Science.gov

Sample records for a2a receptor antagonists

  1. Synthesis and SAR evaluation of 1,2,4-triazoles as A(2A) receptor antagonists.

    PubMed

    Alanine, Alexander; Anselm, Lilli; Steward, Lucinda; Thomi, Stefan; Vifian, Walter; Groaning, Michael D

    2004-02-09

    The synthesis and in vitro structure-activity relationships (SAR) of a series of triazoles as A(2A) receptor antagonists is reported. This resulted in the identification of potent, selective and permeable 1,2,4-triazoles such as 42 for further optimization and evaluation in vivo.

  2. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    PubMed

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation. © 2016 S. Karger AG, Basel.

  3. A covalent antagonist for the human adenosine A2A receptor.

    PubMed

    Yang, Xue; Dong, Guo; Michiels, Thomas J M; Lenselink, Eelke B; Heitman, Laura; Louvel, Julien; IJzerman, Ad P

    2016-12-03

    The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.

  4. Identification of Novel Adenosine A2A Receptor Antagonists by Virtual Screening

    PubMed Central

    2012-01-01

    Virtual screening was performed against experimentally enabled homology models of the adenosine A2A receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11–13 from 5, pKI = 7.5–8.5, 13- to >100-fold selective versus adenosine A1; 14–16 from 1, pKI = 7.9–9.0, 19- to 59-fold selective). PMID:22250781

  5. In vitro metabolism studies of new adenosine A 2A receptor antagonists.

    PubMed

    Marucci, Gabriella; Finaurini, Sara; Buccioni, Michela; Lammi, Carmen; Kandhavelu, Meenakshisundaram; Volpini, Rosaria; Ricciutelli, Massimo; Angeli, Piero; Commandeur, Jan N M; Cristalli, Gloria

    2008-12-01

    Evidence, obtained in rodent and primate models of Parkinson's disease (PD) and in preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising non-dopaminergic therapeutic tool for the treatment of PD. Recently, we have reported the biological evaluation of 8-substituted 9-ethyladenines (ANR) as new A(2A) receptor antagonists, three of which (ANR 82, ANR 94, and ANR 152) showed high efficacy in in vivo models for Parkinson's. Understanding the metabolic pathways of new drug candidates is an important aspect of drug discovery. The ANR compounds have been investigated in order to clarify their activity on rat liver microsomes, and more specifically on recombinant human cytochrome P450 2D6 (CYP2D6). The metabolites of all three compounds were detected by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The results indicate that this class of 9-ethyladenines is metabolized only to a fraction of 1.5-5%. These compounds also act as potent mechanism-based inhibitors of CYP450 and in particular of human isoform CYP2D6. Kinetic-analysis of enzyme inactivation was used to describe the effect of these time-dependent inhibitors and to derive the inhibition parameters K(inact) and K(i) defined with respect to the O-demethylation of dextromethorphan.

  6. Behavioural and neurochemical characterization of the adenosine A2A receptor antagonist ST1535.

    PubMed

    Galluzzo, Mariangela; Pintor, Anita; Pèzzola, Antonella; Grieco, Rosa; Borsini, Franco; Popoli, Patrizia

    2008-01-28

    ST1535 (2-butyl-9-methyl-8-(2H-1,2,3-triazol 2-yl)-9 H-purin-6-ylamine) is a novel compound showing a preferential adenosine A(2A) receptor antagonist profile. To explore the potential neuroprotective profile of this compound, we evaluated whether ST1535 prevented quinolinic acid (QA)-induced glutamate outflow in the rat striatum (a reliable index of neuroprotective activity in vivo). Microdialysis experiments were performed in naive Wistar rats. In these experiments, a behaviourally active and inactive doses of ST1535 were used. Both doses significantly prevented QA-induced glutamate outflow in the striatum. These results show that ST1535 protects towards striatal excitotoxicity, even though its reduced A(2A)/A(1) selectivity might limit its actual neuroprotective potential.

  7. Synthesis of [1,2,4]triazolo[1,5-a]pyrazines as adenosine A2A receptor antagonists.

    PubMed

    Dowling, James E; Vessels, Jeffrey T; Haque, Serajul; Chang, He Xi; van Vloten, Kurt; Kumaravel, Gnanasambandam; Engber, Thomas; Jin, Xiaowei; Phadke, Deepali; Wang, Joy; Ayyub, Eman; Petter, Russell C

    2005-11-01

    Potent and selective antagonists of the adenosine A2A receptor often contain a nitrogen-rich fused-ring heterocyclic core. Replacement of the core with an isomeric ring system has previously been shown to improve target affinity, selectivity, and in vivo activity. This paper describes the preparation, by a novel route, of A2A receptor antagonists containing the [1,2,4]triazolo[1,5-a]pyrazine nucleus, which is isomeric with the [1,2,4]triazolo[1,5-c]pyrimidine core of a series of known A2A antagonists with in vivo activity in animal models of Parkinson's disease.

  8. New adenosine A2A receptor antagonists: actions on Parkinson's disease models.

    PubMed

    Pinna, Annalisa; Volpini, Rosaria; Cristalli, Gloria; Morelli, Micaela

    2005-04-11

    The 8-substituted 9-ethyladenine derivatives: 8-bromo-9-ethyladenine (ANR 82), 8-ethoxy- 9-ethyladenine (ANR 94), and 8-furyl-9-ethyladenine (ANR 152) have been characterized in vitro as adenosine receptor antagonists. Adenosine is deeply involved in the control of motor behaviour and substantial evidences indicate that adenosine A(2A) receptor antagonists improve motor deficits in animal models of Parkinson's disease. On this basis, the efficacy of ANR 82, ANR 94, and ANR 152 in rat models of Parkinson's disease was evaluated. All compounds tested reversed the catalepsy induced by haloperidol. However, in unilaterally 6-hydroxydopamine-lesioned rats, only ANR 94 and ANR 152 potentiated l-dihydroxy-phenylalanine (l-DOPA) effect on turning behaviour and induced contralateral turning behaviour in rats sensitised to l-DOPA. Taken together the results of this study indicate that some 8-substituted 9-ethyladenine derivatives ameliorate motor deficits in rat models of Parkinson's disease, suggesting a potential therapeutic role of these compounds.

  9. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease.

    PubMed

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E; Franco, Rafael

    2011-12-01

    Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.

  10. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  11. A2A receptor antagonists do not induce dyskinesias in drug-naive or L-dopa sensitized rats.

    PubMed

    Jones, N; Bleickardt, C; Mullins, D; Parker, E; Hodgson, R

    2013-09-01

    L-dopa, the precursor to dopamine, is currently the gold standard treatment for Parkinson's disease (PD). However, chronic exposure is associated with L-dopa-induced dyskinesias (LIDs), a serious side effect characterized by involuntary movements. Adenosine A2A receptor antagonists have been studied as a novel non-dopaminergic PD treatment. Because A2A receptor antagonists do not act on dopamine receptors, it has been hypothesized that they will not induce dyskinesias characteristic of L-dopa. To test this hypothesis in a rodent model, the A2A receptor antagonists SCH 412348 (3 mg/kg), vipadenant (10 mg/kg), caffeine (30 mg/kg), or istradefylline (3 mg/kg) were chronically (19-22 days) administered to Sprague Dawley rats, and dyskinetic behaviors were scored across this chronic dosing paradigm. Unlike L-dopa, there was no evidence of dyskinetic activity resulting from any of the four A2A receptor antagonists tested. When delivered to animals previously sensitized with L-dopa (6 mg/kg), SCH 412348, vipadenant, caffeine or istradefylline treatment produced no dyskinesias. When administered in combination with L-dopa (6 mg/kg), SCH 412348 (3 mg/kg) neither exacerbated nor prevented the induction of LIDs over the course of 19 days of treatment. Collectively, our data indicate that A2A receptor antagonists are likely to have a reduced dyskinetic liability relative to L-dopa but do not block dyskinesias when coadministered with L-dopa. Clinical studies are required to fully understand the dyskinesia profiles of A2A receptor antagonists.

  12. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  13. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    PubMed Central

    2011-01-01

    Background Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI), reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK) 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours), these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the neuroprotective effects

  14. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice.

    PubMed

    Dall'Igna, Oscar P; Fett, Paulo; Gomes, Marcio W; Souza, Diogo O; Cunha, Rodrigo A; Lara, Diogo R

    2007-01-01

    Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimer's disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimer's disease.

  15. A new ethyladenine antagonist of adenosine A(2A) receptors: behavioral and biochemical characterization as an antiparkinsonian drug.

    PubMed

    Pinna, Annalisa; Tronci, Elisabetta; Schintu, Nicoletta; Simola, Nicola; Volpini, Rosaria; Pontis, Silvia; Cristalli, Gloria; Morelli, Micaela

    2010-03-01

    Adenosine A(2A) receptor antagonists have emerged as an attractive non-dopaminergic target in clinical trials aimed at evaluating improvement in motor deficits in Parkinson's disease (PD). Moreover, preclinical studies suggest that A(2A) receptor antagonists may slow the course of the underlying neurodegeneration of dopaminergic neurons. In this study, we evaluated the efficacy of the new adenosine A(2A) receptor antagonist 8-ethoxy-9-ethyladenine (ANR 94) in parkinsonian models of akinesia and tremor. In addition, induction of the immediate early gene zif-268, and neuroprotective and anti-inflammatory effects of ANR 94 were evaluated. ANR 94 was effective in reversing parkinsonian tremor induced by the administration of tacrine. ANR 94 also counteracted akinesia (stepping test) and sensorimotor deficits (vibrissae-elicited forelimb-placing test), as well as potentiating l-dopa-induced contralateral turning behavior in 6-hydroxydopamine (6-OHDA) lesion model of PD. Potentiation of motor behavior in 6-OHDA-lesioned rats was not associated with increased induction of the immediate early gene zif-268 in the striatum, suggesting that ANR 94 does not induce long-term plastic changes in this structure. Finally, in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, ANR 94 protected nigrostriatal dopaminergic neurons from degeneration and counteracted neuroinflammatory processes by contrasting astroglial (glial fibrillary acidic protein, GFAP) and microglial (CD11b) activation. A(2A) receptor antagonism represents a uniquely realistic opportunity for improving PD treatment, since A(2A) receptor antagonists offer substantial symptomatic benefits and possibly disease-modifying activity. The characterization of ANR 94 may represent a further therapeutic opportunity for the treatment of PD with this new class of drugs.

  16. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket

    PubMed Central

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K.

    2017-01-01

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl d-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease. PMID:28167788

  17. Clinical/pharmacological aspect of adenosine A2A receptor antagonist for dyskinesia.

    PubMed

    Kanda, Tomoyuki; Uchida, Shin-ichi

    2014-01-01

    Dopamine replacement therapy using the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), with a peripheral dopa decarboxylase inhibitor is the most effective treatment currently available for the symptoms of Parkinson's disease (PD). However, the long-term use of dopaminergic therapies for PD is often limited by the development of motor response complications, such as dyskinesia. Adenosine A2A receptors are a promising nondopaminergic target for the treatment of PD. The treatment of motor response complications involves combinations of regular and controlled release L-DOPA, perhaps with the addition of a COMT inhibitor or the use of a longer-acting dopamine agonist. However, when dyskinesia is already established, the increase in dopaminergic load produced by the addition of a dopamine agonist can result in an increase in the severity and duration of dyskinesia. Currently, there are no well-tolerated antidyskinesia agents available. Amantadine, which may exert its effects through the inhibition of N-methyl-D-aspartate (NMDA) receptors, shows some effects on established dyskinesia. Dyskinesia has a negative impact on the quality of life of patients, sometimes being more disabling than PD itself. Although some patients prefer experiencing dyskinesia than being in the OFF state and unable to move, alternative, more effective therapies are still required for severe disabling dyskinesia to afford patients an improved quality of life while in the ON state. The mechanisms causing and maintaining the dyskinesia have not been clarified. The application of a nondopaminergic approach to modify the basal ganglial activity would be helpful to better understand and treat dyskinesia. The use of an adenosine A2A receptor may provide one such approach. In this literature review, we will summarize the current knowledge from both clinical and nonclinical studies on the effects of adenosine A2A receptor blockade on dyskinesia.

  18. Effect of adenosine A(2A) receptor antagonists on L-DOPA-induced hydroxyl radical formation in rat striatum.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna; Kowalska, Magdalena; Kamińska, Katarzyna

    2009-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy for Parkinson's disease (PD). Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on L: -3,4-dihydroxyphenylalanine (L: -DOPA)-induced hydroxyl radical generation using in vivo microdialysis in the striatum of freely moving rats. L: -DOPA (100 mg/kg; in the presence of benserazide, 50 mg/kg) given acutely or repeatedly for 14 days generated a high level of hydroxyl radicals, measured by HPLC with electrochemical detection, as the product of their reaction with p-hydroxybenzoic acid (PBA). CSC (1 mg/kg) and ZM 241385 (3 mg/kg) decreased haloperidol (0.5 mg/kg)-induced catalepsy, while at low doses of 0.1 and 0.3 mg/kg, respectively, they did not display an effect. CSC (1 and 5 mg/kg) and ZM 241385 (3 and 9 mg/kg) given acutely, or CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly, increased the production of hydroxyl radicals in dialysates from rat striatum. Both acute and repeated administration of CSC (0.1 and 1 mg/kg) and ZM 241385 (3 mg/kg) decreased L: -DOPA-induced generation of hydroxyl radicals. However, a high single dose of either CSC (5 mg/kg) and ZM 241385 (9 mg/kg) markedly potentiated the effect of L: -DOPA on hydroxyl radical production. The increase in hydroxyl radical production by acute and chronic injection of CSC and ZM 241385 may be related to the increased release of dopamine (DA) and its metabolism in striatal dialysates. Similarly, increased DA release following a single high dose of CSC or ZM 241385 appears to be responsible for augmentation of L: -DOPA-induced hydroxyl radical formation. Conversely, the inhibition of L: -DOPA-induced production of hydroxyl radical by single and repeated low doses of CSC or repeated low doses of ZM

  19. Binding of the novel nonxanthine A2A adenosine receptor antagonist [3H]SCH58261 to coronary artery membranes.

    PubMed

    Belardinelli, L; Shryock, J C; Ruble, J; Monopoli, A; Dionisotti, S; Ongini, E; Dennis, D M; Baker, S P

    1996-12-01

    This study demonstrates quantification of A2A adenosine receptors (A2AAdoRs) in membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells. Radioligand binding assays were performed using the new selective A2AAdoR antagonist radioligand [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo [4,3-epsilon]-1,2,4-triazolo[1,5-c)pyrimidine ([3H]SCH58261). Binding of the radioligand to membranes was rapid, reversible, and saturable. The densities of A2AAdoRs in membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells were 900 +/- 61, 892 +/- 35, and 959 +/- 76 fmol/mg protein, respectively. Equilibrium dissociation constants (Kd values) calculated from results of saturation binding assays were 2.19, 1.20, and 0.81 nmol/L, and Kd values calculated from results of association and dissociation assays were 2.42, 1.01, and 0.40 nmol/L for [3H]SCH58261 binding to membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells, respectively. The specific binding of [3H]SCH58261 as a percentage of total binding at a radioligand concentration equal to the Kd value was 65% to 90% in the three membrane preparations. The order of ligand potencies determined by assay of competition binding to sites in porcine coronary membranes using [3H]SCH58261, unlabeled antagonists (SCH58261, 8-(3-chlorostyryl)caffeine [CSC], and xanthine amine congener [XAC]), and unlabeled agonists ([3H]2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoaden osine [CGS 21680], 2-hexynyl-5'-N-ethylcarboxamidoadenosine [HE-NECA], [3H]5'-N-ethylcarboxamidoadenosine [NECA], and R(-)N6-(2-phenylisopropyl)adenosine [R-PIA]) was SCH58261 > HE-NECA = CSC = CGS 21680 = XAC > NECA = R-PIA. The Hill coefficients of displacement by A2AAdoR ligands of [3H]SCH58261 binding were not significantly different from unity, indicating that [3H]SCH58261 bound to a group of homogeneous noninteracting sites in all membrane preparations. The order of ligand

  20. A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists.

    PubMed

    Cristalli, G; Lambertucci, C; Marucci, G; Volpini, R; Dal Ben, D

    2008-01-01

    Since the discovery of the biological effects of adenosine, the development of potent and selective agonists and antagonists of adenosine receptors has been the subject of medicinal chemistry research for several decades, even if their clinical evaluation has been discontinued. Main problems include side effects due to the ubiquity of the receptors and the possibility of side effects, or to low brain penetration (in particular for the targeting of CNS diseases), short half-life of compounds, lack of effects. Furthermore, species differences in the affinity of ligands make difficult preclinical testing in animal models. Nevertheless, adenosine receptors continue to represent promising drug targets. A(2A) receptor has proved to be a promising pharmacological target for small synthetic ligands, and while A(2A) agonists are undergoing clinical trials for myocardial perfusion imaging and as anti-inflammatory agents, A(2A) antagonists represent an attractive field of research to discover new drugs for the treatment of neurodegenerative disorders, such as Parkinson's disease. Furthermore, the information coming from bioinformatics and molecular modeling studies for the A(2A) receptor has made easier the understanding of ligand-target interaction and the rational design of agonists and antagonists for this subtype. The aim of this review is to show an overview of the most significant steps and progresses in developing A(2A) adenosine receptor agonists and antagonists.

  1. Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease.

    PubMed

    Cerri, Silvia; Levandis, Giovanna; Ambrosi, Giulia; Montepeloso, Elena; Antoninetti, Gian Filippo; Franco, Rafael; Lanciego, José Luis; Baqi, Younis; Müller, Christa E; Pinna, Annalisa; Blandini, Fabio; Armentero, Marie Therese

    2014-05-01

    The development of nondopaminergic therapeutic strategies that may improve motor and nonmotor deficits, while possibly slowing down the neurodegenerative process and associated neuroinflammation,is a primary goal of Parkinson disease (PD) research. We investigated the neuroprotective and anti-inflammatory potential of combined and single treatment with adenosine A2A and cannabinoid CB1 receptor antagonists MSX-3 and rimonabant, respectively, in a rodent model of PD. Rats bearing a unilateral intrastriatal 6-hydroxydopamine lesion were treated chronically with MSX-3 (0.5or 1 mg/kg/d) and rimonabant (0.1 mg/kg/d) given as monotherapy or combined. The effects of the treatments to counteract dopaminergic cell death and neuroinflammation were assessed by immunohistochemistry for tyrosine hydroxylase and glial cell markers, respectively. Both rimonabant and MSX-3 (1 mg/kg/d) promoted dopaminergic neuron survival in the substantia nigra pars compacta (SNc) when given alone; this effect was weakened when the compounds were combined. Glial activation was not significantly affected by MSX-3 (1 mg/kg/d), whereas rimonabant seemed to increase astrocyte cell density in the SNc. Our findings demonstrate the neuroprotective potential of single treatments and suggest that glial cells might be involved in this protective effect. The results also indicate that the neuroprotective potential of combined therapy may not necessarily reflect or promote single-drug effects and point out that special care should be taken when considering multidrug therapies in PD.

  2. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    PubMed

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  3. 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 2. Reduction of hERG activity, observed species selectivity, and structure-activity relationships.

    PubMed

    Slee, Deborah H; Moorjani, Manisha; Zhang, Xiaohu; Lin, Emily; Lanier, Marion C; Chen, Yongsheng; Rueter, Jaimie K; Lechner, Sandra M; Markison, Stacy; Malany, Siobhan; Joswig, Tanya; Santos, Mark; Gross, Raymond S; Williams, John P; Castro-Palomino, Julio C; Crespo, María I; Prat, Maria; Gual, Silvia; Díaz, José-Luis; Jalali, Kayvon; Sai, Yang; Zuo, Zhiyang; Yang, Chun; Wen, Jenny; O'Brien, Zhihong; Petroski, Robert; Saunders, John

    2008-03-27

    Previously we have described a series of novel A 2A receptor antagonists with excellent water solubility. As described in the accompanying paper, the antagonists were first optimized to remove an unsubstituted furyl moiety, with the aim of avoiding the potential metabolic liabilities that can arise from the presence of an unsubstituted furan. This effort identified a series of potent and selective methylfuryl derivatives. Herein, we describe the further optimization of this series to increase potency, maintain selectivity for the human A 2A vs the human A 1 receptor, and minimize activity against the hERG channel. In addition, the observed structure-activity relationships against both the human and the rat A 2A receptor are reported.

  4. Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    PubMed

    Pinna, Annalisa; Pontis, Silvia; Borsini, Franco; Morelli, Micaela

    2007-08-01

    Evidence obtained in rodent and primate models of Parkinson's disease (PD) and preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising nondopaminergic therapeutic tool for the treatment of PD. Those studies demonstrated the ability of adenosine A(2A) receptor antagonists to potentiate l-dopa-mediated motor improvement, whereas very little is known about counteraction of specific motor deficits and on the effects of these compounds when administered alone. To this aim we evaluated the effects of different adenosine A(2A) receptor antagonists on initiation of movement deficits, gait impairment and sensory-motor deficits, induced in rats by a unilateral 6-hydroxydopamine lesion of dopaminergic nigrostriatal neurons. The following tests were used: (1) initiation time of stepping; (2) adjusting step (stepping with forelimb was measured as the forelimb was dragged laterally); (3) vibrissae-elicited forelimb placing (as index of sensory-motor integration deficits). Acute administration of the A(2A) receptor antagonists SCH 58261 (5 mg/kg i.p.) and ST 1535 (20 mg/kg i.p.) similarly to l-dopa (6 mg/kg i.p.) counteracted the impairments in the initiation time of stepping test, in the adjusting step and in the vibrissae-elicited forelimb placing induced by the lesion. The intensity of the effect was l-dopa > SCH 58261 > ST 1535. The results provide the first evidence that blockade of A(2A) receptors is effective in antagonizing specific motor deficit induced by DA neuron degeneration, such as initiation of movement and sensory-motor integration deficits, even without l-dopa combined administration.

  5. 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 1. Structure-activity relationships and optimization of heterocyclic substituents.

    PubMed

    Slee, Deborah H; Chen, Yongsheng; Zhang, Xiaohu; Moorjani, Manisha; Lanier, Marion C; Lin, Emily; Rueter, Jaimie K; Williams, John P; Lechner, Sandra M; Markison, Stacy; Malany, Siobhan; Santos, Mark; Gross, Raymond S; Jalali, Kayvon; Sai, Yang; Zuo, Zhiyang; Yang, Chun; Castro-Palomino, Julio C; Crespo, María I; Prat, Maria; Gual, Silvia; Díaz, José-Luis; Saunders, John

    2008-03-27

    Previously we have described a novel series of potent and selective A 2A receptor antagonists (e.g., 1) with excellent aqueous solubility. While these compounds are efficacious A 2A antagonists in vivo, the presence of an unsubstituted furyl moiety was a cause of some concern. In order to avoid the potential metabolic liabilities that could arise from an unsubstituted furyl moiety, an optimization effort was undertaken with the aim of replacing the unsubstituted furan with a more metabolically stable group while maintaining potency and selectivity. Herein, we describe the synthesis and SAR of a range of novel heterocyclic systems and the successful identification of a replacement for the unsubstituted furan moiety with a methylfuran or thiazole moiety while maintaining potency and selectivity.

  6. A novel conjugated agent between dopamine and an A2A adenosine receptor antagonist as a potential anti-Parkinson multitarget approach.

    PubMed

    Dalpiaz, Alessandro; Cacciari, Barbara; Vicentini, Chiara Beatrice; Bortolotti, Fabrizio; Spalluto, Giampiero; Federico, Stephanie; Pavan, Barbara; Vincenzi, Fabrizio; Borea, Pier Andrea; Varani, Katia

    2012-03-05

    We propose a potential antiparkinsonian prodrug DP-L-A(2A)ANT (2) obtained by amidic conjugation of dopamine (1) via a succinic spacer to a new triazolo-triazine A(2A) adenosine receptor (AR) antagonist A(2A)ANT (3). The affinity of 2 and its hydrolysis products-1, 3, dopamine-linker DP-L (4) and A(2A)ANT-linker L-A(2A)ANT (5)-was evaluated for hA(1), hA(2A), hA(2B) and hA(3) ARs and rat striatum A(2A)ARs or D(2) receptors. The hydrolysis patterns of 2, 4 and 5 and the stabilities of 1 and 3 were evaluated by HPLC analysis in human whole blood and rat brain homogenates. High hA(2A) affinity was shown by compounds 2 (K(i) = 7.32 ± 0.65 nM), 3 (K(i) = 35 ± 3 nM) and 5 (K(i) = 72 ± 5 nM), whose affinity values were similar in rat striatum. These compounds were not able to change dopamine affinity for D(2) receptors but counteracted the CGS 21680-induced reduction of dopamine affinity. DP-L (4) was inactive on adenosine and dopaminergic receptors. As for stability studies, compounds 4 and 5 were not degraded in incubation media. In human blood, the prodrug 2 was hydrolyzed (half-life = 2.73 ± 0.23 h) mainly on the amidic bound coupling the A(2A)ANT (3), whereas in rat brain homogenates the prodrug 2 was hydrolyzed (half-life > eight hours) exclusively on the amidic bound coupling dopamine, allowing its controlled release and increasing its poor stability as characterized by half-life = 22.5 ± 1.5 min.

  7. The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices

    PubMed Central

    Pugliese, AM; Traini, C; Cipriani, S; Gianfriddo, M; Mello, T; Giovannini, MG; Galli, A; Pedata, F

    2009-01-01

    Background and purpose: Activation of adenosine A2A receptors in the CA1 region of rat hippocampal slices during oxygen-glucose deprivation (OGD), a model of cerebral ischaemia, was investigated. Experimental approach: We made extracellular recordings of CA1 field excitatory postsynaptic potentials (fepsps) followed by histochemical and immunohistochemical techniques coupled to Western blots. Key results: OGD (7 or 30 min duration) elicited an irreversible loss of fepsps invariably followed by the appearance of anoxic depolarization (AD), an unambiguous sign of neuronal damage. The application of the selective adenosine A2A receptor antagonist, ZM241385 (4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)phenol; 100–500 nmol·L−1) prevented or delayed AD appearance induced by 7 or 30 min OGD and protected from the irreversible fepsp depression elicited by 7 min OGD. Two different selective adenosine A2A receptor antagonists, SCH58261 and SCH442416, were less effective than ZM241385 during 7 min OGD. The extent of CA1 cell injury was assessed 3 h after the end of 7 min OGD by propidium iodide. Substantial CA1 pyramidal neuronal damage occurred in untreated slices, exposed to OGD, whereas injury was significantly prevented by 100 nmol·L−1 ZM241385. Glial fibrillary acid protein (GFAP) immunostaining showed that 3 h after 7 min OGD, astrogliosis was appreciable. Western blot analysis indicated an increase in GFAP 30 kDa fragment which was significantly reduced by treatment with 100 nmol·L−1 ZM241385. Conclusions and implications: In the CA1 hippocampus, antagonism of A2A adenosine receptors by ZM241385 was protective during OGD (a model of cerebral ischaemia) by delaying AD appearance, decreasing astrocyte activation and improving neuronal survival. PMID:19422385

  8. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A1, A2A, A2B, and A3 receptor antagonists

    NASA Astrophysics Data System (ADS)

    Sirci, Francesco; Goracci, Laura; Rodríguez, David; van Muijlwijk-Koezen, Jacqueline; Gutiérrez-de-Terán, Hugo; Mannhold, Raimund

    2012-11-01

    FLAP fingerprints are applied in the ligand-, structure- and pharmacophore-based mode in a case study on antagonists of all four adenosine receptor (AR) subtypes. Structurally diverse antagonist collections with respect to the different ARs were constructed by including binding data to human species only. FLAP models well discriminate "active" (=highly potent) from "inactive" (=weakly potent) AR antagonists, as indicated by enrichment curves, numbers of false positives, and AUC values. For all FLAP modes, model predictivity slightly decreases as follows: A2BR > A2AR > A3R > A1R antagonists. General performance of FLAP modes in this study is: ligand- > structure- > pharmacophore- based mode. We also compared the FLAP performance with other common ligand- and structure-based fingerprints. Concerning the ligand-based mode, FLAP model performance is superior to ECFP4 and ROCS for all AR subtypes. Although focusing on the early first part of the A2A, A2B and A3 enrichment curves, ECFP4 and ROCS still retain a satisfactory retrieval of actives. FLAP is also superior when comparing the structure-based mode with PLANTS and GOLD. In this study we applied for the first time the novel FLAPPharm tool for pharmacophore generation. Pharmacophore hypotheses, generated with this tool, convincingly match with formerly published data. Finally, we could demonstrate the capability of FLAP models to uncover selectivity aspects although single AR subtype models were not trained for this purpose.

  9. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-08-01

    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage

  10. Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A(2A)R KO mice.

    PubMed

    Pardo, M; López-Cruz, L; Valverde, O; Ledent, C; Baqi, Y; Müller, C E; Salamone, J D; Correa, M

    2013-06-15

    Behavioral activation is regulated by dopamine (DA) in striatal areas. At low doses, while typical antipsychotic drugs produce psychomotor slowing, psychostimulants promote exploration. Minor stimulants such as caffeine, which act as adenosine receptor antagonists, can also potentiate behavioral activation. Striatal areas are rich in adenosine and DA receptors, and adenosine A2A receptors are mainly expressed in the striatum where they are co-localized with DA D2 receptors. Adenosine antagonists with different receptor-selectivity profiles were used to study spontaneous or haloperidol-impaired exploration and c-Fos expression in different striatal areas. Because A2A antagonists were expected to be more selective for reversing the effects of the D2 antagonist haloperidol, A2A receptor knockout (A2ARKO) mice were also assessed. CD1 and A2ARKO male mice were tested in an open field and in a running wheel. Only the A1/A2A receptor antagonist theophylline (5.0-15.0 mg/kg) and the A2A antagonist MSX-3 (2.0 mg/kg) increased spontaneous locomotion and rearing. Co-administration of theophylline (10.0-15.0 mg/kg), and MSX-3 (1.0-3.0 mg/kg) reversed haloperidol-induced suppression of locomotion. The A1 antagonist CPT was only marginally effective in reversing the effects of haloperidol. Although adenosine antagonists did not affect c-Fos expression on their own, theophylline and MSX-3, but not CPT, attenuated haloperidol induction of c-Fos expression. A2ARKO mice were resistant to the behavioral effects of haloperidol at intermediate doses (0.1 mg/kg) in the open field and in the running wheel. A2A receptors are important for regulating behavioral activation, and interact with D2 receptors in striatal areas to regulate neural processes involved in exploratory activity.

  11. Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist.

    PubMed

    Stone, Trevor W; Behan, Wilhelmina M H

    2007-04-01

    Quinolinic acid is an agonist at glutamate receptors sensitive to N-methyl-D-aspartate (NMDA). It has been implicated in neural dysfunction associated with infections, trauma, and ischemia, although its neurotoxic potency is relatively low. This study was designed to examine the effects of a combination of quinolinic acid and the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Compounds were administered to the hippocampus of anesthetized male rats, animals being allowed to recover for 7 days before histological analysis of the hippocampus for neuronal damage estimated by counting of intact, healthy neurons. A low dose of quinolinic acid or IL-1beta produced no damage by itself, but the two together induced a significant loss of pyramidal neurons in the hippocampus. Higher doses produced almost total loss of pyramidal cells. Intrahippocampal TNF-alpha produced no effect alone but significantly reduced the neuronal loss produced by quinolinic acid. The adenosine A(2A) receptor antagonist ZM241385 reduced neuronal loss produced by the combinations of quinolinic acid and IL-1beta. The results suggest that simultaneous quinolinic acid and IL-1beta, both being induced by cerebral infection or injury, are synergistic in the production of neuronal damage and could together contribute substantially to traumatic, infective, or ischemic cerebral damage. Antagonism of adenosine A(2A) receptors protects neurons against the combination of quinolinic acid and IL-1beta.

  12. Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage.

    PubMed

    Boia, Raquel; Elvas, Filipe; Madeira, Maria H; Aires, Inês D; Rodrigues-Neves, Ana C; Tralhão, Pedro; Szabó, Eszter C; Baqi, Younis; Müller, Christa E; Tomé, Ângelo R; Cunha, Rodrigo A; Ambrósio, António F; Santiago, Ana R

    2017-10-05

    Transient retinal ischemia is a major complication of retinal degenerative diseases and contributes to visual impairment and blindness. Evidences indicate that microglia-mediated neuroinflammation has a key role in the neurodegenerative process, prompting the hypothesis that the control of microglia reactivity may afford neuroprotection to the retina against the damage induced by ischemia-reperfusion (I-R). The available therapeutic strategies for retinal degenerative diseases have limited potential, but the blockade of adenosine A2A receptor (A2AR) emerges as candidate strategy. Therefore, we evaluated the therapeutic potential of a selective A2AR antagonist (KW6002) against the damage elicited by I-R. The administration of KW6002 after I-R injury reduced microglia reactivity and inflammatory response and afforded protection to the retina. Moreover, we tested the ability of caffeine, an adenosine receptor antagonist, in mediating protection to the retina in the I-R injury model. We demonstrated that caffeine administration dually regulated microglia reactivity and cell death in the transient retinal ischemic model, depending on the reperfusion time. At 24 h of reperfusion, caffeine increased microglial reactivity, inflammatory response and cell death elicited by I-R. However, at 7 days of reperfusion, caffeine administration decreased microglia reactivity and reduced the levels of proinflammatory cytokines and cell death. Together, these results provide a novel evidence for the use of adenosine A2AR antagonists as potential therapy for retinal ischemic diseases and demonstrate the effect of caffeine on the regulation of microglia-mediated neuroinflammation in the transient ischemic model.

  13. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. L-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, L-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of L-DOPA and CSC or ZM 241385 did not change the effect of L-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of L-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical.

  14. Protective effect of caffeine and a selective A2A receptor antagonist on impairment of memory and oxidative stress of aged rats.

    PubMed

    Leite, Marlon Régis; Wilhelm, Ethel A; Jesse, Cristiano R; Brandão, Ricardo; Nogueira, Cristina Wayne

    2011-04-01

    In this study, the effects of caffeine (CAF) and SCH58261, a selective A(2A) receptor antagonist, on memory impairment and oxidative stress generated by aging in rats were investigated. Young and aged rats were treated daily per 10 days with CAF (30 mg/kg p.o.) or SCH58261 (0.5mg/kg, p.o.) or vehicle (1 ml/kg p.o.). Rats were trained and tested in a novel object recognition task. After the behavioral test, ascorbic acid and oxygen and nitrogen reactive species levels as well as Na(+)K(+) ATPase activity were determined in rat brain. The results demonstrated that the age-related memory deficit was reversed by treatment with CAF or SCH58261. Treatment with CAF or SCH58261 significantly normalized oxygen and nitrogen reactive species levels increased in brains of aged rats. Na(+)K(+) ATPase activity inhibited in brains of aged rats was also normalized by CAF or SCH58261 treatment. A decrease in basal ascorbic acid levels in brains of aged rats was not changed by CAF or SCH58261. These results demonstrated that CAF and SCH58261, modulators of adenosinergic receptors, were able to reverse age-associated memory impairment and to partially reduce oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Time and Sex-Dependent Effects of an Adenosine A2A/A1 Receptor Antagonist on Motivation to Self-Administer Cocaine in Rats

    PubMed Central

    Doyle, Susan E.; Breslin, Florence J.; Rieger, Jayson M.; Beauglehole, Anthony; Lynch, Wendy J.

    2012-01-01

    Adenosine is an important neuromodulator, known to interact with both dopaminergic and glutamatergic systems to influence psychostimulant action. In the present study, we examined the effects of ATL444, a novel adenosine receptor antagonist, on motivation for cocaine in male and female rats. Adult male and female Sprague-Dawley rats were trained to self-administer cocaine (1.5 mg/kg/infusion) on a fixed-ratio 1 schedule with a daily maximum of 20 infusions. Following 5 consecutive sessions during which all 20 available infusions were obtained, motivation for cocaine (0.5 mg/kg/infusion) was assessed under a progressive ratio (PR) schedule, and once responding stabilized, the effect of treatment with ATL444 (0, 15, and 30 mg/kg, i.p.) was examined. As a control, we also assessed its effects on PR responding for sucrose. Binding studies revealed that ATL 444 was 3-fold, 25-fold, and 400-fold more selective for the A2A receptor as compared to A1, A2B, and A3 receptors, respectively. ATL444 produced a significant increase in motivation for cocaine on the day of treatment in females with a trend for an increase in males. In addition, over the two PR sessions following ATL444 treatment a significant decrease in responding was observed in males but not females. Responding for sucrose was unaffected by ATL444 treatment. Our results reveal that adenosine receptor blockade may mediate both acute increases in the reinforcing effects of cocaine, and longer term inhibitory effects on cocaine reinforcement that differ according to sex. PMID:22579716

  16. Selective A2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats.

    PubMed

    Bortolatto, Cristiani F; Reis, Angélica S; Pinz, Mikaela P; Voss, Guilherme T; Oliveira, Renata L; Vogt, Ane G; Roman, Silvane; Jesse, Cristiano R; Luchese, Cristiane; Wilhelm, Ethel A

    2017-08-09

    The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.

  17. Muscarinic Receptor Antagonists.

    PubMed

    Matera, Maria Gabriella; Cazzola, Mario

    2017-01-01

    Parasympathetic activity is increased in patients with chronic obstructive pulmonary disease (COPD) and asthma and appears to be the major reversible component of airway obstruction. Therefore, treatment with muscarinic receptor antagonists is an effective bronchodilator therapy in COPD and also in asthmatic patients. In recent years, the accumulating evidence that the cholinergic system controls not only contraction by airway smooth muscle but also the functions of inflammatory cells and airway epithelial cells has suggested that muscarinic receptor antagonists could exert other effects that may be of clinical relevance when we must treat a patient suffering from COPD or asthma. There are currently six muscarinic receptor antagonists licenced for use in the treatment of COPD, the short-acting muscarinic receptor antagonists (SAMAs) ipratropium bromide and oxitropium bromide and the long-acting muscarinic receptor antagonists (LAMAs) aclidinium bromide, tiotropium bromide, glycopyrronium bromide and umeclidinium bromide. Concerns have been raised about possible associations of muscarinic receptor antagonists with cardiovascular safety, but the most advanced compounds seem to have an improved safety profile. Further beneficial effects of SAMAs and LAMAs are seen when added to existing treatments, including LABAs, inhaled corticosteroids and phosphodiesterase 4 inhibitors. The importance of tiotropium bromide in the maintenance treatment of COPD, and likely in asthma, has spurred further research to identify new LAMAs. There are a number of molecules that are being identified, but only few have reached the clinical development.

  18. Pharmacokinetics and metabolism of [(14)C]-tozadenant (SYN-115), a novel A2a receptor antagonist ligand, in healthy volunteers.

    PubMed

    Mancel, Valérie; Mathy, François-Xavier; Boulanger, Pierre; English, Stephen; Croft, Marie; Kenney, Christopher; Knott, Tarra; Stockis, Armel; Bani, Massimo

    2016-09-02

    1. This phase-I study (NCT02240290) was designed to investigate the human absorption, disposition and mass balance of (14)C-tozadenant, a novel A2a receptor antagonist in clinical development for Parkinson s disease. 2. Six healthy male subjects received a single oral dose of tozadenant (240 mg containing 81.47 KBq of [(14)C]-tozadenant). Blood, urine and feces were collected over 14 days. Radioactivity was determined by liquid scintillation counting or accelerator mass spectrometry (AMS). Tozadenant and metabolites were characterized using HPLC-MS/MS and HPLC-AMS with fraction collection. 3. At 4 h, the Cmax of tozadenant was 1.74 μg/mL and AUC(0-t) 35.0 h μg/mL, t1/2 15 h, Vz/F 1.82 L/kg and CL/F 1.40 mL/min/kg. For total [(14)C] radioactivity, the Cmax was 2.29 μg eq/mL at 5 h post-dose and AUC(0-t) 43.9 h μg eq/mL. Unchanged tozadenant amounted to 93% of the radiocarbon AUC(0-48h). At 312 h post-dose, cumulative urinary and fecal excretion of radiocarbon reached 30.5% and 55.1% of the dose, respectively. Unchanged tozadenant reached 11% in urine and 12% of the dose in feces. Tozadenant was excreted as metabolites, including di-and mono-hydroxylated metabolites, N/O dealkylated metabolites, hydrated metabolites. 4. The only identified species circulating in plasma was unchanged tozadenant. Tozadenant was primarily excreted in urine and feces in the form of metabolites.

  19. The 1,2,4-Triazolo[4,3-a]pyrazin-3-one as a Versatile Scaffold for the Design of Potent Adenosine Human Receptor Antagonists. Structural Investigations to Target the A2A Receptor Subtype.

    PubMed

    Falsini, Matteo; Squarcialupi, Lucia; Catarzi, Daniela; Varano, Flavia; Betti, Marco; Dal Ben, Diego; Marucci, Gabriella; Buccioni, Michela; Volpini, Rosaria; De Vita, Teresa; Cavalli, Andrea; Colotta, Vittoria

    2017-07-13

    In this work, we describe the identification of the 1,2,4-triazolo[4,3-a]pyrazin-3-one as a new versatile scaffold for the development of adenosine human (h) receptor antagonists. The new chemotype ensued from a molecular simplification approach applied to our previously reported 1,2,4-triazolo[4,3-a]quinoxalin-1-one series. Hence, a set of novel 8-amino-2-aryl-1,2,4-triazolopyrazin-3-one derivatives, featured by different substituents on the 2-phenyl ring (R) and at position 6 (R6), was synthesized with the main purpose of targeting the hA2A adenosine receptor (AR). Several compounds possessed nanomolar affinity for the hA2A AR (Ki = 2.9-10 nM) and some, very interestingly, also showed high selectivity for the target. One selected potent hA2A AR antagonist (12, R = H, R6 = 4-methoxyphenyl) demonstrated some ability to counteract MPP(+)-induced neurotoxicity in cultured human neuroblastoma SH-SY5Y cells, a widely used in vitro Parkinson's disease model. Docking studies at hAR structures were performed to rationalize the observed affinity data.

  20. Novel 8-(furan-2-yl)-3-benzyl thiazolo [5,4-e][1,2,4] triazolo [1,5-c] pyrimidine-2(3H)-thione as selective adenosine A(2A) receptor antagonist.

    PubMed

    Barodia, Sandeep Kumar; Mishra, Chandra Bhushan; Prakash, Amresh; Senthil Kumar, J B; Kumari, Namrata; Luthra, Pratibha Mehta

    2011-01-13

    Adenosine A(2A) receptor (A(2A)R) antagonists have emerged as potential drug candidates to alleviate progression and symptoms of Parkinson's disease (PD), and reduce the dopaminergic side effects. The synthesis of novel compound 8-(furan-2-yl)-3-benzyl thiazolo [5,4-e][1,2,4] triazolo [1,5-c] pyrimidine-2-(3H)-thione (BTTP) was carried out to evaluate the potential of BTTP as A(2A)R antagonist using SCH58261, a standard A(2A)R antagonist. The strong interaction of BTTP with A(2A)R (ΔG=-12.46kcal/mol and K(i)=0.6nM) in silico analysis was confirmed by radioligand receptor binding studies showing high affinity (K(i)=0.004nM) and selectivity with A(2A)R (A(2A)/A(1)=1155-fold). The effect of CGS21680 (selective A(2A)R agonist) induced cAMP concentration (0.1pmol/ml) in HEK293 cells was antagonized with BTTP (0.065pmol/ml) and SCH58261 (0.075pmol/ml). Furthermore, BTTP pre-treated (5, 10 and 20mg/kg) haloperidol-induced mice demonstrated significant attenuation in catalepsy and akinesia. BTTP induced elevation in the striatal dopamine concentration (2.90μM/mg of tissue) was comparable to SCH58261 (2.92μM/mg of tissue) at the dose of 10mg/kg. The results firmly articulate that BTTP possesses potential A(2A)R antagonist activity and can be further explored for the treatment of PD. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Chronic oral administration of MPEP, an antagonist of mGlu5 receptor, during gestation and lactation alters mGlu5 and A2A receptors in maternal and neonatal brain.

    PubMed

    López-Zapata, Antonio; León-Navarro, David Agustín; Crespo, María; Albasanz, José Luis; Martín, Mairena

    2017-03-06

    Antidepressant and anxiolytic drugs are widely consumed even by pregnant and lactating women. The metabotropic glutamate receptor 5 (mGlu5) antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) exerts antidepressant- and anxiolytic-like actions. Given that treatment for anxiety and depression use to be prolonged in time, it is conceivable a possible modulation of metabotropic glutamate receptors (mGlu receptors) after prolonged MPEP exposure, which could also modify adenosine A2A receptors (A2AR) since functional cross-talk between them has been reported. Here we report that MPEP crosses placental barrier and reaches neonatal brain through maternal milk using LC-MS/MS methods. Therefore, we analyzed mGlu receptors, mainly mGlu5, and A2AR in both maternal and fetal brain after chronic maternal consumption of MPEP during gestation and/or lactation using radioligand binding, Western-blotting, real-time PCR and phospholipase C (PLC) activity assays. In maternal brain, chronic MPEP consumption caused a significant loss of mGlu, including mGlu5, and A2AR receptors level in plasma membrane. PLC activity assays showed that mGlu5 signaling pathway was desensitized. No variations on mRNA level coding A2AR, A1R and mGlu5 were found after MPEP treatments. In female neonatal brain, maternal consumption of MPEP caused a significant increase in mGlu, including mGlu5, and A2AR receptors level. Neither mGlu receptors nor A2AR were modified in male neonatal brain after maternal MPEP intake. Finally, neither molecular nor behavioral changes (anxiety- and depression-like behavior) were observed in 3-month-old female offspring. In summary, mGlu5 and A2AR are altered in both maternal and female neonatal brain after chronic maternal consumption of MPEP during gestation and/or lactation.

