Science.gov

Sample records for a2a receptor antagonism

  1. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats.

    PubMed

    Fronz, Ulrike; Deten, Alexander; Baumann, Frank; Kranz, Alexander; Weidlich, Sarah; Härtig, Wolfgang; Nieber, Karen; Boltze, Johannes; Wagner, Daniel-Christoph

    2014-02-01

    Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical.

  2. Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows.

    PubMed

    Popoli, Patrizia; Minghetti, Luisa; Tebano, Maria Teresa; Pintor, Annita; Domenici, Maria Rosaria; Massotti, Marino

    2004-01-01

    Adenosine A2A receptor antagonists are regarded as potential neuroprotective drugs, although the mechanisms underlying their effects remain to be elucidated. In this review, quinolinic acid (QA)-induced striatal toxicity was used as a tool to investigate the mechanisms of the neuroprotective effects of A2A receptor antagonists. After having examined the effects of selective A2A receptor antagonists toward different mechanisms of QA toxicity, we conclude that (1) the effect elicited by A2A receptor blockade on QA-induced glutamate outflow may be one of the mechanisms of the neuroprotective activity of A2A receptor antagonists; (2) A2A receptor antagonists have a potentially worsening influence on QA-dependent NMDA receptor activation; and (3) the ability of A2A receptor antagonists to prevent QA-induced lipid peroxidation does not correlate with the neuroprotective effects. These results suggest that A2A receptor antagonists may have either potentially beneficial or detrimental influence in models of neurodegeneration that are mainly due to increased glutamate levels or enhanced sensitivity of NMDA receptors, respectively.

  3. A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation

    PubMed Central

    Tozzi, Alessandro; de Iure, Antonio; Marsili, Valentina; Romano, Rosaria; Tantucci, Michela; Di Filippo, Massimiliano; Costa, Cinzia; Napolitano, Francesco; Mercuri, Nicola Biagio; Borsini, Franco; Giampà, Carmen; Fusco, Francesca Romana; Picconi, Barbara; Usiello, Alessandro; Calabresi, Paolo

    2012-01-01

    Background Cocaine increases the level of endogenous dopamine (DA) in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs) have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. Principal Findings Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. Conclusions The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine. PMID:22715379

  4. Adenosine A(2A) receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing.

    PubMed

    Farrar, Andrew M; Pereira, Mariana; Velasco, Francisco; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D

    2007-04-01

    Organisms frequently make effort-related decisions based upon assessments of motivational value and response costs. Energy-related dysfunctions such as psychomotor slowing and apathy are critically involved in some clinical syndromes. Dopamine (DA), particularly in the nucleus accumbens, regulates effort-related processes. Dopamine antagonism and accumbens dopamine depletions cause rats performing on choice tasks to reallocate their behavior away from food-reinforced tasks that have high response requirements. There is evidence of a functional interaction between DA and adenosine A(2A) receptors in the neostriatum and nucleus accumbens. The present experiments were conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of dopamine receptor antagonism on instrumental behavior and effort-related choice. The adenosine A(2A) receptor antagonist MSX-3 was investigated for its ability to reverse the effects of the dopamine receptor antagonist haloperidol (0.1 mg/kg) on fixed ratio 5 instrumental lever-pressing and on response allocation using a concurrent lever-pressing/chow-feeding choice task. Haloperidol significantly suppressed fixed ratio 5 responding, and with rats responding on the concurrent choice task, it altered choice behavior, significantly reducing lever-pressing for food and increasing chow intake. Injections of MSX-3 (0.5-2.0 mg/kg) produced a dose-related attenuation of the effects of 0.1 mg/kg haloperidol on both tasks. The high dose of MSX-3, when administered in the absence of haloperidol, did not significantly affect responding on either task. Adenosine and dopamine systems interact to regulate instrumental behavior and effort-related processes, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing or anergia.

  5. Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice.

    PubMed

    Pardo, M; Lopez-Cruz, L; Valverde, O; Ledent, C; Baqi, Y; Müller, C E; Salamone, J D; Correa, M

    2012-04-01

    Brain dopamine (DA) and adenosine interact in the regulation of behavioral activation and effort-related processes. In the present studies, a T-maze task was developed in mice for the assessment of effort-related decision making. With this task, the two arms of the maze have different reinforcement densities, and a vertical barrier is positioned in the arm with the higher density (HD), presenting the animal with an effort-related challenge. Under control conditions mice prefer the HD arm, and climb the barrier to obtain the larger amount of food. The DA D(2) receptor antagonist haloperidol decreased selection of the HD arm and increased selection of the arm with the low density of reinforcement. However, the HD arm was still the preferred choice in haloperidol-treated mice trained with barriers in both arms. Pre-feeding the mice to reduce food motivation dramatically increased omissions, an effect that was distinct from the actions of haloperidol. Co-administration of theophylline, a nonselective adenosine receptor antagonist, partially reversed the effects of haloperidol. This effect seems to be mediated by the A(2A) receptor but not the A(1) receptor, since the A(2A) antagonist MSX-3, but not the A(1) antagonist CPT, dose dependently reversed the effects of haloperidol on effort-related choice and on c-Fos expression in the dorsal striatum and nucleus accumbens. In addition, adenosine A(2A) receptor knockout mice were resistant to the effects of haloperidol on effort-related choice in the maze. These results indicate that DA D(2) and adenosine A(2A) receptors interact to regulate effort-related decision making and effort expenditure in mice.

  6. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction

    PubMed Central

    Hurtado-Alvarado, Gabriela; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier

    2016-01-01

    Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and

  7. Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia

    PubMed Central

    Napolitano, Francesco; Pasqualetti, Massimo; Usiello, Alessandro; Santini, Emanuela; Pacini, Giulia; Sciamanna, Giuseppe; Errico, Francesco; Tassone, Annalisa; Di Dato, Valeria; Martella, Giuseppina; Cuomo, Dario; Fisone, Gilberto; Bernardi, Giorgio; Mandolesi, Georgia; Mercuri, Nicola B.; Standaert, David G.; Pisani, Antonio

    2014-01-01

    DYT1 dystonia is an inherited disease linked to mutation in the TOR1A gene encoding for the protein torsinA. Although the mechanism by which this genetic alteration leads to dystonia is unclear, multiple lines of clinical evidence suggest a link between dystonia and a reduced dopamine D2 receptor (D2R) availability. Based on this evidence, herein we carried out a comprehensive analysis of electrophysiological, behavioral and signaling correlates of D2R transmission in transgenic mice with the DYT1 dystonia mutation. Electrophysiological recordings from nigral dopaminergic neurons showed a normal responsiveness to D2-autoreceptor function. Conversely, postsynaptic D2R function in hMT mice was impaired, as suggested by the inability of a D2R agonist to re-establish normal corticostriatal synaptic plasticity and supported by the reduced sensitivity to haloperidol-induced catalepsy. Although an in situ hybridization analysis showed normal D1R and D2R mRNA expression levels in the striata of hMT mice, we found a significant decrease of D2R protein, coupled to a reduced ability of D2Rs to activate their cognate Go/i proteins. Of relevance, we found that pharmacological blockade of adenosine A2A receptors (A2ARs) fully restored the impairment of synaptic plasticity observed in hMT mice. Together, our findings demonstrate an important link between torsinA mutation and D2R dysfunction and suggest that A2AR antagonism is able to counteract the deficit in D2R-mediated transmission observed in mutant mice, opening new perspectives for the treatment of this movement disorder. PMID:20227500

  8. The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors.

    PubMed

    Higgins, Guy A; Grzelak, Michael E; Pond, Annamarie J; Cohen-Williams, Mary E; Hodgson, Robert A; Varty, Geoffrey B

    2007-12-11

    Caffeine produces effects on cognitive function particularly relating to aspects of attention such as reaction time. Considering the plasma exposure levels following regular caffeine intake, and the affinity of caffeine for known protein targets, these effects are likely mediated by either the adenosine A(1) or A(2A) receptor. In the present studies, two rat strains [Long-Evans (LE) and CD] were trained to asymptote performance in a test of selective attention, the 5-choice serial reaction time task (5-CSRTT). Next, the effects of caffeine were compared to the selective A(2A) antagonists, SCH 412348 and KW-6002 (Istradefylline), and the A(1) antagonist, DPCPX. Further studies compared the psychostimulant effects of each drug. Finally, we tested the A(2A) agonist, CGS-21680, on 5-CSRTT performance and given the antipsychotic potential of this drug class, studied the interaction between CGS-21680 and amphetamine in this task. Caffeine (3-10mg/kg IP) increased reaction time in both LE and CD rats, with no effect on accuracy, an effect replicated by SCH 412348 (0.1-1mg/kg PO) and KW-6002 (1-3mg/kg PO), but not DPCPX (3-30 mg/kg PO). At least with SCH 412348, these effects were at doses that were not overtly psychostimulant. In contrast, CGS-21680 (0.03-0. 3mg/kg IP) slowed reaction speed and increased omissions. Interestingly, at a comparatively low dose of 0.03 mg/kg, CGS-21680 attenuated the increased premature responding produced by amphetamine (1mg/kg IP). The present results suggest that the attention-enhancing effects of caffeine are mediated through A(2A) receptor blockade, and selective A(2A) receptor antagonists may have potential as therapies for attention-related disorders. Furthermore, the improvement in response control in amphetamine-treated rats following CGS-21680 pretreatment supports the view that A(2A) agonists have potential as novel antipsychotics.

  9. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  10. Identification and Mechanism of ABA Receptor Antagonism

    PubMed Central

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M.; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-01-01

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1, but unexpectedly an antagonist of PYL2. Crystal structures of the PYL2–pyrabactin and PYL1–pyrabactin–ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor, and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms, and provide a rational framework for discovering novel ABA receptor ligands. PMID:20729862

  11. Does zaltoprofen antagonize the bradykinin receptors?

    PubMed

    Bawolak, Marie-Thérèse; Marceau, François

    2007-05-03

    Zaltoprofen is a nonsteroidal antiinflammatory drug that has been proposed to inhibit with some selectivity the nociception mediated by the bradykinin (BK) B(2) receptor. In order to test the predictive power of this claim, we applied the drug to vascular smooth muscle assays previously found useful to characterize B(2) receptor antagonists (contractility, human isolated umbilical vein) or B(1) receptor antagonists (contraction, rabbit aorta; relaxation, rabbit mesenteric artery). Zaltoprofen (up to 30 microM) failed to antagonize BK or des-Arg(9)-BK-induced contraction in the umbilical vein and aorta, respectively. The drug (1 microM) abated des-Arg(9)-BK-induced, prostaglandin-mediated relaxation of the precontracted mesenteric artery, consistent with its known activity as a cyclooxygenase (COX) inhibitor. However, zaltoprofen (10 microM) did not inhibit kinin-stimulated phospholipase A(2) activity in HEK 293 cells expressing recombinant forms of the rabbit B(1) or B(2) receptors. Nonpeptide antagonists of either receptor subtype were active in this respect. The results do not support that zaltoprofen, a COX inhibitor, antagonizes kinin receptors or influences their signaling with selectivity in the tested systems.

  12. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  13. In silico study of naphtha [1, 2-d] thiazol-2-amine with adenosine A 2A receptor and its role in antagonism of haloperidol-induced motor impairments in mice.

    PubMed

    Luthra, Pratibha Mehta; Prakash, Amresh; Barodia, Sandeep Kumar; Kumari, Rita; Mishra, Chandra Bhushan; Kumar, J B Senthil

    2009-10-09

    Loss of dopaminergic nigrostriatal neurons in the substantia nigra leads to Parkinson's disease (PD). Adenosine A(2A) receptors (A(2A)Rs) have been anticipated as novel therapeutic target for PD. A(2A)Rs potentiate locomotor behavior and are predominantly expressed in striatum. Naphtha [1, 2-d] thiazol-2-amine (NATA), a tricyclic thiazole have been studied as new anti-Parkinsonian compound. AutoDock analysis and pharmacophore study of NATA with known A(2A)R antagonists explicit its efficacy as a possible adenosine receptor antagonist. In vivo pharmacology of NATA showed reduction of haloperidol (HAL)-induced motor impairments in Swiss albino male mice. Relatively elevated levels of dopamine in NATA pre-treated mice are suggestive of its possible role as neuromodulator in PD.

  14. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  15. Photo-antagonism of the GABAA receptor.

    PubMed

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  16. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  17. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  18. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  19. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats.

    PubMed

    Bachtell, Ryan K; Self, David W

    2009-10-01

    Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.

  20. Antagonism of thromboxane receptors by diclofenac and lumiracoxib

    PubMed Central

    Selg, E; Buccellati, C; Andersson, M; Rovati, G E; Ezinga, M; Sala, A; Larsson, A-K; Ambrosio, E; Låstbom, L; Capra, V; Dahlén, B; Ryrfeldt, Å; Folco, G C; Dahlén, S-E

    2007-01-01

    Background and purpose: Non-steroidal anti-inflammatory drugs (NSAIDs) are analgesic and anti-inflammatory by virtue of inhibition of the cyclooxygenase (COX) reaction that initiates biosynthesis of prostaglandins. Findings in a pulmonary pharmacology project gave rise to the hypothesis that certain members of the NSAID class might also be antagonists of the thromboxane (TP) receptor. Experimental approach: Functional responses due to activation of the TP receptor were studied in isolated airway and vascular smooth muscle preparations from guinea pigs and rats as well as in human platelets. Receptor binding and activation of the TP receptor was studied in HEK293 cells. Key results: Diclofenac concentration-dependently and selectively inhibited the contraction responses to TP receptor agonists such as prostaglandin D2 and U-46619 in the tested smooth muscle preparations and the aggregation of human platelets. The competitive antagonism of the TP receptor was confirmed by binding studies and at the level of signal transduction. The selective COX-2 inhibitor lumiracoxib shared this activity profile, whereas a number of standard NSAIDs and other selective COX-2 inhibitors did not. Conclusions and implications: Diclofenac and lumiracoxib, in addition to being COX unselective and highly COX-2 selective inhibitors, respectively, displayed a previously unknown pharmacological activity, namely TP receptor antagonism. Development of COX-2 selective inhibitors with dual activity as potent TP antagonists may lead to coxibs with improved cardiovascular safety, as the TP receptor mediates cardiovascular effects of thromboxane A2 and isoprostanes. PMID:17965743

  1. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition

    PubMed Central

    Hubers, Scott A.; Brown, Nancy J.

    2016-01-01

    Heart failure affects approximately 5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the FDA approved the first of a new class of drugs for the treatment of heart failure; valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses two of the pathophysiologic mechanisms of heart failure - activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared to enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacologic properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  2. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.

  3. Attenuation of Choroidal Neovascularization by β2-Adrenergic Receptor Antagonism

    PubMed Central

    Lavine, Jeremy A.; Sang, Yanzhi; Wang, Shoujian; Ip, Michael S.; Sheibani, Nader

    2013-01-01

    Objectives To determine if β-adrenergic blockade inhibits choroidal neovascularization (CNV) in a mouse model of laser-induced CNV, and to investigate the mechanism by which β-adrenoreceptor antagonism blunts CNV. Methods The impact of β-adrenoreceptor blockade on CNV was determined using the laser-induced CNV model. Briefly, mice were subjected to laser burns, inducing CNV, and treated with daily intraperitoneal injections of propranolol. Neovascularization was measured on choroidal-sclera flat mounts using intercellular adhesion molecule-2 immunofluorescence staining. The impact of β-adrenergic receptor signaling on expression of vascular endothelial growth factor (VEGF) was investigated using primary mouse choroidal endothelial cells (ChEC) and retinal pigment epithelial (RPE) cells. These cells were incubated with β-adrenoreceptor agonists and/or antagonists, and assayed for VEGF mRNA and protein levels. Results Propranolol-treated mice demonstrated a 50% reduction in laser-induced CNV. Norepinephrine treatment stimulated VEGF mRNA expression and protein secretion in both ChEC and RPE cells. This effect was blocked by β2-adrenoreceptor antagonism and mimicked by β2-adrenergic receptor agonists. Conclusions and Clinical Relevance β-Adrenergic blockade attenuated CNV. β2-Adrenergic receptors regulated VEGF expression in ChEC and RPE cells. Antagonists of β-adrenergic receptors are safe and well tolerated in patients with glaucoma and cardiovascular disease. Thus, blockade of β-adrenoreceptors may provide a new avenue to inhibit VEGF expression in CNV. PMID:23303344

  4. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  5. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease. Copyright © 2016 the American Physiological Society.

  6. Competitive antagonism at thromboxane receptors in human platelets.

    PubMed Central

    Armstrong, R. A.; Jones, R. L.; Peesapati, V.; Will, S. G.; Wilson, N. H.

    1985-01-01

    The inhibitory effects of three prostanoid analogues, EP 045, EP 092 and pinane thromboxane A2 (PTA2), on the aggregation of human platelets in vitro have been investigated. In diluted platelet-rich plasma (PRP), EP 045 (20 microM) and EP 092 (1 microM) completely inhibited irreversible aggregation responses to thromboxane A2 (TXA2), prostaglandin H2 (PGH2) and five chemically stable thromboxane mimetics, including 11,9-epoxymethano-PGH2 and 9,11-azo-PGH2. Reversible aggregation produced by the prostanoid analogue, CTA2, was also inhibited. The block of the stable agonist action was surmountable. In plasma-free platelet suspensions EP 045 and EP 092 were more potent antagonists. Schild analysis indicated a competitive type of antagonism for EP 045 (affinity constant of 1.1 X 10(7) M-1); the nature of the EP 092 block is not clear. Primary aggregation waves induced by ADP, platelet activating factor (Paf) and adrenaline were unaffected by EP 045 and EP 092, whereas the corresponding second phases of aggregation were suppressed. Aggregation and 5-hydroxytryptamine (5-HT) release induced by either PGH2 or 11,9-epoxymethano-PGH2 were inhibited in a parallel manner by EP 045. Inhibition of thromboxane biosynthesis is not involved in these effects. EP 045 and EP 092 did not raise adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in the platelet suspensions. In plasma-free platelet suspensions PTA2 produced a shape change response which could be blocked by EP 045. PTA2, therefore, has a thromboxane-like agonist action. The block of the aggregatory action of 11,9-epoxymethano-PGH2 by PTA2 appears to be mainly due to competition at the thromboxane receptor. However, PTA2 produced a slight rise in cyclic AMP levels; this could be due to a very weak stimulant action on either PGI2 or PGD2 receptors present in the human platelet. Functional antagonism by PTA2 may therefore augment its thromboxane receptor blocking activity. The results are discussed in terms of (a) the

  7. Structural insights into competitive antagonism in NMDA receptors

    PubMed Central

    Jespersen, Annie; Tajima, Nami; Fernandez-Cuervo, Gabriela; Garnier-Amblard, Ethel C.; Furukawa, Hiro

    2014-01-01

    Summary There has been a great level of enthusiasm to down-regulate overactive N-methyl-d-aspartate (NMDA) receptors to protect neurons from excitotoxicity. NMDA receptors play pivotal roles in basic brain development and functions as well as in neurological disorders and diseases. However, mechanistic understanding of antagonism in NMDA receptors is limited due to complete lack of antagonist-bound structures for the l-glutamate-binding GluN2 subunits. Here we report the crystal structures of GluN1/GluN2A NMDA receptor ligand-binding domain (LBD) heterodimers in complex with GluN1- and GluN2-targeting antagonists. The crystal structures reveal that the antagonists, D-(−)-2-Amino-5-phosphonopentanoic acid (d-AP5) and 1-(Phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), have discrete binding modes and mechanisms for opening of the bilobed architecture of GluN2A LBD compared to the agonist-bound form. The current study shows distinct ways by which the conformations of NMDA receptor LBDs may be controlled and coupled to receptor inhibition and provides possible strategies to develop therapeutic compounds with higher subtype-specificity. PMID:24462099

  8. Aryl hydrocarbon receptor antagonism and its role in rheumatoid arthritis

    PubMed Central

    Nguyen, Nam Trung; Nakahama, Taisuke; Nguyen, Chi Hung; Tran, Trang Thu; Le, Van Son; Chu, Hoang Ha; Kishimoto, Tadamitsu

    2015-01-01

    Although rheumatoid arthritis (RA) is the most common autoimmune disease, affecting approximately 1% of the population worldwide, its pathogenic mechanisms are poorly understood. Tobacco smoke, an environmental risk factor for RA, contains several ligands of aryl hydrocarbon receptor (Ahr), also known as dioxin receptor. Ahr plays critical roles in the immune system. We previously demonstrated that Ahr in helper T-cells contributes to development of collagen-induced arthritis, a mouse model of RA. Other studies have shown that cigarette smoke condensate and pure Ahr ligands exacerbate RA by altering bone metabolism and inducing proinflammatory responses in fibroblast-like synoviocytes. Consistent with these findings, several Ahr antagonists such as α-naphthoflavone, resveratrol, and GNF351 reverse the effect of Ahr ligands in RA pathogenesis. In this review, we summarize the current knowledge of Ahr function in the immune system and the potential clinical benefits of Ahr antagonism in treating RA. PMID:27186143

  9. AMPA receptor competitive antagonism reduces halothane MAC in rats.

    PubMed

    McFarlane, C; Warner, D S; Todd, M M; Nordholm, L

    1992-12-01

    Various subtypes of receptors have been identified for glutamate, an excitatory neurotransmitter. Previous studies have shown that antagonism of glutamate at the NMDA receptors reduces minimum alveolar concentration (MAC) for volatile anesthetics. NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline) is a selective antagonist at the glutamatergic AMPA receptor. The purpose of this experiment was to determine whether AMPA receptor antagonism influences halothane MAC in the rat. Sprague-Dawley rats were anesthetized with halothane in 50% O2/balance N2, tracheally intubated and the lungs were mechanically ventilated. Increasing doses of NBQX were intravenously infused in three groups while the control group was infused with vehicle (D5W). Halothane MAC was then determined by the tail-clamp method. Halothane MAC was log-linearly related to plasma NBQX concentrations (MAC = 0.125 (In plasma concentration NBQX) + 1.035, r2 = 0.77). A maximal 58% reduction of halothane MAC was achieved with an NBQX loading dose of 42 mg/kg followed by a continuous infusion rate of 36 mg x kg-1 x h-1 (control = 1.02 +/- 0.07%; NBQX = 0.43 +/- 0.12%; P < .01). Larger doses of NBQX were not possible because of the poor aqueous solubility of this compound. In a separate experiment, awake rats were randomly assigned to groups based on the dose of NBQX infused. Pa(CO2) and mean arterial pressure were measured at time 0 and at 5 and 30 min after start of NBQX infusion. The infusion was then stopped. Time until recovery of the righting reflex was recorded.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Glucocorticoid receptor antagonism by cyproterone acetate and RU486.

    PubMed

    Honer, Christian; Nam, Kiyean; Fink, Cynthia; Marshall, Paul; Ksander, Gary; Chatelain, Ricardo E; Cornell, Wendy; Steele, Ronald; Schweitzer, Robert; Schumacher, Christoph

    2003-05-01

    The steroid compound cyproterone acetate was identified in a high-throughput screen for glucocorticoid receptor (GR) binding compounds. Cyproterone (Schering AG) is clinically used as an antiandrogen for inoperable prostate cancer, virilizing syndromes in women, and the inhibition of sex drive in men. Despite its progestin properties, cyproterone shares a similar pharmacological profile with the antiprogestin mifepristone (RU486; Roussel Uclaf SA). The binding affinities of cyproterone and RU486 for the GR and progesterone receptor were similar (K(d), 15-70 nM). Both compounds were characterized as competitive antagonists of dexamethasone without intrinsic transactivating properties in rat hepatocytes (K(i), 10-30 nM). In osteosarcoma cells, RU486 revealed a higher potency than cyproterone acetate to prevent responses to dexamethasone-induced GR transactivation and NF kappa B transrepression. Upon administration to Sprague-Dawley rats, both compounds were found to be orally bioavailable and to inhibit transactivation of liver GR. Molecular docking of cyproterone acetate and RU486 into the homology model for the GR ligand binding domain illustrated overlapping steroid scaffolds in the binding pocket. However, in contrast to RU486, cyproterone lacks a bulky side chain at position C11 beta that has been proposed to trigger active antagonism of nuclear receptors by displacing the C-terminal helix of the ligand-binding domain, thereby affecting activation function 2. Cyproterone may therefore inhibit transactivation of the GR by a molecular mechanism recently described as passive antagonism. New therapeutic profiles may result from compounds designed to selectively stabilize the inactive and active conformations of certain nuclear receptors.

  11. Structure-based rationale for interleukin 5 receptor antagonism.

    PubMed

    Ishino, Tetsuya; Harrington, Adrian E; Gopi, Hosahudya; Chaiken, Irwin

    2008-01-01

    Human interleukin 5 (IL5) is the major hematopoietin that stimulates the proliferation, migration and activation of eosinophils and is implicated in the pathogenesis of inflammatory and other myeloproliferative diseases. IL5 functions through the signaling of a common receptor subunit beta (beta c), in a receptor activation process that requires initial recruitment of an IL5 specific receptor subunit alpha (IL5Ralpha), for cytokine presentation to beta c. Important advances have been made to understand molecular mechanisms of cytokine recognition and receptor antagonism. Mutational studies indicate that a pair of charge complementary regions play an essential role in specific interaction between IL5Ralpha and IL5. Moreover, peptide studies with the IL5 system have identified a cyclic peptide inhibitor, AF17121, which binds specifically to IL5Ralpha by mimicking the cytokine. A key receptor-recognition pharmacophore has been identified in this peptide inhibitor, and sites of inhibitor recognition can be proposed in the homology-deduced structural model of IL5Ralpha. These results provide an experimental platform to derive enhanced-potency peptidomimetic inhibitors. Such inhibitors have potential use as tools to evaluate the role of eosinophilia in disease and as potential leads to antagonists to treat hyper-eosinophilic diseases such as eosinophilic esophagitis, asthma and chronic myeloproliferative leukemias.

  12. Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism.

    PubMed

    Podurgiel, Samantha J; Spencer, Tiahna; Kovner, Rotem; Baqi, Younis; Müller, Christa E; Correa, Merce; Salamone, John D

    2016-01-01

    Tremulous jaw movements (TJMs) have become a commonly used rat model of Parkinsonian tremor. TJMs can be induced by a number of neurochemical conditions that parallel those seen in human Parkinsonism, including DA depletion, DA antagonism, and cholinomimetic administration, and can be reduced by various antiparkinsonian agents. TJMs typically occur in bursts with the peak frequency in the range of 3-7.5 Hz, which is similar to the Parkinsonian tremor frequency range. While the vast majority of this work has been done using rats, current efforts have focused on extending the TJM model to mice. The aim of the present studies was to establish a mouse model of Parkinsonian resting tremor using the anticholinesterase galantamine, and to investigate the effects of adenosine A2A antagonism on galantamine-induced TJMs. Galantamine significantly induced TJMs in a dose-dependent manner (0.5, 1.0, 1.5, 2.0, 2.5 mg/kg IP). The TJMs tended to occur in bursts in the 3-7.5 Hz frequency range, with a peak frequency of approximately 6 Hz. Systemic administration of the adenosine A2A antagonist MSX-3 (2.5, 5.0, 10.0 mg/kg) significantly attenuated galantamine-induced TJMs. Co-administration of MSX-3 also altered the local frequency of galantamine-induced TJMs, decreasing the peak frequency from approximately 6 Hz to 5 Hz, though the vast majority of TJMs remained in the frequency range characteristic of Parkinsonian resting tremor. These results indicate that adenosine A2A antagonism is capable of reducing anticholinesterase-induced TJMs in mice. Extending the TJM model to mice gives researchers an additional avenue for investigating drug-induced Parkinsonism and tremorogenesis, and could be a useful addition to the study of motor abnormalities observed in mouse genetic models of Parkinsonism.

  13. Glucagon receptor antagonism induces increased cholesterol absorption[S

    PubMed Central

    Guan, Hong-Ping; Yang, Xiaodong; Lu, Ku; Wang, Sheng-Ping; Castro-Perez, Jose M.; Previs, Stephen; Wright, Michael; Shah, Vinit; Herath, Kithsiri; Xie, Dan; Szeto, Daphne; Forrest, Gail; Xiao, Jing Chen; Palyha, Oksana; Sun, Li-Ping; Andryuk, Paula J.; Engel, Samuel S.; Xiong, Yusheng; Lin, Songnian; Kelley, David E.; Erion, Mark D.; Davis, Harry R.; Wang, Liangsu

    2015-01-01

    Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism. PMID:26373568

  14. Ligands and therapeutic perspectives of adenosine A(2A) receptors.

    PubMed

    Diniz, C; Borges, F; Santana, L; Uriarte, E; Oliveira, J M A; Gonçalves, J; Fresco, P

    2008-01-01

    Adenosine A(2A) receptors are members of the G protein-coupled receptor family and mediate multiple physiological effects of adenosine, both at the central nervous system (CNS) and at peripheral tissues, by activating several pathways or interacting with other receptors or proteins. Increasing evidence relate A(2A) receptors with pharmacological stress testing, neurodegenerative disorders (such as Parkinson's disease) and inflammation, renewing the interest in these receptors, increasingly viewed as promising therapeutic targets. Series of agonists and antagonists have been developed by medicinal chemistry artwork either by structure activity relationship (SAR) or quantitative structure activity relationship (QSAR) studies. These studies have allowed identification of the structural and electrostatic requirements for high affinity A(2A) receptor binding and, therefore, contributing to the rational design of A(2A) receptor ligands. Additional rational chemical modifications of the existing A(2A) receptor ligands may further improve their affinity/selectivity. The purpose of this review is to analize and summarize aspects related to the medicinal chemistry of A(2A) receptor ligands, their present and potencial therapeutic applications by exploring the molecular structure and physiological and pathophysiological roles of A(2A) receptors.

  15. Hereditary Angioedema Therapy: Kallikrein Inhibition and Bradykinin Receptor Antagonism

    PubMed Central

    2010-01-01

    Current strategies for the treatment of hereditary angioedema (HAE) include targeted inhibition or antagonism of the contact system, which is dysregulated in HAE patients by a C1 esterase inhibitor deficiency. Ecallantide, a plasma kallikrein inhibitor, and icatibant, a selective bradykinin-2 receptor antagonist, have recently been evaluated in clinical studies for the treatment of acute HAE attacks. Both drugs have demonstrated evidence of efficacy and safety in treating acute HAE episodes, with ecallantide approved for use in the United States and icatibant approved for use in Europe. As therapeutic options for HAE expand for both for prophylactic and acute treatment strategies, a number of patient-specific and drug-specific factors have emerged as important considerations when developing individualized HAE management plans. Optimization of HAE therapy will require further integration of new therapies into the current treatment paradigm. PMID:23282868

  16. Antagonism of sigma-1 receptors blocks compulsive-like eating.

    PubMed

    Cottone, Pietro; Wang, Xiaofan; Park, Jin Won; Valenza, Marta; Blasio, Angelo; Kwak, Jina; Iyer, Malliga R; Steardo, Luca; Rice, Kenner C; Hayashi, Teruo; Sabino, Valentina

    2012-11-01

    Binge eating disorder is an addiction-like disorder characterized by episodes of rapid and excessive food consumption within discrete periods of time which occur compulsively despite negative consequences. This study was aimed at determining whether antagonism of Sigma-1 receptors (Sig-1Rs) blocked compulsive-like binge eating. We trained male wistar rats to obtain a sugary, highly palatable diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day under fixed ratio 1 operant conditioning. Following intake stabilization, we evaluated the effects of the selective Sig-1R antagonist BD-1063 on food responding. Using a light/dark conflict test, we also tested whether BD-1063 could block the time spent and the food eaten in an aversive, open compartment, where the palatable diet was offered. Furthermore, we measured Sig-1R mRNA and protein expression in several brain areas of the two groups, 24 h after the last binge session. Palatable rats rapidly developed binge-like eating, escalating the 1 h intake by four times, and doubling the eating rate and the regularity of food responding, compared to Chow rats. BD-1063 dose-dependently reduced binge-like eating and the regularity of food responding, and blocked the increased eating rate in Palatable rats. In the light/dark conflict test, BD-1063 antagonized the increased time spent in the aversive compartment and the increased intake of the palatable diet, without affecting motor activity. Finally, Palatable rats showed reduced Sig-1R mRNA expression in prefrontal and anterior cingulate cortices, and a two-fold increase in Sig-1R protein expression in anterior cingulate cortex compared to control Chow rats. These findings suggest that the Sig-1R system may contribute to the neurobiological adaptations driving compulsive-like eating, opening new avenues of investigation towards pharmacologically treating binge eating disorder.

  17. Antagonism of Sigma-1 Receptors Blocks Compulsive-Like Eating

    PubMed Central

    Cottone, Pietro; Wang, Xiaofan; Park, Jin Won; Valenza, Marta; Blasio, Angelo; Kwak, Jina; Iyer, Malliga R; Steardo, Luca; Rice, Kenner C; Hayashi, Teruo; Sabino, Valentina

    2012-01-01

    Binge eating disorder is an addiction-like disorder characterized by episodes of rapid and excessive food consumption within discrete periods of time which occur compulsively despite negative consequences. This study was aimed at determining whether antagonism of Sigma-1 receptors (Sig-1Rs) blocked compulsive-like binge eating. We trained male wistar rats to obtain a sugary, highly palatable diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day under fixed ratio 1 operant conditioning. Following intake stabilization, we evaluated the effects of the selective Sig-1R antagonist BD-1063 on food responding. Using a light/dark conflict test, we also tested whether BD-1063 could block the time spent and the food eaten in an aversive, open compartment, where the palatable diet was offered. Furthermore, we measured Sig-1R mRNA and protein expression in several brain areas of the two groups, 24 h after the last binge session. Palatable rats rapidly developed binge-like eating, escalating the 1 h intake by four times, and doubling the eating rate and the regularity of food responding, compared to Chow rats. BD-1063 dose-dependently reduced binge-like eating and the regularity of food responding, and blocked the increased eating rate in Palatable rats. In the light/dark conflict test, BD-1063 antagonized the increased time spent in the aversive compartment and the increased intake of the palatable diet, without affecting motor activity. Finally, Palatable rats showed reduced Sig-1R mRNA expression in prefrontal and anterior cingulate cortices, and a two-fold increase in Sig-1R protein expression in anterior cingulate cortex compared to control Chow rats. These findings suggest that the Sig-1R system may contribute to the neurobiological adaptations driving compulsive-like eating, opening new avenues of investigation towards pharmacologically treating binge eating disorder. PMID:22713906

  18. Dopamine D2 Receptor antagonism suppresses tau aggregation and neurotoxicity

    PubMed Central

    McCormick, Allyson V.; Wheeler, Jeanna M.; Guthrie, Chris R.; Liachko, Nicole F.; Kraemer, Brian C.

    2012-01-01

    Background Tauopathies, including Alzheimer’s disease (AD) and frontotemporal dementia, are diseases characterized by the formation of pathological tau protein aggregates in the brain and progressive neurodegeneration. Presently no effective disease modifying treatments exist for tauopathies. Methods To identify drugs targeting tau neurotoxicity, we have used a C. elegans model of tauopathy to screen a drug library containing 1120 compounds approved for human use for the ability to suppress tau-induced behavioral effects. Results One compound, the typical antipsychotic azaperone, improved the motility of tau transgenic worms, reduced levels of insoluble tau, and was protective against neurodegeneration. We found that azaperone reduces insoluble tau in a human cell culture model of tau aggregation, and that other antipsychotic drugs (flupenthixol, perphenazine, and zotepine) also ameliorate the effects of tau expression in both models. Conclusions Reduction of dopamine signaling through the dopamine D2 receptor with the use of gene knockouts in C. elegans or RNAi knockdown in human cell culture have similar protective effects against tau toxicity. These results suggest dopamine D2 receptor antagonism holds promise as a potential neuroprotective strategy for targeting tau aggregation and neurotoxicity. PMID:23140663

  19. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer.

    PubMed

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa.

  20. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  1. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  2. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    PubMed

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  3. Brabykinin B1 Receptor Antagonism Is Beneficial in Renal Ischemia-Reperfusion Injury

    PubMed Central

    Wang, Pamella H. M.; Campanholle, Gabriela; Cenedeze, Marcos A.; Feitoza, Carla Q.; Gonçalves, Giselle M.; Landgraf, Richardt G.; Jancar, Sonia; Pesquero, João B.; Pacheco-Silva, Alvaro; Câmara, Niels O. S.

    2008-01-01

    Previously we have demonstrated that bradykinin B1 receptor deficient mice (B1KO) were protected against renal ischemia and reperfusion injury (IRI). Here, we aimed to analyze the effect of B1 antagonism on renal IRI and to study whether B1R knockout or antagonism could modulate the renal expression of pro and anti-inflammatory molecules. To this end, mice were subjected to 45 minutes ischemia and reperfused at 4, 24, 48 and 120 hours. Wild-type mice were treated intra-peritoneally with antagonists of either B1 (R-954, 200 µg/kg) or B2 receptor (HOE140, 200 µg/kg) 30 minutes prior to ischemia. Blood samples were collected to ascertain serum creatinine level, and kidneys were harvested for gene transcript analyses by real-time PCR. Herein, B1R antagonism (R-954) was able to decrease serum creatinine levels, whereas B2R antagonism had no effect. The protection seen under B1R deletion or antagonism was associated with an increased expression of GATA-3, IL-4 and IL-10 and a decreased T-bet and IL-1β transcription. Moreover, treatment with R-954 resulted in lower MCP-1, and higher HO-1 expression. Our results demonstrated that bradykinin B1R antagonism is beneficial in renal IRI. PMID:18725957

  4. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma.

    PubMed

    Chan, E S L; Fernandez, P; Merchant, A A; Montesinos, M C; Trzaska, S; Desai, A; Tung, C F; Khoa, D N; Pillinger, M H; Reiss, A B; Tomic-Canic, M; Chen, J F; Schwarzschild, M A; Cronstein, B N

    2006-08-01

    Adenosine regulates inflammation and tissue repair, and adenosine A2A receptors promote wound healing by stimulating collagen matrix production. We therefore examined whether adenosine A2A receptors contribute to the pathogenesis of dermal fibrosis. Collagen production by primary human dermal fibroblasts was analyzed by real-time polymerase chain reaction, 14C-proline incorporation, and Sircol assay. Intracellular signaling for dermal collagen production was investigated using inhibitors of MEK-1 and by demonstration of ERK phosphorylation. In vivo effects were studied in a bleomycin-induced dermal fibrosis model using adenosine A2A receptor-deficient wild-type littermate mice, C57BL/6 mice, and mice treated with adenosine A2A receptor antagonist. Morphometric features and levels of hydroxyproline were determined as measures of dermal fibrosis. Adenosine A2A receptor occupancy promoted collagen production by primary human dermal fibroblasts, which was blocked by adenosine A2A, but not A1 or A2B, receptor antagonism. Adenosine A2A receptor ligation stimulated ERK phosphorylation, and A2A receptor-mediated collagen production by dermal fibroblasts was blocked by MEK-1 inhibitors. Adenosine A2A receptor-deficient and A2A receptor antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis. These results demonstrate that adenosine A2A receptors play an active role in the pathogenesis of dermal fibrosis and suggest a novel therapeutic target in the treatment and prevention of dermal fibrosis in diseases such as scleroderma.

  5. FGF acts as a co-transmitter through Adenosine A2A receptor to regulate morphological and physiological synaptic plasticity

    PubMed Central

    Flajolet, Marc; Wang, Zhongfeng; Futter, Marie; Shen, Weixing; Nuangchamnong, Nina; Bendor, Jacob; Palaszewski, Iwona; Nairn, Angus C.; Surmeier, D. James; Greengard, Paul

    2009-01-01

    Summary Abnormalities of striatal function have been implicated in several major neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, and depression. Adenosine, by activation of A2A receptors, antagonizes dopamine signaling at D2 receptors and A2A receptor antagonists have been tested as therapeutic agents for Parkinson's disease. We report here a direct physical interaction between the G protein-coupled A2A receptor and the receptor tyrosine kinase FGF receptor. Concomitant activation of these two classes of receptors, but not individual activation of either one alone, causes a robust activation of the MAPK/ERK pathway, differentiation and neurite extension of PC12 cells, spine morphogenesis in primary neuronal cultures, and cortico-striatal plasticity induced by a novel A2AR/FGFR-dependent mechanism. The discovery of a direct physical interaction between the A2A and FGF receptors and the robust physiological consequences of this association shed light on the mechanism underlying FGF functions as a co-transmitter and open new avenues for therapeutic interventions. PMID:18953346

  6. Muscarinic M2 receptors in acetylcholine-isoproterenol functional antagonism in human isolated bronchus.

    PubMed

    Sarria, Benjamin; Naline, Emmanuel; Zhang, Yong; Cortijo, Julio; Molimard, Mathieu; Moreau, Joelle; Therond, Patrice; Advenier, Charles; Morcillo, Esteban J

    2002-11-01

    The muscarinic functional antagonism of isoproterenol relaxation and the contribution of muscarinic M2 receptors were examined in human isolated bronchus. In intact tissues, acetylcholine (ACh) precontraction decreased isoproterenol potency and maximal relaxation (-log EC50 shift = -1.49 +/- 0.16 and E(max) inhibition for 100 microM ACh = 30%) more than the same levels of histamine contraction. The M2 receptor-selective antagonist methoctramine (1 microM) reduced this antagonism in ACh- but not histamine-contracted tissues. Similar results were obtained for forskolin-induced relaxation. After selective inactivation of M3 receptors with 4-diphenylacetoxy-N-(2-chloroethyl)piperadine hydrochloric acid (30 nM), demonstrated by abolition of contractile and inositol phosphate responses to ACh, muscarinic recontractile responses were obtained in U-46619-precontracted tissues fully relaxed with isoproterenol. Methoctramine antagonized recontraction, with pK(B) (6.9) higher than in intact tissues (5.4), suggesting participation of M2 receptors. In M3-inactivated tissues, methoctramine augmented the isoproterenol relaxant potency in U-46619-contracted bronchus and reversed the ACh-induced inhibition of isoproterenol cAMP accumulation. These results indicate that M2 receptors cause indirect contraction of human bronchus by reversing sympathetically mediated relaxation and contribute to cholinergic functional antagonism.

  7. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  8. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  9. Kaitocephalin Antagonism of Glutamate Receptors Expressed in Xenopus Oocytes

    PubMed Central

    2009-01-01

    Kaitocephalin is the first discovered natural toxin with protective properties against excitotoxic death of cultured neurons induced by N-methyl-d-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainic acid (kainate, KA) receptors. Nevertheless, the effects of kaitocephalin on the function of these receptors were unknown. In this work, we report some pharmacological properties of synthetic (−)-kaitocephalin on rat brain glutamate receptors expressed in Xenopus laevis oocytes and on the homomeric AMPA-type GluR3 and KA-type GluR6 receptors. Kaitocephalin was found to be a more potent antagonist of NMDA receptors (IC50 = 75 ± 9 nM) than of AMPA receptors from cerebral cortex (IC50 = 242 ± 37 nM) and from homomeric GluR3 subunits (IC50 = 502 ± 55 nM). Moreover, kaitocephalin is a weak antagonist of the KA-type receptor GluR6 (IC50 ∼ 100 μM) and of metabotropic (IC50 > 100 μM) glutamate receptors expressed by rat brain mRNA. PMID:20436943

  10. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function

    PubMed Central

    Ferré, Sergi; Quiroz, César; Orru, Marco; Guitart, Xavier; Navarro, Gemma; Cortés, Antonio; Casadó, Vicent; Canela, Enric I.; Lluis, Carme; Franco, Rafael

    2011-01-01

    A very significant density of adenosine A2A receptors (A2ARs) is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs). In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs). In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striatopallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl cyclase (AC). Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striatopallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs) and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders. PMID:21731559

  11. Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism.

    PubMed

    Kato, Akihiko S; Burris, Kevin D; Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon; Ding, Chunjin; Tu, Yuan; Schober, Douglas A; Lee, Matthew R; Heinz, Beverly A; Fitch, Thomas E; Gleason, Scott D; Catlow, John T; Yu, Hong; Fitzjohn, Stephen M; Pasqui, Francesca; Wang, He; Qian, Yuewei; Sher, Emanuele; Zwart, Ruud; Wafford, Keith A; Rasmussen, Kurt; Ornstein, Paul L; Isaac, John T R; Nisenbaum, Eric S; Bredt, David S; Witkin, Jeffrey M

    2016-12-01

    Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.

  12. Reducing cardiometabolic risk through selective antagonism of CB1 receptors.

    PubMed

    Van Gaal, Luc

    2007-01-01

    Over the past 15 years, research on the endogenous cannabinoid (CB) system-now usually referred to as the endocannabinoid system (ECS)-has identified the significant effects of the ECS on the regulation of food intake and lipid and glucose metabolism in animals and humans. Endocannabinoids are endogenous lipids capable of binding to endogenous CB1 and CB2 receptors. CB1 receptors are present in the hypothalamic nuclei, which are involved in the control of energy balance and body weight, and in the mesolimbic system, which mediates the motivation to consume palatable food, as well as in adipocytes, the gut, and the liver. In the recent Rimonabant in Obesity (RIO)-Europe study, treatment with the first CB1 receptor antagonist, rimonabant, led to sustained, clinically meaningful weight loss and a reduction in waist circumference. Patients treated with rimonabant also demonstrated statistically significant improvement in high-density lipoprotein cholesterol levels, triglyceride levels, and insulin resistance, as well as a reduced overall prevalence of metabolic syndrome. Results of this and other studies support the role of endocannabinoids in the development and maintenance of obesity. In addition, these findings suggest that CB1 receptor antagonists such as rimonabant may offer a potential new approach to managing obesity and associated cardiometabolic risk factors.

  13. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  14. Histamine-1 receptor antagonism for treatment of insomnia.

    PubMed

    Vande Griend, Joseph P; Anderson, Sarah L

    2012-01-01

    To evaluate the literature regarding the use of histamine-1 (H(1)) receptor antagonists and to describe their role in the treatment of insomnia in adult patients, including the elderly. Literature was identified via PubMed and Medline through April 1, 2012, using the search terms insomnia and sleep, each individually combined with histamine antagonist, tricyclic antidepressant, trazodone, mirtazapine, doxepin, amitriptyline, nortriptyline, trimipramine, doxylamine, diphenhydramine, and antihistamine. Data included randomized double-blind trials that statistically evaluated H(1) receptor antagonist treatment in patients with insomnia compared with a placebo control or Food and Drug Administration-approved insomnia treatment. Trials selected evaluated sleep latency, wake after sleep onset, total sleep time, number of awakenings, and/or sleep efficiency in a subjective or objective manner. A total of 65 trials were evaluated, and 16 met inclusion criteria. With the exception of low-dose doxepin (Silenor-Somaxon), trials evaluating the clinical effectiveness of H(1) receptor antagonists show mixed results and are limited by sample size and generalizability. Large, randomized, appropriately controlled trials are lacking, making it difficult to define the safety and efficacy of these agents. In contrast, low-dose doxepin has been shown to provide consistent sleep benefit compared with placebo. Over-the-counter antihistamines may have a role for short-term insomnia treatment in younger adults, but tolerance develops rapidly. Mirtazapine should not be used solely for the treatment of insomnia. Sedating antidepressants can be considered after failure of first-line insomnia treatments. Patients taking these agents chronically should be evaluated for continued efficacy and potential harm. Low-dose doxepin may have a unique role in the treatment of insomnia in elderly patients given its tolerability, documented efficacy, and lack of important adverse effects.

  15. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man

    PubMed Central

    Gotter, Anthony L.; Forman, Mark S.; Harrell, Charles M.; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J.; Fox, Steven V.; Tannenbaum, Pamela L.; Garson, Susan L.; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J.; Herring, W. Joseph; Renger, John J.; Winrow, Christopher J.

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  16. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy.

    PubMed

    Calcutt, Nigel A; Smith, Darrell R; Frizzi, Katie; Sabbir, Mohammad Golam; Chowdhury, Subir K Roy; Mixcoatl-Zecuatl, Teresa; Saleh, Ali; Muttalib, Nabeel; Van der Ploeg, Randy; Ochoa, Joseline; Gopaul, Allison; Tessler, Lori; Wess, Jürgen; Jolivalt, Corinne G; Fernyhough, Paul

    2017-02-01

    Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor-dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.

  17. MINERALOCORTICOID RECEPTOR ANTAGONISM CONFERS CARDIOPROTECTION IN HEART FAILURE

    PubMed Central

    Seawell, Michael R.; Darazi, Fahed Al; Farah, Victor; Ramanathan, Kodangudi B.; Newman, Kevin P.; Bhattacharya, Syamal K.; Weber, Karl T.

