trend 1 > 2 > 3. Mechanistic studies showed that the trend in cytotoxicity of the Pt(II) complexes is mainly consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which consequently results in the loss of mitochondrial membrane potential and apoptosis induction. The complex 1 caused to approximately 80-fold higher DNA platination level with respect to cisplatin. The complexes 1-3 can considerably stimulate the production of hydrogen peroxide in a time-dependent manner. Also, the complexes 1-3 induced an increase in reactive oxygen species (ROS) production that was superior to that induced by antimycin. The complex 1 had the most effect on ROS production in comparison with other complexes.

  13. Human Leukocyte Antigen-Presented Macrophage Migration Inhibitory Factor is a Surface Biomarker and Potential Therapeutic Target for Ovarian Cancer

    PubMed Central

    Patterson, Andrea M; Kaabinejadian, Saghar; McMurtrey, Curtis P; Bardet, Wilfried; Jackson, Ken W; Zuna, Rosemary E; Husain, Sanam; Adams, Gregory P; MacDonald, Glen; Dillon, Rachelle L.; Ames, Harold; Buchli, Rico; Hawkins, Oriana E; Weidanz, Jon A; Hildebrand, William H

    2015-01-01

    T cells recognize cancer cells via human leukocyte antigen (HLA)/peptide complexes and, when disease overtakes these immune mechanisms, immunotherapy can exogenously target these same HLA/peptide surface markers. We previously identified an HLA-A2-presented peptide derived from macrophage migration inhibitory factor (MIF) and generated antibody RL21A against this HLA-A2/MIF complex. The objective of the current study was to assess the potential for targeting the HLA-A2/MIF complex in ovarian cancer. First, MIF peptide FLSELTQQL was eluted from the HLA-A2 of the human cancerous ovarian cell lines SKOV3, A2780, OV90, and FHIOSE118hi and detected by mass spectrometry. By flow cytometry, RL21A was shown to specifically stain these four cell lines in the context of HLA-A2. Next, partially matched HLA-A*02:01+ ovarian cancer (n=27) and normal fallopian tube (n=24) tissues were stained with RL21A by immunohistochemistry to assess differential HLA-A2/MIF complex expression. Ovarian tumor tissues revealed significantly increased RL21A staining compared to normal fallopian tube epithelium (p<0.0001), with minimal staining of normal stroma and blood vessels (p<0.0001 and p<0.001 compared to tumor cells) suggesting a therapeutic window. We then demonstrated the anti-cancer activity of toxin-bound RL21A via the dose-dependent killing of ovarian cancer cells. In summary, MIF-derived peptide FLSELTQQL is HLA-A2-presented and recognized by RL21A on ovarian cancer cell lines and patient tumor tissues, and targeting of this HLA-A2/MIF complex with toxin-bound RL21A can induce ovarian cancer cell death. These results suggest that the HLA-A2/MIF complex should be further explored as a cell-surface target for ovarian cancer immunotherapy. PMID:26719579

  14. PARP inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as assessed by MRS.

    PubMed

    Almeida, Gilberto S; Bawn, Carlo M; Galler, Martin; Wilson, Ian; Thomas, Huw D; Kyle, Suzanne; Curtin, Nicola J; Newell, David R; Maxwell, Ross J

    2017-09-01

    Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy ( 1 H-MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD + ) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild-type (WT) and PARP1 knock-out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1 H-MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD + levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD + levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD + levels in the temozolomide-treated group. The combination of rucaparib and temozolomide did not prevent the NAD + depletion caused by temozolomide treatment. The 1 H-MRS results show that NAD + levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD + would be valuable. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway.

    PubMed

    Yang, Yeong-In; Lee, Kyung-Tae; Park, Hee-Juhn; Kim, Tae Jin; Choi, Youn Seok; Shih, Ie-Ming; Choi, Jung-Hye

    2012-12-01

    Paclitaxel (Taxol) is currently used as the front-line chemotherapeutic agent for several cancers including ovarian carcinoma; however, the drug frequently induces drug resistance through multiple mechanisms. The new strategy of using natural compounds in combination therapies is highly attractive because those compounds may enhance the efficacy of chemotherapy. In this study, we found that tectorigenin, an isoflavonoid isolated from flower of Pueraria thunbergiana, enhanced the growth-inhibitory effect of paclitaxel in paclitaxel-resistant ovarian cancer cells (MPSC1(TR), A2780(TR) and SKOV3(TR)) as well as their naive counterparts. The combination of tectorigenin with paclitaxel resulted in a synergistic apoptosis compared with either agent alone through activation of caspases-3, -8 and -9. Treatment with tectorigenin inhibited the nuclear translocation of NFκB and the expression of NFκB-dependent genes such as FLIP, XIAP, Bcl-2, Bcl-xL and COX-2, which are known to be associated with chemoresistance. In addition, the tectorigenin-paclitaxel combination inhibited the phosphorylation of IκB and IKK and the activation of Akt in paclitaxel-resistant cancer cells. Moreover, tectorigenin-paclitaxel-induced cell growth inhibition was enhanced by pretreatment with the Akt inhibitor LY294002 or overexpression of the dominant negative Akt (Akt-DN), but reduced by overexpression of constitutively activated Akt (Akt-Myr). Furthermore, we found that Akt-Myr, at least in part, reversed tectorigenin-paclitaxel-induced nuclear translocation of NFκB and the phosphorylation of IκB and IKK. These data suggest that tectorigenin could sensitize paclitaxel-resistant human ovarian cancer cells through inactivation of the Akt/IKK/IκB/NFκB signaling pathway, and promise a new intervention to chemosensitize paclitaxel-induced cytotoxicity in ovarian cancer.