  2. Imidazo[1,2-a]pyrazin-8-amine core for the design of new adenosine receptor antagonists: Structural exploration to target the A3 and A2A subtypes.

    PubMed

    Poli, Daniela; Falsini, Matteo; Varano, Flavia; Betti, Marco; Varani, Katia; Vincenzi, Fabrizio; Pugliese, Anna Maria; Pedata, Felicita; Dal Ben, Diego; Thomas, Ajiroghene; Palchetti, Ilaria; Bettazzi, Francesca; Catarzi, Daniela; Colotta, Vittoria

    2017-01-05

    The imidazo[1,2-a]pyrazine ring system has been chosen as a new decorable core skeleton for the design of novel adenosine receptor (AR) antagonists targeting either the human (h) A3 or the hA2A receptor subtype. The N(8)-(hetero)arylcarboxyamido substituted compounds 4-14 and 21-30, bearing a 6-phenyl moiety or not, respectively, show good hA3 receptor affinity and selectivity versus the other ARs. In contrast, the 8-amino-6-(hetero)aryl substituted derivatives designed for targeting the hA2A receptor subtype (compounds 31-38) and also the 6-phenyl analogues 18-20 do not bind the hA2A AR, or show hA1 or balanced hA1/hA2A AR affinity in the micromolar range. Molecular docking of the new hA3 antagonists was carried out to depict their hypothetical binding mode to our refined model of the hA3 receptor. Some derivatives were evaluated for their fluorescent potentiality and showed some fluorescent emission properties. One of the most active hA3 antagonists herein reported, i.e. the 2,6-diphenyl-8-(3-pyridoylamino)imidazo[1,2-a]pyrazine 29, tested in a rat model of cerebral ischemia, delayed the occurrence of anoxic depolarization caused by oxygen and glucose deprivation in the hippocampus and allowed disrupted synaptic activity to recover. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A(2A) and A(3) receptor pyrazolo-triazolo-pyrimidine antagonists binding sites.

    PubMed

    Michielan, Lisa; Bolcato, Chiara; Federico, Stephanie; Cacciari, Barbara; Bacilieri, Magdalena; Klotz, Karl-Norbert; Kachler, Sonja; Pastorin, Giorgia; Cardin, Riccardo; Sperduti, Alessandro; Spalluto, Giampiero; Moro, Stefano

    2009-07-15

    G Protein-coupled receptors (GPCRs) selectivity is an important aspect of drug discovery process, and distinguishing between related receptor subtypes is often the key to therapeutic success. Nowadays, very few valuable computational tools are available for the prediction of receptor subtypes selectivity. In the present study, we present an alternative application of the Support Vector Machine (SVM) and Support Vector Regression (SVR) methodologies to simultaneously describe both A(2A)R versus A(3)R subtypes selectivity profile and the corresponding receptor binding affinities. We have implemented an integrated application of SVM-SVR approach, based on the use of our recently reported autocorrelated molecular descriptors encoding for the Molecular Electrostatic Potential (autoMEP), to simultaneously discriminate A(2A)R versus A(3)R antagonists and to predict their binding affinity to the corresponding receptor subtype of a large dataset of known pyrazolo-triazolo-pyrimidine analogs. To validate our approach, we have synthetized 51 new pyrazolo-triazolo-pyrimidine derivatives anticipating both A(2A)R/A(3)R subtypes selectivity and receptor binding affinity profiles.

  4. Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration.

    PubMed

    Minghetti, Luisa; Greco, Anita; Potenza, Rosa Luisa; Pezzola, Antonella; Blum, David; Bantubungi, Kadiombo; Popoli, Patrizia

    2007-05-01

    Inhibition of adenosine A2A receptors (A2ARs) is neuroprotective in several experimental models of striatal diseases. However, the mechanisms elicited by A2AR blockade are only partially known, and critical aspects about the potential beneficial effects of A2AR antagonism in models of neurodegeneration still await elucidation. In the present study, we analyzed the influence of the selective A2AR antagonist SCH 58261 in a rat model of striatal excitotoxicity obtained by unilateral intrastriatal injection of quinolinic acid (QA). We found that SCH 58261 differently affected the expression of cyclooxygenase-2 (COX-2) induced by QA in cortex and striatum. The antagonist enhanced COX-2 expression in cortical neurons and prevented it in striatal microglia-like cells. Similarly, SCH 58261 differently regulated astrogliosis and microglial activation in the 2 brain regions. In addition, the A2AR antagonist prevented the QA-induced increase in striatal brain-derived neurotrophic factor levels. Because COX-2 activity has been linked to excitotoxic processes and because brain-derived neurotrophic factor depletion has been observed in mouse models as well as in patients with Huntington disease, we suggest that the final outcome of A2AR blockade (namely neuroprotection vs neurodegeneration) is likely to depend on the balance among its various and region-specific effects.

  5. A nonsteroidal glucocorticoid receptor antagonist.

    PubMed

    Miner, Jeffrey N; Tyree, Curtis; Hu, Junlian; Berger, Elaine; Marschke, Keith; Nakane, Masaki; Coghlan, Michael J; Clemm, Dave; Lane, Ben; Rosen, Jon

    2003-01-01

    Selective intracellular receptor antagonists are used clinically to ameliorate hormone-dependent disease states. Patients with Cushing's syndrome have high levels of the glucocorticoid, cortisol, and suffer significant consequences from this overexposure. High levels of this hormone are also implicated in exacerbating diabetes and the stress response. Selectively inhibiting this hormone may have clinical benefit in these disease states. To this end, we have identified the first selective, nonsteroidal glucocorticoid receptor (GR) antagonist. This compound is characterized by a tri-aryl methane core chemical structure. This GR-specific antagonist binds with nanomolar affinity to the GR and has no detectable binding affinity for the highly related receptors for mineralocorticoids, androgens, estrogens, and progestins. We demonstrate that this antagonist inhibits glucocorticoid-mediated transcriptional regulation. This compound binds competitively with steroids, likely occupying a similar site within the ligand-binding domain. Once bound, however, the compound fails to induce critical conformational changes in the receptor necessary for agonist activity.

  6. Optimization of arylindenopyrimidines as potent adenosine A(2A)/A(1) antagonists.

    PubMed

    Shook, Brian C; Rassnick, Stefanie; Chakravarty, Devraj; Wallace, Nathaniel; Ault, Mark; Crooke, Jeffrey; Barbay, J Kent; Wang, Aihua; Leonard, Kristi; Powell, Mark T; Alford, Vernon; Hall, Daniel; Rupert, Kenneth C; Heintzelman, Geoffrey R; Hansen, Kristen; Bullington, James L; Scannevin, Robert H; Carroll, Karen; Lampron, Lisa; Westover, Lori; Russell, Ronald; Branum, Shawn; Wells, Kenneth; Damon, Sandra; Youells, Scott; Beauchamp, Derek; Li, Xun; Rhodes, Kenneth; Jackson, Paul F

    2010-05-01

    Two reactive metabolites were identified in vivo for the dual A(2A)/A(1) receptor antagonist 1. Two strategies were implemented to successfully mitigate the metabolic liabilities associated with 1. Optimization of the arylindenopyrimidines led to a number of amide, ether, and amino analogs having comparable in vitro and in vivo activity. 2010 Elsevier Ltd. All rights reserved.

  7. Ligands and therapeutic perspectives of adenosine A(2A) receptors.

    PubMed

    Diniz, C; Borges, F; Santana, L; Uriarte, E; Oliveira, J M A; Gonçalves, J; Fresco, P

    2008-01-01

    Adenosine A(2A) receptors are members of the G protein-coupled receptor family and mediate multiple physiological effects of adenosine, both at the central nervous system (CNS) and at peripheral tissues, by activating several pathways or interacting with other receptors or proteins. Increasing evidence relate A(2A) receptors with pharmacological stress testing, neurodegenerative disorders (such as Parkinson's disease) and inflammation, renewing the interest in these receptors, increasingly viewed as promising therapeutic targets. Series of agonists and antagonists have been developed by medicinal chemistry artwork either by structure activity relationship (SAR) or quantitative structure activity relationship (QSAR) studies. These studies have allowed identification of the structural and electrostatic requirements for high affinity A(2A) receptor binding and, therefore, contributing to the rational design of A(2A) receptor ligands. Additional rational chemical modifications of the existing A(2A) receptor ligands may further improve their affinity/selectivity. The purpose of this review is to analize and summarize aspects related to the medicinal chemistry of A(2A) receptor ligands, their present and potencial therapeutic applications by exploring the molecular structure and physiological and pathophysiological roles of A(2A) receptors.

  8. Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows.

    PubMed

    Popoli, Patrizia; Minghetti, Luisa; Tebano, Maria Teresa; Pintor, Annita; Domenici, Maria Rosaria; Massotti, Marino

    2004-01-01

    Adenosine A2A receptor antagonists are regarded as potential neuroprotective drugs, although the mechanisms underlying their effects remain to be elucidated. In this review, quinolinic acid (QA)-induced striatal toxicity was used as a tool to investigate the mechanisms of the neuroprotective effects of A2A receptor antagonists. After having examined the effects of selective A2A receptor antagonists toward different mechanisms of QA toxicity, we conclude that (1) the effect elicited by A2A receptor blockade on QA-induced glutamate outflow may be one of the mechanisms of the neuroprotective activity of A2A receptor antagonists; (2) A2A receptor antagonists have a potentially worsening influence on QA-dependent NMDA receptor activation; and (3) the ability of A2A receptor antagonists to prevent QA-induced lipid peroxidation does not correlate with the neuroprotective effects. These results suggest that A2A receptor antagonists may have either potentially beneficial or detrimental influence in models of neurodegeneration that are mainly due to increased glutamate levels or enhanced sensitivity of NMDA receptors, respectively.

  9. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy.

    PubMed

    Leone, Robert D; Lo, Ying-Chun; Powell, Jonathan D

    2015-01-01

    The last several years have witnessed exciting progress in the development of immunotherapy for the treatment of cancer. This has been due in great part to the development of so-called checkpoint blockade. That is, antibodies that block inhibitory receptors such as CTLA-4 and PD-1 and thus unleash antigen-specific immune responses against tumors. It is clear that tumors evade the immune response by usurping pathways that play a role in negatively regulating normal immune responses. In this regard, adenosine in the immune microenvironment leading to the activation of the A2a receptor has been shown to represent one such negative feedback loop. Indeed, the tumor microenvironment has relatively high concentrations of adenosine. To this end, blocking A2a receptor activation has the potential to markedly enhance anti-tumor immunity in mouse models. This review will present data demonstrating the ability of A2a receptor blockade to enhance tumor vaccines, checkpoint blockade and adoptive T cell therapy. Also, as several recent studies have demonstrated that under certain conditions A2a receptor blockade can enhance tumor progression, we will also explore the complexities of adenosine signaling in the immune response. Despite important nuances to the A2a receptor pathway that require further elucidation, studies to date strongly support the development of A2a receptor antagonists (some of which have already been tested in phase III clinical trials for Parkinson Disease) as novel modalities in the immunotherapy armamentarium.

  10. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease.

    PubMed

    Ikeda, Ken; Kurokawa, Masako; Aoyama, Shiro; Kuwana, Yoshihisa

    2002-01-01

    Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities.

  11. Optimization of 6-Heterocyclic-2-(1H-pyrazol-1-yl)-N-(pyridin-2-yl)pyrimidin-4-amine as Potent Adenosine A2A Receptor Antagonists for the Treatment of Parkinson’s Disease

    PubMed Central

    2014-01-01

    Parkinson’s disease is a neurodegenerative disease characterized by the motor symptoms of bradykinesia, tremor, and rigidity. Current therapies are based mainly on dopaminergic replacement strategies by administration of either dopamine agonists or dopamine precursor levodopa (L-Dopa). These treatments provide symptomatic relief without slowing or stopping the disease progression, and long-term usage of these drugs is associated with diminished efficacy, motor fluctuation, and dyskinisia. Unfortunately, there had been few novel treatments developed in the past decades. Among nondopaminergic strategies for the treatment of Parkinson’s disease, antagonism of the adenosine A2A receptor has emerged to show great potential. Here we report the optimization of a new chemical scaffold, which achieved exceptional receptor binding affinity and ligand efficiency against adenosine A2A receptor. The leading compounds demonstrated excellent efficacy in the haloperidol induced catalepsy model for Parkinson’s disease. PMID:24922583

  12. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function

    PubMed Central

    Ferré, Sergi; Quiroz, César; Orru, Marco; Guitart, Xavier; Navarro, Gemma; Cortés, Antonio; Casadó, Vicent; Canela, Enric I.; Lluis, Carme; Franco, Rafael

    2011-01-01

    A very significant density of adenosine A2A receptors (A2ARs) is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs). In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs). In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striatopallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl cyclase (AC). Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striatopallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs) and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders. PMID:21731559

  13. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders.

    PubMed

    Cunha, Rodrigo A; Ferré, Sergi; Vaugeois, Jean-Marie; Chen, Jiang-Fan

    2008-01-01

    The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.

  14. Involvement of adenosine A2A receptors in depression and anxiety.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. © 2014 Elsevier Inc. All rights reserved.

  15. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  16. Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study.

    PubMed

    Bortolato, Andrea; Tehan, Ben G; Bodnarchuk, Michael S; Essex, Jonathan W; Mason, Jonathan S

    2013-07-22

    Recent efforts in the computational evaluation of the thermodynamic properties of water molecules have resulted in the development of promising new in silico methods to evaluate the role of water in ligand binding. These methods include WaterMap, SZMAP, GRID/CRY probe, and Grand Canonical Monte Carlo simulations. They allow the prediction of the position and relative free energy of the water molecule in the protein active site and the analysis of the perturbation of an explicit water network (WNP) as a consequence of ligand binding. We have for the first time extended these approaches toward the prediction of kinetics for small molecules and of relative free energy of binding with a focus on the perturbation of the water network and application to large diverse data sets. Our results support a qualitative correlation between the residence time of 12 related triazine adenosine A(2A) receptor antagonists and the number and position of high energy trapped solvent molecules. From a quantitative viewpoint, we successfully applied these computational techniques as an implicit solvent alternative, in linear combination with a molecular mechanics force field, to predict the relative ligand free energy of binding (WNP-MMSA). The applicability of this linear method, based on the thermodynamics additivity principle, did not extend to 375 diverse A(2A) receptor antagonists. However, a fast but effective method could be enabled by replacing the linear approach with a machine learning technique using probabilistic classification trees, which classified the binding affinity correctly for 90% of the ligands in the training set and 67% in the test set.

  17. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  18. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  19. High-affinity neuropeptide Y receptor antagonists.

    PubMed

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J; Spaltenstein, A

    1995-09-26

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats.

  20. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    PubMed Central

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  1. A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation

    PubMed Central

    Tozzi, Alessandro; de Iure, Antonio; Marsili, Valentina; Romano, Rosaria; Tantucci, Michela; Di Filippo, Massimiliano; Costa, Cinzia; Napolitano, Francesco; Mercuri, Nicola Biagio; Borsini, Franco; Giampà, Carmen; Fusco, Francesca Romana; Picconi, Barbara; Usiello, Alessandro; Calabresi, Paolo

    2012-01-01

    Background Cocaine increases the level of endogenous dopamine (DA) in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs) have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. Principal Findings Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. Conclusions The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine. PMID:22715379

  2. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    PubMed Central

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  3. Pharmacological analysis of calcium antagonist receptors

    SciTech Connect

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)(/sup 3/H)desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) (/sup 3/H)desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor.

  4. Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; Bajorath, Jürgen

    2016-06-01

    We report an investigation designed to explore alternative approaches for ranking of docking poses in the search for antagonists of the adenosine A2A receptor, an attractive target for structure-based virtual screening. Calculation of 3D similarity of docking poses to crystallographic ligand(s) as well as similarity of receptor-ligand interaction patterns was consistently superior to conventional scoring functions for prioritizing antagonists over decoys. Moreover, the use of crystallographic antagonists and agonists, a core fragment of an antagonist, and a model of an agonist placed into the binding site of an antagonist-bound form of the receptor resulted in a significant early enrichment of antagonists in compound rankings. Taken together, these findings showed that the use of binding modes of agonists and/or antagonists, even if they were only approximate, for similarity assessment of docking poses or comparison of interaction patterns increased the odds of identifying new active compounds over conventional scoring.

  5. Emerging cardiovascular indications of mineralocorticoid receptor antagonists.

    PubMed

    Parviz, Yasir; Iqbal, Javaid; Pitt, Bertram; Adlam, David; Al-Mohammad, Abdallah; Zannad, Faiez

    2015-04-01

    Mineralocorticoid receptor (MR) antagonism is a well-established treatment modality for patients with hypertension, heart failure, and left ventricular systolic dysfunction (LVSD) post-myocardial infarction (MI). There are emerging data showing potential benefits of MR antagonists in other cardiovascular conditions. Studies have shown association between MR activation and the development of myocardial fibrosis, coronary artery disease, metabolic syndrome, and cerebrovascular diseases. This review examines the preclinical and clinical data of MR antagonists for novel indications including heart failure with preserved ejection fraction (HFPEF), pulmonary arterial hypertension (PAH), arrhythmia, sudden cardiac death, valvular heart disease, metabolic syndrome, renal disease, and stroke. MR antagonists are not licensed for these conditions yet; however, emerging data suggest that indication for MR antagonists are likely to broaden; further studies are warranted.

  6. NMDA Receptor Antagonists for Treatment of Depression

    PubMed Central

    Ates-Alagoz, Zeynep; Adejare, Adeboye

    2013-01-01

    Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA) receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker), and CGP 37849 (an NMDA receptor antagonist) have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery. PMID:24276119

  7. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    PubMed Central

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  8. Medicinal chemistry of competitive kainate receptor antagonists.

    PubMed

    Larsen, Ann M; Bunch, Lennart

    2011-02-16

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1-5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure-activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field.

  9. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  10. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  11. Muscarinic Receptor Antagonists: Effects on Pulmonary Function

    PubMed Central

    Buels, Kalmia S.

    2014-01-01

    In healthy lungs, muscarinic receptors control smooth muscle tone, mucus secretion, vasodilation, and inflammation. In chronic obstructive pulmonary disease (COPD) and asthma, cholinergic mechanisms contribute to increased bronchoconstriction and mucus secretion that limit airflow. This chapter reviews neuronal and nonneuronal sources of acetylcholine in the lung and the expression and role of M1, M2, and M3 muscarinic receptor subtypes in lung physiology. It also discusses the evidence for and against the role of parasympathetic nerves in asthma, and the current use and therapeutic potential of muscarinic receptor antagonists in COPD and asthma. PMID:22222705

  12. Development of Kappa Opioid Receptor Antagonists

    PubMed Central

    Carroll, F. Ivy; Carlezon, William A.

    2013-01-01

    Kappa opioid receptors (KORs) belong to the G-protein coupled class of receptors (GPCRs). They are activated by the endogenous opioid peptide dynorphin (DYN) and expressed at particularly high levels within brain areas implicated in modulation of motivation, emotion, and cognitive function. Chronic activation of KORs in animal models has maladaptive effects including increases in behaviors that reflect depression, the propensity to engage in drug-seeking behavior, and drug craving. The fact that KOR activation has such a profound influence on behaviors often triggered by stress has led to interest in selective KOR antagonists as potential therapeutic agents. This perspective provides a description of preclinical research conducted in the development of several different classes of selective KOR antagonists, a summary of the clinical studies conducted thus far, and recommendations for the type of work needed in the future to determine if these agents would be useful as pharmacotherapies for neuropsychiatric illness. PMID:23360448

  13. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers

    PubMed Central

    Brozmanova, M.; Mazurova, L.; Ru, F.; Tatar, M.; Hu, Y.; Yu, S.

    2015-01-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10–60 mmHg) in a concentration-dependent fashion (1–100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  14. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1.

  15. Structure of an agonist-bound human A2A adenosine receptor.

    PubMed

    Xu, Fei; Wu, Huixian; Katritch, Vsevolod; Han, Gye Won; Jacobson, Kenneth A; Gao, Zhan-Guo; Cherezov, Vadim; Stevens, Raymond C

    2011-04-15

    Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.

  16. A critical evaluation of adenosine A2A receptors as potentially "druggable" targets in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Domenici, Maria Rosaria; Burnouf, Sylvie; Chern, Yijuang

    2008-01-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by the expansion of a polymorphic CAG trinucleotide repeat encoding a poly-glutamine tract within the Huntingtin protein. GABAergic enkephalin neurons of the basal ganglia, which show the highest levels of expression of adenosine A(2A) receptors, are the most vulnerable in HD. Such a selective neuronal vulnerability, which occurs despite ubiquitous expression of mutant and normal Huntingtin, has suggested that adenosine A(2A) receptors might play a pathogenetic role in HD. In agreement, changes in A(2A) receptor expression and signaling have been reported in various experimental models of HD. The interpretation of the functional significance of the aberrant A(2A) receptor phenotype in HD mice is however complicated by the conflicting data so far reported on the potential neuroprotective and neurodegenerative effects of these receptors in the brain, with some data suggesting a potential pathogenetic role and some other data suggesting activation of trophic or protective pathways in neurons. The same complex profile has emerged in experimental models of HD, in which both A(2A) receptor agonists and antagonists have shown beneficial effects. The main aim of this review is to critically evaluate whether adenosine A(2A) receptors may represent a suitable target to develop drugs against HD.

  17. Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis

    PubMed Central

    Chan, Edwin S L; Montesinos, Maria Carmen; Fernandez, Patricia; Desai, Avani; Delano, David L; Yee, Herman; Reiss, Allison B; Pillinger, Michael H; Chen, Jiang-Fan; Schwarzschild, Michael A; Friedman, Scott L; Cronstein, Bruce N

    2006-01-01

    Adenosine is a potent endogenous regulator of inflammation and tissue repair. Adenosine, which is released from injured and hypoxic tissue or in response to toxins and medications, may induce pulmonary fibrosis in mice, presumably via interaction with a specific adenosine receptor. We therefore determined whether adenosine and its receptors contribute to the pathogenesis of hepatic fibrosis. As in other tissues and cell types, adenosine is released in vitro in response to the fibrogenic stimuli ethanol (40 mg dl−1) and methotrexate (100 nM). Adenosine A2A receptors are expressed on rat and human hepatic stellate cell lines and adenosine A2A receptor occupancy promotes collagen production by these cells. Liver sections from mice treated with the hepatotoxins carbon tetrachloride (CCl4) (0.05 ml in oil, 50 : 50 v : v, subcutaneously) and thioacetamide (100 mg kg−1 in PBS, intraperitoneally) released more adenosine than those from untreated mice when cultured ex vivo. Adenosine A2A receptor-deficient, but not wild-type or A3 receptor-deficient, mice are protected from development of hepatic fibrosis following CCl4 or thioacetamide exposure. Similarly, caffeine (50 mg kg−1 day−1, po), a nonselective adenosine receptor antagonist, and ZM241385 (25 mg kg−1 bid), a more selective antagonist of the adenosine A2A receptor, diminished hepatic fibrosis in wild-type mice exposed to either CCl4 or thioacetamide. These results demonstrate that hepatic adenosine A2A receptors play an active role in the pathogenesis of hepatic fibrosis, and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. PMID:16783407

  18. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  19. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum.

    PubMed

    Tebano, Maria Teresa; Pintor, Annita; Frank, Claudio; Domenici, Maria Rosaria; Martire, Alberto; Pepponi, Rita; Potenza, Rosa Luisa; Grieco, Rosa; Popoli, Patrizia

    2004-07-01

    Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.

  20. Investigation of orexin-2 selective receptor antagonists: Structural modifications resulting in dual orexin receptor antagonists.

    PubMed

    Skudlarek, Jason W; DiMarco, Christina N; Babaoglu, Kerim; Roecker, Anthony J; Bruno, Joseph G; Pausch, Mark A; O'Brien, Julie A; Cabalu, Tamara D; Stevens, Joanne; Brunner, Joseph; Tannenbaum, Pamela L; Wuelfing, W Peter; Garson, Susan L; Fox, Steven V; Savitz, Alan T; Harrell, Charles M; Gotter, Anthony L; Winrow, Christopher J; Renger, John J; Kuduk, Scott D; Coleman, Paul J

    2017-03-15

    In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.

  1. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  2. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease.

    PubMed

    Chen, J F; Xu, K; Petzer, J P; Staal, R; Xu, Y H; Beilstein, M; Sonsalla, P K; Castagnoli, K; Castagnoli, N; Schwarzschild, M A

    2001-05-15

    Recent epidemiological studies have established an association between the common consumption of coffee or other caffeinated beverages and a reduced risk of developing Parkinson's disease (PD). To explore the possibility that caffeine helps prevent the dopaminergic deficits characteristic of PD, we investigated the effects of caffeine and the adenosine receptor subtypes through which it may act in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin model of PD. Caffeine, at doses comparable to those of typical human exposure, attenuated MPTP-induced loss of striatal dopamine and dopamine transporter binding sites. The effects of caffeine were mimicked by several A(2A) antagonists (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), 3,7-dimethyl-1-propargylxanthine, and (E)-1,3-diethyl-8 (KW-6002)-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione) (KW-6002) and by genetic inactivation of the A(2A) receptor, but not by A(1) receptor blockade with 8-cyclopentyl-1,3-dipropylxanthine, suggesting that caffeine attenuates MPTP toxicity by A(2A) receptor blockade. These data establish a potential neural basis for the inverse association of caffeine with the development of PD, and they enhance the potential of A(2A) antagonists as a novel treatment for this neurodegenerative disease.

  3. Mineralocorticoid receptor antagonists and endothelial function

    PubMed Central

    Maron, Bradley A.; Leopold, Jane A.

    2010-01-01

    Hyperaldosteronism has been associated with endothelial dysfunction and impaired vascular reactivity in patients with hypertension or congestive heart failure. The mineralocorticoid receptor (MR) antagonists spironolactone and eplerenone have been shown to reduce morbidity and mortality, in part, by ameliorating the adverse effects of aldosterone on vascular function. Although spironolactone and eplerenone are increasingly utilized in patients with cardiovascular disease, widespread clinical use is limited by the development of gynecomastia with spironolactone and hyperkalemia with both agents. This suggests that the development of newer agents with favorable side effect profiles is warranted. PMID:18729003

  4. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease

    PubMed Central

    Black, Kevin J.; Koller, Jonathan M.; Campbell, Meghan C.; Gusnard, Debra A.; Bandak, Stephen I.

    2010-01-01

    Adenosine A2a receptor antagonists reduce symptom severity in Parkinson disease (PD) and animal models. Rodent studies support the hypothesis that A2a antagonists produce this benefit by reducing the inhibitory output of the basal ganglia indirect pathway. One way to test this hypothesis in humans is to quantify regional pharmacodynamic responses with cerebral blood flow (CBF) imaging. That approach has also been proposed as a tool to accelerate pharmaceutical dose-finding, but has not yet been applied in humans to drugs in development. We successfully addressed both these aims with a perfusion MRI study of the novel adenosine A2a antagonist SYN115. During a randomized, double-blind, placebo-controlled, crossover study in 21 PD patients on levodopa but no agonists, we acquired pulsed arterial spin labeling MRI at the end of each treatment period. SYN115 produced a highly significant decrease in thalamic CBF, consistent with reduced pallidothalamic inhibition via the indirect pathway. Similar decreases occurred in cortical regions whose activity decreases with increased alertness and externally-focused attention, consistent with decreased self-reported sleepiness on SYN115. Remarkably, we also derived quantitative pharmacodynamic parameters from the CBF responses to SYN115. These results suggested that the doses tested were on the low end of the effective dose range, consistent with clinical data reported separately. We conclude that (1) SYN115 enters the brain and exerts dose-dependent regional effects, (2) the most prominent of these effects is consistent with deactivation of the indirect pathway as predicted by preclinical studies; and (3) perfusion MRI can provide rapid, quantitative, clinically relevant dose-finding information for pharmaceutical development. PMID:21123574

  5. Chemical Modification and Irreversible Inhibition of Striatal A2a Adenosine Receptors

    PubMed Central

    JACOBSON, KENNETH A.; STILES, GARY L.; JI, XIAO-DUO

    2012-01-01

    SUMMARY The ligand recognition site of A2a-adenosine receptors in rabbit striatal membranes was probed using non-site-directed labeling reagents and specific affinity labels. Exposure of membranes to diethylpyrocarbonate at a concentration of 2.5 mm, followed by washing, was found to inhibit the binding of [3H]CGS 21680 and [3H]xanthine amine congener to A2a receptors, by 86 and 30%, respectively. Protection from diethylpyrocarbonate inactivation by an adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine, and an antagonist, theophylline, suggested the presence of two histidyl residues on the receptor, one associated with agonist binding and the other with antagonist binding. Binding of [3H]CGS 21680 or [3H]xanthine amine congener was partially restored after incubation with 250 mm hydroxylamine, further supporting histidine as the modification site. Preincubation with disulfide-reactive reagents, dithiothreitol or sodium dithionite, at >5 mm inhibited radioligand binding, indicating the presence of essential disulfide bridges in A2a receptors, whereas the concentration of mercaptoethanol required to inhibit binding was >50 mm. A number of isothiocyanate-bearing affinity labels derived from the A2a-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5′-N-ethylcarboxamidoadenosine (APEC) were synthesized and found to inhibit A2a receptor binding in rabbit and bovine striatal membranes. Binding to rabbit A1 receptors was not inhibited. Preincubation with the affinity label 4-isothiocyanatophenylaminothiocarbonyl-APEC (100 nm) diminished the Bmax for [3H]CGS 21680 binding by 71%, and the Kd was unaffected, suggesting a direct modification of the ligand binding site. Reversal of 4-isothiocyanatophenylaminothiocarbonyl-APEC inhibition of [3H]CGS 21680 binding with hydroxylamine suggested that the site of modification by the isothiocyanate is a cysteine residue. A bromoacetyl derivative of APEC was ineffective as an affinity label at

  6. Pharmacological evidence for different populations of postsynaptic adenosine A2A receptors in the rat striatum

    PubMed Central

    Orrú, Marco; Quiroz, César; Guitart, Xavier; Ferré, Sergi

    2011-01-01

    Adenosine A2A receptors (A2ARs) are highly concentrated in the striatum. Two pharmacological different functional populations of A2ARs have been recently described based on their different affinities for the A2AR antagonist SCH-442416. This compound has high affinity for A2ARs not forming heteromers or forming heteromers with adenosine A1 receptors (A1Rs) while showing very low affinity for A2ARs forming heteromers with dopamine D2 receptors (D2Rs). It has been widely described that striatal A1R-A2AR heteromers are preferentially localized presynaptically in the glutamatergic terminals that contact GABAergic dynorphinergic neurons, and that A2AR-D2R heteromers are localized postsynaptically in GABAergic enkephalinergic neurons. In the present study we provide evidence suggesting that SCH-442416 also targets postsynaptic A2AR not forming heteromers with D2R, which are involved in the motor depressant effects induced by D2R antagonists. SCH-442416 counteracted motor depression in rats induced by the D2R antagonist raclopride at a dose that did not produce motor activation or that blocked motor depression induced by an A2AR agonist. Furthermore, we re-evaluated the recently suggested key role of cannabinoid CB1 receptors (CB1Rs) in the effects of A2AR antagonists acting at postsynaptic A2ARs. By recording locomotor activity and monitoring striatal glutamate release induced by cortical electrical stimulation in rats after administration of A2AR and CB1R antagonists, we did not find evidence for any significant role of endocannabinoids in the post- or presynaptic effects of A2AR antagonists. The present results further suggest the existence of at least two functionally and pharmacologically different populations of striatal postsynaptic A2ARs. PMID:21752341

  7. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Martire, Alberto; Ledent, Catherine; Ceruti, Stefania; Abbracchio, Maria P

    2007-04-01

    The aim of this review is to summarize and critically discuss the complex role played by adenosine A(2A) receptors (A(2A)Rs) in Huntington's disease (HD). Since A(2A)Rs are mainly localized on the neurons, which degenerate early in HD, and given their ability to stimulate glutamate outflow and inflammatory gliosis, it was hypothesized that they could be involved in the pathogenesis of HD, and that A(2A)R antagonists could be neuroprotective. This was further sustained by the demonstration that A(2A)Rs and underlying signaling systems undergo profound changes in cellular and animal models of HD. More recently, however, the equation A(2A) receptor blockade=neuroprotection has appeared too simplistic. First, it is now definitely clear that, besides mediating 'bad' responses (for example, stimulation of glutamate outflow and excessive glial activation), A(2A)Rs also promote 'good' responses (such as trophic and antinflammatory effects). This implies that A(2A)R blockade results either in pro-toxic or neuroprotective effects according to the mechanisms involved in a given experimental model. Second, since HD is a chronically progressive disease, the multiple mechanisms involving A(2A)Rs may play different relative roles along the degenerative process. Such different mechanisms can be influenced by A(2A)R activation or blockade in different ways, even leading to opposite outcomes depending on the time of agonist/antagonist administration. The number, and the complexity, of the possible scenarios is further increased by the influence of mutant Huntingtin on both the expression and functions of A(2A)Rs, and by the strikingly different effects mediated by A(2A)Rs expressed by different cell populations within the brain.

  8. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  9. HIGH AFFINITY ACYLATING ANTAGONISTS FOR MUSCARINIC RECEPTORS

    PubMed Central

    Baumgold, Jesse; Karton, Yishai; Malka, Naftali; Jacobson, Kenneth A.

    2012-01-01

    Summary The muscarinic antagonists pirenzepine and telenzepine were derivitized as alkylamino derivatives at a site on the molecules corresponding to a region of bulk tolerance in receptor binding. The distal primary amino groups were coupled to the cross-linking reagent meta-phenylene diisothiocyanate, resulting in two isothiocyanate derivatives that were found to inhibit muscarinic receptors irreversibly and in a dose-dependent fashion. Preincubation of rat forebrain membranes with an isothiocyanate derivative followed by radioligand binding using [3H]N-methylscopolamine diminished the Bmax value, but did not affect the Kd value. The receptor binding site was not restored upon repeated washing, indicating that irreversible inhibition had occurred. IC50 values for the irreversible inhibition at rat forebrain muscarinic receptors were 0.15 nM and 0.19 nM, for derivatives of pirenzepine and telenzepine, respectively. The isothiocyanate derivative of pirenzepine was non-selective as an irreversible muscarinic inhibitor, and the corresponding derivative prepared from telenzepine was 5-fold selective for forebrain (mainly m1) vs. heart (m2) muscarinic receptors. PMID:1625525

  10. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  11. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

    PubMed Central

    Ishiwari, Keita; Madson, Lisa J.; Farrar, Andrew M.; Mingote, Susana M.; Valenta, John P.; DiGianvittorio, Michael D.; Frank, Lauren E.; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D.

    2009-01-01

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5–10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 µg or 5.0 µg in 0.5 µl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core. PMID:17223207

  12. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  13. The Effect of Adenosine A2A and A2B Antagonists on Tracheal Responsiveness, Serum Levels of Cytokines and Lung Inflammation in Guinea Pig Model of Asthma

    PubMed Central

    Pejman, Laleh; Omrani, Hasan; Mirzamohammadi, Zahra; Shahbazfar, Amir Ali; Khalili, Majid; Keyhanmanesh, Rana

    2014-01-01

    Purpose: Nowadays adenosine is specified as an important factor in the pathophysiology of asthma. For determining the effect of different A2 receptors, in this investigation the effect of single dose of selective adenosine A2A and A2B antagonists (ZM241385 and MRS1706) on different inflammatory parameters; tracheal responsiveness to methacholine and ovalbumin, total and differential cell count in bronchoalveolar lavage (BAL), blood levels of IL-4 and IFN-γ and lung pathology of guinea pig model of asthma were assessed. Methods: All mentioned parameters were evaluated in two sensitized groups of guinea pigs pretreated with A2A and A2B antagonists (S+Anta A2A, S+Anta A2B) compared with sensitized (S) and control (C) groups. Results: The tracheal responsiveness to methacholine and OA, total cell and eosinophil and basophil count in BAL, blood IL-4 level and pathological changes in pre-treated group with MRS1706 (S+Anta A2B) was significantly lower than those of sensitized group (p<0.01 to p<0.05). In pretreated group with Anta A2A(S+Anta A2A), all the above changes were reversed. Conclusion: These results showed a preventive effect of A2B antagonist (MRS1706) on tracheal responsiveness to methacholine and OA, total and differential cell count in bronchoalveolar lavage, blood cytokines and pathological changes. Administration of ZM241385, selective A2A antagonist, deteriorated the induction effect of ovalbumin. PMID:24511476

  14. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis.

    PubMed

    Janero, David R; Makriyannis, Alexandros

    2009-03-01

    The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued

  15. [Adenosine A2A receptor as a drug target for treatment of sepsis].

    PubMed

    Sivak, K V; Vasin, A V; Egorov, V V; Tsevtkov, V B; Kuzmich, N N; Savina, V A; Kiselev, O I

    2016-01-01

    Sepsis is a generalized infection accompanied by response of the body that manifests in a clinical and laboratory syndrome, namely, in the systemic inflammatory response syndrome (SIRS) from the organism to the infection. Although sepsis is a widespread and life-threatening disease, the assortment of drugs for its treatment is mostly limited by antibiotics. Therefore, the search for new cellular targets for drug therapy of sepsis is an urgent task of modern medicine and pharmacology. One of the most promising targets is the adenosine A(2A) receptor (A(2A)AR). The activation of this receptor, which is mediated by extracellular adenosine, manifests in almost all types of immune cells (lymphocytes, monocytes, macrophages, and dendritic cells) and results in reducing the severity of inflammation and reperfusion injury in various tissues. The activation of adenosine A(2A) receptor inhibits the proliferation of T cells and production of proinflammatory cytokines, which contributes to the activation of the synthesis of anti-inflammatory cytokines, thereby suppressing the systemic response. For this reason, various selective A(2A)AR agonists and antagonists may be considered to be drug candidates for sepsis pharmacotherapy. Nevertheless, they remain only efficient ligands and objects of pre-clinical and clinical trials. This review examines the molecular mechanisms of inflammatory response in sepsis and the structure and functions of A(2A)AR and its role in the pathogenesis of sepsis, as well as examples of using agonists and antagonists of this receptor for the treatment of SIRS and sepsis.

  16. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer.

    PubMed

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D

    2016-05-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson's disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other's effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. Published by Elsevier Ltd.

  17. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    PubMed Central

    Khanfar, Mohammad A.; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  18. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists.

    PubMed

    Khanfar, Mohammad A; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  19. An Update on Adenosine A2A-Dopamine D2 receptor interactions. Implications for the Function of G Protein-Coupled Receptors

    PubMed Central

    Ferré, S.; Quiroz, C.; Woods, A. S.; Cunha, R.; Popoli, P.; Ciruela, F.; Lluis, C.; Franco, R.; Azdad, K.; Schiffmann, S. N.

    2008-01-01

    Adenosine A2A-dopamine D2 receptor interactions play a very important role in striatal function. A2A-D2 receptor interactions provide an example of the capabilities of information processing by just two different G protein-coupled receptors. Thus, there is evidence for the coexistence of two reciprocal antagonistic interactions between A2A and D2 receptors in the same neurons, the GABAergic enkephalinergic nens. An antagonistic A2A-D2 intramembrane receptor interaction, which depends on A2A-D2 receptor heteromerization and Gq/11-PLC signaling, modulates neuronal excitability and neurotransmitter release. On the other hand, an antagonistic A2A-D2 receptor interaction at the adenylyl-cyclase level, which depends on Gs/olf- and Gi/o- type V adenylyl-cyclase signaling, modulates protein phosphorylation and gene expression. Finally, under conditions of upregulation of an activator of G protein signaling (AGS3), such as during chronic treatment with addictive drugs, a synergistic A2A-D2 receptor interaction can also be demonstrated. AGS3 facilitates a synergistic interaction between Gs/olf- and Gi/o- coupled receptors on the activation of types II/IV adenylyl cyclase, leading to a paradoxical increase in protein phosphorylation and gene expression upon co-activation of A2A and D2 receptors. The analysis of A2-D2 receptor interactions will have implications for the pathophysiology and treatment of basal ganglia disorders and drug addiction. PMID:18537670

  20. Discovery of Novel Triazole-Based Opioid Receptor Antagonists

    PubMed Central

    Zhang, Qiang; Keenan, Susan M.; Peng, Youyi; Nair, Anil C.; Yu, Seong Jae; Howells, Richard D.; Welsh, William J.

    2009-01-01

    We report the computer-aided design, chemical synthesis, and biological evaluation of a novel family of δ opioid receptor (DOR) antagonists containing a 1,2,4-triazole core structure that are structurally distinct from other known opioid receptor active ligands. Among those δ antagonists sharing this core structure, 8 exhibited strong binding affinity (Ki = 50 nM) for the DOR and appreciable selectivity for δ over μ and opioid receptors (δ/μ = 80; δ/κ > 200). PMID:16821764

  1. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma.

    PubMed

    Chan, E S L; Fernandez, P; Merchant, A A; Montesinos, M C; Trzaska, S; Desai, A; Tung, C F; Khoa, D N; Pillinger, M H; Reiss, A B; Tomic-Canic, M; Chen, J F; Schwarzschild, M A; Cronstein, B N

    2006-08-01

    Adenosine regulates inflammation and tissue repair, and adenosine A2A receptors promote wound healing by stimulating collagen matrix production. We therefore examined whether adenosine A2A receptors contribute to the pathogenesis of dermal fibrosis. Collagen production by primary human dermal fibroblasts was analyzed by real-time polymerase chain reaction, 14C-proline incorporation, and Sircol assay. Intracellular signaling for dermal collagen production was investigated using inhibitors of MEK-1 and by demonstration of ERK phosphorylation. In vivo effects were studied in a bleomycin-induced dermal fibrosis model using adenosine A2A receptor-deficient wild-type littermate mice, C57BL/6 mice, and mice treated with adenosine A2A receptor antagonist. Morphometric features and levels of hydroxyproline were determined as measures of dermal fibrosis. Adenosine A2A receptor occupancy promoted collagen production by primary human dermal fibroblasts, which was blocked by adenosine A2A, but not A1 or A2B, receptor antagonism. Adenosine A2A receptor ligation stimulated ERK phosphorylation, and A2A receptor-mediated collagen production by dermal fibroblasts was blocked by MEK-1 inhibitors. Adenosine A2A receptor-deficient and A2A receptor antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis. These results demonstrate that adenosine A2A receptors play an active role in the pathogenesis of dermal fibrosis and suggest a novel therapeutic target in the treatment and prevention of dermal fibrosis in diseases such as scleroderma.

  2. Investigation of the conformational dynamics of the apo A2A adenosine receptor

    PubMed Central

    Caliman, Alisha D; Swift, Sara E; Wang, Yi; Miao, Yinglong; McCammon, J Andrew

    2015-01-01

    The activation/deactivation processes for G-protein coupled receptors (GPCRs) have been computationally studied for several different classes, including rhodopsin, the β2 adrenergic receptor, and the M2 muscarinic receptor. Despite determined cocrystal structures of the adenosine A2A receptor (A2AAR) in complex with antagonists, agonists and an antibody, the deactivation process of this GPCR is not completely understood. In this study, we investigate the convergence of two apo simulations, one starting with an agonist-bound conformation (PDB: 3QAK)14 and the other starting with an antagonist-bound conformation (PDB: 3EML)11. Despite the two simulations not completely converging, we were able to identify distinct intermediate steps of the deactivation process characterized by the movement of Y2887.53 in the NPxxY motif. We find that Y2887.53 contributes to the process by forming hydrogen bonds to residues in transmembrane helices 2 and 7 and losing these interactions upon full deactivation. Y1975.58 also plays a role in the process by forming a hydrogen bond only once the side chain moves from the lipid interface to the middle of the helical bundle. PMID:25761901

  3. Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

    PubMed Central

    Rau, Andrew R.; Ariwodola, Olusegun J.

    2015-01-01

    Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability. Results: Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells. PMID:25716780

  4. Phenylacetamides as selective alpha-1A adrenergic receptor antagonists.

    PubMed

    Patane, M A; DiPardo, R M; Newton, R C; Price, R P; Broten, T P; Chang, R S; Ransom, R W; Di Salvo, J; Nagarathnam, D; Forray, C; Gluchowski, C; Bock, M G

    2000-08-07

    A novel class of potent and selective alpha-1a receptor antagonists has been identified. The structures of these antagonists were derived from truncating the 4-aryl dihydropyridine subunit present in known alpha-1a antagonists. The design principles which led to the discovery of substituted phenylacetamides, the synthesis and SAR of key analogues, and the results of select in vitro and in vivo studies are described.

  5. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  6. CXCR2 receptor antagonists: a medicinal chemistry perspective.