    2012-01-01

    The symptoms and signs constituting the congestive heart failure (CHF) syndrome have their pathophysiologic origins rooted in a salt-avid renal state mediated by effector hormones of the renin-angiotensin-aldosterone and adrenergic nervous systems. Controlled clinical trials, conducted over the past decade in patients having minimally to markedly severe symptomatic heart failure, have demonstrated the efficacy of a pharmacologic regimen that interferes with these hormones, including aldosterone receptor binding with either spironolactone or eplerenone. Potential pathophysiologic mechanisms which have not hitherto been considered involved for the salutary responses and cardioprotection provided by these mineralocorticoid receptor antagonists are reviewed herein. In particular, we focus on the less well-recognized impact of catecholamines and aldosterone on mono- and divalent cation dyshomeostasis which leads to hypokalemia, hypomagnesemia, ionized hypocalcemia with secondary hyperparathyroidism and hypozincemia. Attendant adverse cardiac consequences include a delay in myocardial repolarization with increased propensity for supra- and ventricular arrhythmias and compromised antioxidant defenses with increased susceptibility to nonischemic cardiomyocyte necrosis. PMID:23114591

  18. P2X7 receptor antagonism: Implications in diabetic retinopathy.

    PubMed

    Platania, Chiara Bianca Maria; Giurdanella, Giovanni; Di Paola, Luisa; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio

    2017-08-15

    Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Benefit of Mineralocorticoid Receptor Antagonism in AKI: Role of Vascular Smooth Muscle Rac1.

    PubMed

    Barrera-Chimal, Jonatan; André-Grégoire, Gwennan; Nguyen Dinh Cat, Aurelie; Lechner, Sebastian M; Cau, Jérôme; Prince, Sonia; Kolkhof, Peter; Loirand, Gervaise; Sauzeau, Vincent; Hauet, Thierry; Jaisser, Frédéric

    2017-01-13

    AKI is a frequent complication in hospitalized patients. Unfortunately, there is no effective pharmacologic approach for treating or preventing AKI. In rodents, mineralocorticoid receptor (MR) antagonism prevents AKI induced by ischemia-reperfusion (IR). We investigated the specific role of vascular MR in mediating AKI induced by IR. We also assessed the protective effect of MR antagonism in IR-induced AKI in the Large White pig, a model of human AKI. In mice, MR deficiency in smooth muscle cells (SMCs) protected against kidney IR injury. MR blockade by the novel nonsteroidal MR antagonist, finerenone, or genetic deletion of MR in SMCs associated with weaker oxidative stress production. Moreover, ischemic kidneys had higher levels of Rac1-GTP, required for NADPH oxidase activation, than sham control kidneys, and genetic deletion of Rac1 in SMCs protected against AKI. Furthermore, genetic deletion of MR in SMCs blunted the production of Rac1-GTP after IR. Pharmacologic inhibition of MR also prevented AKI induced by IR in the Large White pig. Altogether, we show that MR antagonism, or deletion of the MR gene in SMCs, limited the renal injury induced by IR through effects on Rac1-mediated MR signaling. The benefits of MR antagonism in the pig provide a rational basis for future clinical trials assessing the benefits of this approach in patients with IR-mediated AKI.

  20. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  1. Pathway-selective antagonism of proteinase activated receptor 2

    PubMed Central

    Suen, J Y; Cotterell, A; Lohman, R J; Lim, J; Han, A; Yau, M K; Liu, L; Cooper, M A; Vesey, D A; Fairlie, D P

    2014-01-01

    Background and Purpose Proteinase activated receptor 2 (PAR2) is a GPCR associated with inflammation, metabolism and disease. Clues to understanding how to block PAR2 signalling associated with disease without inhibiting PAR2 activation in normal physiology could be provided by studies of biased signalling. Experimental Approach PAR2 ligand GB88 was profiled for PAR2 agonist and antagonist properties by several functional assays associated with intracellular G-protein-coupled signalling in vitro in three cell types and with PAR2-induced rat paw oedema in vivo. Key Results In HT29 cells, GB88 was a PAR2 antagonist in terms of Ca2+ mobilization and PKC phosphorylation, but a PAR2 agonist in attenuating forskolin-induced cAMP accumulation, increasing ERK1/2 phosphorylation, RhoA activation, myosin phosphatase phosphorylation and actin filament rearrangement. In CHO-hPAR2 cells, GB88 inhibited Ca2+ release, but activated Gi/o and increased ERK1/2 phosphorylation. In human kidney tubule cells, GB88 inhibited cytokine secretion (IL6, IL8, GM-CSF, TNF-α) mediated by PAR2. A rat paw oedema induced by PAR2 agonists was also inhibited by orally administered GB88 and compared with effects of locally administered inhibitors of G-protein coupled pathways. Conclusions and Implications GB88 is a biased antagonist of PAR2 that selectively inhibits PAR2/Gq/11/Ca2+/PKC signalling, leading to anti-inflammatory activity in vivo, while being an agonist in activating three other PAR2-activated pathways (cAMP, ERK, Rho) in human cells. These findings highlight opportunities to design drugs to block specific PAR2-linked signalling pathways in disease, without blocking beneficial PAR2 signalling in normal physiology, and to dissect PAR2-associated mechanisms of disease in vivo. PMID:24821440

  2. in Silico investigation of the structural requirements for the AMPA receptor antagonism by quinoxaline derivatives

    PubMed Central

    Azam, Faizul; Abugrain, Ismaiel Mohamed; Sanalla, Mohamed Hussin; Elnaas, Radwan Fatahalla; Rajab, Ibrahim Abdassalam Ibn

    2013-01-01

    Glutamate receptors have been implicated in various neurological disorders and their antagonism offers a suitable approach for the treatment of such disorders. The field of drug design and discovery aims to find best medicines to prevent, treat and cure diseases quickly and efficiently. In this regard, computational tools have helped medicinal chemists modify and optimize molecules to potent drug candidates with better pharmacokinetic profiles, and guiding biologists and pharmacologists to explore new disease genes as well as novel drug targets. In the present study, to understand the structural requirements for AMPA receptor antagonism, molecular docking study was performed on 41 structurally diverse antagonists based on quinoxaline nucleus. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results obtained signify that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.6) between experimental and docking predicted AMPA receptor antagonistic activity. The aromatic moiety of quinoxaline core has been proved to be vital for hydrophobic contacts exhibiting - interactions in docked conformations. However, polar moieties such as carboxylic group and 1,2,4-triazole moieties were noted to be sites for hydrophilic interactions in terms of hydrogen bonding with the receptor. These analyses can be exploited to design and develop novel AMPA receptor antagonists for the treatment of different neurological disorders. PMID:24250113

  3. in Silico investigation of the structural requirements for the AMPA receptor antagonism by quinoxaline derivatives.

    PubMed

    Azam, Faizul; Abugrain, Ismaiel Mohamed; Sanalla, Mohamed Hussin; Elnaas, Radwan Fatahalla; Rajab, Ibrahim Abdassalam Ibn

    2013-01-01

    Glutamate receptors have been implicated in various neurological disorders and their antagonism offers a suitable approach for the treatment of such disorders. The field of drug design and discovery aims to find best medicines to prevent, treat and cure diseases quickly and efficiently. In this regard, computational tools have helped medicinal chemists modify and optimize molecules to potent drug candidates with better pharmacokinetic profiles, and guiding biologists and pharmacologists to explore new disease genes as well as novel drug targets. In the present study, to understand the structural requirements for AMPA receptor antagonism, molecular docking study was performed on 41 structurally diverse antagonists based on quinoxaline nucleus. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results obtained signify that the molecular docking approach is reliable and produces a good correlation coefficient (r(2) = 0.6) between experimental and docking predicted AMPA receptor antagonistic activity. The aromatic moiety of quinoxaline core has been proved to be vital for hydrophobic contacts exhibiting - interactions in docked conformations. However, polar moieties such as carboxylic group and 1,2,4-triazole moieties were noted to be sites for hydrophilic interactions in terms of hydrogen bonding with the receptor. These analyses can be exploited to design and develop novel AMPA receptor antagonists for the treatment of different neurological disorders.

  4. The Effect of Mineralocorticoid and Glucocorticoid Receptor Antagonism on Autobiographical Memory Recall and Amygdala Response to Implicit Emotional Stimuli

    PubMed Central

    Preskorn, Sheldon H.; Victor, Teresa; Misaki, Masaya; Bodurka, Jerzy; Drevets, Wayne C.

    2016-01-01

    Background: Acutely elevated cortisol levels in healthy humans impair autobiographical memory recall and alter hemodynamic responses of the amygdala to emotionally valenced stimuli. It is hypothesized that the effects of the cortisol on cognition are influenced by the ratio of mineralocorticoid receptor to glucocorticoid receptor occupation. The current study examined the effects of acutely blocking mineralocorticoid receptors and glucocorticoid receptors separately on 2 processes known to be affected by altering levels of cortisol: the specificity of autobiographical memory recall, and the amygdala hemodynamic response to sad and happy faces. Methods: We employed a within-subjects design in which 10 healthy male participants received placebo, the mineralocorticoid receptor antagonist spironolactone (600mg) alone, and the glucocorticoid receptor antagonist mifepristone (600mg) alone in a randomized, counter-balanced order separated by 1-week drug-free periods. Results: On autobiographical memory testing, mineralocorticoid receptor antagonism impaired, while glucocorticoid receptor antagonism improved, recall relative to placebo, as evinced by changes in the percent of specific memories recalled. During fMRI, the amygdala hemodynamic response to masked sad faces was greater under both mineralocorticoid receptor and glucocorticoid receptor antagonism relative to placebo, while the response to masked happy faces was attenuated only during mineralocorticoid receptor antagonism relative to placebo. Conclusions: These data suggest both mineralocorticoid receptor and glucocorticoid receptor antagonism (and potentially any deviation from the normal physiological mineralocorticoid receptor/glucocorticoid receptor ratio achieved under the circadian pattern) enhances amygdala-based processing of sad stimuli and may shift the emotional processing bias away from the normative processing bias and towards the negative valence. In contrast, autobiographical memory was enhanced by

  5. Antagonism of Human Formyl Peptide Receptor 1 with Natural Compounds and their Synthetic Derivatives

    PubMed Central

    Schepetkin, Igor A.; Khlebnikov, Andrei I.; Kirpotina, Liliya N.; Quinn, Mark T.

    2015-01-01

    Formyl peptide receptor 1 (FPR1) regulates a wide variety of neutrophil functional responses and plays an important role in inflammation and the pathogenesis of various diseases. To date, a variety of natural and synthetic molecules have been identified as FPR1 ligands. Here, we review current knowledge on natural products and natural product-inspired small-molecules reported to antagonize and/or inhibit the FPR1-mediated responses. Based on this literature, additional screening of selected commercially available natural compounds for their ability to inhibit fMLF-induced Ca2+ mobilization in human neutrophils and FPR1 transfected HL-60 cells, and pharmacophore modeling, natural products with potential as FPR1 antagonists are considered and discussed in this review. The identification and characterization of natural products that antagonize FPR1 activity may have potential for the development of novel therapeutics to limit or alter the outcome of inflammatory processes. PMID:26382576

  6. Antagonism of human formyl peptide receptor 1 with natural compounds and their synthetic derivatives.

    PubMed

    Schepetkin, Igor A; Khlebnikov, Andrei I; Kirpotina, Liliya N; Quinn, Mark T

    2016-08-01

    Formyl peptide receptor 1 (FPR1) regulates a wide variety of neutrophil functional responses and plays an important role in inflammation and the pathogenesis of various diseases. To date, a variety of natural and synthetic molecules have been identified as FPR1 ligands. Here, we review current knowledge on natural products and natural product-inspired small molecules reported to antagonize and/or inhibit the FPR1-mediated responses. Based on this literature, additional screening of selected commercially available natural compounds for their ability to inhibit fMLF-induced Ca(2+) mobilization in human neutrophils and FPR1 transfected HL-60 cells, and pharmacophore modeling, natural products with potential as FPR1 antagonists are considered and discussed in this review. The identification and characterization of natural products that antagonize FPR1 activity may have potential for the development of novel therapeutics to limit or alter the outcome of inflammatory processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine.

    PubMed

    Prinssen, E P; Ellenbroek, B A; Cools, A R

    1994-09-01

    Previous studies have shown that alpha 1-adrenoceptors, dopamine D1-like and 5-HT2A receptors play an important role in the effects of the atypical neuroleptic, clozapine, on the parameter modelling antipsychotic efficacy in the paw test. Therefore, it became of interest to investigate whether antagonism of all these receptors together would give rise to effects characteristic of clozapine. The effects of the combined administration of the alpha 1-adrenoceptor antagonist phenoxybenzamine, the dopamine D1 receptor antagonist, SCH 39166 (4-(4-chloro-3-methoxyphenyl)-1,2- dihydronaphthalene), and the 5-HT2A receptor antagonist, ketanserin, were therefore measured in the paw test. The present data show that all three drugs together, but not simply combinations of two out of three, produced a profile similar to that of clozapine: a significant increase in the parameter modelling antipsychotic efficacy and no change in the parameter modelling extrapyramidal side-effects.

  8. A new ethyladenine antagonist of adenosine A(2A) receptors: behavioral and biochemical characterization as an antiparkinsonian drug.

    PubMed

    Pinna, Annalisa; Tronci, Elisabetta; Schintu, Nicoletta; Simola, Nicola; Volpini, Rosaria; Pontis, Silvia; Cristalli, Gloria; Morelli, Micaela

    2010-03-01

    Adenosine A(2A) receptor antagonists have emerged as an attractive non-dopaminergic target in clinical trials aimed at evaluating improvement in motor deficits in Parkinson's disease (PD). Moreover, preclinical studies suggest that A(2A) receptor antagonists may slow the course of the underlying neurodegeneration of dopaminergic neurons. In this study, we evaluated the efficacy of the new adenosine A(2A) receptor antagonist 8-ethoxy-9-ethyladenine (ANR 94) in parkinsonian models of akinesia and tremor. In addition, induction of the immediate early gene zif-268, and neuroprotective and anti-inflammatory effects of ANR 94 were evaluated. ANR 94 was effective in reversing parkinsonian tremor induced by the administration of tacrine. ANR 94 also counteracted akinesia (stepping test) and sensorimotor deficits (vibrissae-elicited forelimb-placing test), as well as potentiating l-dopa-induced contralateral turning behavior in 6-hydroxydopamine (6-OHDA) lesion model of PD. Potentiation of motor behavior in 6-OHDA-lesioned rats was not associated with increased induction of the immediate early gene zif-268 in the striatum, suggesting that ANR 94 does not induce long-term plastic changes in this structure. Finally, in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, ANR 94 protected nigrostriatal dopaminergic neurons from degeneration and counteracted neuroinflammatory processes by contrasting astroglial (glial fibrillary acidic protein, GFAP) and microglial (CD11b) activation. A(2A) receptor antagonism represents a uniquely realistic opportunity for improving PD treatment, since A(2A) receptor antagonists offer substantial symptomatic benefits and possibly disease-modifying activity. The characterization of ANR 94 may represent a further therapeutic opportunity for the treatment of PD with this new class of drugs.

  9. Continuous antagonism of the ghrelin receptor results in early induction of salt-sensitive hypertension.

    PubMed

    Sato, Takahiro; Nakashima, Yoshiki; Nakamura, Yuki; Ida, Takanori; Kojima, Masayasu

    2011-02-01

    Ghrelin is a hormone that mediates a variety of physiological roles, such as stimulating appetite, initiating food intake, and modulating energy metabolism. Although it has been reported that a bolus injection of ghrelin decreases blood pressure, the effect of continuous ghrelin administration on vasoregulation has yet to be determined. We examined the longitudinal effect of ghrelin on vasoregulation using Dahl-Iwai salt-sensitive rats. In this model, a high-salt diet induced high blood pressure and increased ghrelin levels but reduced food intake. In salt-sensitive hypertension, cumulative food intake decreased, while both ghrelin messenger RNA levels and plasma ghrelin content increased. Continuous administration of a ghrelin receptor agonist, growth hormone releasing peptide-6 (GHRP-6), for 2 weeks by mini-osmotic pump did not change blood pressure values although the cumulative food intake recovered. In contrast, continuous administration of a ghrelin receptor antagonist, [D-Lys³]-GHRP-6, induced early elevations in blood pressure without changes in heart rate. Quantitative RT-PCR revealed high expression levels of genes involved in the catecholamine biosynthetic pathway, tyrosine hydroxylase and dopamine-β-hydroxylase, after continuous [D-Lys³]-GHRP-6 administration. These results indicate that continuous antagonism of the ghrelin receptor results in early induction of salt-sensitive hypertension in this animal model and suggests that increases in autonomic nervous activity induced by ghrelin receptor antagonism are responsible, as indicated by the high expression levels of genes in the catecholamine biosynthetic pathway.

  10. Functional antagonism between hormone receptor systems: modulation of glycoprotein secretion in secretory epithelial cells.

    PubMed

    Amin, D N; Goswami, S; Klein, T; Maayani, S; Marom, Z

    1991-02-01

    A physiologic response such as mucin secretion from epithelial cells in vivo may be under the control of several endogenous substances such as acetylcholine, norepinephrine, and vasoactive intestinal peptide (VIP). These substances may simultaneously activate distinct membrane receptors that exist on the same epithelial cells, and this activation may result in reciprocal physiologic responses or functional antagonism. To test whether simultaneous activation of the VIP and muscarinic receptors or of beta-adrenoreceptors and muscarinic receptors affect mucin secretion in a reciprocal manner, we studied some characteristics of the resultant physiologic response in human epithelial cells secreting radiolabeled mucin-like glycoprotein (MLGP). Both basal and methacholine (M.chol)-induced MLGP secretion could be blocked by VIP (1 pM to 1 microM) and by isoproterenol (ISO) (0.1 nM to 10 nM) in a concentration-dependent and reversible manner. In a membrane preparation from the same cells, VIP (1 to 1,000 nM) and ISO (0.1 to 10 microM) stimulated adenylyl cyclase activity in a concentration-dependent and nonadditive manner. In the same membrane preparation, no effect of M.chol was observed on this response to VIP or to ISO. It is proposed that functional antagonism at the cellular level between basal or cholinergic-stimulated mucin secretion and either activated beta-adrenergic or VIP receptors may play a crucial role in modulation of mucin secretion from epithelial cells.

  11. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington's disease mice.

    PubMed

    Martire, Alberto; Ferrante, Antonella; Potenza, Rosa Luisa; Armida, Monica; Ferretti, Roberta; Pézzola, Antonella; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-01-01

    Excitotoxicity plays a major role in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) modulate excitotoxicity and have been suggested to play a pathogenetic role in HD. The main aim of this study was to evaluate the effect of A(2A)R blockade on the expression and functions of NMDA receptors in the striatum of HD mice (R6/2). We found that 3 weeks' treatment with SCH 58261 (0.01 mg/kg/day i.p. from the 8th week of age) modified NR1 and NR2A/NR2B expression in the striatum of R6/2 (Western blotting) while had no effect on NMDA-induced toxicity in corticostriatal slices (electrophysiological experiments). In conclusion, in vivo A(2A)R blockade induced a remodeling of NMDA receptors in the striatum of HD mice. Even though the functional relevance of the above effect remains to be fully elucidated, these results add further evidence to the modulatory role of A(2A)Rs in HD.

  12. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor.

    PubMed

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C

    2012-12-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascular dementia, stroke, and Alzheimer's disease. The γ-amino butyric acid (GABA) is an inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response, it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously, we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circulation by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine β-synthase, CBS-/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients.

  13. Mechanism of Androgen Receptor Antagonism by Bicalutamide in the Treatment of Prostate Cancer

    PubMed Central

    Osguthorpe, D.J.; Hagler, A.T.

    2011-01-01

    The androgen receptor (AR) plays a key role in a regulating gene expression in a variety of tissues, including the prostate. In the latter role it is one of the primary targets in the development of new chemotherapeutics for treatment of prostate cancer, as well as being the target of the most widely prescribed current drug, bicalutamide (Bcu), for this disease. In view of it’s importance, and the absence of a crystal structure for any antagonist-AR complex, we have carried out a series of molecular dynamics based simulations of the AR-Bcu complex and quantum mechanical (QM) calculations of Bcu, to elucidate the structural basis for antagonism of this key target. The structures which emerge show that bicalutamide antagonizes AR by accessing an additional binding pocket (B-site) adjacent to the hormone binding site (HBS), induced by displacing helix 12. This distorts the coactivator binding site and results in the inactivation of transcription. An alternative equienergetic conformational state of bicalutamide was found to bind in an expanded hormone pocket without materially perturbing either helix 12 or the coactivator binding site. Thus both the structural basis of antagonism and the mechanism underlying agonist properties displayed by bicalutamide in different environments may be rationalized in terms of these structures. In addition the antagonist structure and especially the induced second site (B-site) provides a structural framework for the design of novel antiandrogens. PMID:21466228

  14. Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer.

    PubMed

    Osguthorpe, D J; Hagler, A T

    2011-05-17

    The androgen receptor (AR) plays a key role in regulating gene expression in a variety of tissues, including the prostate. In that role, it is one of the primary targets in the development of new chemotherapeutics for treatment of prostate cancer and the target of the most widely prescribed current drug, bicalutamide (Bcu), for this disease. In view of its importance, and the absence of a crystal structure for any antagonist--AR complex, we have conducted a series of molecular dynamics-based simulations of the AR--Bcu complex and quantum mechanical (QM) calculations of Bcu, to elucidate the structural basis for antagonism of this key target. The structures that emerge show that bicalutamide antagonizes AR by accessing an additional binding pocket (B-site) adjacent to the hormone binding site (HBS), induced by displacing helix 12. This distorts the coactivator binding site and results in the inactivation of transcription. An alternative equienergetic conformational state of bicalutamide was found to bind in an expanded hormone pocket without materially perturbing either helix 12 or the coactivator binding site. Thus, both the structural basis of antagonism and the mechanism underlying agonist properties displayed by bicalutamide in different environments may be rationalized in terms of these structures. In addition, the antagonist structure and especially the induced second site (B-site) provide a structural framework for the design of novel antiandrogens.

  15. Arctigenin antagonizes mineralocorticoid receptor to inhibit the transcription of Na/K-ATPase.

    PubMed

    Cheng, Ye; Zhou, Meili; Wang, Yan

    2016-01-01

    Hypertension is one of the most important risk factors in cardiovascular disease and is the most common chronic disease. Mineralocorticoid receptor (MR) antagonists have been successfully used in clinic for the treatment of hypertension. Our study aims to investigate whether Arctigenin can antagonize MR and inhibit the transcription of Na/K-ATPase. The yeast two-hybrid assay was used to screen natural products and Arctigenin was identified as an MR antagonist. The direct binding of Arctigenin to MR was determined using assays based on surface plasmon resonance, differential scanning calorimetry and fluorescence quenching. Furthermore, results from mammalian one-hybrid and transcriptional activation experiments also confirmed that Arctigenin can potently antagonize MR in cells. We demonstrated that Arctigenin can decrease the level of Na/K-ATPase mRNA by antagonizing MR in HK-2 cells. Our findings show that Arctigenin can effectively decrease Na/K-ATPase transcription; thus highlight its potential as an anti-hypertensive drug lead compound. Our current findings demonstrate that Arctigenin is an antagonist of MR and effectively decreases the Na/K-ATPase 1 gene expression. Our work provides a hint for the drug discovery against cardiovascular disease.

  16. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders.

    PubMed

    Cunha, Rodrigo A; Ferré, Sergi; Vaugeois, Jean-Marie; Chen, Jiang-Fan

    2008-01-01

    The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.

  17. Adenosine A1 and A2A receptors are not upstream of caffeine's dopamine D2 receptor-dependent aversive effects and dopamine-independent rewarding effects

    PubMed Central

    Sturgess, Jessica E; Ting-A-Kee, Ryan A; Podbielski, Dominik; Sellings, Laurie HL; Chen, Jiang-Fan; van der Kooy, Derek

    2010-01-01

    Caffeine is widely consumed throughout the world, yet little is known about the mechanisms underlying its rewarding and aversive properties. We show that pharmacological antagonism of dopamine not only blocks conditioned place aversions to caffeine, but reveals dopamine blockade-induced conditioned place preferences. These aversions are mediated by the dopamine D2 receptor since knockout mice showed conditioned place preferences to doses of caffeine that C57Bl/6 mice found aversive. Further, these aversions appear to be centrally-mediated since a quaternary analogue to caffeine failed to produce conditioned place aversions. While the adenosine A2A receptor is important for caffeine's physiological effects, this receptor seems only to modulate the appetitive and aversive effects of caffeine. A2A receptor knockout mice showed stronger dopamine-dependent aversions to caffeine than C57Bl/6 animals, which partially obscured the dopamine- and A2A receptor-independent preferences. Additionally, the A1 receptor, alone or in combination with the A2A receptor, does not seem to be important for caffeine's rewarding or aversive effects. Finally, excitotoxic lesions of the tegmental pedunculopontine nucleus revealed that this brain region is not involved in dopamine blockade-induced caffeine reward. This data provides surprising new information on the mechanism of action of caffeine, indicating that adenosine receptors do not mediate caffeine's appetitive and aversive effects. We show that caffeine has an atypical reward mechanism, independent of the dopaminergic system and the tegmental pedunculopontine nucleus and provide additional evidence in support of a role for the dopaminergic system in aversive learning. PMID:20576036

  18. Structural Basis for Agonism and Antagonism for a Set of Chemically Related Progesterone Receptor Modulators

    PubMed Central

    Lusher, Scott J.; Raaijmakers, Hans C. A.; Vu-Pham, Diep; Dechering, Koen; Lam, Tsang Wai; Brown, Angus R.; Hamilton, Niall M.; Nimz, Olaf; Bosch, Rolien; McGuire, Ross; Oubrie, Arthur; de Vlieg, Jacob

    2011-01-01

    The progesterone receptor is able to bind to a large number and variety of ligands that elicit a broad range of transcriptional responses ranging from full agonism to full antagonism and numerous mixed profiles inbetween. We describe here two new progesterone receptor ligand binding domain x-ray structures bound to compounds from a structurally related but functionally divergent series, which show different binding modes corresponding to their agonistic or antagonistic nature. In addition, we present a third progesterone receptor ligand binding domain dimer bound to an agonist in monomer A and an antagonist in monomer B, which display binding modes in agreement with the earlier observation that agonists and antagonists from this series adopt different binding modes. PMID:21849509

  19. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma.

    PubMed

    Verstraete, Kenneth; Peelman, Frank; Braun, Harald; Lopez, Juan; Van Rompaey, Dries; Dansercoer, Ann; Vandenberghe, Isabel; Pauwels, Kris; Tavernier, Jan; Lambrecht, Bart N; Hammad, Hamida; De Winter, Hans; Beyaert, Rudi; Lippens, Guy; Savvides, Savvas N

    2017-04-03

    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) is pivotal to the pathophysiology of widespread allergic diseases mediated by type 2 helper T cell (Th2) responses, including asthma and atopic dermatitis. The emergence of human TSLP as a clinical target against asthma calls for maximally harnessing its therapeutic potential via structural and mechanistic considerations. Here we employ an integrative experimental approach focusing on productive and antagonized TSLP complexes and free cytokine. We reveal how cognate receptor TSLPR allosterically activates TSLP to potentiate the recruitment of the shared interleukin 7 receptor α-chain (IL-7Rα) by leveraging the flexibility, conformational heterogeneity and electrostatics of the cytokine. We further show that the monoclonal antibody Tezepelumab partly exploits these principles to neutralize TSLP activity. Finally, we introduce a fusion protein comprising a tandem of the TSLPR and IL-7Rα extracellular domains, which harnesses the mechanistic intricacies of the TSLP-driven receptor complex to manifest high antagonistic potency.

  20. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma

    PubMed Central

    Verstraete, Kenneth; Peelman, Frank; Braun, Harald; Lopez, Juan; Van Rompaey, Dries; Dansercoer, Ann; Vandenberghe, Isabel; Pauwels, Kris; Tavernier, Jan; Lambrecht, Bart N.; Hammad, Hamida; De Winter, Hans; Beyaert, Rudi; Lippens, Guy; Savvides, Savvas N.

    2017-01-01

    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) is pivotal to the pathophysiology of widespread allergic diseases mediated by type 2 helper T cell (Th2) responses, including asthma and atopic dermatitis. The emergence of human TSLP as a clinical target against asthma calls for maximally harnessing its therapeutic potential via structural and mechanistic considerations. Here we employ an integrative experimental approach focusing on productive and antagonized TSLP complexes and free cytokine. We reveal how cognate receptor TSLPR allosterically activates TSLP to potentiate the recruitment of the shared interleukin 7 receptor α-chain (IL-7Rα) by leveraging the flexibility, conformational heterogeneity and electrostatics of the cytokine. We further show that the monoclonal antibody Tezepelumab partly exploits these principles to neutralize TSLP activity. Finally, we introduce a fusion protein comprising a tandem of the TSLPR and IL-7Rα extracellular domains, which harnesses the mechanistic intricacies of the TSLP-driven receptor complex to manifest high antagonistic potency. PMID:28368013

  1. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  2. ET-receptor antagonism, myocardial gene expression, and ventricular remodeling during CHF in rats.

    PubMed

    Oie, E; Bjønerheim, R; Grogaard, H K; Kongshaug, H; Smiseth, O A; Attramadal, H

    1998-09-01

    Both myocardial and plasma endothelin-1 (ET-1) are elevated in congestive heart failure (CHF). However, the role played by endogenous ET-1 in the progression of CHF remains unknown. The aim of the present study was to investigate and correlate myocardial gene expression programs and left ventricular (LV) remodeling during chronic ET-receptor antagonism in CHF rats. After ligation of the left coronary artery, rats were randomized to oral treatment with a nonselective ET-receptor antagonist (bosentan, 100 mg . kg-1 . day-1, n = 11) or vehicle (saline, n = 13) for 15 days, starting 24 h after induction of myocardial infarction. Bosentan substantially attenuated LV dilatation during postinfarction failure as evaluated by echocardiography. Furthermore, bosentan decreased LV systolic and end-diastolic pressures and increased fractional shortening. Myocardial expression of preproET-1 mRNA and a fetal gene program characteristic of myocardial hypertrophy were increased in the CHF rats and were not affected by bosentan. Consistently, right ventricular-to-body weight ratios, diameters of cardiomyocytes, and echocardiographic analysis demonstrated a sustained hypertrophic response and a normalized relative wall thickness after intervention with bosentan. Thus the modest reduction of preload and afterload provided by bosentan substantially attenuates LV dilatation, causing improved pressure-volume relationships. However, the compensatory hypertrophic response was not altered by ET-receptor antagonism. Therefore, ET-1 does not appear to play a crucial role in the mechanisms of myocardial hypertrophy during the early phase of postinfarction failure.

  3. Deletion of α5 nicotine receptor subunits abolishes nicotinic aversive motivational effects in a manner that phenocopies dopamine receptor antagonism.

    PubMed

    Grieder, Taryn E; George, Olivier; Yee, Mandy; Bergamini, Michael A; Chwalek, Michal; Maal-Bared, Geith; Vargas-Perez, Hector; van der Kooy, Derek

    2017-07-01

    Nicotine addiction is a worldwide epidemic that claims millions of lives each year. Genetic deletion of α5 nicotinic acetylcholine receptor (nAChR) subunits has been associated with increased nicotine intake, however, it remains unclear whether acute nicotine is less aversive or more rewarding, and whether mice lacking the α5 nAChR subunit can experience withdrawal from chronic nicotine. We used place conditioning and conditioned taste avoidance paradigms to examine the effect of α5 subunit-containing nAChR deletion (α5 -/-) on conditioned approach and avoidance behaviour in nondependent and nicotine-dependent and -withdrawn mice, and compared these motivational effects with those elicited after dopamine receptor antagonism. We show that nondependent α5 -/- mice find low, non-motivational doses of nicotine rewarding, and do not show an aversive conditioned response or taste avoidance to higher aversive doses of nicotine. Furthermore, nicotine-dependent α5 -/- mice do not show a conditioned aversive motivational response to withdrawal from chronic nicotine, although they continue to exhibit a somatic withdrawal syndrome. These effects phenocopy those observed after dopamine receptor antagonism, but are not additive, suggesting that α5 nAChR subunits act in the same pathway as dopamine and are critical for the experience of nicotine's aversive, but not rewarding motivational effects in both a nondependent and nicotine-dependent and -withdrawn motivational state. Genetic deletion of α5 nAChR subunits leads to a behavioural phenotype that exactly matches that observed after antagonizing dopamine receptors, thus we suggest that modulation of nicotinic receptors containing α5 subunits may modify dopaminergic signalling, suggesting novel therapeutic treatments for smoking cessation. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  5. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism.

    PubMed

    Dugovic, Christine; Shelton, Jonathan E; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T; Lovenberg, Timothy W

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

  6. Adenosine A2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory.

    PubMed

    Simões, Ana Patrícia; Machado, Nuno J; Gonçalves, Nélio; Kaster, Manuella P; Simões, Ana T; Nunes, Ana; Pereira de Almeida, Luís; Goosens, Ki Ann; Rial, Daniel; Cunha, Rodrigo A

    2016-11-01

    The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A2A receptors (A2ARs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A2ARs in the amygdala regulate synaptic plasticity and fear memory. We report that A2ARs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A2ARs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A2AR (shA2AR)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A2ARs in the amygdala after fear acquisition. The importance of A2ARs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A2AR antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A1R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A2ARs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A2AR polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A2ARs to manage fear-related pathologies.

  7. Estradiol and striatal dopamine receptor antagonism influence memory system bias in the female rat.

    PubMed

    Quinlan, Matthew G; Almey, Anne; Caissie, Meghen; LaChappelle, Ivonne; Radiotis, George; Brake, Wayne G

    2013-11-01

    Estradiol (E2) has been shown to influence learning and memory systems used by female rats to find a reward. Rats with high levels of E2 tend to use allocentric, or place, memory while rats with low levels of E2 use egocentric, or response, memory. It has been shown that systemic dopamine receptor antagonism interacts with E2 to affect which memory system is used. Here, dopamine antagonists were administered directly into either the dorsal striatum or nucleus accumbens to determine where in the brain this interaction takes place. Seventy-four young adult, female, Sprague-Dawley rats were trained and tested in a modified plus-maze. All rats were ovariectomized, received a subcutaneous low E2 implant, and were implanted with bilateral cannulae into either the dorsal striatum or the nucleus accumbens. Additionally, high E2 rats received daily injections of E2 in a sesame oil solution while low E2 rats received daily injections of vehicle. After reaching criterion levels of performance in a plus-maze task, rats were administered microinjections of either a dopamine D1 receptor (SCH 23390; 0.1 μg/ml and 0.01 μg/ml) or D2 receptor (raclopride; 2 μg/ml and 0.5 μg/ml) antagonist or a vehicle control (saline) in a counterbalanced manner. High E2 rats exhibited a trend towards a place memory bias while low E2 rats showed a response memory bias. Dorsal striatal administration of a D1, but not D2, dopamine receptor antagonist caused a switch in the memory system used by both high and low E rats. There was no significant effect of dopamine receptor antagonism in the nucleus accumbens group. Thus, E2 determined which memory system controlled behavior in a plus-maze task. Moreover, this effect was modulated by dopamine D1R antagonism in the dorsal but not ventral striatum suggesting that memory systems are, in part, mediated by E2 and dopamine in this region. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action.

    PubMed

    Degroot, Aldemar; Köfalvi, Attila; Wade, Mark R; Davis, Richard J; Rodrigues, Ricardo J; Rebola, Nelson; Cunha, Rodrigo A; Nomikos, George G

    2006-10-01

    Evidence indicates that blockade of cannabinoid receptors increases acetylcholine (ACh) release in brain cortical regions. Although it is assumed that this type of effect is mediated through CB1 receptor (CB1R) antagonism, several in vitro functional studies recently have suggested non-CB1R involvement. In addition, neither the precise neuroanatomical site nor the exact mechanisms underlying this effect are known. We thoroughly examined these issues using a combination of systemic and local administration of CB1R antagonists, different methods of in vivo microdialysis, CB1R knockout (KO) mice, tissue measurements of ACh, and immunochemistry. First, we showed that systemic injections of the CB1R antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR-141716A) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) dose-dependently increased hippocampal ACh efflux. Likewise, local hippocampal, but not septal, infusions of SR141716A or AM251 increased hippocampal ACh release. It is noteworthy that the stimulatory effects of systemically administered CB1R antagonists on hippocampal ACh release were completely abolished in CB1R KO mice. CB1R KO mice had similar basal but higher stress-enhanced hippocampal ACh levels compared with wild-type controls. It is interesting that dopamine D1 receptor antagonism counteracted the stimulatory effect of CB1R blockade on hippocampal ACh levels. Finally, immunohistochemical methods revealed that a high proportion of CB1R-positive nerve terminals were found in hippocampus and confirmed the colocalization of CB1 receptors with cholinergic and dopaminergic nerve terminals. In conclusion, hippocampal ACh release may specifically be controlled through CB1Rs located on both cholinergic and dopaminergic neuronal projections, and CB1R antagonism increases hippocampal ACh release, probably through both a direct

  9. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    PubMed

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.

  10. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    PubMed Central

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  11. Dopamine Receptor D1 Agonism and Antagonism Using a Field-Effect Transistor Assay.

    PubMed

    Park, Seon Joo; Yang, Heehong; Lee, Seung Hwan; Song, Hyun Seok; Park, Chul Soon; Bae, Joonwon; Kwon, Oh Seok; Park, Tai Hyun; Jang, Jyongsik

    2017-06-27

    The field-effect transistor (FET) has been used in the development of diagnostic tools for several decades, leading to high-performance biosensors. Therefore, the FET platform can provide the foundation for the next generation of analytical methods. A major role of G-protein-coupled receptors (GPCRs) is in the transfer of external signals into the cell and promoting human body functions; thus, their principle application is in the screening of new drugs. The research community uses efficient systems to screen potential GPCR drugs; nevertheless, the need to develop GPCR-conjugated analytical devices remains for next-generation new drug screening. In this study, we proposed an approach for studying receptor agonism and antagonism by combining the roles of FETs and GPCRs in a dopamine receptor D1 (DRD1)-conjugated FET system, which is a suitable substitute for conventional cell-based receptor assays. DRD1 was reconstituted and purified to mimic native binding pockets that have highly discriminative interactions with DRD1 agonists/antagonists. The real-time responses from the DRD1-nanohybrid FET were highly sensitive and selective for dopamine agonists/antagonists, and their maximal response levels were clearly different depending on their DRD1 affinities. Moreover, the equilibrium constants (K) were estimated by fitting the response levels. Each K value indicates the variation in the affinity between DRD1 and the agonists/antagonists; a greater K value corresponds to a stronger DRD1 affinity in agonism, whereas a lower K value in antagonism indicates a stronger dopamine-blocking effect.

  12. Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors.

    PubMed

    Lymperopoulos, Anastasios

    2012-01-01

    Heptahelical, G protein-coupled or seven transmembrane-spanning receptors, such as the β-adrenergic and the angiotensin II type 1 receptors, are the most diverse and therapeutically important family of receptors in the human genome, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by phosphorylation of the agonist-bound receptor by the G-protein coupled receptor kinases (GRKs), followed by βarrestin binding, which uncouples the phosphorylated receptor from the G protein and subsequently targets the receptor for internalization. As the receptor-βarrestin complex enters the cell, βarrestin-1 and -2, the two mammalian βarrestin isoforms, serve as ligand-regulated scaffolds that recruit a host of intracellular proteins and signal transducers, thus promoting their own wave of signal transduction independently of G-proteins. A constantly increasing number of studies over the past several years have begun to uncover specific roles played by these ubiquitously expressed receptor adapter proteins in signal transduction of several important heptahelical receptors regulating the physiology of various organs/ systems, including the cardiovascular (CV) system. Thus, βarrestin-dependent signaling has increasingly been implicated in CV physiology and pathology, presenting several exciting opportunities for therapeutic intervention in the treatment of CV disorders. Additionally, the discovery of this novel mode of heptahelical receptor signaling via βarrestins has prompted a revision of classical pharmacological concepts such as receptor agonism/antagonism, as well as introduction of new terms such as "biased signaling", which refers to ligand-specific activation of selective signal transduction pathways by the very same receptor. The

  13. Dopamine D2/3 receptor antagonism reduces activity-based anorexia

    PubMed Central

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT2A/2C, 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted. PMID:26241351

  14. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  15. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    PubMed

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-05-19

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors.

  16. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor

    PubMed Central

    Hennen, Stephanie; Kodra, János T.; Soroka, Vladyslav; Krogh, Berit O.; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G.; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S.; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  17. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease.

    PubMed

    Ikeda, Ken; Kurokawa, Masako; Aoyama, Shiro; Kuwana, Yoshihisa

    2002-01-01

    Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities.

  18. Distinct effects of estrogen receptor antagonism on object recognition and spatial memory consolidation in ovariectomized mice.

    PubMed

    Kim, Jaekyoon; Frick, Karyn M

    2017-08-14

    Exogenous treatment with the potent estrogen 17β-estradiol (E2) or selective estrogen receptor α/β (ERα/β) agonists enhances the consolidation of hippocampal-dependent object recognition (OR) and object placement (OP) memories in ovariectomized rodents. Although such data suggest that individual ERs are sufficient for memory consolidation, the necessity of a given ER for memory consolidation can only be demonstrated by blocking receptor function, for example with an ER antagonist. However, the effects on memory of antagonizing ERα or ERβ function are not well understood. Moreover, ER antagonism in ovariectomized subjects also provides indirect information about the role of individual ERs in the memory-enhancing effects of local hippocampal E2 synthesis. Therefore, this study used pharmacological inhibition of ERα and ERβ to elucidate the importance of each ER to memory consolidation. Specifically, we examined effects on OR and OP memory consolidation of immediate post-training dorsal hippocampal (DH) infusion of MPP and PHTPP, selective antagonists for ERα and ERβ, respectively. Each drug exhibited a distinct effect on OR and OP. DH infusion of MPP (0.28 or 2.78ng/hemisphere) impaired memory in OP, but not OR. However, DH infusion of PHTPP (0.21 or 2.12ng/hemisphere) impaired memory in both OR and OP. Neither drug affected the elapsed time to accumulate object exploration in either task, suggesting a specific effect on memory. These results indicate that activation of either classical ER within the dorsal hippocampus is important for hippocampal memory consolidation in ovariectomized mice, but suggest that specific ER involvement is memory- or task-specific. The findings also indirectly support a role for ERα and ERβ in mediating the memory-enhancing effects of hippocampally-synthesized E2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of σ₁ receptor antagonism on ethanol and natural reward seeking.

    PubMed

    Martin-Fardon, Rémi; Strong, Elena M; Weiss, Friedbert

    2012-10-03

    σ₁ Receptors have been implicated in cognitive function, anxiety, depression, and the regulation of stress responses. In addition, σ₁ receptors have been shown to participate in the behavioral and motivational effects of psychostimulants. Recent studies have shown that σ₁ receptor antagonism prevents ethanol-induced conditioned place preference in mice and excessive drinking in alcohol-dependent or alcohol-preferring rats. Therefore, this study was designed to determine whether this role for σ₁ receptors extends to ethanol-seeking behavior using an animal model of relapse and tested whether the suppressant effect of a potent σ₁ receptor antagonist, BD1047, generalizes to natural reward-seeking behavior. Two separate groups of rats were trained to orally self-administer 10% (w/v) ethanol or a highly palatable reinforcer, 3%/0.125% (w/v) glucose/saccharin (SuperSac), in the presence of a discriminative stimulus (S). Following extinction, during which the reinforcers and S were withheld, the presentation of the ethanol or SuperSac S produced comparable recovery of responding. BD1047 (1-20 mg/kg) exerted similar behavioral effects on both ethanol S-induced and SuperSac S-induced reinstatement, with the prevention of conditioned reinstatement only at the highest BD1047 dose. The present results show that σ₁ receptor blockade under the present conditions exerts similar effects on conditioned reinstatement induced by ethanol-related and SuperSac-related stimuli, suggestive of overlapping neural mechanisms that control ethanol and natural reward seeking.

  20. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons.

    PubMed

    Paternain, A V; Morales, M; Lerma, J

    1995-01-01

    Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.

  1. Nociceptive tolerance is improved by bradykinin receptor B1 antagonism and joint morphology is protected by both endothelin type A and bradykinin receptor B1 antagonism in a surgical model of osteoarthritis

    PubMed Central

    2011-01-01

    Introduction Endothelin-1, a vasoconstrictor peptide, influences cartilage metabolism mainly via endothelin receptor type A (ETA). Along with the inflammatory nonapeptide vasodilator bradykinin (BK), which acts via bradykinin receptor B1 (BKB1) in chronic inflammatory conditions, these vasoactive factors potentiate joint pain and inflammation. We describe a preclinical study of the efficacy of treatment of surgically induced osteoarthritis with ETA and/or BKB1 specific peptide antagonists. We hypothesize that antagonism of both receptors will diminish osteoarthritis progress and articular nociception in a synergistic manner. Methods Osteoarthritis was surgically induced in male rats by transection of the right anterior cruciate ligament. Animals were subsequently treated with weekly intra-articular injections of specific peptide antagonists of ETA and/or BKB1. Hind limb nociception was measured by static weight bearing biweekly for two months post-operatively. Post-mortem, right knee joints were analyzed radiologically by X-ray and magnetic resonance, and histologically by the OARSI histopathology assessment system. Results Single local BKB1 antagonist treatment diminished overall hind limb nociception, and accelerated post-operative recovery after disease induction. Both ETA and/or BKB1 antagonist treatments protected joint radiomorphology and histomorphology. Dual ETA/BKB1 antagonism was slightly more protective, as measured by radiology and histology. Conclusions BKB1 antagonism improves nociceptive tolerance, and both ETA and/or BKB1 antagonism prevents joint cartilage degradation in a surgical model of osteoarthritis. Therefore, they represent a novel therapeutic strategy: specific receptor antagonism may prove beneficial in disease management. PMID:21575197

  2. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats

    PubMed Central

    Li, Aihua; Hindmarch, Charles C T; Nattie, Eugene E; Paton, Julian F R

    2013-01-01

    In normal rats, central administration of orexin or exposure to certain forms of stress can induce significant increases in blood pressure and sympathetic nerve activity, which can be blocked by orexin receptor antagonists. The resting blood pressure is, however, unaffected by such antagonists, but is significantly lower in rodents with total loss of orexin, such as prepro-orexin knockout mice and orexin neuron-ablated orexin/ataxin-3 transgenic rats. We hypothesize that orexin is involved in the pathophysiology and maintenance of high blood pressure in the spontaneously hypertensive rat (SHR), a model of primary hypertension. To test this hypothesis, we measured orexin-A mRNA expression in the rostral ventrolateral medulla and antagonized both orexin receptors using an orally administered potent dual orexin receptor antagonist, almorexant, in SHRs and normotensive Wistar–Kyoto rats. In SHRs, there was a strong trend towards an increased orexin-A mRNA expression in the rostral ventrolateral medulla, and blocking orexin receptors markedly lowered blood pressure (from 182/152 ± 5/6 to 149/119 ± 9/8 mmHg; P < 0.001), heart rate (P < 0.001), sympathetic vasomotor tone (P < 0.001) and the noradrenaline levels in cerebrospinal fluid and plasma (P < 0.002). The significant antihypertensive effects of almorexant were observed in wakefulness and non-rapid eye movement sleep during both dark and light phases of the diurnal cycle only in SHRs. Blocking orexin receptors had no effect on blood pressure and sympathetic tone in normotensive Wistar–Kyoto rats. Our study links the orexin system to the pathogenesis of high blood pressure in SHRs and suggests that modulation of the orexin system could be a potential target in treating some forms of hypertension. PMID:23671161

  3. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload

    PubMed Central

    Voss, Bryan M.; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R.; Carrier, Erica J.

    2016-01-01

    Abstract Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling. PMID:27252848

  4. A critical evaluation of adenosine A2A receptors as potentially "druggable" targets in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Domenici, Maria Rosaria; Burnouf, Sylvie; Chern, Yijuang

    2008-01-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by the expansion of a polymorphic CAG trinucleotide repeat encoding a poly-glutamine tract within the Huntingtin protein. GABAergic enkephalin neurons of the basal ganglia, which show the highest levels of expression of adenosine A(2A) receptors, are the most vulnerable in HD. Such a selective neuronal vulnerability, which occurs despite ubiquitous expression of mutant and normal Huntingtin, has suggested that adenosine A(2A) receptors might play a pathogenetic role in HD. In agreement, changes in A(2A) receptor expression and signaling have been reported in various experimental models of HD. The interpretation of the functional significance of the aberrant A(2A) receptor phenotype in HD mice is however complicated by the conflicting data so far reported on the potential neuroprotective and neurodegenerative effects of these receptors in the brain, with some data suggesting a potential pathogenetic role and some other data suggesting activation of trophic or protective pathways in neurons. The same complex profile has emerged in experimental models of HD, in which both A(2A) receptor agonists and antagonists have shown beneficial effects. The main aim of this review is to critically evaluate whether adenosine A(2A) receptors may represent a suitable target to develop drugs against HD.

  5. Synthesis of C5-tetrazole derivatives of 2-amino-adipic acid displaying NMDA glutamate receptor antagonism.

    PubMed

    Lenda, Fatimazohra; Crouzin, Nadine; Cavalier, Mélanie; Guiramand, Janique; Lanté, Fabien; Barbanel, Gérard; Cohen-Solal, Catherine; Martinez, Jean; Guenoun, Farhate; Lamaty, Frédéric; Vignes, Michel

    2011-03-01

    Five derivatives of 2-amino-adipic acid bearing a tetrazole-substituted in C5 position were synthesized. These compounds displayed selective antagonism towards N-methyl-D: -aspartate (NMDA) receptors compared with AMPA receptors, and they were devoid of any neurotoxicity. Among these five analogues, one exhibited a higher affinity for synaptic NMDA responses than the other four. Therefore, C5 tetrazole-substituted of 2-amino-adipic acid represent an interesting series of new NMDA receptor antagonists. This approach may be considered as a new strategy to develop ligands specifically targeted to synaptic or extra-synaptic NMDA receptors.