  16. Rational design of dicarboxylato platinum(II) complexes with purine-mimetic ligands as novel anticancer agents.

    PubMed

    Hoffmann, Kamil; Wiśniewska, Joanna; Wojtczak, Andrzej; Sitkowski, Jerzy; Denslow, Agnieszka; Wietrzyk, Joanna; Jakubowski, Mateusz; Łakomska, Iwona

    2017-07-01

    Six novel platinum(II) complexes containing purine-mimetic ligands (5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp), 7-isobutyl-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine (ibmtp), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp)) and dicarboxylato ligands (glutarato (glut) or cyclobutane-1,1-dicarboxylato (CBDC)) have been prepared and characterized with multinuclear magnetic resonance ( 1 H, 13 C, 15 N, 195 Pt) NMR, infrared (IR) and X-ray crystallography. Spectroscopic data in solid state and in solution unambiguously confirm the square-planar geometry of Pt(II) with two monodentate N3-bonded 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidine ligands and one O-chelating dicarboxylato ligand. Next, the effect of all the platinum(II) compounds on the viability of normal or cancer cells and their putative mechanisms of action have been investigated. Of the studied platinum(II) complexes, two ([Pt(glut)(dbtp) 2 ] and [Pt(CBDC)(dbtp) 2 ]) overcame the cisplatin resistance in human ovarian tumor cells (A2780cis or OVCAR-3) and arrested the cell cycle at S phase in mice mammary gland cancer cells (4T1), which indicates a mechanism of action different from that of cisplatin. Interestingly, preliminary in vivo toxicity assays revealed that both compounds tested in mice ([Pt(glut)(dbtp) 2 ] 3 and [Pt(CBDC)(dbtp) 2 ] 6) were less toxic in vivo than cisplatin or oxaliplatin. Additionally, compound 6 did not cause myelosuppression and showed over fivefold less accumulation in the liver than its glutarato analog 3. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effects of Noncovalent Platinum Drug–Protein Interactions on Drug Efficacy: Use of Fluorescent Conjugates as Probes for Drug Metabolism

    PubMed Central

    Benedetti, Brad T.; Peterson, Erica J.; Kabolizadeh, Peyman; Martínez, Alberto; Kipping, Ralph; Farrell, Nicholas P.

    2012-01-01

    The overall efficacy of platinum based drugs is limited by metabolic deactivation through covalent drug–protein binding. In this study the factors affecting cytotoxicity in the presence of glutathione, human serum albumin (HSA) and whole serum binding with cisplatin, BBR3464, and TriplatinNC, a “noncovalent” derivative of BBR3464, were investigated. Upon treatment with buthionine sulfoximine (BSO), to reduce cellular glutathione levels, cisplatin and BBR3464-induced apoptosis was augmented whereas TriplatinNC-induced cytotoxicity was unaltered. Treatment of A2780 ovarian carcinoma cells with HSA-bound cisplatin (cisplatin/HSA) and cisplatin preincubated with whole serum showed dramatic decreases in cytotoxicity, cellular accumulation, and DNA adduct formation compared to treatment with cisplatin alone. Similar effects are seen with BBR3464. In contrast, TriplatinNC, the HSAbound derivative (TriplatinNC/HSA), and TriplatinNC pretreated with whole serum retained identical cytotoxic profiles and equal levels of cellular accumulation at all time points. Confocal microscopy of both TriplatinNC-NBD, a fluorescent derivative of TriplatinNC, and TriplatinNC-NBD/HSA showed nuclear/nucleolar localization patterns, distinctly different from the lysosomal localization pattern seen with HSA. Cisplatin-NBD, a fluorescent derivative of cisplatin, was shown to accumulate in the nucleus and throughout the cytoplasmwhile the localization of cisplatin-NBD/HSA was limited to lysosomal regions of the cytoplasm. The results suggest that TriplatinNCcan avoid high levels of metabolic deactivation currently seen with clinical platinum chemotherapeutics, and therefore retain a unique cytotoxic profile after cellular administration. PMID:21548575

  18. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets.