    PubMed

    Dwyer, Michael P; Yu, Younong

    2014-01-01

    Dysregulated leukocyte recruitment is believed to be a key contributor to various acute and chronic inflammatory disorders which can lead to serious pathological consequences. Chemokines are small molecular weight proteins that have been shown to be imperative in the direction of leukocytes to the sites of inflammation. In humans, several of these chemokines (CXCL8 and CXCL1) are elevated in inflammatory disorders such as asthma, arthritis, and chronic obstructive pulmonary disease (COPD). These chemokines modulate their downstream effects thru G-protein coupled receptors, such as CXCR2, making the identification of small-molecule antagonists of this receptor attractive towards developing novel therapies to treat inflammatory conditions. Since the first report of a CXCR2 receptor antagonist in 1998, there has been a considerable effort conducted mainly in the pharmaceutical industry to identify novel classes of CXCR2 receptor antagonists. Over a dozen distinct classes of CXCR2 receptor antagonists have been reported in the literature to date with a number of these compounds having reached mid-stage clinical trials. This review will provide a broad overview the medicinal chemistry efforts over the past 15 years towards the identification of CXCR2 receptor antagonists. The discussion will focus upon the early preclinical space covering the structure activity relationships (SAR), pharmacology, as well in preclinical in vivo evaluation for the different series of CXCR2 receptor antagonists. In addition, the available clinical data for the most advanced compounds in the clinic will be discussed and along with a perspective of the area moving forward.

  7. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A2A Receptors

    PubMed Central

    Gomes, Catarina A.R.V.; Simões, Patrícia F.; Canas, Paula M.; Quiroz, César; Sebastião, Ana M.; Ferré, Sergi; Cunha, Rodrigo A.; Ribeiro, Joaquim A.

    2009-01-01

    Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson’s disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. Since motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret (rearranged during transfection) and GFRα1 (GDNF family receptor alpha 1) controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/ml) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈ 30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GFRα1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphoprylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors. PMID:19141075

  8. Vasopressin-receptor antagonist therapy in patients with hyponatraemia.

    PubMed

    Vachharajani, Tushar; Vachharajani, Vidula

    2007-07-01

    Hyponatraemia often complicates the treatment of underlying conditions in patients who are seriously ill. Arginine vasopressin receptor antagonists block the action of arginine vasopressin and correct sodium and water imbalance in patients with euvolaemic or hypervolaemic hyponatraemia.

  9. [Angiotensin II receptor antagonists: different or equivalent?].

    PubMed

    Mounier-Vehier, C; Devos, P

    ARA-II: Angiotensin II receptor antagonists (ARA-II) belong to a recent class of antihypertensive drugs whose mechanism of action is similar to converting enzyme inhibitors (CEI). ARA-II are particularly interesting due to the excellent clinical and biological tolerance, similar to placebo, and their antihypertensive efficacy, comparable with classical drug classes. PUBLISHED TRIALS: A meta-analysis, published by Conlin in the American Journal of Hypertension, suggests that ARA-II, specifically losartan, valsartan, irbesartan and candesartan, have an equipotent blood pressure lowering effect. The careful lecture of this meta-analysis however discloses a faulty methodology from which no valid conclusion can be drawn. Since this early publication, several other comparative studies have been published. These multicentric, randomized double-blind studies enrolled a sufficient number of patients and demonstrated a clinical difference between certain ARA-II at usual dosages. CLINICAL PRACTICE: These studies do have an impact on everyday practice. For the practitioner, the goal is to obtain and then maintain a long-term and optimal reduction in the blood pressure level (reduction or prevention of target-organ disorders and cardiovascular complications of high blood pressure). This reduction in the cardiovascular risk will also depend directly on tolerance and compliance to the antihypertensive treatment. This element must also be considered in assessing treatment efficacy, independent of the blood pressure lowering effect. The results of several other studies will be published in 2001-2003. These large-scale studies on ARA-II related morbidity and mortality will be most useful in determining the role of these drugs in different therapeutic strategies compared with other drug classes.

  10. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system.

    PubMed

    Popoli, Patrizia; Pepponi, Rita

    2012-09-01

    Adenosine A2B and, much more importantly, adenosine A2A receptors modulate many physiological and pathological processes in the brain. In this review, the most recent evidence concerning the role of such receptors and their potential therapeutic relevance is discussed. The low affinity of A2B receptors for adenosine implies that they might represent a good therapeutic target, since they are activated only under pathological conditions (when adenosine levels raise up to micromolar concentrations). The availability of selective ligands for A2B receptors would allow exploration of such an hypothesis. Since adenosine A2A receptors mediate both potentially neuroprotective and potentially neurotoxic effects, their role in neurodegenerative diseases is highly controversial. Nevertheless, A2A receptor antagonists have shown clear antiparkinsonian effects, and a great interest exists on the role of A2A receptors in Alzheimer's disease, brain ischaemia, spinal cord injury, drug addiction and other conditions. In order to establish whether such receptors represent a target for CNS diseases, at least two conditions are needed: the full comprehension of A2A-dependent mechanisms and the availability of ligands capable of discriminating among the different receptor populations.

  11. Antagonists of the kappa opioid receptor.

    PubMed

    Urbano, Mariangela; Guerrero, Miguel; Rosen, Hugh; Roberts, Edward

    2014-05-01

    The research community has increasingly focused on the development of OPRK antagonists as pharmacotherapies for the treatment of depression, anxiety, addictive disorders and other psychiatric conditions produced or exacerbated by stress. Short-acting OPRK antagonists have been recently developed as a potential improvement over long-acting prototypic ligands including nor-BNI and JDTic. Remarkably the short-acting LY2456302 is undergoing phase II clinical trials for the augmentation of the antidepressant therapy in treatment-resistant depression. This Letter reviews relevant chemical and pharmacological advances in the identification and development of OPRK antagonists.

  12. Recent advances in CB1 cannabinoid receptor antagonists.

    PubMed

    Lange, Jos H M; Kruse, Chris G

    2004-07-01

    Cannabinoid CB1 receptor antagonists are currently the subject of intensive research due to their highly promising therapeutic prospects. Novel chemical entities having CB1 antagonistic properties have recently been disclosed by several pharmaceutical companies and some academic research groups, some of which are close structural analogs of the leading compound rimonabant (SR-141716A; Sanofi-Synthélabo). A considerable number of these CB1 antagonists are bioisosteres that are derived from rimonabant by the replacement of the pyrazole moiety with an alternative heterocycle. As well as these achiral compounds, Solvay Pharmaceuticals have disclosed a novel class of chiral pyrazolines that are potent and CB1/CB2 subtype-selective cannabinoid receptor antagonists, in which the interactions with the CB1 receptor are highly stereoselective.

  13. Solution structures and molecular interactions of selective melanocortin receptor antagonists.

    PubMed

    Lee, Chul-Jin; Yun, Ji-Hye; Lim, Sung-Kil; Lee, Weontae

    2010-12-01

    The solution structures and inter-molecular interaction of the cyclic melanocortin antagonists SHU9119, JKC363, HS014, and HS024 with receptor molecules have been determined by NMR spectroscopy and molecular modeling. While SHU9119 is known as a nonselective antagonist, JKC363, HS014, and HS024 are selective for the melanocortin subtype-4 receptor (MC4R) involved in modulation of food intake. Data from NMR and molecular dynamics suggest that the conformation of the Trp9 sidechain in the three MC4R-selective antagonists is quite different from that of SHU9119. This result strongly supports the concept that the spatial orientation of the hydrophobic aromatic residue is more important for determining selectivity than the presence of a basic, "arginine-like" moiety responsible for biological activity. We propose that the conformation of hydrophobic residues of MCR antagonists is critical for receptor-specific selectivity.

  14. NK-1 receptor antagonists: a new paradigm in pharmacological therapy.

    PubMed

    Muñoz, M; Coveñas, R

    2011-01-01

    The neuropeptide substance P (SP) shows a widespread distribution in both the central and peripheral nervous systems and it is known that after binding to the neurokinin-1 (NK-1) receptors, SP regulates many biological functions in the central nervous system such as emotional behaviour, stress, depression, anxiety, emesis, migraine, alcohol addiction and neurodegeneration. SP has been also implicated in pain, inflammation, hepatotoxicity and in virus proliferation, and it plays an important role in cancer (e.g., tumour cell proliferation, angiogenesis, and the migration of tumour cells for invasion and metastasis). By contrast, it is known that after binding to NK-1 receptors, NK-1 receptor antagonists specifically inhibit the above-mentioned biological functions mediated by SP. Thus, these antagonists exert an anxyolitic, antidepressant, antiemetic, antimigraine, antialcohol addiction or neuroprotector effect in the central nervous system, and they play a role in analgesic, antiinflammatory, hepatoprotector processes and in antivirus proliferation. Regarding cancer, NK-1 receptor antagonists exert an antitumour action (inducing tumour cell death by apoptosis), and induce antiangiogenesis and inhibit the migration of tumour cells. It is also known that NK-1 receptors have a widespread distribution and that they are overexpressed in tumour cells. Thus, NK-1 receptor antagonists are molecularly targeted agents. In general, current drugs have a single therapeutic effect, although less commonly they may exert several. However, the data reported above indicate that NK-1 receptor antagonists are promising drugs, exerting many therapeutic effects (the action of such antagonists is dose-dependent and, depending on the concentration, has more positive effects). In this review, we update the multiple therapeutic effects exerted by NK-1 receptor antagonists.

  15. Combining Elements from Two Antagonists of Formyl Peptide Receptor 2 Generates More Potent Peptidomimetic Antagonists.

    PubMed

    Skovbakke, Sarah Line; Holdfeldt, André; Nielsen, Christina; Hansen, Anna Mette; Perez-Gassol, Iris; Dahlgren, Claes; Forsman, Huamei; Franzyk, Henrik

    2017-08-24

    Structural optimization of a peptidomimetic antagonist of formyl peptide receptor 2 (FPR2) was explored by an approach involving combination of elements from the two most potent FPR2 antagonists described: a Rhodamine B-conjugated 10-residue gelsonin-derived peptide (i.e., PBP10, RhB-QRLFQVKGRR-OH) and the palmitoylated α-peptide/β-peptoid hybrid Pam-(Lys-βNspe)6-NH2. This generated an array of hybrid compounds from which a new subclass of receptor-selective antagonists was identified. The most potent representatives displayed activity in the low nanomolar range. The resulting stable and potent FPR2-selective antagonists (i.e., RhB-(Lys-βNphe)n-NH2; n = 4-6) are expected to become valuable tools in further elucidation of the physiological role of FPR2 in health and disease.

  16. Caffeine and CSC, adenosine A2A antagonists, offer neuroprotection against 6-OHDA-induced neurotoxicity in rat mesencephalic cells.

    PubMed

    Nobre, Hélio Vitoriano; Cunha, Geanne Matos de Andrade; de Vasconcelos, Lissiana Magna; Magalhães, Hemerson Iury Ferreira; Oliveira Neto, Raimundo Nogueira; Maia, Flávio Damasceno; de Moraes, Manoel Odorico; Leal, L Kalyne A Moreira; Viana, Glauce Socorro de Barros

    2010-01-01

    In this study, the cytoprotective effects of caffeine (CAF) and 8-(3-chlorostyryl)-caffeine (CSC), A(2A) receptor antagonists, were tested against 6-OHDA-induced cytotoxicity, in rat mesencephalic cells. Both drugs significantly increased the number of viable cells, after their exposure to 6-OHDA, as measured by the MTT assay. While nitrite levels in the cells were drastically increased by 6-OHDA, their concentrations were brought toward normality after CAF or CSC, indicating that both drugs block 6-OHDA-induced oxidative stress which leads to free radicals generation. A complete blockade of 6-OHDA-induced lipid peroxidation, considered as a major source of DNA damage, was observed after cells treatment with CAF or CSC. 6-OHDA decreased the number of normal cells while increasing the number of apoptotic cells. In the CAF plus 6-OHDA group, a significant recover in the number of viable cells and a decrease in the number of apoptotic cells were seen, as compared to the group treated with 6-OHDA alone. A similar effect was observed after cells exposure to CSC in the presence of 6-OHDA. Unexpectedly, while a significant lower number of activated microglia was observed after cells exposure to CAF plus 6-OHDA, this was not the case after cells exposure to CSC under the same conditions. While CAF lowered the percentage of reactive astrocytes increased by 6-OHDA, CSC presented no effect. The effects of these drugs were also examined on the releases of myeloperoxidase (MPO), an inflammatory marker, and lactate dehydrogenase (LDH), a marker for cytotoxicity, in human neutrophils, in vitro. CSC and CAF (0.1, 1 and 10 microg/ml) produced inhibitions of the MPO release from PMA-stimulated cells, ranging from 45 to 83%. In addition, CSC and CAF (5, 50 and 100 microg/ml) did not show any cytotoxicity in the range of concentrations used, as determined by the LDH assay. All together, our results showed a strong neuroptrotection afforded by caffeine or CSC, on rat mesencephalic

  17. Adenosine A2A and A2B Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis.

    PubMed

    Andrés, Rosa M; Terencio, María Carmen; Arasa, Jorge; Payá, Miguel; Valcuende-Cavero, Francisca; Navalón, Pedro; Montesinos, María Carmen

    2017-01-01

    Adenosine is a potent regulator of inflammation and immunity, but the role of adenosine receptors in keratinocytes remains controversial. We determined that in addition to A2B receptors, human epidermal keratinocytes also express A2A receptors, although to a lower extent. Through the use of selective adenosine receptor agonists and antagonists, we showed that physiological concentrations of adenosine activate A2B receptors in normal human keratinocytes, inducing cell cycle arrest through the increase of intracellular calcium but not through cAMP signaling. In contrast, the selective activation of A2A receptors by CGS-21680 induces keratinocyte proliferation via p38-mitogen-activated protein kinase activation. Adenosine and selective A2A and A2B agonists presented anti-inflammatory profiles independent of adenosine receptors but mediated by membrane phosphatase activation. Finally, keratinocyte exposure to diverse inflammatory cytokines altered adenosine receptor expression by reducing A2B and increasing A2A, a pattern also observed in psoriatic epidermis. Because increased epidermal turnover and inflammatory response are characteristics of psoriatic disease, further studies are needed to assess the role and consequences of the altered adenosine receptor expression in lesional and nonlesional psoriatic keratinocytes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Pharmacophore development for antagonists at α1 adrenergic receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bremner, J. B.; Coban, B.; Griffith, R.

    1996-12-01

    Many receptors, including α1 adrenergic receptors, have a range of subtypes. This offers possibilities for the development of highly selective antagonists with potentially fewer detrimental effects. Antagonists developed for α1A receptors, for example, would have potential in the treatment of benign prostatic hyperplasia. As part of the molecular design process, structural features necessary for the selective affinity for α1A and α1B adrenergic receptors have been investigated. The molecular modelling software (particularly the Apex module) of Molecular Simulations, Inc. was used to develop pharmacophore models for these two subtypes. Low-energy conformations of a set of known antagonists were used as input, together with a classification of the receptor affinity data. The biophores proposed by the program were evaluated and pharmacophores were proposed. The pharmacophore models were validated by testing the fit of known antagonists, not included in the training set. The critical structural feature for selectivity between the α1A and α1B adrenergic receptor sites is the distance between the basic nitrogen atom and the centre of an aromatic ring system. This will be exploited in the design and synthesis of structurally new selective antagonists for these sites.

  19. Analysis of Adenosine A2a Receptor Stability: Effects of Ligands and Disulfide Bonds

    PubMed Central

    O'Malley, Michelle A.; Naranjo, Andrea N.; Lazarova, Tzvetana; Robinson, Anne S.

    2010-01-01

    G protein-coupled receptors (GPCRs)1 constitute the largest family of integral membrane proteins present in all eukaryotic cells, yet relatively little information is known pertaining to their structure, folding, and stability. In this work, we describe several approaches to characterize conformational stability of the human adenosine A2a receptor (hA2aR). Thermal and chemical denaturation were not reversible, yet clear differences in the unfolding behavior were observed upon ligand binding via circular dichroism and fluorescence spectrometry. We found that the stability of hA2aR was increased upon incubation with the agonist N6-cyclohexyladenosine or the antagonist theophylline. When extracellular disulfide bonds were reduced with a chemical reducing agent, the ligand-binding activity decreased by ~40%, but reduction of these bonds did not compromise the unfolding transition observed via urea denaturation. Overall, these approaches offer a general strategy for characterizing the effect of surfactant and ligand effects on the stability of GPCRs. PMID:20853839

  20. Triterpenes from Alisma orientalis act as androgen receptor agonists, progesterone receptor antagonists, and glucocorticoid receptor antagonists.

    PubMed

    Lin, Hsiang-Ru

    2014-08-01

    Alisma orientalis, a well-known traditional medicine, exerts numerous pharmacological effects including anti-diabetes, anti-hepatitis, and anti-diuretics but its bioactivity is not fully clear. Androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) are three members of nuclear receptor superfamily that has been widely targeted for developing treatments for essential diseases including prostate cancer and breast cancer. In this study, two triterpenes, alisol M 23-acetate and alisol A 23-acetate from Alisma orientalis were determined whether they may act as androgen receptor (AR), progesterone receptor (PR), or glucocorticoid receptor (GR) modulators. Indeed, in the transient transfection reporter assays, alisol M 23-acetate and alisol A 23-acetate transactivated AR in dose-dependent manner, while they transrepressed the transactivation effects exerted by agonist-activated PR and GR. Through molecular modeling docking studies, they were shown to respectively interact with AR, PR, or GR ligand binding pocket fairly well. All these results indicate that alisol M 23-acetate and alisol A 23-acetate from Alisma orientalis might possess therapeutic effects through their modulation of AR, PR, and GR pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  2. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  3. Endothelin receptor antagonists for subarachnoid hemorrhage.

    PubMed

    Guo, Jia; Shi, Zhenghong; Yang, Kehu; Tian, Jin Hui; Jiang, Lei

    2012-09-12

    A subarachnoid hemorrhage (SAH) is a serious and potentially life-threatening condition where blood leaks out of blood vessels over the surface of the brain. Delayed ischemic neurological deficit (DIND) and the related feature of vasospasm, where patients experience a delayed deterioration, have long been recognized as the leading potentially treatable cause of death and disability in patients with SAH. Endothelin is a potent, long-lasting endogenous vasoconstrictor that has been implicated in the pathogenesis of DIND. Therefore, endothelin receptor antagonists (ETAs) have emerged as a promising therapeutic option for SAH-induced cerebral vasospasm. To assess the efficacy and tolerability of ETAs for SAH. We searched the Cochrane Stroke Group Trials Register (December 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 11), MEDLINE (1950 to December 2011), EMBASE (1946 to December 2011) and the Chinese Biomedical Database (1978 to December 2011). In an effort to identify further published, unpublished and ongoing trials we searched additional Chinese databases, ongoing trials registers, Google Scholar and Medical Matrix, handsearched journals, scanned reference lists, and contacted researchers and pharmaceutical companies. We only included randomized controlled trials (RCTs) that compared an ETA with placebo for SAH in adult (18 years of age or older) patients who met the diagnostic criteria for SAH based on clinical symptoms, with confirmation on computerized tomography scan results or angiography. Two review authors independently selected RCTs according to the inclusion criteria. We resolved disagreements by discussion with a third review author. Two review authors independently selected relevant articles and assessed their eligibility according to the inclusion and exclusion criteria. We resolved disagreements by discussion with a third review author. We used the random-effects model and expressed the results as

  4. FGF acts as a co-transmitter through Adenosine A2A receptor to regulate morphological and physiological synaptic plasticity

    PubMed Central

    Flajolet, Marc; Wang, Zhongfeng; Futter, Marie; Shen, Weixing; Nuangchamnong, Nina; Bendor, Jacob; Palaszewski, Iwona; Nairn, Angus C.; Surmeier, D. James; Greengard, Paul

    2009-01-01

    Summary Abnormalities of striatal function have been implicated in several major neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, and depression. Adenosine, by activation of A2A receptors, antagonizes dopamine signaling at D2 receptors and A2A receptor antagonists have been tested as therapeutic agents for Parkinson's disease. We report here a direct physical interaction between the G protein-coupled A2A receptor and the receptor tyrosine kinase FGF receptor. Concomitant activation of these two classes of receptors, but not individual activation of either one alone, causes a robust activation of the MAPK/ERK pathway, differentiation and neurite extension of PC12 cells, spine morphogenesis in primary neuronal cultures, and cortico-striatal plasticity induced by a novel A2AR/FGFR-dependent mechanism. The discovery of a direct physical interaction between the A2A and FGF receptors and the robust physiological consequences of this association shed light on the mechanism underlying FGF functions as a co-transmitter and open new avenues for therapeutic interventions. PMID:18953346

  5. Novel arylpiperazines as selective alpha1-adrenergic receptor antagonists.

    PubMed

    Li, X; Murray, W V; Jolliffe, L; Pulito, V

    2000-05-15

    A novel series of arylpiperazines has been synthesized and identified as antagonists of alpha1a adrenergic receptor (alpha1a-AR) implicated in benign prostatic hyperplasia. These compounds selectively bind to membrane bound alpha1a-AR with K(i)s as low as 0.66 nM. As such, these potentially represent a viable treatment for BPH without the side effects associated with known alpha1-adrenergic antagonists.

  6. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  7. Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia.

    PubMed

    Oliveira, Paulo A de; Dalton, James A R; López-Cano, Marc; Ricarte, Adrià; Morató, Xavier; Matheus, Filipe C; Cunha, Andréia S; Müller, Christa E; Takahashi, Reinaldo N; Fernández-Dueñas, Víctor; Giraldo, Jesús; Prediger, Rui D; Ciruela, Francisco

    2017-05-12

    Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.

  8. Mixed antagonistic effects of bilobalide at rho1 GABAC receptor.

    PubMed

    Huang, S H; Duke, R K; Chebib, M; Sasaki, K; Wada, K; Johnston, G A R

    2006-01-01

    Bilobalide was found to be a moderately potent antagonist with a weak use-dependent effect at recombinant human rho(1) GABA(C) receptors expressed in Xenopus oocytes using two-electrode voltage clamp methodology. Antagonism of bilobalide at homomeric rho(1) GABA(C) receptors appeared to be mixed. At low concentration, bilobalide (3 microM) caused a parallel right shift and surmountable GABA maximal response of the GABA dose-response curve characteristic of a competitive antagonist. At high concentrations, bilobalide (10-100 microM) caused nonparallel right shifts and reduced maximal GABA responses of GABA dose-response curves characteristic of a noncompetitive antagonist. The potency of bilobalide appears to be dependent on the concentrations of GABA and was more potent at lower GABA concentrations. The mechanism of action of bilobalide at rho(1) GABA(C) receptors appears to be similar to that of the chloride channel blocker picrotoxinin.

  9. Third Generation Mineralocorticoid Receptor Antagonists; Why We Need a Fourth

    PubMed Central

    Gomez-Sanchez, Elise

    2015-01-01

    The first mineralocorticoid receptor (MR) antagonist, spironolactone, was developed almost 60 years ago to treat primary aldosteronism and pathological edema. Its use waned in part due to its lack of selectivity. Subsequently knowledge of the scope of MR function was expanded along with clinical evidence of the therapeutic importance of MR antagonists to prevent the ravages of inappropriate MR activation. Forty-two years elapsed between the first and MR-selective second generation of MR antagonists. Fifteen years later, despite serious shortcomings of the existing antagonists, a third generation antagonist has yet to be marketed. Progress has been slowed by the lack of appreciation of the large variety of cell types that express the MR and its diverse cell-type-specific actions, as well as its uniquely complex interactions actions at the molecular level. New MR antagonists should preferentially target the inflammatory and fibrotic effects of MR and perhaps its excitatory effects on sympathetic nervous system, but not the renal tubular epithelium or neurons of the cortex and hippocampus. This review briefly describes efforts to develop a third generation MR antagonist and why fourth generation antagonists and selective agonists based on structural determinants of tissue and ligand-specific MR activation should be contemplated. PMID:26466326

  10. Endothelin receptor antagonists influence cardiovascular morphology in uremic rats.

    PubMed

    Nabokov, A V; Amann, K; Wessels, S; Münter, K; Wagner, J; Ritz, E

    1999-02-01

    In is generally held that renal failure results in blood pressure (BP)-independent structural changes of the myocardium and the vasculature. The contribution, if any, of endothelin (ET) to these changes has been unknown. We morphometrically studied random samples of the left ventricle myocardium and small intramyocardial arteries in subtotally (5/6) nephrectomized (SNx) male Sprague-Dawley rats treated with either the selective ETA receptor antagonist BMS182874 (30 mg/kg/day) or the nonselective ETA/ETB receptor antagonist Ro46-2005 (30 mg/kg/day) in comparison with either sham-operated rats, untreated SNx, or SNx rats treated with the angiotensin-converting enzyme inhibitor trandolapril (0.1 mg/kg/day). Eight weeks later, systolic BP was lower in trandolapril-treated SNx compared with untreated SNx animals. No decrease in BP was seen following either ET receptor antagonist at the dose used. A significantly increased volume density of the myocardial interstitium was found in untreated SNx rats as compared with sham-operated controls. Such interstitial expansion was prevented by trandolapril and either ET receptor antagonist. SNx caused a substantial increase in the wall thickness of small intramyocardial arteries. The increase was prevented by trandolapril or BMS182874 treatment. The arteriolar wall:lumen ratio was significantly lower in all treated groups when compared with untreated SNx. In contrast, only trandolapril, but not the ET receptor antagonists, attenuated thickening of the aortic media in SNx animals. The ETA-selective and ETA/ETB-nonselective receptor antagonists appear to prevent development of myocardial fibrosis and structural changes of small intramyocardial arteries in experimental chronic renal failure. This effect is independent of systemic BP.

  11. Drug discovery and chemokine receptor antagonists: eppur si muove!

    PubMed

    Terricabras, Emma; Benjamim, Claudia; Godessart, Nuria

    2004-11-01

    The blockade of leukocyte migration has been demonstrated to be a valid option for the treatment of several autoimmune diseases. Chemokines play an active role in regulating cell infiltration into inflammatory sites and disrupting chemokine-receptor interactions has emerged as an alternative therapeutic approach. Pharmaceutical companies have developed an intense activity in the drug discovery of chemokine receptor antagonists in the last 10 years. Potent and selective compounds have been obtained and some of them are currently being evaluated in the clinic. The success of these trials will demonstrate whether the blockade of a single receptor is of therapeutic benefit. Alternative approaches, such as pan-receptor antagonists or inhibitors of the signalling pathways evoked by chemokines, are also being explored. In the meantime, new relationships between chemokines and receptors will be revealed, increasing our knowledge of such a fascinating field.

  12. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    SciTech Connect

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M.

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  13. Up-regulation of striatal adenosine A2A receptors with iron deficiency in rats. Effects on locomotion and cortico-striatal neurotransmission

    PubMed Central

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-01-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A2A receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A2A receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A2A receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A2A receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A2A receptors was found in rats fed during three weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A2A receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A2A receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A2A receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A2A receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. PMID:20385128

  14. Up-regulation of striatal adenosine A(2A) receptors with iron deficiency in rats: effects on locomotion and cortico-striatal neurotransmission.

    PubMed

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-07-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A(2A) receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A(2A) receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A(2A) receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A(2A) receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A(2A) receptors was found in rats fed during 3 weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A(2A) receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A(2A) receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A(2A) receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A(2A) receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS.

  15. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils

    PubMed Central

    Varani, Katia; Gessi, Stefania; Merighi, Stefania; Iannotta, Valeria; Cattabriga, Elena; Spisani, Susanna; Cadossi, Ruggero; Borea, Pier Andrea

    2002-01-01

    The present study describes the effect of low frequency, low energy, pulsing electromagnetic fields (PEMFs) on A2A adenosine receptors in human neutrophils.Saturation experiments performed using a high affinity adenosine antagonist [3H]-ZM 241385 revealed a single class of binding sites in control and in PEMF-treated human neutrophils with similar affinity (KD=1.05±0.10 and 1.08±0.12 nM, respectively). Furthermore, after 1 h of exposure to PEMFs the receptor density was statistically increased (P<0.01) (Bmax =126±10 and 215±15 fmol mg−1 protein, respectively).The effect of PEMFs was specific to the A2A adenosine receptors. This effect was also intensity, time and temperature dependent.In the adenylyl cyclase assays the A2A receptor agonists, HE-NECA and NECA, increased cyclic AMP accumulation in untreated human neutrophils with an EC50 value of 43 (40 – 47) and 255 (228 – 284) nM, respectively. The capability of HE-NECA and NECA to stimulate cyclic AMP levels in human neutrophils was increased (P<0.01) after exposure to PEMFs with an EC50 value of 10(8 – 13) and 61(52 – 71) nM, respectively.In the superoxide anion (O2−) production assays HE-NECA and NECA inhibited the generation of O2− in untreated human neutrophils, with an EC50 value of 3.6(3.1 – 4.2) and of 23(20 – 27) nM, respectively. Moreover, in PEMF-treated human neutrophils, the same compounds show an EC50 value of 1.6(1.2 – 2.1) and of 6.0(4.7 – 7.5) nM respectively.These results indicate the presence of significant alterations in the expression and in the functionality of adenosine A2A receptors in human neutrophils treated with PEMFs. PMID:11976268

  16. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    PubMed

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  17. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    DTIC Science & Technology

    2016-08-01

    treatment; Analgesia; Nociception; Antinociception; Inflammation ; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain...multiplex quantitative analysis of protein levels of these molecules. 2. KEYWORDS: Pain treatment; Analgesia; Nociception; Antinociception; Inflammation ...with a circulating water bath (Model 9500, Fisher Scientific; Pittsburgh, PA). Rats were held over the bath with their tails submerged

  18. Endothelin receptor antagonists and cardiovascular diseases of aging.

    PubMed

    Love, M P; McMurray, J J

    2001-01-01

    Our understanding of the role of the endothelin system in human cardiovascular physiology and pathophysiology has evolved very rapidly since the initial description of its constituent parts in 1988. Endothelin-1 (ET-1) is the predominant endothelin isoform in the human cardiovascular system and has potent vasoconstrictor, mitogenic and antinatriuretic properties which have implicated it in the pathophysiology of a number of cardiovascular diseases. The effects of ET-1 have been shown to be mediated by 2 principal endothelin receptor subtypes: ET(A) and ET(B). The development of a range of peptidic and nonpeptidic endothelin receptor antagonists represents an exciting breakthrough in human cardiovascular therapeutics. Two main classes of endothelin receptor antagonist have been developed for possible human therapeutic use: ET(A)-selective and nonselective antagonists. Extensive laboratory and clinical research with these agents has highlighted their promise in various cardiovascular diseases. Randomised, placebo-controlled clinical trials have yielded very encouraging results in patients with hypertension and chronic heart failure with more preliminary data suggesting a possible role in the treatment and prevention of atherosclerosis and stroke. Much more research is needed, however, before endothelin receptor antagonists can be considered for clinical use.

  19. [Medical economics evaluation of 5-HT3 receptor antagonist drugs].

    PubMed

    Utsunomiya, Junpei; Hirano, Shigeki; Fukui, Aiko; Funabashi, Kazuaki; Deguchi, Yuko; Yamada, Susumu; Naito, Kazuyuki

    2010-10-01

    At Komaki City Hospital, the drug cost in connection with cancer chemotherapy was re-examined as part of improved management along with the introduction of DPC in July 2008. With due attention to the 5-HT3 receptor antagonists, both the change from injections to oral drugs and the change from brand-name drugs to generic drugs were tried between July 2008 and June 2009. After that, in order to examine the economic impact of these changes, we investigated and analyzed the number of medications, the cost of medicine purchased, and the average drug cost per medication of the 5-HT3 receptor antagonists between April 2008 and September 2009. As a result, the cost of 5-HT3 receptor antagonists purchased decreased greatly, and the impact of the improvement was mainly due to the change to oral drugs, and partially to the change to generic drugs. Therefore, from the viewpoint of hospital economic improvement in DPC, it was thought that the change to oral drugs(5-HT3 receptor antagonists)is given top priority.

  20. Novel benzopolycyclic amines with NMDA receptor antagonist activity.

    PubMed

    Valverde, Elena; Sureda, Francesc X; Vázquez, Santiago

    2014-05-01

    A new series of benzopolycyclic amines active as NMDA receptor antagonists were synthesized. Most of them exhibited increased activity compared with related analogues previously published. All the tested compounds were more potent than clinically approved amantadine and one of them displayed a lower IC50 value than memantine, an anti-Alzheimer's approved drug.

  1. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.

  2. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington's disease mice.

    PubMed

    Martire, Alberto; Ferrante, Antonella; Potenza, Rosa Luisa; Armida, Monica; Ferretti, Roberta; Pézzola, Antonella; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-01-01

    Excitotoxicity plays a major role in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) modulate excitotoxicity and have been suggested to play a pathogenetic role in HD. The main aim of this study was to evaluate the effect of A(2A)R blockade on the expression and functions of NMDA receptors in the striatum of HD mice (R6/2). We found that 3 weeks' treatment with SCH 58261 (0.01 mg/kg/day i.p. from the 8th week of age) modified NR1 and NR2A/NR2B expression in the striatum of R6/2 (Western blotting) while had no effect on NMDA-induced toxicity in corticostriatal slices (electrophysiological experiments). In conclusion, in vivo A(2A)R blockade induced a remodeling of NMDA receptors in the striatum of HD mice. Even though the functional relevance of the above effect remains to be fully elucidated, these results add further evidence to the modulatory role of A(2A)Rs in HD.

  3. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  4. Small molecule antagonists for chemokine CCR3 receptors.

    PubMed

    Willems, Lianne I; Ijzerman, Ad P

    2010-09-01

    The chemokine receptor CCR3 is believed to play a role in the development of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis. Despite the conflicting results that have been reported regarding the importance of eosinophils and CCR3 in allergic inflammation, inhibition of this receptor with small molecule antagonists is thought to provide a valuable approach for the treatment of these diseases. This review describes the structure-activity relationships (SAR) of small molecule CCR3 antagonists as reported in the scientific and patent literature. Various chemical classes of small molecule CCR3 antagonists have been described so far, including (bi)piperidine and piperazine derivatives, N-arylalkylpiperidine urea derivatives and (N-ureidoalkyl)benzylpiperidines, phenylalanine derivatives, morpholinyl derivatives, pyrrolidinohydroquinazolines, arylsulfonamides, amino-alkyl amides, imidazole- and pyrimidine-based antagonists, and bicyclic diamines. The (N-ureidoalkyl)benzylpiperidines are the best studied class in view of their generally high affinity and antagonizing potential. For many of these antagonists subnanomolar IC(50) values were reported for binding to CCR3 along with the ability to effectively inhibit intracellular calcium mobilization and eosinophil chemotaxis induced by CCR3 agonist ligands in vitro.

  5. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan.

    PubMed

    Sidharta, P N; Treiber, A; Dingemanse, J

    2015-05-01

    Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vascular system, which leads to right-sided heart failure and ultimately death if untreated. Treatments to regulate the pulmonary vascular pressure target the prostacyclin, nitric oxide, and endothelin (ET) pathways. Macitentan, an oral, once-daily, dual ETA and ETB receptor antagonist with high affinity and sustained receptor binding is the first ET receptor antagonist to show significant reduction of the risk of morbidity and mortality in PAH patients in a large-scale phase III study with a long-term outcome. Here we present a review of the available clinical pharmacokinetic, pharmacodynamic, pharmacokinetic/pharmacodynamic relationship, and drug-drug interaction data of macitentan in healthy subjects, patients with PAH, and in special populations.

  6. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  7. Scaffold variations in amine warhead of histamine H₃ receptor antagonists.

    PubMed

    Wingen, Kerstin; Stark, Holger

    2013-12-01

    The histamine H₃ receptor (H₃R) is involved in numerous regulatory neurotransmission processes and there-fore, is a prominent target for centrally occurring disease with some promising clinical candidates. Previous research resulted in the identification of a core pharmacophore blueprint for H₃R antagonists/inverse agonists, which when inserted in a molecule, mostly ensures acceptable affinity. Nevertheless, variations of scaffold and peripheral areas can increase potency and pharmacokinetic profile of drug candidates. The variations in amine scaffolds of antagonists for this aminergic GPCR are of special importance.

  8. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    NASA Astrophysics Data System (ADS)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  9. Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the β2-adrenergic receptor and the human adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Sherbiny, Farag F.; Schiedel, Anke C.; Maaß, Astrid; Müller, Christa E.

    2009-11-01

    A three-dimensional model of the human adenosine A2B receptor was generated by means of homology modelling, using the crystal structures of bovine rhodopsin, the β2-adrenergic receptor, and the human adenosine A2A receptor as templates. In order to compare the three resulting models, the binding modes of the adenosine A2B receptor antagonists theophylline, ZM241385, MRS1706, and PSB601 were investigated. The A2A-based model was much better able to stabilize the ligands in the binding site than the other models reflecting the high degree of similarity between A2A and A2B receptors: while the A2B receptor shares about 21% of the residues with rhodopsin, and 31% with the β2-adrenergic receptor, it is 56% identical to the adenosine A2A receptor. The A2A-based model was used for further studies. The model included the transmembrane domains, the extracellular and the intracellular hydrophilic loops as well as the terminal domains. In order to validate the usefulness of this model, a docking analysis of several selective and nonselective agonists and antagonists was carried out including a study of binding affinities and selectivities of these ligands with respect to the adenosine A2A and A2B receptors. A common binding site is proposed for antagonists and agonists based on homology modelling combined with site-directed mutagenesis and a comparison between experimental and calculated affinity data. The new, validated A2B receptor model may serve as a basis for developing more potent and selective drugs.

  10. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  11. μ Opioid receptor: novel antagonists and structural modeling

    PubMed Central

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-01-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates. PMID:26888328

  12. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine.

    PubMed

    van der Walt, M M; Terre'Blanche, G

    2017-01-05

    Recent research exploring C8 substitution on the caffeine core identified 8-(2-phenylethyl)-1,3,7-trimethylxanthine as a non-selective adenosine receptor antagonist. To elaborate further, we included various C8 two-chain-length linkers to enhance adenosine receptor affinity. The results indicated that the unsubstituted benzyloxy linker (1e A1Ki = 1.52 μM) displayed the highest affinity for the A1 adenosine receptor and the para-chloro-substituted phenoxymethyl (1d A2AKi = 1.33 μM) linker the best A2A adenosine receptor affinity. The position of the oxygen revealed that the phenoxymethyl linker favoured A1 adenosine receptor selectivity over the benzyloxy linker and, by introducing a para-chloro substituent, A2A adenosine receptor selectivity was obtained. Selected compounds (1c, 1e) behaved as A1 adenosine receptor antagonists in GTP shift assays and therefore represent selective and non-selective A1 and A2A adenosine receptor antagonists that may have potential for treating neurological disorders.

  13. Antagonistic action of pitrazepin on human and rat GABAA receptors

    PubMed Central

    Demuro, Angelo; Martinez-Torres, Ataulfo; Francesconi, Walter; Miledi, Ricardo

    1999-01-01

    Pitrazepin, 3-(piperazinyl-1)-9H-dibenz(c,f) triazolo(4,5-a)azepin is a piperazine antagonist of GABA in a variety of electrophysiological and in vitro binding studies involving GABA and glycine receptors. In the present study we have investigated the effects of pitrazepin, and the GABAA antagonist bicuculline, on membrane currents elicited by GABA in Xenopus oocytes injected with rat cerebral cortex mRNA or cDNAs encoding α1β2 or α1β2γ2S human GABAA receptor subunits.The three types of GABAA receptors expressed were reversibly antagonized by bicuculline and pitrazepin in a concentration-dependent manner. GABA dose-current response curves for the three types of receptors were shifted to the right, in a parallel manner, by increasing concentrations of pitrazepin.Schild analyses gave pA2 values of 6.42±0.62, n=4, 6.41±1.2, n=5 and 6.21±1.24, n=6, in oocytes expressing rat cerebral cortex, α1β2 or α1β2γ2S human GABAA receptors respectively (values are given as means±s.e.mean), and the Hill coefficients were all close to unity. All this is consistent with the notion that pitrazepin acts as a competitive antagonist of these GABAA receptors; and that their antagonism by pitrazepin is not strongly dependent on the subunit composition of the receptors here studied.Since pitrazepin has been reported to act also at the benzodiazepine binding site, we studied the effect of the benzodiazepine antagonist Ro 15-1788 (flumazenil) on the inhibition of α1β2γ2S receptors by pitrazepin. Co-application of Ro 15-1788 did not alter the inhibiting effect of pitrazepin. Moreover, pitrazepin did not antagonize the potentiation of GABA-currents by flunitrazepam. All this suggests that pitrazepin does not affect the GABA receptor-chloride channel by interacting with the benzodiazepine receptor site. PMID:10369456

  14. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control.

    PubMed

    El-Mas, Mahmoud M; El-Gowilly, Sahar M; Fouda, Mohamed A; Saad, Evan I

    2011-08-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100μg/kg i.v.) dose-dependently reduced BRS(SNP) in contrast to no effect on BRS(PE). BRS(SNP) was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS(SNP) were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS(SNP) was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A(2A) antagonist), or VUF5574 (A(3) antagonist). In contrast, BRS(SNP) was preserved after blockade of A(1) (DPCPX) or A(2B) (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS(SNP) depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A(2A) receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms.

  15. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning.

    PubMed

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K

    2013-04-01

    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia.

  16. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists.

    PubMed

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah

    2013-11-01

    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.

  17. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  18. Optimization of amide-based EP3 receptor antagonists.

    PubMed

    Lee, Esther C Y; Futatsugi, Kentaro; Arcari, Joel T; Bahnck, Kevin; Coffey, Steven B; Derksen, David R; Kalgutkar, Amit S; Loria, Paula M; Sharma, Raman

    2016-06-01

    Prostaglandin E receptor subtype 3 (EP3) antagonism may treat a variety of symptoms from inflammation to cardiovascular and metabolic diseases. Previously, most EP3 antagonists were large acidic ligands that mimic the substrate, prostaglandin E2 (PGE2). This manuscript describes the optimization of a neutral small molecule amide series with improved lipophilic efficiency (LipE) also known as lipophilic ligand efficiency (LLE) ((a) Nat. Rev. Drug Disc.2007, 6, 881; (b) Annu. Rep. Med. Chem.2010, 45, 380).

  19. Human glucagon receptor antagonists based on alkylidene hydrazides.

    PubMed

    Ling, Anthony; Plewe, Michael; Gonzalez, Javier; Madsen, Peter; Sams, Christian K; Lau, Jesper; Gregor, Vlad; Murphy, Doug; Teston, Kimberly; Kuki, Atsuo; Shi, Shenghua; Truesdale, Larry; Kiel, Dan; May, John; Lakis, James; Anderes, Kenna; Iatsimirskaia, Eugenia; Sidelmann, Ulla G; Knudsen, Lotte B; Brand, Christian L; Polinsky, Alex

    2002-02-25

    A series of alkylidene hydrazide derivatives containing an alkoxyaryl moiety was optimized. The resulting hydrazide-ethers were competitive antagonists at the human glucagon receptor. Pharmacokinetic experiments showed fast clearance of most of the compounds tested. A representative compound [4-hydroxy-3-cyanobenzoic acid (4-isopropylbenzyloxy-3,5-dimethoxymethylene)hydrazide] with an IC50 value of 20 nM was shown to reduce blood glucose levels in fasted rats.

  20. Adenosine A2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory.

    PubMed

    Simões, Ana Patrícia; Machado, Nuno J; Gonçalves, Nélio; Kaster, Manuella P; Simões, Ana T; Nunes, Ana; Pereira de Almeida, Luís; Goosens, Ki Ann; Rial, Daniel; Cunha, Rodrigo A

    2016-11-01

    The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A2A receptors (A2ARs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A2ARs in the amygdala regulate synaptic plasticity and fear memory. We report that A2ARs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A2ARs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A2AR (shA2AR)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A2ARs in the amygdala after fear acquisition. The importance of A2ARs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A2AR antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A1R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A2ARs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A2AR polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A2ARs to manage fear-related pathologies.