  6. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    PubMed

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  7. Acute Effect of Mineralocorticoid Receptor Antagonism on Vascular Function in Healthy Older Adults

    PubMed Central

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H.; English, Mark; Talcott, Susanne; Jaffe, Iris Z.; Christou, Demetra D.

    2015-01-01

    Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 y; mean ± SE, 53–79 y) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4mg) following eplerenone (100 mg/dose, 2 doses, 24 hours between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6 %, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOSSer1177 to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5 %, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77± 4/2 mmHg, P ≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure. PMID:26639352

  8. Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults.

    PubMed

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H; English, Mark; Talcott, Susanne; Jaffe, Iris Z; Christou, Demetra D

    2016-01-01

    Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure.

  9. Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking

    PubMed Central

    Schank, J.R.; Nelson, B.S.; Damadzic, R.; Tapocik, J.D.; Yao, M.; King, C.E.; Rowe, K.E.; Cheng, K.; Rice, K.C.; Heilig, M.

    2015-01-01

    Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons co-expressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. PMID:26188146

  10. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  11. Histamine receptors on adult rat cardiomyocytes: antagonism of alpha/sub 1/-receptor stimulation of cAMP degradation

    SciTech Connect

    Buxton, I.L.O.; Bowen, S.M.

    1986-03-01

    Incubation of intact cardiomyocytes with the histamine antagonist (/sup 3/H)mepyramine results in rapid reversible binding to a single class of high affinity sites (K/sub D/ = 1.2nM; 50,000 sites/myocyte). In membranes from purified myocytes histamine competition of (/sup 3/H)mepyramine binding (K/sub D/ = 300nM) is not altered by GTP (10..mu..M). Competition of (/sup 3/H)mepyramine binding by H-receptor subtype-selective antagonists suggests the presence of a single class of H/sub 1/-receptors. Incubation of intact myocytes with histamine (luM, H/sub 1/ receptor activation) plus norepinephrine (NE 1uM, alpha/sub 1/ + beta/sub 1/ receptor activation) for 3 min leads to significantly more cAMP accumulation (36.5 pmol/10/sup 6/ myocytes) than NE alone (30 pmol/10/sup 6/ myocytes). Histamine alone does not alter basal cAMP = 10.4 pmol/10/sup 6/ myocytes, or beta/sub 1/ stimulation (isoproternol, 1uM) = 39.6 pmol/10/sup 6/ myocytes. Cyclic AMP accumulation with NE plus prazosin 10nM, (alpha/sub 1/ + beta/sub 1/ + alpha/sub 1/ blockade) is indistinguishable from NE + histamine, (alpha/sub 1/ + beta/sub 1/ + H/sub 1/) stimulation. Histamine competition for (/sup 3/H)prazosin binding suggests that histamine does not block alpha/sub 1/ receptors on the myocyte. These data suggest that H/sub 1/ receptor activation leads to antagonism of the alpha/sub 1/ receptor mediated activation of cAMP phosphodiesterase the authors have recently described.

  12. Deletion of adenosine A1 or A2A receptors reduces L-3,4-dihydroxyphenylalanine-induced dyskinesia in a model of Parkinson’s disease

    PubMed Central

    Xiao, Danqing; Cassin, Jared J.; Healy, Brian; Burdett, Thomas C.; Chen, Jiang-Fan; Fredholm, Bertil B.; Schwarzschild, Michael A.

    2010-01-01

    Adenosine A2A receptor antagonism provides a promising approach to developing nondopaminergic therapy for Parkinson’s disease (PD). Clinical trials of A2A antagonists have targeted PD patients with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve parkinsonian symptoms. The role of adenosine in the development of LID is little known, especially regarding its actions via A1 receptors. We aimed to examine the effects of genetic deletion and pharmacological blockade of A1 and/or A2A receptors on the development of LID, on the induction of molecular markers of LID including striatal preprodynorphin and preproenkephalin (PPE), and on the integrity of dopaminergic nigrostriatal neurons in hemiparkinsonian mice. Following a unilateral 6-hydroxydopamine lesion A1, A2A and double A1-A2A knockout (KO) and wild-type littermate mice, and mice pretreated with caffeine (an antagonist of both A1 and A2A receptors) or saline were treated daily for 18–21 days with a low dose of L-DOPA. Total abnormal involuntary movements (AIMs, a measure of LID) were significantly attenuated (p<0.05) in A1 and A2A KOs, but not in A1-A2A KOs and caffeine-pretreated mice. An elevation of PPE mRNA ipsilateral to the lesion in WT mice was reduced in all KO mice. In addition, neuronal integrity assessed by striatal dopamine content was similar in all KOs and caffeine-pretreated mice following 6-hydroxydopamine lesioning. Our findings raise the possibility that A1 or A2A receptors blockade might also confer a disease-modifying benefit of reduced risk of disabling LID, whereas the effect of their combined inactivation is less clear. PMID:20828543

  13. Substance P Receptor Antagonism: A Potential Novel Treatment Option for Viral-Myocarditis

    PubMed Central

    Robinson, Prema; Taffet, George E.; Engineer, Nikita; Khumbatta, Mitra; Firozgary, Bahrom; Reynolds, Corey; Pham, Thuy; Bulsara, Tushar; Firozgary, Gohar

    2015-01-01

    Viral-myocarditis is an important cause of heart failure for which no specific treatment is available. We previously showed the neuropeptide substance P (SP) is associated with the pathogenesis of murine myocarditis caused by encephalomyocarditis virus (EMCV). The current studies determined if pharmacological inhibition of SP-signaling via its high affinity receptor, NK1R and downstream G-protein, Ras homolog gene family, member-A (RhoA), will be beneficial in viral-myocarditis. Aprepitant (1.2 mg/kg), a SP-receptor antagonist, or fasudil (10 mg/kg), a RhoA inhibitor, or saline control was administered daily to mice orally for 3 days, prior to, or 5 days following, intraperitoneal infection with and without 50 PFU of EMCV, following which disease assessment studies, including echocardiogram and cardiac Doppler were performed in day 14 after infection. Pretreatment and posttreatment with aprepitant significantly reduced mortality, heart and cardiomyocyte size, and cardiac viral RNA levels (P < 0.05 all, ANOVA). Only aprepitant pretreatment improved heart functions; it significantly decreased end systolic diameter, improved fractional shortening, and increased peak aortic flow velocity (P < 0.05 all, ANOVA). Pre- or posttreatment with fasudil did not significantly impact disease manifestations. These findings indicate that SP contributes to cardiac-remodeling and dysfunction following ECMV infection via its high affinity receptor, but not through the Rho-A pathway. These studies suggest that SP-receptor antagonism may be a novel therapeutic-option for patients with viral-myocarditis. PMID:25821814

  14. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats.

    PubMed

    Schmeichel, Brooke E; Barbier, Estelle; Misra, Kaushik K; Contet, Candice; Schlosburg, Joel E; Grigoriadis, Dimitri; Williams, John P; Karlsson, Camilla; Pitcairn, Caleb; Heilig, Markus; Koob, George F; Vendruscolo, Leandro F

    2015-03-13

    The hypocretin/orexin (HCRT) system has been associated with both positive and negative drug reinforcement, implicating HCRT receptor 1 (HCRT-R1) signaling in drug-related behaviors for all major drug classes, including opioids. However, to date there are limited studies investigating the role of HCRT receptor 2 (HCRT-R2) signaling in compulsive-like drug seeking. Escalation of drug intake with extended access has been suggested to model the transition from controlled drug use to compulsive-like drug seeking/taking. The current study examined the effects of a HCRT-R2 antagonist, NBI-80713, on heroin self-administration in rats allowed short- (1 h; ShA) or long- (12 h; LgA) access to intravenous heroin self-administration. Results indicate that systemically administered NBI-80713 dose-dependently decreased heroin self-administration in LgA, but not in ShA, animals. Quantitative PCR analyses showed an increase in Hcrtr2 mRNA levels in the central amygdala, a stress-related brain region, of LgA rats. These observations suggest a functional role for HCRT-R2 signaling in compulsive-like heroin self-administration associated with extended access and indicate HCRT-R2 antagonism as a potential pharmacological target for the treatment of heroin dependence.

  15. Hypocretin Receptor 2 Antagonism Dose-Dependently Reduces Escalated Heroin Self-Administration in Rats

    PubMed Central

    Schmeichel, Brooke E; Barbier, Estelle; Misra, Kaushik K; Contet, Candice; Schlosburg, Joel E; Grigoriadis, Dimitri; Williams, John P; Karlsson, Camilla; Pitcairn, Caleb; Heilig, Markus; Koob, George F; Vendruscolo, Leandro F

    2015-01-01

    The hypocretin/orexin (HCRT) system has been associated with both positive and negative drug reinforcement, implicating HCRT receptor 1 (HCRT-R1) signaling in drug-related behaviors for all major drug classes, including opioids. However, to date there are limited studies investigating the role of HCRT receptor 2 (HCRT-R2) signaling in compulsive-like drug seeking. Escalation of drug intake with extended access has been suggested to model the transition from controlled drug use to compulsive-like drug seeking/taking. The current study examined the effects of a HCRT-R2 antagonist, NBI-80713, on heroin self-administration in rats allowed short- (1 h; ShA) or long- (12 h; LgA) access to intravenous heroin self-administration. Results indicate that systemically administered NBI-80713 dose-dependently decreased heroin self-administration in LgA, but not in ShA, animals. Quantitative PCR analyses showed an increase in Hcrtr2 mRNA levels in the central amygdala, a stress-related brain region, of LgA rats. These observations suggest a functional role for HCRT-R2 signaling in compulsive-like heroin self-administration associated with extended access and indicate HCRT-R2 antagonism as a potential pharmacological target for the treatment of heroin dependence. PMID:25367502

  16. Antagonizing effects of membrane-acting androgens on the eicosanoid receptor OXER1 in prostate cancer

    PubMed Central

    Kalyvianaki, Konstantina; Gebhart, Veronika; Peroulis, Nikolaos; Panagiotopoulou, Christina; Kiagiadaki, Fotini; Pediaditakis, Iosif; Aivaliotis, Michalis; Moustou, Eleni; Tzardi, Maria; Notas, George; Castanas, Elias; Kampa, Marilena

    2017-01-01

    Accumulating evidence during the last decades revealed that androgen can exert membrane initiated actions that involve signaling via specific kinases and the modulation of significant cellular processes, important for prostate cancer cell growth and metastasis. Results of the present work clearly show that androgens can specifically act at the membrane level via the GPCR oxoeicosanoid receptor 1 (OXER1) in prostate cancer cells. In fact, OXER1 expression parallels that of membrane androgen binding in prostate cancer cell lines and tumor specimens, while in silico docking simulation of OXER1 showed that testosterone could bind to OXER1 within the same grove as 5-OxoETE, the natural ligand of OXER1. Interestingly, testosterone antagonizes the effects of 5-oxoETE on specific signaling pathways and rapid effects such as actin cytoskeleton reorganization that ultimately can modulate cell migration and metastasis. These findings verify that membrane-acting androgens exert specific effects through an antagonistic interaction with OXER1. Additionally, this interaction between androgen and OXER1, which is an arachidonic acid metabolite receptor expressed in prostate cancer, provides a novel link between steroid and lipid actions and renders OXER1 as new player in the disease. These findings should be taken into account in the design of novel therapeutic approaches in prostate cancer. PMID:28290516

  17. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  18. Antagonism by the 5-HT2A/C receptor agonist DOI of raclopride-induced catalepsy in the rat.

    PubMed

    Wadenberg, M L; Ahlenius, S

    1995-12-27

    It has been shown that the administration of 5-hydroxytryptamine (5-HT)1A receptor agonists will antagonize the catalepsy induced by dopamine D1 or D2 receptor blocking agents. In the present study, administration of the 5-HT2A/C receptor agonist, 1-(2,5-dimethoxy-4-iodo)-2-aminopropane (DOI) (1 mg kg-1 s.c.), counteracted the catalepsy produced by the dopamine D2 receptor antagonist, raclopride (16 mg kg-1 s.c.), but not by the dopamine D1 receptor antagonist (R)-(+)-8-chloro-2,3,4,5-tetra-hydro-3-methyl-5-phenyl-1H-3-benzazepine (SCH 23390) (0.2 mg kg-1 s.c.). The effects of DOI on raclopride-induced catalepsy were fully antagonized by pretreatment with the 5-HT2A/C receptor antagonist, ritanserin (2 mg kg-1 s.c.). The 5-HT precursor, 5-hydroxytryptophan (5-HTP) (6.25-25.0 mg kg-1 i.p.), in combination with the peripheral 5-HTP decarboxylase inhibitor, benserazide (25 mg kg-1 i.p.), and the selective serotonin reuptake inhibitor, zimeldine (10 mg kg-1 s.c.), enhanced the catalepsy produced by a low dose of raclopride (4 mg kg-1 s.c.). It is concluded that stimulation of (postsynaptic) 5-HT2 receptors results in antagonism of the catalepsy induced by treatment with a dopamine D2, but not a D1, receptor antagonist. The fact that 5-HTP, in the presence of benserazide and zimeldine, enhanced raclopride-induced catalepsy suggests the possibility of postsynaptic 5-HT receptors acting in opposition to the 5-HT1 and 5-HT2 receptors, as regards extrapyramidal motor functions in the rat.

  19. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical & clinical perspective

    PubMed Central

    Mahmood, Danish

    2016-01-01

    Histamine H3 receptors are present as autoreceptors on histaminergic neurons and as heteroreceptors on nonhistaminergic neurones. They control the release and synthesis of histamine and several other key neurotransmitters in the brain. H3 antagonism may be a novel approach to develop a new class of antipsychotic medications given the gathering evidence reporting therapeutic efficacy in several central nervous system disorders. Several medications such as cariprazine, lurasidone, LY214002, bexarotene, rasagiline, raloxifene, BL-1020 and ITI-070 are being developed to treat the negative symptoms and cognitive impairments of schizophrenia. These medications works through diverse mechanisms which include agonism at metabotropic glutamate receptor (mGluR2/3), partial agonism at dopamine D2, D3 and serotonin 5-HT1A receptors, antagonism at D2, 5-HT2A, 5-HT2B and 5-HT7 receptors, combined dopamine antagonism with GABA agonist activity, inhibition of monoamine oxidase-B, modulation of oestrogen receptor, and activation of nuclear retinoid X receptor. However, still specific safe therapy for psychosis remains at large. Schizophrenia is a severe neuropsychiatric disorder result both from hyper- and hypo-dopaminergic transmission causing positive and negative symptoms, respectively. Pharmacological stimulation of dopamine release in the prefrontal cortex has been a viable approach in treating negative symptoms and cognitive deficits of schizophrenia symptoms that are currently not well treated and continue to represent significant unmet medical challenges. Administration of H3 antagonists/inverse agonists increase extracellular dopamine concentrations in rat prefrontal cortex, but not in the striatum suggesting that antagonism via H3 receptor may be a potential target for treating negative symptoms and cognitive deficits associated with schizophrenia. Further, insights are emerging into the potential role of histamine H3 receptors as a target of antiobesity therapeutics which

  20. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  1. Structure of an agonist-bound human A2A adenosine receptor.

    PubMed

    Xu, Fei; Wu, Huixian; Katritch, Vsevolod; Han, Gye Won; Jacobson, Kenneth A; Gao, Zhan-Guo; Cherezov, Vadim; Stevens, Raymond C

    2011-04-15

    Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.

  2. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection

    PubMed Central

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases. PMID:19508402

  3. Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression.

    PubMed

    Ferraris, Jimena; Boutillon, Florence; Bernadet, Marie; Seilicovich, Adriana; Goffin, Vincent; Pisera, Daniel

    2012-02-01

    Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1-9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1-9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological

  4. Involvement of adenosine A2A receptors in depression and anxiety.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. © 2014 Elsevier Inc. All rights reserved.

  5. Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis

    PubMed Central

    Chan, Edwin S L; Montesinos, Maria Carmen; Fernandez, Patricia; Desai, Avani; Delano, David L; Yee, Herman; Reiss, Allison B; Pillinger, Michael H; Chen, Jiang-Fan; Schwarzschild, Michael A; Friedman, Scott L; Cronstein, Bruce N

    2006-01-01

    Adenosine is a potent endogenous regulator of inflammation and tissue repair. Adenosine, which is released from injured and hypoxic tissue or in response to toxins and medications, may induce pulmonary fibrosis in mice, presumably via interaction with a specific adenosine receptor. We therefore determined whether adenosine and its receptors contribute to the pathogenesis of hepatic fibrosis. As in other tissues and cell types, adenosine is released in vitro in response to the fibrogenic stimuli ethanol (40 mg dl−1) and methotrexate (100 nM). Adenosine A2A receptors are expressed on rat and human hepatic stellate cell lines and adenosine A2A receptor occupancy promotes collagen production by these cells. Liver sections from mice treated with the hepatotoxins carbon tetrachloride (CCl4) (0.05 ml in oil, 50 : 50 v : v, subcutaneously) and thioacetamide (100 mg kg−1 in PBS, intraperitoneally) released more adenosine than those from untreated mice when cultured ex vivo. Adenosine A2A receptor-deficient, but not wild-type or A3 receptor-deficient, mice are protected from development of hepatic fibrosis following CCl4 or thioacetamide exposure. Similarly, caffeine (50 mg kg−1 day−1, po), a nonselective adenosine receptor antagonist, and ZM241385 (25 mg kg−1 bid), a more selective antagonist of the adenosine A2A receptor, diminished hepatic fibrosis in wild-type mice exposed to either CCl4 or thioacetamide. These results demonstrate that hepatic adenosine A2A receptors play an active role in the pathogenesis of hepatic fibrosis, and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. PMID:16783407

  6. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    PubMed

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory

    PubMed Central

    Orr, Anna G.; Hsiao, Edward C.; Wang, Max M.; Ho, Kaitlyn; Kim, Daniel H.; Wang, Xin; Guo, Weikun; Kang, Jing; Yu, Gui-Qiu; Adame, Anthony; Devidze, Nino; Dubal, Dena B.; Masliah, Eliezer; Conklin, Bruce R.; Mucke, Lennart

    2014-01-01

    Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer’s disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice, and increased the levels of Arc/Arg3.1, an immediate-early gene required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Similar to humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss. PMID:25622143

  8. Glucocorticoid receptor antagonism decreases alcohol seeking in alcohol-dependent individuals

    PubMed Central

    Vendruscolo, Leandro F.; Estey, David; Goodell, Vivian; Macshane, Lauren G.; Logrip, Marian L.; Schlosburg, Joel E.; McGinn, M. Adrienne; Zamora-Martinez, Eva R.; Belanoff, Joseph K.; Hunt, Hazel J.; Sanna, Pietro P.; George, Olivier; Koob, George F.; Edwards, Scott; Mason, Barbara J.

    2015-01-01

    Alcoholism, or alcohol use disorder, is a major public health concern that is a considerable risk factor for morbidity and disability; therefore, effective treatments are urgently needed. Here, we demonstrated that the glucocorticoid receptor (GR) antagonist mifepristone reduces alcohol intake in alcohol-dependent rats but not in nondependent animals. Both systemic delivery and direct administration into the central nucleus of the amygdala, a critical stress-related brain region, were sufficient to reduce alcohol consumption in dependent animals. We also tested the use of mifepristone in 56 alcohol-dependent human subjects as part of a double-blind clinical and laboratory-based study. Relative to placebo, individuals who received mifepristone (600 mg daily taken orally for 1 week) exhibited a substantial reduction in alcohol-cued craving in the laboratory, and naturalistic measures revealed reduced alcohol consumption during the 1-week treatment phase and 1-week post-treatment phase in mifepristone-treated individuals. Mifepristone was well tolerated and improved liver-function markers. Together, these results support further exploration of GR antagonism via mifepristone as a therapeutic strategy for alcoholism. PMID:26121746

  9. A negative allosteric modulator demonstrates biased antagonism of the follicle stimulating hormone receptor

    PubMed Central

    Dias, James A.; Bonnet, Béatrice; Weaver, Barbara A.; Watts, Julie; Kluetzman, Kerri; Thomas, Richard M.; Poli, Sonia; Mutel, Vincent; Campo, Brice

    2015-01-01

    High quality gamete production in males and females requires the pituitary gonadotropin follicle stimulating hormone (FSH). In this report a novel chemical class of small molecule inhibitors of FSH receptor (FSHR) is described. ADX61623, a negative allosteric modulator (NAM), increased the affinity of interaction between 125I-hFSH and human FSHR (hFSHR) five fold. This form of FSHR occupied simultaneously by FSH and ADX61623 was inactive for cAMP and progesterone production in primary cultures of rat granulosa cells. In contrast, ADX61623 did not block estrogen production. This demonstrates for the first time, biased antagonism at the FSHR. To determine if ADX61623 blocked FSH induction of follicle development in vivo, a bioassay to measure follicular development and oocyte production in immature female rats was validated. ADX61623 was not completely effective in blocking FSH induced follicular development in vivo at doses up to 100 mg/kg as oocyte production and ovarian weight gain were only moderately reduced. These data illustrate that FSHR couples to multiple signaling pathways in vivo. Suppression of one pool of FSHR uncouples Gαs and cAMP production, and decreases progesterone production. Occupancy of another pool of FSHR sensitizes granulosa cells to FSH induced estradiol production. Therefore, ADX61623 is a useful tool to investigate further the mechanism of the FSHR signaling dichotomy. This may lead to a greater understanding of the signaling infrastructure which enables estrogen biosynthesis and may prove useful in treating estrogen dependent disease. PMID:21184806

  10. β-Adrenergic receptor antagonism in mice: a model for pediatric heart disease.

    PubMed

    Sucharov, Carmen C; Hijmans, Jamie G; Sobus, Rebecca D; Melhado, William F A; Miyamoto, Shelley D; Stauffer, Brian L

    2013-10-01

    Children with heart failure are treated with similar medical therapy as adults with heart failure. In contrast to adults with heart failure, these treatment regiments are not associated with improved outcomes in children. Recent studies have demonstrated age-related pathophysiological differences in the molecular mechanisms of heart failure between children and adults. There are no animal models of pediatric cardiomyopathy to allow mechanistic studies. The purpose of the current experiments was to develop a mouse model of pediatric heart disease and test whether the influence of β-adrenergic receptor (β-AR) antagonism could be modeled in this system. We hypothesized that isoproterenol treatment of young mice would provide a model system of cardiac pathology, and that nonselective β-AR blockade would provide benefit in adult, but not young, mice, similar to clinical trial data. We found that isoproterenol treatment (through osmotic minipump implantation) of young and adult mice produced similar degrees of cardiac hypertrophy and recapitulated several age-related molecular abnormalities in human heart failure, including phospholamban phosphorylation and β-AR expression. We also found that nonselective β-AR blockade effectively prevented pathological cardiac growth and collagen expression in the adult but not young mice, and that selective β1-AR blockade was effective in both young and adult isoproterenol-treated mice. In conclusion, we have developed the first model system for β-AR-mediated pediatric heart disease. Furthermore, we have generated novel data suggesting beneficial effects of selective β1-AR blockade in the pediatric heart.

  11. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  12. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells.

    PubMed

    Brown, Geoffrey; Marchwicka, Aleksandra; Cunningham, Alan; Toellner, Kai-Michael; Marcinkowska, Ewa

    2017-02-01

    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.

  13. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    PubMed

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  14. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    other epilepsy models. Citation: Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. SLEEP 2016;39(2):357–368. PMID:26446112

  15. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    PubMed Central

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  16. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers

    PubMed Central

    Brozmanova, M.; Mazurova, L.; Ru, F.; Tatar, M.; Hu, Y.; Yu, S.

    2015-01-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10–60 mmHg) in a concentration-dependent fashion (1–100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  17. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1.

  18. Chemical Modification and Irreversible Inhibition of Striatal A2a Adenosine Receptors

    PubMed Central

    JACOBSON, KENNETH A.; STILES, GARY L.; JI, XIAO-DUO

    2012-01-01

    SUMMARY The ligand recognition site of A2a-adenosine receptors in rabbit striatal membranes was probed using non-site-directed labeling reagents and specific affinity labels. Exposure of membranes to diethylpyrocarbonate at a concentration of 2.5 mm, followed by washing, was found to inhibit the binding of [3H]CGS 21680 and [3H]xanthine amine congener to A2a receptors, by 86 and 30%, respectively. Protection from diethylpyrocarbonate inactivation by an adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine, and an antagonist, theophylline, suggested the presence of two histidyl residues on the receptor, one associated with agonist binding and the other with antagonist binding. Binding of [3H]CGS 21680 or [3H]xanthine amine congener was partially restored after incubation with 250 mm hydroxylamine, further supporting histidine as the modification site. Preincubation with disulfide-reactive reagents, dithiothreitol or sodium dithionite, at >5 mm inhibited radioligand binding, indicating the presence of essential disulfide bridges in A2a receptors, whereas the concentration of mercaptoethanol required to inhibit binding was >50 mm. A number of isothiocyanate-bearing affinity labels derived from the A2a-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5′-N-ethylcarboxamidoadenosine (APEC) were synthesized and found to inhibit A2a receptor binding in rabbit and bovine striatal membranes. Binding to rabbit A1 receptors was not inhibited. Preincubation with the affinity label 4-isothiocyanatophenylaminothiocarbonyl-APEC (100 nm) diminished the Bmax for [3H]CGS 21680 binding by 71%, and the Kd was unaffected, suggesting a direct modification of the ligand binding site. Reversal of 4-isothiocyanatophenylaminothiocarbonyl-APEC inhibition of [3H]CGS 21680 binding with hydroxylamine suggested that the site of modification by the isothiocyanate is a cysteine residue. A bromoacetyl derivative of APEC was ineffective as an affinity label at

  19. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Martire, Alberto; Ledent, Catherine; Ceruti, Stefania; Abbracchio, Maria P

    2007-04-01

    The aim of this review is to summarize and critically discuss the complex role played by adenosine A(2A) receptors (A(2A)Rs) in Huntington's disease (HD). Since A(2A)Rs are mainly localized on the neurons, which degenerate early in HD, and given their ability to stimulate glutamate outflow and inflammatory gliosis, it was hypothesized that they could be involved in the pathogenesis of HD, and that A(2A)R antagonists could be neuroprotective. This was further sustained by the demonstration that A(2A)Rs and underlying signaling systems undergo profound changes in cellular and animal models of HD. More recently, however, the equation A(2A) receptor blockade=neuroprotection has appeared too simplistic. First, it is now definitely clear that, besides mediating 'bad' responses (for example, stimulation of glutamate outflow and excessive glial activation), A(2A)Rs also promote 'good' responses (such as trophic and antinflammatory effects). This implies that A(2A)R blockade results either in pro-toxic or neuroprotective effects according to the mechanisms involved in a given experimental model. Second, since HD is a chronically progressive disease, the multiple mechanisms involving A(2A)Rs may play different relative roles along the degenerative process. Such different mechanisms can be influenced by A(2A)R activation or blockade in different ways, even leading to opposite outcomes depending on the time of agonist/antagonist administration. The number, and the complexity, of the possible scenarios is further increased by the influence of mutant Huntingtin on both the expression and functions of A(2A)Rs, and by the strikingly different effects mediated by A(2A)Rs expressed by different cell populations within the brain.

  20. Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit

    PubMed Central

    Chen, Sisi; Luetje, Charles W.

    2014-01-01

    Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control.  Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry.  Synthetic Orco directed agonists and antagonists have recently been identified.  Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants.  The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants.  To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists.  Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system.  Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants.  Tyramine had effects similar to those of tryptamine, but was less potent.  Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae).  Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants. PMID:25075297

  1. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Merighi, Stefania; Gessi, Stefania; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Varani, Katia

    2013-08-01

    Multiple sclerosis (MS) is an autoimmune-mediated inflammatory disease characterized by multifocal areas of demyelination. Experimental evidence indicates that A2A adenosine receptors (ARs) play a pivotal role in the inhibition of inflammatory processes. The aim of this study was to investigate the contribution of A2A ARs in the inhibition of key pro-inflammatory mediators for the pathogenesis of MS. In lymphocytes from MS patients, A1, A2A, A2B, and A3 ARs were analyzed by using RT-PCR, Western blotting, immunofluorescence, and binding assays. Moreover the effect of A2A AR stimulation on proinflammatory cytokine release such as TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and on lymphocyte proliferation was evaluated. The capability of an A2A AR agonist on the modulation of very late antigen (VLA)-4 expression and NF-κB was also explored. A2A AR upregulation was observed in lymphocytes from MS patients in comparison with healthy subjects. The stimulation of these receptors mediated a significant inhibition of TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and cell proliferation as well as VLA-4 expression and NF-κB activation. This new evidence highlights that A2A AR agonists could represent a novel therapeutic tool for MS treatment as suggested by the antiinflammatory role of A2A ARs in lymphocytes from MS patients.

  2. Potentiation of Brain Stimulation Reward by Morphine: Effects of Neurokinin-1 Receptor Antagonism

    PubMed Central

    Robinson, J.E.; Fish, E.W.; Krouse, M.C.; Thorsell, A.; Heilig, M.; Malanga, C.J.

    2012-01-01

    Rationale The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists. Objective To measure the effects of opioid and neurokinin-1 (NK1R) receptor blockade on the potentiation of brain stimulation reward (BSR) by morphine using the intracranial self-stimulation (ICSS) method. Methods Adult male C57BL/6J mice (n = 15) were implanted with unipolar stimulating electrodes in the lateral hypothalamus and trained to respond for varying frequencies of rewarding electrical stimulation. The BSR threshold (θ0) and maximum response rate (MAX) were determined before and after intraperitoneal administration of saline, morphine (1.0 - 17.0 mg/kg), or the NK1R antagonists L-733,060 (1.0 - 17.0 mg/kg) and L-703,606 (1.0 - 17.0 mg/kg). In morphine antagonism experiments, naltrexone (0.1 – 1.0 mg/kg) or 10.0 mg/kg L-733,060 or L-703,606 was administered 15 minutes before morphine (1.0 - 10.0 mg/kg) or saline. Results Morphine dose-dependently decreased θ0 (maximum effect = 62% of baseline) and altered MAX when compared to saline. L-703,606 and L-733,060 altered θ0 without affecting MAX. 10.0 mg/kg L-733,060 and L-703,606, which did not affect θ0 or MAX, attenuated the effects of 3.0 and 10.0 mg/kg morphine. 1.0 and 0.3 mg/kg naltrexone blocked the effects of 10.0 mg/kg morphine. Naltrexone given before saline did not affect θ0 or MAX. Conclusions The decrease in θ0 by morphine reflects its rewarding effects, which were attenuated by NK1R and opioid receptor blockade. These results demonstrate the importance of substance P signaling during limbic reward system activation by opioids. PMID:21909635

  3. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    PubMed

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  4. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    PubMed

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Platelet Activating Factor (PAF) Receptor Deletion or Antagonism Attenuates Severe HSV-1 Meningoencephalitis.

    PubMed

    Vilela, Márcia Carvalho; Lima, Graciela Kunrath; Rodrigues, David Henrique; Lacerda-Queiroz, Norinne; Pedroso, Vinicius Sousa Pietra; de Miranda, Aline Silva; Rachid, Milene Alvarenga; Kroon, Erna Geessien; Campos, Marco Antônio; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2016-12-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen that may cause severe encephalitis. The exacerbated immune response against the virus contributes to the disease severity and death. Platelet activating factor (PAF) is a mediator capable of inducing increase in vascular permeability, production of cytokines on endothelial cells and leukocytes. We aimed to investigate the activation of PAF receptor (PAFR) and its contribution to the severity of the inflammatory response in the brain following HSV-1 infection. C57BL/6 wild-type (WT) and PAFR deficient (PAFR(-/-)) mice were inoculated intracranially with 10(4) plaque-forming units (PFU) of HSV-1. Visualization of leukocyte recruitment was performed using intravital microscopy. Cells infiltration in the brain tissue were analyzed by flow cytometry. Brain was removed for chemokine assessment by ELISA and for histopathological analysis. The pharmacological inhibition by the PAFR antagonist UK-74,505 was also analyzed. In PAFR(-/-) mice, there was delayed lethality but no difference in viral load. Histopathological analysis of infected PAFR(-/-) mice showed that brain lesions were less severe when compared to their WT counterparts. Moreover, PAFR(-/-) mice showed less TCD4(+), TCD8(+) and macrophages in brain tissue. This reduction of the presence of leukocytes in parenchyma may be mechanistically explained by a decrease in leukocytes rolling and adhesion. PAFR(-/-) mice also presented a reduction of the chemokine CXCL9 in the brain. In addition, by antagonizing PAFR, survival of C57BL/6 infected mice increased. Altogether, our data suggest that PAFR plays a role in the pathogenesis of experimental HSV-1 meningoencephalitis, and its blockade prevents severe disease manifestation.

  6. Selective Augmentation of Striatal Functional Connectivity Following NMDA Receptor Antagonism: Implications for Psychosis

    PubMed Central

    Dandash, Orwa; Harrison, Ben J; Adapa, Ram; Gaillard, Raphael; Giorlando, Francesco; Wood, Stephen J; Fletcher, Paul C; Fornito, Alex

    2015-01-01

    The psychotomimetic effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine is thought to arise from a functional modulation of the brain's fronto-striato-thalamic (FST) circuits. Animal models suggest a pronounced effect on ventral ‘limbic' FST systems, although recent work in patients with psychosis and high-risk individuals suggests specific alterations of dorsal ‘associative' FST circuits. Here, we used functional magnetic resonance imaging to investigate the effects of a subanesthetic dose of ketamine on measures of functional connectivity as indexed by the temporal coherence of spontaneous neural activity in both dorsal and ventral FST circuits, as well as their symptom correlates. We adopted a placebo-controlled, double-blind, randomized, repeated-measures design in which 19 healthy participants received either an intravenous saline infusion or a racemic mixture of ketamine (100 ng/ml) separated by at least 1 week. Compared with placebo, ketamine increased functional connectivity between the dorsal caudate and both the thalamus and midbrain bilaterally. Ketamine additionally increased functional connectivity of the ventral striatum/nucleus accumbens and ventromedial prefrontal cortex. Both connectivity increases significantly correlated with the psychosis-like and dissociative symptoms under ketamine. Importantly, dorsal caudate connectivity with the ventrolateral thalamus and subthalamic nucleus showed inverse correlation with ketamine-induced symptomatology, pointing to a possible resilience role to disturbances in FST circuits. Although consistent with the role of FST in mediating psychosis, these findings contrast with previous research in clinical samples by suggesting that acute NMDAR antagonism may lead to psychosis-like experiences via a mechanism that is distinct from that implicated in frank psychotic illness. PMID:25141922

  7. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling*

    PubMed Central

    M'Kadmi, Céline; Leyris, Jean-Philippe; Onfroy, Lauriane; Galés, Céline; Saulière, Aude; Gagne, Didier; Damian, Marjorie; Mary, Sophie; Maingot, Mathieu; Denoyelle, Séverine; Verdié, Pascal; Fehrentz, Jean-Alain; Martinez, Jean; Banères, Jean-Louis; Marie, Jacky

    2015-01-01

    The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function. PMID:26363071

  8. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer

    PubMed Central

    Skor, Maxwell N.; Wonder, Erin L.; Kocherginsky, Masha; Goyal, Anju; Hall, Ben A.; Cai, Yi; Conzen, Suzanne D.

    2013-01-01

    Purpose: Triple-negative breast cancer (TNBC) accounts for 10-20% of newly diagnosed invasive breast cancer. Finding effective targets for chemotherapy-resistant TNBC has proven difficult in part because of TNBC’s molecular heterogeneity. We have previously reported that, likely because of GR’s anti-apoptotic activity in ER-negative breast epithelial and cancer cells, high glucocorticoid receptor (GR) expression/activity in early-stage TNBC significantly correlates with chemotherapy-resistance and increased recurrence. We hypothesized that pre-treatment with mifepristone, a (GR)-antagonist, would potentiate the efficacy of chemotherapy in GR+ TNBC by inhibiting GR’s anti-apoptotic signaling pathways and increasing the cytotoxic efficiency of chemotherapy. Experimental Design: TNBC cell apoptosis was examined in the context of physiological glucocorticoid concentrations, chemotherapy, and/or pharmacologic concentrations of mifepristone. We used high-throughput live microscopy with continuous recording to measure apoptotic cells stained with a fluorescent dye, and Western analysis to detect caspase-3 and PARP cleavage. The effect of mifepristone on GR-mediated gene expression was also measured. TNBC xenograft studies were performed in female severe combined immunodeficient (SCID) mice and tumors were measured following treatment with vehicle, paclitaxel or mifepristone/paclitaxel. Results: We found that although mifepristone treatment alone had no significant effect on TNBC cell viability or clonogenicity in the absence of chemotherapy, the addition of mifepristone to dexamethasone/paclitaxel treatment significantly increased cytotoxicity and caspase-3/PARP cleavage. Mifepristone also antagonized GR-induced SGK1 and MKP1/DUSP1 gene expression, while significantly augmenting paclitaxel-induced GR+ MDA-MB-231 xenograft tumor shrinkage in vivo. Conclusions: These results suggest that mifepristone pre-treatment could be a useful strategy for increasing tumor cell

  9. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    PubMed Central

    Uller, Lena; Mathiesen, Jesper Mosolff; Alenmyr, Lisa; Korsgren, Magnus; Ulven, Trond; Högberg, Thomas; Andersson, Gunnar; Persson, Carl GA; Kostenis, Evi

    2007-01-01

    Background Mast cell-derived prostaglandin D2 (PGD2), may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban. PMID:17328802

  10. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease.

    PubMed

    Chen, J F; Xu, K; Petzer, J P; Staal, R; Xu, Y H; Beilstein, M; Sonsalla, P K; Castagnoli, K; Castagnoli, N; Schwarzschild, M A

    2001-05-15

    Recent epidemiological studies have established an association between the common consumption of coffee or other caffeinated beverages and a reduced risk of developing Parkinson's disease (PD). To explore the possibility that caffeine helps prevent the dopaminergic deficits characteristic of PD, we investigated the effects of caffeine and the adenosine receptor subtypes through which it may act in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin model of PD. Caffeine, at doses comparable to those of typical human exposure, attenuated MPTP-induced loss of striatal dopamine and dopamine transporter binding sites. The effects of caffeine were mimicked by several A(2A) antagonists (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), 3,7-dimethyl-1-propargylxanthine, and (E)-1,3-diethyl-8 (KW-6002)-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione) (KW-6002) and by genetic inactivation of the A(2A) receptor, but not by A(1) receptor blockade with 8-cyclopentyl-1,3-dipropylxanthine, suggesting that caffeine attenuates MPTP toxicity by A(2A) receptor blockade. These data establish a potential neural basis for the inverse association of caffeine with the development of PD, and they enhance the potential of A(2A) antagonists as a novel treatment for this neurodegenerative disease.

  11. Synthesis and SAR evaluation of 1,2,4-triazoles as A(2A) receptor antagonists.

    PubMed

    Alanine, Alexander; Anselm, Lilli; Steward, Lucinda; Thomi, Stefan; Vifian, Walter; Groaning, Michael D

    2004-02-09

    The synthesis and in vitro structure-activity relationships (SAR) of a series of triazoles as A(2A) receptor antagonists is reported. This resulted in the identification of potent, selective and permeable 1,2,4-triazoles such as 42 for further optimization and evaluation in vivo.

  12. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.

  13. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    PubMed

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  14. Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    PubMed

    Pinna, Annalisa; Pontis, Silvia; Borsini, Franco; Morelli, Micaela

    2007-08-01

    Evidence obtained in rodent and primate models of Parkinson's disease (PD) and preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising nondopaminergic therapeutic tool for the treatment of PD. Those studies demonstrated the ability of adenosine A(2A) receptor antagonists to potentiate l-dopa-mediated motor improvement, whereas very little is known about counteraction of specific motor deficits and on the effects of these compounds when administered alone. To this aim we evaluated the effects of different adenosine A(2A) receptor antagonists on initiation of movement deficits, gait impairment and sensory-motor deficits, induced in rats by a unilateral 6-hydroxydopamine lesion of dopaminergic nigrostriatal neurons. The following tests were used: (1) initiation time of stepping; (2) adjusting step (stepping with forelimb was measured as the forelimb was dragged laterally); (3) vibrissae-elicited forelimb placing (as index of sensory-motor integration deficits). Acute administration of the A(2A) receptor antagonists SCH 58261 (5 mg/kg i.p.) and ST 1535 (20 mg/kg i.p.) similarly to l-dopa (6 mg/kg i.p.) counteracted the impairments in the initiation time of stepping test, in the adjusting step and in the vibrissae-elicited forelimb placing induced by the lesion. The intensity of the effect was l-dopa > SCH 58261 > ST 1535. The results provide the first evidence that blockade of A(2A) receptors is effective in antagonizing specific motor deficit induced by DA neuron degeneration, such as initiation of movement and sensory-motor integration deficits, even without l-dopa combined administration.

  15. Competitive Androgen Receptor Antagonism as a Factor Determining the Predictability of Cumulative Antiandrogenic Effects of Widely Used Pesticides

    PubMed Central

    Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2012-01-01

    Background: Many pesticides in current use have recently been revealed as in vitro androgen receptor (AR) antagonists, but information about their combined effects is lacking. Objective: We investigated the combined effects and the competitive AR antagonism of pesticide mixtures. Methods: We used the MDA-kb2 assay to test a combination of eight AR antagonists that did not also possess AR agonist properties (“pure” antagonists; 8 mix: fludioxonil, fenhexamid, ortho-phenylphenol, imazalil, tebuconazole, dimethomorph, methiocarb, pirimiphos-methyl), a combination of five AR antagonists that also showed agonist activity (5 mix: cyprodinil, pyrimethanil, vinclozolin, chlorpropham, linuron), and all pesticides combined (13 mix). We used concentration addition (CA) and independent action (IA) to formulate additivity expectations, and Schild plot analyses to investigate competitive AR antagonism. Results: A good agreement between the effects of the mixture of eight “pure” AR antagonists and the responses predicted by CA was observed. Schild plot analysis revealed that the 8 mix acted by competitive AR antagonism. However, the observed responses of the 5 mix and the 13 mix fell within the “prediction window” boundaries defined by the predicted regression curves of CA and IA. Schild plot analysis with these mixtures yielded anomalous responses incompatible with competitive receptor antagonism. Conclusions: A mixture of widely used pesticides can, in a predictable manner, produce combined AR antagonist effects that exceed the responses elicited by the most potent component alone. Inasmuch as large populations are regularly exposed to mixtures of antiandrogenic pesticides, our results underline the need for considering combination effects for these substances in regulatory practice. PMID:23008280

  16. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  17. Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice.

    PubMed

    Kasztan, Malgorzata; Fox, Brandon M; Speed, Joshua S; De Miguel, Carmen; Gohar, Eman Y; Townes, Tim M; Kutlar, Abdullah; Pollock, Jennifer S; Pollock, David M

    2017-03-27

    Sickle cell disease (SCD)-associated nephropathy is a major source of morbidity and mortality in patients because of the lack of efficacious treatments targeting renal manifestations of the disease. Here, we describe a long-term treatment strategy with the selective endothelin-A receptor (ETA) antagonist, ambrisentan, designed to interfere with the development of nephropathy in a humanized mouse model of SCD. Ambrisentan preserved GFR at the level of nondisease controls and prevented the development of proteinuria, albuminuria, and nephrinuria. Microscopy studies demonstrated prevention of podocyte loss and structural alterations, the absence of vascular congestion, and attenuation of glomerulosclerosis in treated mice. Studies in isolated glomeruli showed that treatment reduced inflammation and oxidative stress. At the level of renal tubules, ambrisentan treatment prevented the increased excretion of urinary tubular injury biomarkers. Additionally, the treatment strategy prevented tubular brush border loss, diminished tubular iron deposition, blocked the development of interstitial fibrosis, and prevented immune cell infiltration. Furthermore, the prevention of albuminuria in treated mice was associated with preservation of cortical megalin expression. In a separate series of identical experiments, combined ETA and ETB receptor antagonism provided only some of the protection observed with ambrisentan, highlighting the importance of exclusively targeting the ETA receptor in SCD. Our results demonstrate that ambrisentan treatment provides robust protection from diverse renal pathologies in SCD mice, and suggest that long-term ETA receptor antagonism may provide a strategy for the prevention of renal complications of SCD.

  18. Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats.

    PubMed

    Bodnar, R J; Glass, M J; Koch, J E

    1995-01-01

    Intake of either hypotonic or hypertonic saline solutions is modulated in part by the endogenous opioid system. Morphine and selective mu and delta opioid agonists increase saline intake, while general opioid antagonists reduce saline intake in rats. The present study evaluated whether intracerebroventricular administration of general (naltrexone) and selective mu (beta-funaltrexamine, 5-20 micrograms), mu, (naloxonazine, 50 micrograms), kappa (nor-binaltorphamine, 5-20 micrograms), delta (naltrindole, 20 micrograms), or delta 1 (DALCE, 40 micrograms) opioid receptor subtype antagonists altered water intake and either hypotonic (0.6%) or hypertonic (1.7%) saline intake in water-deprived (24 h) rats over a 3-h time course in a two-bottle choice test. Whereas peripheral naltrexone (0.5-2.5 mg/kg) significantly reduced water intake and hypertonic saline intake, central naltrexone (1-50 micrograms) significantly reduced water intake and hypotonic saline intake. Water intake was significantly reduced following mu and kappa receptor antagonism, but not following mu 1, delta, or delta 1 receptor antagonism. In contrast, neither hypotonic nor hypertonic saline intake was significantly altered by any selective antagonist. These data are discussed in terms of opioid receptor subtype control over saline intake relative to the animal's hydrational state and the roles of palatability and/or salt appetite.

  19. New functional activity of aripiprazole revealed: Robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling.

    PubMed

    Brust, Tarsis F; Hayes, Michael P; Roman, David L; Watts, Val J

    2015-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, "third generation" antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution.

  20. A covalent antagonist for the human adenosine A2A receptor.

    PubMed

    Yang, Xue; Dong, Guo; Michiels, Thomas J M; Lenselink, Eelke B; Heitman, Laura; Louvel, Julien; IJzerman, Ad P

    2016-12-03

    The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.

  1. [Adenosine A2A receptor as a drug target for treatment of sepsis].

    PubMed

    Sivak, K V; Vasin, A V; Egorov, V V; Tsevtkov, V B; Kuzmich, N N; Savina, V A; Kiselev, O I

    2016-01-01

    Sepsis is a generalized infection accompanied by response of the body that manifests in a clinical and laboratory syndrome, namely, in the systemic inflammatory response syndrome (SIRS) from the organism to the infection. Although sepsis is a widespread and life-threatening disease, the assortment of drugs for its treatment is mostly limited by antibiotics. Therefore, the search for new cellular targets for drug therapy of sepsis is an urgent task of modern medicine and pharmacology. One of the most promising targets is the adenosine A(2A) receptor (A(2A)AR). The activation of this receptor, which is mediated by extracellular adenosine, manifests in almost all types of immune cells (lymphocytes, monocytes, macrophages, and dendritic cells) and results in reducing the severity of inflammation and reperfusion injury in various tissues. The activation of adenosine A(2A) receptor inhibits the proliferation of T cells and production of proinflammatory cytokines, which contributes to the activation of the synthesis of anti-inflammatory cytokines, thereby suppressing the systemic response. For this reason, various selective A(2A)AR agonists and antagonists may be considered to be drug candidates for sepsis pharmacotherapy. Nevertheless, they remain only efficient ligands and objects of pre-clinical and clinical trials. This review examines the molecular mechanisms of inflammatory response in sepsis and the structure and functions of A(2A)AR and its role in the pathogenesis of sepsis, as well as examples of using agonists and antagonists of this receptor for the treatment of SIRS and sepsis.

  2. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  3. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-12-10

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine.

  4. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5.

    PubMed

    Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; DeShea Meredith, Tamika; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G

    2017-09-11

    Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Whereas agents including sulfonylureas and Dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress both insulin and GLP-1 secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here we show that a novel potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate for the first time that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i afforded increases in systemic GLP-1 levels that were more than additive, and resulted in greater glycemic control compared to either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.

  5. 2,2′-Pyridylisatogen tosylate antagonizes P2Y1 receptor signaling without affecting nucleotide binding

    PubMed Central

    Gao, Zhan-Guo; Mamedova, Liaman; Tchilibon, Susanna; Gross, Ariel S.; Jacobson, Kenneth A.