    PubMed

    Baghbani, Fatemeh; Moztarzadeh, Fathollah

    2017-05-01

    Ultrasound-responsive perfluorocarbon nanoemulsions are a class of new multifunctional smart nanocarriers which combine diagnostic properties with therapeutic properties and release their drug payload in a controlled manner in response to ultrasound. Therefore, combination therapy using chemotherapeutic and chemosensitizing agents co-entrapped in these nanocarriers seems beneficial for cancer treatment. In the present study, multifunctional smart alginate/perfluorohexane nanodroplets were developed for co-delivery of doxorubicin and curcumin (a strong chemosensitizer). The nanodroplets with the average particle size of 55.1nm were synthesized via nanoemulsion process. The entrapment efficiency of doxorubicin was 92.3%. To improve curcumin entrapment into the alginate shell, Span 60 was added to the formulation as a co-surfactant and finally curcumin entrapment of about 40% was achieved. Ultrasound-mediated drug release kinetic was evaluated at two different frequencies of 28kHz (low frequency) and 1MHz (high frequency). Low frequency ultrasound resulted in higher triggered drug release from nanodroplets. The nanodroplets showed strong ultrasound contrast via droplet to bubble transition as confirmed via B-mode ultrasound imaging. Enhanced cytotoxicity in adriamycin-resistant A2780 ovarian cancer cells was observed for Dox-Cur-NDs compared to Dox-NDs because of the synergistic effects of doxorubicin and curcumin. However, ultrasound irradiation significantly increased the cytotoxicity of Dox-Cur-NDs. Finally, in vivo ovarian cancer treatment using Dox/Cur-NDs combined with ultrasound irradiation resulted in efficient tumor regression. According to the present study, nanotherapy of multidrug resistant human ovarian cancer using ultrasound responsive doxorubicin/curcumin co-loaded alginate-shelled nanodroplets combined with ultrasound irradiation could be a promising modality for the future of cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Diosgenin-3-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranoside obtained as a new anticancer agent from Dioscorea futschauensis induces apoptosis on human colon carcinoma HCT-15 cells via mitochondria-controlled apoptotic pathway.

    PubMed

    Wang, San-Long; Cai, Bing; Cui, Cheng-Bin; Liu, Hong-Wei; Wu, Chun-Fu; Yao, Xin-Sheng

    2004-06-01

    Diosgenin-3-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranoside (DRG) is a well-known pentacyclic triterpene glycoside newly isolated from the rhizomes of Dioscorea futschauensis R. Kunth (Dioscoreaceae) by our group. In the present work, the inhibitory effect of DRG on the cell proliferation of human cancer cell lines was examined to reveal for the first time that DRG shows stronger anticancer activity than that of the positive control cisplatin. DRG inhibited the proliferation of human cancer cells, A431, A2780, A549, K562, and HCT-15, with IC50 (micromol L(-1)) values of 9.33 +/- 0.22, 18.7 +/- 0.16, 9.98 +/- 0.38, 6.44 +/- 0.10, and 5.86 +/- 0.14 respectively. It was then found, by morphological observation, "DNA ladder" detection and flow cytometric analysis, that DRG exerts its anticancer effect through inducing apoptosis on HCT-15 cells. Furthermore, it has been demonstrated that DRG triggers a mitochondria-controlled apoptotic pathway to induce apoptosis on HCT-15 cells, which involves the reduction of the mitochondrial potential (deltapsim), the release of cytochrome c from mitochondria into the cytosol, and the down-regulation of the ratio of Bcl-2/Bax expression level. The present results reasonably suggest that regulating the balance of Bcl-2/Bax expression level plays a key role in the DRG-induced apoptosis. Such findings provide novel knowledge to elucidate the biological properties of DRG, even though DRG was discovered early in the late 1960s. These results suggest that DRG may be a good candidate as a chemotherapeutic agent to treat human colon carcinoma.

  20. Modified filter-aided sample preparation (FASP) method increases peptide and protein identifications for shotgun proteomics.

    PubMed

    Ni, Mao-Wei; Wang, Lu; Chen, Wei; Mou, Han-Zhou; Zhou, Jie; Zheng, Zhi-Guo

    2017-01-30

    Mass spectrometry (MS)-based protein identification depends mainly on protein extraction and digestion. Although sodium dodecyl sulfate (SDS) can preclude enzymatic digestion and interfere with MS analysis, it is still the most widely used surfactant in these steps. To overcome these disadvantages, a SDS-compatible proteomic technique for SDS removal prior to MS-based analyses was developed, namely filter-aided sample preparation (FASP). Herein, based on the effectiveness of sodium deoxycholate and a detergent removal spin column, we developed a modified FASP (mFASP) method and compared its overall performance, total number of peptides and proteins identified for shotgun proteomic experiments with that of the FASP method. Identification of 4570 ± 392 and 9139 ± 317 peptides and description of 862 ± 46 and 1377 ± 33 protein groups with two or more peptides from the ovarian cancer cell line A2780 was accomplished by FASP and mFASP methods, respectively. The mFASP method (21.2 ± 0.2%) had higher average peptide to protein coverage than FASP method (13.2 ± 0.5%). More hydrophobic peptides were identified by mFASP than by FASP, as indicated by the GRAVY score distribution. The reported method enables reliable and efficient identification of proteins and peptides in whole-cell extracts containing SDS. The new approach allows for higher throughput (the simultaneous identification of more proteins), a more comprehensive investigation of proteins, and potentially the discovery of new biomarkers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    PubMed

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  2. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice.