  1. High salt diet exacerbates vascular contraction in the absence of adenosine A2A receptor

    PubMed Central

    Pradhan, Isha; Zeldin, Darryl C.; Ledent, Catherine; Mustafa, S. Jamal; Falck, John R.; Nayeem, Mohammed A

    2014-01-01

    High salt (4%NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A2A-receptor (A2AAR). Evidence suggests A2AAR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A2AAR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A2AAR+/+, but exaggerates contraction in A2AAR−/−. Organ-bath and Western-blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A2AAR+/+ and A2AAR−/− mice aortae. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A2AAR+/+, whereas contraction was observed in A2AAR−/− mice and this was attenuated by A1AR antagonist (DPCPX). CGS-21680 (selective A2AAR-agonist) enhanced relaxation in HS-A2AAR+/+ vs. NS-A2AAR+/+, that was blocked by EETs antagonist (14,15-EEZE). Compared to NS, HS significantly upregulated expression of vasodilators A2AAR and cyp2c29, while vasoconstrictors A1AR and cyp4a in A2AAR+/+ were downregulated. In A2AAR−/− mice, however, HS significantly downregulated the expression of cyp2c29, while A1AR and cyp4a were upregulated compared to A2AAR+/+ mice. Hence, our data suggest that in A2AAR+/+, HS enhances A2AAR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A1AR levels, whereas in A2AAR−/−, HS exaggerates contraction through decreased cyp-epoxygenases and increased A1AR levels. PMID:24390173

  2. Can angiotensin receptor antagonists prevent restenosis after stent placement?

    PubMed

    Peters, Stefan

    2002-01-01

    Restenosis rates after coronary stent implantation in complex lesions are between 30 and 50%. Neointimal hyperplasia promoted by complex interaction between cellular and acellular elements, such as cytokines and growth factors, is thought to be the primary process responsible for restenosis. The risk of in-stent restenosis is increased in patients with a history of restenosis after percutaneous transluminal coronary angioplasty, in long lesions, in total occlusions, in patients with diabetes mellitus, in small vessels, in the proximal parts of the left anterior descending coronary artery and in cases of stent oversizing. In-stent restenosis represents a serious economic burden on society because treatment strategies include expensive approaches such as cutting-balloon angioplasty, rotational atherectomy and brachytherapy. A number of pharmacological agents, including ACE inhibitors, have been unsuccessful in preventing restenosis. Alternative procedures such as brachytherapy, radioactive stents and drug-eluting stents are under evaluation. Although sirolimus- or paclitaxel-eluting stents have been associated with very low restenosis rates over durations of 6 to 12 months, the long-term efficacy and tolerability of this approach is currently being investigated. Although ACE inhibitors have failed in reducing restenosis rates, the selective angiotensin II type 1 (AT(1)) receptor antagonist valsartan has shown encouraging results in the single-center Valsartan for Prevention of Restenosis after Stenting of Type B2/C lesions trial (ValPREST). The ValPREST trial is the first randomized, placebo-controlled study to have evaluated the effect of an angiotensin receptor antagonist on in-stent restenosis in a moderate number of patients. Compared with ACE inhibitors, angiotensin receptor blockers exert additional effects on the pathophysiological processes which lead to restenosis. Angiotensin receptor antagonists may affect several mechanisms involved in neointimal

  3. A synthetic peptide derivative that is a cholecystokinin receptor antagonist.

    PubMed

    Lignon, M F; Galas, M C; Rodriguez, M; Laur, J; Aumelas, A; Martinez, J

    1987-05-25

    So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.

  4. Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica

    PubMed Central

    Du, Nana; Liu, Yanfang; Zhang, Xiuli; Wang, Jixia; Zhao, Jianqiang; He, Jian; Zhou, Han; Mei, Lijuan; Liang, Xinmiao

    2017-01-01

    Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica. PMID:28387362

  5. [5-HT3 receptor antagonist als analgetics in rheumatic diseases].

    PubMed

    Müller, W; Fiebich, B L; Stratz, T

    2006-10-01

    Various rheumatic diseases like fibromyalgia, systemic inflammatory rheumatic disorders and localized diseases, such as arthritides and activated arthroses, tendinopathies and periarthropathies, as well as trigger points can be improved considerably by treatment with the 5-HT3 receptor antagonist tropisetron. Particularly in the latter group of diseases, local injections have done surprisingly rapid analgesic action. This effect matches that of local anesthetics, but lasts considerably longer and is comparable to local injections of local anesthetics combined with corticosteroids. The action of the 5-HT3 receptor antagonists can be attributed to an antinociceptive effect that occurs at the same time as an antiphlogistic and probably also an immunosuppressive effect. Whereas an inhibited release of substance P from the nociceptors, and possibly some other neurokins as well, seems to be the most likely explanation for the antinociceptive action, the antiphlogistic effect is primarily due to an inhibited formation of various different phlogistic substances; in some conditions, like systemic inflammatory rheumatic diseases, for example, the 5-HT3 receptor antagonists may exert an immunosuppressive effect in addition to this.

  6. Diadenosine diphosphate (Ap₂A) delays neutrophil apoptosis via the adenosine A2A receptor and cAMP/PKA pathway.

    PubMed

    Pliyev, Boris K; Dimitrieva, Tatyana V; Savchenko, Valery G

    2014-10-01

    Diadenosine polyphosphates have been shown to inhibit neutrophil apoptosis, but mechanisms of the antiapoptotic effect are not known. Diadenosine diphosphate (Ap2A) is the simplest naturally occurring diadenosine polyphosphate, and its effect on neutrophil apoptosis has not previously been investigated. Here we report that Ap2A delays spontaneous apoptosis of human neutrophils, and the effect is reversed by the adenosine A2A receptor antagonists SCH442416 and ZM241385. Ap2A induced an elevation of intracellular cAMP and the elevation was blocked by the adenosine A2A receptor antagonists. The antiapoptotic effect of Ap2A was abrogated by 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase, and Rp-8-Br-cAMPS, an inhibitor of type I cAMP-dependent protein kinase A (PKA). Together, these results demonstrate that Ap2A delays neutrophil apoptosis via the adenosine A2A receptor and cAMP/PKA signaling axis.

  7. A prototypical Sigma-1 receptor antagonist protects against brain ischemia.

    PubMed

    Schetz, John A; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W

    2007-11-21

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this study it potently protects against oxidative stress-related cell death in vitro at low concentrations. The protective potency of haloperidol and a number of other butyrophenone compounds positively correlate with their affinity for a cloned Sigma-1 receptor, and the protection is mimicked by a Sigma-1 receptor-selective antagonist (BD1063), but not an agonist (PRE-084). In vivo, an acute low dose (0.05 mg/kg s.c.) of haloperidol reduces by half the ischemic lesion volume induced by a transient middle cerebral artery occlusion. These in vitro and in vivo pre-clinical results suggest that a low dose of acutely administered haloperidol might have a novel application as a protective agent against ischemic cerebral stroke and other types of brain injury with an ischemic component.

  8. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor.

    PubMed

    Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P

    2014-06-23

    A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.

  9. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats.

    PubMed

    Fronz, Ulrike; Deten, Alexander; Baumann, Frank; Kranz, Alexander; Weidlich, Sarah; Härtig, Wolfgang; Nieber, Karen; Boltze, Johannes; Wagner, Daniel-Christoph

    2014-02-01

    Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical.

  10. Functionalized Congeners of P2Y1 Receptor Antagonists:

    SciTech Connect

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun; Kilbey, II, S Michael; Costanzi, Stefano; Hechler, Béatrice; Gachet, Christian; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to

  11. GPCR 3D homology models for Ligand Screening: Lessons Learned from Blind Predictions of Adenosine A2a Receptor complex

    PubMed Central

    Katritch, Vsevolod; Rueda, Manuel; Lam, Polo Chun-Hung; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    Proteins of the G-protein coupled receptor (GPCR) family present numerous attractive targets for rational drug design, but also a formidable challenge for identification and conformational modeling of their 3D structure. A recently performed assessment of blind predictions of adenosine A2a receptor (AA2AR) structure in complex with ZM241385 (ZMA) antagonist provided a first example of unbiased evaluation of the current modeling algorithms on a GPCR target with ~30% sequence identity to the closest structural template. Several of the 29 groups participating in this assessment exercise (Michino et al., doi:10.1038/nrd2877) successfully predicted the overall position of the ligand ZMA in the AA2AR ligand binding pocket, however models from only three groups captured more than 40% of the ligand-receptor contacts. Here we describe two of these top performing approaches, in which all-atom models of the AA2AR were generated by homology modeling followed by ligand guided backbone ensemble receptor optimization (LiBERO). The resulting AA2AR-ZMA models, along with the best models from other groups are assessed here for their virtual ligand screening (VLS) performance on a large set of GPCR ligands. We show that ligand guided optimization was critical for improvement of both ligand-receptor contacts and VLS performance as compared to the initial raw homology models. The best blindly predicted models performed on par with the crystal structure of AA2AR in selecting known antagonists from decoys, as well as from antagonists for other adenosine subtypes and AA2AR agonists. These results suggest that despite certain inaccuracies, the optimized homology models can be useful in the drug discovery process. PMID:20063437

  12. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  13. Muscarinic Receptor Agonists and Antagonists: Effects on Cancer

    PubMed Central

    2012-01-01

    Many epithelial and endothelial cells express a cholinergic autocrine loop in which acetylcholine acts as a growth factor to stimulate cell growth. Cancers derived from these tissues similarly express a cholinergic autocrine loop and ACh secreted by the cancer or neighboring cells interacts with M3 muscarinic receptors expressed on the cancer cells to stimulate tumor growth. Primary proliferative pathways involve MAPK and Akt activation. The ability of muscarinic agonists to stimulate, and M3 antagonists to inhibit tumor growth has clearly been demonstrated for lung and colon cancer. The ability of muscarinic agonists to stimulate growth has been shown for melanoma, pancreatic, breast, ovarian, prostate and brain cancers, suggesting that M3 antagonists will also inhibit growth of these tumors as well. As yet no clinical trials have proven the efficacy of M3 antagonists as cancer therapeutics, though the widespread clinical use and low toxicity of M3 antagonists support the potential role of these drugs as adjuvants to current cancer therapies. PMID:22222710

  14. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    SciTech Connect

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  15. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  16. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  17. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction

    PubMed Central

    Hurtado-Alvarado, Gabriela; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier

    2016-01-01

    Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and

  18. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    PubMed Central

    Fathalla, Ahmed M.; Soliman, Amira M.; Ali, Mohamed H.; Moustafa, Ahmed A.

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  19. The Immunosuppressive Role of Adenosine A2A Receptors in Ischemia Reperfusion Injury and Islet Transplantation

    PubMed Central

    Chhabra, Preeti; Linden, Joel; Lobo, Peter; Okusa, Mark Douglas; Brayman, Kenneth Lewis

    2014-01-01

    Activation of adenosine A2A receptors (A2AR) reduces inflammation by generally inhibiting the activation of pro-inflammatory cells, decreasing endothelial adhesion molecule expression and reducing the release of proinflammatory cytokine mediators. Numerous preclinical studies using selective A2AR agonists, antagonists, A2AR knockout as well as chimeric mice have suggested the therapeutic potential of A2AR agonists for the treatment of ischemia reperfusion injury (IRI) and autoimmune diseases. This review summarizes the immunosuppressive actions of A2AR agonists in murine IRI models of liver, kidney, heart, lung and CNS, and gives details on the cellular effects of A2AR activation in neutrophils, macrophages, dendritic cells, natural killer cells, NKT cells, T effector cells and CD4+CD25+FoxP3+ T regulatory cells. This is discussed in the context of cytokine mediators involved in inflammatory cascades. Whilst the role of adenosine receptor agonists in various models of autoimmune disease has been well-documented, very little information is available regarding the role of A2AR activation in type 1 diabetes mellitus (T1DM). An overview of the pathogenesis of T1DM as well as early islet graft rejection in the immediate peri-transplantation period offers insight regarding the use of A2AR agonists as a beneficial intervention in clinical islet transplantation, promoting islet graft survival, minimizing early islet loss and reducing the number of islets required for successful transplantation, thereby increasing the availability of this procedure to a greater number of recipients. In summary, the use of A2AR agonists as a clinical intervention in IRI and as an adjunct to clinical immunesuppressive regimen in islet transplantation is highlighted. PMID:22934547

  20. Vasopressin receptor antagonists, heart failure, and polycystic kidney disease.

    PubMed

    Torres, Vicente E

    2015-01-01

    The synthesis of nonpeptide orally bioavailable vasopressin antagonists devoid of agonistic activity (vaptans) has made possible the selective blockade of vasopressin receptor subtypes for therapeutic purposes. Vaptans acting on the vasopressin V2 receptors (aquaretics) have attracted attention as a possible therapy for heart failure and polycystic kidney disease. Despite a solid rationale and encouraging preclinical testing, aquaretics have not improved clinical outcomes in randomized clinical trials for heart failure. Additional clinical trials with select population targets, more flexible dosing schedules, and possibly a different drug type or combination (balanced V1a/V2 receptor antagonism) may be warranted. Aquaretics are promising for the treatment of autosomal dominant polycystic kidney disease and have been approved in Japan for this indication. More studies are needed to better define their long-term safety and efficacy and optimize their utilization.

  1. Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1

    PubMed Central

    Chrencik, Jill E.; Roth, Christopher B.; Terakado, Masahiko; Kurata, Haruto; Omi, Rie; Kihara, Yasuyuki; Warshaviak, Dora; Nakade, Shinji; Asmar-Rovira, Guillermo; Mileni, Mauro; Mizuno, Hirotaka; Griffith, Mark T.; Rodgers, Caroline; Han, Gye Won; Velasquez, Jeffrey; Chun, Jerold; Stevens, Raymond C.

    2015-01-01

    Summary Lipid biology continues to emerge as an area of significant therapeutic interest, particularly as the result of an enhanced understanding of the wealth of signaling molecules with diverse physiological properties. This growth in knowledge is epitomized by lysophosphatidic acid (LPA), which functions through interactions with six cognate G protein-coupled receptors. Herein we present three crystal structures of LPA1 in complex with antagonist tool compounds selected and designed through structural and stability analysis. Structural analysis combined with molecular dynamics identified a basis for ligand access to the LPA1 binding pocket from the extracellular space contrasting with the proposed access for the sphingosine 1-phosphate receptor. Characteristics of the LPA1 binding pocket raise the possibility of promiscuous ligand recognition of phosphorylated endocannabinoids. Cell-based assays confirmed this hypothesis, linking the distinct receptor systems through metabolically related ligands with potential functional and therapeutic implications for treatment of disease. PMID:26091040

  2. Potential Clinical Implications of the Urotensin II Receptor Antagonists.

    PubMed

    Tsoukas, Philip; Kane, Emilie; Giaid, Adel

    2011-01-01

    Urotensin II (UII) binds to its receptor, UT, playing an important role in the heart, kidneys, pancreas, adrenal gland, and central nervous system. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, however, this constriction-dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome, and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) activity leading to smooth muscle cell proliferation and foam cell infiltration, insulin resistance (DMII), as well as inflammation, high blood pressure, and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases.

  3. Adenosine A(2A) receptor activation prevents progressive kidney fibrosis in a model of immune-associated chronic inflammation.

    PubMed

    Garcia, Gabriela E; Truong, Luan D; Chen, Jiang-Fan; Johnson, Richard J; Feng, Lili

    2011-08-01

    Crescentic glomerulonephritis (GN) in Wistar-Kyoto rats progresses to lethal kidney failure by macrophage (Mφ)-mediated mechanisms. Mφs in nephritic glomeruli express adenosine A(2A) receptors (A(2A)Rs), the activation of which suppresses inflammation. Here, we pharmacologically activated the A(2A)Rs with a selective agonist, CGS 21680, and inactivated them with a selective antagonist, ZM241385, to test the effects on established GN. When activation was delayed until antiglomerular basement membrane GN and extracellular matrix deposition were established, glomerular Mφ infiltration was reduced by 83%. There was also a marked improvement in glomerular lesion histology, as well as decreased proteinuria. A(2A)R activation significantly reduced type I, III, and IV collagen deposition, and E-cadherin expression was restored in association with a reduction of α-smooth muscle actin-positive myofibroblasts in the interstitium and glomeruli. In contrast, pharmacological inactivation of A(2A)Rs increased glomerular crescent formation, type I, III, and IV collagen expression, and enhanced E-cadherin loss. Activation of A(2A)Rs suppressed the expression of the Mφ-linked glomerular damage mediators, transforming growth factor-β, osteopontin-1, thrombospondin-1, and tissue inhibitor of metalloproteinase-1. Thus, A(2A)R activation can arrest GN and prevent progressive fibrosis in established pathological lesions.

  4. High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases.

    PubMed

    Nayeem, Mohammed A; Ponnoth, Dovenia S; Boegehold, Matthew A; Zeldin, Darryl C; Falck, John R; Mustafa, S Jamal

    2009-03-01

    We hypothesize that A(2A) adenosine receptors (A(2A) AR) promote aortic relaxation in mice through cytochrome P450 (CYP)-epoxygenases and help to avoid salt sensitivity. Aortas from male mice maintained on a high-salt (HS; 7% NaCl) or normal-salt (NS; 0.45% NaCl) diet for 4-5 wks were used. Concentration-response curves (10(-11)-10(-5) M) for 5'-N-ethylcarboxamidoadenosine (NECA; a nonselective adenosine analog) and CGS 21680 (A(2A) AR agonist) were obtained with different antagonists including ZM 241385 (A(2A) AR antagonist; 10(-6) M), SCH 58261 (A(2A) AR antagonist; 10(-6) M), N(omega)-nitro-l-arginine methyl ester (l-NAME; endothelial nitric oxide synthase inhibitor; 10(-4) M) and inhibitors including methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; CYP epoxygenases inhibitor; 10(-5)M), 14,15-epoxyeicosa-5(z)-enoic acid (14,15-EEZE; EET antagonist; 10(-5)M), dibromo-dodecenyl-methylsulfimide (DDMS; CYP4A inhibitor; 10(-5)M), and HET0016 (20-HETE inhibitor; 10(-5)M). At 10(-7) M of NECA, significant relaxation in HS (+22.58 +/- 3.12%) was observed compared with contraction in NS (-10.62 +/- 6.27%, P < 0.05). ZM 241385 changed the NECA response to contraction (P < 0.05) in HS. At 10(-7) M of CGS 21680, significant relaxation in HS (+32.04 +/- 3.08%) was observed compared with NS (+10.45 +/- 1.34%, P < 0.05). SCH 58261, l-NAME, MS-PPOH, and 14,15-EEZE changed the CGS 21680-induced relaxation to contraction (P < 0.05) in HS. Interestingly, DDMS and HET0016 changed CGS 21680 response to relaxation (P < 0.05) in NS; however, there was no significant difference found between DDMS, HET0016-treated HS and NS vs. nontreated HS group (P > 0.05). CYP2C29 protein was 55% and 74% upregulated in HS vs. NS (P < 0.05) mice aorta and kidney, respectively. CYP4A protein was 30.30% and 35.70% upregulated in NS vs. HS (P < 0.05) mice aorta and kidneys, respectively. A(1) AR was downregulated, whereas A(2A) AR was upregulated in HS compared with NS. These data suggest that HS

  5. High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases

    PubMed Central

    Nayeem, Mohammed A.; Ponnoth, Dovenia S.; Boegehold, Matthew A.; Zeldin, Darryl C.; Falck, John R.; Mustafa, S. Jamal

    2009-01-01

    We hypothesize that A2A adenosine receptors (A2A AR) promote aortic relaxation in mice through cytochrome P450 (CYP)-epoxygenases and help to avoid salt sensitivity. Aortas from male mice maintained on a high-salt (HS; 7% NaCl) or normal-salt (NS; 0.45% NaCl) diet for 4–5 wks were used. Concentration-response curves (10−11–10−5 M) for 5′-N-ethylcarboxamidoadenosine (NECA; a nonselective adenosine analog) and CGS 21680 (A2A AR agonist) were obtained with different antagonists including ZM 241385 (A2A AR antagonist; 10−6 M), SCH 58261 (A2A AR antagonist; 10−6 M), Nω-nitro-l-arginine methyl ester (l-NAME; endothelial nitric oxide synthase inhibitor; 10−4 M) and inhibitors including methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; CYP epoxygenases inhibitor; 10−5M), 14,15-epoxyeicosa-5(z)-enoic acid (14,15-EEZE; EET antagonist; 10−5M), dibromo-dodecenyl-methylsulfimide (DDMS; CYP4A inhibitor; 10−5M), and HET0016 (20-HETE inhibitor; 10−5M). At 10−7 M of NECA, significant relaxation in HS (+22.58 ± 3.12%) was observed compared with contraction in NS (−10.62 ± 6.27%, P < 0.05). ZM 241385 changed the NECA response to contraction (P < 0.05) in HS. At 10−7 M of CGS 21680, significant relaxation in HS (+32.04 ± 3.08%) was observed compared with NS (+10.45 ± 1.34%, P < 0.05). SCH 58261, l-NAME, MS-PPOH, and 14,15-EEZE changed the CGS 21680-induced relaxation to contraction (P < 0.05) in HS. Interestingly, DDMS and HET0016 changed CGS 21680 response to relaxation (P < 0.05) in NS; however, there was no significant difference found between DDMS, HET0016-treated HS and NS vs. nontreated HS group (P > 0.05). CYP2C29 protein was 55% and 74% upregulated in HS vs. NS (P < 0.05) mice aorta and kidney, respectively. CYP4A protein was 30.30% and 35.70% upregulated in NS vs. HS (P < 0.05) mice aorta and kidneys, respectively. A1 AR was downregulated, whereas A2A AR was upregulated in HS compared with NS. These data suggest that HS may activate CYP2

  6. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  7. Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone.

    PubMed

    Lainscak, Mitja; Pelliccia, Francesco; Rosano, Giuseppe; Vitale, Cristiana; Schiariti, Michele; Greco, Cesare; Speziale, Giuseppe; Gaudio, Carlo

    2015-12-01

    Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more mineralocorticoid receptor-specific. From a marginal role as a potassium-sparing diuretic, spironolactone has been shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure. Also, spironolactone is safe and protective in arterial hypertension, particularly in patients with so-called resistant hypertension. Eplerenone is the second oral aldosterone antagonist available for the treatment of arterial hypertension and heart failure. Treatment with eplerenone has been associated with decreased blood pressure and improved survival for patients with heart failure and reduced left ventricular ejection fraction. Due to the selectivity of eplerenone for the aldosterone receptor, severe adverse effects such as gynecomastia and vaginal bleeding seem to be less likely in patients who take eplerenone than in those who take spironolactone. The most common and potentially dangerous side effect of spironolactone--hyperkalemia--is also observed with eplerenone but the findings from clinical trials do not indicate more hyperkalemia induced drug withdrawals. Treatment with eplerenone should be initiated at a dosage of 25mg once daily and titrated to a target dosage of 50mg once daily preferably within 4 weeks. Serum potassium levels and renal function should be assessed prior to initiating eplerenone therapy, and periodic monitoring is recommended, especially in patients at high risk of developing hyperkalemia.

  8. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    PubMed

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  9. Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry.

    PubMed

    Jacobson, Kenneth A

    2013-12-20

    New insights into drug design are derived from the X-ray crystallographic structures of G protein-coupled receptors (GPCRs), and the adenosine receptors (ARs) are at the forefront of this effort. The 3D knowledge of receptor binding and activation promises to enable drug discovery for GPCRs in general, and specifically for the ARs. The predictability of modeling based on the X-ray structures of the A2AAR has been well demonstrated in the identification, design and modification of both known and novel AR agonists and antagonists. It is expected that structure-based design of drugs acting through ARs will provide new avenues to clinically useful agents.

  10. Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats.

    PubMed

    Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R

    2003-12-01

    Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the

  11. Synthesis and SAR studies of analogues of 4-(3,3-dimethyl-butyrylamino)-3,5-difluoro-N-thiazol-2-yl-benzamide (Lu AA41063) as adenosine A2A receptor ligands with improved aqueous solubility.

    PubMed

    Mikkelsen, Gitte Kobberøe; Langgård, Morten; Schrøder, Tenna Juul; Kreilgaard, Mads; Jørgensen, Erling B; Brandt, Guillaume; Griffon, Yann; Boffey, Ray; Bang-Andersen, Benny

    2015-03-15

    An adenosine A2A receptor antagonist may be useful for the treatment of Parkinson's disease. Synthesis and structure-activity studies starting from 4-(3,3-dimethylbutyrylamino)-3,5-difluoro-N-thiazol-2-yl-benzamide (Lu AA41063, 4) led to a novel series of human (h) A2A receptor antagonists with improved aqueous solubility. Compound 22 was identified as a key representative from the series, displaying submicromolar hA2A receptor affinity and excellent aqueous solubility. Compound 22 also displayed good in vitro pharmacokinetic properties and is considered a good starting point for further lead optimisation toward hA2A receptor antagonists with improved druggability properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. New perspectives on glutamate receptor antagonists as antidepressants.

    PubMed

    Chung, Chihye

    2012-03-01

    Classical antidepressants elevate the monoamine levels in the brain by preventing re-uptake of monoamines after release. Treatment of depression with monoamine re-uptake inhibitors is associated with low clinical efficacy and remission rate due to the delayed onset of therapeutic responses. Therefore, the development of alternative antidepressants is essential for successful treatment of this disease. Recently, glutamate receptor antagonists including ketamine and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) have received wide attention as fast-acting therapeutic alternatives for treatment of depression.

  13. Substituted tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor.

    PubMed

    Perrey, David A; German, Nadezhda A; Gilmour, Brian P; Li, Jun-Xu; Harris, Danni L; Thomas, Brian F; Zhang, Yanan

    2013-09-12

    Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and a preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats.

  14. Substituted Tetrahydroisoquinolines as Selective Antagonists for the Orexin 1 Receptor

    PubMed Central

    Perrey, David A.; German, Nadezhda A.; Gilmour, Brian P.; Li, Jun-Xu; Harris, Danni L.; Thomas, Brian F.; Zhang, Yanan

    2013-01-01

    Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats. PMID:23941044

  15. Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice.

    PubMed

    Pardo, M; Lopez-Cruz, L; Valverde, O; Ledent, C; Baqi, Y; Müller, C E; Salamone, J D; Correa, M

    2012-04-01

    Brain dopamine (DA) and adenosine interact in the regulation of behavioral activation and effort-related processes. In the present studies, a T-maze task was developed in mice for the assessment of effort-related decision making. With this task, the two arms of the maze have different reinforcement densities, and a vertical barrier is positioned in the arm with the higher density (HD), presenting the animal with an effort-related challenge. Under control conditions mice prefer the HD arm, and climb the barrier to obtain the larger amount of food. The DA D(2) receptor antagonist haloperidol decreased selection of the HD arm and increased selection of the arm with the low density of reinforcement. However, the HD arm was still the preferred choice in haloperidol-treated mice trained with barriers in both arms. Pre-feeding the mice to reduce food motivation dramatically increased omissions, an effect that was distinct from the actions of haloperidol. Co-administration of theophylline, a nonselective adenosine receptor antagonist, partially reversed the effects of haloperidol. This effect seems to be mediated by the A(2A) receptor but not the A(1) receptor, since the A(2A) antagonist MSX-3, but not the A(1) antagonist CPT, dose dependently reversed the effects of haloperidol on effort-related choice and on c-Fos expression in the dorsal striatum and nucleus accumbens. In addition, adenosine A(2A) receptor knockout mice were resistant to the effects of haloperidol on effort-related choice in the maze. These results indicate that DA D(2) and adenosine A(2A) receptors interact to regulate effort-related decision making and effort expenditure in mice.

  16. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  17. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress

    PubMed Central

    Kaster, Manuella P.; Machado, Nuno J.; Silva, Henrique B.; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E.; Rodrigues, Ana Lúcia S.; Porciúncula, Lisiane O.; Chen, Jiang Fan; Tomé, Ângelo R.; Agostinho, Paula; Canas, Paula M.; Cunha, Rodrigo A.

    2015-01-01

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  18. Adenosine A2a blockade prevents synergy between mu-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats.

    PubMed

    Yao, Lina; McFarland, Krista; Fan, Peidong; Jiang, Zhan; Ueda, Takashi; Diamond, Ivan

    2006-05-16

    Relapse is the most serious limitation of effective medical treatment of opiate addiction. Opiate-related behaviors appear to be modulated by cannabinoid CB1 receptors (CB1) through poorly understood cross-talk mechanisms. Opiate and CB1 receptors are coexpressed in the nucleus accumbens (NAc) and dorsal striatum. These regions also have the highest density of adenosine A2a receptors (A2a) in the brain. We have been investigating the postsynaptic signaling mechanisms of mu-opiate receptors (MORs) and CB1 receptors in primary NAc/striatal neurons. In this article, we present evidence that MOR and CB1 act synergistically on cAMP/PKA signaling in NAc/striatal neurons. In addition, we find that synergy requires adenosine and A2a. Importantly, an A2a antagonist administered either directly into the NAc or indirectly by i.p. injection eliminates heroin-induced reinstatement in rats trained to self-administer heroin, a model of human craving and relapse. These findings suggest that A2a antagonists might be effective therapeutic agents in the management of abstinent heroin addicts.

  19. Adenosine A2a blockade prevents synergy between μ-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats

    PubMed Central

    Yao, Lina; McFarland, Krista; Fan, Peidong; Jiang, Zhan; Ueda, Takashi; Diamond, Ivan

    2006-01-01

    Relapse is the most serious limitation of effective medical treatment of opiate addiction. Opiate-related behaviors appear to be modulated by cannabinoid CB1 receptors (CB1) through poorly understood cross-talk mechanisms. Opiate and CB1 receptors are coexpressed in the nucleus accumbens (NAc) and dorsal striatum. These regions also have the highest density of adenosine A2a receptors (A2a) in the brain. We have been investigating the postsynaptic signaling mechanisms of μ-opiate receptors (MORs) and CB1 receptors in primary NAc/striatal neurons. In this article, we present evidence that MOR and CB1 act synergistically on cAMP/PKA signaling in NAc/striatal neurons. In addition, we find that synergy requires adenosine and A2a. Importantly, an A2a antagonist administered either directly into the NAc or indirectly by i.p. injection eliminates heroin-induced reinstatement in rats trained to self-administer heroin, a model of human craving and relapse. These findings suggest that A2a antagonists might be effective therapeutic agents in the management of abstinent heroin addicts. PMID:16684876

  20. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined.

  1. Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics

    PubMed Central

    Hothersall, J. Daniel; Guo, Dong; Sarda, Sunil; Sheppard, Robert J.; Chen, Hongming; Keur, Wesley; Waring, Michael J.; IJzerman, Adriaan P.; Hill, Stephen J.; Dale, Ian L.

    2017-01-01

    The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy. PMID:27803241

  2. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    PubMed

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  3. Cangrelor: a novel P2Y12 receptor antagonist.

    PubMed

    Norgard, Nicholas B

    2009-08-01

    Antiplatelet therapy is critical in the prevention of thrombotic complications of acute coronary syndrome and percutaneous coronary interventions. Current antiplatelet agents (aspirin, clopidogrel and glycoprotein IIb/IIIa antagonists) have demonstrated the capacity to reduce major adverse cardiac events. However, these agents have limitations that compromise their clinical utility. The platelet P2Y12 receptor plays a central role in platelet function and is a focus in the development of antiplatelet therapies. Cangrelor is a potent, competitive inhibitor of the P2Y12 receptor that is administered by intravenous infusion and rapidly achieves near complete inhibition of ADP-induced platelet aggregation. This investigational drug has been studied for use during coronary procedures and the management of patients experiencing acute coronary syndrome and is undergoing evaluation for use in the prevention of perioperative stent thrombosis.

  4. Neurokinin-1 Receptor Antagonists in Preventing Postoperative Nausea and Vomiting

    PubMed Central

    Liu, Meng; Zhang, Hao; Du, Bo-Xiang; Xu, Feng-Ying; Zou, Zui; Sui, Bo; Shi, Xue-Yin

    2015-01-01

    Abstract Newly developed neurokinin-1 receptor (NK-1R) antagonists have been recently tried in the prevention of postoperative nausea and vomiting (PONV). This systematic review and meta-analysis was conducted to explore whether NK-1R antagonists were effective in preventing PONV. The PRISMA statement guidelines were followed. Randomized clinical trials (RCTs) that tested the preventive effects of NK-1R antagonists on PONV were identified by searching EMBASE, CINAHL, PubMed, and the Cochrane Library databases followed by screening. Data extraction was performed using a predefined form and trial quality was assessed using a modified Jadad scale. The primary outcome measure was the incidence of PONV. Meta-analysis was performed for studies using similar interventions. Network meta-analysis (NMA) was conducted to compare the anti-vomiting effects of placebo, ondansetron, and aprepitant at different doses. Fourteen RCTs were included. Meta-analysis found that 80 mg of aprepitant could reduce the incidences of nausea (3 RCTs with 224 patients, pooled risk ratio (RR) = 0.60, 95% confidence interval (CI) = 0.47 to 0.75), and vomiting (3 RCTs with 224 patients, pooled RR = 0.13, 95% CI = 0.04 to 0.37) compared with placebo. Neither 40 mg (3 RCTs with 1171 patients, RR = 0.47, 95% CI = 0.37 to 0.60) nor 125 mg (2 RCTs with 1058 patients, RR = 0.32, 95% CI = 0.13 to 0.78) of aprepitant showed superiority over 4 mg of ondansetron in preventing postoperative vomiting. NMA did not find a dose-dependent effect of aprepitant on preventing postoperative vomiting. Limited data suggested that NK-1R antagonists, especially aprepitant were effective in preventing PONV compared with placebo. More large-sampled high-quality RCTs are needed. PMID:25984662

  5. Is All Radiation-Induced Emesis Ameliorated by 5-HT3 Receptor Antagonists

    DTIC Science & Technology

    1992-01-01

    5 - HT3 receptor antagonists ;~// 9-72 Bernard M.I Rabin 0’) and Gregory L. Kingt2) -) Behavioral Sciences and 2 PhYSzo~o~y Dcpiarlrnvni . Arm,. ii - R...RY Exposing ferrets to gamuma rays or X-rays produces vomiting that can be attenuated by 5 - HT3 receptor antagonists and by subdiaphraqmatic vagotomy...Pretreating ferrets with serotonin type-3 ( 5 - HT3 ) receptor antagonists or performing bilateral subdiaphragmatic vagotomy reliably attenuates the

  6. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats.

    PubMed

    Bachtell, Ryan K; Self, David W

    2009-10-01

    Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.

  7. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    SciTech Connect

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  8. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  9. Deletion of adenosine A1 or A2A receptors reduces L-3,4-dihydroxyphenylalanine-induced dyskinesia in a model of Parkinson’s disease

    PubMed Central

    Xiao, Danqing; Cassin, Jared J.; Healy, Brian; Burdett, Thomas C.; Chen, Jiang-Fan; Fredholm, Bertil B.; Schwarzschild, Michael A.

    2010-01-01

    Adenosine A2A receptor antagonism provides a promising approach to developing nondopaminergic therapy for Parkinson’s disease (PD). Clinical trials of A2A antagonists have targeted PD patients with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve parkinsonian symptoms. The role of adenosine in the development of LID is little known, especially regarding its actions via A1 receptors. We aimed to examine the effects of genetic deletion and pharmacological blockade of A1 and/or A2A receptors on the development of LID, on the induction of molecular markers of LID including striatal preprodynorphin and preproenkephalin (PPE), and on the integrity of dopaminergic nigrostriatal neurons in hemiparkinsonian mice. Following a unilateral 6-hydroxydopamine lesion A1, A2A and double A1-A2A knockout (KO) and wild-type littermate mice, and mice pretreated with caffeine (an antagonist of both A1 and A2A receptors) or saline were treated daily for 18–21 days with a low dose of L-DOPA. Total abnormal involuntary movements (AIMs, a measure of LID) were significantly attenuated (p<0.05) in A1 and A2A KOs, but not in A1-A2A KOs and caffeine-pretreated mice. An elevation of PPE mRNA ipsilateral to the lesion in WT mice was reduced in all KO mice. In addition, neuronal integrity assessed by striatal dopamine content was similar in all KOs and caffeine-pretreated mice following 6-hydroxydopamine lesioning. Our findings raise the possibility that A1 or A2A receptors blockade might also confer a disease-modifying benefit of reduced risk of disabling LID, whereas the effect of their combined inactivation is less clear. PMID:20828543

  10. Guanidinoethyl sulphonate is a glycine receptor antagonist in striatum.

    PubMed

    Sergeeva, Olga A; Chepkova, Aisa N; Haas, Helmut L

    2002-11-01

    1. Guanidinoethyl sulphonate (GES) is an analogue of taurine and an inhibitor of taurine transport. Interactions of GES with GABA(A) and glycine receptors are studied by whole cell recording and fast drug application in isolated striatal neurons of the mouse. 2. We confirm that GES is a weak agonist at GABA(A) receptors, and is able to antagonize GABA-evoked responses. GES did not gate GlyR. 3. GES antagonized glycine responses in a concentration-dependent and surmountable manner. Glycine dose-response curves were shifted to the right by GES (0.5 mM), yielding EC(50)s and Hill coefficients of 62 micro M and 2.5 in control, 154 micro M and 1.3 in the presence of GES. 4. GlyR-mediated taurine responses were competitively antagonized by GES. Taurine dose-response curves, in contrast to the glycine dose-response curves were shifted by GES to the right in a parallel manner. 5. The GlyR-block by GES was not voltage-dependent. 6. In contrast to our findings in the mouse, in rat striatal neurons which lack expression of the alpha3 GlyR subunit, GES shifted the glycine dose-response curve to the right in a parallel way without affecting the maximal response. Subtype-specificity of the GES action at GlyR must await further investigation in artificial expression systems. 7. We conclude that GES is a competitive antagonist at GlyR. The antagonistic action of GES at inhibitory ionotropic receptors can explain its epileptogenic action. Care must be taken with the interpretation of data on GES evoked taurine release.

  11. KW-3902, a selective high affinity antagonist for adenosine A1 receptors.

    PubMed Central

    Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J.; Suzuki, F.; Kase, H.

    1996-01-01

    1. We demonstrate that 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902) is a very potent and selective adenosine A1 receptor antagonist, assessed by radioligand binding and cyclic AMP response in cells. 2. In rat forebrain adenosine A1 receptors labelled with [3H]-cyclohexyladenosine (CHA), KW-3902 had a Ki value of 0.19 nM, whereas it showed a Ki value of 170 nM in rat striatal A2A receptors labelled with [3H]-2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoad enosine (CGS21680), indicating 890 fold A1 receptor selectivity versus the A2A receptor. KW-3902 at 10 microM showed no effect on recombinant rat A3 receptors expressed on CHO cells. 3. Saturation studies with [3H]-KW-3902 revealed that it bound with high affinity (Kd = 77 pM) and limited capacity (Bmax = 470 fmol mg-1 of protein) to a single class of recognition sites. A high positive correlation was observed between the pharmacological profile of adenosine ligands inhibiting the binding of [3H]-KW-3902 and that of [3H]-CHA. 4. KW-3902 showed potent A1 antagonism against the inhibition of forskolin-induced cyclic AMP accumulation in DDT1 MF-2 cells by the A1-selective agonist, cyclopentyladenosine with a dissociation constant (KB value) of 0.34 nM. KW-3902 antagonized 5'-N-ethylcarboxamidoadenosine-elicited cyclic AMP accumulation via A2B receptors with a KB value of 52 nM. 5. KW-3902 exhibited marked species-dependent differences in the binding affinities. The highest affinity was for the rat A1 receptor (ki = 0.19 nM) and these values for guinea-pig and dog A1 receptors were 1.3 and 10 nM, respectively. PMID:8732272

  12. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection

    PubMed Central

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases. PMID:19508402

  13. Identification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit

    PubMed Central

    Chen, Sisi; Luetje, Charles W.

    2012-01-01

    Background Insects detect attractive and aversive chemicals using several families of chemosensory receptors, including the OR family of olfactory receptors, making these receptors appealing targets for the control of insects. Insect ORs are odorant-gated ion channels, comprised of at least one common subunit (the odorant receptor co-receptor subunit, Orco) and at least one variable odorant specificity subunit. Each of the many ORs of an insect species is activated or inhibited by an unique set of odorants that interact with the variable odorant specificity subunits, making the development of OR directed insect control agents complex and laborious. However, several N-,2-substituted triazolothioacetamide compounds (VUAA1, VU0450667 and VU0183254) were recently shown to act directly on the highly conserved Orco subunit, suggesting that broadly active compounds can be developed. We have explored the chemical space around the VUAA1 structure in order to identify new Orco ligands. Principal Findings We screened ORs from several insect species, using heterologous expression in Xenopus oocytes and an electrophysiological assay, with a panel of 22 compounds structurally related to VUAA1. By varying the nitrogen position in the pyridine ring and altering the moieties decorating the phenyl ring, we identified two new agonists and a series of competitive antagonists. Screening smaller compounds, similar to portions of the VUAA1 structure, also yielded competitive antagonists. Importantly, we show that Orco antagonists inhibit odorant activation of ORs from several insect species. Detailed examination of one antagonist demonstrated inhibition to be through a non-competitive mechanism. Conclusions A similar pattern of agonist and antagonist sensitivity displayed by Orco subunits from different species suggests a highly conserved binding site structure. The susceptibility to inhibition of odorant activation by Orco antagonism is conserved across disparate insect species

  14. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  15. Orexin receptor antagonists as therapeutic agents for insomnia

    PubMed Central

    Equihua, Ana C.; De La Herrán-Arita, Alberto K.; Drucker-Colin, Rene

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin) neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed arousal, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia. PMID:24416019

  16. Orexin receptor antagonists as therapeutic agents for insomnia.

    PubMed

    Equihua, Ana C; De La Herrán-Arita, Alberto K; Drucker-Colin, Rene

    2013-12-25

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin) neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed arousal, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  17. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    SciTech Connect

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-03-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 ..mu..M, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. /sup 45/Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated /sup 45/Ca outflux. BPP was also capable of displacing the specific binding of (/sup 3/H)-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 ..mu..M) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.

  18. Potential Clinical Implications of the Urotensin II Receptor Antagonists

    PubMed Central

    Tsoukas, Philip; Kane, Émilie; Giaid, Adel

    2011-01-01

    Urotensin II (UII) binds to its receptor, UT, playing an important role in the heart, kidneys, pancreas, adrenal gland, and central nervous system. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, however, this constriction–dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome, and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) activity leading to smooth muscle cell proliferation and foam cell infiltration, insulin resistance (DMII), as well as inflammation, high blood pressure, and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases. PMID:21811463

  19. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    PubMed

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory

    PubMed Central

    Orr, Anna G.; Hsiao, Edward C.; Wang, Max M.; Ho, Kaitlyn; Kim, Daniel H.; Wang, Xin; Guo, Weikun; Kang, Jing; Yu, Gui-Qiu; Adame, Anthony; Devidze, Nino; Dubal, Dena B.; Masliah, Eliezer; Conklin, Bruce R.; Mucke, Lennart

    2014-01-01

    Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer’s disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice, and increased the levels of Arc/Arg3.1, an immediate-early gene required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Similar to humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss. PMID:25622143

  1. Attenuation of gastric mucosal inflammation induced by indomethacin through activation of the A2A adenosine receptor in rats

    PubMed Central

    Koizumi, Shigeto; Otaka, Michiro; Jin, Mario; Linden, Joel; Watanabe, Sumio; Ohnishi, Hirohide

    2010-01-01

    Background Nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin induce gastric mucosal lesions in part by the activation of inflammatory cells and the production of proinflammatory cytokines. The activation of adenosine A2A receptors inhibits inflammation by increasing cyclic AMP in leukocytes and reducing both the production of various proinflammatory cytokines and neutrophil chemotaxis. The aim of present study was to determine whether administration of an orally active adenosine A2A receptor agonist (4-[3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl]-piperidine-1-carboxylic acid methyl ester; ATL-313) ameliorated indomethacin-induced gastric mucosal lesions in rats. Methods Gastric lesions were produced by oral gavage of indomethacin (30 mg/kg). ATL-313 (1–10 μg/kg) was given orally just before the indomethacin administration. Results The ulcer index induced by indomethacin was significantly (>50%) reduced by pretreatment with ATL-313 and this effect was blocked completely by the addition of equimolar ZM241385, a selective A2A receptor antagonist. The gastric content of myeloperoxidase (MPO) and proinflammatory cytokines was significantly reduced by 10 μg/kg ATL-313, but gastric mucosal prostaglandin 2 (PGE2) was not affected. Conclusion We conclude that ATL-313 does not inhibit the mucosal damaging effect of indomethacin, but it does block secondary injury due to stomach inflammation. A2A agonists may represent a class of new therapeutic drugs for NSAID-induced gastric ulcers. PMID:19333545

  2. Correlation between myometrial receptor affinity, lipophilicity and antagonistic potency of oxytocin analogues in the rat.

    PubMed

    Atke, A; Vilhardt, H; Melin, P

    1988-08-01

    Purified myometrial plasma membrane fractions were prepared from rats treated with oestradiol to induce oestrus. The binding affinities of 11 antagonistic oxytocin analogues to the oxytocin receptor of the plasma membranes were measured. Furthermore, lipophilicity of the peptides was assessed by reversed-phase high pressure liquid chromatography. No significant correlation was found between lipophilicity of the analogues and values for antagonistic potencies or binding affinities. Also, receptor-binding affinity did not correlate with in-vitro antagonistic activity whereas a significant correlation was obtained between binding affinities and in-vivo antagonistic potency for analogues void of partial agonist properties. It is concluded that neither receptor affinity nor lipophilicity in the analogues can predict the potency of the antagonists in vitro. However, receptor affinity was found to be a relatively good predictor of the in-vivo potency, while the usefulness of measuring antagonistic potency in vitro is questioned.