    2015-01-01

    The effect of 2,2′-pyridylisatogen tosylate (PIT) on the human P2Y1 receptor and on other recombinant P2Y receptors has been studied. We first examined the modulation by PIT of the agonist-induced accumulation of inositol phosphates. PIT blocked 2-methylthio-ADP (2-MeSADP)-induced accumulation of inositol phosphates in 1321N1 astrocytoma cells stably expressing human P2Y1 receptors in a non-competitive and concentration-dependent manner. The IC50 for reduction of the maximal agonist effect was 0.14 μM. In contrast, MRS2179, a competitive P2Y1 receptor antagonist, parallel-shifted the agonist concentration–response curve to the right. PIT also concentration-dependently blocked the P2Y1 receptor signaling induced by the endogenous agonists, ADP and ATP. A simple structural analogue of PIT was synthesized and found to be inactive as a P2Y1 receptor antagonist, suggesting that the nitroxyl group of PIT is a necessary structural component for P2Y1 receptor antagonism. We next examined the possible modulation of the binding of the newly available antagonist radioligand for the P2Y1 receptor, [3H] MRS2279. It was found that PIT (0.01–10 μM) did not inhibit [3H] MRS2279 binding to the human P2Y1 receptor. PIT (10 μM) had no effect on the competition for [3H] MRS2279 binding by agonists, ADP and ATP, suggesting that its antagonism of the P2Y1 receptor may be allosteric. PIT had no significant effect on agonist activation of other P2Y receptors, including P2Y2, P2Y4, P2Y6, P2Y11 and P2Y12 receptors. Thus, PIT selectively and non-competitively blocked P2Y1 receptor signaling without affecting nucleotide binding. PMID:15193995

  6. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    PubMed

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867.

  7. Cognitive impairments induced by triazolam in healthy volunteers: antagonism by a partial inverse agonist of benzodiazepine receptor.

    PubMed

    Warot, D; Danjou, P; Douillet, P; Keane, P; Puech, A J

    1994-01-01

    Pharmacological studies revealed that SR 25776 possesses marked stimulant activity characteristic of a partial inverse agonist of benzodiazepine receptor. The effects of SR 25776 500 mg alone and in combination with triazolam 0.25 mg on psychomotor performance and memory were assessed in 8 healthy consenting male volunteers in a double-blind placebo controlled trial. Treatment effects were monitored before and two and half hours following oral medication. The present study suggest that at the studied dose SR 25776 may incompletely antagonize the sedative and amnesic effects of a benzodiazepine agonist without producing marked effects of its own.

  8. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    DTIC Science & Technology

    2012-12-01

    in Traumatic Optic Neuropathies ” PRINCIPAL INVESTIGATOR: Gregory I. Liou, PhD CONTRACTING ORGANIZATION: Georgia Health Sciences...Adenosine Receptor A2A in Traumatic Optic Neuropathies 5b. GRANT NUMBER W81XWH-11-2-0046 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ABSTRACT Our goal is to develop an early therapeutic intervention before the progression of traumatic optic neuropathy (TON), a vision-threatening

  9. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    PubMed

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation. © 2016 S. Karger AG, Basel.

  10. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety.

    PubMed

    Alsene, Karen; Deckert, Jürgen; Sand, Philipp; de Wit, Harriet

    2003-09-01

    The adenosine receptor system, which mediates the psychoactive effects of caffeine, is also thought to be involved in the regulation of anxiety. In this study, we examined the association between variations in anxiogenic responses to caffeine and polymorphisms in the A1 and A2a adenosine receptor genes. Healthy, infrequent caffeine users (N=94) recorded their subjective mood states following a 150 mg oral dose of caffeine freebase or placebo in a double-blind study. We found a significant association between self-reported anxiety after caffeine administration and two linked polymorphisms on the A2a receptor gene, the 1976C>T and 2592C>Tins polymorphisms. Individuals with the 1976T/T and the 2592Tins/Tins genotypes reported greater increases in anxiety after caffeine administration than the other genotypic groups. The study shows that an adenosine receptor gene polymorphism that has been associated with Panic Disorder is also associated with anxiogenic responses to an acute dose of caffeine.

  11. Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Chiodi, Valentina; Pepponi, Rita; Ferrante, Antonella; Domenici, Maria Rosaria; Frank, Claudio; Chen, Jiang-Fan; Ledent, Catherine; Popoli, Patrizia

    2009-09-01

    Adenosine A(2A), cannabinoid CB(1) and metabotropic glutamate 5 (mGlu(5)) receptors are all highly expressed in the striatum. The aim of the present work was to investigate whether, and by which mechanisms, the above receptors interact in the regulation of striatal synaptic transmission. By extracellular field potentials (FPs) recordings in corticostriatal slices, we demonstrated that the ability of the selective type 1 cannabinoid receptor (CB(1)R) agonist WIN55,212-2 to depress synaptic transmission was prevented by the pharmacological blockade or the genetic inactivation of A(2A)Rs. Such a permissive effect of A(2A)Rs towards CB(1)Rs does not seem to occur pre-synaptically as the ability of WIN55,212-2 to increase the R2/R1 ratio under a protocol of paired-pulse stimulation was not modified by ZM241385. Furthermore, the effects of WIN55,212-2 were reduced in slices from mice lacking post-synaptic striatal A(2A)Rs. The selective mGlu(5)R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) potentiated the synaptic effects of WIN55,212-2, and such a potentiation was abolished by A(2A)R blockade. Unlike the synaptic effects, the ability of WIN55,212-2 to prevent NMDA-induced toxicity was not influenced by ZM241385. Altogether, these results show that the state of activation of A(2A)Rs regulates the synaptic effects of CB(1)Rs and that A(2A)Rs may control CB(1) effects also indirectly, namely through mGlu(5)Rs.

  12. The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices

    PubMed Central

    Pugliese, AM; Traini, C; Cipriani, S; Gianfriddo, M; Mello, T; Giovannini, MG; Galli, A; Pedata, F

    2009-01-01

    Background and purpose: Activation of adenosine A2A receptors in the CA1 region of rat hippocampal slices during oxygen-glucose deprivation (OGD), a model of cerebral ischaemia, was investigated. Experimental approach: We made extracellular recordings of CA1 field excitatory postsynaptic potentials (fepsps) followed by histochemical and immunohistochemical techniques coupled to Western blots. Key results: OGD (7 or 30 min duration) elicited an irreversible loss of fepsps invariably followed by the appearance of anoxic depolarization (AD), an unambiguous sign of neuronal damage. The application of the selective adenosine A2A receptor antagonist, ZM241385 (4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)phenol; 100–500 nmol·L−1) prevented or delayed AD appearance induced by 7 or 30 min OGD and protected from the irreversible fepsp depression elicited by 7 min OGD. Two different selective adenosine A2A receptor antagonists, SCH58261 and SCH442416, were less effective than ZM241385 during 7 min OGD. The extent of CA1 cell injury was assessed 3 h after the end of 7 min OGD by propidium iodide. Substantial CA1 pyramidal neuronal damage occurred in untreated slices, exposed to OGD, whereas injury was significantly prevented by 100 nmol·L−1 ZM241385. Glial fibrillary acid protein (GFAP) immunostaining showed that 3 h after 7 min OGD, astrogliosis was appreciable. Western blot analysis indicated an increase in GFAP 30 kDa fragment which was significantly reduced by treatment with 100 nmol·L−1 ZM241385. Conclusions and implications: In the CA1 hippocampus, antagonism of A2A adenosine receptors by ZM241385 was protective during OGD (a model of cerebral ischaemia) by delaying AD appearance, decreasing astrocyte activation and improving neuronal survival. PMID:19422385

  13. The use of plasma aldosterone and urinary sodium to potassium ratio as translatable quantitative biomarkers of mineralocorticoid receptor antagonism

    PubMed Central

    2011-01-01

    Background Accumulating evidence supports the role of the mineralocorticoid receptor (MR) in the pathogenesis of diabetic nephropathy. These findings have generated renewed interest in novel MR antagonists with improved selectivity against other nuclear hormone receptors and a potentially reduced risk of hyperkalemia. Characterization of novel MR antagonists warrants establishing translatable biomarkers of activity at the MR receptor. We assessed the translatability of urinary sodium to potassium ratio (Na+/K+) and plasma aldosterone as biomarkers of MR antagonism using eplerenone (Inspra®), a commercially available MR antagonist. Further we utilized these biomarkers to demonstrate antagonism of MR by PF-03882845, a novel compound. Methods The effect of eplerenone and PF-03882845 on urinary Na+/K+ and plasma aldosterone were characterized in Sprague-Dawley rats and spontaneously hypertensive rats (SHR). Additionally, the effect of eplerenone on these biomarkers was determined in healthy volunteers. Drug exposure-response data were modeled to evaluate the translatability of these biomarkers from rats to humans. Results In Sprague-Dawley rats, eplerenone elicited a rapid effect on urinary Na+/K+ yielding an EC50 that was within 5-fold of the functional in vitro IC50. More importantly, the effect of eplerenone on urinary Na+/K+ in healthy volunteers yielded an EC50 that was within 2-fold of the EC50 generated in Sprague-Dawley rats. Similarly, the potency of PF-03882845 in elevating urinary Na+/K+ in Sprague-Dawley rats was within 3-fold of its in vitro functional potency. The effect of MR antagonism on urinary Na+/K+ was not sustained chronically; thus we studied the effect of the compounds on plasma aldosterone following chronic dosing in SHR. Modeling of drug exposure-response data for both eplerenone and PF-03882845 yielded EC50 values that were within 2-fold of that estimated from modeling of drug exposure with changes in urinary sodium and potassium excretion

  14. Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist.

    PubMed

    Stone, Trevor W; Behan, Wilhelmina M H

    2007-04-01

    Quinolinic acid is an agonist at glutamate receptors sensitive to N-methyl-D-aspartate (NMDA). It has been implicated in neural dysfunction associated with infections, trauma, and ischemia, although its neurotoxic potency is relatively low. This study was designed to examine the effects of a combination of quinolinic acid and the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Compounds were administered to the hippocampus of anesthetized male rats, animals being allowed to recover for 7 days before histological analysis of the hippocampus for neuronal damage estimated by counting of intact, healthy neurons. A low dose of quinolinic acid or IL-1beta produced no damage by itself, but the two together induced a significant loss of pyramidal neurons in the hippocampus. Higher doses produced almost total loss of pyramidal cells. Intrahippocampal TNF-alpha produced no effect alone but significantly reduced the neuronal loss produced by quinolinic acid. The adenosine A(2A) receptor antagonist ZM241385 reduced neuronal loss produced by the combinations of quinolinic acid and IL-1beta. The results suggest that simultaneous quinolinic acid and IL-1beta, both being induced by cerebral infection or injury, are synergistic in the production of neuronal damage and could together contribute substantially to traumatic, infective, or ischemic cerebral damage. Antagonism of adenosine A(2A) receptors protects neurons against the combination of quinolinic acid and IL-1beta.

  15. Clinical/pharmacological aspect of adenosine A2A receptor antagonist for dyskinesia.

    PubMed

    Kanda, Tomoyuki; Uchida, Shin-ichi

    2014-01-01

    Dopamine replacement therapy using the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), with a peripheral dopa decarboxylase inhibitor is the most effective treatment currently available for the symptoms of Parkinson's disease (PD). However, the long-term use of dopaminergic therapies for PD is often limited by the development of motor response complications, such as dyskinesia. Adenosine A2A receptors are a promising nondopaminergic target for the treatment of PD. The treatment of motor response complications involves combinations of regular and controlled release L-DOPA, perhaps with the addition of a COMT inhibitor or the use of a longer-acting dopamine agonist. However, when dyskinesia is already established, the increase in dopaminergic load produced by the addition of a dopamine agonist can result in an increase in the severity and duration of dyskinesia. Currently, there are no well-tolerated antidyskinesia agents available. Amantadine, which may exert its effects through the inhibition of N-methyl-D-aspartate (NMDA) receptors, shows some effects on established dyskinesia. Dyskinesia has a negative impact on the quality of life of patients, sometimes being more disabling than PD itself. Although some patients prefer experiencing dyskinesia than being in the OFF state and unable to move, alternative, more effective therapies are still required for severe disabling dyskinesia to afford patients an improved quality of life while in the ON state. The mechanisms causing and maintaining the dyskinesia have not been clarified. The application of a nondopaminergic approach to modify the basal ganglial activity would be helpful to better understand and treat dyskinesia. The use of an adenosine A2A receptor may provide one such approach. In this literature review, we will summarize the current knowledge from both clinical and nonclinical studies on the effects of adenosine A2A receptor blockade on dyskinesia.

  16. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils

    PubMed Central

    Varani, Katia; Gessi, Stefania; Merighi, Stefania; Iannotta, Valeria; Cattabriga, Elena; Spisani, Susanna; Cadossi, Ruggero; Borea, Pier Andrea

    2002-01-01

    The present study describes the effect of low frequency, low energy, pulsing electromagnetic fields (PEMFs) on A2A adenosine receptors in human neutrophils.Saturation experiments performed using a high affinity adenosine antagonist [3H]-ZM 241385 revealed a single class of binding sites in control and in PEMF-treated human neutrophils with similar affinity (KD=1.05±0.10 and 1.08±0.12 nM, respectively). Furthermore, after 1 h of exposure to PEMFs the receptor density was statistically increased (P<0.01) (Bmax =126±10 and 215±15 fmol mg−1 protein, respectively).The effect of PEMFs was specific to the A2A adenosine receptors. This effect was also intensity, time and temperature dependent.In the adenylyl cyclase assays the A2A receptor agonists, HE-NECA and NECA, increased cyclic AMP accumulation in untreated human neutrophils with an EC50 value of 43 (40 – 47) and 255 (228 – 284) nM, respectively. The capability of HE-NECA and NECA to stimulate cyclic AMP levels in human neutrophils was increased (P<0.01) after exposure to PEMFs with an EC50 value of 10(8 – 13) and 61(52 – 71) nM, respectively.In the superoxide anion (O2−) production assays HE-NECA and NECA inhibited the generation of O2− in untreated human neutrophils, with an EC50 value of 3.6(3.1 – 4.2) and of 23(20 – 27) nM, respectively. Moreover, in PEMF-treated human neutrophils, the same compounds show an EC50 value of 1.6(1.2 – 2.1) and of 6.0(4.7 – 7.5) nM respectively.These results indicate the presence of significant alterations in the expression and in the functionality of adenosine A2A receptors in human neutrophils treated with PEMFs. PMID:11976268

  17. Sedation and histamine H1-receptor antagonism: studies in man with the enantiomers of chlorpheniramine and dimethindene.

    PubMed Central

    Nicholson, A. N.; Pascoe, P. A.; Turner, C.; Ganellin, C. R.; Greengrass, P. M.; Casy, A. F.; Mercer, A. D.

    1991-01-01

    1. The effects of 10 mg (+)- and (-)-chlorpheniramine and 5 mg (+)- and (-)-dimethindene on daytime sleep latencies, digit symbol substitution and subjective assessments of mood and well-being were studied in 6 healthy young adult humans. Each subject also took 5 mg triprolidine hydrochloride as an active control and two placebos. 2. Daytime sleep latencies were reduced with triprolidine, (+)-chlorpheniramine and (-)-dimethindene, and subjects also reported that they felt more sleepy after (+)-chlorpheniramine and (-)-dimethindene. Performance on digit symbol substitution was impaired with (+)-chlorpheniramine. 3. Changes in measures with (-)-chlorpheniramine and (+)-dimethindene were not different from changes with placebo. 4. In the present study, changes in measures of drowsiness and performance were limited to the enantiomers with high affinity for the histamine H1-receptor. These findings strongly suggest that sedation can arise from H1-receptor antagonism alone, and provide further support for the belief that the histaminergic system is concerned with the regulation of alertness in man. PMID:1686208

  18. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor.

    PubMed

    Lebon, Guillaume; Edwards, Patricia C; Leslie, Andrew G W; Tate, Christopher G

    2015-06-01

    The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R.

  19. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis.

    PubMed

    Liu, Zhiping; Yan, Siyuan; Wang, Jiaojiao; Xu, Yiming; Wang, Yong; Zhang, Shuya; Xu, Xizhen; Yang, Qiuhua; Zeng, Xianqiu; Zhou, Yaqi; Gu, Xuejiao; Lu, Sarah; Fu, Zhongjie; Fulton, David J; Weintraub, Neal L; Caldwell, Ruth B; Zhang, Wenbo; Wu, Chaodong; Liu, Xiao-Ling; Chen, Jiang-Fan; Ahmad, Aftab; Kaddour-Djebbar, Ismail; Al-Shabrawey, Mohamed; Li, Qinkai; Jiang, Xuejun; Sun, Ye; Sodhi, Akrit; Smith, Lois; Hong, Mei; Huo, Yuqing

    2017-09-19

    Adenosine/adenosine receptor-mediated signaling has been implicated in the development of various ischemic diseases, including ischemic retinopathies. Here, we show that the adenosine A2a receptor (ADORA2A) promotes hypoxia-inducible transcription factor-1 (HIF-1)-dependent endothelial cell glycolysis, which is crucial for pathological angiogenesis in proliferative retinopathies. Adora2a expression is markedly increased in the retina of mice with oxygen-induced retinopathy (OIR). Endothelial cell-specific, but not macrophage-specific Adora2a deletion decreases key glycolytic enzymes and reduces pathological neovascularization in the OIR mice. In human primary retinal microvascular endothelial cells, hypoxia induces the expression of ADORA2A by activating HIF-2α. ADORA2A knockdown decreases hypoxia-induced glycolytic enzyme expression, glycolytic flux, and endothelial cell proliferation, sprouting and tubule formation. Mechanistically, ADORA2A activation promotes the transcriptional induction of glycolytic enzymes via ERK- and Akt-dependent translational activation of HIF-1α protein. Taken together, these findings advance translation of ADORA2A as a therapeutic target in the treatment of proliferative retinopathies and other diseases dependent on pathological angiogenesis.Pathological angiogenesis in the retina is a major cause of blindness. Here the authors show that adenosine receptor A2A drives pathological angiogenesis in the oxygen-induced retinopathy mouse model by promoting glycolysis in endothelial cells via the ERK/Akt/HIF-1α pathway, thereby suggesting new therapeutic targets for disease treatment.

  20. Hydration Site Thermodynamics Explain SARs for Triazolylpurines Analogues Binding to the A2A Receptor

    PubMed Central

    2010-01-01

    A series of triazolylpurine analogues show interesting and unintuitive structure−activity relationships against the A2A adenosine receptor. As the 2-substituted aliphatic group is initially increased to methyl and isopropyl, there is a decrease in potency; however, extending the substituent to n-butyl and n-pentyl results in a significant gain in potency. This trend cannot be readily explained by ligand−receptor interactions, steric effects, or differences in ligand desolvation. Here, we show that a novel method for characterizing solvent thermodynamics in protein binding sites correctly predicts the trend in binding affinity for this series based on the differential water displacement patterns. In brief, small unfavorable substituents occupy a region in the A2A adenosine receptor binding site predicted to contain stable waters, while the longer favorable substituents extend to a region that contains several unstable waters. The predicted binding energies associated with displacing water within these hydration sites correlate well with the experimental activities. PMID:24900189

  1. Analysis of Adenosine A2a Receptor Stability: Effects of Ligands and Disulfide Bonds

    PubMed Central

    O'Malley, Michelle A.; Naranjo, Andrea N.; Lazarova, Tzvetana; Robinson, Anne S.

    2010-01-01

    G protein-coupled receptors (GPCRs)1 constitute the largest family of integral membrane proteins present in all eukaryotic cells, yet relatively little information is known pertaining to their structure, folding, and stability. In this work, we describe several approaches to characterize conformational stability of the human adenosine A2a receptor (hA2aR). Thermal and chemical denaturation were not reversible, yet clear differences in the unfolding behavior were observed upon ligand binding via circular dichroism and fluorescence spectrometry. We found that the stability of hA2aR was increased upon incubation with the agonist N6-cyclohexyladenosine or the antagonist theophylline. When extracellular disulfide bonds were reduced with a chemical reducing agent, the ligand-binding activity decreased by ~40%, but reduction of these bonds did not compromise the unfolding transition observed via urea denaturation. Overall, these approaches offer a general strategy for characterizing the effect of surfactant and ligand effects on the stability of GPCRs. PMID:20853839

  2. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling

    PubMed Central

    Brust, Tarsis F.; Hayes, Michael P.; Roman, David L.; Watts, Val J.

    2014-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, “third generation” antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution. PMID:25449598

  3. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety.

  4. Delta-opioid receptor antagonism leads to excessive ethanol consumption in mice with enhanced activity of the endogenous opioid system.

    PubMed

    Poznanski, Piotr; Lesniak, Anna; Korostynski, Michal; Szklarczyk, Klaudia; Lazarczyk, Marzena; Religa, Piotr; Bujalska-Zadrozny, Magdalena; Sadowski, Bogdan; Sacharczuk, Mariusz

    2017-05-15

    The opioid system modulates the central reinforcing effects of ethanol and participates in the etiology of addiction. However, the pharmacotherapy of ethanol dependence targeted on the opioid system is little effective and varies due to individual patients' sensitivity. In the present study, we used two mouse lines with high (HA) and low (LA) activity of the endogenous opioid system to analyze the effect of opioid receptor blockade on ethanol drinking behavior. We found that LA and HA lines characterized by divergent magnitudes of swim stress-induced analgesia also differ in ethanol intake and preference. Downregulation of the opioid system in LA mice was associated with increased ethanol consumption. Treatment with a non-selective opioid receptor antagonist (naloxone) had no effect on ethanol intake in this line. Surprisingly, in HA mice, the blockage of opioid receptors led to excessive ethanol consumption. Moreover, naloxone selectively induced high levels of anxiety- and depressive-like behaviors in HA mice which was attenuated by ethanol. With the use of specific opioid receptor antagonists we showed that the naloxone-induced increase in ethanol drinking in HA mice is mediated mainly by δ and to a lower extent by μ opioid receptors. The effect of δ-opioid receptor antagonism was abolished in HA mice carrying a C320T transition in the δ-opioid receptor gene (EU446125.1), which impairs this receptor's function. Our results indicate that high activity of the opioid system plays a protective role against ethanol dependence. Therefore, its blockage with opioid receptor antagonists may lead to a profound increase in ethanol consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia.

    PubMed

    Oliveira, Paulo A de; Dalton, James A R; López-Cano, Marc; Ricarte, Adrià; Morató, Xavier; Matheus, Filipe C; Cunha, Andréia S; Müller, Christa E; Takahashi, Reinaldo N; Fernández-Dueñas, Víctor; Giraldo, Jesús; Prediger, Rui D; Ciruela, Francisco

    2017-05-12

    Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.

  6. Investigation of the conformational dynamics of the apo A2A adenosine receptor

    PubMed Central

    Caliman, Alisha D; Swift, Sara E; Wang, Yi; Miao, Yinglong; McCammon, J Andrew

    2015-01-01

    The activation/deactivation processes for G-protein coupled receptors (GPCRs) have been computationally studied for several different classes, including rhodopsin, the β2 adrenergic receptor, and the M2 muscarinic receptor. Despite determined cocrystal structures of the adenosine A2A receptor (A2AAR) in complex with antagonists, agonists and an antibody, the deactivation process of this GPCR is not completely understood. In this study, we investigate the convergence of two apo simulations, one starting with an agonist-bound conformation (PDB: 3QAK)14 and the other starting with an antagonist-bound conformation (PDB: 3EML)11. Despite the two simulations not completely converging, we were able to identify distinct intermediate steps of the deactivation process characterized by the movement of Y2887.53 in the NPxxY motif. We find that Y2887.53 contributes to the process by forming hydrogen bonds to residues in transmembrane helices 2 and 7 and losing these interactions upon full deactivation. Y1975.58 also plays a role in the process by forming a hydrogen bond only once the side chain moves from the lipid interface to the middle of the helical bundle. PMID:25761901

  7. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907. © 2016 International Society for Neurochemistry.

  8. Behavioural and neurochemical characterization of the adenosine A2A receptor antagonist ST1535.

    PubMed

    Galluzzo, Mariangela; Pintor, Anita; Pèzzola, Antonella; Grieco, Rosa; Borsini, Franco; Popoli, Patrizia

    2008-01-28

    ST1535 (2-butyl-9-methyl-8-(2H-1,2,3-triazol 2-yl)-9 H-purin-6-ylamine) is a novel compound showing a preferential adenosine A(2A) receptor antagonist profile. To explore the potential neuroprotective profile of this compound, we evaluated whether ST1535 prevented quinolinic acid (QA)-induced glutamate outflow in the rat striatum (a reliable index of neuroprotective activity in vivo). Microdialysis experiments were performed in naive Wistar rats. In these experiments, a behaviourally active and inactive doses of ST1535 were used. Both doses significantly prevented QA-induced glutamate outflow in the striatum. These results show that ST1535 protects towards striatal excitotoxicity, even though its reduced A(2A)/A(1) selectivity might limit its actual neuroprotective potential.

  9. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    PubMed Central

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  10. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs.

  11. Identification of Novel Adenosine A2A Receptor Antagonists by Virtual Screening

    PubMed Central

    2012-01-01

    Virtual screening was performed against experimentally enabled homology models of the adenosine A2A receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11–13 from 5, pKI = 7.5–8.5, 13- to >100-fold selective versus adenosine A1; 14–16 from 1, pKI = 7.9–9.0, 19- to 59-fold selective). PMID:22250781

  12. Physical origins of remarkable thermostabilization by an octuple mutation for the adenosine A2a receptor

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yuta; Ogino, Takahiro; Yasuda, Satoshi; Takamuku, Yuuki; Murata, Takeshi; Kinoshita, Masahiro

    2016-07-01

    It was experimentally showed that the thermal stability of a membrane protein, the adenosine A2a receptor, was remarkably enhanced by an octuple mutation. Here we theoretically prove that the energy decrease arising from the formation of protein intramolecular hydrogen bonds and the solvent-entropy gain upon protein folding are made substantially larger by the mutation, leading to the remarkable enhancement. The solvent is formed by hydrocarbon groups constituting nonpolar chains of the lipid bilayer within a membrane. The mutation modifies geometric characteristics of the structure so that the solvent crowding can be reduced to a larger extent when the protein folds.

  13. Antagonizing the different stages of kappa opioid receptor activation selectively and independently attenuates acquisition and consolidation of associative memories.

    PubMed

    Loh, Ryan; Chau, Lily; Aijaz, Ali; Wu, Kevin; Galvez, Roberto

    2017-04-14

    Previous work from our laboratory has shown that nonspecific kappa opioid receptor (KOR) antagonism in primary somatosensory cortex (S1) can inhibit acquisition for the forebrain-dependent associative task, Whisker-Trace Eyeblink conditioning (WTEB). Although studies have demonstrated that KOR activation can alter stimuli salience, our studies controlled for these factors, demonstrating that KOR also plays a role in facilitating learning. KOR has two distinct phases of activation followed by internalization/downregulation, that each independently activate kinases and transcription factors known to mediate task acquisition and memory consolidation respectively. The current study demonstrated that antagonism of the initial phase of KOR activation in S1 via local injections of the g-protein inhibitor, pertussis toxin (PTX), blocked initial WTEB acquisition without affecting retention of the association. In contrast, KOR late phase antagonism in S1 via local injections of the GRK3-specific antagonist, guanidinonaltrindole (GNTI), blocked retention of the WTEB association without affecting task acquisition. Consistent with the known mechanism for KOR activation, KOR protein expression in S1 was found to be decreased following WTEB training, further supporting the involvement of neocortical KOR activation with learning. Prior studies have shown that task acquisition and memory consolidation are mediated by distinct molecular processes; however, little is known regarding a potential mechanism driving these processes. The current study suggests that neocortical KOR activation mediates activation of these processes with learning. This study provides the first evidence for a time- and learning-dependent property of neocortical KOR in facilitating acquisition and consolidation of associative memories, while elucidating an unexplored neocortical learning mechanism.

  14. Renal tubular epithelium-targeted peroxisome proliferator-activated receptor-γ maintains the epithelial phenotype and antagonizes renal fibrogenesis

    PubMed Central

    Ding, Guixia; Xu, Ying; Bai, Mi; Zhang, Yue; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2016-01-01

    Accumulating evidence suggests that loss of the renal tubular epithelial phenotype plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. Systemic activation of peroxisome proliferator-activated receptor γ (PPAR-γ) has been shown to be protective against renal fibrosis, although the mechanisms are poorly understood. The present study aimed to define the role of renal tubular epithelium-targeted PPAR-γ in protection of the epithelial phenotype and the antagonism of renal fibrosis and to define the underlying mechanisms. In response to TGF-β1 challenge, PPAR-γ expression and activity in the renal proximal tubule epithelial cells (RPTECs) were significantly reduced, and the reduction was accompanied by decreased E-cadherin and elevated α-SMA, indicating a loss of the epithelial phenotype. Oxidative stress induced by TGF-β1 was shown to be attributed to the alteration of the epithelial phenotype and PPAR-γ inhibition. Activation of PPAR-γ by its agonists of rosiglitazone and 15d-PGJ2 or genetic overexpression of PPAR-γ prevented the loss of the epithelial phenotype induced by TGF-β1 in line with the inhibition of oxidative stress. To explore the role of PPAR-γ in renal tubular epithelial in antagonizing fibrogenesis, PPAR-γ was specifically deleted from RPTECs in mice. Following unilateral ureteral obstruction, the fibrosis was markedly deteriorated in mice with PPAR-γ invalidation in RPTECs. Treatment with rosiglitazone attenuated tubulointerstitial fibrosis and epithelial phenotype transition in WT but not proximal tubule PPAR-γ KO mice. Taken together, these findings identified an important role of renal tubular epithelium-targeted PPAR-γ in maintaining the normal epithelial phenotype and opposing fibrogenesis, possibly via antagonizing oxidative stress. PMID:27602490

  15. Histamine H2-receptor antagonism of T-593: studies on positive chronotropic responses in guinea pig atria.

    PubMed

    Arai, H; Nakagawa, M; Tanada, K; Yamaguchi, H; Hirai, S

    1994-04-01

    Histamine H2-antagonistic properties of the novel H2-antagonist T-593, (+-)-N-[2-hydroxy-2-(4-hydroxyphenyl)ethyl]-N'-[2- [[[5-(methylamino)methyl-2-furyl]methyl]thio]ethyl]-N"- (methylsulfonyl) guanidine were investigated on the histamine-induced positive chronotropic responses in isolated guinea pig right atria. T-593 at 3 x 10(-7)-3 x 10(-6) M suppressed the maximal responses of the histamine concentration-response curves in a concentration-dependent fashion, indicating that T-593 is an unsurmountable antagonist. The pD'2 values were 5.50 for T-593 and 5.61 for famotidine; and the IC50 values at 1 x 10(-5) M histamine were 1.05 x 10(-6) M for T-593, 1.59 x 10(-6) M for ranitidine and 1.67 x 10(-7) M for famotidine. T-593 is a racemic compound composed of two enantiomers, (-)-T-593 and (+)-T-593. The histamine H2-antagonistic activity of (-)-T-593 was 1.5-fold more potent than that of racemic T-593, but (+)-T-593 scarcely inhibited the histamine-induced positive chronotropic response. Histamine H2-antagonism by racemic T-593 was mainly attributed to (-)-T-593. Isoproterenol-induced positive chronotropic responses were not affected by T-593 even at 3 x 10(-5) M. Pretreatment of ranitidine for 10 min prior to application of T-593 protected H2-receptors from unsurmountable antagonism by T-593. Reversibility of H2-antagonism was determined every 1 hr after a 30-min treatment of H2-antagonists. T-593 inhibited the positive chronotropic responses for over 6 hr in contrast to fast recovery from inhibition by ranitidine or famotidine. This result showed that T-593 is a slowly dissociable, long-acting histamine H2-antagonist.

  16. Effect of Caffeine Chronically Consumed During Pregnancy on Adenosine A1 and A2A Receptors Signaling in Both Maternal and Fetal Heart from Wistar Rats.

    PubMed

    Iglesias, Inmaculada; Albasanz, Jose Luis; Martín, Mairena

    2014-12-01

    Background: Caffeine is the most widely consumed psychoactive substance in the world, even during pregnancy. Its stimulatory effects are mainly due to antagonism of adenosine actions by blocking adenosine A1 and A2A receptors. Previous studies have shown that caffeine can cross the placenta and therefore modulate these receptors not only in the fetal brain but also in the heart. Methods: In the present work, the effect of caffeine chronically consumed during pregnancy on A1 and A2A receptors in Wistar rat heart, from both mothers and their fetuses, were studied using radioligand binding, Western-blotting, and adenylyl cyclase activity assays, as well as reverse transcription polymerase chain reaction. Results: Caffeine did not significantly alter A1R neither at protein nor at gene expression level in both the maternal and fetal heart. On the contrary, A2AR significantly decreased in the maternal heart, although mRNA was not affected. Gi and Gs proteins were also preserved. Finally, A1R-mediated inhibition of adenylyl cyclase activity did not change in the maternal heart, but A2AR mediated stimulation of this enzymatic activity significantly decreased according to the detected loss of this receptor. Conclusions: Opposite to the downregulation and desensitization of the A1R/AC pathway previously reported in the brain, these results show that this pathway is not affected in rat heart after caffeine exposure during pregnancy. In addition, A2AR is downregulated and desensitized in the maternal heart, suggesting a differential modulation of these receptor-mediated pathways by caffeine.

  17. Effect of Caffeine Chronically Consumed During Pregnancy on Adenosine A1 and A2A Receptors Signaling in Both Maternal and Fetal Heart from Wistar Rats

    PubMed Central

    Iglesias, Inmaculada; Albasanz, Jose Luis

    2014-01-01

    Background: Caffeine is the most widely consumed psychoactive substance in the world, even during pregnancy. Its stimulatory effects are mainly due to antagonism of adenosine actions by blocking adenosine A1 and A2A receptors. Previous studies have shown that caffeine can cross the placenta and therefore modulate these receptors not only in the fetal brain but also in the heart. Methods: In the present work, the effect of caffeine chronically consumed during pregnancy on A1 and A2A receptors in Wistar rat heart, from both mothers and their fetuses, were studied using radioligand binding, Western-blotting, and adenylyl cyclase activity assays, as well as reverse transcription polymerase chain reaction. Results: Caffeine did not significantly alter A1R neither at protein nor at gene expression level in both the maternal and fetal heart. On the contrary, A2AR significantly decreased in the maternal heart, although mRNA was not affected. Gi and Gs proteins were also preserved. Finally, A1R-mediated inhibition of adenylyl cyclase activity did not change in the maternal heart, but A2AR mediated stimulation of this enzymatic activity significantly decreased according to the detected loss of this receptor. Conclusions: Opposite to the downregulation and desensitization of the A1R/AC pathway previously reported in the brain, these results show that this pathway is not affected in rat heart after caffeine exposure during pregnancy. In addition, A2AR is downregulated and desensitized in the maternal heart, suggesting a differential modulation of these receptor-mediated pathways by caffeine. PMID:25538864

  18. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

    PubMed Central

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N.; Borycz, Janusz; Kachroo, Anil; Canas, Paula M.; Orru, Marco; Schwarzschild, Michael A.; Rosin, Diane L.; Kreitzer, Anatol C.; Cunha, Rodrigo A.; Watanabe, Masahiko; Ferré, Sergi

    2010-01-01

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel anti-parkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional functionally significant segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of cortico-striatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders. PMID:19936569

  19. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    PubMed

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  20. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine.

    PubMed

    Yang, Jiang-Ning; Chen, Jiang-Fan; Fredholm, Bertil B

    2009-04-01

    Heart rate (HR), body temperature (Temp), locomotor activity (LA), and oxygen consumption (O(2)C) were studied in awake mice lacking one or both of the adenosine A(1) or A(2A) receptors (A(1)R or A(2A)R, respectively) using telemetry and respirometry, before and after caffeine administration. All parameters were lower during day than night and higher in females than males. When compared with wild-type (WT) littermates, HR was higher in male A(1)R knockout (A(1)RKO) mice but lower in A(2A)RKO mice and intermediate in A(1)-A(2A)R double KO mice. A single dose of an unselective beta-blocker (timolol; 1 mg/kg) abolished the HR differences between these genotypes. Deletion of A(1)Rs had little effect on Temp, whereas deletion of A(2A)Rs increased it in females and decreased it in males. A(1)-A(2A)RKO mice had lower Temp than WT mice. LA was unaltered in A(1)RKO mice and lower in A(2A)RKO and A(1)-A(2A)RKO mice than in WT mice. Caffeine injection increased LA but only in mice expressing A(2A)R. Caffeine ingestion also increased LA in an A(2A)R-dependent manner in male mice. Caffeine ingestion significantly increased O(2)C in WT mice, but less in the different KO mice. Injection of 30 mg/kg caffeine decreased Temp, especially in KO mice, and hence in a manner unrelated to A(1)R or A(2A)R blockade. Selective A(2B) antagonism had little or no effect. Thus A(1)R and A(2A)R influence HR, Temp, LA, and O(2)C in mice in a sex-dependent manner, indicating effects of endogenous adenosine. The A(2A)R plays an important role in the modulation of O(2)C and LA by acute and chronic caffeine administration. There is also evidence for effects of higher doses of caffeine being independent of both A(1)R and A(2A)R.

  1. Antagonizing the GABAA receptor during behavioral training improves spatial memory at different doses in control and chronically stressed rats.

    PubMed

    Nishimura, Kenji J; Ortiz, J Bryce; Conrad, Cheryl D

    2017-09-07

    Chronic stress leads to a dysregulated inhibitory tone that could impact hippocampal-dependent spatial learning and memory. The present study examined whether spatial memory deficits resulting from chronic stress could be overcome by antagonizing the GABAA receptor, a prominent inhibitory receptor of GABA in the hippocampus. Young adult male Sprague-Dawley rats were chronically stressed (STR, wire mesh restraint, 6h/d/21d) or placed in a no-stress control group (CON). When chronic restraint ended, rats were tested on a 2-trial object placement (OP) task at a delay (3h) that would result in chance performance without intervention and then on novel object recognition (NOR) and the elevated plus maze (EPM) to assess non-spatial memory and anxiety profile. In CON rats, Bicuculline (BIC, 0, 0.25, 0.5mg/kg), a GABAA antagonist, injected 30min prior to training led to facilitated OP performance with 0.25 and 0.5mg/kg doses. In contrast, STR rats required BIC at the highest dose (0.5mg/kg) to improve OP performance. While overall object exploration was decreased by chronic stress, motivation or anxiety profile were unlikely to explain these results. These findings reveal two different dose response functions for BIC in control and chronically stressed rats, with the dose response function of BIC being shifted to the right for chronically stressed rats compared to controls in order to improve spatial memory. While the literature demonstrates that chronic stress disrupts hippocampal inhibitory tone, the current study reveals that a single injection to antagonize the GABAA receptor can restore hippocampal-dependent spatial memory in chronically stressed subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Agonist Dynamics and Conformational Selection during Microsecond Simulations of the A2A Adenosine Receptor

    PubMed Central

    Lee, Ji Young; Lyman, Edward

    2012-01-01

    The G-protein-coupled receptors (GPCRs) are a ubiquitous family of signaling proteins of exceptional pharmacological importance. The recent publication of structures of several GPCRs cocrystallized with ligands of differing activity offers a unique opportunity to gain insight into their function. To that end, we performed microsecond-timescale simulations of the A2A adenosine receptor bound to either of two agonists, adenosine or UK432097. Our data suggest that adenosine is highly dynamic when bound to A2A, in stark contrast to the case with UK432097. Remarkably, adenosine finds an alternate binding pose in which the ligand is inverted relative to the crystal structure, forming relatively stable interactions with helices I and II. Our observations suggest new experimental tests to validate our predictions and deepen our understanding of GPCR signaling. Overall, our data suggest an intriguing hypothesis: that the 100- to 1000-fold greater efficacy of UK432097 relative to adenosine arises because UK432097 stabilizes a much tighter neighborhood of active conformations, which manifests as a greater likelihood of G-protein activation per unit time. PMID:22824275

  3. In vitro metabolism studies of new adenosine A 2A receptor antagonists.

    PubMed

    Marucci, Gabriella; Finaurini, Sara; Buccioni, Michela; Lammi, Carmen; Kandhavelu, Meenakshisundaram; Volpini, Rosaria; Ricciutelli, Massimo; Angeli, Piero; Commandeur, Jan N M; Cristalli, Gloria

    2008-12-01

    Evidence, obtained in rodent and primate models of Parkinson's disease (PD) and in preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising non-dopaminergic therapeutic tool for the treatment of PD. Recently, we have reported the biological evaluation of 8-substituted 9-ethyladenines (ANR) as new A(2A) receptor antagonists, three of which (ANR 82, ANR 94, and ANR 152) showed high efficacy in in vivo models for Parkinson's. Understanding the metabolic pathways of new drug candidates is an important aspect of drug discovery. The ANR compounds have been investigated in order to clarify their activity on rat liver microsomes, and more specifically on recombinant human cytochrome P450 2D6 (CYP2D6). The metabolites of all three compounds were detected by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The results indicate that this class of 9-ethyladenines is metabolized only to a fraction of 1.5-5%. These compounds also act as potent mechanism-based inhibitors of CYP450 and in particular of human isoform CYP2D6. Kinetic-analysis of enzyme inactivation was used to describe the effect of these time-dependent inhibitors and to derive the inhibition parameters K(inact) and K(i) defined with respect to the O-demethylation of dextromethorphan.

  4. Optimization of 6-Heterocyclic-2-(1H-pyrazol-1-yl)-N-(pyridin-2-yl)pyrimidin-4-amine as Potent Adenosine A2A Receptor Antagonists for the Treatment of Parkinson’s Disease

    PubMed Central

    2014-01-01

    Parkinson’s disease is a neurodegenerative disease characterized by the motor symptoms of bradykinesia, tremor, and rigidity. Current therapies are based mainly on dopaminergic replacement strategies by administration of either dopamine agonists or dopamine precursor levodopa (L-Dopa). These treatments provide symptomatic relief without slowing or stopping the disease progression, and long-term usage of these drugs is associated with diminished efficacy, motor fluctuation, and dyskinisia. Unfortunately, there had been few novel treatments developed in the past decades. Among nondopaminergic strategies for the treatment of Parkinson’s disease, antagonism of the adenosine A2A receptor has emerged to show great potential. Here we report the optimization of a new chemical scaffold, which achieved exceptional receptor binding affinity and ligand efficiency against adenosine A2A receptor. The leading compounds demonstrated excellent efficacy in the haloperidol induced catalepsy model for Parkinson’s disease. PMID:24922583

  5. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target.

  6. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  7. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  8. Pharmacological evidence for different populations of postsynaptic adenosine A2A receptors in the rat striatum

    PubMed Central

    Orrú, Marco; Quiroz, César; Guitart, Xavier; Ferré, Sergi

    2011-01-01

    Adenosine A2A receptors (A2ARs) are highly concentrated in the striatum. Two pharmacological different functional populations of A2ARs have been recently described based on their different affinities for the A2AR antagonist SCH-442416. This compound has high affinity for A2ARs not forming heteromers or forming heteromers with adenosine A1 receptors (A1Rs) while showing very low affinity for A2ARs forming heteromers with dopamine D2 receptors (D2Rs). It has been widely described that striatal A1R-A2AR heteromers are preferentially localized presynaptically in the glutamatergic terminals that contact GABAergic dynorphinergic neurons, and that A2AR-D2R heteromers are localized postsynaptically in GABAergic enkephalinergic neurons. In the present study we provide evidence suggesting that SCH-442416 also targets postsynaptic A2AR not forming heteromers with D2R, which are involved in the motor depressant effects induced by D2R antagonists. SCH-442416 counteracted motor depression in rats induced by the D2R antagonist raclopride at a dose that did not produce motor activation or that blocked motor depression induced by an A2AR agonist. Furthermore, we re-evaluated the recently suggested key role of cannabinoid CB1 receptors (CB1Rs) in the effects of A2AR antagonists acting at postsynaptic A2ARs. By recording locomotor activity and monitoring striatal glutamate release induced by cortical electrical stimulation in rats after administration of A2AR and CB1R antagonists, we did not find evidence for any significant role of endocannabinoids in the post- or presynaptic effects of A2AR antagonists. The present results further suggest the existence of at least two functionally and pharmacologically different populations of striatal postsynaptic A2ARs. PMID:21752341

  9. Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum.

    PubMed

    Singh, Seema; Singh, Kavita; Gupta, Satya Prakash; Patel, Devendra Kumar; Singh, Vinod Kumar; Singh, Raj Kumar; Singh, Mahendra Pratap

    2009-08-04

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by the selective loss of dopaminergic neurons of the nigrostriatal pathway. Epidemiological studies have shown an inverse relationship between coffee consumption and susceptibility to PD. Cytochrome P450 1A2 (CYP1A2) is involved in caffeine metabolism and its clearance. Caffeine, on the other hand, antagonizes adenosine A(2A) receptor and regulates dopamine signaling through dopamine transporter (DAT). The present study was undertaken to investigate the expression of CYP1A2, adenosine A(2A) receptor and DAT in mouse striatum and to assess their levels in 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropryridine (MPTP) treated mouse striatum with and without caffeine treatment. The animals were treated intraperitoneally daily with caffeine (20 mg/kg) for 8 weeks, followed by MPTP (20 mg/kg)+caffeine (20 mg/kg) for 4 weeks or vice versa, along with respective controls. Tyrosine hydroxylase immunoreactivity, levels of dopamine and 1-methyl 4-phenylpyridinium ion (MPP(+)), expressions of CYP1A2, adenosine A(2A) receptor and DAT and CYP1A2 catalytic activity were measured in control and treated mouse brain. Caffeine partially protected MPTP-induced neurodegenerative changes and modulated MPTP-mediated alterations in the expression and catalytic activity of CYP1A2, expression of adenosine A(2A) receptor and DAT. The results demonstrate that caffeine alters the striatal CYP1A2, adenosine A(2A) receptor and DAT expressions in mice exposed to MPTP.

  10. Glutamatergic dysbalance and oxidative stress in in vivo and in vitro models of psychosis based on chronic NMDA receptor antagonism.

    PubMed

    Genius, Just; Geiger, Johanna; Dölzer, Anna-Lena; Benninghoff, Jens; Giegling, Ina; Hartmann, Annette M; Möller, Hans-Jürgen; Rujescu, Dan

    2013-01-01

    The psychotomimetic effects of N-methyl-D-aspartate (NMDA) receptor antagonists in healthy humans and their tendency to aggravate psychotic symptoms in schizophrenic patients have promoted the notion of altered glutamatergic neurotransmission in the pathogenesis of schizophrenia. The NMDA-receptor antagonist MK-801 was chronically administered to rats (0.02 mg/kg intraperitoneally for 14 days). In one subgroup the antipsychotic haloperidol (1 mg/kg) was employed as a rescue therapy. Glutamate distribution and 3-NT (3-nitrotyrosine) as a marker of oxidative stress were assessed by immunohistochemistry in tissue sections. In parallel, the effects of MK-801 and haloperidol were investigated in primary embryonal hippocampal cell cultures from rats. Chronic NMDA-R antagonism led to a marked increase of intracellular glutamate in the hippocampus (126.1 +/- 10.4% S.E.M of control; p=0.037), while 3-NT staining intensity remained unaltered. No differences were observed in extrahippocampal brain regions. Essentially these findings could be reproduced in vitro. The combined in vivo and in vitro strategy allowed us to assess the implications of disturbed glutamate metabolism for the occurrence of oxidative stress and to investigate the effects of antipsychotics. Our data suggest that oxidative stress plays a minor role in this model than previously suggested. The same applies to apoptosis. Moreover, the effect of haloperidol seems to be mediated through yet unidentified mechanisms, unrelated to D2-antagonism. These convergent lines of evidence indicate that further research should be focused on the glutamatergic system and that our animal model may provide a tool to explore the biology of schizophrenia.

  11. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism.

    PubMed

    de Bartolomeis, Andrea; Tomasetti, Carmine; Iasevoli, Felice

    2015-09-01

    Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.