    PubMed

    Hu, Weihua; Wang, Jing; He, Xiangfeng; Zhang, Hongyi; Yu, Fangliu; Jiang, Longwei; Chen, Dengyu; Chen, Junsong; Dou, Jun

    2011-01-01

    Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  3. Elevated serum CXCL16 is an independent predictor of poor survival in ovarian cancer and may reflect pro-metastatic ADAM protease activity

    PubMed Central

    Gooden, M J M; Wiersma, V R; Boerma, A; Leffers, N; Boezen, H M; ten Hoor, K A; Hollema, H; Walenkamp, A M E; Daemen, T; Nijman, H W; Bremer, E

    2014-01-01

    Background: In certain cancers, expression of CXCL16 and its receptor CXCR6 associate with lymphocyte infiltration, possibly aiding anti-tumour immune response. In other cancers, CXCL16 and CXCR6 associate with pro-metastatic activity. In the current study, we aimed to characterise the role of CXCL16, sCXCL16, and CXCR6 in ovarian cancer (OC). Methods: CXCL16/CXCR6 expression was analysed on tissue microarray containing 306 OC patient samples. Pre-treatment serum sCXCL16 was determined in 118 patients using ELISA. In vitro, (primary) OC cells were treated with an ADAM-10/ADAM-17 inhibitor (TAPI-2) and an ADAM-10-specific inhibitor (GI254023x), whereupon CXCL16 levels were evaluated on the cell membrane (immunofluorescent analysis, western blots) and in culture supernatants (ELISA). In addition, cell migration was assessed using scratch assays. Results: sCXCL16 independently predicted for poor survival (hazard ratio=2.28, 95% confidence interval=1.29–4.02, P=0.005), whereas neither CXCL16 nor CXCR6 expression correlated with survival. Further, CXCL16/CXCR6 expression and serum sCXCL16 levels did not associate with lymphocyte infiltration. In vitro inhibition of both ADAM-17 and ADAM-10, but especially the latter, decreased CXCL16 membrane shedding and strongly reduced cell migration of A2780 and cultured primary OC-derived malignant cells. Conclusions: High serum sCXCL16 is a prognostic marker for poor survival of OC patients, possibly reflecting ADAM-10 and ADAM-17 pro-metastatic activity. Therefore, serum sCXCL16 levels may be a pseudomarker that identifies patients with highly metastatic tumours. PMID:24518602

  4. Copper (II) complexes of bidentate ligands exhibit potent anti-cancer activity regardless of platinum sensitivity status.

    PubMed

    Wehbe, Mohamed; Lo, Cody; Leung, Ada W Y; Dragowska, Wieslawa H; Ryan, Gemma M; Bally, Marcel B

    2017-12-01

    Insensitivity to platinum, either through inherent or acquired resistance, is a major clinical problem in the treatment of many solid tumors. Here, we explored the therapeutic potential of diethyldithiocarbamate (DDC), pyrithione (Pyr), plumbagin (Plum), 8-hydroxyquinoline (8-HQ), clioquinol (CQ) copper complexes in a panel of cancer cell lines that differ in their sensitivity to platins (cisplatin/carboplatin) using a high-content imaging system. Our data suggest that the copper complexes were effective against both platinum sensitive (IC 50  ~ 1 μM platinum) and insensitive (IC 50  > 5 μM platinum) cell lines. Furthermore, copper complexes of DDC, Pyr and 8-HQ had greater therapeutic activity compared to the copper-free ligands in all cell lines; whereas the copper-dependent activities of Plum and CQ were cell-line specific. Four of the copper complexes (Cu(DDC) 2 , Cu(Pyr) 2 , Cu(Plum) 2 and Cu(8-HQ) 2 ) showed IC 50 values less than that of cisplatin in all tested cell lines. The complex copper DDC (Cu(DDC) 2 ) was selected for in vivo evaluation due to its low nano-molar range activity in vitro and the availability of an injectable liposomal formulation. Liposomal (Cu(DDC) 2 ) was tested in a fast-growing platinum-resistant A2780-CP ovarian xenograft model and was found to achieve a statistically significant reduction (50%; p < 0.05) in tumour size. This work supports the potential use of copper-based therapeutics to treat cancers that are insensitive to platinum drugs.

  5. Mixed copper-platinum complex formation could explain synergistic antiproliferative effect exhibited by binary mixtures of cisplatin and copper-1,10-phenanthroline compounds: An ESI-MS study.

    PubMed

    Pivetta, Tiziana; Lallai, Viola; Valletta, Elisa; Trudu, Federica; Isaia, Francesco; Perra, Daniela; Pinna, Elisabetta; Pani, Alessandra

    2015-10-01

    Cisplatin, cis-diammineplatinum(II) dichloride, is a metal complex used in clinical practice for the treatment of cancer. Despite its great efficacy, it causes adverse reactions and most patients develop a resistance to cisplatin. To overcome these issues, a multi-drug therapy was introduced as a modern approach to exploit the drug synergy. A synergistic effect had been previously found when testing binary combinations of cisplatin and three copper complexes in vitro, namely, Cu(phen)(OH2)2(OClO3)2, [Cu(phen)2(OH2)](ClO4)2 and [Cu(phen)2(H2dit)](ClO4)2,(phen=1,10-phenanthroline, H2dit=imidazolidine-2-thione), against the human acute T-lymphoblastic leukaemia cell line (CCRF-CEM). In this work [Cu(phen)2(OH2)](ClO4)2 was also tested in combination with cisplatin against cisplatin-resistant sublines of CCRF-CEM (CCRF-CEM-res) and ovarian (A2780-res) cancer cell lines. The tested combinations show a synergistic effect against both the types of resistant cells. The possibility that this effect was caused by the formation of new adducts was considered and mass spectra of solutions containing cisplatin and one of the three copper complexes at a time were measured using electrospray ionisation at atmospheric-pressure mass spectrometry (ESI-MS). A mixed complex was detected and its stoichiometry was assessed on the basis of the isotopic pattern and the results of tandem mass spectrometry experiments. The formed complex was found to be [Cu(phen)(OH)μ-(Cl)2Pt(NH3)(H2O)](+). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer

    PubMed Central

    Wen, Yunfei; Graybill, Whitney S.; Previs, Rebecca A.; Hu, Wei; Ivan, Cristina; Mangala, Lingegowda S.; Zand, Behrouz; Nick, Alpa M.; Jennings, Nicholas B.; Dalton, Heather J.; Sehgal, Vasudha; Ram, Prahlad; Lee, Ju-Seog; Vivas-Mejia, Pablo E.; Coleman, Robert L.; Sood, Anil K.