  3. SB-334867-A: the first selective orexin-1 receptor antagonist

    PubMed Central

    Smart, D; Sabido-David, C; Brough, S J; Jewitt, F; Johns, A; Porter, R A; Jerman, J C

    2001-01-01

    The pharmacology of various peptide and non-peptide ligands was studied in Chinese hamster ovary (CHO) cells stably expressing human orexin-1 (OX1) or orexin-2 (OX2) receptors by measuring intracellular calcium ([Ca2+]i) using Fluo-3AM. Orexin-A and orexin-B increased [Ca2+]i in CHO-OX1 (pEC50=8.38±0.04 and 7.26±0.05 respectively, n=12) and CHO-OX2 (pEC50=8.20±0.03 and 8.26±0.04 respectively, n=8) cells. However, neuropeptide Y and secretin (10 pM – 10 μM) displayed neither agonist nor antagonist properties in either cell-line. SB-334867-A (1-(2-Methyylbenzoxanzol-6-yl)-3-[1,5]naphthyridin-4-yl-urea hydrochloride) inhibited the orexin-A (10 nM) and orexin-B (100 nM)-induced calcium responses (pKB=7.27±0.04 and 7.23±0.03 respectively, n=8), but had no effect on the UTP (3 μM)-induced calcium response in CHO-OX1 cells. SB-334867-A (10 μM) also inhibited OX2 mediated calcium responses (32.7±1.9% versus orexin-A). SB-334867-A was devoid of agonist properties in either cell-line. In conclusion, SB-334867-A is a non-peptide OX1 selective receptor antagonist. PMID:11250867

  4. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  5. Hydrophilic Side Chains in the Third and Seventh Transmembrane Helical Domains of Human A2A Adenosine Receptors Are Required for Ligand Recognition

    PubMed Central

    JIANG, QIAOLING; VAN RHEE, A. MICHIEL; KIM, JEONGHO; YEHLE, SUSAN; WESS, JüRGEN; JACOBSON, KENNETH A.

    2012-01-01

    SUMMARY Hydrophilic residues of the G protein-coupled human A2A adenosine receptor that are potentially involved in the binding of the ribose moiety of adenosine were targeted for mutagenesis. Residues in a T88QSS91 sequence in the third transmembrane helical domain (TM3) were individually replaced with alanine and other amino acids. Two additional serine residues in TM7 that were previously shown to be involved in ligand binding were mutated to other uncharged, hydrophilic amino acids. The binding affinity of agonists at T88 mutant receptors was greatly diminished, although the receptors were well expressed and bound antagonists similar to the wild-type receptor. Thus, mutations that are specific for diminishing the affinity of ribose-containing ligands (i.e., adenosine agonists) have been identified in both TM3 and TM7. The T88A and T88S mutant receptor fully stimulated adenylyl cyclase, with the dose-response curves to CGS 21680 highly shifted to the right. A Q89A mutant gained affinity for all agonist and antagonist Iigands examined in binding and functional assays. Q89 likely plays an indirect role in ligand binding. S9OA, S91A, and S277C mutant receptors displayed only moderate changes in ligand affinity. A 5281 N mutant gained affinity for all adenosine denyatives (agonists), but antagonist affinity was generally diminished, with the exception of a novel tetrahydnobenzothiophenone derivative. PMID:8794889

  6. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists.

    PubMed

    Hansen, Kasper B; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L; Yuan, Hongjie; Vance, Katie M; Orr, Anna G; Kvist, Trine; Ogden, Kevin K; Le, Phuong; Vellano, Kimberly M; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T J; Snyder, James P; Bräuner-Osborne, Hans; Traynelis, Stephen F

    2010-06-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.

  7. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  8. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis.

    PubMed

    Marrakchi, Slaheddine; Guigue, Philippe; Renshaw, Blair R; Puel, Anne; Pei, Xue-Yuan; Fraitag, Sylvie; Zribi, Jihen; Bal, Elodie; Cluzeau, Céline; Chrabieh, Maya; Towne, Jennifer E; Douangpanya, Jason; Pons, Christian; Mansour, Sourour; Serre, Valérie; Makni, Hafedh; Mahfoudh, Nadia; Fakhfakh, Faiza; Bodemer, Christine; Feingold, Josué; Hadj-Rabia, Smail; Favre, Michel; Genin, Emmanuelle; Sahbatou, Mourad; Munnich, Arnold; Casanova, Jean-Laurent; Sims, John E; Turki, Hamida; Bachelez, Hervé; Smahi, Asma

    2011-08-18

    Generalized pustular psoriasis is a life-threatening disease of unknown cause. It is characterized by sudden, repeated episodes of high-grade fever, generalized rash, and disseminated pustules, with hyperleukocytosis and elevated serum levels of C-reactive protein, which may be associated with plaque-type psoriasis. We performed homozygosity mapping and direct sequencing in nine Tunisian multiplex families with autosomal recessive generalized pustular psoriasis. We assessed the effect of mutations on protein expression and conformation, stability, and function. We identified significant linkage to an interval of 1.2 megabases on chromosome 2q13-q14.1 and a homozygous missense mutation in IL36RN, encoding an interleukin-36-receptor antagonist (interleukin-36Ra), an antiinflammatory cytokine. This mutation predicts the substitution of a proline residue for leucine at amino acid position 27 (L27P). Homology-based structural modeling of human interleukin-36Ra suggests that the proline at position 27 affects both the stability of interleukin-36Ra and its interaction with its receptor, interleukin-1 receptor-like 2 (interleukin-1 receptor-related protein 2). Biochemical analyses showed that the L27P variant was poorly expressed and less potent than the nonvariant interleukin-36Ra in inhibiting a cytokine-induced response in an interleukin-8 reporter assay, leading to enhanced production of inflammatory cytokines (interleukin-8 in particular) by keratinocytes from the patients. Aberrant interleukin-36Ra structure and function lead to unregulated secretion of inflammatory cytokines and generalized pustular psoriasis. (Funded by Agence Nationale de la Recherche and Société Française de Dermatologie.).

  9. Straub tail reaction in mice treated with σ(1) receptor antagonist in combination with methamphetamine.

    PubMed

    Kitanaka, Junichi; Kitanaka, Nobue; Hall, F Scott; Uhl, George R; Tanaka, Koh-Ichi; Nishiyama, Nobuyoshi; Takemura, Motohiko

    2012-10-30

    Straub tail reaction (STR) was observed in male ddY mice after simultaneous administration with BMY 14802 (a non-specific σ receptor antagonist) and methamphetamine (METH). The intensity and duration of STR depended on the dose of BMY 14802. The tail reaction was inhibited completely by (+)-SKF 10,047 (a putative σ(1) receptor agonist) and partially by PB 28 (a putative σ(2) receptor agonist). The STR was mimicked in mice treated with BD 1047 (a putative σ(1) receptor antagonist), but not SM-21, a putative σ(2) receptor antagonist, in combination with METH. STR evoked with BD 1047 plus METH was inhibited by (+)-SKF 10,047. STR induced by BMY 14802 and METH was abolished by naloxone (a relatively non-selective opioid receptor antagonist) or U-50,488H (a selective κ-agonist), suggesting that the STR may be mediated by activation of opioid receptor system.

  10. Adenosine A2A receptor activation stimulates collagen production in sclerodermic dermal fibroblasts either directly and through a cross-talk with the cannabinoid system.

    PubMed

    Lazzerini, Pietro Enea; Natale, Mariarita; Gianchecchi, Elena; Capecchi, Pier Leopoldo; Montilli, Cinzia; Zimbone, Stefania; Castrichini, Monica; Balistreri, Epifania; Ricci, Gianluca; Selvi, Enrico; Garcia-Gonzalez, Estrella; Galeazzi, Mauro; Laghi-Pasini, Franco

    2012-03-01

    Systemic sclerosis (SSc) is a connective tissue disease characterised by exaggerated collagen deposition in the skin and visceral organs. Adenosine A2A receptor stimulation (A2Ar) promotes dermal fibrosis, while the cannabinoid system modulates fibrogenesis in vitro and in animal models of SSc. Moreover, evidence in central nervous system suggests that A2A and cannabinoid (CB1) receptors may physically and functionally interact. On this basis, we investigated A2Ar expression and function in modulating collagen biosynthesis from SSc dermal fibroblasts and analysed the cross-talk with cannabinoid receptors. In sclerodermic cells, A2Ar expression (RT-PCR, Western blotting) was evaluated together with the effects of A2A agonists and/or antagonists on collagen biosynthesis (EIA, Western blotting). Putative physical and functional interactions between the A2A and cannabinoid receptors were respectively assessed by co-immuno-precipitation and co-incubating the cells with the unselective cannabinoid agonist WIN55,212-2, and the selective A2A antagonist ZM-241385. In SSc fibroblasts, (1) the A2Ar is overexpressed and its occupancy with the selective agonist CGS-21680 increases collagen production, myofibroblast trans-differentiation, and ERK-1/2 phosphorylation; (2) the A2Ar forms an heteromer with the cannabinoid CB1 receptor; and (3) unselective cannabinoid receptor stimulation with a per se ineffective dose of WIN55,212-2, results in a marked anti-fibrotic effect after A2Ar blockage. In conclusion, A2Ar stimulation induces a pro-fibrotic phenotype in SSc dermal fibroblasts, either directly, and indirectly, by activating the CB1 cannabinoid receptor. These findings increase our knowledge of the pathophysiology of sclerodermic fibrosis also further suggesting a new therapeutic approach to the disease.

  11. Drug discrimination analysis of NMDA receptor channel blockers as nicotinic receptor antagonists in rats.

    PubMed

    Zakharova, E S; Danysz, W; Bespalov, A Y

    2005-04-01

    Antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors inhibit various phenomena associated with exposures to nicotine (e.g., tolerance, sensitization, dependence, and intravenous self-administration). These effects are often discussed in terms of nicotine-induced glutamate release with subsequent glutamate-dependent stimulation of dopamine metabolism and neuronal plasticity in brain areas critically involved in drug-addiction mechanisms. However, it is also well established that certain types of NMDA receptor antagonists (channel blockers) potently bind to nicotinic receptors and may act as nicotinic receptor antagonists. The present study aimed to evaluate the discriminative-stimulus effects of the NMDA receptor channel blockers (+)MK-801, dextromethorphan, and memantine in rats trained to discriminate nicotine from its vehicle. Adult male Wistar rats were trained to discriminate 0.6 mg/kg nicotine from saline under a two-lever, fixed-ratio 10 schedule of food reinforcement. During test sessions, injections of (+)MK-801 (0.03--0.3 mg/kg, i.p.), dextromethorphan (30 mg/kg, s.c.), or memantine (1--10 mg/kg, i.p.) were co-administered with s.c. nicotine (0.075--0.6 mg/kg; interaction tests) or saline (generalization tests). Additional interaction and generalization tests were conducted with the selective nicotinic receptor antagonists mecamylamine (0.1--3 mg/kg, s.c.) and MRZ 2/621 (0.3--10 mg/kg, i.p.), and the mGlu5 receptor antagonist MPEP (3--10 mg/kg, i.p.). In generalization tests, none of the compounds produced any appreciable levels of substitution for nicotine. The nicotine discriminative-stimulus control was dose dependently attenuated by mecamylamine (ED(50)=0.67 mg/kg) and MRZ 2/621 (ED(50)=9.7 mg/kg). Both agents produced a marked downward shift in the nicotine dose-response curve. Memantine and MPEP slightly attenuated nicotine discriminative-stimulus effects, while (+)MK-801 and dextromethorphan did not affect the

  12. Histamine and histamine receptor antagonists in cancer biology.

    PubMed

    Blaya, Bruno; Nicolau-Galmés, Francesca; Jangi, Shawkat M; Ortega-Martínez, Idoia; Alonso-Tejerina, Erika; Burgos-Bretones, Juan; Pérez-Yarza, Gorka; Asumendi, Aintzane; Boyano, María D

    2010-07-01

    Histamine has been demonstrated to be involved in cell proliferation, embryonic development, and tumour growth. These various biological effects are mediated through the activation of specific histamine receptors (H1, H2, H3, and H4) that differ in their tissue expression patterns and functions. Although many in vitro and in vivo studies of the modulatory roles of histamine in tumour development and metastasis have been reported, the effect of histamine in the progression of some types of tumours remains controversial; however, recent findings on the role of histamine in the immune system have shed new light on this question. This review focuses on the recent advances in understanding the roles of histamine and its receptors in tumour biology. We report our recent observations of the anti-tumoural effect of H1 histamine antagonists on experimental and human melanomas. We have found that in spite of exogenous histamine stimulated human melanoma cell proliferation, clonogenic ability and migration activity in a dose-dependent manner, the melanoma tumour growth was not modulated by in vivo histamine treatment. On the contrary, terfenadine-treatment in vitro induced melanoma cell death by apoptosis and in vivo terfenadine treatment significantly inhibited tumour growth in murine models. These observations increase our understanding of cancer biology and may inspire novel anticancer therapeutic strategies.

  13. Vasopressin receptor antagonists and their role in clinical medicine.

    PubMed

    Narayen, Girish; Mandal, Surya Narayan

    2012-03-01

    Hyponatremia is the most common electrolyte abnormality in hospitalized patients. Its treatment is based not only on extracellular fluid volume status of patients but also on its pathogenetic mechanisms. Conventional treatment of hyponatremia like fluid restriction, which is useful in euvolemic and hypervolemic hyponatremia, has very poor patient compliance over long term. Vasopressin receptor antagonists (Vaptans) are a new group of nonpeptide drugs which have been used in various clinical conditions with limited success. Whereas conivaptan is to be administered intravenously, the other vaptans like tolvaptan, lixivaptan, and satavaptan are effective as oral medication. They produce aquaresis by their action on vasopressin type 2 (V2R) receptors in the collecting duct and thus increase solute free water excretion. Vaptans are being used as an alternative to fluid restriction in euvolemic and hypervolemic hyponatremic patients. Efficacy of vaptans is now well accepted for management of correction of hyponatremia over a short period. However, its efficacy in improving the long-term morbidity and mortality in patients with chronic hyponatremia due to cirrhosis and heart failure is yet to be established. Vaptans have not become the mainstay treatment of hyponatremia yet.

  14. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy.

    PubMed

    Roscioni, Sara S; de Zeeuw, Dick; Bakker, Stephan J L; Lambers Heerspink, Hiddo J

    2012-12-01

    Mineralocorticoid-receptor antagonists (MRAs) reduce blood pressure and albuminuria in patients treated with angiotensin-converting-enzyme inhibitors or angiotensin-II-receptor blockers. The use of MRAs, however, is limited by the occurrence of hyperkalaemia, which frequently occurs in patients older than 65 years with impaired kidney function, and/or diabetes. Patients with these characteristics might still benefit from MRA therapy, however, and should not be excluded from this treatment option. This limitation raises the question of how to optimize the therapeutic use of MRAs in this population of patients. Understanding the individual variability in patients' responses to MRAs, in terms of albuminuria, blood pressure and serum potassium levels, might lead to targeted intervention. MRA use might be restricted to patients with high levels of mineralocorticoid activity, evaluated by circulating renin and aldosterone levels or renal excretion of potassium. In addition, reviewing the patient's diet and concomitant medications might prove useful in reducing the risk of developing subsequent hyperkalaemia. If hyperkalaemia does develop, treatment options exist to decrease potassium levels, including administration of calcium gluconate, insulin, β(2)-agonists, diuretics and cation-exchange resins. In combination with novel aldosterone blockers, these strategies might offer a rationale with which to optimize therapeutic intervention and extend the population of patients who can benefit from use of MRAs.

  15. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    SciTech Connect

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  16. Vasopressin receptor antagonists and their role in clinical medicine

    PubMed Central

    Narayen, Girish; Mandal, Surya Narayan

    2012-01-01

    Hyponatremia is the most common electrolyte abnormality in hospitalized patients. Its treatment is based not only on extracellular fluid volume status of patients but also on its pathogenetic mechanisms. Conventional treatment of hyponatremia like fluid restriction, which is useful in euvolemic and hypervolemic hyponatremia, has very poor patient compliance over long term. Vasopressin receptor antagonists (Vaptans) are a new group of nonpeptide drugs which have been used in various clinical conditions with limited success. Whereas conivaptan is to be administered intravenously, the other vaptans like tolvaptan, lixivaptan, and satavaptan are effective as oral medication. They produce aquaresis by their action on vasopressin type 2 (V2R) receptors in the collecting duct and thus increase solute free water excretion. Vaptans are being used as an alternative to fluid restriction in euvolemic and hypervolemic hyponatremic patients. Efficacy of vaptans is now well accepted for management of correction of hyponatremia over a short period. However, its efficacy in improving the long-term morbidity and mortality in patients with chronic hyponatremia due to cirrhosis and heart failure is yet to be established. Vaptans have not become the mainstay treatment of hyponatremia yet. PMID:22470853

  17. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  18. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Merighi, Stefania; Gessi, Stefania; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Varani, Katia

    2013-08-01

    Multiple sclerosis (MS) is an autoimmune-mediated inflammatory disease characterized by multifocal areas of demyelination. Experimental evidence indicates that A2A adenosine receptors (ARs) play a pivotal role in the inhibition of inflammatory processes. The aim of this study was to investigate the contribution of A2A ARs in the inhibition of key pro-inflammatory mediators for the pathogenesis of MS. In lymphocytes from MS patients, A1, A2A, A2B, and A3 ARs were analyzed by using RT-PCR, Western blotting, immunofluorescence, and binding assays. Moreover the effect of A2A AR stimulation on proinflammatory cytokine release such as TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and on lymphocyte proliferation was evaluated. The capability of an A2A AR agonist on the modulation of very late antigen (VLA)-4 expression and NF-κB was also explored. A2A AR upregulation was observed in lymphocytes from MS patients in comparison with healthy subjects. The stimulation of these receptors mediated a significant inhibition of TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and cell proliferation as well as VLA-4 expression and NF-κB activation. This new evidence highlights that A2A AR agonists could represent a novel therapeutic tool for MS treatment as suggested by the antiinflammatory role of A2A ARs in lymphocytes from MS patients.

  19. Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats.

    PubMed

    Rahimian, Reza; Fakhfouri, Gohar; Daneshmand, Ali; Mohammadi, Hamed; Bahremand, Arash; Rasouli, Mohammad Reza; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2010-12-15

    Inflammatory bowel disease comprises chronic recurrent inflammation of gastrointestinal tract. This study was conducted to investigate inosine, a potent immunomodulator, in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced chronic model of experimental colitis, and contribution of adenosine A(2A) receptors and the metabolite uric acid as possible underlying mechanisms. Experimental colitis was rendered in rats by a single colonic administration of 10 mg of TNBS. Inosine, potassium oxonate (a hepatic uricase inhibitor), SCH-442416 (a selective adenosine A(2A) receptor antagonist), inosine+potassium oxonate, or inosine+SCH-442416 were given twice daily for 7 successive days. At the end of experiment, macroscopic and histopathologic scores, colonic malondialdehyde (MDA), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-1beta (IL-1β) levels, and myeloperoxidase (MPO) activity were assessed. Plasma uric acid level was measured throughout the experiment. Both macroscopic and histological features of colonic injury were markedly ameliorated by either inosine, oxonate or inosine+oxonate. Likewise, the elevated amounts of MPO and MDA abated as well as those of TNF-α and IL-1β (P<0.05). SCH-442416 partially reversed the effect of inosine on theses markers, while inosine+oxonate showed a higher degree of protection than each treatment alone (P<.0.05). No significant difference was observed between TNBS and SCH-442416 groups. Uric acid levels were significantly higher in inosine or oxonate groups compared to control. Inosine+oxonate resulted in an even more elvelated uric acid level than each treatment alone (P<0.05). Inosine elicits notable anti-inflammatory effects on TNBS-induced colitis in rats. Uric acid and adenosine A(2A) receptors contribute to these salutary properties.

  20. Use of Enterally Delivered Angiotensin II Type Ia Receptor Antagonists to Reduce the Severity of Colitis

    PubMed Central

    Okawada, Manabu; Koga, Hiroyuki; Larsen, Scott D.; Showalter, Hollis D.; Turbiak, Anjanette J.; Jin, Xiaohong; Lucas, Peter C.; Lipka, Elke; Hillfinger, John; Kim, Jae Seung

    2011-01-01

    Background Renin-angiotensin system blockade reduces inflammation in several organ systems. Having found a fourfold increase in angiotensin II type Ia receptor expression in a dextran sodium sulfate colitis model, we targeted blockade with angiotensin II type Ia receptor antagonists to prevent colitis development. Because hypotension is a major complication of angiotensin II type Ia receptor antagonists use, we hypothesized that use of angiotensin II type Ia receptor antagonists compounds which lack cell membrane permeability, and thus enteric absorption, would allow for direct enteral delivery at far higher concentrations than would be tolerated systemically, yet retain efficacy. Methods Based on the structure of the angiotensin II type Ia receptor antagonist losartan, deschloro-losartan was synthesized, which has extremely poor cell membrane permeability. Angiotensin II type Ia receptor antagonist efficacy was evaluated by determining the ability to block NF-κB activation in vitro. Dextran sodium sulfate colitis was induced in mice and angiotensin II type Ia receptor antagonist efficacy delivered transanally was assessed. Results In vitro, deschloro-losartan demonstrated near equal angiotensin II type Ia receptor blockade compared to losartan as well as another angiotensin II type Ia receptor antagonist, candesartan. In the dextran sodium sulfate model, each compound significantly improved clinical and histologic scores and epithelial cell apoptosis. Abundance of TNF-α, IL-1β, and IL6 mRNA were significantly decreased with each compound. In vitro and in vivo intestinal drug absorption, as well as measures of blood pressure and mucosal and colonic blood flow, showed significantly lower uptake of deschloro-losartan compared to losartan and candesartan. Conclusions This study demonstrated efficacy of high-dose angiotensin II type Ia receptor antagonists in this colitis model. We postulate that a specially designed angiotensin II type Ia receptor antagonist with

  1. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.

  2. Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists.

    PubMed

    Sadek, Bassem; Kuder, Kamil; Subramanian, Dhanasekaran; Shafiullah, Mohamed; Stark, Holger; Lażewska, Dorota; Adem, Abdu; Kieć-Kononowicz, Katarzyna

    2014-06-01

    To determine the potential of histamine H3 receptor (H3R) ligands as new antiepileptic drugs (AEDs), aromatic ether, and diether derivatives (1-12) belonging to the nonimidazole class of ligands, with high in-vitro binding affinity at human H3R, were tested for their in-vivo anticonvulsive activity in the maximal electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled seizure models in rats. The anticonvulsive effects of a systemic injection of 1-12 on MES-induced and PTZ-kindled seizures were evaluated against the reference AED phenytoin (PHT) and the structurally related H3R antagonist/inverse agonist pitolisant (PIT). Among the most promising ligands 2, 4, 5, and 11, there was a significant and dose-dependent reduction in the duration of tonic hind limb extension (THLE) in MES-induced seizure subsequent to administration of 4 and 5 [(5, 10, and 15 mg/kg, intraperitoneally (i.p.)]. The protective effects observed for the 1-(3-(3-(4-chlorophenyl)propoxy)propyl)-3-methylpiperidine derivative 11 at 10 mg/kg, i.p. were significantly greater than those of PIT, and were reversed by pretreatment with the central nervous system penetrant H1R antagonist pyrilamine (PYR) (10 mg/kg). Moreover, the protective action of the reference AED PHT, at a dose of 5 mg/kg (without considerable protection in the MES model), was significantly augmented when coadministered with derivative 11 (5 mg/kg, i.p.). Surprisingly, pretreatment with derivative 7 (10 mg/kg, i.p.), an ethylphenoxyhexyl-piperidine derivative without considerable protection in the MES model, potently altered PTZ-kindled seizure, significantly prolonged myoclonic latency time, and clearly shortened the total seizure time when compared with control, PHT, and PIT. These interesting results highlight the potential of H3R ligands as new AEDs or as adjuvants to available AED therapeutics.

  3. The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo.

    PubMed

    Morató, Xavier; Luján, Rafael; López-Cano, Marc; Gandía, Jorge; Stagljar, Igor; Watanabe, Masahiko; Cunha, Rodrigo A; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2017-08-25

    G protein-coupled receptor 37 (GPR37) is an orphan receptor associated to Parkinson's disease (PD) neuropathology. Here, we identified GPR37 as an inhibitor of adenosine A2A receptor (A2AR) cell surface expression and function in vivo. In addition, we showed that GPR37 and A2AR do oligomerize in the striatum. Thus, a close proximity of GPR37 and A2AR at the postsynaptic level of striatal synapses was observed by double-labelling post-embedding immunogold detection. Indeed, the direct receptor-receptor interaction was further substantiated by proximity ligation in situ assay. Interestingly, GPR37 deletion promoted striatal A2AR cell surface expression that correlated well with an increased A2AR agonist-mediated cAMP accumulation, both in primary striatal neurons and nerve terminals. Furthermore, GPR37-/- mice showed enhanced A2AR agonist-induced catalepsy and an increased response to A2AR antagonist-mediated locomotor activity. Overall, these results revealed a key role for GPR37 controlling A2AR biology in the striatum, which may be relevant for PD management.

  4. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    PubMed

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  5. Heterocyclic 1,7-disubstituted indole sulfonamides are potent and selective human EP3 receptor antagonists.

    PubMed

    Hategan, Georgeta; Polozov, Alexandre M; Zeller, Wayne; Cao, Hua; Mishra, Rama K; Kiselyov, Alex S; Ramirez, Jose; Halldorsdottir, Gudrún; Andrésson, Thornorkell; Gurney, Mark E; Singh, Jasbir

    2009-12-01

    We have developed a pharmacophore model for the EP(3) receptor antagonists based on its endogenous ligand PGE(2). This ligand-based design yielded a series of novel peri-substituted [4.3.0] bicyclic aromatics featuring 1-alklyaryl 7-heterocyclic sulfonamide substituents. The synthesized molecules are potent antagonists of human EP(3) receptor in vitro and show inhibition of rat platelets aggregation. Optimized derivatives display high selectivity over IP, FP, and other EP receptor panels.

  6. Mechanisms of Radiosensitization by the Neurotensin Receptor Antagonist SR48692 in Prostate Cancer Models

    DTIC Science & Technology

    2009-04-01

    Neurotensin Receptor Antagonist SR48692 in Prostate Cancer Models PRINCIPAL INVESTIGATOR: Jaroslaw Dziegielewski, Ph.D...Receptor Antagonist 5a. CONTRACT NUMBER SR48692 in Prostate Cancer Models 5b. GRANT NUMBER W81XWH-08-1-0114 5c. PROGRAM ELEMENT NUMBER 6...neurotensin receptor by SR48692 drug could sensitize cancer cells to radiation. SR48692 activity was measured in PC3, C42 and LNCaP prostate cancer

  7. The effects of histamine H3-receptor antagonists on amygdaloid kindled seizures in rats.

    PubMed

    Kakinoki, H; Ishizawa, K; Fukunaga, M; Fujii, Y; Kamei, C

    1998-07-15

    The effects of histamine H3-receptor antagonists, thioperamide, and clobenpropit on amygdaloid kindled seizures were investigated in rats. Both intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) injections of H3-antagonists resulted in a dose-related inhibition of amygdaloid kindled seizures. An inhibition induced by thioperamide was antagonized by an H3-agonist [(R)-alpha-methylhistamine] and H1-antagonists (diphenhydramine and chlorpheniramine). On the other hand, an H2-antagonist (cimetidine and ranitidine) caused no antagonistic effect. Metoprine, an inhibitor of N-methyltransferase was also effective in inhibiting amygdaloid kindled seizure, and this effect was augmented by thioperamide treatment.

  8. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists.

    PubMed

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%-80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and

  9. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    PubMed Central

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and

  10. Development of selective agonists and antagonists of P2Y receptors

    PubMed Central

    Ivanov, Andrei A.; de Castro, Sonia; Harden, T. Kendall; Ko, Hyojin

    2008-01-01

    Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets. PMID:18600475

  11. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release.

    PubMed

    Kalinowski, Leszek; Matys, Tomasz; Chabielska, Ewa; Buczko, Włodzimierz; Malinski, Tadeusz

    2002-10-01

    This study investigated the process of nitric oxide (NO) release from platelets after stimulation with different angiotensin II type 1 (AT1)-receptor antagonists and its effect on platelet adhesion and aggregation. Angiotensin II AT1-receptor antagonist-stimulated NO release in platelets was compared with that in human umbilical vein endothelial cells by using a highly sensitive porphyrinic microsensor. In vitro and ex vivo effects of angiotensin II AT1-receptor antagonists on platelet adhesion to collagen and thromboxane A2 analog U46619-induced aggregation were evaluated. Losartan, EXP3174, and valsartan alone caused NO release from platelets and endothelial cells in a dose-dependent manner in the range of 0.01 to 100 micro mol/L, which was attenuated by NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. The angiotensin II AT1-receptor antagonists had more than 70% greater potency in NO release in platelets than in endothelial cells. The degree of inhibition of platelet adhesion (collagen-stimulated) and aggregation (U46619-stimulated) elicited by losartan, EXP3174, and valsartan, either in vitro or ex vivo, closely correlated with the NO levels produced by each of these drugs alone. The inhibiting effects of angiotensin II AT1-receptor antagonists on collagen-stimulated adhesion and U46619-stimulated aggregation of platelets were significantly reduced by pretreatment with N(G)-nitro-L-arginine methyl ester. Neither the AT2 receptor antagonist PD123319, the cyclooxygenase synthase inhibitor indomethacin, nor the selective thromboxane A2/prostaglandin H2 receptor antagonist SQ29,548 had any effect on angiotensin II AT1-receptor antagonist-stimulated NO release in platelets and endothelial cells. The presented studies clearly indicate a crucial role of NO in the arterial antithrombotic effects of angiotensin II AT1-receptor antagonists.

  12. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson's disease.

    PubMed

    Jörg, Manuela; May, Lauren T; Mak, Frankie S; Lee, Kiew Ching K; Miller, Neil D; Scammells, Peter J; Capuano, Ben

    2015-01-22

    A relatively new strategy in drug discovery is the development of dual acting ligands. These molecules are potentially able to interact at two orthosteric binding sites of a heterodimer simultaneously, possibly resulting in enhanced subtype selectivity, higher affinity, enhanced or modified physiological response, and reduced reliance on multiple drug administration regimens. In this study, we have successfully synthesized a series of classical heterobivalent ligands as well as a series of more integrated and "drug-like" dual acting molecules, incorporating ropinirole as a dopamine D2 receptor agonist and ZM 241385 as an adenosine A2A receptor antagonist. The best compounds of our series maintained the potency of the original pharmacophores at both receptors (adenosine A2A and dopamine D2). In addition, the integrated dual acting ligands also showed promising results in preliminary blood-brain barrier permeability tests, whereas the classical heterobivalent ligands are potentially more suited as pharmacological tools.

  13. Histamine H4 receptor antagonists as potent modulators of mammalian vestibular primary neuron excitability

    PubMed Central

    Desmadryl, G; Gaboyard-Niay, S; Brugeaud, A; Travo, C; Broussy, A; Saleur, A; Dyhrfjeld-Johnsen, J; Wersinger, E; Chabbert, C

    2012-01-01

    BACKGROUND AND PURPOSE Betahistine, the main histamine drug prescribed to treat vestibular disorders, is a histamine H3 receptor antagonist. Here, we explored the potential for modulation of the most recently cloned histamine receptor (H4 receptor) to influence vestibular system function, using a selective H4 receptor antagonist JNJ 7777120 and the derivate compound JNJ 10191584. EXPERIMENTAL APPROACH RT-PCR was used to assess the presence of H4 receptors in rat primary vestibular neurons. In vitro electrophysiological recordings and in vivo behavioural approaches using specific antagonists were employed to examine the effect of H4 receptor modulation in the rat vestibular system. KEY RESULTS The transcripts of H4 and H3 receptors were present in rat vestibular ganglia. Application of betahistine inhibited the evoked action potential firing starting at micromolar range, accompanied by subsequent strong neuronal depolarization at higher concentrations. Conversely, reversible inhibitory effects elicited by JNJ 10191584 and JNJ 7777120 began in the nanomolar range, without inducing neuronal depolarization. This effect was reversed by application of the selective H4 receptor agonist 4-methylhistamine. Thioperamide, a H3/H4 receptor antagonist, exerted effects similar to those of H3 and H4 receptor antagonists, namely inhibition of firing at nanomolar range and membrane depolarization above 100 µM. H4 receptor antagonists significantly alleviated the vestibular deficits induced in rats, while neither betahistine nor thioperamide had significant effects. CONCLUSIONS AND IMPLICATIONS H4 receptor antagonists have a pronounced inhibitory effect on vestibular neuron activity. This result highlights the potential role of H4 receptors as pharmacological targets for the treatment of vestibular disorders. PMID:22624822

  14. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors.

    PubMed

    López-Cruz, Laura; San-Miguel, Noemí; Bayarri, Pilar; Baqi, Younis; Müller, Christa E; Salamone, John D; Correa, Mercé

    2016-01-01

    Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0-1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg), and even blocked social preference at higher doses (30.0-60.0 mg/kg). The A1 antagonist Cyclopentyltheophylline (CPT; 3-9 mg/kg) did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5-6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the

  15. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors

    PubMed Central

    López-Cruz, Laura; San-Miguel, Noemí; Bayarri, Pilar; Baqi, Younis; Müller, Christa E.; Salamone, John D.; Correa, Mercé

    2016-01-01

    Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0–1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0–60.0 mg/kg), and even blocked social preference at higher doses (30.0–60.0 mg/kg). The A1 antagonist Cyclopentyltheophylline (CPT; 3–9 mg/kg) did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5–6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5–1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0–30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol

  16. Peripheral 5-HT2-like receptors. Can they be classified with the available antagonists?

    PubMed Central

    Leff, P.; Martin, G. R.

    1986-01-01

    Interactions between 5-hydroxytryptamine (5-HT) and the so-called 5-HT2 receptor antagonists ketanserin, spiperone, trazodone and methysergide were studied in isolated preparations of the rabbit aorta, rat jugular vein, and rat caudal artery. Trazodone and spiperone were apparently simple competitive antagonists since they produced antagonism that was surmountable over the concentration range studied and, in each tissue, their apparent affinity appeared to be independent of the antagonist concentration. Furthermore, concentration-ratios obtained with the two antagonists in combination suggested that antagonism was additive, implying mutual competition with a single population of 5-HT receptors. Ketanserin was a non-surmountable antagonist of 5-HT in the rat caudal artery and methysergide demonstrated surmountable, competitive antagonism only in the rabbit aorta. Antagonist dissociation constants estimated for apparently competitive interactions showed that ketanserin, spiperone and trazodone expressed affinities which differed according to the tissue used. In the case of trazodone, affinity estimates differed by as much as 12 fold. These discrepancies were independent of the 5-HT receptor agonist used and could not be attributed to an inadequate equilibration of the antagonist. These results can be interpreted in two ways: either the receptors in the different tissues are heterogeneous or the antagonists used here must be considered as unreliable probes for the classification of 5-HT2-like receptors. PMID:2943354

  17. A comprehensive patents review on cannabinoid 1 receptor antagonists as antiobesity agents.

    PubMed

    Sharma, Mayank Kumar; Murumkar, Prashant R; Barmade, Mahesh A; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    Obesity is a rapidly expanding worldwide health problem. Various targets are investigated presently for the treatment of obesity, but there remains an unmet need for an effective drug therapy with acceptable efficacy levels and reduced side effects. Targeting peripherally located cannabinoid 1 (CB1) receptors is an attractive strategy as these receptors play a vital role in energy homeostasis. CB1 receptor antagonists constitute one of the most important categories of compounds of interest for the control of obesity. In this review, the authors focus on recent advances (since 2007) in diverse chemical classes of patented compounds belonging to the category of CB1 receptor antagonists. Safer CB1 receptor antagonists for the treatment of obesity can be discovered by developing such compounds that act peripherally. Increasing the polar service area, decreasing the lipophilicity and designing of neutral antagonists and allosteric inhibitors are some interesting strategies that could offer promising results.

  18. Alvimopan: a peripherally acting mu-opioid receptor antagonist.

    PubMed

    Leslie, John B

    2007-09-01

    Postoperative ileus (POI), a transient cessation of coordinated bowel motility after surgery, is an important factor in extending the length of hospital stay. The etiology of POI is multifactorial, and related to both the surgical and anesthetic pathways chosen. Additionally, opioids used to manage non-cancer-related and cancer-related chronic pain may also decrease gastrointestinal (GI) motility resulting in opioid-induced bowel dysfunction (OBD). Postoperative ileus has been associated with prolonged hospital stay and readmission, and thus may increase the overall hospital costs per patient with POI. Alvimopan, a peripherally acting mu-opioid receptor antagonist, accelerated time to GI recovery and reduced postoperative hospital length of stay in phase III POI clinical trials and improved symptoms of OBD compared with placebo in phase II/III clinical trials. The U.S. Food and Drug Administration is currently evaluating alvimopan for the management of POI after bowel resection. Alvimopan may provide clinically meaningful benefits to patients and may lower the economic burden of POI to the healthcare system.

  19. Mineralocorticoid Receptor Antagonists for Treatment of Hypertension and Heart Failure

    PubMed Central

    Sica, Domenic A.

    2015-01-01

    Spironolactone and eplerenone are both mineralocorticoid-receptor antagonists. These compounds block both the epithelial and nonepithelial actions of aldosterone, with the latter assuming increasing clinical relevance. Spironolactone and eplerenone both affect reductions in blood pressure either as mono- or add-on therapy; moreover, they each afford survival benefits in diverse circumstances of heart failure and the probability of renal protection in proteinuric chronic kidney disease. However, as use of mineralocorticoid-blocking agents has expanded, the hazards inherent in taking such drugs have become more apparent. Whereas the endocrine side effects of spironolactone are in most cases little more than a cosmetic annoyance, the potassium-sparing effects of both spironolactone and eplerenone can prove disastrous, even fatal, if sufficient degrees of hyperkalemia emerge. For most patients, however, the risk of developing hyperkalemia in and of itself should not discourage the sensible clinician from bringing these compounds into play. Hyperkalemia should always be considered a possibility in patients receiving either of these medications; therefore, anticipatory steps should be taken to minimize the likelihood of its occurrence if long-term therapy of these agents is being considered. PMID:27057293

  20. Applicability of DPI formulations for novel neurokinin receptor antagonist.

    PubMed

    Kumon, M; Yabe, Y; Kasuya, Y; Suzuki, M; Kusai, A; Yonemochi, E; Terada, K

    2008-05-22

    A novel triple neurokinin receptor antagonist (TNRA) could have pharmaceutical efficacy for asthma and/or chronic obstructive pulmonary disease. TNRA is potentially developed as inhalation medicine. The aim of this investigation was to evaluate the applicability of dry powder inhaler (DPI) formulation for TNRA. DPI formulation containing lactose was used for this feasibility study. Mechanofusion process for surface modification was applied on lactose particles to prepare four different DPI formulations. The mixture of TNRA and lactose was administered to rats intratracheally using an insufflator. The deposition pattern and blood concentration profile of TNRA were evaluated. Although there was no significant difference in deposition on deep lungs between the four formulations, DPI formulations containing mechanofusion-processed lactose showed longer T(max) and t(1/2) and higher AUC(0-infinity) and MRT compared to that containing intact lactose. On the other hand, the contact angle measurement showed that the mechanofusion process decreased the polar part of the surface energy of the lactose. Therefore, the prolongation of the wetting of the formulated powder mixture seemed to delay the dissolution of TNRA deposited in respiratory tract. It was concluded that DPI formulation containing mechanofusion-processed lactose could be suitable for inhalation of TNRA.

  1. Effects of cholecystokinin receptor antagonist loxiglumide on rat exocrine pancreas.

    PubMed

    Nakano, S; Tachibana, I; Otsuki, M

    1994-07-01

    Effects of long-term administration of the cholecystokinin receptor antagonist loxiglumide on exocrine pancreas were studied in adult rats. Plasma concentrations of loxiglumide at 8 h after a single subcutaneous injection of 50 mg/kg body weight of loxiglumide were 3.2 +/- 0.8 microgram/ml, which were comparable to those at 12 h after oral administration of the same dose (3.7 +/- 0.9 microgram/ml). Eight hours' prior subcutaneous injection of loxiglumide (50 mg/kg body weight) significantly suppressed pancreatic exocrine secretion stimulated by an intravenous bolus injection of 50 ng/kg body weight caerulein compared with the control rats. Based on these results, in the first experiment, loxiglumide at a dose of 50 mg/kg body weight was given subcutaneously three times a day (low dose) for 6 days to adult rats fed a standard laboratory diet. Low dose of loxiglumide significantly decreased pancreatic wet weight (-14%) and pancreatic contents of protein (-26%), trypsin (-38%), and lipase (-68%), while having no significant effect on pancreatic contents of DNA and amylase. In the second experiment, three times higher dose of loxiglumide (150 mg/kg body weight) was given by an orogastric tube twice daily for 6 days. High dose of loxiglumide significantly decreased pancreatic weight (-11%) and contents of protein (-20%) and DNA (-22%), whereas it significantly increased amylase (+92%) and trypsin content (+20%).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Side Effects of Leukotriene Receptor Antagonists in Asthmatic Children

    PubMed Central

    Erdem, Semiha Bahceci; Nacaroglu, Hikmet Tekin; Unsal Karkiner, Canan Sule; Gunay, Ilker; Can, Demet

    2015-01-01

    Background: Leukotriene receptor antagonists (LTRAs) are drugs which have been widely used more than ten years. As the use of LTRAs increases, our knowledge with respect to their side effects increases as well. Objectives: The objective of our study was to evaluat the observed side effects of LTRAs used in patients with astma. Patients and Methods: 1024 patients treated only with LTRAs owing to asthma or early wheezing were included in the study for a five-year period. The observed side effects of LTRAs in these patients were retrospectively investigated. The side effects were divided into two parts as psychiatric and non-psychiatric. Results: Among the 1024 cases included in the study, 67.5% of the patients out of 41 with side effects were male, 32.5% were female and the average age was 6.5 years. The rate of patients with asthma was 63.41% and 36.58% of the patients had early wheezing. It was determined that sex, age and diagnosis (early wheezing or asthma) of the patients were ineffective in the emergence of side effects. The average period for the emergence of side effects was the first month. It was observed that hyperactivity was the most frequently observed psychiatric side effect and that abdominal pain was the non-psychiatric side effect. Conclusions: The side effects of LTRAs were common in children. Therefore, patients must be informed at the beginning of the treatment and they must be evaluated at certain intervals. PMID:26495098

  3. Side Effects of Leukotriene Receptor Antagonists in Asthmatic Children.

    PubMed

    Erdem, Semiha Bahceci; Nacaroglu, Hikmet Tekin; Unsal Karkiner, Canan Sule; Gunay, Ilker; Can, Demet

    2015-10-01

    Leukotriene receptor antagonists (LTRAs) are drugs which have been widely used more than ten years. As the use of LTRAs increases, our knowledge with respect to their side effects increases as well. The objective of our study was to evaluat the observed side effects of LTRAs used in patients with astma. 1024 patients treated only with LTRAs owing to asthma or early wheezing were included in the study for a five-year period. The observed side effects of LTRAs in these patients were retrospectively investigated. The side effects were divided into two parts as psychiatric and non-psychiatric. Among the 1024 cases included in the study, 67.5% of the patients out of 41 with side effects were male, 32.5% were female and the average age was 6.5 years. The rate of patients with asthma was 63.41% and 36.58% of the patients had early wheezing. It was determined that sex, age and diagnosis (early wheezing or asthma) of the patients were ineffective in the emergence of side effects. The average period for the emergence of side effects was the first month. It was observed that hyperactivity was the most frequently observed psychiatric side effect and that abdominal pain was the non-psychiatric side effect. The side effects of LTRAs were common in children. Therefore, patients must be informed at the beginning of the treatment and they must be evaluated at certain intervals.

  4. Mineralocorticoid Receptor Antagonists for Treatment of Hypertension and Heart Failure.

    PubMed

    Sica, Domenic A

    2015-01-01

    Spironolactone and eplerenone are both mineralocorticoid-receptor antagonists. These compounds block both the epithelial and nonepithelial actions of aldosterone, with the latter assuming increasing clinical relevance. Spironolactone and eplerenone both affect reductions in blood pressure either as mono- or add-on therapy; moreover, they each afford survival benefits in diverse circumstances of heart failure and the probability of renal protection in proteinuric chronic kidney disease. However, as use of mineralocorticoid-blocking agents has expanded, the hazards inherent in taking such drugs have become more apparent. Whereas the endocrine side effects of spironolactone are in most cases little more than a cosmetic annoyance, the potassium-sparing effects of both spironolactone and eplerenone can prove disastrous, even fatal, if sufficient degrees of hyperkalemia emerge. For most patients, however, the risk of developing hyperkalemia in and of itself should not discourage the sensible clinician from bringing these compounds into play. Hyperkalemia should always be considered a possibility in patients receiving either of these medications; therefore, anticipatory steps should be taken to minimize the likelihood of its occurrence if long-term therapy of these agents is being considered.

  5. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    PubMed

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  6. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    PubMed Central

    Pertwee, R.G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor agonists and CB1/CB2 antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB1 and CB2 receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB1, non-CB2 G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB1 and/or CB2 receptors. PMID:20166927

  7. Persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A2A receptors during extinction training in rats

    PubMed Central

    O’Neill, Casey E.; Hobson, Benjamin D.; Levis, Sophia C.; Bachtell, Ryan K.