  12. Glutamatergic Dysbalance and Oxidative Stress in In Vivo and In Vitro Models of Psychosis Based on Chronic NMDA Receptor Antagonism

    PubMed Central

    Genius, Just; Geiger, Johanna; Dölzer, Anna-Lena; Benninghoff, Jens; Giegling, Ina; Hartmann, Annette M.; Möller, Hans-Jürgen; Rujescu, Dan

    2013-01-01

    Background The psychotomimetic effects of N-methyl-D-aspartate (NMDA) receptor antagonists in healthy humans and their tendency to aggravate psychotic symptoms in schizophrenic patients have promoted the notion of altered glutamatergic neurotransmission in the pathogenesis of schizophrenia. Methods The NMDA-receptor antagonist MK-801 was chronically administered to rats (0.02 mg/kg intraperitoneally for 14 days). In one subgroup the antipsychotic haloperidol (1 mg/kg) was employed as a rescue therapy. Glutamate distribution and 3-NT (3-nitrotyrosine) as a marker of oxidative stress were assessed by immunohistochemistry in tissue sections. In parallel, the effects of MK-801 and haloperidol were investigated in primary embryonal hippocampal cell cultures from rats. Results Chronic NMDA-R antagonism led to a marked increase of intracellular glutamate in the hippocampus (126.1 +/− 10.4% S.E.M of control; p = 0.037), while 3-NT staining intensity remained unaltered. No differences were observed in extrahippocampal brain regions. Essentially these findings could be reproduced in vitro. Conclusion The combined in vivo and in vitro strategy allowed us to assess the implications of disturbed glutamate metabolism for the occurrence of oxidative stress and to investigate the effects of antipsychotics. Our data suggest that oxidative stress plays a minor role in this model than previously suggested. The same applies to apoptosis. Moreover, the effect of haloperidol seems to be mediated through yet unidentified mechanisms, unrelated to D2-antagonism. These convergent lines of evidence indicate that further research should be focused on the glutamatergic system and that our animal model may provide a tool to explore the biology of schizophrenia. PMID:23869202

  13. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep

    PubMed Central

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Nolan, Philip; Horner, Richard L

    2003-01-01

    The pharyngeal muscles, such as the genioglossus (GG) muscle of the tongue, are important for effective lung ventilation since they maintain an open airspace. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity, even during strong reflex respiratory stimulation by elevated CO2. In vitro studies have demonstrated the presence of GABAA receptors on hypoglossal motoneurons, and these and other data have led to the speculation that GABAA mechanisms may contribute to the suppression of hypoglossal motor outflow to the GG muscle in REM sleep. We have developed an animal model that allows us to chronically manipulate neurotransmission at the hypoglossal motor nucleus using microdialysis across natural sleep-wake states in rats. The present study tests the hypothesis that microdialysis perfusion of the GABAA receptor antagonist bicuculline into the hypoglossal motor nucleus will prevent the suppression of GG muscle activity in REM sleep during both room-air and CO2-stimulated breathing. Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) or 100 μm bicuculline during room-air and CO2-stimulated breathing (7 % inspired CO2). GABAA receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity during both room-air (P = 0.01) and CO2-stimulated breathing (P = 0.007), indicating a background inhibitory GABA tone. However, the effects of bicuculline on GG activity depended on the prevailing sleep-wake state (P < 0.005), with bicuculline increasing GG activity in non-REM (NREM) sleep and wakefulness both in room air and hypercapnia (P < 0.01), but GG activity was effectively abolished in those REM periods without phasic twitches in the GG muscle. This

  14. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system.

    PubMed

    Popoli, Patrizia; Pepponi, Rita

    2012-09-01

    Adenosine A2B and, much more importantly, adenosine A2A receptors modulate many physiological and pathological processes in the brain. In this review, the most recent evidence concerning the role of such receptors and their potential therapeutic relevance is discussed. The low affinity of A2B receptors for adenosine implies that they might represent a good therapeutic target, since they are activated only under pathological conditions (when adenosine levels raise up to micromolar concentrations). The availability of selective ligands for A2B receptors would allow exploration of such an hypothesis. Since adenosine A2A receptors mediate both potentially neuroprotective and potentially neurotoxic effects, their role in neurodegenerative diseases is highly controversial. Nevertheless, A2A receptor antagonists have shown clear antiparkinsonian effects, and a great interest exists on the role of A2A receptors in Alzheimer's disease, brain ischaemia, spinal cord injury, drug addiction and other conditions. In order to establish whether such receptors represent a target for CNS diseases, at least two conditions are needed: the full comprehension of A2A-dependent mechanisms and the availability of ligands capable of discriminating among the different receptor populations.

  15. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration.

    PubMed

    Hiranita, Takato; Hong, Weimin C; Kopajtic, Theresa; Katz, Jonathan L

    2017-07-01

    Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N-methyl (AHN1-055), N-allyl (AHN2-005), and N-butyl (JHW007) analogs of 3α-[bis(4'-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d-methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03-1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ1-receptor (σ1R) antagonists. Therefore, the present study examined binding of the BZT analogs to σRs, as well as their in vivo σR antagonist effects. Each of the BZT analogs displaced radiolabeled σR ligands with nanomolar affinity. Further, self-administration of the σR agonist DTG (0.1-3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D1-like [R(+)-SKF 81297, (±)-SKF 82958 (0.00032-0.01 mg/kg per injection each)], D2-like [R(-)-NPA (0.0001-0.0032 mg/kg per injection), (-)-quinpirole (0.0032-0.1 mg/kg per injection)], or μ-opioid (remifentanil, 0.0001-0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N-substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σR antagonism contributes to those actions. U.S. Government work not protected by U.S. copyright.

  16. The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT(3) receptor antagonism.

    PubMed

    Bétry, Cécile; Pehrson, Alan L; Etiévant, Adeline; Ebert, Bjarke; Sánchez, Connie; Haddjeri, Nasser

    2013-06-01

    The therapeutic effect of current antidepressant drugs appears after several weeks of treatment and a significant number of patients do not respond to treatment. Here, we report the effects of the multi-modal antidepressant vortioxetine (Lu AA21004), a 5-HT(3) and 5-HT(7) receptor antagonist, 5-HT(1B) receptor partial agonist, 5-HT(1A) receptor agonist and 5-HT transporter (SERT) inhibitor, on rat 5-HT neurotransmission. Using in vivo electrophysiological recordings in the dorsal raphe nucleus of anaesthetized rats, we assessed the acute and subchronic effects of vortioxetine and/or the selective 5-HT(3) receptor agonist, SR57227 or the selective 5-HT(1A) receptor agonist flesinoxan, on 5-HT neuronal firing activity. Using ex-vivo autoradiography, we correlated SERT occupancy and presumed 5-HT firing activity. The selective serotonin reuptake inhibitor, fluoxetine, was used as comparator. Importantly, the recovery of 5-HT neuronal firing was achieved after 1 d with vortioxetine and 14 d with fluoxetine. SR57227 delayed this recovery. In contrast, vortioxetine failed to alter the reducing action of 3 d treatment of flesinoxan. Acute dosing of vortioxetine inhibited neuronal firing activity more potently than fluoxetine. SR57227 prevented the suppressant effect of vortioxetine, but not of fluoxetine. In contrast, flesinoxan failed to modify the suppressant effect of vortioxetine acutely administered. Differently to fluoxetine, vortioxetine suppressed neuronal firing without saturating occupancy at the SERT. Vortioxetine produced a markedly faster recovery of 5-HT neuronal firing than fluoxetine. This is at least partly due to 5-HT(3) receptor antagonism of vortioxetine in association with its reduced SERT occupancy.

  17. Effects of 5-HT6 receptor antagonism and cholinesterase inhibition in models of cognitive impairment in the rat

    PubMed Central

    Marcos, B; Chuang, T T; Gil-Bea, F J; Ramirez, M J

    2008-01-01

    Background and purpose: The beneficial effect of 5-HT6 receptor antagonism in cognition remains controversial. This study has been undertaken to reassess the cognition enhancing properties of acute vs subchronic treatment with the selective 5-HT6 receptor antagonist SB-271046 in unimpaired rats, as well as against scopolamine (cholinergic-) or MK-801 (glutamatergic-mediated) deficits. Experimental approach: The Morris water maze was used, measuring behaviour acquisition and retention, and swim speed. Other behavioural measures included yawning and motor activity. SB-271046 was given acutely before each trial or subchronically for 7 days before the trials. The AChE inhibitor galanthamine was also used alone or in combination with SB-271046. Key results: Subchronic treatment with SB-271046 improved acquisition in the Morris water maze, while the acute treatment only improved retention. Neither acute nor subchronic SB-271046 treatment reversed scopolamine-induced learning deficits. MK-801 induced learning impairment associated with a behavioural syndrome, reversed by acute, but not subchronic, SB-271046 treatment. Interestingly, combined treatment with galanthamine and SB-271046 reversed the scopolamine- or MK-801-induced learning impairments. Subchronic treatment with SB-271046 did not modify motor activity or the increased number of yawns, a cholinergic-mediated behaviour, induced by single administration of SB-271046. Conclusions and implications: These data suggest a potential therapeutic role of 5-HT6 receptor antagonists such as SB-271046, alone or in combination with galanthamine, in the treatment of cognitive dysfunction, such as those seen in Alzheimer's disease and schizophrenia. PMID:18622410

  18. Underlying mechanism for NMDA receptor antagonism by the anti-inflammatory drug, sulfasalazine, in mouse cortical neurons.

    PubMed

    Noh, Ji-Hyun; Gwag, Byoung-Joo; Chung, Jun-Mo

    2006-01-01

    Sulfasalazine (SULFA), of anti-inflammatory drugs, shows a protective action against NMDA-induced neuronal toxicity. Here, we used an electrophysiological study of the pharmacological effects of SULFA on NMDA receptors to examine the molecular mechanisms underlying the neuroprotective role of SULFA. The drug acted as a typical noncompetitive inhibitor with neither agonist- nor use-dependency, and antagonized NMDA-evoked responses in a voltage-independent manner, suggesting that SULFA is not an open channel blocker. Noise and single channel analyses showed that SULFA-blocked NMDA responses by reducing the number of NMDA channels available for activation, and also reduced the channel open probability without changing single channel conductance. Moreover, SULFA accelerated NMDA desensitization without affecting the affinity of the receptor for NMDA or glutamate. Taken together, these data indicate that SULFA blocks the NMDA response by reducing the number of NMDA channels available for activation. This appears to occur via a SULFA-induced decrease in the channel open probability, and a concomitant acceleration of the desensitization response, which is likely associated with a reduced affinity for glycine. SULFA indeed decreased the glycine-potentiated NMDA response without binding directly to the glycine site. Our results suggest that SULFA acts as a noncompetitive NMDA receptor antagonist with an allosteric glycine modulation.

  19. Polydeoxyribonucleotides (PDRNs) From Skin to Musculoskeletal Tissue Regeneration via Adenosine A2A Receptor Involvement.

    PubMed

    Veronesi, Francesca; Dallari, Dante; Sabbioni, Giacomo; Carubbi, Chiara; Martini, Lucia; Fini, Milena

    2017-09-01

    Polydeoxyribonucleotides (PDRNs) are low molecular weight DNA molecules of natural origin that stimulate cell migration and growth, extracellular matrix (ECM) protein production, and reduce inflammation. Most preclinical and clinical studies on tissue regeneration with PDRNs focused on skin, and only few are about musculoskeletal tissues. Starting from an overview on skin regeneration studies, through the analysis of in vitro, in vivo, and clinical studies (1990-2016), the present review aimed at defining the effects of PDRN and their mechanisms of action in the regeneration of musculoskeletal tissues. This would also help future researches in this area. A total of 29 studies were found by PubMed and www.webofknowledge.com searches: 20 were on skin (six in vitro, six in vivo, one vitro/vivo, seven clinical studies), while the other nine regarded bone (one in vitro, two in vivo, one clinical studies), cartilage (one in vitro, one vitro/vivo, two clinical studies), or tendon (one clinical study) tissues regeneration. PDRNs improved cell growth, tissue repair, ECM proteins, physical activity, and reduced pain and inflammation, through the activation of adenosine A2A receptor. PDRNs are currently used for bone, cartilage, and tendon diseases, with a great variability regarding the PDRN dosage to be used in clinical practice, while the dosage for skin regeneration is well established. PDRNs are usually administered from a minimum of three to a maximum of five times and they act trough the activation of A2A receptor. Further studies are advisable to confirm the effectiveness of PDRNs and to standardize the PDRN dose. J. Cell. Physiol. 232: 2299-2307, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

    PubMed Central

    Rau, Andrew R.; Ariwodola, Olusegun J.

    2015-01-01

    Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability. Results: Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells. PMID:25716780

  1. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease.

    PubMed

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E; Franco, Rafael

    2011-12-01

    Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.

  2. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Popoli, Patrizia; Varani, Katia

    2013-09-01

    Adenosine, a purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors (ARs), is a potent endogenous modulator of inflammatory and neuronal processes involved in the pathophysiology of several neurodegenerative diseases. In the present study, ARs were investigated in lymphocytes from patients with amyotrophic lateral sclerosis (ALS) and compared with age-matched healthy subjects. In ALS patients A2AARs were analysed by using RT-PCR, Western blotting and saturation binding experiments. The effect of A2AAR stimulation on cyclic AMP levels was evaluated in lymphocytes from ALS patients and healthy subjects. An up-regulation of A2AARs was observed in ALS patients with respect to healthy subjects while A1, A2B and A3AR affinity and density did not change. In ALS patients, the A2AAR density values correlated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Furthermore, the stimulation of A2AARs mediated a significant increase in cyclic AMP levels in lymphocytes from ALS patients, with a higher potency than in lymphocytes from healthy subjects. In conclusion, the positive correlation between A2AAR density and ALSFRS-R scores could indicate a possible protective effect of this receptor subtype, representing an interesting starting point for the study of alternative therapeutic approaches for ALS based on A2AAR modulation.

  3. New adenosine A2A receptor antagonists: actions on Parkinson's disease models.

    PubMed

    Pinna, Annalisa; Volpini, Rosaria; Cristalli, Gloria; Morelli, Micaela

    2005-04-11

    The 8-substituted 9-ethyladenine derivatives: 8-bromo-9-ethyladenine (ANR 82), 8-ethoxy- 9-ethyladenine (ANR 94), and 8-furyl-9-ethyladenine (ANR 152) have been characterized in vitro as adenosine receptor antagonists. Adenosine is deeply involved in the control of motor behaviour and substantial evidences indicate that adenosine A(2A) receptor antagonists improve motor deficits in animal models of Parkinson's disease. On this basis, the efficacy of ANR 82, ANR 94, and ANR 152 in rat models of Parkinson's disease was evaluated. All compounds tested reversed the catalepsy induced by haloperidol. However, in unilaterally 6-hydroxydopamine-lesioned rats, only ANR 94 and ANR 152 potentiated l-dihydroxy-phenylalanine (l-DOPA) effect on turning behaviour and induced contralateral turning behaviour in rats sensitised to l-DOPA. Taken together the results of this study indicate that some 8-substituted 9-ethyladenine derivatives ameliorate motor deficits in rat models of Parkinson's disease, suggesting a potential therapeutic role of these compounds.

  4. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  5. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia.

    PubMed

    Villar-Menéndez, Izaskun; Díaz-Sánchez, Sara; Blanch, Marta; Albasanz, José Luis; Pereira-Veiga, Thais; Monje, Alfonso; Planchat, Luis Maria; Ferrer, Isidre; Martín, Mairena; Barrachina, Marta

    2014-04-01

    Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity. It has also been proposed that there is a hypoadenosynergic state. Adenosine is a nucleoside widely distributed in the organism with neuromodulative and neuroprotective activity in the central nervous system. In the brain, the most abundant adenosine receptors are A1R and A2AR. In the present report, we characterize the presence of both receptors in human postmortem putamens of patients suffering SZ with real time TaqMan PCR, western blotting and radioligand binding assay. We show that A1R levels remain unchanged with respect to age-matched controls, whereas nearly fifty percent of patients have reduced A2AR, at the transcriptional and translational levels. Moreover, we describe how DNA methylation plays a role in the pathological A2AR levels with the bisulfite-sequencing technique. In fact, an increase in 5-methylcytosine percentage in the 5' UTR region of ADORA2A was found in those SZ patients with reduced A2AR levels. Interestingly, there was a relationship between the A2A/β-actin ratio and motor disturbances as assessed with some items of the PANSS, AIMS and SAS scales. Therefore, there may be a subgroup of SZ patients with reduced striatal A2AR levels accompanied by an altered motor phenotype.

  6. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer.

    PubMed

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D

    2016-05-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson's disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other's effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. Published by Elsevier Ltd.

  7. A selective sigma-2 receptor ligand antagonizes cocaine-induced hyperlocomotion in mice.

    PubMed

    Lever, John R; Miller, Dennis K; Green, Caroline L; Fergason-Cantrell, Emily A; Watkinson, Lisa D; Carmack, Terry L; Fan, Kuo-Hsien; Lever, Susan Z

    2014-02-01

    Cocaine functions, in part, through agonist actions at sigma-1 (σ1 ) receptors, while roles played by sigma-2 (σ2 ) receptors are less established. Attempts to discriminate σ2 receptor-mediated effects of cocaine in locomotor hyperactivity assays have been hampered by the lack of potent and selective antagonists. Certain tetrahydroisoquinolinyl benzamides display high σ2 receptor affinity, and excellent selectivity for binding to σ2 over σ1 receptors. The behavioral properties of this structural class of σ ligands have not yet been investigated. The present study evaluated 5-bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxy-benzamide, 1, a ligand shown by others to bind preferentially to σ2 over σ1 receptors, as well as dopamine D2 and D3 sites. First, we determined binding to monoamine transporters and opioid receptors, and noted 57-fold selectivity for σ2 receptors over the serotonin transporter, and >800-fold selectivity for σ2 receptors over the other sites tested. We then examined 1 in locomotor activity studies using male CD-1® mice, and saw no alteration of basal activity at doses up to 31.6 µmol/kg. Cocaine produced a fivefold increase in locomotor activity, which was attenuated by 66% upon pretreatment of mice with 1 at 31.6 µmol/kg. In vivo radioligand binding studies also were performed, and showed no occupancy of σ1 receptors or the dopamine transporter by 1, or its possible metabolites, at the 31.6 µmol/kg dose. Thus, ligand 1 profiles behaviorally as a σ2 receptor-selective antagonist that is able to counteract cocaine's motor stimulatory effects. Copyright © 2013 Wiley Periodicals, Inc.

  8. Adenosine A2A and A2B Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis.

    PubMed

    Andrés, Rosa M; Terencio, María Carmen; Arasa, Jorge; Payá, Miguel; Valcuende-Cavero, Francisca; Navalón, Pedro; Montesinos, María Carmen

    2017-01-01

    Adenosine is a potent regulator of inflammation and immunity, but the role of adenosine receptors in keratinocytes remains controversial. We determined that in addition to A2B receptors, human epidermal keratinocytes also express A2A receptors, although to a lower extent. Through the use of selective adenosine receptor agonists and antagonists, we showed that physiological concentrations of adenosine activate A2B receptors in normal human keratinocytes, inducing cell cycle arrest through the increase of intracellular calcium but not through cAMP signaling. In contrast, the selective activation of A2A receptors by CGS-21680 induces keratinocyte proliferation via p38-mitogen-activated protein kinase activation. Adenosine and selective A2A and A2B agonists presented anti-inflammatory profiles independent of adenosine receptors but mediated by membrane phosphatase activation. Finally, keratinocyte exposure to diverse inflammatory cytokines altered adenosine receptor expression by reducing A2B and increasing A2A, a pattern also observed in psoriatic epidermis. Because increased epidermal turnover and inflammatory response are characteristics of psoriatic disease, further studies are needed to assess the role and consequences of the altered adenosine receptor expression in lesional and nonlesional psoriatic keratinocytes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Adenosine A2a receptor stimulation blocks development of nonalcoholic steatohepatitis in mice by multilevel inhibition of signals that cause immunolipotoxicity.

    PubMed

    Alchera, Elisa; Rolla, Simona; Imarisio, Chiara; Bardina, Valentina; Valente, Guido; Novelli, Francesco; Carini, Rita

    2016-12-06

    Lipotoxicity and immunoinflammation are associated with the evolution of steatosis toward nonalcoholic steatohepatitis (NASH). This study reports the ability of adenosine A2a receptor (A2aR) activation to inhibit NASH development by modulating the responses of CD4(+) T-helper (Th) cells to avoid an immuno-mediated potentiation of lipotoxicity. The effect of the A2aR agonist CGS21680 on immunoinflammatory signals, CD4(+)Th cell infiltration and immunolipotoxicity was analyzed in steatotic C57BL/6 mice fed with a methionine-choline-deficient (MCD) diet and in mouse hepatocytes exposed to palmitic acid (PA). CGS21680 inhibited NASH development in steatotic mice and decreased cytokines and chemokines involved in Th cell recruitment or polarization (namely CXCL10, CCL2, tumor necrosis factor alfa [TNFα], tumor growth factor [TGFβ], and IL-12). CGS21680 also reduced the expansion of Th17, Th22, and Th1 cells and increased the immunosuppressive activity of T regulatory cells. In PA-treated mice hepatocytes, CGS21680 inhibited the production of CXCL10, TNFα, TGFβ, IL-12, and CCL2; CGS21680 also prevented JNK-dependent lipotoxicity and its intensification by IL-17 or IL-17 plus IL-22 through Akt/PI3-kinase stimulation and inhibition of the negative regulator of PI3-kinase, (phosphatase and tensin homologue deleted from chromosome 10 (PTEN), which is upregulated by IL-17. In MCD livers, CGS21680 reduced JNK activation and PTEN expression and increased Akt phosphorylation. In conclusion, A2aR stimulation inhibited NASH development by reducing Th17 cell expansion and inhibiting the exacerbation of the IL-17-induced JNK-dependent lipotoxicity. These data promote the implementation of further studies to evaluate the potential clinical application of A2aR agonists that, by being able to function as both cytoprotective and immunomodulatory agents, could efficiently antagonize the multi-faced pathogenesis of NASH.

  10. BU74, a complex oripavine derivative with potent kappa opioid receptor agonism and delayed opioid antagonism.

    PubMed

    Husbands, Stephen M; Neilan, Claire L; Broadbear, Jillian; Grundt, Peter; Breeden, Simon; Aceto, Mario D; Woods, James H; Lewis, John W; Traynor, John R

    2005-02-21

    In the search for opioid agonists with delayed antagonist actions as potential treatments for substance abuse, the bridged morphinan BU74 (17-cyclopropylmethyl-3-hydroxy-[5beta,7beta,3',5']-pyrrolidino-2'[S]-phenyl-7alpha-methyl-6,14-endoetheno morphinan) (3f) was synthesized. In isolated tissue and [35S]GTPgammaS opioid receptor functional assays BU74 was shown to be a potent long-lasting kappa opioid receptor agonist, delta opioid receptor partial agonist and mu opioid receptor antagonist. In antinociceptive tests in the mouse, BU74 showed high efficacy and potent kappa opioid receptor agonism. When its agonist action had waned BU74 became an antagonist of kappa and mu opioid receptor agonists in the tail flick assay and of delta, kappa and mu opioid receptor agonists in the acetic acid writhing assay. The slow onset, long-duration kappa opioid receptor agonist effects of BU74 suggests that it could be a lead compound for the discovery of a treatment for cocaine abuse.

  11. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    PubMed Central

    2011-01-01

    Background Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI), reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK) 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours), these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the neuroprotective effects

  12. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A2A Receptors

    PubMed Central

    Gomes, Catarina A.R.V.; Simões, Patrícia F.; Canas, Paula M.; Quiroz, César; Sebastião, Ana M.; Ferré, Sergi; Cunha, Rodrigo A.; Ribeiro, Joaquim A.

    2009-01-01

    Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson’s disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. Since motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret (rearranged during transfection) and GFRα1 (GDNF family receptor alpha 1) controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/ml) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈ 30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GFRα1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphoprylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors. PMID:19141075

  13. NK1 receptor antagonism lowers occupancy requirement for antidepressant-like effects of SSRIs in the gerbil forced swim test.

    PubMed

    Lelas, Snjezana; Li, Yu-Wen; Wallace-Boone, Tanya L; Taber, Matthew T; Newton, Amy E; Pieschl, Rick L; Davis, Carl D; Molski, Thaddeus F; Newberry, Kimberly S; Parker, Michael F; Gillman, Kevin W; Bronson, Joanne J; Macor, John E; Lodge, Nicholas J

    2013-10-01

    The known interactions between the serotonergic and neurokinin systems suggest that serotonin reuptake inhibitor (SSRIs) efficacy may be improved by neurokinin-1 receptor (NK1R) antagonism. In the current studies combination of a subeffective dose of an SSRI (0.3 mg/kg fluoxetine or 0.03 mg/kg citalopram) with a subeffective dose of an NK1R antagonist (0.3 mg/kg aprepitant or 1 mg/kg CP-122,721) produced efficacy in the gerbil forced swim test (FST). Serotonin transporter (SERT) occupancy produced by 1 mg/kg fluoxetine (lowest efficacious dose) was 52 ± 5% and was reduced to 29 ± 4% at 0.3 mg/kg, a dose that was efficacious in combination with 0.3 mg/kg aprepitant or 1 mg/kg CP-122,721; the corresponding NK1R occupancies were 79 ± 4% and 61 ± 4% for aprepitant and CP-122,721, respectively. For citalopram, SERT occupancy at the lowest efficacious dose (0.1 mg/kg) was 50 ± 4% and was reduced to 20 ± 5% at 0.03 mg/kg, a dose that was efficacious when combined with aprepitant (0.3 mg/kg). Aprepitant (10 mg/kg) augmented the serotonin elevation produced by fluoxetine (1 or 10 mg/kg) in the gerbil prefrontal cortex; i.e. NK1R antagonism can modulate serotonin responses. A novel orally-available dual-acting NK1R antagonist/SERT inhibitor BMS-795176 is described; gerbil Ki = 1.4 and 1 nM at NK1R and SERT, respectively. BMS-795176 was efficacious in the gerbil FST; efficacy was observed with 35 ± 3% SERT occupancy and 73 ± 3% NK1R occupancy. The interaction between NK1R antagonism and SERT inhibition to lower the SERT occupancy required for antidepressant-like efficacy suggests that BMS-795176 has the potential to improve efficacy with a reduction in SSRI-associated side effects.

  14. Aldosterone Receptor Antagonism Reduces Urinary C-Reactive Protein Excretion in Angiotensin II-Infused, Hypertensive Rats

    PubMed Central

    Ortiz, Rudy M.; Mamalis, Andrew; Navar, L. Gabriel

    2009-01-01

    Background Elevated C-reactive protein (CRP) may contribute to elevated arterial pressure in Ang II-dependent hypertension. However, the in vivo effects of Ang II and of mineralocorticoid receptor (MR) antagonism on CRP during Ang II-dependent hypertension have not been examined. In addition, urinary CRP excretion as a method to monitor the progression of Ang II-induced inflammation has not been evaluated. Methods Urine samples were collected from three groups (n = 10/group) of rats: 1) normotensive control, 2) angiotensin II infused (Ang II; 60 ng/min), and 3) Ang II + eplerenone (epl; 25 mg/d). A diet containing epl (0.1 %) was provided after 1 week of Ang II infusion. Results After 28 d, Ang II increased SBP from 136 ± 5 to 207 ± 8 mmHg; this response in SBP was not altered following MR antagonism (215 ± 6 mmHg). Ang II-infusion increased plasma CRP from 14 ± 2 to 26 ± 3 μg/mL and increased urinary CRP excretion nearly 8-fold (143 ± 26 vs 1102 ± 115 ng/d). Treatment with eplerenone reduced plasma CRP by 25 % and urinary immunoreactive CRP (irCRP) by 34 % in Ang II-infused rats suggesting that aldosterone contributes to the CRP-associated inflammatory response in Ang II-dependent hypertension. Conclusions The increase in SBP preceded the increase in irCRP excretion by at least 4 days suggesting that CRP does not significantly contribute to increased arterial blood pressure in Ang II-dependent hypertension. The blockade of MR reduced plasma CRP and urinary irCRP excretion demonstrating the contribution of aldosterone to the Ang II-induced generation of CRP. Furthermore, urinary CRP may serve as a non-invasive index for monitoring cardiovascular inflammation during hypertension. PMID:20161115

  15. Bone morphogenetic protein-2 antagonizes renal interstitial fibrosis by promoting catabolism of type I transforming growth factor-beta receptors.

    PubMed

    Yang, Yu-Lin; Liu, Yi-Shiuan; Chuang, Lea-Yea; Guh, Jinn-Yuh; Lee, Tao-Chen; Liao, Tung-Nan; Hung, Min-Yuan; Chiang, Tai-An

    2009-02-01

    TGF-beta is a therapeutic target for renal fibrosis. Scientists have long sought ways to antagonize TGF-beta to ameliorate diabetic nephropathy. Bone morphogenetic protein (BMP-2) is a member of the TGF-beta superfamily and is highly regulated in the kidney. Thus, the role of BMP-2 was investigated in NRK-49F cells (rat fibroblasts). We showed that TGF-beta1 induces an increase in fibronectin. Treatment with exogenous BMP-2 or pCMV-BMP-2 significantly reversed the TGF-beta1-induced increase in fibronectin concomitant with a significant decrease in type I TGF-beta receptors (TGF-beta RI). Moreover, BMP-2 significantly shortened the half-life of TGF-beta RI. These results are related to proteosomal activation because MG132, a proteasome inhibitor, abolished BMP-2-mediated degradation of TGF-beta RI. This was confirmed because BMP-2 time course dependently enhanced the ubiquitination level of TGF-beta RI. In addition, Smads would seem to be involved in the interaction of BMP-2 and TGF-beta. We demonstrated that BMP-2 significantly reversed the TGF-beta1-induced increase in pSmad2/3 and reversed the TGF-beta1-induced decrease in inhibitory Smad7. Most importantly, Smad7 small interfering RNA abolished the BMP-2-induced decrease in TGF-beta RI. We evaluated the clinical efficacy of BMP-2 using unilateral ureteral obstruction rats. BMP-2 was administered ip for 7 d. In the unilateral ureteral obstruction kidneys, interstitial fibrosis was prominent. However, treatment with BMP-2 dramatically reduced Masson's trichrome staining (collagen) in the interstitial and tubular areas of the kidneys concomitantly with a reduction in TGF-beta RI. These results suggest that BMP-2 acts as a novel fibrosis antagonizing cytokine partly by down-regulating TGF-beta RI and Smads.

  16. Adenosine A(2A)-cannabinoid CB(1) receptor interaction: an integrative mechanism in striatal glutamatergic neurotransmission.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Popoli, Patrizia

    2012-10-02

    The striatum is a subcortical area involved in sensorimotor, cognitive and emotional processes. Adenosine A(2A) receptors (A(2A)Rs) are highly expressed in the striatum, and their ability to establish functional and molecular interactions with many other receptors attributes to a pivotal role in the modulation and integration of striatal neurotransmission. This review will focus on the interaction between A(2A)Rs and cannabinoid CB(1) receptors (CB(1)Rs), taking it as a paradigmatic example of synaptic integration. Indeed, A(2A)Rs can exert an opposite (permissive vs. inhibitory) influence on CB1-dependent synaptic effect. These apparently irreconcilable functions could depend on a different role of pre- vs. postsynaptic A(2A)Rs, on their interaction with other receptors (namely adenosine A(1), metabotropic glutamate 5 and dopamine D2 receptors), and on whether A(2A)Rs form or not heteromers with CB(1)Rs. Besides providing a good example of the intricate pattern of events taking place in striatal synapses, the A(2A)/CB(1)R interaction proves very informative to understand the physiology of the basal ganglia and the mechanisms of related diseases. This article is part of a Special Issue entitled: Brain Integration.

  17. Competitive antagonism between the nicotinic allosteric potentiating ligand galantamine and kynurenic acid at alpha7* nicotinic receptors.

    PubMed

    Lopes, Cristiane; Pereira, Edna F R; Wu, Hui-Qiu; Purushottamachar, Puranik; Njar, Vincent; Schwarcz, Robert; Albuquerque, Edson X

    2007-07-01

    Galantamine, a drug used to treat Alzheimer's disease, is a nicotinic allosteric potentiating ligand, and kynurenic acid (KYNA), a neuroactive metabolite of the kynurenine pathway, is an endogenous noncompetitive inhibitor of alpha7* nicotinic receptors (nAChRs) [the asterisk next to the nAChR subunit is intended to indicate that the exact subunit composition of the receptor is not known (Pharmacol Rev 51:397-401, 1999)]. Here, possible interactions between KYNA and galantamine at alpha7* nAChRs were examined in vitro and in vivo. In the presence of tetrodotoxin (TTX), approximately 85% of cultured hippocampal neurons responded to choline (0.3-30 mM) with alpha7* nAChR-subserved whole-cell (type IA) currents. In the absence of TTX and in the presence of glutamate receptor antagonists, choline triggered inhibitory postsynaptic currents (IPSCs) by activating alpha7* nAChRs on GABAergic neurons synapsing onto the neurons under study. Galantamine (1-10 microM) potentiated, whereas KYNA (10 nM-1 mM) inhibited, choline-triggered responses. Galantamine (1 microM), applied before KYNA, shifted to the right the concentration-response relationship for KYNA to inhibit type IA currents, increasing the IC(50) of KYNA from 13.9 +/- 8.3 to 271 +/- 131 microM. Galantamine, applied before or after KYNA, antagonized inhibition of choline-triggered IPSCs by KYNA. Local infusion of KYNA (100 nM) in the rat striatum reduced extracellular dopamine levels in vivo. This effect resulted from alpha7* nAChR inhibition and was blocked by coapplied galantamine (1-5 microM). It is concluded that galantamine competitively antagonizes the actions of KYNA on alpha7* nAChRs. Reducing alpha7* nAChR inhibition by endogenous KYNA may be an important determinant of the effectiveness of galantamine in neurological and psychiatric disorders associated with decreased alpha7* nAChR activity in the brain.

  18. Platelet-activating factor receptor antagonism targets neuroinflammation in experimental epilepsy

    PubMed Central

    Musto, Alberto E.; Samii, Mark

    2010-01-01

    Purpose Temporal lobe epilepsy is associated with the inflammatory process related to the basic mechanisms that lead to seizure susceptibility and brain damage. Platelet-activating factor (PAF), a potent, short-lived phospholipid mediator of inflammation participates in physiological signaling in the brain. However, after seizures PAF accumulates in the brain and activates intracellular signaling related with inflammation-mediated excitotoxicity and hippocampal hyperexcitability. The objective of this study is to evaluate the effect of PAF antagonism on hippocampal hyperexcitability, seizure susceptibility and neuroprotection using the kindling paradigm and pilocarpine-induced seizure damage models. Methods The PAF antagonist, LAU-0901 (60 mg/kg, i.p.), or vehicle was administrated each day of kindling or daily during the four weeks after status epilepticus (SE). We analyzed seizure severity, electrical activity, cellular damage and inflammation in the hippocampi of both treated groups. Results LAU-0901 limits the progression of kindling and attenuates seizure susceptibility one week after the kindling procedure. Also, under the seizure-damage conditions studied here, we observed that LAU-0901 induces hippocampal neuroprotection and limits somatostatin interneuronal cell loss and inflammation. Discussion Our results indicate that modulation of PAF over-activity attenuates seizure susceptibility, hippocampal hyperexcitability and neuroinflammation. PMID:21204830

  19. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans.

    PubMed

    Cheng, Kang; Wu, Tsuei-Ju; Wu, Kenneth K; Sturino, Claudio; Metters, Kathleen; Gottesdiener, Keith; Wright, Samuel D; Wang, Zhaoyin; O'Neill, Gary; Lai, Eseng; Waters, M Gerard

    2006-04-25

    Nicotinic acid (NA) is commonly used to treat dyslipidemia, but it elicits an adverse effect, termed flushing, which consists of cutaneous vasodilation with associated discomfort. An animal model of NA-induced flushing has been established in mice. As in humans, NA stimulated vasodilation in a dose-dependent manner, was associated with an increase of the vasodilatory prostaglandin (PG) D2 in plasma and could be blocked by pretreatment with aspirin. Two PGD2 receptors have been identified: PGD2 receptor 1 (DP1, also called DP) and PGD2 receptor 2 (DP2, sometimes termed CRTH2). DP2 does not mediate NA-induced vasodilation; the DP2-specific agonist DK-PGD2 (13,14-dihydro-15-keto-PGD2) did not induce cutaneous vasodilation, and DP2-/- mice had a normal vasodilatory response to NA. By contrast, BW245C, a DP1-selective agonist, induced vasodilation in mice, and MK-0524, a DP1-selective antagonist, blocked both PGD2- and NA-induced vasodilation. NA-induced vasodilation was also studied in DP1+/+, DP1+/-, and DP1-/- mice; although NA-induced vasodilation depended almost completely on DP1 in female mice, it depended only partially on DP1 in male mice. The residual NA-induced vasodilation in male DP-/- mice was aspirin-sensitive. Thus, in the mouse, DP1 appears to be an important component involved in NA-induced vasodilation, but other cyclooxygenase-dependent mechanisms also may be involved. A clinical study in healthy men and women demonstrated that treatment with MK-0524 reduced the symptoms of flushing and the increase in skin perfusion after the administration of NA. These studies suggest that DP1 receptor antagonism may be an effective means to suppress NA-induced flushing in humans.

  20. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans

    PubMed Central

    Cheng, Kang; Wu, Tsuei-Ju; Wu, Kenneth K.; Sturino, Claudio; Metters, Kathleen; Gottesdiener, Keith; Wright, Samuel D.; Wang, Zhaoyin; O’Neill, Gary; Lai, Eseng; Waters, M. Gerard

    2006-01-01

    Nicotinic acid (NA) is commonly used to treat dyslipidemia, but it elicits an adverse effect, termed flushing, which consists of cutaneous vasodilation with associated discomfort. An animal model of NA-induced flushing has been established in mice. As in humans, NA stimulated vasodilation in a dose-dependent manner, was associated with an increase of the vasodilatory prostaglandin (PG) D2 in plasma and could be blocked by pretreatment with aspirin. Two PGD2 receptors have been identified: PGD2 receptor 1 (DP1, also called DP) and PGD2 receptor 2 (DP2, sometimes termed CRTH2). DP2 does not mediate NA-induced vasodilation; the DP2-specific agonist DK-PGD2 (13,14-dihydro-15-keto-PGD2) did not induce cutaneous vasodilation, and DP2−/− mice had a normal vasodilatory response to NA. By contrast, BW245C, a DP1-selective agonist, induced vasodilation in mice, and MK-0524, a DP1-selective antagonist, blocked both PGD2- and NA-induced vasodilation. NA-induced vasodilation was also studied in DP1+/+, DP1+/−, and DP1−/− mice; although NA-induced vasodilation depended almost completely on DP1 in female mice, it depended only partially on DP1 in male mice. The residual NA-induced vasodilation in male DP−/− mice was aspirin-sensitive. Thus, in the mouse, DP1 appears to be an important component involved in NA-induced vasodilation, but other cyclooxygenase-dependent mechanisms also may be involved. A clinical study in healthy men and women demonstrated that treatment with MK-0524 reduced the symptoms of flushing and the increase in skin perfusion after the administration of NA. These studies suggest that DP1 receptor antagonism may be an effective means to suppress NA-induced flushing in humans. PMID:16617107

  1. AT1 receptor antagonism before ischemia prevents the transition of acute kidney injury to chronic kidney disease.

    PubMed

    Rodríguez-Romo, Roxana; Benítez, Kenia; Barrera-Chimal, Jonatan; Pérez-Villalva, Rosalba; Gómez, Arturo; Aguilar-León, Diana; Rangel-Santiago, Jesús F; Huerta, Sara; Gamba, Gerardo; Uribe, Norma; Bobadilla, Norma A

    2016-02-01

    Despite clinical recovery of patients from an episode of acute kidney injury (AKI), progression to chronic kidney disease (CKD) is possible on long-term follow-up. However, mechanisms of this are poorly understood. Here, we determine whether activation of angiotensin-II type 1 receptors during AKI triggers maladaptive mechanisms that lead to CKD. Nine months after AKI, male Wistar rats develop CKD characterized by renal dysfunction, proteinuria, renal hypertrophy, glomerulosclerosis, tubular atrophy, and tubulointerstitial fibrosis. Renal injury was associated with increased oxidative stress, inflammation, α-smooth muscle actin expression, and activation of transforming growth factor β; the latter mainly found in epithelial cells. Although administration of losartan prior to the initial ischemic insult did not prevent or reduce AKI severity, it effectively prevented eventual CKD. Three days after AKI, renal dysfunction, tubular structural injury, and elevation of urinary biomarkers were present. While the losartan group had similar early renal injury, renal perfusion was completely restored as early as day 3 postischemia. Further, there was increased vascular endothelial growth factor expression and an early activation of hypoxia-inducible factor 1 α, a transcription factor that regulates expression of many genes that help reduce renal injury. Thus, AT1 receptor antagonism prior to ischemia prevented AKI to CKD transition by improving early renal blood flow recovery, lesser inflammation, and increased hypoxia-inducible factor 1 α activity.

  2. Cimetidine-associated patent ductus arteriosus is mediated via a cytochrome P450 mechanism independent of H2 receptor antagonism

    PubMed Central

    Cotton, Robert B.; Shah, Lisa P.; Poole, Stanley D.; Ehinger, Noah J.; Brown, Naoko; Shelton, Elaine L.; Slaughter, James C.; Baldwin, H. Scott; Paria, Bibhash C.; Reese, Jeff

    2013-01-01

    Persistent patency of the ductus arteriosus (PDA) is a common problem in preterm infants. The antacid cimetidine is a potent antagonist of the H2 histamine receptor but also inhibits certain cytochrome P450 enzymes (CYPs), which may affect DA patency. We examined whether cimetidine contributes to PDA and is mediated by CYP inhibition rather than H2 blockade. Analysis of a clinical trial to prevent lung injury in premature infants revealed a significant association between cimetidine treatment and PDA. Cimetidine and ranitidine, both CYP inhibitors as well as H2 blockers, caused relaxation of the term and preterm mouse DA. CYP enzymes that are inhibited by cimetidine were expressed in DA subendothelial smooth muscle. The selective CYP3A inhibitor ketoconazole induced greater DA relaxation than cimetidine, whereas famotidine and other H2 antagonists with less CYP inhibitory effects caused less dilation. Histamine receptors were developmentally regulated and localized in DA smooth muscle. However, cimetidine caused DA relaxation in histamine-deficient mice, consistent with CYP inhibition, not H2 antagonism, as the mechanism for PDA. Oxygen-induced DA constriction was inhibited by both cimetidine and famotidine. These studies show that antacids and other compounds with CYP inhibitory properties pose a significant and previously unrecognized risk for PDA in critically ill newborn infants. PMID:23454087

  3. Cimetidine-associated patent ductus arteriosus is mediated via a cytochrome P450 mechanism independent of H2 receptor antagonism.

    PubMed

    Cotton, Robert B; Shah, Lisa P; Poole, Stanley D; Ehinger, Noah J; Brown, Naoko; Shelton, Elaine L; Slaughter, James C; Baldwin, H Scott; Paria, Bibhash C; Reese, Jeff

    2013-06-01

    Persistent patency of the ductus arteriosus (PDA) is a common problem in preterm infants. The antacid cimetidine is a potent antagonist of the H2 histamine receptor but it also inhibits certain cytochrome P450 enzymes (CYPs), which may affect DA patency. We examined whether cimetidine contributes to PDA and is mediated by CYP inhibition rather than H2 blockade. Analysis of a clinical trial to prevent lung injury in premature infants revealed a significant association between cimetidine treatment and PDA. Cimetidine and ranitidine, both CYP inhibitors as well as H2 blockers, caused relaxation of the term and preterm mouse DA. CYP enzymes that are inhibited by cimetidine were expressed in DA subendothelial smooth muscle. The selective CYP3A inhibitor ketoconazole induced greater DA relaxation than cimetidine, whereas famotidine and other H2 antagonists with less CYP inhibitory effects caused less dilation. Histamine receptors were developmentally regulated and localized in DA smooth muscle. However, cimetidine caused DA relaxation in histamine-deficient mice, consistent with CYP inhibition, not H2 antagonism, as the mechanism for PDA. Oxygen-induced DA constriction was inhibited by both cimetidine and famotidine. These studies show that antacids and other compounds with CYP inhibitory properties pose a significant and previously unrecognized risk for PDA in critically ill newborn infants.

  4. Histamine H2 receptor antagonism by T-593: studies on cAMP generation in Hepa cells expressing histamine H2 receptor.

    PubMed

    Tashiro, T; Ono, K; Watanabe, T; Inoie, M; Arai, H; Kimura, S; Kurokawa, K

    1999-07-01

    Histamine H2 receptor antagonism by T-593 was investigated in Hepa cells expressing canine histamine H2 receptors. T-593 inhibited generation of cAMP in Hepa cells stimulated by 10(-5) mol/l histamine with an IC50 value of 2.3 x 10(-6) mol/l, (S)-(-)-T-593, one of the enantiomers comprising racemic T-593, inhibited cAMP generation with an IC50 value of 6.1 x 10(-7) mol/l. On the other hand, the other enantiomer (R)-(+)-T-593 exhibited only a negligible effect. Incubation of the cell with (S)-(-)-T-593 for 60 min depressed the maximal response of the concentration-response curve of histamine with a nonparallel rightward shift. The slope of a Schild plot was 1.27. In contrast, (S)-(-)-T-593 caused a parallel rightward shift of the curve, with a Schild plot slope that did not significantly differ from unity, by treating the cells for 15 min. The H2 receptor-blocking action of (S)-(-)-T-593 remained almost unaffected after washing out the drug, whereas the effect of ranitidine was reversible after washing. These results suggest that T-593 possesses a time-dependent insurmountable antagonistic action against histamine H2 receptor. T-593 may interact with the histamine H2 receptor molecule in a slowly associable and dissociable manner.

  5. Impact of Apparent Antagonism of Estrogen Receptor β by Fulvestrant on Anticancer Activity of 2-Methoxyestradiol.

    PubMed

    Gorska, Magdalena; Wyszkowska, Roksana Maja; Kuban-Jankowska, Alicja; Wozniak, Michal

    2016-05-01

    Osteosarcoma is one of the most malignant bone tumors of childhood and adolescence. Interestingly, the presence of estrogen receptors α and β has been reported in human bone cells, including osteosarcoma. Thus, inhibitors of estrogens such as fulvestrant, are considered candidates for novel endocrine therapy in treatment of osteosarcoma. Another anticancer agent that seems to be very effective in treatment of osteosarcoma is a derivative of 17β-estradiol, 2-methoxyestradiol. The aim of this study was to determine the anticancer activities of pure anti-estrogen, fulvestrant and combined treatment of fulvestrant and 2-methoxyestradiol towards highly metastatic osteosarcoma 143B cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used in order to determine the antiproliferative potential of the compounds, and western blotting for estrogen receptors α and β. Flow cytometry was used in order to determine induction of cell death, cell-cycle arrest, mitochondrial depolarization, and DNA damage. Herein, we showed that fulvestrant has anticancer activity only at high concentrations. We were able to find and expression of estrogen receptor β, while we did not detect estrogen receptor α in osteosarcoma 143B cells. Moreover, fulvestrant down-regulated the expression of estrogen receptor β, and this effect was reversed by 2-methoxyestradiol. Thus, the obtained data suggest that 2-methoxyestradiol may exert part of its anticancer activity through modulation of expression of estrogen receptor β.

  6. Characterization of [125I]ZM 241385 binding to adenosine A2A receptors in the pineal of sheep brain.

    PubMed

    Yan, X; Koos, B J; Kruger, L; Linden, J; Murray, T F

    2006-06-22

    Adenosine is a ubiquitous neuromodulator and homeostatic regulator that exerts its physiologic actions through activation of A(1), A(2A), A(2B) and A(3) adenosine receptor subtypes. In the central nervous system, adenosine's action in neurons is manifested in its modulation of tonic inhibitory control. Adenosine released in the brain during hypoxia has critical depressant effects on breathing in fetal and newborn mammals, an action suggested to be mediated by A(2A) receptors in the posteromedial thalamus. In an effort to more accurately define the spatial distribution of adenosine A(2A) receptors in fetal sheep diencephalon, we have used a receptor autoradiographic technique utilizing an iodinated radioligand [(125)I]ZM 241385, which has greater sensitivity and resolution than the tritiated compound. The distribution of ligand binding sites in the fetal sheep diencephalon indicated that the highest levels of binding were in select thalamic nuclei, including those implicated in hypoxic depression of fetal breathing, and the pineal. Given the high density of labeled A(2A) receptors in the pineal, these sites were characterized more fully in homogenate radioligand binding assays. These data indicate that [(125)I]ZM 241385 binding sites display a pharmacological signature consistent with that of adenosine A(2A) receptors and are expressed at similar levels in fetal, lamb and adult ovine brain. The adenosine A(2A) receptor pharmacologic signature of the [(125)I]ZM 241385 binding site in pineal cell membranes generalized to the site characterized in membranes derived from other portions of the lamb thalamus, including the sector involved in hypoxic inhibition of fetal breathing. These results have important implications for the functional roles of adenosine A(2A) receptors in the thalamus and pineal of sheep brain.

  7. Macrophage A2A Adenosinergic Receptor Modulates Oxygen-Induced Augmentation of Murine Lung Injury

    PubMed Central

    D’Alessio, Franco R.; Eto, Yoshiki; Chau, Eric; Avalos, Claudia; Waickman, Adam T.; Garibaldi, Brian T.; Mock, Jason R.; Files, Daniel C.; Sidhaye, Venkataramana; Polotsky, Vsevolod Y.; Powell, Jonathan; Horton, Maureen; King, Landon S.