    2014-01-01

    Purpose Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized monoclonal antibody against FRα, in ovarian cancer models. Experimental Design We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003–induced cell death. Results MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. In add, alteration of FOLR1 gene copy number significantly correlated with shorter disease-free survival in patients with ovarian serous cystadenocarcinoma. Conclusions MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation. PMID:25416196

  7. A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative - Anti-proliferative and anti-microbial activity.

    PubMed

    Ude, Ziga; Romero-Canelón, Isolda; Twamley, Brendan; Fitzgerald Hughes, Deirdre; Sadler, Peter J; Marmion, Celine J

    2016-07-01

    7-(4-(Decanoyl)piperazin-1-yl)-ciprofloxacin, CipA, (1) which is an analogue of the antibiotic ciprofloxacin, and its ruthenium(II) complex [Ru(η(6)-p-cymene)(CipA-H)Cl], (2) have been synthesised and the x-ray crystal structures of 1·1.3H2O·0.6CH3OH and 2·CH3OH·0.5H2O determined. The complex adopts a typical pseudo-octahedral 'piano-stool' geometry, with Ru(II) π-bonded to the p-cymene ring and σ-bonded to a chloride and two oxygen atoms of the chelated fluoroquinolone ligand. The complex is highly cytotoxic in the low μM range and is as potent as the clinical drug cisplatin against the human cancer cell lines A2780, A549, HCT116, and PC3. It is also highly cytotoxic against cisplatin- and oxaliplatin-resistant cell lines suggesting a different mechanism of action. The complex also retained low μM cytotoxicity against the human colon cancer cell line HCT116p53 in which the tumour suppressor p53 had been knocked out, suggesting that the potent anti-proliferative properties associated with this complex are independent of the status of p53 (in contrast to cisplatin). The complex also retained moderate anti-bacterial activity in two Escherichia coli, a laboratory strain and a clinical isolate resistant to first, second and third generation β-lactam antibiotics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1.

    PubMed

    Wu, Di-di; Li, Xue-Song; Meng, Xiao-Na; Yan, Jing; Zong, Zhi-Hong

    2016-08-01

    Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P < 0.05). After predicting the miR-873 binding region in the 3'-untranslated region of ABCB1, dual-luciferase reporter assay confirmed this prediction. RT-PCR and Western blotting revealed that MDR1 expression was significantly downregulated after transfection with miR-873 and upregulated after transfection with anti-miR-873 at both mRNA and protein levels compared to negative controls (P < 0.05). Experiments in a mouse xenograft model confirmed that intratumoral administration of miR-873 could enhance the efficacy of cisplatin in inhibiting tumor growth in ovarian cancer in vivo (P < 0.05). ABCB1 overexpression reduced sensitivities of ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P < 0.05). In summary, we demonstrated that overexpression of miR-873 increased the sensitivity of ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.

  9. Anti-tumor and Anti-angiogenic Effects of Aspirin-PC in Ovarian Cancer

    PubMed Central

    Huang, Yan; Lichtenberger, Lenard M.; Taylor, Morgan; Bottsford-Miller, Justin N.; Haemmerle, Monika; Wagner, Michael J.; Lyons, Yasmin; Pradeep, Sunila; Hu, Wei; Previs, Rebecca A.; Hansen, Jean M.; Fang, Dexing; Dorniak, Piotr L.; Filant, Justyna; Dial, Elizabeth J.; Shen, Fangrong; Hatakeyama, Hiroto; Sood, Anil K.

    2016-01-01

    To determine the efficacy of a novel and safer (for gastrointestinal tract) aspirin (aspirin-PC) in preclinical models of ovarian cancer, in vitro dose-response studies were performed to compare the growth-inhibitory effect of aspirin-PC vs. aspirin on 3 human (A2780, SKOV3ip1, HeyA8), and a mouse (ID8) ovarian cancer cell line over an 8-day culture period. In the in vivo studies, the aspirin test drugs were studied alone and in the presence of a VEGF-A inhibitor (bevacizumab or B20), due to an emerging role for platelets in tumor growth following anti-angiogenic therapy, and we examined their underlying mechanisms. Aspirin-PC was more potent (vs. aspirin) in blocking the growth of both human and mouse ovarian cancer cells in monolayer culture. Using in vivo model systems of ovarian cancer, we found that aspirin-PC significantly reduced ovarian cancer growth by 50–90% (depending on the ovarian cell line/density). The efficacy was further enhanced in combination with Bevacizumab or B20. The growth-inhibitory effect on ovarian tumor mass and number of tumor nodules was evident, but less pronounced for aspirin and the VEGF inhibitors alone. There was no detectable gastrointestinal toxicity. Both aspirin and aspirin-PC also inhibited cell proliferation, angiogenesis and increased apoptosis of ovarian cancer cells. In conclusion, PC-associated aspirin markedly inhibits the growth of ovarian cancer cells, which exceeds that of the parent drug, in both cell culture and in mouse model systems. We also found that both aspirin-PC and aspirin have robust anti-neoplastic action in the presence of VEGF blocking drugs. PMID:27638860

  10. microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP

    PubMed Central

    Li, Xiaodi; Chen, Wei; Zeng, Wenshu; Wan, Chunling; Duan, Shiwei; Jiang, Songshan

    2017-01-01

    Background: microRNAs (miRNAs) have regulatory roles in various cellular processes, including apoptosis. Recently, X-linked inhibitor of apoptosis protein (XIAP) has been reported to be dysregulated in epithelial ovarian cancer (EOC). However, the mechanism underlying this dysregulation is largely unknown. Methods: Using bioinformatics and a literature analysis, a panel of miRNAs dysregulated in EOC was chosen for further experimental confirmation from hundreds of miRNAs that were predicted to interact with the XIAP 3′UTR. A dual-luciferase reporter assay was employed to detect the interaction by cellular co-transfection of an miRNA expression vector and a reporter vector with the XIAP 3′UTR fused to a Renilla luciferase reporter. DAPI and TUNEL approaches were used to further determine the effects of an miR-137 mimic and inhibitor on cisplatin-induced apoptosis in ovarian cancer cells. Results: We identified eight miRNAs by screening a panel of dysregulated miRNAs that may target the XIAP 3′UTR. The strongest inhibitory miRNA, miR-137, suppressed the activity of a luciferase reporter gene fused with the XIAP 3′UTR and decreased the levels of XIAP protein in SKOV3 ovarian cancer cells. Furthermore, forced expression of miR-137 increased cisplatin-induced apoptosis, and the depressed expression of miR-137 decreased cisplatin-induced apoptosis in SKOV3 and primary EOC cells. Consistently, the disruption of miR-137 via CRISPR/Cas9 inhibited apoptosis and upregulated XIAP in A2780 cells. Furthermore, the effect of miR-137 on apoptosis could be rescued by XIAP in SKOV3 cells. In addition, miR-137 expression is inversely correlated with the level of XIAP protein in both ovarian cancer tissues and cell lines. Conclusions: Our data suggest that multiple miRNAs can regulate XIAP via its 3′UTR. miR-137 can sensitise ovarian cancer cells to cisplatin-induced apoptosis, providing new insight into overcoming drug resistance in ovarian cancer. PMID:27875524

  11. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    PubMed

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire

  12. Interaction of E3 Ubiquitin Ligase MARCH7 with Long Noncoding RNA MALAT1 and Autophagy-Related Protein ATG7 Promotes Autophagy and Invasion in Ovarian Cancer.

    PubMed

    Hu, Jianguo; Zhang, Luo; Mei, Zhiqiang; Jiang, Yuan; Yi, Yuan; Liu, Li; Meng, Ying; Zhou, Lili; Zeng, Jianhua; Wu, Huan; Jiang, Xingwei

    2018-05-22

    Ubiquitin E3 ligase MARCH7 plays an important role in T cell proliferation and neuronal development. But its role in ovarian cancer remains unclear. This study aimed to investigate the role of Ubiquitin E3 ligase MARCH7 in ovarian cancer. Real-time PCR, immunohistochemistry and western blotting analysis were performed to determine the expression of MARCH7, MALAT1 and ATG7 in ovarian cancer cell lines and clinical specimens. The role of MARCH7 in maintaining ovarian cancer malignant phenotype was examined by Wound healing assay, Matrigel invasion assays and Mouse orthotopic xenograft model. Luciferase reporter assay, western blot analysis and ChIP assay were used to determine whether MARCH7 activates TGF-β-smad2/3 pathway by interacting with TGFβR2. MARCH7 interacted with MALAT1 by miR-200a (microRNA-200a). MARCH7 may function as a competing endogenous RNA (ceRNA) to regulate the expression of ATG7 by competing with miR-200a. MARCH7 regulated TGF-β-smad2/3 pathway by interacting with TGFβR2. Inhibition of TGF-β-smad2/3 pathway downregulated MARCH7, MALAT1 and ATG7. MiR-200a regulated TGF-β induced autophagy, invasion and metastasis of SKOV3 cells by targeting MARCH7. MARCH7 silencing inhibited autophagy invasion and metastasis of SKOV3 cells both in vitro and in vivo. In contrast, MARCH7 overexpression promoted TGF-β induced autophagy, invasion and metastasis of A2780 cells in vitro by depending on MALAT1 and ATG7. We also found that TGF-β-smad2/3 pathway regulated MARCH7 and ATG7 through MALAT1. These findings suggested that TGFβR2-Smad2/3-MALAT1/MARCH7/ATG7 feedback loop mediated autophagy, migration and invasion in ovarian cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Physicochemical Properties, Antioxidant and Anti-proliferative Capacities of Dried Leaf and Its Extract from Xao tam phan (Paramignya trimera).

    PubMed

    Nguyen, Van Tang; Sakoff, Jennette A; Scarlett, Christopher J

    2017-06-01

    Xao tam phan (Paramignya trimera) has been used for the treatment of cancer and cancer-like aliments. Among different parts of the P. trimera plant, leaf is considered as a residual part after harvesting of the root. This study aimed to determine the physiochemical properties and the antioxidant and anti-proliferative capacities of P. trimera leaf (PTL) using microwave drying for the preparation of dry sample; MeOH and microwave-assisted extraction for the preparation of crude extract; and freeze-drying for the preparation of powdered extract. The results showed that total phenolic, total flavonoid, proanthocyanidin, and saponin contents of PTL prepared by microwave drying at 450 W were 25.4 mg gallic acid equiv. (GAE), 86.3 mg rutin equiv. (RE), 5.6 mg catechin equiv. (CE), and 702.1 mg escin equiv. (EE) per gram dried sample, respectively. Gallic acid, protocatechuic acid, ellagic acid, rutin, and quercetin were identified in the PTL MeOH extract. Dried PTL displayed potent antioxidant activity, while the powdered PTL extract exhibited great anti-proliferative capacity on various cancer cell lines including MiaPaCa-2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), MCF-7 (breast), MCF-10A (normal breast), and U87, SJ-G2, and SMA (glioblastoma). Anti-proliferative capacity on pancreatic cancer cells (MiaCaPa2, BxPc3, and CFPAC1) of PTL extract (200 μg/ml) was significantly higher (P < 0.05) than those of ostruthin (20 μg/ml) and gemcitabine (50 nm), and to be comparable to the powdered P. trimera root extract and a saponin-enriched extract from quillajia bark (a commercial product). The findings from this study allow us to conclude that the PTL is a rich source of phytochemicals that possess promising antioxidant and anti-proliferative activities, therefore it shows potential as lead compounds for application in the nutraceutical, medicinal and pharmaceutical industries. © 2017 Wiley

  14. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.

    PubMed

    Soldevila-Barreda, Joan J; Habtemariam, Abraha; Romero-Canelón, Isolda; Sadler, Peter J

    2015-12-01

    Organometallic complexes have the potential to behave as catalytic drugs. We investigate here Rh(III) complexes of general formula [(Cp(x))Rh(N,N')(Cl)], where N,N' is ethylenediamine (en), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), and Cp(x) is pentamethylcyclopentadienyl (Cp*), 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl (Cp(xPh)) or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (Cp(xPhPh)). These complexes can reduce NAD(+) to NADH using formate as a hydride source under biologically-relevant conditions. The catalytic activity decreased in the order of N,N-chelated ligand bpy > phen > en with Cp* as the η(5)-donor. The en complexes (1-3) became more active with extension to the Cp(X) ring, whereas the activity of the phen (7-9) and bpy (4-6) compounds decreased. [Cp*Rh(bpy)Cl](+) (4) showed the highest catalytic activity, with a TOF of 37.4±2h(-1). Fast hydrolysis of the chlorido complexes 1-10 was observed by (1)H NMR (<10min at 310K). The pKa* values for the aqua adducts were determined to be ca. 8-10. Complexes 1-9 also catalysed the reduction of pyruvate to lactate using formate as the hydride donor. The efficiency of the transfer hydrogenation reactions was highly dependent on the nature of the chelating ligand and the Cp(x) ring. Competition reactions between NAD(+) and pyruvate for reduction by formate catalysed by 4 showed a preference for reduction of NAD(+). The antiproliferative activity of complex 3 towards A2780 human ovarian cancer cells increased by up to 50% when administered in combination with non-toxic doses of formate, suggesting that transfer hydrogenation can induce reductive stress in cancer cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Transferrin facilitates the formation of DNA double-strand breaks via transferrin receptor 1: the possible involvement of transferrin in carcinogenesis of high-grade serous ovarian cancer.

    PubMed

    Shigeta, S; Toyoshima, M; Kitatani, K; Ishibashi, M; Usui, T; Yaegashi, N

    2016-07-07

    Fallopian tubal epithelium is a candidate for the origin of high-grade serous ovarian cancer. Transferrin-containing follicular fluid and/or retrograde menstrual blood are possible risk factors for carcinogenesis. Accumulation of DNA double-strand breaks (DNA-DSBs) in the fallopian tubal epithelium is considered to play an important role in the development of cancer. However, the mechanisms by which DNA-DSBs accumulate have not yet been fully elucidated. The hydroxyl radical, which is produced in a Fenton reaction catalyzed by an iron ion, serves as a potent DNA-DSB-inducing molecule, raising the potential of an iron ion transporter of transferrin in the formation of DNA-DSBs. We studied the potential involvement of transferrin in DNA damage and the development of ovarian cancer. Treatment with transferrin facilitated the formation of histone 2AX phosphorylated at Serine 139 (γH2AX), which is known as a DNA-DSB marker, in human fallopian tube secretory epithelial cells and A2780 ovarian cancer cells. Knockdown of transferrin receptor 1 (TfR1), but not transferrin receptor 2, suppressed the transferrin uptake and consequent formation of γH2AX. As hydroxyl radicals in reactive oxygen species (ROS) are involved in DNA-DSBs, the formation of ROS was determined. Treatment with TfR1-specific small interference RNAs significantly diminished transferrin-induced formation of ROS. Moreover, TfR1-dependent uptake of transferrin was revealed to augment the formation of DNA-DSBs in the presence of hydrogen peroxide, which served as a substrate for the Fenton reaction. An ex vivo study with murine fallopian tubes further demonstrated that transferrin treatment introduced DNA-DSBs in the fallopian tubal epithelium. Collectively, these data suggested that the transferrin-TfR1 axis accounts for the induction of DNA-DSBs that potentially lead to DNA damage/genome instability. These findings also suggested that exposure to transferrin initiates and promotes the development of

  16. Precise Gravity Measurements for Lunar Laser Ranging at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Crossley, D. J.; Murphy, T.; Boy, J.; De Linage, C.; Wheeler, R. D.; Krauterbluth, K.

    2012-12-01

    Lunar Laser Ranging (LLR) at Apache Point Observatory began in 2006 under the APOLLO project using a 3.5 m telescope on a 2780 m summit in New Mexico. Recent improvements in the technical operations are producing uncertainties at the few-mm level in the 1.5 x 10^13 cm separation of the solar orbits of the Earth and Moon. This level of sensitivity permits a number of important aspects of gravitational theory to be tested. Among these is the Equivalence Principle that determines the universality of free fall, tests of the time variation of the Gravitational Constant G, deviations from the inverse square law, and preferred frame effects. In 2009 APOLLO installed a superconducting gravimeter (SG) on the concrete pier under the main telescope to further constrain the deformation of the site as part of an initiative to improve all aspects of the modeling process. We have analyzed more than 3 years of high quality SG data that provides unmatched accuracy in determining the local tidal gravimetric factors for the solid Earth and ocean tide loading. With on-site gravity we have direct measurements of signals such as polar motion, and can compute global atmospheric and hydrological loading for the site using GLDAS and local hydrology models that are compared with the SG observations. We also compare the SG residuals with satellite estimates of seasonal ground gravity variations from the GRACE mission. Apache Point is visited regularly by a team from the National Geospatial-Intelligence Agency to provide absolute gravity values for the calibration of the SG and to determine secular gravity changes. Nearby GPS location P027 provides continuous position information from the Plate Boundary Observatory of Earthscope that is used to correlate gravity/height variations at the site. Unusual aspects of the data processing include corrections for the telescope azimuth that appear as small offsets at the 1 μGal level and can be removed by correlating the azimuth data with the SG

  17. Selective inhibition of tumor cell associated Vacuolar-ATPase 'a2' isoform overcomes cisplatin resistance in ovarian cancer cells.

    PubMed

    Kulshrestha, Arpita; Katara, Gajendra K; Ginter, Jordyn; Pamarthy, Sahithi; Ibrahim, Safaa A; Jaiswal, Mukesh K; Sandulescu, Corina; Periakaruppan, Ramayee; Dolan, James; Gilman-Sachs, Alice; Beaman, Kenneth D

    2016-06-01

    Development of resistance to platinum compounds significantly hinders successful ovarian cancer (OVCA) treatment. In tumor cells, dysregulated pH gradient across cell membranes is a key physiological mechanism of metastasis/chemo-resistance. These pH alterations are mediated by aberrant activation of key multi-subunit proton pumps, Vacuolar-ATPases (V-ATPases). In tumor cells, its 'a2' isoform (V-ATPase-V0a2) is a component of functional plasma-membrane complex and promotes tumor invasion through tumor-acidification and immuno-modulation. Its involvement in chemo-resistance has not been studied. Here, we show that V-ATPase-V0a2 is over-expressed in acquired-cisplatin resistant OVCA cells (cis-A2780/cis-TOV112D). Of all the 'a' subunit isoforms, V-ATPase-V0a2 exhibited an elevated expression on plasma membrane of cisplatin-resistant cells compared to sensitive counterparts. Immuno-histochemistry revealed V-ATPase-V0a2 expression in both low grade (highly drug-resistant) and high grade (highly recurrent) human OVCA tissues indicating its role in a centralized mechanism of tumor resistance. In cisplatin resistant cells, shRNA mediated inhibition of V-ATPase-V0a2 enhanced sensitivity towards both cisplatin and carboplatin. This improved cytotoxicity was mediated by enhanced cisplatin-DNA-adduct formation and suppressed DNA-repair pathway, leading to enhanced apoptosis. Suppression of V0a2 activity strongly reduced cytosolic pH in resistant tumor cells, which is known to enhance platinum-associated DNA-damage. As an indicator of reduced metastasis and chemo-resistance, in contrast to plasma membrane localization, a diffused cytoplasmic localization of acidic vacuoles was observed in V0a2-knockdown resistant cells. Interestingly, pre-treatment with monoclonal V0a2-inhibitory antibody enhanced cisplatin cytotoxicity in resistant cells. Taken together, our findings suggest that the isoform specific inhibition of V-ATPase-V0a2 could serve as a therapeutic strategy for chemo

  18. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.

    PubMed

    Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha

    2012-10-01

    The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p

  19. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy

    NASA Astrophysics Data System (ADS)

    Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L.; Taratula, Oleh

    2015-02-01

    dynamic light scattering (Fig. S1); absorption spectra of free SiNc 2 in THF before and after irradiation with the 785 nm laser diode for 30 min (Fig. S2); in vitro cytotoxicity of free DOX against A2780/AD human ovarian cancer cells (Fig. S3); the release profiles of SiNc from SiNc-NP under various conditions (Fig. S4); body weight curves of the mice with or without treatment (Fig. S5). See DOI: 10.1039/c4nr06050d