    2014-01-01

    Rationale Adenosine receptor stimulation and blockade has been shown to modulate a variety of cocaine related behaviors. Objectives These studies identify the direct effects of adenosine receptor stimulation on cocaine seeking during extinction training and the persistent effects on subsequent reinstatement to cocaine seeking. Methods Rats self-administered cocaine on a fixed-ratio 1 schedule in daily sessions over 3 weeks. Following 1 week withdrawal, the direct effects of adenosine receptor modulation were tested by administering the adenosine A1 receptor agonist, CPA (0.03 mg/kg and 0.1 mg/kg), the adenosine A2A agonist, CGS 21680 (0.03 mg/kg and 0.1 mg/kg), the presynaptic adenosine A2A receptor antagonist, SCH 442416 (0.3 mg/kg, 1 mg/kg, and 3 mg/kg), or vehicle prior to each of 6 daily extinction sessions. The persistent effects of adenosine receptor modulation during extinction training were subsequently tested on reinstatement to cocaine seeking induced by cues, cocaine, and the dopamine D2 receptor agonist, quinpirole. Results All doses of CPA and CGS 21680 impaired initial extinction responding, however only CPA treatment during extinction produced persistent impairment in subsequent cocaine- and quinpirole-induced seeking. Dissociating CPA treatment from extinction did not alter extinction responding or subsequent reinstatement. Administration of SCH 442416 had no direct effects on extinction responding, but produced dose-dependent persistent impairment of cocaine- and quinpirole-induced seeking. Conclusions These findings demonstrate that adenosine A1 or A2A receptor stimulation directly impair extinction responding. Interestingly, adenosine A1 receptor stimulation or presynaptic adenosine A2A receptor blockade during extinction produces lasting changes in relapse susceptibility. PMID:24562064

  8. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  9. Synthesis and pharmacology of willardiine derivatives acting as antagonists of kainate receptors.

    PubMed

    Dolman, Nigel P; Troop, Helen M; More, Julia C A; Alt, Andrew; Knauss, Jody L; Nistico, Robert; Jack, Samantha; Morley, Richard M; Bortolotto, Zuner A; Roberts, Peter J; Bleakman, David; Collingridge, Graham L; Jane, David E

    2005-12-01

    The natural product willardiine (8) is an AMPA receptor agonist while 5-iodowillardiine (10) is a selective kainate receptor agonist. In an attempt to produce antagonists of kainate and AMPA receptors analogues of willardiine with substituents at the N3 position of the uracil ring were synthesized. The N3-4-carboxybenzyl substituted analogue (38c) was found to be equipotent at AMPA and GLUK5-containing kainate receptors in the neonatal rat spinal cord. The N3-2-carboxybenzyl substituted analogue (38a) proved to be a potent and selective GLUK5 subunit containing kainate receptor antagonist when tested on native rat and human recombinant AMPA and kainate receptor subtypes. The GLUK5 kainate receptor antagonist activity was found to reside in the S enantiomer (44a) whereas the R enantiomer (44b) was almost inactive. 5-Iodo substitution of the uracil ring of 44a gave 45, which was found to have enhanced potency and selectivity for GLUK5.

  10. Impact on monoclonal antibody production in murine hybridoma cell cultures of adenosine receptor antagonists and phosphodiesterase inhibitors.

    PubMed

    Kelso, Geoffrey F; Kazi, Shahid A; Harris, Simon J; Boysen, Reinhard I; Chowdhury, Jamil; Hearn, Milton T W

    2016-01-15

    The effects of different adenosine receptor antagonists and cyclic nucleotide phosphodiesterase (PDE) inhibitors on monoclonal antibody (mAb) titer and cell viability of murine hybridoma cells in culture were measured as part of our investigations to discover additives that enhance mAb production. Specific adenosine receptor antagonists and PDE inhibitors were found to enhance or decrease the titer of immunoglobulin G1 (IgG1) mAbs relative to negative controls, depending on the specific compound and cell line employed. The observed enhancements or decreases in IgG1 mAb titer appeared to be mainly due to an increase or decrease in specific productivity rates (ngmAb/cell), respectively. The different effects of the selective adenosine antagonists suggest that antagonism at the level of the adenosine A2A and A1 or the adenosine A3 receptors result in either enhancement or suppression of IgG1 mAb production by hybridoma cells. Overall, these studies have identified hitherto unknown activities of specific adenosine antagonists and PDE inhibitors which indicate they may have valuable roles as cell culture additives in industrial biomanufacturing processes designed to enhance the yields of mAbs or other recombinant proteins produced by mammalian cell culture procedures.

  11. Non-selectivity of new bradykinin antagonists for B1 receptors.

    PubMed

    Rhaleb, N E; Gobeil, F; Regoli, D

    1992-01-01

    Two new B1 receptor antagonists, [Hyp3,Thi5,DTic7,Oic8]desArg9-BK and DArg[Hyp3,Thi5,DTic7,Oic8]desArg9-BK were tested in vitro on the rabbit jugular vein and the guinea pig ileum (preparations containing B2 receptors) and on the rabbit aorta (preparation containing B1 receptors) for pharmacological characterization. The results indicate that both compounds are antagonists on both B1 and B2 receptors, are competitive and discriminate between B2A and B2B receptor subtypes.

  12. CGS 8216: receptor binding characteristics of a potent benzodiazepine antagonist.

    PubMed

    Czernik, A J; Petrack, B; Kalinsky, H J; Psychoyos, S; Cash, W D; Tsai, C; Rinehart, R K; Granat, F R; Lovell, R A; Brundish, D E; Wade, R

    1982-01-25

    CGS 8216 is a novel nonbenzodiazepine that inhibited 3H-flunitrazepam (3H-FLU) binding to rat synaptosomal membranes in vitro at subnanomolar concentrations. It prevented the in vivo labeling of brain benzodiazepine receptors by 3H-FLU with the same potency as diazepam when given orally to mice. Pharmacologic tests showed that it was devoid of benzodiazepine-like activity but it antagonized the actions of diazepam in these tests. It did not interact with alpha- or beta- adrenergic, H1-histaminergic or GABA receptors but it inhibited adenosine-activation of cyclic AMP formation. Studies with 3H-CGS 8216 demonstrated that it bound specifically and with high affinity to rat forebrain membranes and was displaced by drugs with an order of potencies similar to that observed when 3H-diazepam and 3H-FLU were used as radioligands. The regional distribution of 3H-CGS 8216 binding sites in the brain was also similar to that of 3H-FLU. Dissociation of 3H-CGS 8216 binding was slow at 0 degrees C but increased with temperature and was almost complete within 1 min at 37 degrees C. Scatchard analyses were linear, yielding KD values of 0.044, 0.11 and 0.18 nM at 0, 25 and 37 degrees C, respectively; the Bmax value did not change appreciably with temperature and was approximately 1000 fmoles/mg protein. Using 3H-FLU, the value for Bmax as well as for the KD increased with temperature. The total number of binding sites determined for 3H-FLU was greater than that for 3H-CGS 8216 at each temperature. CGS 8216 exhibited mixed-type inhibition of 3H-FLU binding. GABA did not stimulate 3H-CGS 8216 binding whereas it enhanced 3H-FLU binding. CGS 8216 may be a useful ligand for probing the antagonist properties of the benzodiazepine receptor and is likely to exhibit interesting therapeutic effects.

  13. Tamoxifen resistant breast cancer: coregulators determine the direction of transcription by antagonist-occupied steroid receptors.

    PubMed

    Takimoto, G S; Graham, J D; Jackson, T A; Tung, L; Powell, R L; Horwitz, L D; Horwitz, K B

    1999-01-01

    Pharmacological antagonists of steroid receptor action had been thought to exert their effects by a passive mechanism driven principally by the ability of the antagonist to compete with agonist for the ligand binding site. However, recent analyses of antagonist-occupied receptor function suggest a more complex picture. Antagonists can be subdivided into two groups, type I, or pure antagonists, and type II, or mixed antagonists that can have variable transcriptional activity based upon differential dimerization and DNA binding properties. This led us to propose that receptor antagonism may not simply be a passive competition for the ligand binding site, but may, in some cases, involve active recruitment of corepressor or coactivator proteins to produce a mixed transcriptional phenotype. We used a yeast two-hybrid screen to identify proteins that interact specifically with antagonist-occupied receptors. Two proteins have been characterized: L7/SPA, a ribosome-associated protein that is localized in both the cytoplasm and nucleus, but with no known extranucleolar nuclear function; and hN-CoR, the human homolog of the mouse thyroid receptor corepressor mN-CoR. In in vivo transcription assays we show that L7/SPA enhances the partial agonist activity of type II mixed antagonists, and that N-CoR and the related corepressor, SMRT, suppresses it. The coregulators do not affect agonists or pure antagonists. Moreover, the net agonist activity seen with mixed antagonists is a function of the ratio of coactivator to corepressor. Based upon these results, we proposed that in breast tumors the inappropriate agonist activity seen with therapeutic antagonists such as tamoxifen is responsible for the hormone-resistant state. To confirm this, we are quantitating coactivator/corepressor ratios in breast tumor cells lines and clinical breast cancers. Results should provide new insights into the mechanisms underlying the progression of breast cancer to hormone resistance, and may

  14. The NK1 receptor antagonist L822429 reduces heroin reinforcement.

    PubMed

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-05-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects.

  15. The NK1 Receptor Antagonist L822429 Reduces Heroin Reinforcement

    PubMed Central

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-01-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects. PMID:23303056

  16. Beneficial effects of a novel agonist of the adenosine A2A receptor on monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    Alencar, Allan K N; Pereira, Sharlene L; Montagnoli, Tadeu L; Maia, Rodolfo C; Kümmerle, Arthur E; Landgraf, Sharon S; Caruso-Neves, Celso; Ferraz, Emanuelle B; Tesch, Roberta; Nascimento, José H M; de Sant'Anna, Carlos M R; Fraga, Carlos A M; Barreiro, Eliezer J; Sudo, Roberto T; Zapata-Sudo, Gisele

    2013-01-01

    Background and Purpose Pulmonary arterial hypertension (PAH) is characterized by enhanced pulmonary vascular resistance, right ventricular hypertrophy and increased right ventricular systolic pressure. Here, we investigated the effects of a N-acylhydrazone derivative, 3,4-dimethoxyphenyl-N-methyl-benzoylhydrazide (LASSBio-1359), on monocrotaline (MCT)-induced pulmonary hypertension in rats. Experimental Approach PAH was induced in male Wistar rats by a single i.p. injection of MCT (60 mg·kg−1) and 2 weeks later, oral LASSBio-1359 (50 mg·kg−1) or vehicle was given once daily for 14 days. Echocardiography was used to measure cardiac function and pulmonary artery dimensions, with histological assay of vascular collagen. Studies of binding to human recombinant adenosine receptors (A1, A2A, A3) and of docking with A2A receptors were also performed. Key Results MCT administration induced changes in vascular and ventricular structure and function, characteristic of PAH. These changes were reversed by treatment with LASSBio-1359. MCT also induced endothelial dysfunction in pulmonary artery, as measured by diminished relaxation of pre-contracted arterial rings, and this dysfunction was reversed by LASSBio-1359. In pulmonary artery rings from normal Wistar rats, LASSBio-1359 induced relaxation, which was decreased by the adenosine A2A receptor antagonist, ZM 241385. In adenosine receptor binding studies, LASSBio-1359 showed most affinity for the A2A receptor and in the docking analyses, binding modes of LASSBio-1359 and the A2A receptor agonist, CGS21680, were very similar. Conclusion and Implications In rats with MCT-induced PAH, structural and functional changes in heart and pulmonary artery were reversed by treatment with oral LASSBio-1359, most probably through the activation of adenosine A2A receptors. PMID:23530610

  17. Discovery of indole alkaloids with cannabinoid CB1 receptor antagonistic activity.

    PubMed

    Kitajima, Mariko; Iwai, Masumi; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Iida, Mitsuru; Yabushita, Hisatoshi; Takayama, Hiromitsu

    2011-04-01

    Three indole alkaloids, voacamine (1), 3,6-oxidovoacangine (2), and a new alkaloid, 5-hydroxy-3,6-oxidovoacangine (3), isolated from Voacanga africana were found to exhibit potent cannabinoid CB1 receptor antagonistic activity. This is the first example of CB1 antagonists derived from natural alkaloids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens

    PubMed Central

    Lazarus, Michael; Shen, Hai-Ying; Cherasse, Yoan; Qu, Wei-Min; Huang, Zhi-Li; Bass, Caroline E.; Winsky-Sommerer, Raphaelle; Semba, Kazue; Fredholm, Bertil B.; Boison, Detlev; Hayaishi, Osamu; Urade, Yoshihiro; Chen, Jiang-Fan

    2011-01-01

    Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A2A receptors (A2ARs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A2ARs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A2ARs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A2ARs were focally removed from the NAc core or other A2AR-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain. PMID:21734299

  19. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Transition strategies from cangrelor to oral platelet P2Y12 receptor antagonists.

    PubMed

    Schneider, David J

    2016-01-01

    Cangrelor is the first parenteral antagonist of the platelet P2Y12 receptor. This direct-acting antagonist of the platelet P2Y12 receptor should be considered an adjunct to a percutaneous coronary intervention in patients who have not been adequately pretreated with platelet P2Y12 receptor antagonists at the time of the procedure. The use of cangrelor requires transition to an oral platelet P2Y12 receptor antagonist. Transition strategies have been developed on the basis of pharmacologic characteristics of platelet P2Y12 receptor antagonists, results of pharmacodynamic studies, and results from clinical trials. Cangrelor blocks the binding to the platelet P2Y12 receptor of the active metabolite of the thienopyridines, clopidogrel and prasugrel. The active metabolite of thienopyridines is present in blood for a short interval after administration. For this reason, clopidogrel should be administered after cangrelor is stopped. Prasugrel can be administered at the end of the cangrelor infusion or up to 30 min before cangrelor is stopped. Ticagrelor is also a reversible direct-acting antagonist of the platelet P2Y12 receptor. Because there is no interaction between ticagrelor and cangrelor, ticagrelor can be administered before or during the infusion of cangrelor.

  1. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  2. Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A₁ and A2A receptor activation.

    PubMed

    Cunha, Mauricio P; Pazini, Francis L; Rosa, Julia M; Ramos-Hryb, Ana B; Oliveira, Ágatha; Kaster, Manuella P; Rodrigues, Ana Lúcia S

    2015-06-01

    The benefits of creatine supplementation have been reported in a broad range of central nervous systems diseases, including depression. A previous study from our group demonstrated that creatine produces an antidepressant-like effect in the tail suspension test (TST), a predictive model of antidepressant activity. Since depression is associated with a dysfunction of the adenosinergic system, we investigated the involvement of adenosine A1 and A2A receptors in the antidepressant-like effect of creatine in the TST. The anti-immobility effect of creatine (1 mg/kg, po) or ketamine (a fast-acting antidepressant, 1 mg/kg, ip) in the TST was prevented by pretreatment of mice with caffeine (3 mg/kg, ip, nonselective adenosine receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (2 mg/kg, ip, selective adenosine A1 receptor antagonist), and 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)-phenol (ZM241385) (1 mg/kg, ip, selective adenosine A2A receptor antagonist). In addition, the combined administration of subeffective doses of creatine and adenosine (0.1 mg/kg, ip, nonselective adenosine receptor agonist) or inosine (0.1 mg/kg, ip, nucleoside formed by the breakdown of adenosine) reduced immobility time in the TST. Moreover, the administration of subeffective doses of creatine or ketamine combined with N-6-cyclohexyladenosine (CHA) (0.05 mg/kg, ip, selective adenosine A1 receptor agonist), N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA) (0.1 mg/kg, ip, selective adenosine A2A receptor agonist), or dipyridamole (0.1 μg/mouse, icv, adenosine transporter inhibitor) produced a synergistic antidepressant-like effect in the TST. These results indicate that creatine, similarly to ketamine, exhibits antidepressant-like effect in the TST probably mediated by the activation of both adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.

  3. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia.

    PubMed

    Espinosa, Janaína; Rocha, Andreia; Nunes, Fernanda; Costa, Marcelo S; Schein, Vanessa; Kazlauckas, Vanessa; Kalinine, Eduardo; Souza, Diogo O; Cunha, Rodrigo A; Porciúncula, Lisiane O

    2013-01-01

    Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimer's disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-β-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.

  4. Total synthesis of anibamine, a novel natural product as a chemokine receptor CCR5 antagonist.

    PubMed

    Li, Guo; Watson, Karen; Buckheit, Robert W; Zhang, Yan

    2007-05-10

    The total synthesis of anibamine, the first and only natural product known as a chemokine receptor CCR5 antagonist, is reported herein. Anibamine was synthesized from acetylacetone and cyanoacetamide in 10 steps.

  5. Novel morpholine scaffolds as selective dopamine (DA) D3 receptor antagonists.

    PubMed

    Micheli, Fabrizio; Cremonesi, Susanna; Semeraro, Teresa; Tarsi, Luca; Tomelleri, Silvia; Cavanni, Paolo; Oliosi, Beatrice; Perdonà, Elisabetta; Sava, Anna; Zonzini, Laura; Feriani, Aldo; Braggio, Simone; Heidbreder, Christian

    2016-02-15

    A new series of morpholine derivatives has been identified as selective DA D3 receptor antagonists; their in vitro profile and pharmacokinetic data are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. An expedient route to a potent gastrin/CCK-B receptor antagonist (+)-AG-041R.

    PubMed

    Sato, Shigeki; Shibuya, Masatoshi; Kanoh, Naoki; Iwabuchi, Yoshiharu

    2009-10-02

    An enantiocontrolled synthesis of (+)-AG-041R (1), a potent gastrin/CCK-B receptor antagonist, has been achieved employing a chiral rhodium(II)-catalyzed, oxidative intramolecular aza-spiroannulation as the key step.

  7. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  8. Dependence of P2-nucleotide receptor agonist-mediated endothelium-independent relaxation on ectonucleotidase activity and A2A-receptors in rat portal vein

    PubMed Central

    Guibert, Christelle; Loirand, Gervaise; Vigne, Paul; Savineau, Jean-Pierre; Pacaud, Pierre

    1998-01-01

    The mechanism of action of P2 nucleotide receptor agonists that produce endothelium-independent relaxation and the influence of ecto-ATPase activity on this relaxing effect have been investigated in rat portal vein smooth muscle.At 25°C, ATP, 2-methylthioATP (2-MeSATP) and 2-chloroATP (2-ClATP), dose-dependently inhibited spontaneous contractile activity of endothelium-denuded muscular strips from rat portal vein. The rank order of agonist potency defined from the half-inhibitory concentrations was 2-ClATP (2.7±0.5 μM, n=7)>ATP (12.9±1.1 μM, n=9)⩾2-MeSATP (21.9±4.8 μM, n=4). In the presence of αβ-methylene ATP (αβ-MeATP, 200 μM) which itself produced a transient contractile effect, the relaxing action of ATP and 2-MeSATP was completely abolished and that of 2-ClATP strongly inhibited.The non-selective P2-receptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS, 100 μM) did not affect the relaxation induced by ATP, 2-MeSATP, and 2-ClATP.The A2A-adenosine receptor antagonist ZM 241385 inhibited the ATP-induced relaxation in a concentration-dependent manner (1–100 nM). In the presence of 100 nM ZM 241385, the relaxing effects of 2-MeSATP and 2-ClATP were also inhibited.ADP, AMP and adenosine also produced concentration-dependent inhibition of spontaneous contractions. The relaxing effects of AMP and adenosine were insensitive to αβ-MeATP (200 μM) but were inhibited by ZM 241385 (100 nM).Simultaneous measurements of contraction and ecto-ATPase activity estimated by the degradation of [γ-32P]-ATP showed that muscular strips rapidly (10–60 s) hydrolyzed ATP. This ecto-ATPase activity was abolished in the presence of EDTA and was inhibited by 57±11% (n=3) by 200 μM αβ-MeATP.These results suggest that ATP and other P2-receptor agonists are relaxant in rat portal vein smooth muscle, because ectonucleotidase activity leads to the formation of adenosine which activates A2A-receptors. PMID

  9. Update on leukotriene receptor antagonists in preschool children wheezing disorders

    PubMed Central

    2012-01-01

    Asthma is the most common chronic disease in young children. About 40% of all preschool children regularly wheeze during common cold infections. The heterogeneity of wheezing phenotypes early in life and various anatomical and emotional factors unique to young children present significant challenges in the clinical management of this problem. Anti-inflammatory therapy, mainly consisting of inhaled corticosteroids (ICS), is the cornerstone of asthma management. Since Leukotrienes (LTs) are chemical mediators of airway inflammation in asthma, the leukotriene receptor antagonists (LTRAs) are traditionally used as potent anti-inflammatory drugs in the long-term treatment of asthma in adults, adolescents, and school-age children. In particular, montelukast decreases airway inflammation, and has also a bronchoprotective effect. The main guidelines on asthma management have confirmed the clinical utility of LTRAs in children older than five years. In the present review we describe the most recent advances on the use of LTRAs in the treatment of preschool wheezing disorders. LTRAs are effective in young children with virus-induced wheeze and with multiple-trigger disease. Conflicting data do not allow to reach definitive conclusions on LTRAs efficacy in bronchiolitis or post-bronchiolitis wheeze, and in acute asthma. The excellent safety profile of montelukast and the possibility of oral administration, that entails better compliance from young children, represent the main strengths of its use in preschool children. Montelukast is a valid alternative to ICS especially in poorly compliant preschool children, or in subjects who show adverse effects related to long-term steroid therapy. PMID:22734451

  10. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes.

    PubMed

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes; Moliterno, David J; Armstrong, Paul W; Van de Werf, Frans; White, Harvey D; Aylward, Philip E; Wallentin, Lars; Chen, Edmond; Lokhnygina, Yuliya; Pei, Jinglan; Leonardi, Sergio; Rorick, Tyrus L; Kilian, Ann M; Jennings, Lisa H K; Ambrosio, Giuseppe; Bode, Christoph; Cequier, Angel; Cornel, Jan H; Diaz, Rafael; Erkan, Aycan; Huber, Kurt; Hudson, Michael P; Jiang, Lixin; Jukema, J Wouter; Lewis, Basil S; Lincoff, A Michael; Montalescot, Gilles; Nicolau, José Carlos; Ogawa, Hisao; Pfisterer, Matthias; Prieto, Juan Carlos; Ruzyllo, Witold; Sinnaeve, Peter R; Storey, Robert F; Valgimigli, Marco; Whellan, David J; Widimsky, Petr; Strony, John; Harrington, Robert A; Mahaffey, Kenneth W

    2012-01-05

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation. In this multinational, double-blind, randomized trial, we compared vorapaxar with placebo in 12,944 patients who had acute coronary syndromes without ST-segment elevation. The primary end point was a composite of death from cardiovascular causes, myocardial infarction, stroke, recurrent ischemia with rehospitalization, or urgent coronary revascularization. Follow-up in the trial was terminated early after a safety review. After a median follow-up of 502 days (interquartile range, 349 to 667), the primary end point occurred in 1031 of 6473 patients receiving vorapaxar versus 1102 of 6471 patients receiving placebo (Kaplan-Meier 2-year rate, 18.5% vs. 19.9%; hazard ratio, 0.92; 95% confidence interval [CI], 0.85 to 1.01; P=0.07). A composite of death from cardiovascular causes, myocardial infarction, or stroke occurred in 822 patients in the vorapaxar group versus 910 in the placebo group (14.7% and 16.4%, respectively; hazard ratio, 0.89; 95% CI, 0.81 to 0.98; P=0.02). Rates of moderate and severe bleeding were 7.2% in the vorapaxar group and 5.2% in the placebo group (hazard ratio, 1.35; 95% CI, 1.16 to 1.58; P<0.001). Intracranial hemorrhage rates were 1.1% and 0.2%, respectively (hazard ratio, 3.39; 95% CI, 1.78 to 6.45; P<0.001). Rates of nonhemorrhagic adverse events were similar in the two groups. In patients with acute coronary syndromes, the addition of vorapaxar to standard therapy did not significantly reduce the primary composite end point but significantly increased the risk of major bleeding, including intracranial hemorrhage. (Funded by Merck; TRACER ClinicalTrials.gov number, NCT00527943.).

  11. Oxycodone combined with opioid receptor antagonists: efficacy and safety.

    PubMed

    Davis, Mellar; Goforth, Harold W; Gamier, Pam

    2013-05-01

    A mu receptor antagonist combined with oxycodone (OXY) may improve pain control, reduce physical tolerance and withdrawal, minimizing opioid-related bowel dysfunction and act as an abuse deterrent. The authors cover the use of OXY plus ultra-low-dose naltrexone for analgesia and the use of sustained-release OXY plus sustained-release naloxone to reduce the opioid bowel syndrome. The authors briefly describe the use of sustained-release OXY and naltrexone pellets as a drug abuse deterrent formulation. Combinations of ultra-low-dose naltrexone plus OXY have been in separate trials involved in patients with chronic pain from osteoarthritis and idiopathic low back pain. High attrition and marginal differences between ultra-low-dose naltrexone plus OXY and OXY led to discontinuation of development. Prolonged-release (PR) naloxone combined with PR OXY demonstrates a consistent reduction in opioid-related bowel dysfunction in multiple randomized controlled trials. However, gastrointestinal side effects, including diarrhea, were increased in several trials with the combination compared with PR OXY alone. Analgesia appeared to be maintained although non-inferiority to PR OXY is not formally established. There were flaws to trial design and safety monitoring. Naltrexone has been combined with OXY in individual pellets encased in a capsule. This combination has been reported in a Phase II trial and is presently undergoing Phase III studies. Due to the lack of efficacy the combination of altered low-dose naltrexone with oxycodone should cease in development. The combination of sustained release oxycodone plus naloxone reduces constipation with a consistent benefit. Safety has been suboptimally evaluated which is a concern. Although the drug is commercially available in several countries, ongoing safety monitoring particularly high doses would be important.

  12. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    DTIC Science & Technology

    2012-12-01

    in Traumatic Optic Neuropathies ” PRINCIPAL INVESTIGATOR: Gregory I. Liou, PhD CONTRACTING ORGANIZATION: Georgia Health Sciences...Adenosine Receptor A2A in Traumatic Optic Neuropathies 5b. GRANT NUMBER W81XWH-11-2-0046 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ABSTRACT Our goal is to develop an early therapeutic intervention before the progression of traumatic optic neuropathy (TON), a vision-threatening

  13. The discovery of the benzazepine class of histamine H3 receptor antagonists.

    PubMed

    Wilson, David M; Apps, James; Bailey, Nicholas; Bamford, Mark J; Beresford, Isabel J; Briggs, Michael A; Calver, Andrew R; Crook, Barry; Davis, Robert P; Davis, Susannah; Dean, David K; Harris, Leanne; Heightman, Tom D; Panchal, Terry; Parr, Christopher A; Quashie, Nigel; Steadman, Jon G A; Schogger, Joanne; Sehmi, Sanjeet S; Stean, Tania O; Takle, Andrew K; Trail, Brenda K; White, Trevor; Witherington, Jason; Worby, Angela; Medhurst, Andrew D

    2013-12-15

    This Letter describes the discovery of a novel series of H3 receptor antagonists. The initial medicinal chemistry strategy focused on deconstructing and simplifying an early screening hit which rapidly led to the discovery of a novel series of H3 receptor antagonists based on the benzazepine core. Employing an H3 driven pharmacodynamic model, the series was then further optimised through to a lead compound that showed robust in vivo functional activity and possessed overall excellent developability properties.

  14. Cannabinoid type 1 receptor antagonists for smoking cessation.

    PubMed

    Cahill, Kate; Ussher, Michael H

    2011-03-16

    Selective type 1 cannabinoid (CB1) receptor antagonists may assist with smoking cessation by restoring the balance of the endocannabinoid system, which can be disrupted by prolonged use of nicotine. They also seeks to address many smokers' reluctance to persist with a quit attempt because of concerns about weight gain. To determine whether selective CB1 receptor antagonists (currently rimonabant and taranabant) increase the numbers of people stopping smoking To assess their effects on weight change in successful quitters and in those who try to quit but fail. We searched the Cochrane Tobacco Addiction Review Group specialized register for trials, using the terms ('rimonabant' or 'taranabant') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, CINAHL and PsycINFO, using major MESH terms. We acquired electronic or paper copies of posters of preliminary trial results presented at the American Thoracic Society Meeting in 2005, and at the Society for Research on Nicotine and Tobacco European Meeting 2006. We also attempted to contact the authors of ongoing studies of rimonabant, and Sanofi Aventis (manufacturers of rimonabant). The most recent search was in January 2011. Types of studies Randomized controlled trialsTypes of participants Adult smokersTypes of interventions Selective CB1 receptor antagonists, such as rimonabant and taranabant. Types of outcome measures The primary outcome is smoking status at a minimum of six months after the start of treatment. We preferred sustained cessation rates to point prevalence, and biochemically verified cessation to self-reported quitting. We regarded smokers who drop out or are lost to follow up as continuing smokers. We have noted any adverse effects of treatment.A secondary outcome is weight change associated with the cessation attempt. Two authors checked the abstracts for relevance, and attempted to acquire full trial reports. One author extracted the data, and a second author checked

  15. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review

    PubMed Central

    Rivera-Oliver, Marla; Díaz-Ríos, Manuel

    2014-01-01

    Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases. PMID:24530739

  16. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review.

    PubMed

    Rivera-Oliver, Marla; Díaz-Ríos, Manuel

    2014-04-17

    Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Discovery of antagonists of tick dopamine receptors via chemical library screening and comparative pharmacological analyses.

    PubMed

    Ejendal, Karin F K; Meyer, Jason M; Brust, Tarsis F; Avramova, Larisa V; Hill, Catherine A; Watts, Val J

    2012-11-01

    Ticks transmit a wide variety of disease causing pathogens to humans and animals. Considering the global health impact of tick-borne diseases, there is a pressing need to develop new methods for vector control. We are exploring arthropod dopamine receptors as novel targets for insecticide/acaricide development because of their integral roles in neurobiology. Herein, we developed a screening assay for dopamine receptor antagonists to further characterize the pharmacological properties of the two D₁-like dopamine receptors (Isdop1 and Isdop2) identified in the Lyme disease vector, Ixodes scapularis, and develop a screening assay for receptor antagonists. A cell-based, cyclic AMP luciferase reporter assay platform was implemented to screen the LOPAC(1280) small molecule library for Isdop2 receptor antagonists, representing the first reported chemical library screen for any tick G protein-coupled receptor. Screening resulted in the identification of 85 "hit" compounds with antagonist activity at the Isdop2 receptor. Eight of these chemistries were selected for confirmation assays using a direct measurement of cAMP, and the effects on both Isdop1 and Isdop2 were studied for comparison. Each of these eight compounds showed antagonistic activity at both Isdop1 and Isdop2, although differences were observed regarding their relative potencies. Furthermore, comparison of the pharmacological properties of the tick dopamine receptors with that of the AaDOP2 receptor from the yellow fever mosquito and the human dopamine D₁ receptor (hD₁) revealed species-specific pharmacological profiles of these receptors. Compounds influencing dopaminergic functioning, such as the dopamine receptor antagonists discovered here, may provide lead chemistries for discovery of novel acaricides useful for vector control

  18. The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABAA receptors

    PubMed Central

    Baur, R; Gertsch, J; Sigel, E

    2012-01-01

    BACKGROUND AND PURPOSE Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB1 antagonists / inverse agonists. Concentrations of 0.5–10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABAA receptors but found a significant positive allosteric modulation instead. EXPERIMENTAL APPROACH Recombinant GABAA receptors were expressed in Xenopus oocytes. Receptors were exposed to AM251 or rimonabant in the absence and presence of GABA. Standard electrophysiological techniques were used to monitor the elicited ionic currents. KEY RESULTS AM251 dose-dependently potentiated responses to 0.5 µM GABA at the recombinant α1β2γ2 GABAA receptor with an EC50 below 1 µM and a maximal potentiation of about eightfold. The Hill coefficient indicated that more than one binding site for AM251 was located in this receptor. Rimonabant had a lower affinity, but a fourfold higher efficacy. AM251 potentiated also currents mediated by α1β2, αxβ2γ2 (x = 2,3,5,6), α1β3γ2 and α4β2δ GABAA receptors, but not those mediated by α1β1γ2. Interestingly, the CB1 receptor antagonists LY320135 and O-2050 did not significantly affect α1β2γ2 GABAA receptor-mediated currents at concentrations of 1 µM. CONCLUSIONS AND IMPLICATIONS This study identified rimonabant and AM251 as positive allosteric modulators of GABAA receptors. Thus, potential GABAergic effects of commonly used concentrations of these compounds should be considered in in vitro experiments, especially at extrasynaptic sites where GABA concentrations are low. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21470203

  19. L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies.

    PubMed

    Pinna, Annalisa; Bonaventura, Jordi; Farré, Daniel; Sánchez, Marta; Simola, Nicola; Mallol, Josefa; Lluís, Carme; Costa, Giulia; Baqi, Younis; Müller, Christa E; Cortés, Antoni; McCormick, Peter; Canela, Enric I; Martínez-Pinilla, Eva; Lanciego, José L; Casadó, Vicent; Armentero, Marie-Therese; Franco, Rafael

    2014-03-01

    Long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA), still the most effective treatment in Parkinson's disease (PD), is associated with severe motor complications such as dyskinesia. Experimental and clinical data have indicated that adenosine A2A receptor antagonists can provide symptomatic improvement by potentiating L-DOPA efficacy and minimizing its side effects. It is known that the G-protein-coupled adenosine A2A, cannabinoid CB1 and dopamine D2 receptors may interact and form functional A2A-CB1-D2 receptor heteromers in co-transfected cells as well as in rat striatum. These data suggest that treatment with a combination of drugs or a single compound selectively acting on A2A-CB1-D2 heteromers may represent an alternative therapeutic treatment of PD. We investigated the expression of A2A-CB1-D2 receptor heteromers in the striatum of both naïve and hemiparkinsonian rats (HPD-rats) bearing a unilateral 6-hydroxydopamine (6-OHDA) lesion, and assessed how receptor heteromer expression and biochemical properties were affected by L-DOPA treatment. Radioligand binding data showed that A2A-CB1-D2 receptor heteromers are present in the striatum of both naïve and HPD-rats. However, behavioral results indicated that the combined administration of A2A (MSX-3 or SCH58261) and CB1 (rimonabant) receptor antagonists, in the presence of L-DOPA does not produce a response different from administration of the A2A receptor antagonist alone. These behavioral results prompted identification of heteromers in L-DOPA-treated animals. Interestingly, the radioligand binding results in samples from lesioned animals suggest that the heteromer is lost following acute or chronic treatment with L-DOPA.

  20. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety.

    PubMed

    Alsene, Karen; Deckert, Jürgen; Sand, Philipp; de Wit, Harriet

    2003-09-01

    The adenosine receptor system, which mediates the psychoactive effects of caffeine, is also thought to be involved in the regulation of anxiety. In this study, we examined the association between variations in anxiogenic responses to caffeine and polymorphisms in the A1 and A2a adenosine receptor genes. Healthy, infrequent caffeine users (N=94) recorded their subjective mood states following a 150 mg oral dose of caffeine freebase or placebo in a double-blind study. We found a significant association between self-reported anxiety after caffeine administration and two linked polymorphisms on the A2a receptor gene, the 1976C>T and 2592C>Tins polymorphisms. Individuals with the 1976T/T and the 2592Tins/Tins genotypes reported greater increases in anxiety after caffeine administration than the other genotypic groups. The study shows that an adenosine receptor gene polymorphism that has been associated with Panic Disorder is also associated with anxiogenic responses to an acute dose of caffeine.

  1. Unsaturated phosphinic analogues of gamma-aminobutyric acid as GABA(C) receptor antagonists.

    PubMed

    Chebib, M; Vandenberg, R J; Froestl, W; Johnston, G A

    1997-06-25

    The phosphinic and methylphosphinic analogues of gamma-aminobutyric acid (GABA) are potent GABA(C) receptor antagonists but are even more potent as GABA(B) receptor agonists. Conformationally restricted unsaturated phosphinic and methylphosphinic analogues of GABA and some potent GABA(B) receptor phosphonoamino acid antagonists were tested on GABA(C) receptors in Xenopus oocytes expressing human retinal rho1 mRNA. 3-Aminopropyl-n-butyl-phosphinic acid (CGP36742), an orally active GABA(B) receptor antagonist, was found to be a moderately potent GABA(C) receptor antagonist (IC50 = 62 microM). The unsaturated methylphosphinic and phosphinic analogues of GABA were competitive antagonists of the GABA(C) receptors, the order of potency being [(E)-3-aminopropen-1-yl]methylphosphinic acid (CGP44530, IC50 = 5.53 microM) > [(E)-3-aminopropen-1-yl]phosphinic acid (CGP38593, IC50 = 7.68 microM) > [(Z)-3-aminopropen-1-yl]methylphosphinic acid (CGP70523, IC50 = 38.94 microM) > [(Z)-3-aminopropen-1-yl]phosphinic acid (CGP70522, IC50 > 100 microM). This order of potency differs from that reported for these compounds as GABA(B) receptor agonists, where the phosphinic acids are more potent than the corresponding methylphosphinic acids.

  2. QT interval prolongation and torsade de pointes: Synergistic effect of flecainide and H1 receptor antagonists

    PubMed Central

    Acosta-Materán, Carlos; Díaz-Oliva, Eloy; Fernández-Rodríguez, Diego; Hernández-Afonso, Julio

    2016-01-01

    A high percentage of patients having atrial fibrillation (AF) presents with paroxysmal AF. Flecainide, the prototypic class Ic anti-arrhythmic drug is the most effective drug to maintain sinus rhythm in this subgroup of patients, though the drug has potential pro-arrhythmic effects. Furthermore, the H1 receptor antagonists are the most commonly prescribed drugs for the symptomatic treatment of pruritus. Despite having low number of adverse effects, the H1 receptor antagonists have cardiotoxic effects. Flecainide and H1 receptor antagonists present arrhythmic complications including QT interval prolongation and torsade de pointes (TdP). The case presented here is a 65-year-old female who was diagnosed of atrial fibrillation and presented with rashes in lower extremities. The patient was treated using flecainide and H1 receptor antagonists (loratadine and hydroxyzine) that prolonged QT interval and induced TdP. The concomitant administration of flecainide and H1 receptor antagonists seems to have a synergistic effect in QT interval prolongation and subsequent TdP. The concurrent administration of H1 receptor antagonists to patients receiving class Ic anti-arrhythmic drugs should be avoided in order to reduce arrhythmic risk in this population. PMID:27440957

  3. Morphine in combination with metabotropic glutamate receptor antagonists on schedule-controlled responding and thermal nociception.

    PubMed

    Fischer, Bradford D; Zimmerman, Eric I; Picker, Mitchell J; Dykstra, Linda A

    2008-02-01

    The present study examined the interactive effects of morphine in combination with metabotropic glutamate (mGlu) receptor antagonists on schedule-controlled responding and thermal nociception. Drug interaction data were examined with isobolographic and dose-addition analysis. Morphine, the mGlu1 receptor antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone], the mGlu5 receptor antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride], and the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] all decreased rates of schedule-controlled responding. JNJ16259685/morphine, MPEP/morphine, and LY341495/morphine mixtures produced additive effects on this endpoint. Morphine also produced dose-dependent antinociception in the assay of thermal nociception, whereas JNJ16259685, MPEP, and LY341495 failed to produce an effect. In this assay, JNJ16259685 and LY341495 potentiated the antinociceptive effects of morphine, whereas MPEP/morphine mixtures produced additive effects. These results suggest that an mGlu1 and an mGlu2/3 receptor antagonist, but not an mGlu5 receptor antagonist, selectively enhance the antinociceptive effects of morphine. In addition, these data confirm that the behavioral effects of drug mixtures depend on the endpoint under study.

  4. Adenosine A2A receptors enable the synaptic effects of cannabinoid CB1 receptors in the rodent striatum.

    PubMed

    Tebano, Maria Teresa; Martire, Alberto; Chiodi, Valentina; Pepponi, Rita; Ferrante, Antonella; Domenici, Maria Rosaria; Frank, Claudio; Chen, Jiang-Fan; Ledent, Catherine; Popoli, Patrizia

    2009-09-01

    Adenosine A(2A), cannabinoid CB(1) and metabotropic glutamate 5 (mGlu(5)) receptors are all highly expressed in the striatum. The aim of the present work was to investigate whether, and by which mechanisms, the above receptors interact in the regulation of striatal synaptic transmission. By extracellular field potentials (FPs) recordings in corticostriatal slices, we demonstrated that the ability of the selective type 1 cannabinoid receptor (CB(1)R) agonist WIN55,212-2 to depress synaptic transmission was prevented by the pharmacological blockade or the genetic inactivation of A(2A)Rs. Such a permissive effect of A(2A)Rs towards CB(1)Rs does not seem to occur pre-synaptically as the ability of WIN55,212-2 to increase the R2/R1 ratio under a protocol of paired-pulse stimulation was not modified by ZM241385. Furthermore, the effects of WIN55,212-2 were reduced in slices from mice lacking post-synaptic striatal A(2A)Rs. The selective mGlu(5)R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) potentiated the synaptic effects of WIN55,212-2, and such a potentiation was abolished by A(2A)R blockade. Unlike the synaptic effects, the ability of WIN55,212-2 to prevent NMDA-induced toxicity was not influenced by ZM241385. Altogether, these results show that the state of activation of A(2A)Rs regulates the synaptic effects of CB(1)Rs and that A(2A)Rs may control CB(1) effects also indirectly, namely through mGlu(5)Rs.

  5. Effect of ghrelin receptor antagonist on meal patterns in cholecystokinin type 1 receptor null mice.

    PubMed

    Lee, Jennifer; Martin, Elizabeth; Paulino, Gabriel; de Lartigue, Guillaume; Raybould, Helen E

    2011-05-03

    Vagal afferent neurons (VAN) express the cholecystokinin (CCK) type 1 receptor (CCK₁R) and, as predicted by the role of CCK in inducing satiation, CCK₁R⁻/⁻ mice ingest larger and longer meals. However, after a short fast, CCK₁R⁻/⁻ mice ingesting high fat (HF) diets initiate feeding earlier than wild-type mice. We hypothesized that the increased drive to eat in CCK₁R⁻/⁻ mice eating HF diet is mediated by ghrelin, a gut peptide that stimulates food intake. The decrease in time to first meal, and the increase in meal size and duration in CCK₁R⁻/⁻ compared to wild-type mice ingesting high fat (HF) diet were reversed by administration of GHSR1a antagonist D-(Lys3)-GHRP-6 (p<0.05). Administration of the GHSR1a antagonist significantly increased expression of the neuropeptide cocaine and amphetamine-regulated transcript (CART) in VAN of HF-fed CCK₁R⁻/⁻ but not wild-type mice. Administration of the GHSR1a antagonist decreased neuronal activity measured by immunoreactivity for fos protein in the nucleus of the solitary tract (NTS) and the arcuate nucleus of both HF-fed wild-type and CCK₁R⁻/⁻ mice. The data show that hyperphagia in CCK₁R⁻/⁻ mice ingesting HF diet is reversed by blockade of the ghrelin receptor, suggesting that in the absence of the CCK₁R, there is an increased ghrelin-dependent drive to feed. The site of action of ghrelin receptors is unclear, but may involve an increase in expression of CART peptide in VAN in HF-fed CCK₁R⁻/⁻ mice.

  6. High antagonist potency of GT-2227 and GT-2331, new histamine H3 receptor antagonists, in two functional models.

    PubMed

    Tedford, C E; Hoffmann, M; Seyedi, N; Maruyama, R; Levi, R; Yates, S L; Ali, S M; Phillips, J G

    1998-06-26

    GT-2227 (4-(6-cyclohexylhex-cis-3-enyl)imidazole) and GT-2331 ((1R,2R)-4-(2-(5,5-dimethylhex-1-ynyl)cyclopropyl)imidazole) were developed as new potent histamine H3 receptor antagonists. The functional activity of these ligands on the histamine H3 receptor-mediated inhibition of neurogenic contraction of the guinea-pig jejunum and histamine H3 receptor-mediated inhibition of norepinephrine release from guinea-pig heart synaptosomes were investigated. GT-2227 and GT-2331 both antagonized the inhibitory effects of (R)-alpha-methylhistamine on the contraction induced by electrical field stimulation in the guinea-pig jejunum with pA2 values of 7.9+/-0.1 and 8.5+/-0.03, respectively. In addition, GT-2227 and GT-2331 antagonized the inhibition of norepinephrine release in cardiac synaptosomes by GT-2203 ((1R,2R)-trans-2-(1H-imidazol-4-yl)cyclopropylamine), a histamine H3 receptor agonist. The current results demonstrate the antagonist activity for both GT-2227 and GT-2331 in two functional assays for histamine H3 receptors.