    2013-01-01

    Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality. Exacerbating factors increasing the risk of ARDS remain unknown. Supplemental oxygen is often necessary in both mild and severe lung disease. The potential effects of supplemental oxygen may include augmentation of lung inflammation by inhibiting anti-inflammatory pathways in alveolar macrophages. We sought to determine oxygen-derived effects on the anti-inflammatory A2A adenosinergic (ADORA2A) receptor in macrophages, and the role of the ADORA2A receptor in lung injury. Wild-type (WT) and ADORA2A−/− mice received intratracheal lipopolysaccharide (IT LPS), followed 12 hours later by continuous exposure to 21% oxygen (control mice) or 60% oxygen for 1 to 3 days. We measured the phenotypic endpoints of lung injury and the alveolar macrophage inflammatory state. We tested an ADORA2A-specific agonist, CGS-21680 hydrochloride, in LPS plus oxygen-exposed WT and ADORA2A−/− mice. We determined the specific effects of myeloid ADORA2A, using chimera experiments. Compared with WT mice, ADORA2A−/− mice exposed to IT LPS and 60% oxygen demonstrated significantly more histologic lung injury, alveolar neutrophils, and protein. Macrophages from ADORA2A−/− mice exposed to LPS plus oxygen expressed higher concentrations of proinflammatory cytokines and cosignaling molecules. CGS-21680 prevented the oxygen-induced augmentation of lung injury after LPS only in WT mice. Chimera experiments demonstrated that the transfer of WT but not ADORA2A−/− bone marrow cells into irradiated ADORA2A−/− mice reduced lung injury after LPS plus oxygen, demonstrating myeloid ADORA2A protection. ADORA2A is protective against lung injury after LPS and oxygen. Oxygen after LPS increases macrophage activation to augment lung injury by inhibiting the ADORA2A pathway. PMID:23349051

  8. The Immunosuppressive Role of Adenosine A2A Receptors in Ischemia Reperfusion Injury and Islet Transplantation

    PubMed Central

    Chhabra, Preeti; Linden, Joel; Lobo, Peter; Okusa, Mark Douglas; Brayman, Kenneth Lewis

    2014-01-01

    Activation of adenosine A2A receptors (A2AR) reduces inflammation by generally inhibiting the activation of pro-inflammatory cells, decreasing endothelial adhesion molecule expression and reducing the release of proinflammatory cytokine mediators. Numerous preclinical studies using selective A2AR agonists, antagonists, A2AR knockout as well as chimeric mice have suggested the therapeutic potential of A2AR agonists for the treatment of ischemia reperfusion injury (IRI) and autoimmune diseases. This review summarizes the immunosuppressive actions of A2AR agonists in murine IRI models of liver, kidney, heart, lung and CNS, and gives details on the cellular effects of A2AR activation in neutrophils, macrophages, dendritic cells, natural killer cells, NKT cells, T effector cells and CD4+CD25+FoxP3+ T regulatory cells. This is discussed in the context of cytokine mediators involved in inflammatory cascades. Whilst the role of adenosine receptor agonists in various models of autoimmune disease has been well-documented, very little information is available regarding the role of A2AR activation in type 1 diabetes mellitus (T1DM). An overview of the pathogenesis of T1DM as well as early islet graft rejection in the immediate peri-transplantation period offers insight regarding the use of A2AR agonists as a beneficial intervention in clinical islet transplantation, promoting islet graft survival, minimizing early islet loss and reducing the number of islets required for successful transplantation, thereby increasing the availability of this procedure to a greater number of recipients. In summary, the use of A2AR agonists as a clinical intervention in IRI and as an adjunct to clinical immunesuppressive regimen in islet transplantation is highlighted. PMID:22934547

  9. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  10. Synthesis of [1,2,4]triazolo[1,5-a]pyrazines as adenosine A2A receptor antagonists.

    PubMed

    Dowling, James E; Vessels, Jeffrey T; Haque, Serajul; Chang, He Xi; van Vloten, Kurt; Kumaravel, Gnanasambandam; Engber, Thomas; Jin, Xiaowei; Phadke, Deepali; Wang, Joy; Ayyub, Eman; Petter, Russell C

    2005-11-01

    Potent and selective antagonists of the adenosine A2A receptor often contain a nitrogen-rich fused-ring heterocyclic core. Replacement of the core with an isomeric ring system has previously been shown to improve target affinity, selectivity, and in vivo activity. This paper describes the preparation, by a novel route, of A2A receptor antagonists containing the [1,2,4]triazolo[1,5-a]pyrazine nucleus, which is isomeric with the [1,2,4]triazolo[1,5-c]pyrimidine core of a series of known A2A antagonists with in vivo activity in animal models of Parkinson's disease.

  11. Visceral hyperalgesia caused by peptide YY deletion and Y2 receptor antagonism

    PubMed Central

    Hassan, Ahmed M.; Jain, Piyush; Mayerhofer, Raphaela; Fröhlich, Esther E.; Farzi, Aitak; Reichmann, Florian; Herzog, Herbert; Holzer, Peter

    2017-01-01

    Altered levels of colonic peptide YY (PYY) have been reported in patients suffering from functional and inflammatory bowel disorders. While the involvement of neuropeptide Y (NPY) and Y receptors in the regulation of nociception is well established, the physiological role of PYY in somatic and visceral pain is poorly understood. In this work, the role of PYY in pain sensitivity was evaluated using PYY knockout (PYY(−/−)) mice and Y2 receptor ligands. PYY(−/−) mice were more sensitive to somatic thermal pain compared to wild type (WT) mice. Visceral pain was assessed by evaluating pain-related behaviors, mouse grimace scale (MGS) and referred hyperalgesia after intrarectal administration of allyl isothiocyanate (AITC, 1 or 2%) or its vehicle, peanut oil. The pain-related behaviors induced by AITC were significantly exaggerated by PYY deletion, whereas the MGS readout and the referred hyperalgesia were not significantly affected. The Y2 receptor antagonist, BII0246, increased pain-related behaviors in response to intrarectal AITC compared to vehicle treatment while the Y2 receptor agonist, PYY(3–36), did not have a significant effect. These results indicate that endogenous PYY has a hypoalgesic effect on somatic thermal and visceral chemical pain. The effect on visceral pain seems to be mediated by peripheral Y2 receptors. PMID:28106168

  12. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  13. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  14. An Update on Adenosine A2A-Dopamine D2 receptor interactions. Implications for the Function of G Protein-Coupled Receptors

    PubMed Central

    Ferré, S.; Quiroz, C.; Woods, A. S.; Cunha, R.; Popoli, P.; Ciruela, F.; Lluis, C.; Franco, R.; Azdad, K.; Schiffmann, S. N.

    2008-01-01

    Adenosine A2A-dopamine D2 receptor interactions play a very important role in striatal function. A2A-D2 receptor interactions provide an example of the capabilities of information processing by just two different G protein-coupled receptors. Thus, there is evidence for the coexistence of two reciprocal antagonistic interactions between A2A and D2 receptors in the same neurons, the GABAergic enkephalinergic nens. An antagonistic A2A-D2 intramembrane receptor interaction, which depends on A2A-D2 receptor heteromerization and Gq/11-PLC signaling, modulates neuronal excitability and neurotransmitter release. On the other hand, an antagonistic A2A-D2 receptor interaction at the adenylyl-cyclase level, which depends on Gs/olf- and Gi/o- type V adenylyl-cyclase signaling, modulates protein phosphorylation and gene expression. Finally, under conditions of upregulation of an activator of G protein signaling (AGS3), such as during chronic treatment with addictive drugs, a synergistic A2A-D2 receptor interaction can also be demonstrated. AGS3 facilitates a synergistic interaction between Gs/olf- and Gi/o- coupled receptors on the activation of types II/IV adenylyl cyclase, leading to a paradoxical increase in protein phosphorylation and gene expression upon co-activation of A2A and D2 receptors. The analysis of A2-D2 receptor interactions will have implications for the pathophysiology and treatment of basal ganglia disorders and drug addiction. PMID:18537670

  15. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish.

    PubMed

    Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2015-04-01

    Imbalances in glutamatergic signaling have been proposed as the cause of several neurological disturbances. The use of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, to mimic features of these neurological disorders is effective both in mammals and in fish. However, the variability of the subunits comprising the NMDA receptor during development alters the pharmacokinetic properties of the receptor and leads to different responses to this drug. Here, we evaluated the locomotor response of zebrafish to MK-801 (1, 5, and 20 μM) through the development (30 days postfertilization [dpf] to 2 years postfertilization [ypf]). The NMDA receptor subunit gene expression was also analyzed through the development (7 dpf to 2 ypf). Zebrafish displayed an age-related response to MK-801 with a higher response at 60 and 120 dpf. The magnitude of hyperlocomotion promoted by MK-801 seems to be less powerful for zebrafish in relation to rodents. The verification of expression levels in zebrafish NMDA receptor subunits shows that NR1.1 had a slight reduction throughout the development, while the NR2 subunits, especially NR2A.2 and NR2C.1, vary their expression levels according to the stage of development. The time-specific locomotor response to MK-801 through the development could be a consequence of differential NMDA receptor subunit expression. This result of developmental response to MK-801 is a crucial component in the consolidation of zebrafish as a suitable model to study glutamatergic neurotransmission in early phases.

  16. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum.

    PubMed

    Tebano, Maria Teresa; Pintor, Annita; Frank, Claudio; Domenici, Maria Rosaria; Martire, Alberto; Pepponi, Rita; Potenza, Rosa Luisa; Grieco, Rosa; Popoli, Patrizia

    2004-07-01

    Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.

  17. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  18. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways.

    PubMed

    Gsandtner, Ingrid; Freissmuth, Michael

    2006-08-01

    G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some forms of schizophrenia; A(2A) receptor agonists are candidate drugs for the treatment of schizophrenic symptoms. It is of obvious interest to explore a possible link.

  19. Cholecystokinin receptor antagonism by peptidergic and non-peptidergic agents in rat pancreas.

    PubMed Central

    Dembinski, A; Jaworek, J; Konturek, P K; Konturek, S J; Warzecha, Z

    1989-01-01

    1. Graded doses of bombesin infused I.V. into conscious rats with chronic pancreatic fistulae induced a dose-dependent stimulation of protein secretion, similar to that obtained with caerulein. This stimulation does not appear to be mediated by cholecystokinin (CCK) receptors because peptidergic (CR-1409) and non-peptidergic (L-364718) CCK antagonists failed to affect protein secretion at a dose range which caused almost complete suppression of caerulein-induced pancreatic secretion. 2. Studies in vitro on isolated rat pancreatic acini revealed that caerulein, pentagastrin and bombesin all showed the same efficacy in their ability to stimulate amylase release. In contrast, CCK antagonists competitively inhibited amylase release induced by caerulein and pentagastrin but not by bombesin or urecholine, indicating that the latter two agents act directly on acinar cells via receptors which are separate from those involved in stimulation induced by caerulein and pentagastrin. 3. DNA synthesis, measured by the incorporation of [3H]thymidine into DNA, was significantly stimulated by caerulein, soybean trypsin inhibitor (FOY 305), pentagastrin and by bombesin in a dose-dependent manner. CCK receptor antagonists prevented stimulation of DNA synthesis induced by caerulein, FOY 305 and pentagastrin but not by bombesin. 4. This study indicates that bombesin strongly stimulates pancreatic enzyme secretion, with an efficacy similar to that of caerulein, and also exerts a potent growth-promoting action on the pancreas, both effects appearing to be mediated by mechanisms independent of the CCK receptors. PMID:2614728

  20. Glucocorticoid receptor antagonism disrupts the reconsolidation of social reward-related memories in rats.

    PubMed

    Achterberg, E J Marijke; Trezza, Viviana; Vanderschuren, Louk J M J

    2014-06-01

    Reconsolidation is the process whereby consolidated memories are destabilized upon retrieval and restabilized to persist for later use. Although the neurobiology of the reconsolidation of both appetitive and aversive memories has been intensively investigated, reconsolidation of memories of physiologically relevant social rewards has received little attention. Social play, the most characteristic social behaviour displayed by young mammals, is highly rewarding, illustrated by the fact that it can induce conditioned place preference (CPP). Here, we investigated the role of signalling mechanisms implicated in memory processes, including reconsolidation, namely glucocorticoid, mineralocorticoid, NMDA glutamatergic and CB1 cannabinoid receptors, in the reconsolidation of social play-induced CPP in rats. Systemic treatment with the glucocorticoid receptor antagonist mifepristone before, but not immediately after, retrieval disrupted the reconsolidation of social play-induced CPP. Mifepristone did not affect social play-induced CPP in the absence of memory retrieval. Treatment with the NMDA receptor antagonist MK-801 modestly affected the reconsolidation of social play-induced CPP. However, the reconsolidation of social play-induced CPP was not affected by treatment with the mineralocorticoid and CB1 cannabinoid receptor antagonists spironolactone and rimonabant, respectively. We conclude that glucocorticoid neurotransmission mediates the reconsolidation of social reward-related memories in rats. These data indicate that the neural mechanisms of the reconsolidation of social reward-related memories only partially overlap with those underlying the reconsolidation of other reward-related memories.

  1. Glucocorticoid receptor antagonism disrupts reconsolidation of social reward-related memories in rats

    PubMed Central

    Achterberg, E.J. Marijke; Trezza, Viviana; Vanderschuren, Louk J.M.J.

    2014-01-01

    Reconsolidation is the process whereby consolidated memories are destabilized upon retrieval and restabilized to persist for later use. Although the neurobiology of reconsolidation of both appetitive and aversive memories has been intensively investigated, reconsolidation of memories of physiologically relevant social rewards has received little attention. Social play, the most characteristic social behaviour displayed by young mammals, is highly rewarding, illustrated by the fact that it can induce conditioned place preference (CPP). Here, we investigated the role of signaling mechanisms implicated in memory processes including reconsolidation, i.e. glucocorticoid, mineralocorticoid, NMDA glutamatergic and CB1 cannabinoid receptors, in the reconsolidation of social play-induced CPP in rats. Systemic treatment with the glucocorticoid receptor antagonist mifepristone before, but not immediately after retrieval, disrupted the reconsolidation of social play-induced CPP. Mifepristone did not affect social play-induced CPP in the absence of memory retrieval. Treatment with the NMDA receptor antagonist MK-801 modestly affected reconsolidation of social play-induced CPP. However, reconsolidation of social play-induced CPP was not affected by treatment with the mineralocorticoid and CB1 cannabinoid receptor antagonists spironolactone and rimonabant, respectively. We conclude that glucocorticoid neurotransmission mediates the reconsolidation of social reward-related memories in rats. These data indicate that the neural mechanisms of the reconsolidation of social reward-related memories only partially overlap with those underlying reconsolidation of other reward-related memories. PMID:24776489

  2. Dorsal versus ventral hippocampal contributions to trace and contextual conditioning: differential effects of regionally selective NMDA receptor antagonism on acquisition and expression.

    PubMed

    Czerniawski, Jennifer; Ree, Fredrick; Chia, Chester; Otto, Tim

    2012-07-01

    The dorsal and ventral subregions of the hippocampus likely play dissociable roles in some forms of learning. For example, we have previously demonstrated that temporary inactivation of ventral, but not dorsal, hippocampus dramatically impaired the acquisition of trace fear conditioning, while temporary inactivation of dorsal, but not ventral, hippocampus impaired spatially guided reinforced alternation (Czerniawski et al. (2009) Hippocampus 19:20-32). Importantly, emerging data suggest that lesions, temporary inactivation, and NMDA receptor antagonism within these subregions can produce quite different patterns of behavioral effects when administered into the same region. Specifically, while neither lesions nor temporary inactivation of dorsal hippocampus impair the acquisition of trace fear conditioning, learning in this paradigm is severely impaired by pre-training administration of the NMDA receptor antagonist dl-2-phosphonovaleric acid (APV) in dorsal hippocampus; the effect of NMDA receptor antagonism within ventral hippocampus on the acquisition and expression of trace conditioning, or on learning in general, has not yet been systematically explored. The present study extends our previous work examining the differential effect of lesions or inactivation of the dorsal and ventral hippocampal subregions by systematically examining the effect of regionally selective pre-training or pre-testing administration of APV on the acquisition and expression of trace and contextual fear conditioning. The results of these studies demonstrate that while pre-training NMDA receptor antagonism within either the dorsal or ventral subregion of the hippocampus impaired the acquisition of both trace and contextual conditioning, pre-testing NMDA receptor antagonism within ventral, but not dorsal, hippocampus impaired the expression of previously-acquired trace and contextual fear conditioning. These data suggest that selectively manipulating the integrity of individual subregions

  3. Attenuation of cocaine and heroin seeking by μ-opioid receptor antagonism.

    PubMed

    Giuliano, Chiara; Robbins, Trevor W; Wille, David R; Bullmore, Edward T; Everitt, Barry J

    2013-05-01

    Evidence has implicated the endogenous opioids, in particular μ-opioid receptors, in emotional behavior and regulation of reward circuits, especially in the context of heroin addiction and hedonic responses to ingestive rewards. The μ-opioid receptor antagonist naltrexone (NTX) has been reported to be effective in preventing relapse to alcoholism and in reducing alcohol and cocaine craving during abstinence. The aim of the present experiments was to investigate the effects of a novel selective μ-opioid receptor antagonist GSK1521498 on cocaine and heroin seeking and the primary reinforcement of drug self-administration behavior. Rats were first trained to self-administer cocaine or heroin and then to seek the drugs over prolonged periods of time under a second-order schedule of reinforcement, in which responding is maintained by contingent presentation of a drug-associated conditioned reinforcer. On a stable baseline, animals were treated with either GSK1521498 (0.1, 1, 3 mg/kg; IP) or NTX (0.1, 1, 3 mg/kg; SC) before each test session. Cocaine seeking was dose-dependently decreased following GSK1521498 treatment. However, the same treatment had no effect on cocaine self-administration under a continuous reinforcement schedule. Treatment with NTX had a less pronounced but similar effect. GSK1521498, but not NTX, dose-dependently reduced heroin seeking both before and after infusion of the drug although both increased heroin self-administration under continuous reinforcement. These data suggest that GSK1521498, by reducing opioid receptor signaling at the μ-opioid receptor, may have therapeutic potential to reduce the propensity to seek cocaine or heroin and, additionally, to diminish the consequence of an initial relapse to heroin taking.

  4. Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors.

    PubMed

    Dias, Raquel B; Ribeiro, Joaquim A; Sebastião, Ana M

    2012-02-01

    Phosphorylation of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by Protein Kinase A (PKA) is known to regulate AMPA receptor (AMPAR) trafficking and stabilization at the postsynaptic membrane, which in turn is one of the key mechanisms by which synaptic transmission and plasticity are tuned. However, not much is known as to how Gs-coupled receptors contribute to endogenous PKA-mediated regulation of AMPA receptor function. Here we report that activation of the excitatory A(2A) adenosine receptor by 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, 1-30 nM) facilitates AMPA-evoked currents in CA1 pyramidal neurons, by a mechanism dependent on PKA activation, but not on protein synthesis. This modulation of AMPA currents was mimicked by forskolin (1 μM) and did not occur in stratum radiatum interneurons. Superfusion of the A(2A) receptor agonist also caused an increase in the amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as in the membrane levels of GluR1 subunits phosphorylated at the PKA site (Ser845). The impact of this increase on GluR1-containing AMPA receptor expression was evidenced by the potentiation of LTP at the CA3-CA1 synapse that followed brief activation of A(2A) receptors. We thus propose that in conditions of increased adenosine availability, A(2A) receptor activation is responsible for setting part of the endogenous GluR1 Ser-845 phosphorylation tonus and hence, the availability of the GluR1-containing AMPA receptor extrasynaptic pool for synaptic insertion and reinforcement of synaptic strength.

  5. A differential role for the adenosine A2A receptor in opiate reinforcement vs opiate-seeking behavior.

    PubMed

    Brown, Robyn Mary; Short, Jennifer Lynn; Cowen, Michael Scott; Ledent, Catherine; Lawrence, Andrew John

    2009-03-01

    The adenosine A(2A) receptor is specifically enriched in the medium spiny neurons that make up the 'indirect' output pathway from the ventral striatum, a structure known to have a crucial, integrative role in processes such as reward, motivation, and drug-seeking behavior. In the present study we investigated the impact of adenosine A(2A) receptor deletion on behavioral responses to morphine in a number of reward-related paradigms. The acute, rewarding effects of morphine were evaluated using the conditioned place preference paradigm. Operant self-administration of morphine on both fixed and progressive ratio schedules as well as cue-induced drug-seeking was assessed. In addition, the acute locomotor response to morphine as well as sensitization to morphine was evaluated. Decreased morphine self-administration and breakpoint in A(2A) knockout mice was observed. These data support a decrease in motivation to consume the drug, perhaps reflecting diminished rewarding effects of morphine in A(2A) knockout mice. In support of this finding, a place preference to morphine was not observed in A(2A) knockout mice but was present in wild-type mice. In contrast, robust cue-induced morphine-seeking behavior was exhibited by both A(2A) knockout and wild-type mice after a period of withdrawal. The acute locomotor response to morphine in the A(2A) knockout was similar to wild-type mice, yet A(2A) knockout mice did not display tolerance to chronic morphine under the present paradigm. Both genotypes display locomotor sensitization to morphine, implying a lack of a role for the A(2A) receptor in the drug-induced plasticity necessary for the development or expression of sensitization. Collectively, these data suggest a differential role for adenosine A(2A) receptors in opiate reinforcement compared to opiate-seeking.

  6. Selective A2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats.

    PubMed

    Bortolatto, Cristiani F; Reis, Angélica S; Pinz, Mikaela P; Voss, Guilherme T; Oliveira, Renata L; Vogt, Ane G; Roman, Silvane; Jesse, Cristiano R; Luchese, Cristiane; Wilhelm, Ethel A

    2017-08-09

    The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.

  7. A2A receptor antagonists do not induce dyskinesias in drug-naive or L-dopa sensitized rats.

    PubMed

    Jones, N; Bleickardt, C; Mullins, D; Parker, E; Hodgson, R

    2013-09-01

    L-dopa, the precursor to dopamine, is currently the gold standard treatment for Parkinson's disease (PD). However, chronic exposure is associated with L-dopa-induced dyskinesias (LIDs), a serious side effect characterized by involuntary movements. Adenosine A2A receptor antagonists have been studied as a novel non-dopaminergic PD treatment. Because A2A receptor antagonists do not act on dopamine receptors, it has been hypothesized that they will not induce dyskinesias characteristic of L-dopa. To test this hypothesis in a rodent model, the A2A receptor antagonists SCH 412348 (3 mg/kg), vipadenant (10 mg/kg), caffeine (30 mg/kg), or istradefylline (3 mg/kg) were chronically (19-22 days) administered to Sprague Dawley rats, and dyskinetic behaviors were scored across this chronic dosing paradigm. Unlike L-dopa, there was no evidence of dyskinetic activity resulting from any of the four A2A receptor antagonists tested. When delivered to animals previously sensitized with L-dopa (6 mg/kg), SCH 412348, vipadenant, caffeine or istradefylline treatment produced no dyskinesias. When administered in combination with L-dopa (6 mg/kg), SCH 412348 (3 mg/kg) neither exacerbated nor prevented the induction of LIDs over the course of 19 days of treatment. Collectively, our data indicate that A2A receptor antagonists are likely to have a reduced dyskinetic liability relative to L-dopa but do not block dyskinesias when coadministered with L-dopa. Clinical studies are required to fully understand the dyskinesia profiles of A2A receptor antagonists.

  8. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity

    PubMed Central

    Gross, Noah B.; Duncker, Patrick C.; Marshall, John F.

    2011-01-01

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce non-exocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists’ effects has not been determined. Here, we applied either the NMDA receptor antagonist, (DL)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH, and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions one week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement

  9. CB1 receptor antagonism/inverse agonism increases motor system excitability in humans.

    PubMed

    Oliviero, A; Arevalo-Martin, A; Rotondi, M; García-Ovejero, D; Mordillo-Mateos, L; Lozano-Sicilia, A; Panyavin, I; Chiovato, L; Aguilar, J; Foffani, G; Di Lazzaro, V; Molina-Holgado, E

    2012-01-01

    CB1 receptor is highly expressed in cerebral structures related to motor control, such as motor cortex, basal ganglia and cerebellum. In the spinal cord, the expression of CB1 receptors has also been observed in ventral motor neurons, interneurons and primary afferents, i.e., in the cells that may be part of the circuits involved in motor control. It is known that the antagonist/inverse agonist of CB1 receptors Rimonabant penetrates the blood-brain barrier and produces a broad range of central psychoactive effects in humans. Based on the occurrence of central effects in humans treated with Rimonabant and on the location of CB1 receptors, we hypothesized that the application of Rimonabant can also affect the motor system. We tested the effects of a single dose of 20mg of Rimonabant on the excitability of motor cortex and of spinal motor neurons in order to detect a possible drug action on motor system at cortical and spinal levels. For this purpose we use classical protocols of transcranial magnetic and electrical stimulation (TMS and TES). Single and paired pulse TMS and TES were used to assess a number of parameters of cortical inhibition and cortical excitability as well as of the excitability of spinal motor neurons. We demonstrated that a single oral dose of 20mg of Rimonabant can increase motor system excitability at cortical and spinal levels. This opens new avenues to test the CB1R antagonists/inverse agonists for the treatment of a number of neurological dysfunctions in which can be useful to increase the excitability levels of motor system. Virtually all the disorders characterized by a reduced output of the motor cortex can be included in the list of the disorders that can be treated using CB1 antagonists/reverse agonists (e.g. stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, fatigue syndromes, parkinsonisms, etc.). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain.

    PubMed

    Mao, Li-Min; Wang, Henry H; Wang, John Q

    2016-12-28

    Acetylcholine (ACh) is a key transmitter in the mesocorticolimbic circuit. By interacting with muscarinic ACh receptors (mAChR) enriched in the circuit, ACh actively regulates various neuronal and synaptic activities. The extracellular signal-regulated kinase (ERK) is one of members of the mitogen-activated protein kinase family and is subject to the regulation by dopamine receptors, although the regulation of ERKs by limbic mAChRs is poorly understood. In this study, we investigated the role of mAChRs in the regulation of ERK phosphorylation (activation) in the mesocorticolimbic system of adult rat brains in vivo. We targeted a sub-pool of ERKs at synaptic sites. We found that a systemic injection of the mAChR antagonist scopolamine increased phosphorylation of synaptic ERKs in the striatum (caudate putamen and nucleus accumbens) and medial prefrontal cortex (mPFC). Increases in ERK phosphorylation in both forebrain regions were rapid and transient. Notably, pretreatment with a dopamine D1 receptor (D1R) antagonist SCH23390 blocked the scopolamine-stimulated ERK phosphorylation in these brain regions, while a dopamine D2 receptor antagonist eticlopride did not. Scopolamine and SCH23390 did not change the amount of total ERK proteins. These results demonstrate that mAChRs inhibit synaptic ERK phosphorylation in striatal and mPFC neurons under normal conditions. Blockade of this inhibitory mAChR tone leads to the upregulation of ERK phosphorylation likely through a mechanism involving the level of D1R activity.

  11. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease

    PubMed Central

    Takahashi, Hiroto; Xia, Peng; Cui, Jiankun; Talantova, Maria; Bodhinathan, Karthik; Li, Wenjun; Holland, Emily A.; Tong, Gary; Piña-Crespo, Juan; Zhang, Dongxian; Nakanishi, Nobuki; Larrick, James W.; McKercher, Scott R.; Nakamura, Tomohiro; Wang, Yuqiang; Lipton, Stuart A.

    2015-01-01

    Stroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in ‘Big Pharma,’ ‘undruggable’ for this indication. Here, we describe novel NitroMemantine drugs, comprising an adamantane moiety that binds in the NMDAR-associated ion channel that is used to target a nitro group to redox-mediated regulatory sites on the receptor. The NitroMemantines are both well tolerated and effective against cerebral infarction in rodent models via a dual allosteric mechanism of open-channel block and NO/redox modulation of the receptor. Targeted S-nitrosylation of NMDARs by NitroMemantine is potentiated by hypoxia and thereby directed at ischemic neurons. Allosteric approaches to tune NMDAR activity may hold therapeutic potential for cerebrovascular disorders. PMID:26477507

  12. Conotoxin αD-GeXXA utilizes a novel strategy to antagonize nicotinic acetylcholine receptors.

    PubMed

    Xu, Shaoqiong; Zhang, Tianlong; Kompella, Shiva N; Yan, Mengdi; Lu, Aiping; Wang, Yanfang; Shao, Xiaoxia; Chi, Chengwu; Adams, David J; Ding, Jianping; Wang, Chunguang

    2015-09-23

    Nicotinic acetylcholine receptors (nAChRs) play essential roles in transmitting acetylcholine-mediated neural signals across synapses and neuromuscular junctions, and are also closely linked to various diseases and clinical conditions. Therefore, novel nAChR-specific compounds have great potential for both neuroscience research and clinical applications. Conotoxins, the peptide neurotoxins produced by cone snails, are a rich reservoir of novel ligands that target receptors, ion channels and transporters in the nervous system. From the venom of Conus generalis, we identified a novel dimeric nAChR-inhibiting αD-conotoxin GeXXA. By solving the crystal structure and performing structure-guided dissection of this toxin, we demonstrated that the monomeric C-terminal domain of αD-GeXXA, GeXXA-CTD, retains inhibitory activity against the α9α10 nAChR subtype. Furthermore, we identified that His7 of the rat α10 nAChR subunit determines the species preference of αD-GeXXA, and is probably part of the binding site of this toxin. These results together suggest that αD-GeXXA cooperatively binds to two inter-subunit interfaces on the top surface of nAChR, thus allosterically disturbing the opening of the receptor. The novel antagonistic mechanism of αD-GeXXA via a new binding site on nAChRs provides a valuable basis for the rational design of new nAChR-targeting compounds.

  13. Re-Epithelialization of Pathological Cutaneous Wounds Is Improved by Local Mineralocorticoid Receptor Antagonism.

    PubMed

    Nguyen, Van Tuan; Farman, Nicolette; Maubec, Eve; Nassar, Dany; Desposito, Dorinne; Waeckel, Ludovic; Aractingi, Sélim; Jaisser, Frederic

    2016-10-01

    Impaired cutaneous wound healing is a social burden. It occurs as a consequence of glucocorticoid treatment in several pathologies. Glucocorticoids (GC) bind not only to the glucocorticoid receptor but also to the mineralocorticoid receptor (MR), both expressed by keratinocytes. In addition to its beneficial effects through the glucocorticoid receptor, GC exposure may lead to inappropriate MR occupancy. We hypothesized that dermatological use of MR antagonists (MRA) might be beneficial by overcoming the negative impact of GC treatment on pathological wounds. The potent GC clobetasol, applied as an ointment to mouse skin, or added to cultured human skin explants, induced delayed wound closure and outgrowth of epidermis with reduced proliferation of keratinocytes. Delayed wound re-epithelialization was rescued by local MRA application. Normal skin was unaffected by MRA. The benefit of MR blockade is explained by the increased expression of MR in clobetasol-treated mouse skin. Blockade of the epithelial sodium channel by phenamil also rescued cultured human skin explants from GC-impaired growth of the epidermis. MRA application over post-biopsy wounds of clobetasol-treated skin zones of healthy volunteers (from the Interest of Topical Spironolactone's Administration to Prevent Corticoid-induced Epidermal Atrophy clinical trial) also accelerated wound closure. In conclusion, we propose repositioning MRA for cutaneous application to improve delayed wound closure occurring in pathology.

  14. Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain.

    PubMed

    Wei, Catherine J; Augusto, Elisabete; Gomes, Catarina A; Singer, Philipp; Wang, Yumei; Boison, Detlev; Cunha, Rodrigo A; Yee, Benjamin K; Chen, Jiang-Fan

    2014-06-01

    Adenosine A2A receptors (A2ARs) are enriched in the striatum but are also present at lower levels in the extrastriatal forebrain (i.e., hippocampus, cortex), integrating dopamine, glutamate, and brain-derived neurotrophic factor (BDNF) signaling, and are thus essential for striatal neuroplasticity and fear and anxiety behavior. We tested two brain region-specific A2AR knockout lines with A2ARs selectively deleted either in the striatum (st-A2AR KO) or the entire forebrain (striatum, hippocampus, and cortex [fb-A2AR KO]) on fear and anxiety-related responses. We also examined the effect of hippocampus-specific A2AR deletion by local injection of adeno-associated virus type 5 (AAV5)-Cre into floxed-A2AR knockout mice. Selectively deleting A2ARs in the striatum increased Pavlovian fear conditioning (both context and tone) in st-A2AR KO mice, but extending the deletion to the rest of the forebrain apparently spared context fear conditioning and attenuated tone fear conditioning in fb-A2AR KO mice. Moreover, focal deletion of hippocampal A2ARs by AAV5-Cre injection selectively attenuated context (but not tone) fear conditioning. Deletion of A2ARs in the entire forebrain in fb-A2AR KO mice also produced an anxiolytic phenotype in both the elevated plus maze and open field tests, and increased the startle response. These extrastriatal forebrain A2AR behavioral effects were associated with reduced BDNF levels in the fb-A2AR KO hippocampus. This study provides evidence that inactivation of striatal A2ARs facilitates Pavlovian fear conditioning, while inactivation of extrastriatal A2ARs in the forebrain inhibits fear conditioning and also affects anxiety-related behavior. Copyright © 2014. Published by Elsevier Inc.

  15. A2A Adenosine Receptor (A2AAR) as a Therapeutic Target in Diabetic Retinopathy

    PubMed Central

    Ibrahim, Ahmed S.; El-shishtawy, Mamdouh M.; Zhang, Wenbo; Caldwell, Ruth B.; Liou, Gregory I.

    2011-01-01

    In diabetic retinopathy (DR), abnormalities in vascular and neuronal function are closely related to the local production of inflammatory mediators whose potential source is microglia. A2A adenosine receptor (A2AAR) has been shown to possess anti-inflammatory properties that have not been studied in DR. Here, we evaluate the role of A2AAR and its underlying signaling in retinal complications associated with diabetes. Initial studies in wild-type mice revealed that the treatment with the A2AAR agonist resulted in marked decreases in hyperglycemia-induced retinal cell death and tumor necrosis factor (TNF)-α release. To further assess the role of A2AAR in DR, we studied the effects of A2AAR ablation on diabetes-induced retinal abnormalities. Diabetic A2AAR−/− mice had significantly more terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells, TNF-α release, and intercellular adhesion molecule-1 expression compared with diabetic wild-type mice. To explore a potential mechanism by which A2AAR signaling regulates inflammation in DR, we performed additional studies using microglial cells treated with Amadori-glycated albumin, a risk factor in diabetic disorders. The results showed that activation of A2AAR attenuated Amadori-glycated albumin-induced TNF-α release in a cAMP/exchange protein directly activated by cAMP-dependent mechanism and significantly repressed the inflammatory cascade, C-Raf/extracellular signal-regulated kinase (ERK), in activated microglia. Collectively, this work provides pharmacological and genetic evidence for A2AAR signaling as a control point of cell death in DR and suggests that the retinal protective effect of A2AAR is mediated by abrogating the inflammatory response that occurs in microglia via interaction with C-Raf/ERK pathway. PMID:21514428

  16. High salt diet exacerbates vascular contraction in the absence of adenosine A2A receptor

    PubMed Central

    Pradhan, Isha; Zeldin, Darryl C.; Ledent, Catherine; Mustafa, S. Jamal; Falck, John R.; Nayeem, Mohammed A

    2014-01-01

    High salt (4%NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A2A-receptor (A2AAR). Evidence suggests A2AAR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A2AAR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A2AAR+/+, but exaggerates contraction in A2AAR−/−. Organ-bath and Western-blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A2AAR+/+ and A2AAR−/− mice aortae. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A2AAR+/+, whereas contraction was observed in A2AAR−/− mice and this was attenuated by A1AR antagonist (DPCPX). CGS-21680 (selective A2AAR-agonist) enhanced relaxation in HS-A2AAR+/+ vs. NS-A2AAR+/+, that was blocked by EETs antagonist (14,15-EEZE). Compared to NS, HS significantly upregulated expression of vasodilators A2AAR and cyp2c29, while vasoconstrictors A1AR and cyp4a in A2AAR+/+ were downregulated. In A2AAR−/− mice, however, HS significantly downregulated the expression of cyp2c29, while A1AR and cyp4a were upregulated compared to A2AAR+/+ mice. Hence, our data suggest that in A2AAR+/+, HS enhances A2AAR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A1AR levels, whereas in A2AAR−/−, HS exaggerates contraction through decreased cyp-epoxygenases and increased A1AR levels. PMID:24390173

  17. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption.

    PubMed

    Cornelis, Marilyn C; El-Sohemy, Ahmed; Campos, Hannia

    2007-07-01

    Caffeine is the most widely consumed stimulant in the world, and individual differences in response to its stimulating effects may explain some of the variability in caffeine consumption within a population. We examined whether genetic variability in caffeine metabolism [cytochrome P450 1A2 (CYP1A2) -163A-->C] or the main target of caffeine action in the nervous system [adenosine A(2A) receptor (ADORA2A) 1083C-->T] is associated with habitual caffeine consumption. Subjects (n=2735) were participants from a study of gene-diet interactions and risk of myocardial infarction who did not have a history of hypertension. Genotype frequencies were examined among persons who were categorized according to their self-reported daily caffeine intake, as assessed with a validated food-frequency questionnaire. The ADORA2A, but not the CYP1A2, genotype was associated with different amounts of caffeine intake. Compared with persons consuming <100 mg caffeine/d, the odds ratios for having the ADORA2A TT genotype were 0.74 (95% CI: 0.53, 1.03), 0.63 (95% CI: 0.48, 0.83), and 0.57 (95% CI: 0.42, 0.77) for those consuming 100-200, >200-400, and >400 mg caffeine/d, respectively. The association was more pronounced among current smokers than among nonsmokers (P for interaction = 0.07). Persons with the ADORA2A TT genotype also were significantly more likely to consume less caffeine (ie, <100 mg/d) than were carriers of the C allele [P=0.011 (nonsmokers), P=0.008 (smokers)]. Our findings show that the probability of having the ADORA2A 1083TT genotype decreases as habitual caffeine consumption increases. This observation provides a biologic basis for caffeine consumption behavior and suggests that persons with this genotype may be less vulnerable to caffeine dependence.

  18. P2X7 receptor antagonism improves renal blood flow and oxygenation in angiotensin-II infused rats

    PubMed Central

    Menzies, Robert I.; Howarth, Amelia R.; Unwin, Robert J.; Tam, Frederick W.K.; Mullins, John J.; Bailey, Matthew A.

    2015-01-01

    Chronic activation of the renin angiotensin system promotes hypertension, renal microvascular dysfunction, tissue hypoxia and inflammation. We found previously that the injurious response to excess angiotensin II (ANGII) is greater in F344 rats, whereas Lewis rats are renoprotected, despite similar hypertension. We further identified p2rx7, encoding the P2X7 receptor (P2X7R), as a candidate gene for differential susceptibility and here we have tested the hypothesis that activation of P2X7R promotes vascular dysfunction under high ANGII tone. 14-day infusion of ANGII at 30ng/min into F344 rats increased blood pressure by ~15mmHg without inducing fibrosis or albuminuria. In vivo pressure natriuresis was suppressed, medullary perfusion reduced by ~50% and the cortico-medullary oxygenation gradient disrupted. Selective P2X7R antagonism restored pressure natriuresis, promoting a significant leftward shift in the intercept and increasing the slope. Sodium excretion was increased 6 fold and blood pressure normalized. The specific P2X7R antagonist AZ11657312 increased renal medullary perfusion, but only in ANGII-treated rats. Tissue oxygenation was improved by P2X7R blockade, particularly in poorly oxygenated regions of the kidney. Activation of P2X7R induces microvascular dysfunction and regional hypoxia when ANGII is elevated. These pro-inflammatory effects may contribute to progression of renal injury induced by chronic ANGII. PMID:26108066

  19. Gene expression of peripheral blood cells reveals pathways downstream of glucocorticoid receptor antagonism and nab-paclitaxel treatment

    PubMed Central

    Maranville, Joseph C; Nanda, Rita; Fleming, Gini F; Skor, Maxwell N; Di Rienzo, Anna; Conzen, Suzanne D

    2014-01-01

    Objectives While paclitaxel treatment is associated with leukopenia, the mechanisms that underlie this effect are not well-characterized. Additionally, despite the importance of glucocorticoid signaling in cancer treatment, the genomic effects of glucocorticoid receptor (GR) antagonism by mifepristone treatment in primary human cells have never been described. Methods As part of a randomized Phase 1 clinical trial, we used microarrays to profile gene expression in peripheral blood cells sampled from each of 4 patients at baseline, after placebo/nab-paclitaxel treatment (cycle 1), and after mifepristone/nab-paclitaxel treatment (cycle 2). Results We found that 63 genes were differentially-expressed following treatment with nab-paclitaxel, including multiple genes in the tubulin pathway. We also found 606 genes that were differentially expressed in response to mifepristone; genes down-regulated by mifepristone overlapped significantly with those previously identified as being up-regulated by dexamethasone. Conclusions These results provide insights into the mechanisms of paclitaxel and GR inhibition in peripheral blood cells. PMID:25000515

  20. Selective endothelinA receptor antagonism with sitaxsentan for pulmonary arterial hypertension associated with connective tissue disease

    PubMed Central

    Girgis, Reda E; Frost, Adaani E; Hill, Nicholas S; Horn, Evelyn M; Langleben, David; McLaughlin, Vallerie V; Oudiz, Ronald J; Robbins, Ivan M; Seibold, James R; Shapiro, Shelley; Tapson, Victor F; Barst, Robyn J

    2007-01-01

    Introduction Endothelin receptor antagonism has become an important component in the treatment of pulmonary arterial hypertension (PAH) associated with connective tissue disease (CTD). The purpose of this study was to analyse the safety and effectiveness of sitaxsentan, a selective antagonist of the ETA receptor, in a cohort of patients with PAH and CTD. Short‐term clinical and haemodynamic effects and longer‐term follow‐up data are presented. Methods A post hoc subgroup analysis was performed on 42 patients who had PAH associated with CTD, out of a group of 178 patients enrolled in a 12‐week, double‐blind, randomised clinical trial of sitaxsentan versus placebo. Data from 33 patients assigned to sitaxsentan 100 mg or 300 mg daily were pooled and compared with nine placebo‐treated patients. There were 41 patients entered into the blinded extension study, in which all patients received either 100 mg or 300 mg sitaxsentan once daily. Results Patients treated with sitaxsentan had a mean (SD) increase in 6 minute walk distance of 20 (5) m from baseline to week 12 (p = 0.037), whereas the placebo group had a decrease of 38 (84) m, resulting in a placebo‐subtracted treatment effect of 58 m (p = 0.027). Parallel improvements in quality of life and haemodynamics were also observed. No patient discontinued their drug during the 12‐week trial. In the blinded extension study (median treatment duration 26 weeks), more patients were in functional class I–II than in III–IV (p<0.001) at the end of the study compared with the start of active therapy. Elevation of hepatic transaminase levels occurred in two patients. Conclusions Sitaxsentan appears to be efficacious in patients with PAH associated with CTD. PMID:17472992

  1. Antagonism of human formyl peptide receptor 1 (FPR1) by chromones and related isoflavones.

    PubMed

    Schepetkin, Igor A; Kirpotina, Liliya N; Khlebnikov, Andrei I; Cheng, Ni; Ye, Richard D; Quinn, Mark T

    2014-12-15

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki∼100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice.

    PubMed

    Roundtree, Harrison M; Simeone, Timothy A; Johnson, Chaz; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2016-02-01

    Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models. © 2016 Associated

  3. Antagonism of Human Formyl Peptide Receptor 1 (FPR1) by Chromones and Related Isoflavones

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Cheng, Ni; Ye, Richard D.; Quinn, Mark T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki~100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. PMID:25450672

  4. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    PubMed

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity.

    PubMed

    Gross, N B; Duncker, P C; Marshall, J F

    2011-12-29

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the

  6. Grape powder attenuates the negative effects of GLP-1 receptor antagonism by exendin-3 (9-39) in a normoglycemic mouse model.

    PubMed

    Haufe, T C; Gilley, A D; Goodrich, K M; Ryan, C M; Smithson, A T; Hulver, M W; Liu, D; Neilson, A P

    2016-06-15

    Prediabetes is a condition affecting 35% of US adults and about 50% of US adults age 65+. Foods rich in polyphenols, including flavanols and other flavonoids, have been studied for their putative beneficial effects on many different health conditions including type 2 diabetes mellitus and prediabetes. Studies have shown that some flavanols increase glucagon-like peptide 1 (GLP-1) secretion. GLP-1 is a feeding hormone that increases insulin secretion after carbohydrate consumption, and increased GLP-1 secretion may be responsible for some of the beneficial effects on glycemic control after flavanol consumption. The present study explored the effects of grape powder consumption on metrics of glycemic health in normoglycemic and prediabetic C57BL/6J mice; additionally, the mechanism of action of grape powder polyphenols was investigated. Grape powder significantly reduced (p < 0.01) blood glucose levels following oral glucose gavage after GLP-1 receptor antagonism by exendin-3 (9-39) compared to sugar-matched control, indicating that it was able to attenuate the hyperglycemic effects of GLP-1 receptor antagonism. Grape powder was employed in acute (1.6 g grape powder per kg bodyweight) and long-term high fat diet (grape powder incorporated into treatment diets at 5% w/w) feeding studies in normoglycemic and prediabetic (diet-induced obesity) mice; grape powder did not impove glycemic control in these studies versus sugar-matched control. The mechanisms by which grape powder ameliorates the deleterious effects of GLP-1 receptor antagonism warrant further study.

  7. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine.

    PubMed

    Doré, Andrew S; Robertson, Nathan; Errey, James C; Ng, Irene; Hollenstein, Kaspar; Tehan, Ben; Hurrell, Edward; Bennett, Kirstie; Congreve, Miles; Magnani, Francesca; Tate, Christopher G; Weir, Malcolm; Marshall, Fiona H

    2011-09-07

    Methylxanthines, including caffeine and theophylline, are among the most widely consumed stimulant drugs in the world. These effects are mediated primarily via blockade of adenosine receptors. Xanthine analogs with improved properties have been developed as potential treatments for diseases such as Parkinson's disease. Here we report the structures of a thermostabilized adenosine A(2A) receptor in complex with the xanthines xanthine amine congener and caffeine, as well as the A(2A) selective inverse agonist ZM241385. The receptor is crystallized in the inactive state conformation as defined by the presence of a salt bridge known as the ionic lock. The complete third intracellular loop, responsible for G protein coupling, is visible consisting of extended helices 5 and 6. The structures provide new insight into the features that define the ligand binding pocket of the adenosine receptor for ligands of diverse chemotypes as well as the cytoplasmic regions that interact with signal transduction proteins.

  8. Glucocorticoid-induced hypertension and cardiac injury: effects of mineralocorticoid and glucocorticoid receptor antagonism.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Iwase, Erika; Takahashi, Keiji; Ohtake, Masafumi; Tsuboi, Koji; Ohtake, Mayuko; Miyachi, Masaaki; Murohara, Toyoaki; Nagata, Kohzo

    2013-02-01

    Glucocorticoids are widely administered for the treatment of various disorders, although their long-term use results in adverse effects associated with glucocorticoid excess. We investigated the pathophysiological roles of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the cardiac changes induced by exogenous corticosterone in rats. Corticosterone or vehicle was injected twice daily in rats from 8 to 12 weeks of age. The effects of the GR antagonist RU486, the MR antagonist spironolactone, or both agents on corticosterone action were also determined. Corticosterone induced hypertension, left ventricular (LV) fibrosis, and LV diastolic dysfunction. Neither RU486 nor spironolactone affected corticosterone-induced hypertension, whereas spironolactone, but not RU486, attenuated the effects of corticosterone on LV fibrosis and diastolic function. Corticosterone also increased cardiac oxidative stress and inflammation in a manner sensitive to spironolactone but not to RU486. The corticosterone-induced LV atrophy was not affected by either RU486 or spironolactone. Our results implicate MRs in the cardiac fibrosis and diastolic dysfunction, but not MRs or GRs in the cardiac atrophy, induced by corticosterone. Neither MRs nor GRs appear to contribute to corticosterone-induced hypertension.

  9. NMDA receptor antagonism has differential effects on alcohol craving and drinking in heavy drinkers

    PubMed Central

    Krishnan-Sarin, Suchitra; O’Malley, Stephanie S.; Franco, Nicholas; Cavallo, Dana A.; Morean, Meghan; Shi, Julia; Pittman, Brian; Krystal, John H.

    2014-01-01

    Objective To determine the effects of the NMDA receptor antagonist, memantine (0, 20, 40 mg/day), upon alcohol drinking and craving in heavy drinkers with or without a family history (FH) of alcoholism, and to explore the modulatory influence of the presence of impulsivity on these outcomes. Methods Ninety-two, non-treatment-seeking, heavy drinkers received memantine or placebo for eight days. On the eighth day, they received a priming dose of ethanol followed by a three-hour period of alcohol access. Results Memantine at a dose of 20 mg reduced alcohol craving but did not influence alcohol drinking. No effects of FH were observed. In participants with higher baseline levels of impulsivity, 40 mg of memantine reduced alcohol craving but increased alcohol drinking and alcohol-induced stimulation. Conclusions NMDA receptor signaling may play divergent roles in mediating alcohol cue-induced craving and alcohol drinking in heavy drinkers. The potential efficacy of memantine as monotherapy for alcohol use disorders may be limited by its tendency to disinhibit drinking in some individuals. PMID:25664775

  10. Kappa opioid receptor activation decreases inhibitory transmission and antagonizes alcohol effects in rat central amygdala.

    PubMed

    Gilpin, Nicholas W; Roberto, Marisa; Koob, George F; Schweitzer, Paul

    2014-02-01

    Activation of the kappa opioid receptor (KOR) system mediates negative emotional states and considerable evidence suggests that KOR and their natural ligand, dynorphin, are involved in ethanol dependence and reward. The central amygdala (CeA) plays a major role in alcohol dependence and reinforcement. Dynorphin peptide and gene expression are activated in the amygdala during acute and chronic administration of alcohol, but the effects of activation or blockade of KOR on inhibitory transmission and ethanol effects have not been studied. We used the slice preparation to investigate the physiological role of KOR and interaction with ethanol on GABA(A) receptor-mediated synaptic transmission. Superfusion of dynorphin or U69593 onto CeA neurons decreased evoked inhibitory postsynaptic potentials (IPSPs) in a concentration-dependent manner, an effect prevented by the KOR antagonist norbinaltorphimine (norBNI). Applied alone, norBNI increased GABAergic transmission, revealing a tonic endogenous activity at KOR. Paired-pulse analysis suggested a presynaptic KOR mechanism. Superfusion of ethanol increased IPSPs and pretreatment with KOR agonists diminished the ethanol effect. Surprisingly, the ethanol-induced augmentation of IPSPs was completely obliterated by KOR blockade. Our results reveal an important role of the dynorphin/KOR system in the regulation of inhibitory transmission and mediation of ethanol effects in the CeA.

  11. Effect of muscarinic and nicotinic receptor antagonism on rat gastric motor activity.

    PubMed

    Janssen, Pieter; Karlsson, Lisa K C; Nielsen, Maria Astin; Gillberg, Per-Göran; Hultin, Leif

    2010-01-01

    Our aim was to investigate whether muscarinic and nicotinic receptors mediate nitric oxide release during motor events in the rat stomach. Isolated rat stomach volume changes were monitored in an organ bath setup with an intragastric balloon coupled to a barostat and studied in basal conditions and during electrical vagal stimulation (EVS). In conscious rats, the intragastric pressure (IGP) was measured during test meal infusion. In the presence of N(G)-nitro-L-arginine methyl ester (L-NAME; 0.1 mmol/l), EVS induced significant gastric contractions (mean +/- SEM = 0.27 +/- 0.04 ml; n = 6) that could be blocked by atropine (3 micromol/l) and hexamethonium (0.1 mmol/l). In the presence of atropine and/or hexamethonium, EVS-induced relaxations could not be blocked by L-NAME, while exogenous nitric oxide could still relax the stomach. In conscious rats, atropine (1 mg kg(-1)) initially decreased IGP, while during further distension it increased IGP. In the presence of L-NAME (30 mg kg(-1)) atropine consistently decreased IGP. L-NAME alone significantly increased IGP during the test meal infusion, but this effect was reduced in the presence of atropine. These findings indicate a role for nicotinic and muscarinic receptors in the vagal-stimulation-induced activation of nitrergic nerves in the rat stomach. Copyright 2010 S. Karger AG, Basel.

  12. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4.

    PubMed

    Griffiths, Katherine; Dolezal, Olan; Cao, Benjamin; Nilsson, Susan K; See, Heng B; Pfleger, Kevin D G; Roche, Michael; Gorry, Paul R; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G C; Chang, Denison H C; Murray-Rust, Thomas; Kvansakul, Marc; Perugini, Matthew A; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L; Nuttall, Stewart D; Foley, Michael

    2016-06-10

    CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.

  13. Kappa Opioid Receptor Activation Decreases Inhibitory Transmission and Antagonizes Alcohol Effects in Rat Central Amygdala

    PubMed Central

    Gilpin, Nicholas W.; Roberto, Marisa; Koob, George F.; Schweitzer, Paul

    2013-01-01

    Activation of the kappa opioid receptor (KOR) system mediates negative emotional states and considerable evidence suggests that KOR and their natural ligand, dynorphin, are involved in ethanol dependence and reward. The central amygdala (CeA) plays a major role in alcohol dependence and reinforcement. Dynorphin peptide and gene expression are activated in the amygdala during acute and chronic administration of alcohol, but the effects of activation or blockade of KOR on inhibitory transmission and ethanol effects have not been studied. We used the slice preparation to investigate the physiological role of KOR and interaction with ethanol on GABAA receptor-mediated synaptic transmission. Superfusion of dynorphin or U69593 onto CeA neurons decreased evoked inhibitory postsynaptic potentials (IPSPs) in a concentration-dependent manner, an effect prevented by the KOR antagonist norbinaltorphimine (norBNI). Applied alone, norBNI increased GABAergic transmission, revealing a tonic endogenous activity at KOR. Paired-pulse analysis suggested a presynaptic KOR mechanism. Superfusion of ethanol increased IPSPs and pretreatment with KOR agonists diminished the ethanol effect. Surprisingly, the ethanol-induced augmentation of IPSPs was completely obliterated by KOR blockade. Our results reveal an important role of the dynorphin/KOR system in the regulation of inhibitory transmission and mediation of ethanol effects in the CeA. PMID:24157490

  14. Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats

    PubMed Central

    Zhou, Luyi; Smith, Rachel J.; Do, Phong H.; Aston-Jones, Gary; See, Ronald E.

    2012-01-01

    The orexin/hypocretin system has been implicated in multiple phases of drug addiction. Acute orexin receptor blockade with the orexin-1 receptor (OX1R) antagonist, SB-334867, has been found to reduce cocaine seeking after cocaine self-administration. As repeated drug dosing can have differential effects and is more clinically relevant than acute dosing, in the current study we examined the effects of repeated SB-334867 on cocaine self-administration, extinction, and reinstatement to cocaine seeking in Sprague Dawley rats. We found that repeated SB-334867 (10 mg/kg/day) had no effect on established cocaine self-administration. Repeated SB-334867 (both 10 and 20 mg/kg) attenuated cocaine seeking during extinction; however, this effect was only observed when animals had no prior experience with SB-334867 and when SB-334867 was administered prior to, but not after, daily extinction sessions. Notably, daily treatment with SB-334867 (10 mg/kg) during extinction increased subsequent cue-induced reinstatement, whereas repeated SB-334867 (20 mg/kg) administration during extinction enabled acute SB-334867 to reduce cue-induced reinstatement. Repeated SB-334867 treatment (10 or 20 mg/kg) failed to affect reinstatement induced by priming injections of cocaine (10 mg/kg). These results show that repeated inhibition of OX1R-mediated signaling exerts a lasting and specific role in mediating environmentally activated cocaine seeking. PMID:22971541

  15. Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats.

    PubMed

    Zhou, Luyi; Smith, Rachel J; Do, Phong H; Aston-Jones, Gary; See, Ronald E

    2012-12-01

    The orexin/hypocretin system has been implicated in multiple phases of drug addiction. Acute orexin receptor blockade with the orexin-1 receptor (OX1R) antagonist, SB-334867, has been found to reduce cocaine seeking after cocaine self-administration. As repeated drug dosing can have differential effects and is more clinically relevant than acute dosing, in the current study we examined the effects of repeated SB-334867 on cocaine self-administration, extinction, and reinstatement to cocaine seeking in Sprague-Dawley rats. We found that repeated SB-334867 (10 mg/kg/day) had no effect on established cocaine self-administration. Repeated SB-334867 (both 10 and 20 mg/kg) attenuated cocaine seeking during extinction; however, this effect was only observed when animals had no prior experience with SB-334867 and when SB-334867 was administered prior to, but not after, daily extinction sessions. Notably, daily treatment with SB-334867 (10 mg/kg) during extinction increased subsequent cue-induced reinstatement, whereas repeated SB-334867 (20 mg/kg) administration during extinction enabled acute SB-334867 to reduce cue-induced reinstatement. Repeated SB-334867 treatment (10 or 20 mg/kg) failed to affect reinstatement induced by priming injections of cocaine (10 mg/kg). These results show that repeated inhibition of OX1R-mediated signaling exerts a lasting and specific role in mediating environmentally activated cocaine seeking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning.

    PubMed

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K

    2013-04-01

    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia.

  17. Molecular Docking and Prediction of Pharmacokinetic Properties of Dual Mechanism Drugs that Block MAO-B and Adenosine A2A Receptors for the Treatment of Parkinson's Disease

    PubMed Central

    Azam, Faizul; Madi, Arwa M.; Ali, Hamed I.

    2012-01-01

    Monoamine oxidase B (MAO-B) inhibitory potential of adenosine A2A receptor (AA2AR) antagonists has raised the possibility of designing dual-target–directed drugs that may provide enhanced symptomatic relief and that may also slow the progression of Parkinson's disease (PD) by protecting against further neurodegeneration. To explain the dual inhibition of MAO-B and AA2AR at the molecular level, molecular docking technique was employed. Lamarckian genetic algorithm methodology was used for flexible ligand docking studies. A good correlation (R2= 0.524 and 0.627 for MAO-B and AA2AR, respectively) was established between docking predicted and experimental Ki values, which confirms that the molecular docking approach is reliable to study the mechanism of dual interaction of caffeinyl analogs with MAO-B and AA2AR. Parameters for Lipinski's “Rule-of-Five” were also calculated to estimate the pharmacokinetic properties of dual-target–directed drugs where both MAO-B inhibition and AA2AR antagonism exhibited a positive correlation with calculated LogP having a correlation coefficient R2 of 0.535 and 0.607, respectively. These results provide some beneficial clues in structural modification for designing new inhibitors as dual-target–directed drugs with desired pharmacokinetic properties for the treatment of PD. PMID:23112538

  18. Molecular Docking and Prediction of Pharmacokinetic Properties of Dual Mechanism Drugs that Block MAO-B and Adenosine A(2A) Receptors for the Treatment of Parkinson's Disease.

    PubMed

    Azam, Faizul; Madi, Arwa M; Ali, Hamed I

    2012-07-01

    Monoamine oxidase B (MAO-B) inhibitory potential of adenosine A(2A) receptor (AA(2A)R) antagonists has raised the possibility of designing dual-target-directed drugs that may provide enhanced symptomatic relief and that may also slow the progression of Parkinson's disease (PD) by protecting against further neurodegeneration. To explain the dual inhibition of MAO-B and AA(2A)R at the molecular level, molecular docking technique was employed. Lamarckian genetic algorithm methodology was used for flexible ligand docking studies. A good correlation (R(2)= 0.524 and 0.627 for MAO-B and AA(2A)R, respectively) was established between docking predicted and experimental K(i) values, which confirms that the molecular docking approach is reliable to study the mechanism of dual interaction of caffeinyl analogs with MAO-B and AA(2A)R. Parameters for Lipinski's "Rule-of-Five" were also calculated to estimate the pharmacokinetic properties of dual-target-directed drugs where both MAO-B inhibition and AA(2A)R antagonism exhibited a positive correlation with calculated LogP having a correlation coefficient R(2) of 0.535 and 0.607, respectively. These results provide some beneficial clues in structural modification for designing new inhibitors as dual-target-directed drugs with desired pharmacokinetic properties for the treatment of PD.

  19. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice.

    PubMed

    Dall'Igna, Oscar P; Fett, Paulo; Gomes, Marcio W; Souza, Diogo O; Cunha, Rodrigo A; Lara, Diogo R

    2007-01-01

    Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimer's disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimer's disease.

  20. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  1. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  2. Melanin-concentrating hormone-1 receptor antagonism and anti-obesity effects of ethanolic extract from Morus alba leaves in diet-induced obese mice.

    PubMed

    Oh, Kwang-Seok; Ryu, Shi Yong; Lee, Sunghou; Seo, Ho Won; Oh, Byung Koo; Kim, Young Sup; Lee, Byung Ho

    2009-03-18

    In Korea, Morus alba leaves have been traditionally administered as natural therapeutic agent for the alleviating dropsy and diabetes. The present study was performed to evaluate melanin-concentrating hormone receptor subtype 1 (MCH1) antagonism of the ethanol extract of Morus alba leaves (EMA) and its anti-obesity effect in diet-induced obese (DIO) mice. The binding affinity of EMA for the MCH1 receptor with europium-labeled MCH (Eu-MCH), the function of recombinant MCH1 receptors expressed in CHO cells, and the anti-obesity effects in DIO mice were evaluated. MCH1 receptor binding studies showed, EMA exhibited a potent inhibitory activity with IC50 value of 2.3+/-1.0 microg/ml. EMA (10-100 microg/ml) also inhibited the intracellular calcium mobilization with the recombinant MCH1 receptors expressed in CHO cells. In an anti-obesity study with DIO mice, longterm oral administrations of EMA for 32 consecutive days produced a dose-dependent decrease in body weight and hepatic lipid accumulation. These results suggest that chronic treatment with EMA exerts an anti-obesity effect in DIO mice, and its direct MCH1 receptor antagonism may contribute to decrease body weight.

  3. Antagonism/Agonism Modulation to Build Novel Antihypertensives Selectively Triggering I1-Imidazoline Receptor Activation

    PubMed Central

    2015-01-01

    Pharmacological studies have suggested that I1-imidazoline receptors are involved in the regulation of cardiovascular function and that selective I1-agonists, devoid of the side effects associated with the common hypotensive α2-adrenoreceptor agonists, might be considered as a second generation of centrally acting antihypertensives. Therefore, in the present study, inspired by the antihypertensive behavior of our selective I1-agonist 4, we designed, prepared, and studied the novel analogues 5–9. A selective I1-profile, associated with significant hemodinamic effects, was displayed by 5, 8, and 9. Interestingly, the highest potency and longest lasting activity displayed by 8 (carbomethyline) suggested that van der Waals interactions, promoted by the ortho methyl decoration of its aromatic moiety, are particularly advantageous. In addition, in analogy to what was noted for (S)-(+)-4, the observation that only (S)-(+)-8 displayed significant hemodynamic effects unequivocally confirmed the stereospecific nature of the I1 proteins. PMID:26005521

  4. EP2 receptor antagonism reduces peripheral and central hyperalgesia in a preclinical mouse model of endometriosis

    PubMed Central

    Greaves, Erin; Horne, Andrew W.; Jerina, Helen; Mikolajczak, Marta; Hilferty, Lisa; Mitchell, Rory; Fleetwood-Walker, Sue M.; Saunders, Philippa T. K.

    2017-01-01

    Endometriosis is an incurable gynecological disorder characterized by debilitating pain and the establishment of innervated endometriosis lesions outside the uterus. In a preclinical mouse model of endometriosis we demonstrated overexpression of the PGE2-signaling pathway (including COX-2, EP2, EP4) in endometriosis lesions, dorsal root ganglia (DRG), spinal cord, thalamus and forebrain. TRPV1, a PGE2-regulated channel in nociceptive neurons was also increased in the DRG. These findings support the concept that an amplification process occurs along the pain neuroaxis in endometriosis. We then tested TRPV1, EP2, and EP4 receptor antagonists: The EP2 antagonist was the most efficient analgesic, reducing primary hyperalgesia by 80% and secondary hyperalgesia by 40%. In this study we demonstrate reversible peripheral and central hyperalgesia in mice with induced endometriosis. PMID:28281561

  5. The Androgen Receptor Antagonizes Wnt/β-Catenin Signaling in Epidermal Stem Cells

    PubMed Central

    Kretzschmar, Kai; Cottle, Denny L; Schweiger, Pawel J; Watt, Fiona M

    2015-01-01

    Activation of Wnt/β-catenin signaling in adult mouse epidermis leads to expansion of the stem cell compartment and redirects keratinocytes in the interfollicular epidermis and sebaceous glands (SGs) to differentiate along the hair follicle (HF) lineages. Here we demonstrate that during epidermal development and homeostasis there is reciprocal activation of the androgen receptor (AR) and β-catenin in cells of the HF bulb. AR activation reduced β-catenin-dependent transcription, blocked β-catenin-induced induction of HF growth, and prevented β-catenin-mediated conversion of SGs into HFs. Conversely, AR inhibition enhanced the effects of β-catenin activation, promoting HF proliferation and differentiation, culminating in the formation of benign HF tumors and a complete loss of SG identity. We conclude that AR signaling has a key role in epidermal stem cell fate selection by modulating responses to β-catenin in adult mouse skin. PMID:26121213

  6. EP2 receptor antagonism reduces peripheral and central hyperalgesia in a preclinical mouse model of endometriosis.

    PubMed

    Greaves, Erin; Horne, Andrew W; Jerina, Helen; Mikolajczak, Marta; Hilferty, Lisa; Mitchell, Rory; Fleetwood-Walker, Sue M; Saunders, Philippa T K

    2017-03-10

    Endometriosis is an incurable gynecological disorder characterized by debilitating pain and the establishment of innervated endometriosis lesions outside the uterus. In a preclinical mouse model of endometriosis we demonstrated overexpression of the PGE2-signaling pathway (including COX-2, EP2, EP4) in endometriosis lesions, dorsal root ganglia (DRG), spinal cord, thalamus and forebrain. TRPV1, a PGE2-regulated channel in nociceptive neurons was also increased in the DRG. These findings support the concept that an amplification process occurs along the pain neuroaxis in endometriosis. We then tested TRPV1, EP2, and EP4 receptor antagonists: The EP2 antagonist was the most efficient analgesic, reducing primary hyperalgesia by 80% and secondary hyperalgesia by 40%. In this study we demonstrate reversible peripheral and central hyperalgesia in mice with induced endometriosis.

  7. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  8. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    SciTech Connect

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. )

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  9. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism

    PubMed Central

    2010-01-01

    Background Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to μ-opioid receptors (MORs), which are 7 transmembrane domain (7TM) G-protein-coupled receptors (GPCRs), and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence and opioid-induced hyperalgesia (OIH). In contrast to opioid analgesia these side effects are associated with cellular excitation. Several hypotheses have been advanced to explain these phenomena, yet the molecular mechanisms underlying tolerance and OIH remain poorly understood. Results We recently discovered a new human alternatively spliced isoform of MOR (MOR1K) that is missing the N-terminal extracellular and first transmembrane domains, resulting in a 6TM GPCR variant. To characterize the pattern of cellular transduction pathways activated by this human MOR1K isoform, we conducted a series of pharmacological and molecular experiments. Results show that stimulation of MOR1K with morphine leads to excitatory cellular effects. In contrast to stimulation of MOR1, stimulation of MOR1K leads to increased Ca2+ levels as well as increased nitric oxide (NO) release. Immunoprecipitation experiments further reveal that unlike MOR1, which couples to the inhibitory Gαi/o complex, MOR1K couples to the stimulatory Gαs complex. Conclusion The major MOR1 and the alternative MOR1K isoforms mediate opposite cellular effects in response to morphine, with MOR1K driving excitatory processes. These findings warrant further investigations that examine animal and human MORK1 expression and function following chronic exposure to opioids, which may identify MOR1K as a novel target for the development of new clinically effective classes of opioids that have high analgesic efficacy with diminished ability to produce tolerance, OIH, and other unwanted side-effects. PMID:20525224

  10. Inhibition of T-tropic HIV Strains by Selective Antagonization of the Chemokine Receptor CXCR4

    PubMed Central

    Schols, Dominique; Struyf, Sofie; Damme, Jo Van; Esté, José A.; Henson, Geoffrey; Clercq, Erik De

    1997-01-01

    Bicyclams are a novel class of antiviral compounds that are highly potent and selective inhibitors of the replication of HIV-1 and HIV-2. Surprisingly, however, when the prototype compound AMD3100 was tested against M-tropic virus strains such as BaL, ADA, JR-CSF, and SF-162 in human peripheral blood mononuclear cells, the compound was completely inactive. Because of the specific and potent inhibitory effect of AMD3100 on T-tropic viruses, but not M-tropic viruses, it was verified that AMD3100 interacts with the CXC-chemokine receptor CXCR4, the main coreceptor used by T-tropic viruses. AMD3100 dose dependently inhibited the binding of a specific CXCR4 monoclonal antibody to SUP-T1 cells as measured by flow cytometry. It did not inhibit the binding of the biotinylated CC-chemokine macrophage inflammatory protein (MIP) 1α or MIP-1β, ligands for the chemokine receptor CCR5 (the main coreceptor for M-tropic viruses). In addition, AMD3100 completely blocked (a) the Ca2+ flux at 100 ng/ml in lymphocytic SUP-T1 and monocytic THP-1 cells, and (b) the chemotactic responses of THP-1 cells induced by stromal cell–derived factor 1α, the natural ligand for CXCR4. Finally, AMD3100 had no effect on the Ca2+ flux induced by the CC-chemokines MIP-1α, regulated on activation normal T cell expressed and secreted (RANTES; also a ligand for CCR5), or monocyte chemoattractant protein 3 (a ligand for CCR1 and CCR2b), nor was it able to induce Ca2+ fluxes by itself. The bicyclams are, to our knowledge, the first low molecular weight anti-HIV agents shown to act as potent and selective CXCR4 antagonists. PMID:9334378

  11. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4.

    PubMed

    Schols, D; Struyf, S; Van Damme, J; Esté, J A; Henson, G; De Clercq, E

    1997-10-20

    Bicyclams are a novel class of antiviral compounds that are highly potent and selective inhibitors of the replication of HIV-1 and HIV-2. Surprisingly, however, when the prototype compound AMD3100 was tested against M-tropic virus strains such as BaL, ADA, JR-CSF, and SF-162 in human peripheral blood mononuclear cells, the compound was completely inactive. Because of the specific and potent inhibitory effect of AMD3100 on T-tropic viruses, but not M-tropic viruses, it was verified that AMD3100 interacts with the CXC-chemokine receptor CXCR4, the main coreceptor used by T-tropic viruses. AMD3100 dose dependently inhibited the binding of a specific CXCR4 monoclonal antibody to SUP-T1 cells as measured by flow cytometry. It did not inhibit the binding of the biotinylated CC-chemokine macrophage inflammatory protein (MIP) 1alpha or MIP-1beta, ligands for the chemokine receptor CCR5 (the main coreceptor for M-tropic viruses). In addition, AMD3100 completely blocked (a) the Ca2+ flux at 100 ng/ml in lymphocytic SUP-T1 and monocytic THP-1 cells, and (b) the chemotactic responses of THP-1 cells induced by stromal cell-derived factor 1alpha, the natural ligand for CXCR4. Finally, AMD3100 had no effect on the Ca2+ flux induced by the CC-chemokines MIP-1alpha, regulated on activation normal T cell expressed and secreted (RANTES; also a ligand for CCR5), or monocyte chemoattractant protein 3 (a ligand for CCR1 and CCR2b), nor was it able to induce Ca2+ fluxes by itself. The bicyclams are, to our knowledge, the first low molecular weight anti-HIV agents shown to act as potent and selective CXCR4 antagonists.

  12. Lidocaine relaxation in isolated rat aortic rings is enhanced by endothelial removal: possible role of Kv, KATP channels and A2a receptor crosstalk.

    PubMed

    Arsyad, Aryadi; Dobson, Geoffrey P

    2016-12-03

    Lidocaine is an approved local anesthetic and Class 1B antiarrhythmic with a number of ancillary properties. Our aim was to investigate lidocaine's vasoreactivity properties in intact versus denuded rat thoracic aortic rings, and the effect of inhibitors of nitric oxide (NO), prostenoids, voltage-dependent Kv and KATP channels, membrane Na(+)/K(+) pump, and A2a and A2b receptors. Aortic rings were harvested from adult male Sprague Dawley rats and equilibrated in an organ bath containing oxygenated, modified Krebs-Henseleit solution, pH 7.4, 37 °C. The rings were pre-contracted sub-maximally with 0.3 μM norepinephrine (NE), and the effect of increasing lidocaine concentrations was examined. Rings were tested for viability after each experiment with maximally dilating 100 μM papaverine. The drugs 4-aminopyridine (4-AP), glibenclamide, 5-hydroxydecanoate, ouabain, 8-(3-chlorostyryl) caffeine and PSB-0788 were examined. All drugs tested had no significant effect on basal tension. Lidocaine relaxation in intact rings was biphasic between 1 and 10 μM (Phase 1) and 10 and 1000 μM (Phase 2). Mechanical removal of the endothelium resulted in further relaxation, and at lower concentrations ring sensitivity (% relaxation per μM lidocaine) significantly increased 3.5 times compared to intact rings. The relaxing factor(s) responsible for enhancing ring relaxation did not appear to be NO- or prostacyclin-dependent, as L-NAME and indomethacin had little or no effect on intact ring relaxation. In denuded rings, lidocaine relaxation was completely abolished by Kv channel inhibition and significantly reduced by antagonists of the MitoKATP channel, and to a lesser extent the SarcKATP channel. Curiously, A2a subtype receptor antagonism significantly inhibited lidocaine relaxation above 100 μM, but not the A2b receptor. We show that lidocaine relaxation in rat thoracic aorta was biphasic and significantly enhanced by endothelial removal, which did not appear to be NO or

  13. Enhanced reduction of myocardial infarct size by combined ACE inhibition and AT1-receptor antagonism

    PubMed Central

    Weidenbach, Roland; Schulz, Rainer; Gres, Petra; Behrends, Matthias; Post, Heiner; Heusch, Gerd

    2000-01-01

    The effects of the angiotensin-converting-enzyme inhibitor (ACEI) ramiprilat, the angiotensin II type 1 receptor antagonist (AT1A) candesartan, and the combination of both drugs on infarct size (IS) resulting from regional myocardial ischaemia were studied in pigs. Both ACEI and AT1A reduce myocardial IS by a bradykinin-mediated process. It is unclear, however, whether the combination of ACEI and AT1A produces a more pronounced IS reduction than each of these drugs alone. Forty-six enflurane-anaesthetized pigs underwent 90 min low-flow ischaemia and 120 min reperfusion. Systemic haemodynamics (micromanometer), subendocardial blood flow (ENDO, microspheres) and IS (TTC-staining) were determined. The decreases in left ventricular peak pressure by ACEI (by 9±2 (s.e.mean) mmHg), AT1A (by 11±2 mmHg) or their combination (by 18±3 mmHg, P<0.05 vs ACEI and AT1A, respectively) were readjusted by aortic constriction prior to ischaemia. With placebo (n=10), IS averaged 20.0±3.3% of the area at risk. IS was reduced to 9.8±2.6% with ramiprilat (n=10) and 10.6±3.1% with candesartan (n=10). Combined ramiprilat and candesartan (n=10) reduced IS to 6.7±2.1%. Blockade of the bradykinin-B2-receptor with icatibant prior to ACEI and AT1A completely abolished the reduction of IS (n=6, 22.8±6.1%). The relationship between IS and ischaemic ENDO with placebo was shifted downwards by each ACEI and AT1A and further shifted downwards with their combination (P<0.05 vs all groups); icatibant again abolished such downward shift. The combination of ACEI and AT1A enhances the reduction of IS following ischaemia/reperfusion compared to a monotherapy by either drug alone; this effect is mediated by bradykinin. PMID:10960080

  14. Pharmacological tolerance to alpha 1-adrenergic receptor antagonism mediated by terazosin in humans.

    PubMed Central

    Vincent, J; Dachman, W; Blaschke, T F; Hoffman, B B

    1992-01-01

    Chronic administration of alpha 1-receptor antagonists is associated with loss of clinical efficacy, especially in congestive heart failure, although the mechanism is uncertain. To evaluate changes in venous alpha 1-adrenoceptor responsiveness during chronic alpha 1-adrenoceptor blockade, dose-response curves to phenylephrine and angiotensin II were constructed in 10 healthy subjects before, during, and after administration of terazosin 1 mg orally for 28 d. Terazosin initially shifted the dose-response curve of phenylephrine to the right, with a significant increase in ED50 for phenylephrine from a control value of 102 to 759 ng/min on day 1 of terazosin (P < 0.001). However, by day 28, the dose-response curve had shifted back towards baseline with an ED50 of 112 ng/min. After discontinuing terazosin, the ED50 for phenylephrine remained near the baseline value, indicating no evidence of supersensitivity to phenylephrine. There was no change in responsiveness to angiotensin II during the course of treatment with terazosin. Plasma terazosin concentrations were stable throughout the period of drug administration. The mean Kd of terazosin was estimated as 11 +/- 15 nM in the first few days of treatment. This study demonstrates that pharmacological tolerance to the alpha 1-adrenoceptor blocking action of terazosin occurs in man and may be responsible for loss in efficacy with chronic therapy. PMID:1358918

  15. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs.

    PubMed

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J; Collins, Tassie L; Johnson, Michael G; Medina, Julio C; Kleinerman, Eugenie S; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-12-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response.

  16. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial

    PubMed Central

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  17. The Halicylindramides, Farnesoid X Receptor Antagonizing Depsipeptides from a Petrosia sp. Marine Sponge Collected in Korea.

    PubMed

    Hahn, Dongyup; Kim, Hiyoung; Yang, Inho; Chin, Jungwook; Hwang, Hoosang; Won, Dong Hwan; Lee, Byoungchan; Nam, Sang-Jip; Ekins, Merrick; Choi, Hyukjae; Kang, Heonjoong

    2016-03-25

    Three new structurally related depsipeptides, halicylindramides F-H (1-3), and two known halicylindramides were isolated from a Petrosia sp. marine sponge collected off the shore of Youngdeok-Gun, East Sea, Republic of Korea. Their planar structures were elucidated by extensive spectroscopic data analyses including 1D and 2D NMR data as well as MS data. The absolute configurations of halicylindramides F-H (1-3) were determined by Marfey's method in combination with Edman degradation. The absolute configurations at C-4 of the dioxyindolyl alanine (Dioia) residues of halicylindramides G (2) and H (3) were determined as 4S and 4R, respectively, based on ECD spectroscopy. The C-2 configurations of Dioia in 2 and 3 were speculated to both be 2R based on the shared biogenesis of the halicylindramides. Halicylindramides F (1), A (4), and C (5) showed human farnesoid X receptor (hFXR) antagonistic activities, but did not bind directly to hFXR.

  18. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  19. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2004-07-29

    A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' < 3' < 4' < 1' < 5') and decreased delta-selectivity in D-Asp-NH(2) (1') and D-Lys(Ac)-OH (5'). The analogues exhibited delta-opioid receptor antagonism (pA(2) = 6.9-10.07) and weak mu-opioid receptor agonism (IC(50) > 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining

  20. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly

    PubMed Central

    Rodrigues, Lisa; Miranda, Isabel M.; Andrade, Geanne M.; Mota, Marta; Cortes, Luísa; Rodrigues, Acácio G.; Cunha, Rodrigo A.; Gonçalves, Teresa

    2016-01-01

    Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density. PMID:27590517

  1. Preventive and chronic mineralocorticoid receptor antagonism is highly beneficial in obese SHHF rats

    PubMed Central

    Youcef, G; Olivier, A; Nicot, N; Muller, A; Deng, C; Labat, C; Fay, R; Rodriguez‐Guéant, R‐M; Leroy, C; Jaisser, F; Zannad, F; Lacolley, P; Vallar, L

    2016-01-01

    Background and Purpose Mineralocorticoid receptor (MR) activation contributes to heart failure (HF) progression. Its overactivity in obesity is thought to accelerate cardiac remodelling and HF development. Given that MR antagonists (MRA) are beneficial in chronic HF patients, we hypothesized that early MRA treatment may target obesity‐related disorders and consequently delay the development of HF. Experimental Approach Twenty spontaneously hypertensive HF dyslipidaemic obese SHHFcp/cp rats and 18 non‐dyslipidaemic lean SHHF+/+ controls underwent regular monitoring for their metabolic and cardiovascular phenotypes with or without MRA treatment [eplerenone (eple), 100 mg∙kg−1∙day−1] from 1.5 to 12.5 months of age. Key Results Eleven months of eple treatment in obese rats (SHHFcp/cpeple) reduced the obesity‐related metabolic disorders observed in untreated SHHFcp/cp rats by reducing weight gain, triglycerides and total cholesterol levels and by preserving adiponectinaemia. The MRA treatment predominantly preserved diastolic and systolic functions in obese rats by alleviating the eccentric cardiac hypertrophy observed in untreated SHHFcp/cp animals and preserving ejection fraction (70 ± 1 vs. 59 ± 1%). The MRA also improved survival independently of these pressure effects. Conclusion and Implications Early chronic eple treatment resulted in a delay in cardiac remodelling and HF onset in both SHHF+/+ and SHHFcp/cp rats, whereas SHHFcp/cp rats further benefited from the MRA treatment through a reduction in their obesity and dyslipidaemia. These findings suggest that preventive MRA therapy may provide greater benefits in obese patients with additional risk factors of developing cardiovascular complications. PMID:26990406

  2. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  3. Kappa-opioid receptor antagonism improves recovery from myocardial stunning in chronically instrumented dogs.

    PubMed

    Grosse Hartlage, Maike A; Theisen, Marc M; Monteiro de Oliveira, Nelson P; Van Aken, Hugo; Fobker, Manfred; Weber, Thomas P

    2006-10-01

    We tested the hypothesis that the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) improves recovery from myocardial stunning. Ten dogs were chronically instrumented for measurement of heart rate, left atrial, aortic and left ventricular pressure (LVP), and the maximum rate of LVP increase (LV dP/dt(max)) and decrease (LV dP/dt(max)), coronary blood flow velocity and myocardial wall-thickening fraction. Regional myocardial blood flow was determined with fluorescent microspheres. Catecholamine plasma levels were measured by high-performance liquid chromatography, and beta-endorphin and dynorphin plasma levels by radioimmunoassay. An occluder around the left anterior descending artery (LAD) allowed induction of a reversible LAD-ischemia. Animals underwent two experiments in a randomized crossover fashion on separate days: (a) 10 min LAD-occlusion (control experiment), (b) second ischemic episode 24 h after nor-BNI (2.5 mg/kg IV) (intervention). Dogs receiving nor-BNI showed an increase in wall-thickening fraction, LV dP/dt(max) and LV dP/dt(min) before ischemia and during the whole reperfusion (P < 0.05 versus control experiment). After nor-BNI pretreatment, dynorphin levels increased after induction of ischemia to a peak level of 15.1 +/- 3.6 pg/mL (P < 0.05 versus control experiment). The increase in plasma beta-endorphin during ischemia and early reperfusion was attenuated after nor-BNI. Compared with the control experiment, nor-BNI left global hemodynamics, regional myocardial blood flow, and catecholamine levels unchanged. In conclusion, nor-BNI improves recovery from myocardial stunning after regional myocardial ischemia in chronically instrumented dogs.

  4. Histamine H3 receptor antagonism by ABT-239 attenuates kainic acid induced excitotoxicity in mice.

    PubMed

    Bhowmik, Malay; Saini, Neeru; Vohora, Divya

    2014-09-18

    The multifaceted pathogenesis of temporal lobe epilepsy (TLE) offers a number of adjunctive therapeutic prospects. One such therapeutic strategy could be targeting H3 receptor (H3R) by selective H3R antagonists which are perceived to have antiepileptic and neuroprotective potential. Kainic acid (KA) induced seizure, a reliable model of TLE, triggers epileptogenic events resulting from initial neuronal death and ensuing recurring seizures. The present study aimed to determine whether pre-treatment with ABT-239, a novel H3R antagonist, and its combinations with sodium valproate (SVP) and TDZD-8 (glycogen synthase kinase-3β (GSK3β) inhibitor) can prevent the excitotoxic events in mice exposed to KA (10 mg/kg i.p.). ABT-239 (1 and 3 mg/kg i.p.) significantly attenuated KA-mediated behavioural and excitotoxic anomalies and restored altered expression of Bax, cleaved caspase-3, phospho-Akt (Ser473) and cAMP response element binding protein (CREB). Surprisingly, restoration of Bcl2 and phospho-GSK3β (Ser9) by ABT-239 did not reach the level of statistical significance. Co-administration of ABT-239 (1 and 3 mg/kg) with a sub-effective dose of SVP (150 mg/kg i.p.) yielded improved efficacy than when given alone. Similarly, low and high dose combinations of ABT-239 (1 and 3 mg/kg) with TDZD-8 (5 and 10 mg/kg i.p.) produced greater neuroprotection than any other treatment group. Our findings suggests a neuroprotective potential of ABT-239 and its combinations with SVP and TDZD-8 against KA-induced neurotoxicity, possibly mediated through in part each by modulating Akt/GSK3β and CREB pathways. The use of H3R antagonists as adjuvant in the treatment of human TLE might find potential utility, and can be pursued further.

  5. Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry.

    PubMed

    Jacobson, Kenneth A

    2013-12-20

    New insights into drug design are derived from the X-ray crystallographic structures of G protein-coupled receptors (GPCRs), and the adenosine receptors (ARs) are at the forefront of this effort. The 3D knowledge of receptor binding and activation promises to enable drug discovery for GPCRs in general, and specifically for the ARs. The predictability of modeling based on the X-ray structures of the A2AAR has been well demonstrated in the identification, design and modification of both known and novel AR agonists and antagonists. It is expected that structure-based design of drugs acting through ARs will provide new avenues to clinically useful agents.

  6. 2-Aralkynyl and 2-heteroalkynyl derivatives of adenosine-5'-N-ethyluronamide as selective A2a adenosine receptor agonists.

    PubMed

    Cristalli, G; Camaioni, E; Vittori, S; Volpini, R; Borea, P A; Conti, A; Dionisotti, S; Ongini, E; Monopoli, A

    1995-04-28

    A series of new 2-aralkynyl and 2-heteroaralkynyl derivatives of NECA were synthesized and studied in binding and functional assays to assess their potency for the A2a compared to A1 adenosine receptors. Compounds bearing an aromatic or heteroaromatic ring, conjugated to the triple bond, showed generally weaker activity at the A2a receptor and lower selectivity (A2a vs A1) than the alkylakynyl derivatives previously reported. However, the (4-formylphenyl)-ethynyl derivative 17 showed affinity in the low nanomolar range and high selectivity (about 160-fold) for the A2a receptor. The presence of heteroatoms improved vasorelaxant activity, the 2-thiazolylethynyl derivative 30 being the most potent in the series. Introduction of methylene groups between the triple bond and the phenyl ring favored the A2a binding affinity, and the 5-phenyl-1-pentynyl derivative 24 was found to be highly potent and selective (about 180-fold) at A2a receptors. With regard to antiplatelet activity, the presence of aromatic or heteroaromatic rings decreased potency in comparison with that of NECA and of N-ethyl-1'-deoxy-1'-(6-amino-2-hexynyl-9H-purin-9-yl)-beta-D-ribofura nuronamide (HENECA). Introduction of a methylene group was effective in increasing antiaggregatory potency only when this group is linked to a heteroatom (31-35). From these data and those previously reported, the structure-activity relationships derived for the 2-alkynyl-substituted ribose uronamides would indicate that potentiation of A2a receptor affinity could be obtained by aromatic rings not conjugated with the triple bond or by heteroaromatic groups. As for A2a receptors on platelets, the presence of aromatic rings, either conjugated or unconjugated to the triple bond, is detrimental for the antiaggregatory activity. However, the introduction of polar groups alpha to the triple bond strongly increases the potency when steric hindrance is avoided. Some of the compounds included in this series retain interesting

  7. Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease.

    PubMed

    Elgueta, Daniela; Aymerich, María S; Contreras, Francisco; Montoya, Andro; Celorrio, Marta; Rojo-Bustamante, Estefanía; Riquelme, Eduardo; González, Hugo; Vásquez, Mónica; Franco, Rafael; Pacheco, Rodrigo

    2017-02-01

    Neuroinflammation involves the activation of glial cells, which is associated to the progression of neurodegeneration in Parkinson's disease. Recently, we and other researchers demonstrated that dopamine receptor D3 (D3R)-deficient mice are completely refractory to neuroinflammation and consequent neurodegeneration associated to the acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we examined the therapeutic potential and underlying mechanism of a D3R-selective antagonist, PG01037, in mice intoxicated with a chronic regime of administration of MPTP and probenecid (MPTPp). Biodistribution analysis indicated that intraperitoneally administered PG01037 crosses the blood-brain barrier and reaches the highest concentration in the brain 40 min after the injection. Furthermore, the drug was preferentially distributed to the brain in comparison to the plasma. Treatment of MPTPp-intoxicated mice with PG01037 (30 mg/kg, administrated twice a week for five weeks) attenuated the loss of dopaminergic neurons in the substantia nigra pars compacta, as evaluated by stereological analysis, and the loss of striatal dopaminergic terminals, as determined by densitometric analyses of tyrosine hydroxylase and dopamine transporter immunoreactivities. Accordingly, the treatment resulted in significant improvement of motor performance of injured animals. Interestingly, the therapeutic dose of PG01037 exacerbated astrogliosis and resulted in increased ramification density of microglial cells in the striatum of MPTPp-intoxicated mice. Further analyses suggested that D3R expressed in astrocytes favours a beneficial astrogliosis with anti-inflammatory consequences on microglia. Our findings indicate that D3R-antagonism exerts a therapeutic effect in parkinsonian animals by reducing the loss of dopaminergic neurons in the nigrostriatal pathway, alleviating motor impairments and modifying the pro-inflammatory phenotype of glial cells. Copyright

  8. Opioid Receptor Antagonism in the Nucleus Accumbens Fails to Block the Expression of Sugar-Conditioned Flavor Preferences in Rats

    PubMed Central

    Bernal, Sonia Y.; Touzani, Khalid; Gerges, Meri; Abayev, Yana; Sclafani, Anthony; Bodnar, Richard J.

    2009-01-01

    In our prior studies, systemic administration of the opioid receptor antagonist naltrexone (NTX) did not block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing intake. Because opioid signaling in the nucleus accumbens (NAc) is implicated in food reward, this study determined if NTX administered into the NAc would block the expression of sugar-conditioned preferences. In Experiment 1, food-restricted rats with bilateral NAc shell or core cannulae were trained to drink a fructose (8%) + saccharin (0.2%) solution mixed with one flavor (CS+) and a less-preferred 0.2% saccharin solution mixed with another flavor (CS−) during one-bottle sessions. Two-bottle tests with the two flavors mixed in saccharin solutions occurred 10 min following total bilateral NAc shell or core doses of 0, 1, 25 and 50 μg of NTX. The rats preferred the CS+ over CS− following vehicle (80%) and all NTX doses in the shell and core. The CS+ preference was reduced to 64% and 72% by 50 μg NTX in the shell and core, although only the core effect was significant. In Experiment 2, food-restricted rats were trained to drink one flavored saccharin solution (CS+) paired with an intragastic (IG) glucose (8%) infusion and a second flavored saccharin solution (CS−) paired with an IG water infusion. In subsequent two-bottle tests, the rats displayed significant preferences for the CS+ (81-91%) that were unaltered by any NTX dose in the shell or core. CS+ intake, however, was reduced by NTX in the shell, but not the core. These data indicate that accumbal opioid antagonism slightly attenuated, but did not block the expression of sugar-conditioned flavor preferences. Therefore, while opioid drugs can have potent effects on sugar intake they appear less effective in altering sugar-conditioned flavor preferences. PMID:20006967

  9. Opioid receptor antagonism in the nucleus accumbens fails to block the expression of sugar-conditioned flavor preferences in rats.

    PubMed

    Bernal, Sonia Y; Touzani, Khalid; Gerges, Meri; Abayev, Yana; Sclafani, Anthony; Bodnar, Richard J

    2010-03-01

    In our prior studies, systemic administration of the opioid receptor antagonist naltrexone (NTX) did not block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing intake. Because opioid signaling in the nucleus accumbens (NAc) is implicated in food reward, this study determined if NTX administered into the NAc would block the expression of sugar-conditioned preferences. In Experiment 1, food-restricted rats with bilateral NAc shell or core cannulae were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+) and a less-preferred 0.2% saccharin solution mixed with another flavor (CS-) during one-bottle sessions. Two-bottle tests with the two flavors mixed in saccharin solutions occurred 10 min following total bilateral NAc shell or core doses of 0, 1, 25 and 50 microg of NTX. The rats preferred the CS+ over CS- following vehicle (80%) and all NTX doses in the shell and core. The CS+ preference was reduced to 64% and 72% by 50 microg NTX in the shell and core, although only the core effect was significant. In Experiment 2, food-restricted rats were trained to drink one flavored saccharin solution (CS+) paired with an intragastic (IG) glucose (8%) infusion and a second flavored saccharin solution (CS-) paired with an IG water infusion. In subsequent two-bottle tests, the rats displayed significant preferences for the CS+ (81-91%) that were unaltered by any NTX dose in the shell or core. CS+ intake, however, was reduced by NTX in the shell, but not the core. These data indicate that accumbal opioid antagonism slightly attenuated, but did not block the expression of sugar-conditioned flavor preferences. Therefore, while opioid drugs can have potent effects on sugar intake they appear less effective in altering sugar-conditioned flavor preferences. (c) 2009 Elsevier Inc. All rights reserved.

  10. Peroxisome Proliferator Activated Receptor-γ Activation Inhibits Tumor Metastasis by Antagonizing Smad3 Mediated Epithelial Mesenchymal Transition

    PubMed Central

    Reka, Ajaya Kumar; Kurapati, Himabindu; Narala, Venkata R; Bommer, Guido; Chen, Jun; Standiford, Theodore J.; Keshamouni, Venkateshwar G.

    2011-01-01

    Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, and resistance to apoptosis, evading immune surveillance and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here we demonstrate that activation of peroxisome proliferator activated receptor (PPAR) -γ inhibits TGF-β-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function. Activation of PPAR-γ by synthetic ligands (Troglitazone and Rosiglitazone) or by a constitutively-active form of PPAR-γ prevents TGF-β-induced loss of E-cadherin expression and inhibited the induction of mesenchymal markers (vimentin, N-cadherin, fibronectin) and MMPs. Consistently, activation of PPAR-γ also inhibited EMT-induced migration and invasion of lung cancer cells. Furthermore, effects of PPAR-γ ligands were attenuated by siRNA mediated knockdown of PPAR-γ, indicating that the ligand induced responses are PPAR-γ dependent. Selective knockdown of Smad2 and Smad3 by siRNA demonstrated that TGF-β-induced EMT is Smad3 dependent in lung cancer cells. Activation of PPAR-γ inhibits TGF-β-induced Smad transcriptional activity but had no effect on the phosphorylation or nuclear translocation of Smads. Consistently PPAR-γ activation prevented TGF-ß-induced transcriptional repression of E-cadherin promoter and inhibited transcriptional activation of N-cadherin promoter. Finally, treatment of mice with troglitazone or knockdown of Smad3 in tumor cells both significantly inhibited TGF-β-induced experimental metastasis in Scid-Beige mice. Together, with the low toxicity profile of PPAR-γ ligands, our data demonstrates that these ligands may serve as potential therapeutic agents to inhibit metastasis. PMID:21159608

  11. Antagonism of Metabotropic Glutamate 1 Receptors Attenuates Behavioral Effects of Cocaine and Methamphetamine in Squirrel Monkeys

    PubMed Central

    Platt, Donna M.; Spealman, Roger D.

    2012-01-01

    Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to

  12. Antagonism of metabotropic glutamate 1 receptors attenuates behavioral effects of cocaine and methamphetamine in squirrel monkeys.

    PubMed

    Achat-Mendes, Cindy; Platt, Donna M; Spealman, Roger D

    2012-10-01

    Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to

  13. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy.

    PubMed

    Sang, Jian-Feng; Shi, Xiao-Lei; Han, Bing; Huang, Xu; Huang, Tao; Ren, Hao-Zhen; Ding, Yi-Tao

    2016-04-28

    To study the therapeutic effects of mesenchymal stem cells (MSCs) and an interleukin-1 receptor antagonist (IL-1Ra) in acute liver failure. Chinese experimental miniature swine (15 ± 3 kg, 5-8 mo) were obtained from the Laboratory Animal Centre of the Affiliated Drum Tower Hospital of Nanjing University Medical School. Acute liver failure was induced via 85% hepatectomy, and animals were treated by MSC transplantation combined with IL-1Ra injection. Blood samples were collected for hepatic function analysis, and the living conditions and survival time were recorded. Liver injury was histologically analyzed. Hepatic cell regeneration and apoptosis were studied by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. The levels of protein kinase B and nuclear factor-κB expression were analyzed by Western blotting. MSCs were infected with a lentivirus for expression of green fluorescent protein (GFP) for subsequent identification; 97.3% of the MSCs were positive for GFP as assessed by flow cytometry. Additional flow cytometric analysis of cell surface marker expression demonstrated that > 90% of GFP-expressing MSCs were also positive for CD29, CD44, and CD90, indicating that most of these cells expressed typical markers of MSCs, and the population of MSCs was almost pure. Transplantation of MSCs in combination with 2 mg/kg IL-1Ra therapy significantly improved survival time compared to the acute liver failure model group (35.3 ± 6.7 d vs 17.3 ± 5.5 d, P < 0.05). Combined therapy also promoted improvement in serum inflammatory cytokines and biochemical conditions. The observed hepatic histopathologic score was significantly lower in the group with combined therapy than in the model group (3.50 ± 0.87 vs 8.17 ± 1.26, P < 0.01). In addition, liver cell apoptosis in the combined therapy group was significantly inhibited (18.1 ± 2.1% vs 70.8 ± 3.7%, P < 0.01), and hepatic cell regeneration increased. A significant

  14. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism.

    PubMed

    Aleksandrova, Lily R; Phillips, Anthony G; Wang, Yu Tian

    2017-01-31

    The molecular mechanisms underlying major depressive disorder remain poorly understood, and current antidepressant treatments have many shortcomings. The recent discovery that a single intravenous infusion of ketamine at a subanesthetic dose had robust, rapid and sustained antidepressant effects in individuals with treatment-resistant depression inspired tremendous interest in investigating the molecular mechanisms mediating ketamine's clinical efficacy as well as increased efforts to identify new targets for antidepressant action. We review the clinical utility of ketamine and recent insights into its mechanism of action as an antidepressant, including the roles of N-methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor upregulation, activation of downstream synaptogenic signalling pathways and the production of an active ketamine metabolite, hydroxynorketamine. Emerging knowledge of the molecular mechanisms underlying both ketamine's positive therapeutic and detrimental side effects will aid the development of a new generation of much-needed superior antidepressant agents.