  7. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  8. Mechanism of action of species-selective P2X7 receptor antagonists

    PubMed Central

    Michel, Anton D; Ng, Sin-Wei; Roman, Shilina; Clay, William C; Dean, David K; Walter, Daryl S

    2009-01-01

    Background and purpose: AZ11645373 and N-{2-methyl-5-[(1R, 5S)-9-oxa-3,7-diazabicyclo[3.3.1]non-3-ylcarbonyl]phenyl}-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide hydrochloride (compound-22) are recently described P2X7 receptor antagonists. In this study we have further characterized these compounds to determine their mechanism of action and interaction with other species orthologues. Experimental approach: Antagonist effects at recombinant and chimeric P2X7 receptors were assessed by ethidium accumulation and radioligand-binding studies. Key results: AZ11645373 and compound-22 were confirmed as selective non-competitive antagonists of human or rat P2X7 receptors respectively. Both compounds were weak antagonists of the mouse and guinea-pig P2X7 receptors and, for each compound, their potency estimates at human and dog P2X7 receptors were similar. The potency of compound-22 was moderately temperature-dependent while that of AZ11645373 was not. The antagonist effects of both compounds were slowly reversible and were not prevented by decavanadate, suggesting that they were allosteric antagonists. Indeed, the compounds competed for binding sites labelled by an allosteric radio-labelled P2X7 receptor antagonist. The species selectivity of AZ11645373, but not compound-22, was influenced by the nature of the amino acid at position 95 of the P2X7 receptor. N2-(3,4-difluorophenyl)-N1-[2-methyl-5-(1-piperazinylmethyl)phenyl]glycinamide dihydrochloride, a positive allosteric modulator of the rat receptor, reduced the potency of compound-22 at the rat receptor but had little effect on the actions of AZ11645373. Conclusions: AZ11645373 and compound-22 are allosteric antagonists of human and rat P2X7 receptors respectively. The differential interaction of the two compounds with the receptor suggests there may be more than one allosteric regulatory site on the P2X7 receptor at which antagonists can bind and affect receptor function. PMID:19309360

  9. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  10. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats.

    PubMed

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Todorov, Mihail Ivilinov; Kékesi, Katalin A; Juhász, Gábor; Aleksza, Magdolna; Kovács, Zsolt

    2016-06-01

    The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system.

  11. Palliation of bone cancer pain by antagonists of platelet-activating factor receptors.

    PubMed

    Morita, Katsuya; Shiraishi, Seiji; Motoyama, Naoyo; Kitayama, Tomoya; Kanematsu, Takashi; Uezono, Yasuhito; Dohi, Toshihiro

    2014-01-01

    Bone cancer pain is the most severe among cancer pain and is often resistant to current analgesics. Thus, the development of novel analgesics effective at treating bone cancer pain are desired. Platelet-activating factor (PAF) receptor antagonists were recently demonstrated to have effective pain relieving effects on neuropathic pain in several animal models. The present study examined the pain relieving effect of PAF receptor antagonists on bone cancer pain using the femur bone cancer (FBC) model in mice. Animals were injected with osteolytic NCTC2472 cells into the tibia, and subsequently the effects of PAF receptor antagonists on pain behaviors were evaluated. Chemical structurally different type of antagonists, TCV-309, BN 50739 and WEB 2086 ameliorated the allodynia and improved pain behaviors such as guarding behavior and limb-use abnormalities in FBC model mice. The pain relieving effects of these antagonists were achieved with low doses and were long lasting. Blockade of spinal PAF receptors by intrathecal injection of TCV-309 and WEB 2086 or knockdown of the expression of spinal PAF receptor protein by intrathecal transfer of PAF receptor siRNA also produced a pain relieving effect. The amount of an inducible PAF synthesis enzyme, lysophosphatidylcholine acyltransferase 2 (LPCAT2) protein significantly increased in the spinal cord after transplantation of NCTC 2472 tumor cells into mouse tibia. The combination of morphine with PAF receptor antagonists develops marked enhancement of the analgesic effect against bone cancer pain without affecting morphine-induced constipation. Repeated administration of TCV-309 suppressed the appearance of pain behaviors and prolonged survival of FBC mice. The present results suggest that PAF receptor antagonists in combination with, or without, opioids may represent a new strategy for the treatment of persistent bone cancer pain and improve the quality of life of patients.

  12. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  13. Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways.

    PubMed

    Nascimento, Francisney P; Figueredo, Sonia M; Marcon, Rodrigo; Martins, Daniel F; Macedo, Sérgio J; Lima, Denise A N; Almeida, Rúbia C; Ostroski, Rosana M; Rodrigues, Ana Lúcia S; Santos, Adair Roberto Soares

    2010-08-01

    Inosine, an endogenous purine, is the first metabolite of adenosine in a reaction catalyzed by adenosine deaminase. This study aimed to investigate the antinociceptive effects of inosine against several models of pain in mice and rats. In mice, inosine given by systemic or central routes inhibited acetic acid-induced nociception. Furthermore, inosine also decreased the late phase of formalin-induced licking and the nociception induced by glutamate. Inosine produced inhibition (for up to 4 h) of mechanical allodynia induced by complete Freund's adjuvant (CFA) injected into the mouse's paw. Given chronically for 21 days, inosine reversed the mechanical allodynia caused by CFA. Moreover, inosine also reduced the thermal (cold stimuli) and mechanical allodynia caused by partial sciatic nerve ligation (PSNL) for 4 h; when inosine was chronically administered, it decreased the mechanical allodynia induced by PSNL for 22 days. Antinociception caused by inosine in the acetic acid test was attenuated by treatment of mice with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; a selective adenosine A(1) receptor antagonist), 8-phenyltheophylline (8-PT; a nonselective adenosine A(1) receptor antagonist), and 4-{2- [7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-yl- amino]ethyl}phenol (ZM241385; a selective adenosine A(2A) receptor antagonist). In rats, inosine inhibited the mechanical and heat hyperalgesia induced by bradykinin and phorbol 12-myristate 13-acetate, without affecting similar responses caused by prostaglandin E(2) or forskolin. These results indicate that inosine induces antinociceptive, antiallodynic, and antihyperalgesic effects in rodents. The precise mechanisms through which inosine produces antinociception are currently under investigation, but involvement of adenosine A(1) and A(2A) receptors and blockade of the protein kinase C pathway seem to largely account for inosine's antinociceptive effect.

  14. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor.

    PubMed

    Lebon, Guillaume; Edwards, Patricia C; Leslie, Andrew G W; Tate, Christopher G

    2015-06-01

    The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R.

  15. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis.

    PubMed

    Liu, Zhiping; Yan, Siyuan; Wang, Jiaojiao; Xu, Yiming; Wang, Yong; Zhang, Shuya; Xu, Xizhen; Yang, Qiuhua; Zeng, Xianqiu; Zhou, Yaqi; Gu, Xuejiao; Lu, Sarah; Fu, Zhongjie; Fulton, David J; Weintraub, Neal L; Caldwell, Ruth B; Zhang, Wenbo; Wu, Chaodong; Liu, Xiao-Ling; Chen, Jiang-Fan; Ahmad, Aftab; Kaddour-Djebbar, Ismail; Al-Shabrawey, Mohamed; Li, Qinkai; Jiang, Xuejun; Sun, Ye; Sodhi, Akrit; Smith, Lois; Hong, Mei; Huo, Yuqing

    2017-09-19

    Adenosine/adenosine receptor-mediated signaling has been implicated in the development of various ischemic diseases, including ischemic retinopathies. Here, we show that the adenosine A2a receptor (ADORA2A) promotes hypoxia-inducible transcription factor-1 (HIF-1)-dependent endothelial cell glycolysis, which is crucial for pathological angiogenesis in proliferative retinopathies. Adora2a expression is markedly increased in the retina of mice with oxygen-induced retinopathy (OIR). Endothelial cell-specific, but not macrophage-specific Adora2a deletion decreases key glycolytic enzymes and reduces pathological neovascularization in the OIR mice. In human primary retinal microvascular endothelial cells, hypoxia induces the expression of ADORA2A by activating HIF-2α. ADORA2A knockdown decreases hypoxia-induced glycolytic enzyme expression, glycolytic flux, and endothelial cell proliferation, sprouting and tubule formation. Mechanistically, ADORA2A activation promotes the transcriptional induction of glycolytic enzymes via ERK- and Akt-dependent translational activation of HIF-1α protein. Taken together, these findings advance translation of ADORA2A as a therapeutic target in the treatment of proliferative retinopathies and other diseases dependent on pathological angiogenesis.Pathological angiogenesis in the retina is a major cause of blindness. Here the authors show that adenosine receptor A2A drives pathological angiogenesis in the oxygen-induced retinopathy mouse model by promoting glycolysis in endothelial cells via the ERK/Akt/HIF-1α pathway, thereby suggesting new therapeutic targets for disease treatment.

  16. Hydration Site Thermodynamics Explain SARs for Triazolylpurines Analogues Binding to the A2A Receptor

    PubMed Central

    2010-01-01

    A series of triazolylpurine analogues show interesting and unintuitive structure−activity relationships against the A2A adenosine receptor. As the 2-substituted aliphatic group is initially increased to methyl and isopropyl, there is a decrease in potency; however, extending the substituent to n-butyl and n-pentyl results in a significant gain in potency. This trend cannot be readily explained by ligand−receptor interactions, steric effects, or differences in ligand desolvation. Here, we show that a novel method for characterizing solvent thermodynamics in protein binding sites correctly predicts the trend in binding affinity for this series based on the differential water displacement patterns. In brief, small unfavorable substituents occupy a region in the A2A adenosine receptor binding site predicted to contain stable waters, while the longer favorable substituents extend to a region that contains several unstable waters. The predicted binding energies associated with displacing water within these hydration sites correlate well with the experimental activities. PMID:24900189

  17. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study.

    PubMed

    Kermanian, Fatemeh; Mehdizadeh, Mehdi; Soleimani, Mansureh; Ebrahimzadeh Bideskan, Ali Reza; Asadi-Shekaari, Majid; Kheradmand, Hamed; Haghir, Hossein

    2012-12-01

    There is abundant evidence showing that repeated use of MDMA (3, 4-Methylenedioxymethamphetamine, ecstasy) has been associated with depression, anxiety and deficits in learning and memory, suggesting detrimental effects on hippocampus. Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. In the present study, we investigated the role of A2a adenosine receptors agonist (CGS) and antagonist (SCH) on the body temperature, learning deficits, and hippocampal cell death induced by MDMA administration. In this study, 63 adult, male, Sprague - Dawley rats were subjected to MDMA (10 and 20 mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The animals were tested for spatial learning in the Morris water maze (MWM) task performance, accompanied by a recording of body temperature, electron microscopy and stereological study. Our results showed that MDMA treatment increased body temperature significantly, and impaired the ability of rats to locate the hidden platform(P < 0.05). The number of hippocampal dark neurons also increased especially in CA1. These impairments were aggravated by co-administration of A2a antagonist (SCH) with MDMA. Furthermore, the administration of the A2a receptor agonist (CGS) provided partial protection against MWM deficits and hippocampal cell death(P < 0.05). This study provides for the first time evidence that, in contrast to A2a antagonist (SCH) effects, co-administration of A2a agonist (CGS) with MDMA can protect against MDMA hippocampal neurotoxic effects; providing a potential value in the prevention of learning deficits observed in MDMA users. However, the exact mechanism of these interactions requires further studies.

  18. The identification of a series of novel, soluble non-peptidic neuropeptide Y Y2 receptor antagonists.

    PubMed

    Lunniss, Gillian E; Barnes, Ashley A; Barton, Nick; Biagetti, Matteo; Bianchi, Federica; Blowers, Stephen M; Caberlotto, Laura L; Emmons, Amanda; Holmes, Ian P; Montanari, Dino; Norris, Roz; Puckey, Gemma V; Walters, Dewi J; Watson, Steve P; Willis, John

    2010-12-15

    The identification and subsequent optimisation of a selective non-peptidic NPY Y2 antagonist series is described. This led to the development of amine 2, a selective, soluble NPY Y2 receptor antagonist with enhanced CNS exposure.

  19. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors

    PubMed Central

    Viana da Silva, Silvia; Haberl, Matthias Georg; Zhang, Pei; Bethge, Philipp; Lemos, Cristina; Gonçalves, Nélio; Gorlewicz, Adam; Malezieux, Meryl; Gonçalves, Francisco Q.; Grosjean, Noëlle; Blanchet, Christophe; Frick, Andreas; Nägerl, U Valentin; Cunha, Rodrigo A.; Mulle, Christophe

    2016-01-01

    Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients. PMID:27312972

  20. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. U.S. Government work not protected by U

  1. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  2. In silico study of naphtha [1, 2-d] thiazol-2-amine with adenosine A 2A receptor and its role in antagonism of haloperidol-induced motor impairments in mice.

    PubMed

    Luthra, Pratibha Mehta; Prakash, Amresh; Barodia, Sandeep Kumar; Kumari, Rita; Mishra, Chandra Bhushan; Kumar, J B Senthil

    2009-10-09

    Loss of dopaminergic nigrostriatal neurons in the substantia nigra leads to Parkinson's disease (PD). Adenosine A(2A) receptors (A(2A)Rs) have been anticipated as novel therapeutic target for PD. A(2A)Rs potentiate locomotor behavior and are predominantly expressed in striatum. Naphtha [1, 2-d] thiazol-2-amine (NATA), a tricyclic thiazole have been studied as new anti-Parkinsonian compound. AutoDock analysis and pharmacophore study of NATA with known A(2A)R antagonists explicit its efficacy as a possible adenosine receptor antagonist. In vivo pharmacology of NATA showed reduction of haloperidol (HAL)-induced motor impairments in Swiss albino male mice. Relatively elevated levels of dopamine in NATA pre-treated mice are suggestive of its possible role as neuromodulator in PD.

  3. Histamine H3 Receptor Activation Counteracts Adenosine A2A Receptor-Mediated Enhancement of Depolarization-Evoked [3H]-GABA Release from Rat Globus Pallidus Synaptosomes

    PubMed Central

    2014-01-01

    High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [3H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [3H]-GABA release induced by high K+ (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM). The presence of presynaptic H3Rs was confirmed by the specific binding of N-α-[methyl-3H]-histamine to membranes from GP synaptosomes (maximum binding, Bmax, 1327 ± 79 fmol/mg protein; dissociation constant, Kd, 0.74 nM), which was inhibited by the H3R ligands immepip, clobenpropit, and A-331440 (inhibition constants, Ki, 0.28, 8.53, and 316 nM, respectively). Perfusion of synaptosomes with the H3R agonist immepip (100 nM) had no effect on K+-evoked [3H]-GABA release, but inhibited the stimulatory action of A2AR activation. In turn, the effect of immepip was blocked by the H3R antagonist clobenpropit, which had no significant effect of its own on K+-induced [3H]-GABA release. These data indicate that H3R activation selectively counteracts the facilitatory action of A2AR stimulation on GABA release from striato-pallidal projections. PMID:24884070

  4. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    PubMed

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  5. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    SciTech Connect

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/sup 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.

  6. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of

  7. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907. © 2016 International Society for Neurochemistry.

  8. Diphenyl ethers as androgen receptor antagonists for the topical suppression of sebum production.

    PubMed

    Mitchell, Lorna H; Hu, Lain-Yen; Nguyen, Maria; Fakhoury, Stephen; Smith, Yvonne; Iula, Donna; Kostlan, Catherine; Carroll, Matthew; Dettling, Danielle; Du, Daniel; Pocalyko, David; Wade, Kimberly; Lefker, Bruce

    2009-04-15

    A series of diphenyl ethers was prepared and evaluated for androgen receptor antagonist activity in human androgen receptor binding and cellular functional assays. Analogs with potent in vitro activities were evaluated for topical in vivo efficacy in the Golden Syrian Hamster ear model. Several compounds showed reduction in wax esters in this validated animal model.

  9. SAR studies of novel 5-substituted 2-arylindoles as nonpeptidyl GnRH receptor antagonists.

    PubMed

    Chu, L; Lo, J L; Yang, Y T; Cheng, K; Smith, R G; Fisher, M H; Wyvratt, M J; Goulet, M T

    2001-02-26

    The discovery of the potency-enhancing effect of 5-substitutions on the novel 2-arylindoles as nonpeptidyl GnRH receptor antagonists led to the identification of several analogues with high affinities on the GnRH receptor. The syntheses and SARs of these 5-substituted-2-arylindole analogues are reported.

  10. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs.

  11. Physical origins of remarkable thermostabilization by an octuple mutation for the adenosine A2a receptor

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yuta; Ogino, Takahiro; Yasuda, Satoshi; Takamuku, Yuuki; Murata, Takeshi; Kinoshita, Masahiro

    2016-07-01

    It was experimentally showed that the thermal stability of a membrane protein, the adenosine A2a receptor, was remarkably enhanced by an octuple mutation. Here we theoretically prove that the energy decrease arising from the formation of protein intramolecular hydrogen bonds and the solvent-entropy gain upon protein folding are made substantially larger by the mutation, leading to the remarkable enhancement. The solvent is formed by hydrocarbon groups constituting nonpolar chains of the lipid bilayer within a membrane. The mutation modifies geometric characteristics of the structure so that the solvent crowding can be reduced to a larger extent when the protein folds.

  12. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  13. Anti free radical action of calcium antagonists and H1 and H2 receptors antagonists in neoplastic disease.

    PubMed

    della Rovere, F; Broccio, M; Granata, A; Zirilli, A; Brugnano, L; Artemisia, A; Broccio, G

    1996-01-01

    The blood of the subjects suffering from Neoplastic Disease (ND) shows phenomena of membrane peroxidation due to the presence of Free Radicals (FRs), in a quantity much greater than the one observed in the blood of healthy subjects. This can be detected either by calculating the time necessary for the formation of "Heinz bodies" (Hbs), (p < 0.00001) after oxidative stress of the blood in vitro with acetylphenylidrazine (APH), or by calculating the methemoglobin (metHb) quantity that forms after the same treatment (P < 0.00001). The statistical analyses we carried out showed that metHb formation was not affected by age, sex, smoking habits, red blood cell number, Hb, Ht or tumor staging. In this study, by using equal parameters of investigation, we noted that the blood of the subjects with ND who were previously treated with calcium-antagonists drugs and with antagonists of H1 and H2 receptors, gave results completely superimposable on the results obtained from healthy subjects, implying that the treatment had avoided the increase of FRs. Therefore we concluded that calcium-antagonists and the antagonists of the H1 and H2 receptors behave as antioxidant substances, having decreased the FRs damaging activity on the cellular membranes, thus controlling, although to a limited degree, the pejorative evolution of the disease. It is also important to remember that investigations into the ND, even possible screenings, must take into account the above said data, submitting the subjects under investigation to a pharmacological wash out, particularly with those substances which, are considered to be scavengers of FRs. Some of these substances are investigated in this work.

  14. In Silico Discovery of Androgen Receptor Antagonists with Activity in Castration Resistant Prostate Cancer

    PubMed Central

    Shen, Howard C.; Shanmugasundaram, Kumaran; Simon, Nicholas I.; Cai, Changmeng; Wang, Hongyun; Chen, Sen; Rigby, Alan C.

    2012-01-01

    Previously available androgen receptor (AR) antagonists (bicalutamide, flutamide, and nilutamide) have limited activity against AR in prostate cancers that relapse after castration [castration resistant prostate cancer (CRPC)]. However, recent AR competitive antagonists such as MDV3100, generated through chemical modifications to the current AR ligands, appear to have increased activity in CRPC and have novel mechanisms of action. Using pharmacophore models and a refined homology model of the antagonist-liganded AR ligand binding domain, we carried out in silico screens of small molecule libraries and report here on the identification of a series of structurally distinct nonsteroidal small molecule competitive AR antagonists. Despite their unique chemical architectures, compounds representing each of six chemotypes functioned in vitro as pure AR antagonists. Moreover, similarly to MDV3100 and in contrast to previous AR antagonists, these compounds all prevented AR binding to chromatin, consistent with each of the six chemotypes stabilizing a similar AR antagonist conformation. Additional studies with the lead chemotype (chemotype A) showed enhanced AR protein degradation, which was dependent on helix 12 in the AR ligand binding domain. Significantly, chemotype A compounds functioned as AR antagonists in vivo in normal male mice and suppressed AR activity and tumor cell proliferation in human CRPC xenografts. These data indicate that certain ligand-induced structural alterations in the AR ligand binding domain may both impair AR chromatin binding and enhance AR degradation and support continued efforts to develop AR antagonists with unique mechanisms of action and efficacy in CRPC. PMID:23023563

  15. In silico discovery of androgen receptor antagonists with activity in castration resistant prostate cancer.

    PubMed

    Shen, Howard C; Shanmugasundaram, Kumaran; Simon, Nicholas I; Cai, Changmeng; Wang, Hongyun; Chen, Sen; Balk, Steven P; Rigby, Alan C

    2012-11-01

    Previously available androgen receptor (AR) antagonists (bicalutamide, flutamide, and nilutamide) have limited activity against AR in prostate cancers that relapse after castration [castration resistant prostate cancer (CRPC)]. However, recent AR competitive antagonists such as MDV3100, generated through chemical modifications to the current AR ligands, appear to have increased activity in CRPC and have novel mechanisms of action. Using pharmacophore models and a refined homology model of the antagonist-liganded AR ligand binding domain, we carried out in silico screens of small molecule libraries and report here on the identification of a series of structurally distinct nonsteroidal small molecule competitive AR antagonists. Despite their unique chemical architectures, compounds representing each of six chemotypes functioned in vitro as pure AR antagonists. Moreover, similarly to MDV3100 and in contrast to previous AR antagonists, these compounds all prevented AR binding to chromatin, consistent with each of the six chemotypes stabilizing a similar AR antagonist conformation. Additional studies with the lead chemotype (chemotype A) showed enhanced AR protein degradation, which was dependent on helix 12 in the AR ligand binding domain. Significantly, chemotype A compounds functioned as AR antagonists in vivo in normal male mice and suppressed AR activity and tumor cell proliferation in human CRPC xenografts. These data indicate that certain ligand-induced structural alterations in the AR ligand binding domain may both impair AR chromatin binding and enhance AR degradation and support continued efforts to develop AR antagonists with unique mechanisms of action and efficacy in CRPC.

  16. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

    PubMed Central

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N.; Borycz, Janusz; Kachroo, Anil; Canas, Paula M.; Orru, Marco; Schwarzschild, Michael A.; Rosin, Diane L.; Kreitzer, Anatol C.; Cunha, Rodrigo A.; Watanabe, Masahiko; Ferré, Sergi

    2010-01-01

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel anti-parkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional functionally significant segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of cortico-striatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders. PMID:19936569

  17. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    PubMed

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  18. The pharmacological properties of a novel MCH1 receptor antagonist isolated from combinatorial libraries

    PubMed Central

    Nagasaki, Hiroshi; Chung, Shinjae; Dooley, Colette T.; Wang, Zhiwei; Li, Chunying; Saito, Yumiko; Clark, Stewart D; Houghten, Richard A.; Civelli, Olivier

    2009-01-01

    Melanin-concentrating hormone (MCH) is a neuropeptide that exhibits potent orexigenic activity. In rodents, it exerts its actions by interacting with one receptor, MCH1 receptor which is expressed in many parts of the central nervous system (CNS). To study the physiological implications of the MCH system, we need to be able to block it locally and acutely. This necessitates the use of MCH1 receptor antagonists. While MCH1 receptor antagonists have been previously reported, they are mainly not accessible to academic research. We apply here a strategy that leads to the isolation of a high affinity and selective MCH1 receptor antagonist amenable to in vivo analyses without further chemical modifications. This antagonist, TPI 1361-17, was identified through the screening of multiple non-peptide positional scanning synthetic combinatorial libraries (PS-SCL) totaling more than eight hundred thousand compounds in conditions that allow for the identification of only high-affinity compounds. TPI 1361-17 exhibited an IC50 value of 6.1 nM for inhibition of 1 nM MCH-induced Ca2+ mobilization and completely displaced the binding of [125I] MCH to rat MCH1 receptor. TPI 1361-17 was found specific, having no affinity for a variety of other G-protein coupled receptors and channels. TPI 1361-17 was found active in vivo since it blocked MCH-induced food intake by 75 %. Our results indicate that TPI 1361-17 is a novel and selective MCH1 receptor antagonist and is an effective tool to study the physiological functions of the MCH system. These results also illustrate the successful application of combinatorial library screening to identify specific surrogate antagonists in an academic setting. PMID:19041642

  19. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.

  20. 3,4-Disubstituted indole acylsulfonamides: a novel series of potent and selective human EP3 receptor antagonists.

    PubMed

    Zhou, Nian; Zeller, Wayne; Krohn, Michael; Anderson, Herb; Zhang, Jun; Onua, Emmanuel; Kiselyov, Alex S; Ramirez, Jose; Halldorsdottir, Gułrún; Andrésson, Thornorkell; Gurney, Mark E; Singh, Jasbir

    2009-01-01

    A series of potent and selective EP(3) receptor antagonists are described. Utilizing a pharmacophore model developed for the EP(3) receptor, a series of 3,4-disubstituted indoles were shown to be high affinity ligands for this target. These compounds showed high selectivity over IP, FP and other EP receptors and are potent antagonists in functional assays.

  1. The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum.

    PubMed

    Górska, A M; Gołembiowska, K

    2015-04-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a role in the effect of caffeine by investigating the effect of the selective adenosine A1 and A2A receptor antagonists, DPCPX and KW 6002 on DA and 5-HT release induced by MDMA. Mice were treated with caffeine (10 mg/kg) and MDMA (20 or 40 mg/kg) alone or in combination. DA and 5-HT release in the mouse striatum was measured using in vivo microdialysis. Caffeine exacerbated the effect of MDMA on DA and 5-HT release. DPCPX or KW 6002 co-administered with MDMA had similar influence as caffeine, but KW 6002 was more potent than caffeine or DPCPX. To exclude the contribution of MAO inhibition by caffeine in the caffeine effect on MDMA-induced increase in DA and 5-HT, we also tested the effect of the nonxanthine adenosine receptor antagonist CGS 15943A lacking properties of MAO activity modification. Our findings indicate that adenosine A1 and A2A receptor blockade may account for the caffeine-induced exacerbation of the MDMA effect on DA and 5-HT release and may aggravate MDMA toxicity.

  2. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  3. Agonist Dynamics and Conformational Selection during Microsecond Simulations of the A2A Adenosine Receptor

    PubMed Central

    Lee, Ji Young; Lyman, Edward

    2012-01-01

    The G-protein-coupled receptors (GPCRs) are a ubiquitous family of signaling proteins of exceptional pharmacological importance. The recent publication of structures of several GPCRs cocrystallized with ligands of differing activity offers a unique opportunity to gain insight into their function. To that end, we performed microsecond-timescale simulations of the A2A adenosine receptor bound to either of two agonists, adenosine or UK432097. Our data suggest that adenosine is highly dynamic when bound to A2A, in stark contrast to the case with UK432097. Remarkably, adenosine finds an alternate binding pose in which the ligand is inverted relative to the crystal structure, forming relatively stable interactions with helices I and II. Our observations suggest new experimental tests to validate our predictions and deepen our understanding of GPCR signaling. Overall, our data suggest an intriguing hypothesis: that the 100- to 1000-fold greater efficacy of UK432097 relative to adenosine arises because UK432097 stabilizes a much tighter neighborhood of active conformations, which manifests as a greater likelihood of G-protein activation per unit time. PMID:22824275

  4. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  5. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD

    PubMed Central

    Moulton, Bart C; Fryer, Allison D

    2011-01-01

    In the lungs, parasympathetic nerves provide the dominant control of airway smooth muscle with release of acetylcholine onto M3 muscarinic receptors. Treatment of airway disease with anticholinergic drugs that block muscarinic receptors began over 2000 years ago. Pharmacologic data all indicated that antimuscarinic drugs should be highly effective in asthma but clinical results were mixed. Thus, with the discovery of effective β-adrenergic receptor agonists the use of muscarinic antagonists declined. Lack of effectiveness of muscarinic antagonists is due to a variety of factors including unwanted side effects (ranging from dry mouth to coma) and the discovery of additional muscarinic receptor subtypes in the lungs with sometimes competing effects. Perhaps the most important problem is ineffective dosing due to poorly understood differences between routes of administration and no effective way of testing whether antagonists block receptors stimulated physiologically by acetylcholine. Newer muscarinic receptor antagonists are being developed that address the problems of side effects and receptor selectivity that appear to be quite promising in the treatment of asthma and chronic obstructive pulmonary disease. LINKED ARTICLES This article is part of a themed issue on Respiratory Pharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-1 PMID:21198547

  6. The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors.

    PubMed

    Higgins, Guy A; Grzelak, Michael E; Pond, Annamarie J; Cohen-Williams, Mary E; Hodgson, Robert A; Varty, Geoffrey B

    2007-12-11

    Caffeine produces effects on cognitive function particularly relating to aspects of attention such as reaction time. Considering the plasma exposure levels following regular caffeine intake, and the affinity of caffeine for known protein targets, these effects are likely mediated by either the adenosine A(1) or A(2A) receptor. In the present studies, two rat strains [Long-Evans (LE) and CD] were trained to asymptote performance in a test of selective attention, the 5-choice serial reaction time task (5-CSRTT). Next, the effects of caffeine were compared to the selective A(2A) antagonists, SCH 412348 and KW-6002 (Istradefylline), and the A(1) antagonist, DPCPX. Further studies compared the psychostimulant effects of each drug. Finally, we tested the A(2A) agonist, CGS-21680, on 5-CSRTT performance and given the antipsychotic potential of this drug class, studied the interaction between CGS-21680 and amphetamine in this task. Caffeine (3-10mg/kg IP) increased reaction time in both LE and CD rats, with no effect on accuracy, an effect replicated by SCH 412348 (0.1-1mg/kg PO) and KW-6002 (1-3mg/kg PO), but not DPCPX (3-30 mg/kg PO). At least with SCH 412348, these effects were at doses that were not overtly psychostimulant. In contrast, CGS-21680 (0.03-0. 3mg/kg IP) slowed reaction speed and increased omissions. Interestingly, at a comparatively low dose of 0.03 mg/kg, CGS-21680 attenuated the increased premature responding produced by amphetamine (1mg/kg IP). The present results suggest that the attention-enhancing effects of caffeine are mediated through A(2A) receptor blockade, and selective A(2A) receptor antagonists may have potential as therapies for attention-related disorders. Furthermore, the improvement in response control in amphetamine-treated rats following CGS-21680 pretreatment supports the view that A(2A) agonists have potential as novel antipsychotics.

  7. Coptis extracts enhance the anticancer effect of estrogen receptor antagonists on human breast cancer cells.

    PubMed

    Liu, Jing; He, Chengwei; Zhou, Keyuan; Wang, Jingdong; Kang, Jing X

    2009-01-09

    Estrogen receptor (ER) antagonists have been widely used for breast cancer treatment, but the efficacy and drug resistance remain to be clinical concerns. The purpose of this study was to determine whether the extracts of coptis, an anti-inflammatory herb, improve the anticancer efficacy of ER antagonists. The results showed that the combined treatment of ER antagonists and the crude extract of coptis or its purified compound berberine conferred synergistic growth inhibitory effect on MCF-7 cells (ER+), but not on MDA-MB-231 cells (ER-). Similar results were observed in the combined treatment of fulvestrant, a specific aromatase antagonist. Analysis of the expression of breast cancer related genes indicated that EGFR, HER2, bcl-2, and COX-2 were significantly downregulated, while IFN-beta and p21 were remarkably upregulated by berberine. Our results suggest that coptis extracts could be promising adjuvant to ER antagonists in ER positive breast cancer treatment through regulating expression of multiple genes.

  8. Design and synthesis of peripherally restricted transient receptor potential vanilloid 1 (TRPV1) antagonists.

    PubMed

    Tamayo, Nuria; Liao, Hongyu; Stec, Markian M; Wang, Xianghong; Chakrabarti, Partha; Retz, Dan; Doherty, Elizabeth M; Surapaneni, Sekhar; Tamir, Rami; Bannon, Anthony W; Gavva, Narender R; Norman, Mark H

    2008-05-08

    Transient receptor potential vanilloid 1 (TRPV1) channel antagonists may have clinical utility for the treatment of chronic nociceptive and neuropathic pain. We recently advanced a TRPV1 antagonist, 3 (AMG 517), into clinical trials as a new therapy for the treatment of pain. However, in addition to the desired analgesic effects, this TRPV1 antagonist significantly increased body core temperature following oral administration in rodents. Here, we report one of our approaches to eliminate or minimize the on-target hyperthermic effect observed with this and other TRPV1 antagonists. Through modifications of our clinical candidate, 3 a series of potent and peripherally restricted TRPV1 antagonists have been prepared. These analogues demonstrated on-target coverage in vivo but caused increases in body core temperature, suggesting that peripheral restriction was not sufficient to separate antagonism mediated antihyperalgesia from hyperthermia. Furthermore, these studies demonstrate that the site of action for TRPV1 blockade elicited hyperthermia is outside the blood-brain barrier.

  9. Role and Function of A2A and A₃ Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis.

    PubMed

    Ravani, Annalisa; Vincenzi, Fabrizio; Bortoluzzi, Alessandra; Padovan, Melissa; Pasquini, Silvia; Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea; Govoni, Marcello; Varani, Katia

    2017-03-24

    Rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) are chronic inflammatory rheumatic diseases that affect joints, causing debilitating pain and disability. Adenosine receptors (ARs) play a key role in the mechanism of inflammation, and the activation of A2A and A₃AR subtypes is often associated with a reduction of the inflammatory status. The aim of this study was to investigate the involvement of ARs in patients suffering from early-RA (ERA), RA, AS and PsA. Messenger RNA (mRNA) analysis and saturation binding experiments indicated an upregulation of A2A and A₃ARs in lymphocytes obtained from patients when compared with healthy subjects. A2A and A₃AR agonists inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation and reduced inflammatory cytokines release, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6. Moreover, A2A and A₃AR activation mediated a reduction of metalloproteinases (MMP)-1 and MMP-3. The effect of the agonists was abrogated by selective antagonists demonstrating the direct involvement of these receptor subtypes. Taken together, these data confirmed the involvement of ARs in chronic autoimmune rheumatic diseases highlighting the possibility to exploit A2A and A₃ARs as therapeutic targets, with the aim to limit the inflammatory responses usually associated with RA, AS and PsA.

  10. Combining the α1-Adrenergic Receptor Antagonist, Prazosin, with the β-Adrenergic Receptor Antagonist, Propranolol, Reduces Alcohol Drinking More Effectively Than Either Drug Alone

    PubMed Central

    Rasmussen, Dennis D; Beckwith, Lauren E; Kincaid, Carrie L; Froehlich, Janice C

    2014-01-01

    Background Evidence suggests that activation of the noradrenergic system may contribute to alcohol drinking in animals and humans. Our previous studies demonstrated that blocking α1-adrenergic receptors with the antagonist, prazosin, decreased alcohol drinking in rats under various conditions. Since noradrenergic activation is also regulated by β-adrenergic receptors, we now examine the effects of the β-adrenergic receptor antagonist, propranolol, alone or in combination with prazosin, on alcohol drinking in rats selectively bred for high voluntary alcohol intake and alcohol preference (P line). Methods Two studies were conducted with male P rats. In study one, rats were allowed to become alcohol-dependent during 14 weeks of ad libitum access to food, water and 20% alcohol and the effect of propranolol (5–15 mg/kg, IP) and prazosin (1–2 mg/kg, IP) on alcohol intake during withdrawal were assessed. In study two, the effect of propranolol (5 mg/kg, IP) and prazosin (2 mg/kg, IP) on alcohol intake following prolonged imposed abstinence was assessed. Results Alcohol drinking following propranolol treatment was variable, but the combination of propranolol + prazosin consistently suppressed alcohol drinking during both alcohol withdrawal and following prolonged imposed abstinence, and the combination of these two drugs was more effective than was treatment with either drug alone. Conclusions Treatment with prazosin + propranolol, or a combination of other centrally active α1- and β-adrenergic receptor antagonists, may assist in preventing alcohol relapse in some individuals. PMID:24891220

  11. Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors

    PubMed Central

    Mamedova, Liaman K.; Joshi, Bhalchandra V.; Gao, Zhan-Guo; von Kügelgen, Ivar; Jacobson, Kenneth A.

    2012-01-01

    The physiological role of the P2Y6 nucleotide receptor may involve cardiovascular, immune and digestive functions based on the receptor tissue distribution, and selective antagonists for this receptor are lacking. We have synthesized a series of symmetric aryl diisothiocyanate derivatives and examined their ability to inhibit phospholipase C (PLC) activity induced by activation of five subtypes of recombinant P2Y receptors. Several derivatives were more potent at inhibiting action of UDP at both human and rat P2Y6 receptors expressed in 1321N1 human astrocytes than activation of human P2Y1, P2Y2, P2Y4 and P2Y11 receptors. The inhibition by diisothiocyanate derivatives of 1,2-diphenylethane (MRS2567) and 1,4-di-(phenylthioureido) butane (MRS2578) was concentration-dependent and insurmountable, with IC50 values of 126 ± 15 nM and 37 ± 16 nM (human) and 101 ± 27 nM (rat), respectively. A derivative of 1,4-phenylendiisothiocyanate (MRS2575) inhibited only human but not rat P2Y6 receptor activity. MRS2567 and MRS2578 at 10 μM did not affect the UTP (100 nM)-induced responses of cells expressing P2Y2 and P2Y4 receptors, nor did they affect the 2-methylthio-ADP (30 nM)-induced responses at the P2Y1 receptor or the ATP (10 μM)-induced responses at the P2Y11 receptor. Other antagonists displayed mixed selectivities. The selective antagonists MRS2567, MRS2575 and MRS2578 (1 μM) completely blocked the protection by UDP of cells undergoing TNFα-induced apoptosis. Thus, we have identified potent, insurmountable antagonists of P2Y6 receptors that are selective within the family of PLC-coupled P2Y receptors. PMID:15081875

  12. Effects of a Serotonin 2C Agonist and a 2A Antagonist on Actigraphy-Based Sleep Parameters Disrupted by Methamphetamine Self-Administration in Rhesus Monkeys.

    PubMed

    Perez Diaz, Maylen; Andersen, Monica L; Rice, Kenner C; Howell, Leonard L

    2017-06-01

    Sleep disorders and substance abuse are highly comorbid and we have previously shown that methamphetamine self-administration significantly disrupts activity-based sleep parameters in rhesus monkeys. To the best of our knowledge, no study has evaluated the effectiveness of any pharmacological intervention to attenuate the effects of methamphetamine on nighttime activity under well-controlled conditions in laboratory animals. Thus, we examined the effects of a 5-HT2C receptor agonist, WAY163909, and a 5-HT2A receptor antagonist, M100907, given alone and in combination, on actigraphy-based sleep parameters disrupted by methamphetamine self-administration in non-human primates. Adult male/female rhesus monkeys self-administered methamphetamine (0.03 mg/kg/injection, i.v.) under a fixed-ratio 20 schedule of reinforcement (60-min sessions once a day, 5 days per week). Nighttime activity was evaluated using Actiwatch monitors. WAY163909 (0.1, 0.3, and 1.0 mg/kg), M100907 (0.03, 0.1, and 0.3 mg/kg), and a combination (0.1 mg/kg M100+0.3 mg/kg WAY) were administered i.m. before lights-out. Each dose was given for five consecutive days during which self-administration took place in the morning. Both drugs improved activity-based sleep measures disrupted by methamphetamine by decreasing sleep latency and increasing sleep efficiency compared with vehicle. By combining these drugs, their individual effects were significantly enhanced. Agonists at the 5-HT2C receptor and antagonists at the 5-HT2A receptor show promise as potential treatments for the sleep-disrupting effects of stimulants when used alone and in combination. Combining subthreshold doses of WAY and M100 produced significant improvements in nighttime activity measures while avoiding the general motor-decreasing effects of the high dose of WAY.

  13. Molecular modeling of histamine H3 receptor and QSAR studies on arylbenzofuran derived H3 antagonists.

    PubMed

    Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam; Ghafourian, Taravat; Hamzeiy, Hossain

    2008-01-01

    Histamine H3 receptors are presynaptic autoreceptors found in both central and peripheral nervous systems of many species. The central effects of these receptors suggest a potential therapeutic role for their antagonists in treatment of several neurological disorders such as epilepsy, schizophrenia, Alzheimer's and Parkinson's diseases. The purpose of this study was to identify the structural requirements for H3 antagonistic activity via quantitative structure-activity relationship (QSAR) studies and receptor modeling/docking techniques. A combination of partial least squares (PLS) and genetic algorithm (GA) was used in the QSAR approach to select the structural descriptors relevant to the receptor binding affinity of a series of 58 H3 antagonists. The descriptors were selected out of a pool of >1000 descriptors calculated by DRAGON, Hyperchem and ACD labs suite of programs. The resulting QSAR models for rat and human H3 binding affinities were validated using different strategies. QSAR models generated in the current work suggested the role of charge transfer interactions in the ligand-receptor interaction verified using the molecular modeling of the receptor and docking two antagonists to the binding site. The 3D model of human H3 receptor was built based on bovine rhodopsin structure and evaluated by molecular dynamics (MD) simulation in a mixed water-vacuum-water environment. The results were indicative of the stability of the model relating the observed structural changes during the MD simulation to the suggested ligand-receptor interactions. The results of this investigation are expected to be useful in the process of design and development of new potent H3 receptor antagonists.

  14. Medicinal chemistry of P2X receptors: agonists and orthosteric antagonists.

    PubMed

    Lambertucci, Catia; Dal Ben, Diego; Buccioni, Michela; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria

    2015-01-01

    In this work, we have highlighted data reported in the literature trying to draw a complete picture of the structures and biological activity of agonists and orthosteric antagonists of P2X receptors. Actually, only few P2X receptor agonists have been found and most of them are derived from modification of the natural ligand ATP and they are P2X receptor subtype unselective. In particular, BzATP (9) is one of the most potent P2X receptor agonists with EC50 value in the nanomolar range at some subtypes. Differently from agonists, P2X receptor antagonists belong to different chemical classes such as high molecular weight aryl polysulfonate molecules like suramin and its simplified derivatives and anthraquinone compounds. All these molecules proved to be non selective at P2X receptors, and they are endowed with micromolar activity and not favourable pharmacokinetic properties due to the presence of several charged groups. Also modification of the natural ligand ATP led to the discovery of P2X receptor antagonists like TNP-ATP (29), which, although not selective, showed high potency at P2X1, P2X3 (IC50 of 0.006 µM and 0.001 µM, respectively), and heteromeric P2X2/3 receptors. Also the dinucleotide inosine polyphosphate Ip5I (33) was found to be a potent and selective antagonist at P2X1 vs P2X3 receptors with IC50 = 0.003 µM. A significant improvement has been gained from the interest of pharmaceutical companies that in the last years discovered, through the use of high-throughput screening, potent and selective antagonists endowed with novel structures, some of which are currently in clinical trials for several therapeutic applications.

  15. N-Arylpiperazine-1-carboxamide derivatives: a novel series of orally active nonsteroidal androgen receptor antagonists.

    PubMed

    Kinoyama, Isao; Taniguchi, Nobuaki; Kawaminami, Eiji; Nozawa, Eisuke; Koutoku, Hiroshi; Furutani, Takashi; Kudoh, Masafumi; Okada, Minoru

    2005-04-01

    A novel series of N-arylpiperazine-1-carboxamide derivatives was synthesized and their androgen receptor (AR) antagonist activities and in vivo antiandrogenic properties were evaluated. Reporter assays indicated that trans-2,5-dimethylpiperazine derivatives are potent AR antagonists, and in this series trans-N-4-[4-cyano-3-(trifluoromethyl)phenyl]-N-(2,4-difluorophenyl)-2,5-dimethylpiperazine-1-carboxamide (18 g, YM-175735) exhibited the most potent antiandrogenic activity. Compared to bicalutamide, YM-175735 is an approximately 4-fold stronger AR antagonist and has slightly increased antiandrogenic activity, suggesting that YM-175735 may be useful in the treatment of prostate cancer.

  16. Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder.

    PubMed

    Pires, Vanessa A; Pamplona, Fabrício A; Pandolfo, Pablo; Fernandes, Daniel; Prediger, Rui D S; Takahashi, Reinaldo N

    2009-03-01

    The strain of spontaneously hypertensive rats (SHR) is considered a genetic model for the study of attention-deficit hyperactivity disorder (ADHD), as it displays hyperactivity, impulsivity and poorly sustained attention. Recently, we have shown the involvement of adenosinergic neuromodulation in the SHR's short-term and long-term memory impairments. In this study, we investigated the performance of male and female SHR in a modified version of the object-recognition task (using objects with different structural complexity) and compared them with Wistar rats, a widely used outbred rat strain for the investigation of learning processes. The suitability of the SHR strain to represent an animal model of ADHD, as far as mnemonic deficits are concerned, was pharmacologically validated by the administration of methylphenidate, the first-choice drug for the treatment of ADHD patients. The role of adenosine A1 and A2A receptors in object discrimination was investigated by the administration of caffeine (nonselective antagonist) or selective adenosine receptor antagonists. Wistar rats discriminated all the objects used (cube vs. pyramid; cube vs. T-shaped object), whereas SHR only discriminated the most structurally distinct pairs of objects (cube vs. pyramid). Pretraining administration of methylphenidate [2 mg/kg, intraperitoneal (i.p.)], caffeine (1-10 mg/kg, i.p.), the selective adenosine receptor antagonists DPCPX (8-cyclopenthyl-1,3-dipropylxanthine; A1 antagonist, 5 mg/kg, i.p.) and ZM241385 (A2A antagonist, 1.0 mg/kg, i.p.), or the association of ineffective doses of DPCPX (3 mg/kg) and ZM241385 (0.5 mg/kg), improved the performance of SHR in the object-recognition task. These findings show that the discriminative learning impairments of SHR can be attenuated by the blockade of either A1 or A2A adenosine receptors, suggesting that adenosinergic antagonists might represent potentially interesting drugs for the treatment of ADHD.