  15. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  16. Novel 8-(furan-2-yl)-3-benzyl thiazolo [5,4-e][1,2,4] triazolo [1,5-c] pyrimidine-2(3H)-thione as selective adenosine A(2A) receptor antagonist.

    PubMed

    Barodia, Sandeep Kumar; Mishra, Chandra Bhushan; Prakash, Amresh; Senthil Kumar, J B; Kumari, Namrata; Luthra, Pratibha Mehta

    2011-01-13

    Adenosine A(2A) receptor (A(2A)R) antagonists have emerged as potential drug candidates to alleviate progression and symptoms of Parkinson's disease (PD), and reduce the dopaminergic side effects. The synthesis of novel compound 8-(furan-2-yl)-3-benzyl thiazolo [5,4-e][1,2,4] triazolo [1,5-c] pyrimidine-2-(3H)-thione (BTTP) was carried out to evaluate the potential of BTTP as A(2A)R antagonist using SCH58261, a standard A(2A)R antagonist. The strong interaction of BTTP with A(2A)R (ΔG=-12.46kcal/mol and K(i)=0.6nM) in silico analysis was confirmed by radioligand receptor binding studies showing high affinity (K(i)=0.004nM) and selectivity with A(2A)R (A(2A)/A(1)=1155-fold). The effect of CGS21680 (selective A(2A)R agonist) induced cAMP concentration (0.1pmol/ml) in HEK293 cells was antagonized with BTTP (0.065pmol/ml) and SCH58261 (0.075pmol/ml). Furthermore, BTTP pre-treated (5, 10 and 20mg/kg) haloperidol-induced mice demonstrated significant attenuation in catalepsy and akinesia. BTTP induced elevation in the striatal dopamine concentration (2.90μM/mg of tissue) was comparable to SCH58261 (2.92μM/mg of tissue) at the dose of 10mg/kg. The results firmly articulate that BTTP possesses potential A(2A)R antagonist activity and can be further explored for the treatment of PD. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.

  18. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.

  19. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  20. The GS Protein-coupled A2a Adenosine Receptor Controls T Cell Help in the Germinal Center.

    PubMed

    Abbott, Robert K; Silva, Murillo; Labuda, Jasmine; Thayer, Molly; Cain, Derek W; Philbrook, Phaethon; Sethumadhavan, Shalini; Hatfield, Stephen; Ohta, Akio; Sitkovsky, Michail

    2017-01-27

    T follicular helper (TFH) cells have been shown to be critically required for the germinal center (GC) reaction where B cells undergo class switch recombination and clonal selection to generate high affinity neutralizing antibodies. However, detailed knowledge of the physiological cues within the GC microenvironment that regulate T cell help is limited. The cAMP-elevating, Gs protein-coupled A2a adenosine receptor (A2aR) is an evolutionarily conserved receptor that limits and redirects cellular immunity. However, the role of A2aR in humoral immunity and B cell differentiation is unknown. We hypothesized that the hypoxic microenvironment within the GC facilitates an extracellular adenosine-rich milieu, which serves to limit TFH frequency and function, and also promotes immunosuppressive T follicular regulatory cells (TFR). In support of this hypothesis, we found that following immunization, mice lacking A2aR (A2aRKO) exhibited a significant expansion of T follicular cells, as well as increases in TFH to TFR ratio, GC T cell frequency, GC B cell frequency, and class switching of GC B cells to IgG1. Transfer of CD4 T cells from A2aRKO or wild type donors into T cell-deficient hosts revealed that these increases were largely T cell-intrinsic. Finally, injection of A2aR agonist, CGS21680, following immunization suppressed T follicular differentiation, GC B cell frequency, and class switching of GC B cells to IgG1. Taken together, these observations point to a previously unappreciated role of GS protein-coupled A2aR in regulating humoral immunity, which may be pharmacologically targeted during vaccination or pathological states in which GC-derived autoantibodies contribute to the pathology.

  1. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor

    NASA Astrophysics Data System (ADS)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-01

    Water molecules inside G-protein coupled receptor have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal waters in GPCR activity, we studied A$_{\\text{2A}}$ adenosine receptor using $\\mu$sec-molecular dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times slower than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from $\\sim\\mathcal{O}(10^2)$ psec to $\\sim\\mathcal{O}(10^2)$ nsec. Especially, water molecules, exhibiting ultraslow relaxation ($\\sim\\mathcal{O}(10^2)$ nsec) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow waters in the GPCR activation.

  2. Increased non-rapid eye movement sleep by cocaine withdrawal: possible involvement of A2A receptors.

    PubMed

    Yang, Shu-Long; Han, Jin-Yi; Kim, Yun-Bae; Nam, Sang-Yoon; Song, Sukgil; Hong, Jin Tae; Oh, Ki-Wan

    2011-02-01

    This study attempted to clarify whether cocaine withdrawal altered sleep architecture and the role of adenosine receptors in this process. Cocaine (20 mg/kg) was administered subcutaneously once per day for 7 days to rat implanted with sleep/wake recording electrode. Polygraphic signs of undisturbed sleep/wake activities were recorded for 24 h before cocaine administration (basal recording as control); withdrawal-day 1 (after 1 day of repeated cocaine administration), withdrawal-day 8 (after 8 days of repeated cocaine administration), and withdrawal-day 14 (after 14 days of repeated cocaine administration), respectively. On cocaine withdrawal-day 1, wakefulness was significantly increased, total sleep was decreased, non-rapid eye movement sleep was markedly reduced, and rapid eye movement sleep was enhanced. Sleep/wake cycles were also increased on cocaine withdrawal day 1. However, non-rapid eye movement sleep was increased on withdrawal-day 8 and 14, whereas rapid eye movement sleep was decreased and no significant changes were observed in the total sleep and sleep/wake cycles during these periods. Adenosine A(2A) receptors expression was increased on withdrawal-day 8 and 14, whereas A(1) receptors levels were reduced after 14 days of withdrawal and the A(2B) receptors remained unchanged. Our findings suggest that alterations of sleep and sleep architecture during cocaine subacute and subchronic withdrawals after repeated cocaine administration may be partially involved in A(2A) receptors over-expression in the rat hypothalamus.

  3. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example.

    PubMed

    Zeng, Lingxiao; Guan, Mengxin; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren

    2015-12-01

    Homology modeling has been applied to fill in the gap in experimental G protein-coupled receptors structure determination. However, achievement of G protein-coupled receptors homology models with ligand selectivity remains challenging due to structural diversity of G protein-coupled receptors. In this work, we propose a novel strategy by integrating pharmacophore and membrane molecular dynamics (MD) simulations to improve homology modeling of G protein-coupled receptors with ligand selectivity. To validate this integrated strategy, the A2A adenosine receptor (A2A AR), whose structures in both active and inactive states have been established, has been chosen as an example. We performed blind predictions of the active-state A2A AR structure based on the inactive-state structure and compared the performance of different refinement strategies. The blind prediction model combined with the integrated strategy identified ligand-receptor interactions and conformational changes of key structural elements related to the activation of A2 A AR, including (i) the movements of intracellular ends of TM3 and TM5/TM6; (ii) the opening of ionic lock; (iii) the movements of binding site residues. The integrated strategy of pharmacophore with molecular dynamics simulations can aid in the optimization in the identification of side chain conformations in receptor models. This strategy can be further investigated in homology modeling and expand its applicability to other G protein-coupled receptor modeling, which should aid in the discovery of more effective and selective G protein-coupled receptor ligands. © 2015 John Wiley & Sons A/S.

  4. Adenosine A(2A) receptor activation prevents progressive kidney fibrosis in a model of immune-associated chronic inflammation.

    PubMed

    Garcia, Gabriela E; Truong, Luan D; Chen, Jiang-Fan; Johnson, Richard J; Feng, Lili

    2011-08-01

    Crescentic glomerulonephritis (GN) in Wistar-Kyoto rats progresses to lethal kidney failure by macrophage (Mφ)-mediated mechanisms. Mφs in nephritic glomeruli express adenosine A(2A) receptors (A(2A)Rs), the activation of which suppresses inflammation. Here, we pharmacologically activated the A(2A)Rs with a selective agonist, CGS 21680, and inactivated them with a selective antagonist, ZM241385, to test the effects on established GN. When activation was delayed until antiglomerular basement membrane GN and extracellular matrix deposition were established, glomerular Mφ infiltration was reduced by 83%. There was also a marked improvement in glomerular lesion histology, as well as decreased proteinuria. A(2A)R activation significantly reduced type I, III, and IV collagen deposition, and E-cadherin expression was restored in association with a reduction of α-smooth muscle actin-positive myofibroblasts in the interstitium and glomeruli. In contrast, pharmacological inactivation of A(2A)Rs increased glomerular crescent formation, type I, III, and IV collagen expression, and enhanced E-cadherin loss. Activation of A(2A)Rs suppressed the expression of the Mφ-linked glomerular damage mediators, transforming growth factor-β, osteopontin-1, thrombospondin-1, and tissue inhibitor of metalloproteinase-1. Thus, A(2A)R activation can arrest GN and prevent progressive fibrosis in established pathological lesions.

  5. Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism.

    PubMed

    Zanos, Panos; Wright, Sherie R; Georgiou, Polymnia; Yoo, Ji Hoon; Ledent, Catherine; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2014-04-01

    There is mounting evidence that the neuropeptide oxytocin is a possible candidate for the treatment of drug addiction. Oxytocin was shown to reduce methamphetamine self-administration, conditioned place-preference, hyperactivity and reinstatement in rodents, highlighting its potential for the management of methamphetamine addiction. Thus, we hypothesised that the central endogenous oxytocinergic system is dysregulated following chronic methamphetamine administration. We tested this hypothesis by examining the effect of chronic methamphetamine administration on oxytocin receptor density in mice brains with the use of quantitative receptor autoradiographic binding. Saline (4ml/kg/day, i.p.) or methamphetamine (1mg/kg/day, i.p.) was administered daily for 10 days to male, CD1 mice. Quantitative autoradiographic mapping of oxytocin receptors was carried out with the use of [(125)I]-vasotocin in brain sections of these animals. Chronic methamphetamine administration induced a region specific upregulation of oxytocin receptor density in the amygdala and hypothalamus, but not in the nucleus accumbens and caudate putamen. As there is evidence suggesting an involvement of central adenosine A2A receptors on central endogenous oxytocinergic function, we investigated whether these methamphetamine-induced oxytocinergic neuroadaptations are mediated via an A2A receptor-dependent mechanism. To test this hypothesis, autoradiographic oxytocin receptor binding was carried out in brain sections of male CD1 mice lacking A2A receptors which were chronically treated with methamphetamine (1mg/kg/day, i.p. for 10 days) or saline. Similar to wild-type animals, chronic methamphetamine administration induced a region-specific upregulation of oxytocin receptor binding in the amygdala and hypothalamus of A2A receptor knockout mice and no genotype effect was observed. These results indicate that chronic methamphetamine use can induce profound neuroadaptations of the oxytocinergic receptor

  6. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor.

    PubMed

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos

    2015-11-01

    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  7. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  8. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  9. Blueberry treatment antagonizes C-2 ceramide-induced stress signaling in muscarinic receptor-transfected COS-7 cells.

    PubMed

    Joseph, James A; Bielinski, Donna F; Fisher, Derek R

    2010-03-24

    Previous research has shown that muscarinic receptors (MAChRs) show loss of sensitivity in aging and AD and are selectively sensitive to oxidative stress (OS). Thus, COS-7 cells transfected (tn) with MAChR subtype M1 show > OS sensitivity [as reflected in the ability of the cell to extrude or sequester Ca(2+) following depolarization (recovery) by oxotremorine (oxo) and exposure to dopamine (DA) or amyloid beta (Abeta)] than M3-transfected COS-7 cells. Blueberry (BB) extract pretreatment prevented these deficits. Research has also indicated that C2 ceramide (Cer) has several age-related negative cellular effects (e.g., OS). When these cells were treated with Cer, the significant decrements in the ability of both types of tn cells to initially respond to oxo were antagonized by BB treatment. Present experiments assessed signaling mechanisms involved in BB protection in the presence or absence of DA, Abeta, and/or Cer in this model. Thus, control or BB-treated M1 and M3 tn COS-7 cells were exposed to DA or Abeta(42) in the presence or absence of Cer. Primarily, results showed that the effects of DA or Abeta(42) were to increase stress (e.g., PKCgamma, p38MAPK) and protective signals (e.g., pMAPK). Cer also appeared to raise several of the stress and protective signals in the absence of the other stressors, including PKCgamma, pJNK, pNfkappaB, p53, and p38MAPK, while not significantly altering MAPK, or Akt. pArc was, however, increased by Cer in both types of transfected cells. The protective effects of BB when combined with Cer generally showed greater protection when BB extract was applied prior to Cer, except for one protective signal (pArc) where a greater effect was seen in the M3 cells exposed to Abeta(42.) In the absence of the Abeta(42) or DA, for several of the stress signals (e.g., pNfkappaB, p53), BB lowered their Cer-induced increases in M1- and M3-transfected cells. We are exploring these interactions further, but it is clear that increases in ceramide

  10. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    PubMed Central

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  11. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket

    PubMed Central

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K.

    2017-01-01

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl d-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease. PMID:28167788

  12. The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone

    PubMed Central

    Khayat, Maan T.

    2017-01-01

    Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118

  13. Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers

    PubMed Central

    Ferré, Sergi; Woods, Amina S.; Navarro, Gemma; Aymerich, Marisol; Lluís, Carme; Franco, Rafael

    2009-01-01

    The adenosine A2A-dopamine D2 receptor heteromer is one of the most studied receptor heteromers. It has important implications for basal ganglia function and pathology. Recent studies using Bioluminescence and Sequential Resonance Energy Transfer techniques shed light on the role of Ca2+ in the modulation of the quaternary structure of the A2A-D2 receptor heteromer, which was found to depend on the binding of calmodulin (CaM) to the carboxy terminus of the A2A receptor in the A2A-D2 receptor heteromer. Importantly, the changes in quaternary structure correlate with changes in function. A Ca2+/CaM-dependent modulation of MAPK signaling upon agonist treatment could only be observed in cells expressing A2A-D2 receptor heteromers. These studies provide a first example of a Ca2+-mediated modulation of the quaternary structure and function of a receptor heteromer. PMID:19896897

  14. Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; Bajorath, Jürgen

    2016-06-01

    We report an investigation designed to explore alternative approaches for ranking of docking poses in the search for antagonists of the adenosine A2A receptor, an attractive target for structure-based virtual screening. Calculation of 3D similarity of docking poses to crystallographic ligand(s) as well as similarity of receptor-ligand interaction patterns was consistently superior to conventional scoring functions for prioritizing antagonists over decoys. Moreover, the use of crystallographic antagonists and agonists, a core fragment of an antagonist, and a model of an agonist placed into the binding site of an antagonist-bound form of the receptor resulted in a significant early enrichment of antagonists in compound rankings. Taken together, these findings showed that the use of binding modes of agonists and/or antagonists, even if they were only approximate, for similarity assessment of docking poses or comparison of interaction patterns increased the odds of identifying new active compounds over conventional scoring.

  15. Sinomenine protects against lipopolysaccharide-induced acute lung injury in mice via adenosine A(2A) receptor signaling.

    PubMed

    Li, Jun; Zhao, Li; He, Xie; Zeng, Yi-Jun; Dai, Shuang-Shuang

    2013-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A(2A) receptor (A(2A)R) expression, and the protective effect of SIN was abolished in A(2A)R knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A(2A)R by SIN and showed that A(2A)R-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A(2A)R-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI.

  16. Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Smith, Jessica L.; Stein, David A.; Shum, David; Fischer, Matthew A.; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A.; Früh, Klaus

    2014-01-01

    ABSTRACT Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other

  17. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling.

    PubMed

    Smith, Jessica L; Stein, David A; Shum, David; Fischer, Matthew A; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A; Früh, Klaus; Hirsch, Alec J

    2014-05-01

    Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same

  18. Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics

    PubMed Central

    Hothersall, J. Daniel; Guo, Dong; Sarda, Sunil; Sheppard, Robert J.; Chen, Hongming; Keur, Wesley; Waring, Michael J.; IJzerman, Adriaan P.; Hill, Stephen J.; Dale, Ian L.

    2017-01-01

    The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy. PMID:27803241

  19. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    PubMed

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors.

  20. Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses.

    PubMed

    Machado, Nuno J; Simões, Ana Patrícia; Silva, Henrique B; Ardais, Ana Paula; Kaster, Manuella P; Garção, Pedro; Rodrigues, Diana I; Pochmann, Daniela; Santos, Ana Isabel; Araújo, Inês M; Porciúncula, Lisiane O; Tomé, Ângelo R; Köfalvi, Attila; Vaugeois, Jean-Marie; Agostinho, Paula; El Yacoubi, Malika; Cunha, Rodrigo A; Gomes, Catarina A

    2017-03-01

    Caffeine prophylactically prevents mood and memory impairments through adenosine A2A receptor (A2AR) antagonism. A2AR antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now explored if chronic (4 weeks) caffeine consumption (0.3 g/L) reverts mood and memory impairment in helpless mice (HM, 12 weeks old), a bred-based model of depression. HM displayed higher immobility in the tail suspension and forced swimming tests, greater anxiety in the elevated plus maze, and poorer memory performance (modified Y-maze and object recognition). HM also had reduced density of synaptic (synaptophysin, SNAP-25), namely, glutamatergic (vGluT1; -22 ± 7 %) and GABAergic (vGAT; -23 ± 8 %) markers in the hippocampus. HM displayed higher A2AR density (72 ± 6 %) in hippocampal synapses, an enhanced facilitation of hippocampal glutamate release by the A2AR agonist, CGS21680 (30 nM), and a larger LTP amplitude (54 ± 8 % vs. 21 ± 5 % in controls) that was restored to control levels (30 ± 10 %) by the A2AR antagonist, SCH58261 (50 nM). Notably, caffeine intake reverted memory deficits and reverted the loss of hippocampal synaptic markers but did not affect helpless or anxiety behavior. These results reinforce the validity of HM as an animal model of depression by showing that they also display reference memory deficits. Furthermore, caffeine intake selectively reverted memory but not mood deficits displayed by HM, which are associated with an increased density and functional impact of hippocampal A2AR controlling synaptic glutamatergic function.

  1. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    PubMed Central

    Fathalla, Ahmed M.; Soliman, Amira M.; Ali, Mohamed H.; Moustafa, Ahmed A.

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  2. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson's disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the antiparkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA.

  3. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias

    PubMed Central

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson’s disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the anti-parkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2 receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA. PMID:26639458

  4. Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala.

    PubMed

    López-Cruz, Laura; Carbó-Gas, Maria; Pardo, Marta; Bayarri, Pilar; Valverde, Olga; Ledent, Catherine; Salamone, John D; Correa, Mercè

    2017-03-15

    Blockade of adenosine A2A receptors can potentiate motivation to work for natural reinforcers such as food. Conspecific interaction is a potent natural reinforcer in social animals that can be manifested as preference for social exploration versus other sources of novel stimulation. Deficiencies in this type of motivated behavior (social withdrawal) have been seen in several pathologies such as autism and depression. However, the role of A2A receptors in motivation for social interaction has not been widely explored. Social interaction paradigms evaluate the natural preference of animals for exploring other conspecifics, and the ability to differentiate between familiar versus novel ones. Anxiety is one of the factors that can induce avoidance of social interaction. In the present study, adenosine A2A knockout (A2AKO) and wild-type (WT) mice were assessed for social and anxiety-related behaviors. c-Fos immunoreactivity was evaluated as a measure of neuronal activation in brain areas involved in different aspects of motivation and emotional processes. Although A2AKO mice showed an anxious profile, they displayed higher levels of sociability and were less sensitive to social novelty. WT mice displayed a typical pattern of social recognition 24h later, but not A2AKO mice, which explored equally both conspecifics. There were no differences between strains in aggressiveness, perseverance or social odor preferences. c-Fos immunoreactivity in A2AKO mice was higher in anterior cingulate and amygdala compared to WT mice. Thus, A2A receptors appear to be potential targets for the improvement of pathologies related to social function.

  5. Attenuation of gastric mucosal inflammation induced by indomethacin through activation of the A2A adenosine receptor in rats

    PubMed Central

    Koizumi, Shigeto; Otaka, Michiro; Jin, Mario; Linden, Joel; Watanabe, Sumio; Ohnishi, Hirohide

    2010-01-01

    Background Nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin induce gastric mucosal lesions in part by the activation of inflammatory cells and the production of proinflammatory cytokines. The activation of adenosine A2A receptors inhibits inflammation by increasing cyclic AMP in leukocytes and reducing both the production of various proinflammatory cytokines and neutrophil chemotaxis. The aim of present study was to determine whether administration of an orally active adenosine A2A receptor agonist (4-[3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-piperidine-1-carboxylic acid methyl ester; ATL-313) ameliorated indomethacin-induced gastric mucosal lesions in rats. Methods Gastric lesions were produced by oral gavage of indomethacin (30 mg/kg). ATL-313 (1–10 μg/kg) was given orally just before the indomethacin administration. Results The ulcer index induced by indomethacin was significantly (>50%) reduced by pretreatment with ATL-313 and this effect was blocked completely by the addition of equimolar ZM241385, a selective A2A receptor antagonist. The gastric content of myeloperoxidase (MPO) and proinflammatory cytokines was significantly reduced by 10 μg/kg ATL-313, but gastric mucosal prostaglandin 2 (PGE2) was not affected. Conclusion We conclude that ATL-313 does not inhibit the mucosal damaging effect of indomethacin, but it does block secondary injury due to stomach inflammation. A2A agonists may represent a class of new therapeutic drugs for NSAID-induced gastric ulcers. PMID:19333545

  6. Effects of neurokinin-1 receptor agonism and antagonism in the rostral ventromedial medulla of rats with acute or persistent inflammatory nociception.

    PubMed

    Hamity, M V; White, S R; Hammond, D L

    2010-02-03

    The rostral ventromedial medulla (RVM), a central relay in the bulbospinal pathways that modulate nociception, contains high concentrations of substance P (Sub P) and neurokinin-1 (NK1) receptors. However, the function of Sub P in the RVM is poorly understood. This study characterized the actions of Sub P in the RVM in the absence of injury and then used two NK1 receptor antagonists, L-733,060 and L-703, 606, to probe the role of endogenously released Sub P in the development and maintenance of persistent inflammatory nociception of immune or neurogenic origin. In uninjured rats, microinjection of Sub P in the RVM produced a transient thermal antinociception that was attenuated by pretreatment with L-733,060 or L-703,606. It did not alter threshold to withdrawal from tactile stimulation with von Frey filaments. Microinjection of the antagonists alone did not alter paw withdrawal latency (PWL) or threshold suggesting that Sub P is not tonically released in the RVM in the absence of injury. However, microinjection of either antagonist in the RVM was sufficient to reverse heat hyperalgesia 4 h, 4 days or 2 weeks after intraplantar (ipl) injection of complete Freund's adjuvant (CFA). Antagonism of NK1 receptors in the RVM did not prevent or reverse tactile hypersensitivity induced by CFA, but did attenuate that produced by capsaicin. NK1 receptor antagonism did not prevent the development of thermal hyperalgesia, tactile hypersensitivity or spontaneous pain behaviors induced by mustard oil (MO). The results suggest that Sub P has bimodal actions in the RVM and that following inflammatory injury, it can play a critical role as a pronociceptive agent in the development and maintenance of hyperalgesia and tactile hypersensitivity. However, its actions are highly dependent on the stimulus modality and the type of injury, and this may be an additional basis for the poor efficacy of NK1 receptor antagonists in clinical trials.

  7. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids.

    PubMed

    Carriba, Paulina; Ortiz, Oskar; Patkar, Kshitij; Justinova, Zuzana; Stroik, Jessica; Themann, Andrea; Müller, Christa; Woods, Anima S; Hope, Bruce T; Ciruela, Francisco; Casadó, Vicent; Canela, Enric I; Lluis, Carme; Goldberg, Steven R; Moratalla, Rosario; Franco, Rafael; Ferré, Sergi

    2007-11-01

    The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation. Accordingly, blockade of A2A receptors counteracted the motor depressant effects produced by the intrastriatal administration of a cannabinoid CB1 receptor agonist. These biochemical and behavioral findings demonstrate that the profound motor effects of cannabinoids depend on physical and functional interactions between striatal A2A and CB1 receptors.

  8. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington's disease mice.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Armida, Monica; Chiodi, Valentina; Pézzola, Antonella; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-04-06

    The effect of chronic treatment with the selective adenosine A(2A) receptor agonist CGS 21680 on N-Methyl-d-Aspartate (NMDA) receptor function and expression has been studied in the striatum and cortex of R6/2 mice, a genetic mouse model of Huntington's disease (HD). Starting from 8weeks of age, R6/2 and wild type (WT) mice were treated daily with CGS 21680 (0.5mg/kg i.p.) for 3weeks and the expression levels of NMDA receptor subunits were then evaluated. In addition, to study CGS 21680-induced changes in NMDA receptor function, NMDA-induced toxicity in corticostriatal slices from both R6/2 and WT mice was investigated. We found that CGS 21680 increased NR2A subunit expression and the NR2A/NR2B ratio in the cortex of R6/2 mice, having no effect in WT mice. In the striatum, CGS 21680 reduced NR1 expression in both R6/2 and WT mice while the effect on NR2A and NR2/NR2B expression was genotype-dependent, reducing and increasing their expression in WT and R6/2 mice, respectively. On the contrary, NMDA-induced toxicity in corticostriatal slices was not modified by the treatment in WT or HD mice. These results demonstrate that in vivo activation of A(2A) receptors modulates the subunit composition of NMDA receptors in the brain of HD mice.

  9. Antagonism of aryl hydrocarbon receptor-dependent induction of CYP1A1 and inhibition of IgM expression by di-ortho-substituted polychlorinated biphenyls.

    PubMed

    Suh, Jaehong; Kang, Jong Soon; Yang, Kyu-Hwan; Kaminski, Norbert E

    2003-02-15

    Halogenated aromatic hydrocarbons (HAHs) are ubiquitous environment contaminants that produce many of their toxic effects by binding to the aryl hydrocarbon receptor (AhR). However, several investigations have demonstrated that certain polychlorinated biphenyl (PCB) congeners, principally di-ortho-chlorinated PCB congeners, or mixtures containing multiple di-ortho-chlorinated PCBs, inhibit AhR-mediated responses induced by other toxic HAHs. Most relevant to the present study are past reports demonstrating antagonism by these uniquely acting PCB congeners on AhR agonist-mediated inhibition of humoral immune responses. The mechanism responsible for antagonism of AhR agonists by certain PCBs is presently unknown. The present study evaluated the antagonist activity of several di-ortho-substituted PCB congeners [PCB47 (2,2',4,4'), PCB52 (2,2',5,5'), PCB128 (2,2',3,3',4,4'), and PCB153 (2,2',4,4',5,5')] when present in combination with AhR agonists [TCDD (2,3,7,8,-tetrachlorodibenzo-p-dioxin), PCB126 (3,3',4,4',5), and PCB77 (3,3',4,4')] on CYP1A1 induction and inhibition of lipopolysaccharide (LPS)-induced immunoglobulin production in the CH12.LX B cell line. In contrast to non-ortho-substituted PCB (PCB77), which showed additive effects on CYP1A1 induction in combination with TCDD, all of the di-ortho-substituted PCBs examined produced antagonism. Di-ortho-substituted PCB (PCB52) also antagonized TCDD- or PCB126- mediated inhibition of IgM secretion and immunoglobulin heavy chain mRNA expression in the LPS-activated B cells. In addition, PCB52 inhibited TCDD-induced AhR DNA binding to a dioxin-responsive element. Collectively, these results suggest that the mechanism responsible for antagonism by di-ortho-substituted PCB congeners of AhR agonist-mediated CYP1A1 induction and inhibition of antibody responses in B cells occurs through interference with agonist activation of the cytosolic AhR complex.

  10. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  11. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor.

    PubMed

    Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P

    2014-06-23

    A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.

  12. The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos.

    PubMed

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E; Mullis, Primus E; Brändli, André W; Trueb, Beat

    2010-01-15

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.

  13. Betulin binds to melanocortin receptors and antagonizes alpha-melanocyte stimulating hormone induced cAMP generation in mouse melanoma cells.

    PubMed

    Muceniece, Ruta; Saleniece, Kristine; Riekstina, Una; Krigere, Liga; Tirzitis, Gunars; Ancans, Janis

    2007-01-01

    Betulin is a principal component of birch bark and is known to possess a broad range of biological activities, including antiinflammatory, antiviral and anticancer actions. The present study was carried out in vitro to clarify the influence of betulin on melanocortin (MC) receptor-ergic signalling by using COS-7 cells transfected with corresponding human MC receptor DNA. The results showed that betulin binds to the human melanocortin MC1, three to five receptors with selectivity to the MC1 subtype (K(i) value 1.022 +/- 0.115 microM). Betulin binds to the MC receptors with the following potency order-MC > MC3 > MC5 > MC4. Betulin itself does not stimulate cAMP generation, however, it slightly antagonizes alpha-melanocyte-stimulating hormone (alpha-MSH)-induced cAMP accumulation in the mouse melanoma cell line B16-F1. As a water-insoluble substance, betulin was dissolved in DMSO therefore DMSO competition with the labelled ligand NDP-MSH for the binding to the MC receptors was tested in the identical experimental set-up. We found that DMSO competes for binding to all the MC receptor subtypes, at 20% concentration and above. Selectivity for one or another receptor subtype was not observed. We have demonstrated for the first time, the ability of the plant compound betulin to bind to the MC receptors. One may suggest MC receptor MC1 subtype as the essential target for the antimelanoma action of betulin and its structurally close molecules such as betulinic acid. Moreover, we have found a new non-peptide small molecule MC mimetic, that is betulin. Thus, we report a new chemical motif for the binding to the MC receptors that could be used as a template for the search of more selective MC mimetics.

  14. Chronic Antagonism of the Mineralocorticoid Receptor Ameliorates Hypertension and End Organ Damage in a Rodent Model of Salt-Sensitive Hypertension

    PubMed Central

    Zhou, Xiaoyan; Crook, Martin F; Sharif-Rodriguez, Wanda; Zhu, Yonghua; Ruben, Zadok; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Flattery, Amy M; Forrest, Gail; Szeto, Daphne; Zhao, Huawei; Roy, Sophie; Forrest, Michael J

    2011-01-01

    We investigated the effects of chronic mineralocorticoid receptor blockade with eplerenone on the development and progression of hypertension and end organ damage in Dahl salt-sensitive rats. Eplerenone significantly attenuated the progressive rise in systolic blood pressure (SBP) (204 ± 3 vs. 179±3 mmHg, p < 0.05), reduced proteinuria (605.5 ± 29.6 vs. 479.7 ± 26.1 mg/24h, p < 0.05), improved injury scores of glomeruli, tubules, renal interstitium, and vasculature in Dahl salt-sensitive rats fed a high-salt diet. These results demonstrate that mineralocorticoid receptor antagonism provides target organ protection and attenuates the development of elevated blood pressure (BP) in a model of salt-sensitive hypertension. PMID:21950654

  15. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats.

    PubMed

    Rahimian, Reza; Fakhfouri, Gohar; Daneshmand, Ali; Mohammadi, Hamed; Bahremand, Arash; Rasouli, Mohammad Reza; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2010-12-15

    Inflammatory bowel disease comprises chronic recurrent inflammation of gastrointestinal tract. This study was conducted to investigate inosine, a potent immunomodulator, in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced chronic model of experimental colitis, and contribution of adenosine A(2A) receptors and the metabolite uric acid as possible underlying mechanisms. Experimental colitis was rendered in rats by a single colonic administration of 10 mg of TNBS. Inosine, potassium oxonate (a hepatic uricase inhibitor), SCH-442416 (a selective adenosine A(2A) receptor antagonist), inosine+potassium oxonate, or inosine+SCH-442416 were given twice daily for 7 successive days. At the end of experiment, macroscopic and histopathologic scores, colonic malondialdehyde (MDA), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-1beta (IL-1β) levels, and myeloperoxidase (MPO) activity were assessed. Plasma uric acid level was measured throughout the experiment. Both macroscopic and histological features of colonic injury were markedly ameliorated by either inosine, oxonate or inosine+oxonate. Likewise, the elevated amounts of MPO and MDA abated as well as those of TNF-α and IL-1β (P<0.05). SCH-442416 partially reversed the effect of inosine on theses markers, while inosine+oxonate showed a higher degree of protection than each treatment alone (P<.0.05). No significant difference was observed between TNBS and SCH-442416 groups. Uric acid levels were significantly higher in inosine or oxonate groups compared to control. Inosine+oxonate resulted in an even more elvelated uric acid level than each treatment alone (P<0.05). Inosine elicits notable anti-inflammatory effects on TNBS-induced colitis in rats. Uric acid and adenosine A(2A) receptors contribute to these salutary properties.

  16. Expression, Purification and Crystallisation of the Adenosine A2A Receptor Bound to an Engineered Mini G Protein.

    PubMed

    Carpenter, Byron; Tate, Christopher G

    2017-04-20

    G protein-coupled receptors (GPCRs) promote cytoplasmic signalling by activating heterotrimeric G proteins in response to extracellular stimuli such as light, hormones and nucleosides. Structure determination of GPCR-G protein complexes is central to understanding the precise mechanism of signal transduction. However, these complexes are challenging targets for structural studies due to their conformationally dynamic and inherently transient nature. We recently developed an engineered G protein, mini-Gs, which addressed these problems and allowed the formation of a stable GPCR-G protein complex. Mini-Gs facilitated the structure determination of the human adenosine A2A receptor (A2AR) in its G protein-bound conformation at 3.4 Å resolution. Here, we describe a step by step protocol for the expression and purification of A2AR, and crystallisation of the A2AR-mini-Gs complex.

  17. Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice.

    PubMed

    Kraft, Tamar T; Huang, Donald; LaMagna, Sam; Warshaw, Deena; Natanova, Elona; Sclafani, Anthony; Bodnar, Richard J

    2017-03-15

    Conditioned flavor preferences are elicited by fat (Intralipid) in inbred mouse strains with BALB/c and SWR mice displaying among the most robust preferences. Dopamine D1 and opioid receptor antagonism differentially reduces the acquisition (learning) and expression (maintenance) of fat-conditioned flavor preferences in these two strains. Because noncompetitive NMDA receptor antagonism with MK-801 differentially altered sugar-conditioned flavor preferences in these strains, and because NMDA receptors are involved in fat intake, the present study examined whether MK-801 differentially altered expression and acquisition of fat (Intralipid)-conditioned flavor preferences in BALB/c and SWR mice. In expression studies, food-restricted male mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 5% Intralipid solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.5% Intralipid solution. Two-bottle CS choice tests occurred following vehicle or MK-801 (100, 200µg/kg). MK-801 blocked expression of Intralipid-CFP at both doses in BALB/c mice, but only at the 100µg/kg dose in SWR mice. In acquisition studies, groups of BALB/c (0, 100µg/kg) and SWR (0, 100µg/kg) male mice were treated prior to the ten acquisition training sessions followed by six 2-bottle CS choice tests without injections. MK-801 eliminated acquisition of Intralipid-conditioned flavor preferences in BALB/c mice, and actually changed the preference to an avoidance response in SWR mice. Thus, NMDA receptor signaling appears essential especially for the learning of fat-conditioned flavor preferences in both mouse strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Minodronic acid induces morphological changes in osteoclasts at bone resorption sites and reaches a level required for antagonism of purinergic P2X2/3 receptors.

    PubMed

    Tanaka, Makoto; Hosoya, Akihiro; Mori, Hiroshi; Kayasuga, Ryoji; Nakamura, Hiroaki; Ozawa, Hidehiro

    2017-02-27

    Minodronic acid is an aminobisphosphonate that is an antagonist of purinergic P2X2/3 receptors involved in pain. The aim of this study was to investigate the action and distribution of minodronic acid and the potential for P2X2/3 receptor antagonism based on the estimated concentration of minodronic acid. Microlocalization of radiolabeled minodronic acid was examined in the femur of neonatal rats. The bone-binding characteristics of minodronic acid and morphological changes in osteoclasts were analyzed in vitro. The minodronic acid concentration around bone resorption lacunae was predicted based on bone binding and the shape of lacunae. In microautoradiography, radioactive silver grains were abundant in bone-attached osteoclasts and were detected in calcified and ossification zones and in the cytoplasm of osteoclasts but not in the hypertrophic cartilage zone. In an osteoclast culture with 1 µM minodronic acid, 65% of minodronic acid was bound to bone, and C-terminal cross-linking telopeptide release was inhibited by 96%. Cultured osteoclasts without minodronic acid treatment formed ruffled borders and bone resorption lacunae and had rich cytoplasm, whereas those treated with 1 µM minodronic acid were not multinucleated, stained densely with toluidine blue, and were detached from the bone surface. In the 1 µM culture, the estimated minodronic acid concentration in resorption lacunae was 880 µM, which is higher than the IC50 for minodronic acid antagonism of P2X2/3 receptors. Thus, inhibition of P2X2/3 receptors around osteoclasts may contribute to the analgesic effect of minodronic acid.

  19. Olanzapine augments the effect of selective serotonin reuptake inhibitors by suppressing GABAergic inhibition via antagonism of 5-HT₆ receptors in the dorsal raphe nucleus.

    PubMed

    Asaoka, Nozomi; Nagayasu, Kazuki; Nishitani, Naoya; Yamashiro, Mayumi; Shirakawa, Hisashi; Nakagawa, Takayuki; Kaneko, Shuji

    2015-08-01

    The combination of the selective serotonin reuptake inhibitors (SSRIs) and atypical antipsychotic drugs shows better therapeutic efficacy than SSRI monotherapy in the treatment of depression. However, the underlying mechanisms responsible for the augmenting effects of olanzapine are not fully understood. Here, we report that olanzapine enhances the SSRI-induced increase in extracellular serotonin (5-HT) levels and antidepressant-like effects by inhibiting GABAergic neurons through 5-HT6 receptor antagonism in the dorsal raphe nucleus (DRN). In organotypic raphe slice cultures, treatment with olanzapine (1-100 μM) enhanced the increase in extracellular 5-HT levels in the presence of fluoxetine (10 μM) or citalopram (1 μM). The enhancing effect of olanzapine was not further augmented by the GABAA receptor antagonist bicuculline. Electrophysiological analysis revealed that olanzapine (50 μM) decreased the firing frequency of GABAergic neurons in acute DRN slices. Among many serotonergic agents, the 5-HT6 receptor antagonist SB399885 (1-100 μM) mimicked the effects of olanzapine by enhancing the SSRI-induced increase in extracellular 5-HT levels, which was not further augmented by bicuculline or olanzapine. SB399885 (50 μM) also decreased the firing frequency of GABAergic neurons in the DRN. In addition, an intraperitoneal administration of SB399885 (10 mg/kg) to mice significantly enhanced the antidepressant-like effect of a subeffective dose of citalopram (3 mg/kg) in the tail-suspension test. These results suggest that olanzapine decreases local inhibitory GABAergic tone in the DRN through antagonism of 5-HT6 receptors, thereby increasing the activity of at least part of serotonergic neurons, which may contribute to the augmentation of the efficacy of SSRIs.

  20. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined.

  1. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.

  2. Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking.

    PubMed

    Tessari, Michela; Pilla, Maria; Andreoli, Michela; Hutcheson, Daniel M; Heidbreder, Christian A

    2004-09-19

    Previous studies in metabotropic glutamate 5 receptor (mGlu5 receptor) deficient mice have indicated the importance of this receptor in the self-administration of cocaine and locomotor sensitisation to this stimulant. Both ionotropic and metabotropic receptors have been implicated in drug-seeking and drug-taking behaviours, but the specific role of each subtype of metabotropic glutamate receptors (mGlu receptors) is still unknown. In the present series of experiments we further investigated the role of mGlu5 receptors on nicotine, cocaine- and food-taking behaviour. We also investigated the effects of the mGlu5 receptor antagonist MPEP (2-methyl-6-(phenylethynyl)pyridine) on the acute locomotor activating effects of nicotine, the expression of sensitisation to its repeated, intermittent administration, and nicotine-triggered relapse to nicotine-seeking behaviour. The results indicate that MPEP treatment reduced nicotine-induced drug-seeking behaviour in a model of nicotine-triggered relapse to nicotine seeking. Furthermore, MPEP decreased both nicotine and cocaine self-administration without affecting food self-administration under similar schedules of reinforcement. Finally, MPEP reduced both the acute locomotor stimulant effects of nicotine as well as the expression of behavioural sensitisation to its repeated administration. Although the intravenous administration of MPEP at 1 and 10 mg/kg transiently reduced spontaneous locomotor activity during the first 25 min post-administration, we also demonstrated that performance on the accelerating rotarod was not affected when MPEP was given 5 and 30 min prior to the test. Altogether, the present findings strengthen the hypothesis that selective antagonism at mGlu5 receptors may be a new potential pharmacotherapeutic approach for the treatment of drug dependence and addiction.

  3. Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor-flavor preferences in rats.

    PubMed

    Miner, Patricia; Abayev, Yana; Kandova, Ester; Gerges, Meri; Styler, Esther; Wapniak, Rachel; Touzani, Khalid; Sclafani, Anthony; Bodnar, Richard J

    2008-09-01

    Rats learn to prefer a flavor mixed into a fructose-saccharin solution over a different flavor mixed into a saccharin-only solution which is considered to be a form of flavor-flavor conditioning. Fructose-conditioned flavor preferences are impaired by systemic dopamine D1 and to a lesser degree, D2 receptor antagonism as well as by NMDA, but not opioid, receptor antagonism. Given the emerging role of the endocannabinoid system in mediating hedonically-driven food intake, the present study examined whether systemic administration of the inverse CB-1 receptor agonist, AM-251 would alter fructose-conditioned flavor preferences. In Experiment 1, food-restricted rats were trained over 10 sessions (30 min/day) to drink a fructose-saccharin solution mixed with one flavor (CS+/Fs) and a less-preferred saccharin-only solution mixed with another flavor (CS-/s). Subsequent two-bottle tests with the two flavors in saccharin (CS+/s, CS-/s) occurred 15 min following counterbalanced pairs of AM-251 doses of 0, 0.1, 1 or 3 mg/kg. Preference for CS+/s over CS-/s following vehicle treatment (74%) was significantly reduced by the 0.1 (67%) and 1 (65%) AM-251 doses, whereas CS+/s, but not CS-/s intake was significantly reduced by the 1 and 3 mg/kg AM-251 doses. In Experiment 2, rats received systemic injections of AM-251 (1 mg/kg) or vehicle prior to the 10 CS+/Fs and CS-/s training sessions. In subsequent two-bottle tests (drug-free) the AM-251 and control groups displayed similar preferences for the CS+ flavor (66% vs. 69%). Experiment 3 demonstrated that AM-251 significantly decreased chow intake (24 h), and 1-h intakes of fructose-saccharin and saccharin-only solutions in ad libitum-fed rats. These data indicate that functional CB-1 receptor antagonism significantly reduces the expression, but not the acquisition of fructose-conditioned flavor-flavor preferences. The endogenous endocannabinoid system is therefore implicated in the maintenance of this form of learned flavor

  4. Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor–flavor preferences in rats

    PubMed Central

    Miner, Patricia; Abayev, Yana; Kandova, Ester; Gerges, Meri; Styler, Esther; Wapniak, Rachel; Touzani, Khalid; Sclafani, Anthony; Bodnar, Richard J.

    2015-01-01

    Rats learn to prefer a flavor mixed into a fructose–saccharin solution over a different flavor mixed into a saccharin-only solution which is considered to be a form of flavor–flavor conditioning. Fructose-conditioned flavor preferences are impaired by systemic dopamine D1 and to a lesser degree, D2 receptor antagonism as well as by NMDA, but not opioid, receptor antagonism. Given the emerging role of the endocannabinoid system in mediating hedonically-driven food intake, the present study examined whether systemic administration of the inverse CB-1 receptor agonist, AM-251 would alter fructose-conditioned flavor preferences. In Experiment 1, food-restricted rats were trained over 10 sessions (30 min/day) to drink a fructose–saccharin solution mixed with one flavor (CS+/Fs) and a less-preferred saccharin-only solution mixed with another flavor (CS−/s). Subsequent two-bottle tests with the two flavors in saccharin (CS+/s, CS−/s) occurred 15 min following counterbalanced pairs of AM-251 doses of 0, 0.1,1 or 3 mg/kg. Preference for CS+/s over CS−/s following vehicle treatment (74%) was significantly reduced by the 0.1 (67%) and 1 (65%) AM-251 doses, whereas CS+/s, but not CS−/s intake was significantly reduced by the 1 and 3 mg/kg AM-251 doses. In Experiment 2, rats received systemic injections of AM-251 (1 mg/kg) or vehicle prior to the 10 CS+/Fs and CS−/s training sessions. In subsequent two-bottle tests (drug-free) the AM-251 and control groups displayed similar preferences for the CS+ flavor (66% vs. 69%). Experiment 3 demonstrated that AM-251 significantly decreased chow intake (24 h), and 1-h intakes of fructose–saccharin and saccharin-only solutions in ad libitum-fed rats. These data indicate that functional CB-1 receptor antagonism significantly reduces the expression, but not the acquisition of fructose-conditioned flavor–flavor preferences. The endogenous endocannabinoid system is therefore implicated in the maintenance of this form of

  5. Immunotherapeutic target expression on breast tumors can be amplified by hormone receptor antagonism: a novel strategy for enhancing efficacy of targeted immunotherapy.

    PubMed

    Jaini, Ritika; Loya, Matthew G; Eng, Charis

    2017-05-16

    Immunotherapy has historically been successful in highly antigenic tumors but has shown limited therapeutic efficacy in non-antigenic tumors such as breast cancers. Our previous studies in autoimmunity have demonstrated that increased antigen load within a tissue enhances immune reactivity against it. We therefore hypothesized that enhancing expression of target proteins on breast tumors can increase efficacy of targeted immunotherapy. We hypothesized that antagonism of the estrogen receptor (ER) can increase expression of targets that are hormonally regulated and facilitate enhanced tumor recognition by targeted immunotherapy. We used a lactation protein α-Lactalbumin, a known immunotherapeutic target on breast tumors, as our model target antigen. Enhancement of target protein expression in human and murine breast tumors was tested in vitro and in vivo by ER antagonism using clinically established ER modulators, Tamoxifen and Fulvestrant. We show that antagonism of the ER can induce a 2-3 fold increase in expression of target proteins on tumors leaving the normal breast tissue unaffected. Tumor progression studies in 4T1 tumor-bearing mice show that efficacy of adoptively transferred cell based targeted immunotherapy was enhanced by target antigen amplification resulting in significantly higher tumor inhibition. However, in spite of increased target expression, anti-tumor efficacy of direct immunization was not enhanced probably due to other limiting factors involved in the immune priming process. Our study provides a novel combinatorial clinical strategy for enhancing efficacy of immunotherapy not only on breast tumors but potentially also for other hormonally driven tumors such as those of the prostate, testis and ovary.

  6. GPCR 3D homology models for Ligand Screening: Lessons Learned from Blind Predictions of Adenosine A2a Receptor complex

    PubMed Central

    Katritch, Vsevolod; Rueda, Manuel; Lam, Polo Chun-Hung; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    Proteins of the G-protein coupled receptor (GPCR) family present numerous attractive targets for rational drug design, but also a formidable challenge for identification and conformational modeling of their 3D structure. A recently performed assessment of blind predictions of adenosine A2a receptor (AA2AR) structure in complex with ZM241385 (ZMA) antagonist provided a first example of unbiased evaluation of the current modeling algorithms on a GPCR target with ~30% sequence identity to the closest structural template. Several of the 29 groups participating in this assessment exercise (Michino et al., doi:10.1038/nrd2877) successfully predicted the overall position of the ligand ZMA in the AA2AR ligand binding pocket, however models from only three groups captured more than 40% of the ligand-receptor contacts. Here we describe two of these top performing approaches, in which all-atom models of the AA2AR were generated by homology modeling followed by ligand guided backbone ensemble receptor optimization (LiBERO). The resulting AA2AR-ZMA models, along with the best models from other groups are assessed here for their virtual ligand screening (VLS) performance on a large set of GPCR ligands. We show that ligand guided optimization was critical for improvement of both ligand-receptor contacts and VLS performance as compared to the initial raw homology models. The best blindly predicted models performed on par with the crystal structure of AA2AR in selecting known antagonists from decoys, as well as from antagonists for other adenosine subtypes and AA2AR agonists. These results suggest that despite certain inaccuracies, the optimized homology models can be useful in the drug discovery process. PMID:20063437

  7. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids.

    PubMed

    Naranjo, Andrea N; McNeely, Patrick M; Katsaras, John; Robinson, Anne Skaja

    2016-08-01

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the protein's purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids

    DOE PAGES

    Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John; ...

    2016-05-27

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, ormore » DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less

  9. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    PubMed

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by