  17. Neurokinin-1 Receptor Antagonists as Antitumor Drugs in Gastrointestinal Cancer: A New Approach

    PubMed Central

    Muñoz, Miguel; Coveñas, Rafael

    2016-01-01

    Gastrointestinal (GI) cancer is the term for a group of cancers affecting the digestive system. After binding to the neurokinin-1 (NK-1) receptor, the undecapeptide substance P (SP) regulates GI cancer cell proliferation and migration for invasion and metastasis, and controls endothelial cell proliferation for angiogenesis. SP also exerts an antiapoptotic effect. Both SP and the NK-1 receptor are located in GI tumor cells, the NK-1 receptor being overexpressed. By contrast, after binding to the NK-1 receptor, NK-1 receptor antagonists elicit the inhibition (epidermal growth factor receptor inhibition) of the proliferation of GI cancer cells in a concentration-dependent manner, induce the death of GI cancer cells by apoptosis, counteract the Warburg effect, inhibit cancer cell migration (counteracting invasion and metastasis), and inhibit angiogenesis (vascular endothelial growth factor inhibition). NK-1 receptor antagonists are safe and well tolerated. Thus, the NK-1 receptor could be considered as a new target in GI cancer and NK-1 receptor antagonists (eg, aprepitant) could be a new promising approach for the treatment of GI cancer. PMID:27488320

  18. Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists.

    PubMed

    Tsuji, Motonori

    2017-06-01

    HX531, which contains a dibenzodiazepine skeleton, is one of the first retinoid X receptor (RXR) antagonists. Functioning via RXR-PPARγ heterodimer, this compound is receiving a lot of attention as a therapeutic drug candidate for diabetic disease controlling differentiation of adipose tissue. However, the active conformation of HX531 for RXRs is not well established. In the present study, quantum mechanics calculations and molecular mechanical docking simulations were carried out to precisely study the docking mode of HX531 with the human RXRα ligand-binding domain, as well as to provide a new approach to drug design using a structure-based perspective. It was suggested that HX531, which has the R configuration for the bent dibenzodiazepine plane together with the equatorial configuration for the N-methyl group attached to the nitrogen atom in the seven-membered diazepine ring, is a typical activation function-2 (AF-2) fixed motif perturbation type antagonist, which destabilizes the formation of AF-2 fixed motifs. On the other hand, the docking simulations supported the experimental result that LG100754 is an RXR homodimer antagonist and an RXR heterodimer agonist.

  19. Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists

    NASA Astrophysics Data System (ADS)

    Tsuji, Motonori

    2017-06-01

    HX531, which contains a dibenzodiazepine skeleton, is one of the first retinoid X receptor (RXR) antagonists. Functioning via RXR-PPARγ heterodimer, this compound is receiving a lot of attention as a therapeutic drug candidate for diabetic disease controlling differentiation of adipose tissue. However, the active conformation of HX531 for RXRs is not well established. In the present study, quantum mechanics calculations and molecular mechanical docking simulations were carried out to precisely study the docking mode of HX531 with the human RXRα ligand-binding domain, as well as to provide a new approach to drug design using a structure-based perspective. It was suggested that HX531, which has the R configuration for the bent dibenzodiazepine plane together with the equatorial configuration for the N-methyl group attached to the nitrogen atom in the seven-membered diazepine ring, is a typical activation function-2 (AF-2) fixed motif perturbation type antagonist, which destabilizes the formation of AF-2 fixed motifs. On the other hand, the docking simulations supported the experimental result that LG100754 is an RXR homodimer antagonist and an RXR heterodimer agonist.

  20. Bismuth increases hydroxyl radical-scavenging activity of histamine H2-receptor antagonists.

    PubMed

    Kirkova, Margarita; Alexandrova, Albena; Yordanova, Neli

    2006-01-01

    The effects of histamine H2-receptor antagonists, alone or in a combination with bismuth, on *OH-provoked degradation of deoxyribose were studied. The histamine H2-receptor antagonists (cimetidine, ranitidine and roxatidine), themselves decreased the deoxyribose damage in Fenton-type systems. In combinations with bismuth, their inhibitory effect in Fenton system (Fe(III)/ascorbic acid + H2O2 was stronger. Moreover, unlike F(III) and Cu(II), which in the presence of ascorbic acid + H2O2 led to an increase in the *OH formation (deoxyribose damage), Bi(III) showed an opposite effect. The present results are interpreted in view of a better ( )OH scavenging activity of bismuth complexes of histamine H2-receptor antagonists as compared to that of the corresponding drugs. These findings might be one more explanation why bismuth salts, in combination with acid-reducing agents, are more effective anti-ulcer agents.

  1. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis.

    PubMed

    Mirshafiey, Abbas; Jadidi-Niaragh, Farhad

    2010-06-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that involves central nervous system, and is generally associated with demyelination and axonal lesion. The effective factors for initiation of the inflammatory responses have not been known precisely so far. Leukotrienes (LTs) are inflammatory mediators with increased levels in the cerebrospinal fluid of MS patients and in experimental models of multiple sclerosis. Inhibition of LT receptors with specific antagonists can decrease inflammatory responses. In this review article we try to clarify the role of LT receptor antagonists and also inhibitors of enzymes which are involved in LTs generating pathway for treating multiple sclerosis as new targets for MS therapy. Moreover, we suggest that blockage of LT receptors by potent specific antagonists and/or agonists can be as a novel useful method in treatment of MS.

  2. Optimizing subcutaneous injection of the gonadotropin-releasing hormone receptor antagonist degarelix.

    PubMed

    Barkin, Jack; Burton, Shelley; Lambert, Carole

    2016-02-01

    The gonadotropin-releasing hormone (GnRH) receptor antagonist degarelix has several unique characteristics compared to luteinizing hormone-releasing hormone (LHRH) analogs used in the management of prostate cancer. Notable differences of GnRH receptor antagonists include no flare reaction, and a more rapid suppression of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prostate-specific antigen (PSA) compared to LHRH analogs. Despite emerging evidence supporting the use of GnRH receptor antagonists over the more widely used LHRH analogs in the management of prostate cancer, physicians may be reluctant to prescribe degarelix. They may be concerned about patient complaints about injection-site reactions (ISRs). The subcutaneous injection of degarelix has been associated with a higher rate of ISRs compared with the intramuscular injections of LHRH analogs. This "How I Do It" article describes techniques and strategies that have been developed by physicians and nurses to reduce the discomfort associated with the subcutaneous delivery of degarelix.

  3. [Selective disturbance of associative memory reactivation by serotonin or NMDA glutamate receptor antagonists in snail].

    PubMed

    Solntseva, S V; Nikitin, V P

    2007-10-01

    Effects of serotonin or glutamate receptors antagonists on reactivation of food aversion conditioning were studied in snail Helix lucorum. Metiotepin (nonselective serotonin receptor antagonist, 0.1 mg/snail) or MK-801 (NMDA glutamate receptor antagonist, 0.005 mg/snail) were injected 24 hours after 3 days of food aversion conditioning, then reminding stimulus (banana, "conditioned" food) was presented and food aversion conditioning was tested. Long-term impairing (more then 2 weeks) of food aversion conditioning was found 3 hours after concurrent reminding and inhibitors injection. Injection of receptor antagonists without reminding stimulus did not influence on food aversion conditioning retrieval. Besides, in snails with amnesia after metiotepin/reminder, facilitation of repeated elaboration aversion conditioning on banana is revealed. The repeated training of snails with amnesia caused by MK-801/reminder did not result in food aversion conditioning. It is was suggested that 5-HT5,6,7 serotonin receptors are involved in mechanisms of memory "trace" extraction of food aversion conditioning, whereas NMDA glutamate receptor - in processes of its storage in snail.

  4. A long-acting GH receptor antagonist through fusion to GH binding protein

    PubMed Central

    Wilkinson, Ian R.; Pradhananga, Sarbendra L.; Speak, Rowena; Artymiuk, Peter J.; Sayers, Jon R.; Ross, Richard J.

    2016-01-01

    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days. In conclusion: we provide proof of concept that a fusion of GHR antagonist to its binding protein generates a long acting GHR antagonist and we confirmed that introducing the W104A amino acid change in the GH binding domain enhances antagonist activity. PMID:27731358

  5. Kinetic properties of "dual" orexin receptor antagonists at OX1R and OX2R orexin receptors.

    PubMed

    Callander, Gabrielle E; Olorunda, Morenike; Monna, Dominique; Schuepbach, Edi; Langenegger, Daniel; Betschart, Claudia; Hintermann, Samuel; Behnke, Dirk; Cotesta, Simona; Fendt, Markus; Laue, Grit; Ofner, Silvio; Briard, Emmanuelle; Gee, Christine E; Jacobson, Laura H; Hoyer, Daniel

    2013-01-01

    Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various "dual" orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [(3)H]-BBAC ((S)-N-([1,1'-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the "dual" antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the "dual" antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.

  6. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  7. First and second generation H₁ histamine receptor antagonists produce different sleep-inducing profiles in rats.

    PubMed

    Unno, Katsuya; Ozaki, Tomoya; Mohammad, Shahid; Tsuno, Saki; Ikeda-Sagara, Masami; Honda, Kazuki; Ikeda, Masayuki

    2012-05-15

    First generation H₁ histamine receptor antagonists, such as d-chlorpheniramine (d-CPA) and diphenhydramine, produce drowsiness in humans. They are currently used as over-the-counter sleep aids. However, the mechanisms underlying drowsiness induced by these H₁ histamine receptor antagonists remain obscure because they produce heterogeneous receptor-independent actions. Ketotifen is a second generation H₁ histamine receptor antagonist which is more permeable to the brain than newer H₁ histamine receptor antagonists. Therefore, to access sleep-inducing profiles by H₁ histamine receptor blocking actions, the present study compared the dose-dependent effects of diphenhydramine and ketotifen (1-40 mg/kg, intraperitoneal injection at dark onset time) on daily sleep-wake patterns in rats. Ketotifen dose-dependently decreased rapid-eye-movement (REM) sleep and increased non-REM sleep by amplifying slow-wave electroencephalogram powers. Diphenhydramine at 4 mg/kg transiently increased non-REM sleep and reduced REM sleep similar to the effects of ketotifen. The larger injections of diphenhydramine (10-40 mg/kg), however, reduced non-REM sleep, abolished slow-wave enhancements and facilitated wakefulness. The bi-directional action of diphenhydramine on sleep is similar to our former results using d-CPA. Taken together, the arousal effects caused by over-dose administrations of the first generation H₁ histamine receptor antagonists may be mediated by H₁ histamine receptor-independent actions. To further examine the tolerance of ketotifen-induced sleep, 3 mg/kg ketotifen was injected daily for 5 days 3 h before light onset time. These experiments consistently enhanced non-REM-sleep at the end of the active phase of rats, suggesting that ketotifen may function as a desirable sleep aid although the coincidental REM sleep reduction requires attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Characterization of PCS1055, a novel muscarinic M4 receptor antagonist.

    PubMed

    Croy, Carrie H; Chan, Wai Y; Castetter, Andrea M; Watt, Marla L; Quets, Anne T; Felder, Christian C

    2016-07-05

    Identification of synthetic ligands selective for muscarinic receptor subtypes has been challenging due to the high sequence identity and structural homology among the five muscarinic acetylcholine receptors. Here, we report the pharmacological characterization of PCS1055, a novel muscarinic M4 receptor antagonist. PCS1055 inhibited radioligand [(3)H]-NMS binding to the M4 receptor with a Ki=6.5nM. Though the potency of PCS1055 is lower than that of pan-muscarinic antagonist atropine, it has better subtype selectivity over previously reported M4-selective reagents such as the muscarinic-peptide toxins (Karlsson et al., 1994; Santiago and Potter, 2001a) at the M1 subtype, and benzoxazine ligand PD102807 at the M3-subtype (Bohme et al., 2002). A detailed head-to-head comparison study using [(3)H]-NMS competitive binding assays characterizes the selectivity profiles of PCS1055 to that of other potent muscarinic-antagonist compounds PD102807, tropicamide, AF-DX-384, pirenzapine, and atropine. In addition to binding studies, the subtype specificity of PCS1055 is also demonstrated by functional receptor activation as readout by GTP-γ-[(35)S] binding. These GTP-γ-[(35)S] binding studies showed that PCS1055 exhibited 255-, 69.1-, 342- and >1000-fold greater inhibition of Oxo-M activity at the M4 versus the M1-, M2(-), M3-or M5 receptor subtypes, respectively. Schild analyses indicates that PCS1055 acts as a competitive antagonist to muscarinic M4 receptor, and confirms the affinity of the ligand to be low nanomolar, Kb=5.72nM. Therefore, PCS1055 represents a new M4-preferring antagonist that may be useful in elucidating the roles of M4 receptor signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Topical interleukin-1 receptor antagonist inhibits inflammatory cell infiltration into the cornea.

    PubMed

    Stapleton, W Michael; Chaurasia, Shyam S; Medeiros, Fabricio W; Mohan, Rajiv R; Sinha, Sunilima; Wilson, Steven E

    2008-05-01

    Interleukin (IL)-1alpha and beta are important modulators of many functions of corneal epithelial and stromal cells that occur following injury to the cornea, including the influx of bone marrow-derived inflammatory cells into the stroma attracted by chemokines released from the stroma and epithelium. In this study, we examined the effect of topical soluble IL-1 receptor antagonist on bone marrow-derived cell influx following corneal epithelial scrape injury in a mouse model. C57BL/6 mice underwent corneal epithelial scrape followed by application of IL-1 receptor antagonist (Amgen, Thousand Oaks, CA) at a concentration of 20 mg/ml or vehicle for 24 h prior to immunocytochemical detection of marker CD11b-positive cells into the stroma. In two experiments, topical IL-1 receptor antagonist had a marked effect in blocking cell influx. For example, in experiment 1, topical IL-1 receptor antagonist markedly reduced detectible CD11b-positive cells into the corneal stroma at 24h after epithelial injury compared with the vehicle control (3.5+/-0.5 (standard error of the mean) cells/400x field and 13.9+/-1.2 cells/400x field, respectively, p<0.01). A second experiment with a different observer performing cell counting had the same result. Thus, the data demonstrate conclusively that topical IL-1 receptor antagonist markedly down-regulates CD-11b-positive monocytic cell appearance in the corneal stroma. Topical IL-1 receptor antagonist could be an effective adjuvant for clinical treatment of corneal conditions in which unwanted inflammation has a role in the pathophysiology of the disorder.

  10. Tranylcypromine Substituted cis-Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D3 Receptor Antagonists

    PubMed Central

    2015-01-01

    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155

  11. Optimization of ketone-based P2Y(12) receptor antagonists as antithrombotic agents: pharmacodynamics and receptor kinetics considerations.

    PubMed

    Giordanetto, Fabrizio; Bach, Peter; Zetterberg, Fredrik; Antonsson, Thomas; Bylund, Ruth; Johansson, Johan; Sellén, Mikael; Brown, David; Hideståhl, Lotta; Berntsson, Pia; Hovdal, Daniel; Zachrisson, Helen; Björkman, Jan-Arne; van Giezen, J J J

    2014-07-01

    Modification of a series of P2Y12 receptor antagonists by replacement of the ester functionality was aimed at minimizing the risk of in vivo metabolic instability and pharmacokinetic variability. The resulting ketones were then optimized for their P2Y12 antagonistic and anticoagulation effects in combination with their physicochemical and absorption profiles. The most promising compound showed very potent antiplatelet action in vivo. However, pharmacodynamic-pharmacokinetic analysis did not reveal a significant separation between its anti-platelet and bleeding effects. The relevance of receptor binding kinetics to the in vivo profile is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Non-peptidic CRF1 receptor antagonists for the treatment of anxiety, depression and stress disorders.

    PubMed

    Kehne, J; De Lombaert, S

    2002-10-01

    Anxiety and depression are psychiatric disorders that constitute a major health concern worldwide, and new pharmacological approaches with the potential for improved efficacy and decreased side effect profiles relative to currently marketed drugs are desired. Since the identification of corticotropin releasing factor (CRF) by Vale and colleagues in 1981, an extensive research effort has solidified the importance of this 41 amino acid peptide in mediating the body's behavioral, endocrine, and autonomic responses to stress. The further identification of CRF receptor subtypes has provided compelling targets for novel pharmaceutical agents. The present review focuses on the potential of non-peptidic antagonists of the CRF(1) receptor subtype as a novel therapeutic approach for the treatment of anxiety and depression. The first section reviews preclinical and clinical evidence implicating CRF, in general, and CRF(1) receptors, in particular, in anxiety and depression. Clinical studies have demonstrated a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and/or elevated CRF levels in depression and in some anxiety disorders. Preclinical data utlilizing correlational methods, genetic models, and exogenous CRF administration techniques in rodents and non-human primates supports a link between hyperactive CRF pathways and anxiogenic and depressive-like symptoms. Studies employing the use of receptor knockouts and selective, non-peptidic antagonists of the CRF(1) receptor have demonstrated anxiolytic and antidepressant effects under certain types of laboratory conditions. A Phase II, open-label, clinical trial in major depressive disorder has reported that a CRF(1) receptor antagonist was safe and effective in reducing symptoms of anxiety and depression. In the second section, a topological approach is used to describe the design strategies employed to produce potent, non-peptidic CRF(1) receptor antagonists. Two main topologies, featuring a center core, a top side

  13. CGRP receptor antagonists: A new frontier of anti-migraine medications

    PubMed Central

    de Prado, Blanca Marquez; Russo, Andrew F.

    2009-01-01

    Migraine is a chronic pain condition that affects 12% of the population. Currently, the most effective treatments are the triptans, but they are limited in their efficacy and have potentially deleterious cardiovascular complications. Based on basic science studies over the past decade, a new generation of anti-migraine drugs is now being developed. At the forefront of these studies is a new calcitonin gene-related peptide (CGRP) receptor antagonist that is as effective as triptans in the acute treatment of migraines, without the cardiovascular effects. This review will address the likely mechanisms and therapeutic potential of CGRP receptor antagonists. PMID:19784396

  14. Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists.

    PubMed Central

    Quillan, J M; Jayawickreme, C K; Lerner, M R

    1995-01-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) is implicated in pigmentation, central nervous system and immune system functions, growth, mitogenesis, and melanoma. Evaluation of these roles has been hindered by the lack of alpha-MSH antagonists. A combinatorial chemistry-based diffusion assay is used to find random tripeptides that antagonize normal frog and human melanoma MSH receptors and to identify pharmacological groups responsible for receptor interaction. The alpha-MSH antagonist D-Trp-Arg-Leu-NH2 is used to demonstrate directly the contribution of MSH to normal skin tone in frogs following injection or topical application. Images Fig. 1 Fig. 3 Fig. 4 Fig. 6 PMID:7708744

  15. Synthesis and biological evaluations of chalcones, flavones and chromenes as farnesoid x receptor (FXR) antagonists.

    PubMed

    Zhang, Guoning; Liu, Shuainan; Tan, Wenjuan; Verma, Ruchi; Chen, Yuan; Sun, Deyang; Huan, Yi; Jiang, Qian; Wang, Xing; Wang, Na; Xu, Yang; Wong, Chiwai; Shen, Zhufang; Deng, Ruitang; Liu, Jinsong; Zhang, Yanqiao; Fang, Weishuo

    2017-03-31

    Farnesoid X receptor (FXR), a nuclear receptor mainly distributed in liver and intestine, has been regarded as a potential target for the treatment of various metabolic diseases, cancer and infectious diseases related to liver. Starting from two previously identified chalcone-based FXR antagonists, we tried to increase the activity through the design and synthesis of a library containing chalcones, flavones and chromenes, based on substitution manipulation and conformation (ring closure) restriction strategy. Many chalcones and four chromenes were identified as microM potent FXR antagonists, among which chromene 11c significantly decreased the plasma and hepatic triglyceride level in KKay mice.

  16. [Effects of agonists and antagonists of benzodiazepine, GABA and NMDA receptors, on caffeine-induced seizures in mice].

    PubMed

    Inano, S

    1992-08-01

    In mice, tonic convulsive seizure induced by intravenous administration of caffeine (adenosine A1, A2 receptors antagonist) was significantly potentiated by any one of L-PIA (adenosine A1 receptor agonist), NECA (adenosine A2 receptor agonist) and 2-ClAd (adenosine A1, A2 receptors agonist). The caffeine-induced seizure was unaffected by diazepam (benzodiazepine receptor agonist), but was inhibited by Ro 15-1788 (antagonist or partial agonist). beta-DMCM (antagonist or inverse agonist) increased the seizure. Muscimol (GABA-a receptor agonist), baclofen (GABA-b receptor agonist) and AOAA (GABA transaminase inhibitor) did not show significant effect on caffeine-induced convulsion. Bicuculline (GABA-a receptor antagonist) and picrotoxin (chloride channel blocker) significantly potentiated the convulsion at the doses which did not induce it. Caffeine-induced convulsion was potentiated by NMDA with its non-convulsive dose. CPP (competitive NMDA receptor antagonist) and MK-801 (non-competitive NMDA receptor antagonist) significantly inhibited the seizures. These results suggest that caffeine-induced seizure is not caused by blockade of adenosine receptors. Caffeine may act to beta-carboline sensitive benzodiazepine receptor (Type 1) which has no linkage with GABA-a receptor. Furthermore, it is implied that caffeine plays some role at NMDA receptor calcium ion channel complex.

  17. Molecular determinants of the species selectivity of neurokinin type 1 receptor antagonists.

    PubMed

    Pradier, L; Habert-Ortoli, E; Emile, L; Le Guern, J; Loquet, I; Bock, M D; Clot, J; Mercken, L; Fardin, V; Garret, C

    1995-02-01

    Most nonpeptide neurokinin (NK)1 antagonists display a marked difference in affinity for rat versus human NK1 receptors. The molecular basis for the species selectivity of RP67580 and CP96,345 has been previously addressed [J. Biol. Chem. 267:25668-25671 (1992); J. Biol. Chem. 268:2319-2323 (1993)]. We are extending these previous results to additional NK1 antagonists, which are members of different chemical families. Included is a new perhydroisoindolol, RPR100893, which unlike its parent compound (RP67580) is human receptor selective. Chimeric rat/human NK1 receptors, as well as rat and human mutant NK1 receptors, were constructed and expressed in COS-1 cells, and affinities for substance P and the various antagonists were determined in binding studies. With human receptor-selective antagonists, the rat R290(S-->I) mutation was the most effective in increasing antagonist affinity (from 7- to 23-fold). Combination with the R116(L-->V) mutation led to an additional increase in affinity for trans-4-hydroxy-1-(1H-indol-3-ylcarbonyl)-L-prolyl-N- methyl-N-(phenylmethyl)-L-tyrosineamide (a derivative of FK888) and to nearly full human receptor affinity for RPR100893 and (+/-)-CP99,994. Based on the gains in affinities, these results confirm and extend the role of residues 116 and 290 of the NK1 receptor in the species selectivity of these three new human receptor-selective NK1 antagonists. In comparison, the affinity of RP67580, the least selective molecule, was most affected by changes at position 116, and combination with mutations at either position 97 (V-->E) or position 290 led to the human receptor phenotype. For the heterosteroid KAN610857, modifications of the rat receptor at positions 97 and 290, and to a lesser degree position 116, were the most effective in reducing affinity. Two double-mutants [R(97,290) and R(116,290)], although different from those identified for RP67580, also displayed human receptor-like affinity. Therefore, the molecular determinants of

  18. Polydeoxyribonucleotides (PDRNs) From Skin to Musculoskeletal Tissue Regeneration via Adenosine A2A Receptor Involvement.

    PubMed

    Veronesi, Francesca; Dallari, Dante; Sabbioni, Giacomo; Carubbi, Chiara; Martini, Lucia; Fini, Milena

    2017-09-01

    Polydeoxyribonucleotides (PDRNs) are low molecular weight DNA molecules of natural origin that stimulate cell migration and growth, extracellular matrix (ECM) protein production, and reduce inflammation. Most preclinical and clinical studies on tissue regeneration with PDRNs focused on skin, and only few are about musculoskeletal tissues. Starting from an overview on skin regeneration studies, through the analysis of in vitro, in vivo, and clinical studies (1990-2016), the present review aimed at defining the effects of PDRN and their mechanisms of action in the regeneration of musculoskeletal tissues. This would also help future researches in this area. A total of 29 studies were found by PubMed and www.webofknowledge.com searches: 20 were on skin (six in vitro, six in vivo, one vitro/vivo, seven clinical studies), while the other nine regarded bone (one in vitro, two in vivo, one clinical studies), cartilage (one in vitro, one vitro/vivo, two clinical studies), or tendon (one clinical study) tissues regeneration. PDRNs improved cell growth, tissue repair, ECM proteins, physical activity, and reduced pain and inflammation, through the activation of adenosine A2A receptor. PDRNs are currently used for bone, cartilage, and tendon diseases, with a great variability regarding the PDRN dosage to be used in clinical practice, while the dosage for skin regeneration is well established. PDRNs are usually administered from a minimum of three to a maximum of five times and they act trough the activation of A2A receptor. Further studies are advisable to confirm the effectiveness of PDRNs and to standardize the PDRN dose. J. Cell. Physiol. 232: 2299-2307, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Neuroprotection by caffeine in the MPTP model of Parkinson’s disease and its dependence on adenosine A2A receptors

    PubMed Central

    Xu, Kui; Di Luca, Daniel Garbin; Orrú, Marco; Xu, Yuehang; Chen, Jiang-Fan; Schwarzschild, Michael A.

    2016-01-01

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of Parkinson’s disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine’s neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on MPTP neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in CNS cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25 mg/kg ip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine’s locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. PMID:26905951

  20. Pharmacological analysis of CCK2 receptor antagonists using isolated rat stomach ECL cells

    PubMed Central

    Lindström, Erik; Björkqvist, Maria; Håkanson, Rolf

    1999-01-01

    Gastrin stimulates rat stomach ECL cells to secrete histamine and pacreastatin, a chromogranin A (CGA)-derived peptide. The present report describes the effect of nine cholecystokinin2 (CCK2) receptor antagonists and one CCK1 receptor antagonist on the gastrin-evoked secretion of pancreastatin from isolated ECL cells.The CCK2 receptor antagonists comprised three benzodiazepine derivatives L-740,093, YM022 and YF476, one ureidoacetamide compound RP73870, one benzimidazole compound JB 93182, one ureidoindoline compound AG041R and three tryptophan dipeptoids PD 134308 (CI988), PD135158 and PD 136450. The CCK1 receptor antagonist was devazepide.A preparation of well-functioning ECL cells (∼80% purity) was prepared from rat oxyntic mucosa using counter-flow elutriation. The cells were cultured for 48 h in the presence of 0.1 nM gastrin; they were then washed and incubated with antagonist alone or with various concentrations of antagonist plus 10 nM gastrin (a maximally effective concentration) for 30 min. Gastrin dose-response curves were constructed in the absence or presence of increasing concentrations of antagonist. The amount of pancreastatin secreted was determined by radioimmunoassay.The gastrin-evoked secretion of pancreastatin was inhibited in a dose-dependent manner. YM022, AG041R and YF476 had IC50 values of 0.5, 2.2 and 2.7 nM respectively. L-740,093, JB93182 and RP73870 had IC50 values of 7.8, 9.3 and 9.8 nM, while PD135158, PD136450 and PD134308 had IC50 values of 76, 135 and 145 nM. The CCK1 receptor antagonist devazepide was a poor CCK2 receptor antagonist with an IC50 of about 800 nM.YM022, YF476 and AG041R were chosen for further analysis. YM022 and YF476 shifted the gastrin dose-response curve to the right in a manner suggesting competitive antagonism, while the effects of AG041R could not be explained by simple competitive antagonism. pKB values were 11.3 for YM022, 10.8 for YF476 and the apparent pKB for AG041R was 10.4. PMID

  1. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Popoli, Patrizia; Varani, Katia

    2013-09-01

    Adenosine, a purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors (ARs), is a potent endogenous modulator of inflammatory and neuronal processes involved in the pathophysiology of several neurodegenerative diseases. In the present study, ARs were investigated in lymphocytes from patients with amyotrophic lateral sclerosis (ALS) and compared with age-matched healthy subjects. In ALS patients A2AARs were analysed by using RT-PCR, Western blotting and saturation binding experiments. The effect of A2AAR stimulation on cyclic AMP levels was evaluated in lymphocytes from ALS patients and healthy subjects. An up-regulation of A2AARs was observed in ALS patients with respect to healthy subjects while A1, A2B and A3AR affinity and density did not change. In ALS patients, the A2AAR density values correlated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Furthermore, the stimulation of A2AARs mediated a significant increase in cyclic AMP levels in lymphocytes from ALS patients, with a higher potency than in lymphocytes from healthy subjects. In conclusion, the positive correlation between A2AAR density and ALSFRS-R scores could indicate a possible protective effect of this receptor subtype, representing an interesting starting point for the study of alternative therapeutic approaches for ALS based on A2AAR modulation.

  2. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  3. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia.

    PubMed

    Villar-Menéndez, Izaskun; Díaz-Sánchez, Sara; Blanch, Marta; Albasanz, José Luis; Pereira-Veiga, Thais; Monje, Alfonso; Planchat, Luis Maria; Ferrer, Isidre; Martín, Mairena; Barrachina, Marta

    2014-04-01

    Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity. It has also been proposed that there is a hypoadenosynergic state. Adenosine is a nucleoside widely distributed in the organism with neuromodulative and neuroprotective activity in the central nervous system. In the brain, the most abundant adenosine receptors are A1R and A2AR. In the present report, we characterize the presence of both receptors in human postmortem putamens of patients suffering SZ with real time TaqMan PCR, western blotting and radioligand binding assay. We show that A1R levels remain unchanged with respect to age-matched controls, whereas nearly fifty percent of patients have reduced A2AR, at the transcriptional and translational levels. Moreover, we describe how DNA methylation plays a role in the pathological A2AR levels with the bisulfite-sequencing technique. In fact, an increase in 5-methylcytosine percentage in the 5' UTR region of ADORA2A was found in those SZ patients with reduced A2AR levels. Interestingly, there was a relationship between the A2A/β-actin ratio and motor disturbances as assessed with some items of the PANSS, AIMS and SAS scales. Therefore, there may be a subgroup of SZ patients with reduced striatal A2AR levels accompanied by an altered motor phenotype.

  4. Inverse agonism of histamine H2 antagonist accounts for upregulation of spontaneously active histamine H2 receptors.

    PubMed Central

    Smit, M J; Leurs, R; Alewijnse, A E; Blauw, J; Van Nieuw Amerongen, G P; Van De Vrede, Y; Roovers, E; Timmerman, H

    1996-01-01

    Histamine H2 receptors transfected in Chinese hamster ovary (CHO) cells are time- and dose-dependently upregulated upon exposure to the H2 antagonists cimetidine and ranitidine. This effect appears to be H2 receptor-mediated as no change in receptor density was observed after H1 or H3 antagonist treatment or after incubation with the structural analogue of cimetidine, VUF 8299, which has no H2 antagonistic effects. By using transfected CHO cells expressing different densities of wild-type H2 receptors or an uncoupled H2Leu124Ala receptor, the histamine H2 receptor was found to display considerable agonist-independent H2 receptor activity. Cimetidine and ranitidine, which both induce H2 receptor upregulation, actually functioned as inverse agonists in those cell lines displaying spontaneous agonist-independent H2 receptor activity. Burimamide, on the other hand, was shown to act as a neutral antagonist and did as expected not induce H2 receptor upregulation after long-term exposure. The displayed inverse agonism of H2 antagonists appears to be a mechanistic basis for the observed H2 antagonist-induced H2 receptor upregulation in transfected CHO cells. These observations shed new light on the pharmacological classification of the H2 antagonists and may offer a plausible explanation for the observed development of tolerance after prolonged clinical use. Images Fig. 3 PMID:8692899

  5. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking

    PubMed Central

    McNally, Gavan P.; Clemens, Kelly J.

    2017-01-01

    The orexin/hypocretin system is important for appetitive motivation towards multiple drugs of abuse, including nicotine. Both OX1 and OX2 receptors individually have been shown to influence nicotine self-administration and reinstatement. Due to the increasing clinical use of dual orexin receptor antagonists in the treatment of disorders such as insomnia, we examined whether a dual orexin receptor antagonist may also be effective in reducing nicotine seeking. We tested the effect of intracerebroventricular (i.c.v.) administration of the potent and selective dual orexin receptor antagonist TCS1102 on orexin-A-induced food self-administration, nicotine self-administration and reinstatement of nicotine-seeking in rats. Our results show that 30 μg of TCS1102 i.c.v. abolishes orexin-A-induced increases in food self-administration but does not reduce nicotine self-administration. Neither i.c.v. 10 μg nor 30 μg of TCS1102 reduced compound reinstatement after short-term (15 days) self-administration nicotine, but 30 μg transiently reduced cue/nicotine compound reinstatement after chronic self-administration (29 days). These results indicate that TCS1102 has no substantial effect on motivation for nicotine seeking following chronic self-administration and no effect after shorter periods of intake. Orexin receptor antagonists may therefore have little clinical utility against nicotine addiction. PMID:28296947

  6. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking.

    PubMed

    Khoo, Shaun Yon-Seng; McNally, Gavan P; Clemens, Kelly J

    2017-01-01

    The orexin/hypocretin system is important for appetitive motivation towards multiple drugs of abuse, including nicotine. Both OX1 and OX2 receptors individually have been shown to influence nicotine self-administration and reinstatement. Due to the increasing clinical use of dual orexin receptor antagonists in the treatment of disorders such as insomnia, we examined whether a dual orexin receptor antagonist may also be effective in reducing nicotine seeking. We tested the effect of intracerebroventricular (i.c.v.) administration of the potent and selective dual orexin receptor antagonist TCS1102 on orexin-A-induced food self-administration, nicotine self-administration and reinstatement of nicotine-seeking in rats. Our results show that 30 μg of TCS1102 i.c.v. abolishes orexin-A-induced increases in food self-administration but does not reduce nicotine self-administration. Neither i.c.v. 10 μg nor 30 μg of TCS1102 reduced compound reinstatement after short-term (15 days) self-administration nicotine, but 30 μg transiently reduced cue/nicotine compound reinstatement after chronic self-administration (29 days). These results indicate that TCS1102 has no substantial effect on motivation for nicotine seeking following chronic self-administration and no effect after shorter periods of intake. Orexin receptor antagonists may therefore have little clinical utility against nicotine addiction.

  7. A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist

    SciTech Connect

    Tolbert, W. David; Daugherty, Jennifer; Gao, ChongFeng; Xie, Qian; Miranti, Cindy; Gherardi, Ermanno; Vande Woude, George; Xu, H. Eric

    2010-03-08

    Hepatocyte growth factor (HGF) activates the Met receptor tyrosine kinase by binding and promoting receptor dimerization. Here we describe a mechanistic basis for designing Met antagonists based on NK1, a natural variant of HGF containing the N-terminal and the first kringle domain. Through detailed biochemical and structural analyses, we demonstrate that both mouse and human NK1 induce Met dimerization via a conserved NK1 dimer interface. Mutations designed to alter the NK1 dimer interface abolish its ability to promote Met dimerization but retain full Met-binding activity. Importantly, these NK1 mutants act as Met antagonists by inhibiting HGF-mediated cell scattering, proliferation, branching, and invasion. The ability to separate the Met-binding activity of NK1 from its Met dimerization activity thus provides a rational basis for designing Met antagonists. This strategy of antagonist design may be applicable for other growth factor receptors by selectively abolishing the receptor activation ability but not the receptor binding of the growth factors.

  8. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy.

    PubMed

    Sato, Atsuhisa

    2015-06-01

    Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain 'long-term' antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy. However, many studies have shown promise of better renoprotective effects if mineralocorticoid receptor antagonists are appropriately used.

  9. Modification of formalin-induced nociception by different histamine receptor agonists and antagonists.

    PubMed

    Farzin, Davood; Nosrati, Farnaz

    2007-01-15

    The present study evaluated the effects of different histamine receptor agonists and antagonists on the nociceptive response in the mouse formalin test. Intracerebroventricular (20-40 microg/mouse i.c.v.) or subcutaneous (1-10 mg/kg s.c.) injection of HTMT (H(1) receptor agonist) elicited a dose-related hyperalgesia in the early and late phases. Conversely, intraperitoneal (20 and 30 mg/kg i.p.) injection of dexchlorpheniramine (H(1) receptor antagonist) was antinociceptive in both phases. At a dose ineffective per se, dexchlorpheniramine (10 mg/kg i.p.) antagonized the hyperalgesia induced by HTMT (40 mug/mouse i.c.v. or 10 mg/kg s.c.). Dimaprit (H(2) receptor agonist, 30 mg/kg i.p.) and ranitidine (H(2) receptor antagonist, 20 and 40 mg/kg i.p.) reduced the nociceptive responses in the early and late phases. No significant change in the antinociceptive activity was found following the combination of dimaprit (30 mg/kg i.p.) with ranitidine (10 mg/kg i.p.). The antinociceptive effect of dimaprit (30 mg/kg i.p.) was prevented by naloxone (5 mg/kg i.p.) in the early phase or by imetit (H(3) receptor agonist, 25 mg/kg i.p.) in both early and late phases. The histamine H(3) receptor agonist imetit was hyperalgesic following i.p. administration of 50 mg/kg. Imetit-induced hyperalgesia was completely prevented by treatment with a dose ineffective per se of thioperamide (H(3) receptor antagonist, 5 mg/kg i.p.). The results suggest that histamine H(1) and H(3) receptor activations increase sensitivity to nociceptive stimulus in the formalin test.

  10. SRA880, in vitro characterization of the first non-peptide somatostatin sst(1) receptor antagonist.

    PubMed

    Hoyer, D; Nunn, C; Hannon, J; Schoeffter, P; Feuerbach, D; Schuepbach, E; Langenegger, D; Bouhelal, R; Hurth, K; Neumann, P; Troxler, T; Pfaeffli, P

    2004-05-06

    This report describes the in vitro features of the first somatostatin sst(1) receptor selective non-peptide antagonist, SRA880 ([3R,4aR,10aR]-1,2,3,4,4a,5,10,10a-Octahydro-6-methoxy-1-methyl-benz[g] quinoline-3-carboxylic-acid-4-(4-nitro-phenyl)-piperazine-amide, hydrogen malonate). SRA was evaluated in a number of in vitro systems of various species, both at native and recombinant receptors, using radioligand binding and second messenger/transduction studies. SRA880 has high affinity for native rat, mouse, monkey and human cerebral cortex somatostatin sst(1) receptors (pK(d) = 7.8-8.6) and for human recombinant sst(1) receptors (pK(d) = 8.0-8.1). SRA880 displayed significantly lower affinity for the other human recombinant somatostatin receptors ( pK(d) < or = 6.0) or a wide range of neurotransmitter receptors, except for the human dopamine D4 receptors. SRA880 was characterized in various transduction assays: somatotropin release inhibiting factor (SRIF) induced inhibition of forskolin-stimulated cAMP accumulation, SRIF stimulated-GTPgammaS binding, and SRIF stimulated luciferase gene expression; in all tests, SRA880 was devoid of intrinsic activity and acted as an apparently surmountable antagonist with pK(B) values of 7.5-7.7. Combined with the data from binding studies, these results suggest that SRA880 acts as a competitive antagonist. Thus, SRA880 is the first non-peptide somatostatin sst(1) receptor antagonist to be reported; SRA880 will be a useful tool for the characterization of somatostatin sst(1) receptor-mediated effects both in vitro and in vivo.

  11. Identification of three muscarinic receptor subtypes in rat lung using binding studies with selective antagonists

    SciTech Connect

    Fryer, A.D.; El-Fakahany, E.E. )

    1990-01-01

    Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against ({sup 3}H)quinuclidinyl benzilate (({sup 3}H)QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced ({sup 3}H)QNB with low affinity from preparations of central airways indicating the absence of M{sub 1} receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M{sub 2} and M{sub 3} receptors since AF-DX 116, an M{sub 2}-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M{sub 3}-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M{sub 1} receptors in the peripheral airways but not in the central airways was confirmed using ({sup 3}H)telenzepine, an M{sub 1} receptor ligand. ({sup 3}H)Telenzepine showed specific saturable binding to 8% of ({sup 3}H)QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart.

  12. Emerging interleukin receptor antagonists for the treatment of asthma.

    PubMed

    Al Efraij, Khalid; FitzGerald, J Mark

    2017-09-01

    Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation. Most patients with asthma can be well-controlled with inhaled corticosteroids and, if necessary, the addition of a long-acting beta agonist. Despite these therapies, 5% to 10% of patients with asthma have severe, uncontrolled asthma. Selecting patients based on peripheral eosinophil counts and a history of exacerbations has led to significant decreases in exacerbations and an improvement in asthma control with medications that target IL-4, IL-5 and IL-13/. Areas covered: This review will cover the definition of severe asthma, existing treatment options, biomarkers, and the emerging role of interleukin antagonists in the treatment of severe asthma. Expert opinion: IL antagonists are novel drugs targeting important inflammatory cytokines in asthma. Anti-IL-5 drugs provide the most promise as they have obtained regulatory approval and are available for use. Anti-IL-4 drug results are also promising. There is, however, uncertainty regarding the success of anti-IL-13 drugs development at this point. An ongoing focus of research is to significantly increase our understanding of the biology of asthma, and in particular severe asthma, making more and better targeted therapies. There may also be potential in the future to use these new drugs earlier in the development of asthma, as disease-modifying interventions that might be associated with remission or even cure.

  13. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  14. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  15. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  16. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  17. Human monocytes respond to extracellular cAMP through A2A and A2B adenosine receptors

    PubMed Central

    Sciaraffia, Ester; Riccomi, Antonella; Lindstedt, Ragnar; Gesa, Valentina; Cirelli, Elisa; Patrizio, Mario; De Magistris, Maria Teresa; Vendetti, Silvia

    2014-01-01

    In this study, we test the hypothesis that cAMP, acting as an extracellular mediator, affects the physiology and function of human myeloid cells. The cAMP is a second messenger recognized as a universal regulator of several cellular functions in different organisms. Many studies have shown that extracellular cAMP exerts regulatory functions, acting as first mediator in multiple tissues. However, the impact of extracellular cAMP on cells of the immune system has not been fully investigated. We found that human monocytes exposed to extracellular cAMP exhibit higher expression of CD14 and lower amount of MHC class I and class II molecules. When cAMP-treated monocytes are exposed to proinflammatory stimuli, they exhibit an increased production of IL-6 and IL-10 and a lower amount of TNF-α and IL-12 compared with control cells, resembling the features of the alternative-activated macrophages or M2 macrophages. In addition, we show that extracellular cAMP affects monocyte differentiation into DCs, promoting the induction of cells displaying an activated, macrophage-like phenotype with reduced capacity of polarized, naive CD4+ T cells into IFN-γ-producing lymphocytes compared with control cells. The effects of extracellular cAMP on monocytes are mediated by CD73 ecto-5′-nucleotidase and A2A and A2B adenosine receptors, as selective antagonists could reverse its effects. Of note, the expression of CD73 molecules has been found on the membrane of a small population of CD14+CD16+ monocytes. These findings suggest that an extracellular cAMP-adenosine pathway is active in cells of the immune systems. PMID:24652540

  18. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2.

    PubMed

    Mediero, Aránzazu; Wilder, Tuere; Perez-Aso, Miguel; Cronstein, Bruce N

    2015-04-01

    Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration. © FASEB.

  19. Identification of Trisubstituted-pyrazol Carboxamide Analogs as Novel and Potent Antagonists of Farnesoid X Receptor

    PubMed Central

    Yu, Donna D.; Lin, Wenwei; Forman, Barry M.; Chen, Taosheng

    2014-01-01

    Farnesoid X receptor (FXR, NRIH4) plays a major role in the control of cholesterol metabolism. This suggests that antagonizing the transcriptional activity of FXR is a potential means to treat cholestasis and related metabolic disorders. Here we describe the synthesis, biological evaluation, and structure-activity relationship (SAR) studies of trisubstituted-pyrazol carboxamides as novel and potent FXR antagonists. One of these novel FXR antagonists, 4j has an IC50 of 7.5 nM in an FXR binding assay and 468.5 nM in a cell-based FXR antagonistic assay. Compound 4j has no detectable FXR agonistic activity or cytotoxicity. Notably, 4j is the most potent FXR antagonist identified to date; it has a promising in vitro profile and could serve as an excellent chemical tool to elucidate the biological function of FXR. PMID:24775917

  20. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    PubMed

    Gatfield, John; Mueller Grandjean, Celia; Sasse, Thomas; Clozel, Martine; Nayler, Oliver

    2012-01-01

    Two endothelin receptor antagonists (ERAs), bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH), a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC). The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1)) assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b) values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2)) compared to bosentan and ambrisentan (ROt(1/2):17 minutes versus 70 seconds and 40 seconds, respectively). Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1) assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1) concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2) rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive ERA with

  1. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function

    PubMed Central

    Batalha, Vânia L.; Ferreira, Diana G.; Coelho, Joana E.; Valadas, Jorge S.; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E.; Hamdane, Malika; Outeiro, Tiago F.; Bader, Michael; Meijsing, Sebastiaan H.; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V.

    2016-01-01

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer’s disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer’s and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  2. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunc