Science.gov

Sample records for a2ar ko mice

  1. GPR88 in A2AR Neurons Enhances Anxiety-Like Behaviors.

    PubMed

    Meirsman, Aura Carole; Robé, Anne; de Kerchove d'Exaerde, Alban; Kieffer, Brigitte Lina

    2016-01-01

    GPR88 is an orphan G-protein-coupled receptor highly expressed in striatal dopamine D1 (receptor) R- and D2R-expressing medium spiny neurons. This receptor is involved in activity and motor responses, and we previously showed that this receptor also regulates anxiety-like behaviors. To determine whether GPR88 in D2R-expressing neurons contributes to this emotional phenotype, we generated conditional Gpr88 knock-out mice using adenosine A2AR (A2AR)-Cre-driven recombination, and compared anxiety-related responses in both total and A2AR-Gpr88 KO mice. A2AR-Gpr88 KO mice showed a selective reduction of Gpr88 mRNA in D2R-expressing, but not D1R-expressing, neurons. These mutant mice showed increased locomotor activity and decreased anxiety-like behaviors in light/dark and elevated plus maze tests. These phenotypes were superimposable on those observed in total Gpr88 KO mice, demonstrating that the previously reported anxiogenic activity of GPR88 operates at the level of A2AR-expressing neurons. Further, A2AR-Gpr88 KO mice showed no change in novelty preference and novelty-suppressed feeding, while these responses were increased and decreased, respectively, in the total Gpr88 KO mice. Also, A2AR-Gpr88 KO mice showed intact fear conditioning, while the fear responses were decreased in total Gpr88 KO. We therefore also show for the first time that GPR88 activity regulates approach behaviors and conditional fear; however, these behaviors do not seem mediated by receptors in A2AR neurons. We conclude that Gpr88 expressed in A2AR neurons enhances ethological anxiety-like behaviors without affecting conflict anxiety and fear responses. PMID:27570825

  2. GPR88 in A2AR Neurons Enhances Anxiety-Like Behaviors

    PubMed Central

    Meirsman, Aura Carole; Robé, Anne

    2016-01-01

    Abstract GPR88 is an orphan G-protein-coupled receptor highly expressed in striatal dopamine D1 (receptor) R- and D2R-expressing medium spiny neurons. This receptor is involved in activity and motor responses, and we previously showed that this receptor also regulates anxiety-like behaviors. To determine whether GPR88 in D2R-expressing neurons contributes to this emotional phenotype, we generated conditional Gpr88 knock-out mice using adenosine A2AR (A2AR)-Cre-driven recombination, and compared anxiety-related responses in both total and A2AR-Gpr88 KO mice. A2AR-Gpr88 KO mice showed a selective reduction of Gpr88 mRNA in D2R-expressing, but not D1R-expressing, neurons. These mutant mice showed increased locomotor activity and decreased anxiety-like behaviors in light/dark and elevated plus maze tests. These phenotypes were superimposable on those observed in total Gpr88 KO mice, demonstrating that the previously reported anxiogenic activity of GPR88 operates at the level of A2AR-expressing neurons. Further, A2AR-Gpr88 KO mice showed no change in novelty preference and novelty-suppressed feeding, while these responses were increased and decreased, respectively, in the total Gpr88 KO mice. Also, A2AR-Gpr88 KO mice showed intact fear conditioning, while the fear responses were decreased in total Gpr88 KO. We therefore also show for the first time that GPR88 activity regulates approach behaviors and conditional fear; however, these behaviors do not seem mediated by receptors in A2AR neurons. We conclude that Gpr88 expressed in A2AR neurons enhances ethological anxiety-like behaviors without affecting conflict anxiety and fear responses. PMID:27570825

  3. Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice.

    PubMed

    Li, Ke; Gong, Xia; Kuang, Ge; Jiang, Rong; Wan, Jingyuan; Wang, Bin

    2016-01-01

    Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury with high morbidity and mortality due to limited therapy. Here, we examine whether sesamin attenuates renal IRI in an animal model and explore the underlying mechanisms. Male mice were subjected to right renal ischemia for 30 min followed by reperfusion for 24 h with sesamin (100 mg/kg) during which the left kidney was removed. Renal damage and function were assessed subsequently. The results showed that sesamin reduced kidney ischemia reperfusion injury, as assessed by decreased serum creatinine (Scr) and Blood urea nitrogen (BUN), alleviated tubular damage and apoptosis. In addition, sesamin inhibited neutrophils infiltration and pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in IR-preformed kidney. Notably, sesamin promoted the expression of CD39, A2A adenosine receptor (A2AAR), and A2BAR mRNA and protein as well as adenosine production. Furthermore, CD39 inhibitor or A2AR antagonist abolished partly the protection of sesamin in kidney IRI. In conclusion, sesamin could effectively protect kidney from IRI by inhibiting inflammatory responses, which might be associated with promoting the adenosine-CD39-A2AR signaling pathway. PMID:27347331

  4. Organ Correlation with Tryptophan Metabolism Obtained by Analyses of TDO-KO and QPRT-KO Mice

    PubMed Central

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2016-01-01

    The aim of this article is to report the organ-specific correlation with tryptophan (Trp) metabolism obtained by analyses of tryptophan 2,3-dioxygenase knockout (TDO-KO) and quinolinic acid phosphoribosyltransferase knockout (QPRT-KO) mice models. We found that TDO-KO mice could biosynthesize the necessary amount of nicotinamide (Nam) from Trp, resulting in the production of key intermediate, 3-hydroxyanthranilic acid. Upstream metabolites, such as kynurenic acid and xanthurenic acid, in the urine were originated from nonhepatic tissues, and not from the liver. In QPRT-KO mice, the Trp to quinolinic acid conversion ratio was 6%; this value was higher than expected. Furthermore, we found that QPRT activity in hetero mice was half of that in wild-type (WT) mice. Urine quinolinic acid levels remain unchanged in both hetero and WT mice, and the conversion ratio of Trp to Nam was also unaffected. Collectively, these findings show that QPRT was not the rate-limiting enzyme in the conversion. In conclusion, the limiting factors in the conversion of Trp to Nam are the substrate amounts of 3-hydroxyanthranilic acid and activity of 3-hydroxyanthranilic acid 3,4-dioxygenase in the liver. PMID:27147825

  5. Skeletal effects of a gastrin receptor antagonist in H+/K+ATPase beta subunit KO mice.

    PubMed

    Aasarød, Kristin M; Ramezanzadehkoldeh, Masoud; Shabestari, Maziar; Mosti, Mats P; Stunes, Astrid K; Reseland, Janne E; Beisvag, Vidar; Eriksen, Erik Fink; Sandvik, Arne K; Erben, Reinhold G; Schüler, Christiane; Boyce, Malcolm; Skallerud, Bjørn H; Syversen, Unni; Fossmark, Reidar

    2016-08-01

    Epidemiological studies suggest an increased fracture risk in patients taking proton pump inhibitors (PPIs) for long term. The underlying mechanism, however, has been disputed. By binding to the gastric proton pump, PPIs inhibit gastric acid secretion. We have previously shown that proton pump (H(+)/K(+)ATPase beta subunit) KO mice exhibit reduced bone mineral density (BMD) and inferior bone strength compared with WT mice. Patients using PPIs as well as these KO mice exhibit gastric hypoacidity, and subsequently increased serum concentrations of the hormone gastrin. In this study, we wanted to examine whether inhibition of the gastrin/CCK2 receptor influences bone quality in these mice. KO and WT mice were given either the gastrin/CCK2 receptor antagonist netazepide dissolved in polyethylene glycol (PEG) or only PEG for 1year. We found significantly lower bone mineral content and BMD, as well as inferior bone microarchitecture in KO mice compared with WT. Biomechanical properties by three-point bending test also proved inferior in KO mice. KO mice receiving netazepide exhibited significantly higher cortical thickness, cortical area fraction, trabecular thickness and trabecular BMD by micro-CT compared with the control group. Three-point bending test also showed higher Young's modulus of elasticity in the netazepide KO group compared with control mice. In conclusion, we observed that the gastrin receptor antagonist netazepide slightly improved bone quality in this mouse model, suggesting that hypergastrinemia may contribute to deteriorated bone quality during acid inhibition. PMID:27325243

  6. AHNAK KO mice are protected from diet-induced obesity but are glucose intolerant.

    PubMed

    Ramdas, M; Harel, C; Armoni, M; Karnieli, E

    2015-04-01

    AHNAK is a 700 KD phosphoprotein primarily involved in calcium signaling in various cell types and regulating cytoskeletal organization and cell membrane architecture. AHNAK expression has also been associated with obesity. To investigate the role of AHNAK in regulating metabolic homeostasis, we studied whole body AHNAK knockout mice (KO) on either regular chow or high-fat diet (HFD). KO mice had a leaner phenotype and were resistant to high-fat diet-induced obesity (DIO), as reflected by a reduction in adipose tissue mass in conjunction with higher lean mass compared to wild-type controls (WT). However, KO mice exhibited higher fasting glucose levels, impaired glucose tolerance, and diminished serum insulin levels on either diet. Concomitantly, KO mice on HFD displayed defects in insulin signaling, as evident from reduced Akt phosphorylation and decreased cellular glucose transporter (Glut4) levels. Glucose intolerance and insulin resistance were also associated with changes in expression of genes regulating fat, glucose, and energy metabolism in adipose tissue and liver. Taken together, these data demonstrate that (a) AHNAK is involved in glucose homeostasis and weight balance (b) under normal feeding KO mice are insulin sensitive yet insulin deficient; and (c) AHNAK deletion protects against HFD-induced obesity, but not against HFD-induced insulin resistance and glucose intolerance in vivo.

  7. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice

    PubMed Central

    Willershäuser, Monja; Jastroch, Martin; Rourke, Bryan C.; Fromme, Tobias; Oelkrug, Rebecca; Heldmaier, Gerhard; Klingenspor, Martin

    2010-01-01

    We compared maximal cold-induced heat production (HPmax) and cold limits between warm (WA; 27°C), moderate cold (MCA; 18°C), or cold acclimated (CA; 5°C) wild-type and uncoupling-protein 1 knockout (UCP1-KO) mice. In wild-type mice, HPmax was successively increased after MCA and CA, and the cold limit was lowered to −8.3°C and −18.0°C, respectively. UCP1-KO mice also increased HPmax in response to MCA and CA, although to a lesser extent. Direct comparison revealed a maximal cold-induced recruitment of heat production by +473 mW and +227 mW in wild-type and UCP1-KO mice, respectively. The increase in cold tolerance of UCP1-KO mice from −0.9°C in MCA to −10.1°C in CA could not be directly related to changes in HPmax, indicating that UCP1-KO mice used the dissipated heat more efficiently than wild-type mice. As judged from respiratory quotients, acutely cold-challenged UCP1-KO mice showed a delayed transition toward lipid oxidation, and 5-h cold exposure revealed diminished physical activity and less variability in the control of metabolic rate. We conclude that BAT is required for maximal adaptive thermogenesis but also allows metabolic flexibility and a rapid switch toward sustained lipid-fuelled thermogenesis as an acute response to cold. In both CA groups, expression of contractile proteins (myosin heavy-chain isoforms) showed minor training effects in skeletal muscles, while cardiac muscle of UCP1-KO mice had novel expression of beta cardiac isoform. Neither respiration nor basal proton conductance of skeletal muscle mitochondria were different between genotypes. In subcutaneous white adipose tissue of UCP1-KO mice, cold exposure increased cytochrome-c oxidase activity and expression of the cell death-inducing DFFA-like effector A by 3.6-fold and 15-fold, respectively, indicating the recruitment of mitochondria-rich brown adipocyte-like cells. Absence of functional BAT leads to remodeling of white adipose tissue, which may significantly contribute

  8. Vertical sleeve gastrectomy restores glucose homeostasis in apolipoprotein A-IV KO mice.

    PubMed

    Pressler, Josh W; Haller, April; Sorrell, Joyce; Wang, Fei; Seeley, Randy J; Tso, Patrick; Sandoval, Darleen A

    2015-02-01

    Bariatric surgery is the most successful strategy for treating obesity, yet the mechanisms for this success are not clearly understood. Clinical literature suggests that plasma levels of apolipoprotein A-IV (apoA-IV) rise with Roux-en-Y gastric bypass (RYGB). apoA-IV is secreted from the intestine postprandially and has demonstrated benefits for both glucose and lipid homeostasis. Because of the parallels in the metabolic improvements seen with surgery and the rise in apoA-IV levels, we hypothesized that apoA-IV was necessary for obtaining the metabolic benefits of bariatric surgery. To test this hypothesis, we performed vertical sleeve gastrectomy (VSG), a surgery with clinical efficacy very similar to that for RYGB, in whole-body apoA-IV knockout (KO) mice. We found that VSG reduced body mass and improved both glucose and lipid homeostasis similarly in wild-type mice compared with apoA-IV KO mice. In fact, VSG normalized the impairment in glucose tolerance and caused a significantly greater improvement in hepatic triglyceride storage in the apoA-IV KO mice. Last, independent of surgery, apoA-IV KO mice had a significantly reduced preference for a high-fat diet. Altogether, these data suggest that apoA-IV is not necessary for the metabolic improvements shown with VSG, but also suggest an interesting role for apoA-IV in regulating macronutrient preference and hepatic triglyceride levels. Future studies are necessary to determine whether this is the case for RYGB as well.

  9. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation. PMID:27484105

  10. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  11. Echium Oil Reduces Atherosclerosis in apoB100-only LDLrKO Mice

    PubMed Central

    Forrest, Lolita M.; Boudyguina, Elena; Wilson, Martha D.; Parks, John S.

    2012-01-01

    Introduction The anti-atherogenic and hypotriglyceridemic properties of fish oil are attributed to its enrichment in eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Echium oil contains stearidonic acid (SDA; 18:4, n-3), which is metabolized to EPA in humans and mice, resulting in decreased plasma triglycerides. Objective We used apoB100 only, LDLrKO mice to investigate whether echium oil reduces atherosclerosis. Methods Mice were fed palm, echium, or fish oil-containing diets for 16 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured. Results Compared to palm oil, echium oil feeding resulted in significantly less plasma triglyceride and cholesterol levels, and atherosclerosis, comparable to that of fish oil. Conclusion This is the first report that echium oil is anti-atherogenic, suggesting that it may be a botanical alternative to fish oil for atheroprotection. PMID:22100249

  12. Expression pattern of immediate early genes in the cerebellum of D1R KO, D2R KO, and wild type mice under vestibular-controlled activity.

    PubMed

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Sasaoka, Toshikuni; Yamamori, Tetsuo

    2015-01-01

    We previously reported the different motor abilities of D1R knockout (KO), D2R KO and wild-type (WT) mice. To understand the interaction between the cerebellum and the striatal direct and indirect pathways, we examined the expression patterns of immediate early genes (IEG) in the cerebellum of these three genotypes of mice. In the WT naive mice, there was little IEG expression. However, we observed a robust expression of c-fos mRNA in the vermis and hemisphere after running rota-rod tasks. In the vermis, c-fos was expressed throughout the lobules except lobule 7, and also in crus 1 of the ansiform lobule (Crus1), copula of the pyramis (Cop) and most significantly in the flocculus in the hemisphere. jun-B was much less expressed but more preferentially expressed in Purkinje cells. In addition, we observed significant levels of c-fos and jun-B expressions after handling mice, and after the stationary rota-rod task in naive mice. Surprisingly, we observed significant expression of c-fos and jun-B even 30 min after single weighing. Nonetheless, certain additional c-fos and jun-B expressions were observed in three genotypes of the mice that experienced several sessions of motor tasks 24 h after stationary rota-rod task and on days 1 and 5 after rota-rod tasks, but no significant differences in expressions after the running rota-rod tasks were observed among the three genotypes. In addition, there may be some differences 24 h after the stationary rota-rod task between the naive mice and the mice that experienced several sessions of motor tasks.

  13. Expression pattern of immediate early genes in the cerebellum of D1R KO, D2R KO, and wild type mice under vestibular-controlled activity

    PubMed Central

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Sasaoka, Toshikuni; Yamamori, Tetsuo

    2015-01-01

    We previously reported the different motor abilities of D1R knockout (KO), D2R KO and wild-type (WT) mice. To understand the interaction between the cerebellum and the striatal direct and indirect pathways, we examined the expression patterns of immediate early genes (IEG) in the cerebellum of these three genotypes of mice. In the WT naive mice, there was little IEG expression. However, we observed a robust expression of c-fos mRNA in the vermis and hemisphere after running rota-rod tasks. In the vermis, c-fos was expressed throughout the lobules except lobule 7, and also in crus 1 of the ansiform lobule (Crus1), copula of the pyramis (Cop) and most significantly in the flocculus in the hemisphere. jun-B was much less expressed but more preferentially expressed in Purkinje cells. In addition, we observed significant levels of c-fos and jun-B expressions after handling mice, and after the stationary rota-rod task in naive mice. Surprisingly, we observed significant expression of c-fos and jun-B even 30 min after single weighing. Nonetheless, certain additional c-fos and jun-B expressions were observed in three genotypes of the mice that experienced several sessions of motor tasks 24 h after stationary rota-rod task and on days 1 and 5 after rota-rod tasks, but no significant differences in expressions after the running rota-rod tasks were observed among the three genotypes. In addition, there may be some differences 24 h after the stationary rota-rod task between the naive mice and the mice that experienced several sessions of motor tasks. PMID:26137459

  14. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-01

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. PMID:27589891

  15. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-01

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes.

  16. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    PubMed

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis.

  17. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice

    PubMed Central

    Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W.; Saito, Mitsuo

    2015-01-01

    Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration. PMID:26063460

  18. Both chronic treatments by epothilone D and fluoxetine increase the short-term memory and differentially alter the mood status of STOP/MAP6 KO mice.

    PubMed

    Fournet, Vincent; de Lavilléon, Gaetan; Schweitzer, Annie; Giros, Bruno; Andrieux, Annie; Martres, Marie-Pascale

    2012-12-01

    Recent evidence underlines the crucial role of neuronal cytoskeleton in the pathophysiology of psychiatric diseases. In this line, the deletion of STOP/MAP6 (Stable Tubule Only Polypeptide), a microtubule-stabilizing protein, triggers various neurotransmission and behavioral defects, suggesting that STOP knockout (KO) mice could be a relevant experimental model for schizoaffective symptoms. To establish the predictive validity of such a mouse line, in which the brain serotonergic tone is dramatically imbalanced, the effects of a chronic fluoxetine treatment on the mood status of STOP KO mice were characterized. Moreover, we determined the impact, on mood, of a chronic treatment by epothilone D, a taxol-like microtubule-stabilizing compound that has previously been shown to improve the synaptic plasticity deficits of STOP KO mice. We demonstrated that chronic fluoxetine was either antidepressive and anxiolytic, or pro-depressive and anxiogenic, depending on the paradigm used to test treated mutant mice. Furthermore, control-treated STOP KO mice exhibited paradoxical behaviors, compared with their clear-cut basal mood status. Paradoxical fluoxetine effects and control-treated STOP KO behaviors could be because of their hyper-reactivity to acute and chronic stress. Interestingly, both epothilone D and fluoxetine chronic treatments improved the short-term memory of STOP KO mice. Such treatments did not affect the serotonin and norepinephrine transporter densities in cerebral areas of mice. Altogether, these data demonstrated that STOP KO mice could represent a useful model to study the relationship between cytoskeleton, mood, and stress, and to test innovative mood treatments, such as microtubule-stabilizing compounds.

  19. Kidney-specific upregulation of vitamin D3 target genes in ClC-5 KO mice.

    PubMed

    Maritzen, T; Rickheit, G; Schmitt, A; Jentsch, T J

    2006-07-01

    Mutations in ClC-5 cause Dent's disease, a disorder associated with low molecular weight proteinuria, hyperphosphaturia, and kidney stones. ClC-5 is a Cl(-)/H(+)-exchanger predominantly expressed in the kidney, where it facilitates the acidification of proximal tubular endosomes. The reduction in proximal tubular endocytosis resulting from a lack of ClC-5 raises the luminal concentration of filtered proteins and peptides like parathyroid hormone (PTH). The increase in PTH may explain the hyperphosphaturia observed in Dent's disease. Expression profiling, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and hormone measurements were used to investigate whether the disruption of ClC-5 affects other signalling pathways. Although the upregulation of 25(OH)(2)-vitamin D(3) 1alpha-hydroxylase and downregulation of vitamin D(3) 24-hydroxylase suggested an increased formation of 1,25(OH)(2)-vitamin D(3), the concentration of this active metabolite was reduced in the serum of ClC-5 knockout (KO) mice. However, target genes of 1,25(OH)(2)-vitamin D(3) were upregulated in KO kidneys. Expression analysis of intestine and bone revealed that the upregulation of 1,25(OH)(2)-vitamin D(3) target genes was kidney intrinsic and not systemic. In spite of reduced serum levels of 1,25(OH)(2)-vitamin D(3) in ClC-5 KO mice, 1,25(OH)(2)-vitamin D(3) is increased in later nephron segments as a consequence of impaired proximal tubular endocytosis. This leads to a kidney-specific stimulation of 1,25(OH)(2)-vitamin D(3) target genes that may contribute to the pathogenesis of Dent's disease. The activation of genes in distal nephron segments by hormones that are normally endocytosed in the proximal tubule may extend to other pathways like those activated by retinoic acid.

  20. Residual Chemoresponsiveness to Acids in the Superior Laryngeal Nerve in “Taste-Blind” (P2X2/P2X3 Double-KO) Mice

    PubMed Central

    Ohkuri, Tadahiro; Horio, Nao; Stratford, Jennifer M.; Finger, Thomas E.; Ninomiya, Yuzo

    2012-01-01

    Mice lacking both the P2X2 and the P2X3 purinergic receptors (P2X-dblKO) exhibit loss of responses to all taste qualities in the taste nerves innervating the tongue. Similarly, these mice exhibit a near total loss of taste-related behaviors in brief access tests except for a near-normal avoidance of acidic stimuli. This persistent avoidance of acids despite the loss of gustatory neural responses to sour was postulated to be due to continued responsiveness of the superior laryngeal (SL) nerve. However, chemoresponses of the larynx are attributable both to taste buds and to free nerve endings. In order to test whether the SL nerve of P2X-dblKO mice remains responsive to acids but not to other tastants, we recorded responses from the SL nerve in wild-type (WT) and P2X-dblKO mice. WT mice showed substantial SL responses to monosodium glutamate, sucrose, urea, and denatonium—all of which were essentially absent in P2X-dblKO animals. In contrast, the SL nerve of P2X-dblKO mice exhibited near-normal responses to citric acid (50 mM) although responsiveness of both the chorda tympani and the glossopharyngeal nerves to this stimulus were absent or greatly reduced. These results are consistent with the hypothesis that the residual avoidance of acidic solutions by P2X-dblKO mice may be attributable to the direct chemosensitivity of nerve fibers innervating the laryngeal epithelium and not to taste. PMID:22362867

  1. Comparative study of dermal components and plasma TGF-β1 levels in Slc39a13/Zip13-KO mice.

    PubMed

    Hirose, Takuya; Ogura, Takayuki; Tanaka, Keisuke; Minaguchi, Jun; Yamauchi, Takeshi; Fukada, Toshiyuki; Koyama, Yoh-ichi; Takehana, Kazushige

    2015-11-01

    Ehlers-Danlos syndrome (EDS) is a group of disorders caused by abnormalities that are identified in the extracellular matrix. Transforming growth factor-β1 (TGF-β1) plays a crucial role in formation of the extracellular matrix. It has been reported that the loss of function of zinc transporter ZRT/IRT-like protein 13 (ZIP13) causes the spondylocheiro dysplastic form of EDS (SCD-EDS: OMIM 612350), in which dysregulation of the TGF-β1 signaling pathway is observed, although the relationship between the dermis abnormalities and peripheral TGF-β1 level has been unclear. We investigated the characteristics of the dermis of the Zip13-knockout (KO) mouse, an animal model for SCD-EDS. Both the ratio of dermatan sulfate (DS) in glycosaminoglycan (GAG) components and the amount of collagen were decreased, and there were very few collagen fibrils with diameters of more than 150 nm in Zip13-KO mice dermis. We also found that the TGF-β1 level was significantly higher in Zip13-KO mice serum. These results suggest that collagen synthesis and collagen fibril fusion might be impaired in Zip13-KO mice and that the possible decrease of decorin level by reduction of the DS ratio probably caused an increase of free TGF-β1 in Zip13-KO mice. In conclusion, skin fragility due to defective ZIP13 protein may be attributable to impaired extracellular matrix synthesis accompanied by abnormal peripheral TGF-β homeostasis. PMID:26050750

  2. Sustained Toll-Like Receptor 9 Activation Promotes Systemic and Cardiac Inflammation, and Aggravates Diastolic Heart Failure in SERCA2a KO Mice

    PubMed Central

    Dhondup, Yangchen; Sjaastad, Ivar; Scott, Helge; Sandanger, Øystein; Zhang, Lili; Haugstad, Solveig Bjærum; Aronsen, Jan Magnus; Ranheim, Trine; Holmen, Sigve Dhondup; Alfsnes, Katrine; Ahmed, Muhammad Shakil; Attramadal, Håvard; Gullestad, Lars; Aukrust, Pål; Christensen, Geir; Yndestad, Arne; Vinge, Leif Erik

    2015-01-01

    Aim Cardiac inflammation is important in the pathogenesis of heart failure. However, the consequence of systemic inflammation on concomitant established heart failure, and in particular diastolic heart failure, is less explored. Here we investigated the impact of systemic inflammation, caused by sustained Toll-like receptor 9 activation, on established diastolic heart failure. Methods and Results Diastolic heart failure was established in 8–10 week old cardiomyocyte specific, inducible SERCA2a knock out (i.e., SERCA2a KO) C57Bl/6J mice. Four weeks after conditional KO, mice were randomized to receive Toll-like receptor 9 agonist (CpG B; 2μg/g body weight) or PBS every third day. After additional four weeks, echocardiography, phase contrast magnetic resonance imaging, histology, flow cytometry, and cardiac RNA analyses were performed. A subgroup was followed, registering morbidity and death. Non-heart failure control groups treated with CpG B or PBS served as controls. Our main findings were: (i) Toll-like receptor 9 activation (CpG B) reduced life expectancy in SERCA2a KO mice compared to PBS treated SERCA2a KO mice. (ii) Diastolic function was lower in SERCA2a KO mice with Toll-like receptor 9 activation. (iii) Toll-like receptor 9 stimulated SERCA2a KO mice also had increased cardiac and systemic inflammation. Conclusion Sustained activation of Toll-like receptor 9 causes cardiac and systemic inflammation, and deterioration of SERCA2a depletion-mediated diastolic heart failure. PMID:26461521

  3. Modifying Behavioral Phenotypes in Fmr1 KO Mice: Genetic Background Differences Reveal Autistic-Like Responses

    PubMed Central

    Spencer, Corinne M.; Alekseyenko, Olga; Hamilton, Shannon M.; Thomas, Alexia M.; Serysheva, Ekaterina; Yuva-Paylor, Lisa A.; Paylor, Richard

    2010-01-01

    Scientific Abstract Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in humans. In addition to cognitive impairment, patients may exhibit hyperactivity, attention deficits, social difficulties and anxiety, and autistic-like behaviors. The degree to which patients display these behaviors varies considerably and is influenced by family history, suggesting that genetic modifiers play a role in the expression of behaviors in FXS. Several studies have examined behavior in a mouse model of FXS in which the Fmr1 gene has been ablated. Most of those studies were done in Fmr1 knockout mice on a pure C57BL/6 or FVB strain background. To gain a better understanding of the effects of genetic background on behaviors resulting from the loss of Fmr1 gene expression, we generated F1 hybrid lines from female Fmr1 heterozygous mice on a pure C57BL/6J background bred with male Fmr1 wild-type mice of various background strains (A/J, DBA/2J, FVB/NJ, 129S1/SvImJ and CD-1). Male Fmr1 knockout and wild-type littermates from each line were examined in an extensive behavioral test battery. Results clearly indicate that multiple behavioral responses are dependent on genetic background, including autistic-like traits that are present on limited genetic backgrounds. This approach has allowed us to identify improved models for different behavioral symptoms present in FXS including autistic-like traits. PMID:21268289

  4. Insulin Resistance Promotes Early Atherosclerosis via Increased Proinflammatory Proteins and Oxidative Stress in Fructose-Fed ApoE-KO Mice

    PubMed Central

    Cannizzo, Beatriz; Luján, Agustín; Estrella, Natalia; Lembo, Carina; Cruzado, Montserrat; Castro, Claudia

    2012-01-01

    High fructose intake induces an insulin resistance state associated with metabolic syndrome (MS). The effect of vascular inflammation in this model is not completely addressed. The aim of this study was to evaluate vascular remodeling, inflammatory and oxidative stress markers, and atheroma development in high-fructose diet-induced insulin resistance of ApoE-deficient mice (ApoE-KO). Mice were fed with either a normal chow or a 10% w/v fructose (HF) in drinking water over a period of 8 weeks. Thereafter, plasma metabolic parameters, vascular remodeling, atheroma lesion size, inflammatory markers, and NAD(P)H oxidase activity in the arteries were determined. HF diet induced a marked increase in plasma glucose, insulin, and triglycerides in ApoE-KO mice, provoked vascular remodeling, enhanced expression of vascular cell-adhesion molecule-1 (VCAM-1) and matrix metalloprotease 9 (MMP-9) and enlarged atherosclerotic lesion in aortic and carotid arteries. NAD(P)H oxidase activity was enhanced by fructose intake, and this effect was attenuated by tempol, a superoxide dismutase mimetic, and losartan, an Angiotensin II receptor antagonist. Our study results show that high-fructose-induced insulin resistance promotes a proinflammatory and prooxidant state which accelerates atherosclerotic plaque formation in ApoE-KO mice. PMID:22474431

  5. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia. PMID:27133030

  6. Perilla Oil Reduces Fatty Streak Formation at Aortic Sinus via Attenuation of Plasma Lipids and Regulation of Nitric Oxide Synthase in ApoE KO Mice.

    PubMed

    Hong, Sun Hee; Kim, Mijeong; Noh, Jeong Sook; Song, Yeong Ok

    2016-10-01

    Consumption of n-3 polyunsaturated fatty acids (PUFA) is associated with a reduced incidence of atherosclerosis. Perilla oil (PO) is a vegetable oil rich in α-linolenic acid (ALA), an n-3 PUFA. In this study, antiatherogenic effects and related mechanisms of PO were investigated in atherosclerotic mice. Apolipoprotein E knockout (ApoE KO) mice (male, n = 27) were fed high-cholesterol and high-fat diets containing 10 % w/w lard (LD), PO, or sunflower oil (SO) for 10 weeks. Plasma triglyceride, total cholesterol, and low-density lipoprotein cholesterol concentrations reduced in the PO and SO groups compared to the concentrations in the LD group (P < 0.05). The PO group showed reduced fatty streak lesion size at the aortic sinus (P < 0.05) compared to the sizes in the LD and SO groups. A morphometric analysis showed enhancement of endothelial nitric oxide synthase expression and reduction of inducible nitric oxide synthase expression in the PO group compared to that in the LD group (P < 0.05). Furthermore, aortic protein expression of intercellular cell adhesion molecule 1 and vascular cell adhesion molecule 1 was diminished in the PO group compared to that in the LD and SO groups (P < 0.05). These findings suggested that PO inhibited the development of aortic atherosclerosis by improving the plasma lipid profile, regulating nitric oxide synthase, and suppressing the vascular inflammatory response in the aorta of ApoE KO mice. PMID:27590239

  7. AAV2/8-humanFOXP3 gene therapy shows robust anti-atherosclerosis efficacy in LDLR-KO mice on high cholesterol diet.

    PubMed

    Cao, M; Theus, S A; Straub, K D; Figueroa, J A; Mirandola, L; Chiriva-Internati, M; Hermonat, P L

    2015-07-18

    Inflammation is a key etiologic component in atherogenesis. Previously we demonstrated that adeno-associated virus (AAV) 2/8 gene delivery of Netrin1 inhibited atherosclerosis in the low density lipoprotein receptor knockout mice on high-cholesterol diet (LDLR-KO/HCD). One important finding from this study was that FOXP3 was strongly up-regulated in these Netrin1-treated animals, as FOXP3 is an anti-inflammatory gene, being the master transcription factor of regulatory T cells. These results suggested that the FOXP3 gene might potentially be used, itself, as an agent to limit atherosclerosis. To test this hypothesis AAV2/8 (AAV)/hFOXP3 or AAV/Neo (control) gene therapy virus were tail vein injected into the LDLR-KO/HCD animal model. It was found that hFOXP3 gene delivery was associated with significantly lower HCD-induced atherogenesis, as measured by larger aortic lumen cross sectional area, thinner aortic wall thickness, and lower aortic systolic blood velocity compared with Neo gene-HCD-treated controls. Moreover these measurements taken from the hFOXP3/HCD-treated animals very closely matched those measurements taken from the normal diet (ND) control animals. These data strongly suggest that AAV/hFOXP3 delivery gave a robust anti-atherosclerosis therapeutic effect and further suggest that FOXP3 be examined more stringently as a therapeutic gene for clinical use.

  8. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice

    PubMed Central

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS.

  9. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice

    PubMed Central

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  10. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice.

    PubMed

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  11. Behavioural and biochemical responses to morphine associated with its motivational properties are altered in adenosine A2A receptor knockout mice

    PubMed Central

    Castañé, A; Wells, L; Soria, G; Hourani, S; Ledent, C; Kitchen, I; Opacka-Juffry, J; Maldonado, R; Valverde, O

    2008-01-01

    Background and purpose: The purinergic system through the A2A adenosine receptor regulates addiction induced by different drugs of abuse. The aim of the present study was to investigate the specific role of A2A adenosine receptors (A2ARs) in the behavioural and neurochemical responses to morphine associated with its motivational properties. Experimental approach: Mice lacking A2ARs (A2A knockout (KO) mice) and wild-type littermates were used to evaluate behavioural responses induced by morphine. Antinociception was assessed using the tail-immersion and the hot-plate tests. Place-conditioning paradigms were used to evaluate the rewarding effects of morphine and the dysphoric responses of morphine withdrawal. Microdialysis studies were carried out to evaluate changes in the extracellular levels of dopamine in the nucleus accumbens of A2A KO mice after morphine administration. Key results: The acute administration of morphine induced a similar enhancement of locomotor activity and antinociceptive responses in both genotypes. However, the rewarding effects induced by morphine were completely blocked in A2A KO mice. Also, naloxone did not induce place aversion in animals lacking the A2ARs. Conclusions and implications: Our findings demonstrate that the rewarding and aversive effects associated with morphine abstinence were abolished in A2A KO mice, supporting a differential role of the A2A adenosine receptor in the somatic and motivational effects of morphine addiction. This study provides evidence for the role of A2ARs as general modulators of the motivational properties of drugs of abuse. Pharmacological manipulation of these receptors may represent a new target in the management of drug addiction. PMID:18660831

  12. Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses.

    PubMed

    Young, Arabella; Ngiow, Shin Foong; Barkauskas, Deborah S; Sult, Erin; Hay, Carl; Blake, Stephen J; Huang, Qihui; Liu, Jing; Takeda, Kazuyoshi; Teng, Michele W L; Sachsenmeier, Kris; Smyth, Mark J

    2016-09-12

    Preclinical studies targeting the adenosinergic pathway have gained much attention for their clinical potential in overcoming tumor-induced immunosuppression. Here, we have identified that co-blockade of the ectonucleotidase that generates adenosine CD73 and the A2A adenosine receptor (A2AR) that mediates adenosine signaling in leuokocytes, by using compound gene-targeted mice or therapeutics that target these molecules, limits tumor initiation, growth, and metastasis. This tumor control requires effector lymphocytes and interferon-γ, while antibodies targeting CD73 promote an optimal therapeutic response in vivo when engaging activating Fc receptors. In a two-way mixed leukocyte reaction using a fully human anti-CD73, we demonstrated that Fc receptor binding augmented the production of proinflammatory cytokines. PMID:27622332

  13. Induction of WT1-specific human CD8+ T cells from human HSCs in HLA class I Tg NOD/SCID/IL2rgKO mice.

    PubMed

    Najima, Yuho; Tomizawa-Murasawa, Mariko; Saito, Yoriko; Watanabe, Takashi; Ono, Rintaro; Ochi, Toshiki; Suzuki, Nahoko; Fujiwara, Hiroshi; Ohara, Osamu; Shultz, Leonard D; Yasukawa, Masaki; Ishikawa, Fumihiko

    2016-02-11

    Induction of specific immune response against therapy-resistant tumor cells can potentially improve clinical outcomes in malignancies. To optimize immunotherapy in the clinic, we aimed to create an in vivo model enabling us to analyze human cytotoxic T-lymphocyte (CTL) responses against human malignancies. To this end, we developed NOD/SCID/IL2rgKO (NSG) mice expressing the HLA class I molecules HLA-A*0201 and A*2402. In the bone marrow (BM) and spleen of HLA class I transgenic (Tg) NSG mice transplanted with cord blood hematopoietic stem cells (HSCs), we found human memory CD8(+) T cells and antigen-presenting cells. To evaluate antigen-specific human CTL responses, we immunized HLA class I Tg NSG mice using polyinosinic:polycytidylic acid mixed Wilms tumor 1 (WT1) peptides, with or without WT1 peptide-loaded autologous dendritic cells. After immunization, the frequencies of HLA-restricted WT1-specific CTLs increased significantly in the spleen. Next, we transplanted the WT1-specific T-cell receptor (WT1-TCR) gene-transduced human HSCs into HLA class I Tg NSG newborn mice. WT1 tetramer-positive CD8(+) T cells differentiated from WT1-TCR-transduced HSCs in the recipients' BM, spleen, and thymus. Upon stimulation with WT1 peptide in vitro, these CTLs produced interferon-γ and showed lytic activity against leukemia cells in an antigen-specific, HLA-restricted manner. HLA class I Tg NSG xenografts may serve as a preclinical model to develop effective immunotherapy against human malignancies.

  14. Induction of WT1-specific human CD8+ T cells from human HSCs in HLA class I Tg NOD/SCID/IL2rgKO mice.

    PubMed

    Najima, Yuho; Tomizawa-Murasawa, Mariko; Saito, Yoriko; Watanabe, Takashi; Ono, Rintaro; Ochi, Toshiki; Suzuki, Nahoko; Fujiwara, Hiroshi; Ohara, Osamu; Shultz, Leonard D; Yasukawa, Masaki; Ishikawa, Fumihiko

    2016-02-11

    Induction of specific immune response against therapy-resistant tumor cells can potentially improve clinical outcomes in malignancies. To optimize immunotherapy in the clinic, we aimed to create an in vivo model enabling us to analyze human cytotoxic T-lymphocyte (CTL) responses against human malignancies. To this end, we developed NOD/SCID/IL2rgKO (NSG) mice expressing the HLA class I molecules HLA-A*0201 and A*2402. In the bone marrow (BM) and spleen of HLA class I transgenic (Tg) NSG mice transplanted with cord blood hematopoietic stem cells (HSCs), we found human memory CD8(+) T cells and antigen-presenting cells. To evaluate antigen-specific human CTL responses, we immunized HLA class I Tg NSG mice using polyinosinic:polycytidylic acid mixed Wilms tumor 1 (WT1) peptides, with or without WT1 peptide-loaded autologous dendritic cells. After immunization, the frequencies of HLA-restricted WT1-specific CTLs increased significantly in the spleen. Next, we transplanted the WT1-specific T-cell receptor (WT1-TCR) gene-transduced human HSCs into HLA class I Tg NSG newborn mice. WT1 tetramer-positive CD8(+) T cells differentiated from WT1-TCR-transduced HSCs in the recipients' BM, spleen, and thymus. Upon stimulation with WT1 peptide in vitro, these CTLs produced interferon-γ and showed lytic activity against leukemia cells in an antigen-specific, HLA-restricted manner. HLA class I Tg NSG xenografts may serve as a preclinical model to develop effective immunotherapy against human malignancies. PMID:26702062

  15. Amomum tsao-ko fruit extract suppresses lipopolysaccharide-induced inducible nitric oxide synthase by inducing heme oxygenase-1 in macrophages and in septic mice.

    PubMed

    Shin, Ji-Sun; Ryu, Suran; Jang, Dae Sik; Cho, Young-Wuk; Chung, Eun Kyung; Lee, Kyung-Tae

    2015-12-01

    Amomum tsao-ko Crevost et Lemarié (Zingiberaceae) has traditionally been used to treat inflammatory and infectious diseases, such as throat infections, malaria, abdominal pain and diarrhoea. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms of the methanol extract of A. tsao-ko (AOM) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in a murine model of sepsis. In LPS-induced RAW 264.7 macrophages, AOM reduced the production of nitric oxide (NO) by inhibiting inducible nitric oxide synthase (iNOS) expression, and increased heme oxygenase-1 (HO-1) expression at the protein and mRNA levels. Pretreatment with SnPP (a selective inhibitor of HO-1) and silencing HO-1 using siRNA prevented the AOM-mediated inhibition of NO production and iNOS expression. Furthermore, AOM increased the expression and nuclear accumulation of NF-E2-related factor 2 (Nrf2), which enhanced Nrf2 binding to antioxidant response element (ARE). In addition, AOM induced the phosphorylation of extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and generated reactive oxygen species (ROS). Furthermore, pretreatment with N-acetyl-l-cysteine (NAC; a ROS scavenger) diminished the AOM-induced phosphorylation of ERK and JNK and AOM-induced HO-1 expression, suggesting that ERK and JNK are downstream mediators of ROS during the AOM-induced signalling of HO-1 expression. In LPS-induced endotoxaemic mice, pretreatment with AOM reduced NO serum levels and liver iNOS expression and increased HO-1 expression and survival rates. These results indicate that AOM strongly inhibits LPS-induced NO production by activating the ROS/MAPKs/Nrf2-mediated HO-1 signalling pathway, and supports its pharmacological effects on inflammatory diseases.

  16. NAMPT knockdown attenuates atherosclerosis and promotes reverse cholesterol transport in ApoE KO mice with high-fat-induced insulin resistance.

    PubMed

    Li, Shengbing; Wang, Cong; Li, Ke; Li, Ling; Tian, Mingyuan; Xie, Jing; Yang, Mengliu; Jia, Yanjun; He, Junying; Gao, Lin; Boden, Guenther; Liu, Hua; Yang, Gangyi

    2016-01-01

    NAMPT has been suggested association with atherosclerosis and insulin resistance. However, the impact of NAMPT on atherosclerosis remained unknown. Therefore, the objective of this study was to use a NAMPT loss-of-function approach to investigate the effect of NAMPT on atherosclerosis in hypercholesterolemic mice. We demonstrated that a specific NAMPT knockdown increased plasma HDL-C levels, reduced the plaque area of the total aorta en face and the cross-sectional aortic sinus, decreased macrophage number and apoptosis, and promoted RCT in HFD-fed ApoE KO mice. These changes were accompanied by increased PPARα, LXRα, ABCA1 and ABCG1 expressions in the liver. NAMPT knockdown also facilitated cholesterol efflux in RAW264.7 cells. We further investigated the effect of NAMPT knockdown on the PPARα-LXRα pathway of cholesterol metabolism with MK886 (a selective inhibitor of PPARα) in RAW264.7 macrophages. MK886 abolished the ability of NAMPT knockdown to decrease intracellular cholesterol levels to enhance the rate of (3)H-cholesterol efflux and to increase ABCA1/G1 and LXRα expressions in RAW264.7 macrophages. Our observations demonstrate that NAMPT knockdown exerted antiatherogenic effects by promoting cholesterol efflux and macrophage RCT through the PPARα- LXRα- ABCA1/G1pathway in vitro and in vivo. PMID:27229177

  17. NAMPT knockdown attenuates atherosclerosis and promotes reverse cholesterol transport in ApoE KO mice with high-fat-induced insulin resistance

    PubMed Central

    Li, Shengbing; Wang, Cong; Li, Ke; Li, Ling; Tian, Mingyuan; Xie, Jing; Yang, Mengliu; Jia, Yanjun; He, Junying; Gao, Lin; Boden, Guenther; Liu, Hua; Yang, Gangyi

    2016-01-01

    NAMPT has been suggested association with atherosclerosis and insulin resistance. However, the impact of NAMPT on atherosclerosis remained unknown. Therefore, the objective of this study was to use a NAMPT loss-of-function approach to investigate the effect of NAMPT on atherosclerosis in hypercholesterolemic mice. We demonstrated that a specific NAMPT knockdown increased plasma HDL-C levels, reduced the plaque area of the total aorta en face and the cross-sectional aortic sinus, decreased macrophage number and apoptosis, and promoted RCT in HFD-fed ApoE KO mice. These changes were accompanied by increased PPARα, LXRα, ABCA1 and ABCG1 expressions in the liver. NAMPT knockdown also facilitated cholesterol efflux in RAW264.7 cells. We further investigated the effect of NAMPT knockdown on the PPARα-LXRα pathway of cholesterol metabolism with MK886 (a selective inhibitor of PPARα) in RAW264.7 macrophages. MK886 abolished the ability of NAMPT knockdown to decrease intracellular cholesterol levels to enhance the rate of 3H-cholesterol efflux and to increase ABCA1/G1 and LXRα expressions in RAW264.7 macrophages. Our observations demonstrate that NAMPT knockdown exerted antiatherogenic effects by promoting cholesterol efflux and macrophage RCT through the PPARα- LXRα- ABCA1/G1pathway in vitro and in vivo. PMID:27229177

  18. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice

    PubMed Central

    Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P.; Striessnig, Joerg; Liss, Birgit

    2015-01-01

    The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson’s disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca2+ burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation. PMID:26381090

  19. The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition.

    PubMed

    Lessmann, Volkmar; Stroh-Kaffei, Sigrid; Steinbrecher, Violetta; Edelmann, Elke; Brigadski, Tanja; Kilb, Werner; Luhmann, Heiko J

    2011-05-19

    BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF⁺/⁻) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibitor L-NAME (200 μM) strongly inhibited LTP by 70% in wildtype animals. This inhibition of LTP was not a consequence of altered basal synaptic properties. In CA1 of BDNF⁺/⁻ mice, stimulated with the same theta burst protocol, LTP was reduced by 50% as compared to wildtype animals. This impairment in the expression of LTP in BDNF⁺/⁻ mice did not result from an increased synaptic fatigue. The residual LTP in BDNF⁺/⁻ was not further reduced by preincubation of slices with L-NAME. These results suggest that BDNF and NO share overlapping intracellular signaling cascades to mediate LTP in CA1, and part of their signaling cascades are most likely arranged consecutively in the signaling pathway mediating LTP.

  20. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice

    PubMed Central

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-01-01

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469

  1. Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis.

    PubMed

    Auburger, Georg; Gispert, Suzana; Brehm, Nadine

    2016-01-01

    Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability.

  2. Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis

    PubMed Central

    Auburger, Georg; Gispert, Suzana

    2016-01-01

    Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability. PMID:27034888

  3. Editorial for Issue 1, Jan 2016 title of the editorial 2016 : A year for JCCS Editorial changes and CCN3 KO mice at ICCNS.

    PubMed

    Perbal, Bernard

    2016-03-01

    The year 2016 will see significant improvements for the Journal of Cell Communication and Signaling with the earning of an official Impact Factor and the merger of Springer Science + Business Media and part of Macmillan Sciences and Education. It will also be an important year for the International CCN Society (ICCNS) with the nomination of a new Scientific Board and reinforcement of interactions with other major scientific societies interested in various aspects of Cell Signaling. Starting this year the ICCNS will become an official provider of CCN3 knock out mice to ICCNS members. This first step in opening up access to certified reagents as a service for our CCN scientific community is part of our intention and efforts to attain the highest degree of assistance and enabler of scientific cooperation and communication in Science Communication.

  4. Development of mature and functional human myeloid subsets in HSC engrafted NOD/SCID/IL2rγKO mice

    PubMed Central

    Tanaka, Satoshi; Saito, Yoriko; Kunisawa, Jun; Kurashima, Yosuke; Wake, Taichi; Suzuki, Nahoko; Shultz, Leonard D.; Kiyono, Hiroshi; Ishikawa, Fumihiko

    2012-01-01

    While physiological development of human lymphoid subsets has become well documented in humanized mice, in vivo development of human myeloid subsets in a xenotransplantation setting has remained unevaluated. Therefore, we investigated in vivo differentiation and function of human myeloid subsets in NOD/SCID/IL2rγnull (NSG) mouse recipients transplanted with purified lineage−CD34+CD38− cord blood hematopoietic stem cells. At four to six months post-transplantation, we identified the development of human neutrophils, basophils, mast cells, monocytes, as well as conventional and plasmacytoid dendritic cells in the recipient hematopoietic organs. The tissue distribution and morphology of these human myeloid cells were similar to those identified in humans. Following cytokine stimulation in vitro, phosphorylation of STAT molecules was observed in neutrophils and monocytes. In vivo administration of human G-CSF resulted in the recruitment of human myeloid cells into the recipient circulation. Flow cytometry and confocal imaging demonstrated that human bone marrow monocytes and alveolar macrophages in the recipients displayed intact phagocytic function. Human BM-derived monocytes/macrophages were further confirmed to exhibit phagocytosis and killing of Salmonella Typhimurium upon the IFN-γ stimulation. These findings demonstrate the development of mature and functionally intact human myeloid subsets in vivo in the NSG recipients. In vivo human myelopoiesis established in the NSG humanized mouse system may facilitate the investigation of human myeloid cell biology including in vivo analyses of infectious diseases and therapeutic interventions. PMID:22611244

  5. A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA transport into astrocytes.

    PubMed

    Cristóvão-Ferreira, Sofia; Navarro, Gemma; Brugarolas, Marc; Pérez-Capote, Kamil; Vaz, Sandra H; Fattorini, Giorgia; Conti, Fiorenzo; Lluis, Carmen; Ribeiro, Joaquim A; McCormick, Peter J; Casadó, Vicent; Franco, Rafael; Sebastião, Ana M

    2013-09-01

    Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R-A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.

  6. C3KO mouse expression analysis: downregulation of the muscular dystrophy Ky protein and alterations in muscle aging.

    PubMed

    Jaka, Oihane; Kramerova, Irina; Azpitarte, Margarita; López de Munain, Adolfo; Spencer, Melissa; Sáenz, Amets

    2012-11-01

    Mutations in CAPN3 gene cause limb-girdle muscular dystrophy type 2A (LGMD2A) characterized by muscle wasting and progressive degeneration of scapular and pelvic musculature. Since CAPN3 knockout mice (C3KO) display features of muscle pathology similar to those features observed in the earliest-stage or preclinical LGMD2A patients, gene expression profiling analysis in C3KO mice was performed to gain insight into mechanisms of disease. Two different comparisons were carried out in order to determine, first, the differential gene expression between wild-type (WT) and C3KO soleus and, second, to identify the transcripts differentially expressed in aging muscles of WT and C3KO mice. The up/downregulation of two genes, important for normal muscle function, was identified in C3KO mice: the Ky gene, encoding a protease implicated in muscle development, and Park2 gene encoding an E3 ubiquitin ligase (parkin). The Ky gene was downregulated in C3KO muscles suggesting that Ky protease may play a complementary role in regulating muscle cytoskeleton homeostasis in response to changes in muscle activity. Park2 was upregulated in the aged WT muscles but not in C3KO muscles. Taking into account the known functions of parkin E3 ligase, it is possible that it plays a role in ubiquitination and degradation of atrophy-specific and damaged proteins that are necessary to avoid cellular toxicity and a cellular stress response in aging muscles.

  7. Basal adenosine modulates the functional properties of AMPA receptors in mouse hippocampal neurons through the activation of A1R A2AR and A3R

    PubMed Central

    Di Angelantonio, Silvia; Bertollini, Cristina; Piccinin, Sonia; Rosito, Maria; Trettel, Flavia; Pagani, Francesca; Limatola, Cristina; Ragozzino, Davide

    2015-01-01

    Adenosine is a widespread neuromodulator within the CNS and its extracellular level is increased during hypoxia or intense synaptic activity, modulating pre- and postsynaptic sites. We studied the neuromodulatory action of adenosine on glutamatergic currents in the hippocampus, showing that activation of multiple adenosine receptors (ARs) by basal adenosine impacts postsynaptic site. Specifically, the stimulation of both A1R and A3R reduces AMPA currents, while A2AR has an opposite potentiating effect. The effect of ARs stimulation on glutamatergic currents in hippocampal cultures was investigated using pharmacological and genetic approaches. A3R inhibition by MRS1523 increased GluR1-Ser845 phosphorylation and potentiated AMPA current amplitude, increasing the apparent affinity for the agonist. A similar effect was observed blocking A1R with DPCPX or by genetic deletion of either A3R or A1R. Conversely, impairment of A2AR reduced AMPA currents, and decreased agonist sensitivity. Consistently, in hippocampal slices, ARs activation by AR agonist NECA modulated glutamatergic current amplitude evoked by AMPA application or afferent fiber stimulation. Opposite effects of AR subtypes stimulation are likely associated to changes in GluR1 phosphorylation and represent a novel mechanism of physiological modulation of glutamatergic transmission by adenosine, likely acting in normal conditions in the brain, depending on the level of extracellular adenosine and the distribution of AR subtypes. PMID:26528137

  8. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO) Mouse Brain

    PubMed Central

    Kayser, Ernst-Bernhard; Sedensky, Margaret M.; Morgan, Philip G.

    2016-01-01

    Background Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase), causes Leigh syndrome (LS), a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration. Results Here we used the Ndufs4(KO) mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient “rest” of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration) with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration) and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue

  9. Ko Displacement Theory for Structural Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2010-01-01

    The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.

  10. Narp knockout mice show normal reactivity to novelty but attenuated recovery from neophobia.

    PubMed

    Blouin, Ashley M; Lee, Jongah J; Tao, Bo; Smith, Dani R; Johnson, Alexander W; Baraban, Jay M; Reti, Irving M

    2013-11-15

    Narp knockout (KO) mice demonstrate cognitive inflexibility and addictive behavior, which are associated with abnormal reactivity to a novel stimulus. To assess reactivity to novelty, we tested Narp KO and wild-type (WT) mice on a neophobia procedure. Both Narp KO and WT mice showed a similar decrease in consumption upon initial exposure to a novel flavor, but Narp KO mice did not increase consumption with subsequent exposures to the novel flavor like the WT mice. Therefore, Narp KO mice do not have abnormal reactivity to novelty but show deficits in adapting behavior to reflect the updated value of a stimulus.

  11. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet.

    PubMed

    Mehta, Jawahar L; Sanada, Nobuhito; Hu, Chang Ping; Chen, Jiawei; Dandapat, Abhijit; Sugawara, Fumiaki; Satoh, Hiroo; Inoue, Kazuhiko; Kawase, Yosuke; Jishage, Kou-ichi; Suzuki, Hiroshi; Takeya, Motohiro; Schnackenberg, Laura; Beger, Richard; Hermonat, Paul L; Thomas, Maria; Sawamura, Tatsuya

    2007-06-01

    Atherosclerosis is associated with oxidative stress and inflammation, and upregulation of LOX-1, an endothelial receptor for oxidized LDL (oxLDL). Here, we describe generation of LOX-1 knockout (KO) mice in which binding of oxLDL to aortic endothelium was reduced and endothelium-dependent vasorelaxation preserved after treatment with oxLDL (P<0.01 versus wild-type mice). To address whether endothelial functional preservation might lead to reduction in atherogenesis, we crossed LOX-1 KO mice with LDLR KO mice and fed these mice 4% cholesterol/10% cocoa butter diet for 18 weeks. Atherosclerosis was found to cover 61+/-2% of aorta in the LDLR KO mice, but only 36+/-3% of aorta in the double KO mice. Luminal obstruction and intima thickness were significantly reduced in the double KO mice (versus LDLR KO mice). Expression of redox-sensitive NF-kappaB and the inflammatory marker CD68 in LDLR KO mice was increased (P<0.01 versus wild-type mice), but not in the double KO mice. On the other hand, antiinflammatory cytokine IL-10 expression and superoxide dismutase activity were low in the LDLR KO mice (P<0.01 versus wild-type mice), but not in the double KO mice. Endothelial nitric oxide synthase expression was also preserved in the double KO mice. The proinflammatory signal MAPK P38 was activated in the LDLR KO mice, and LOX-1 deletion reduced this signal. In conclusion, LOX-1 deletion sustains endothelial function leading to a reduction in atherogenesis in association with reduction in proinflammatory and prooxidant signals. PMID:17478727

  12. Basal Bone Phenotype and Increased Anabolic Responses to Intermittent Parathyroid Hormone in Healthy Male COX-2 Knockout Mice

    PubMed Central

    Xu, Manshan; Choudhary, Shilpa; Voznesensky, Olga; Gao, Qi; Adams, Douglas; Diaz-Doran, Vilmaris; Wu, Qian; Goltzman, David; Raisz, Lawrence G.; Pilbeam, Carol C.

    2011-01-01

    Cyclooxygenase-2 (COX-2) knockout (KO) mice in inbred strains can have renal dysfunction with secondary hyperparathyroidism (HPTH), making direct effects of COX-2 KO on bone difficult to assess. COX-2 KO mice in an outbred CD-1 background did not have renal dysfunction but still had two-fold elevated PTH compared to wild type (WT) mice. Compared to WT mice, KO mice had increased serum markers of bone turnover, decreased femoral bone mineral density (BMD) and cortical bone thickness, but no differences in trabecular bone volume by μCT or dynamic histomorphometry. Because PTH is a potent inducer of COX-2 and prostaglandin (PG) production, we examined effects of COX-2 KO on bone responses after three weeks of intermittent PTH. Intermittent PTH increased femoral BMD and cortical bone area more in KO mice than in WT mice and increased trabecular bone volume in the distal femur in both WT and KO mice. Although not statistically significant, PTH-stimulated increases in trabecular bone tended to be greater in KO mice than in WT mice. PTH increased serum markers of bone formation and resorption more in KO than in WT mice but increased the ratio of osteoblastic surface to osteoclastic surface only in KO mice. PTH also increased femoral mineral apposition rates and bone formation rates in KO mice more than in WT mice. Acute mRNA responses to PTH of genes that might mediate some anabolic and catabolic effects of PTH tended to be greater in KO than WT mice. We conclude that (1) the basal bone phenotype in male COX-2 KO mice might reflect HPTH, COX-2 deficiency or both, and (2) increased responses to intermittent PTH in COX-2 KO mice, despite the presence of chronic HPTH, suggest that absence of COX-2 increased sensitivity to PTH. It is possible that manipulation of endogenous PGs could have important clinical implications for anabolic therapy with PTH. PMID:20471507

  13. Fat and Carbohydrate Preferences in Mice

    PubMed Central

    Sclafani, Anthony; Zukerman, Steven; Glendinning, John I.; Margolskee, Robert F.

    2008-01-01

    Trpm5 and α-gustducin are key to the transduction of tastes of sugars, amino acids and bitter compounds. This study investigated the role of these signaling proteins in the preference for fat, starch, and starch-derived polysaccharides (Polycose), using Trpm5 knockout (Trpm5 KO) and α-gustducin knockout (Gust KO) mice. In initial two-bottle tests (24 h/day), Trpm5 KO mice showed no preference for soybean oil emulsions (0.313 - 2.5%), Polycose solutions (0.5 - 4%) or starch suspensions (0.5 - 4%). Gust KO mice displayed an attenuated preference for Polycose, but their preference for soybean oil and starch was comparable to that of C57BL/6J wild-type mice (WT). Gust KO mice preferred starch to Polycose whereas WT mice had the opposite preference. Following extensive experience with soybean oil emulsions (Intralipid) and Polycose solutions, the Trpm5 KO mice developed preferences comparable to the WT mice, although their absolute intakes remained suppressed. Similarly, Gust KO mice developed a strong Polycose preference with experience but they continued to consume less than WT mice. These results implicate α-gustducin and Trpm5 as mediators of polysaccharide taste and Trpm5 in fat taste. The disruption in Polycose, but not starch preference, in Gust KO mice indicates that distinct sensory signaling pathways mediate the response to these carbohydrates,. The experience-induced rescue of fat and Polycose preferences in the KO mice likely reflects the action of a post-oral conditioning mechanism, which functions in the absence of α-gustducin and Trpm5. PMID:17652359

  14. The Inhibitor Ko143 Is Not Specific for ABCG2.

    PubMed

    Weidner, Lora D; Zoghbi, Sami S; Lu, Shuiyu; Shukla, Suneet; Ambudkar, Suresh V; Pike, Victor W; Mulder, Jan; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D

    2015-09-01

    Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments. PMID:26148857

  15. The Inhibitor Ko143 Is Not Specific for ABCG2

    PubMed Central

    Zoghbi, Sami S.; Lu, Shuiyu; Shukla, Suneet; Ambudkar, Suresh V.; Pike, Victor W.; Mulder, Jan; Gottesman, Michael M.; Innis, Robert B.; Hall, Matthew D.

    2015-01-01

    Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1′,2′:1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments. PMID:26148857

  16. DSTYK kinase domain ablation impaired the mice capabilities of learning and memory in water maze test.

    PubMed

    Li, Kui; Liu, Ji-Wei; Zhu, Zhi-Chuan; Wang, Hong-Tao; Zu, Yong; Liu, Yong-Jie; Yang, Yan-Hong; Xiong, Zhi-Qi; Shen, Xu; Chen, Rui; Zheng, Jing; Hu, Ze-Lan

    2014-01-01

    DSTYK (Dual serine/threonine and tyrosine protein kinase) is a putative dual Ser/Thr and Tyr protein kinase with unique structural features. It is proposed that DSTYK may play important roles in brain because of its high expression in most brain areas. In the present study, a DSTYK knockout (KO) mouse line with the ablation of C-terminal of DSTYK including the kinase domain was generated to study the physiological function of DSTYK. The DSTYK KO mice are fertile and have no significant morphological defects revealed by Nissl staining compared with wildtype mice. Open field test and rotarod test showed there is no obvious difference in basic motor and balance capacity between the DSTYK homozygous KO mice and DSTYK heterozygous KO mice. In water maze test, however, the DSTYK homozygous KO mice show impaired capabilities of learning and memory compared with the DSTYK heterozygous KO mice.

  17. The characteristics of aromatase deficient hairless mice indicate important roles of extragonadal estrogen in the skin.

    PubMed

    Tsukahara, Kazue; Kakuo, Shingo; Moriwaki, Shigeru; Hotta, Mitsuyuki; Ohuchi, Atsushi; Kitahara, Takashi; Harada, Nobuhiro

    2008-01-01

    The roles of extragonadal estrogen in the skin are poorly understood, due to the lack of proper animal models. We examined the skin phenotypes of aromatase-knockout hairless (ArKO) mice and wild-type hairless (WT) mice, both of which were obtained through crossbreeding of Ar+/- mice and hairless mice. Differences in the skins of ArKO and WT mice were compared with those of ovariectomized (OVX) and control (Sham) mice. A difference was observed in the skin tone of ArKO mice, which is pale white and differs from the pinkish tone of all other mice. However, both ArKO and OVX mice similarly exhibited deteriorations of skin properties as compared to their respective controls. Furthermore, all the deteriorations were similarly amplified by chronic UVB irradiation in both ArKO and OVX mice as compared to their respective controls. The unique skin phenotype of ArKO mice was observed in sunburn reactions. Specifically, skins of ArKO mice showed no reaction after an acute UVB irradiation at dose intensities caused sunburn in others. However, follow-up observation found delayed reactions associated with brownish skin color and swelling only in ArKO mice, thereby suggesting that the role of extragonadal estrogen may be connected with the protective reactions of skin.

  18. Age of Kōko Seamount, Emperor Seamount chain

    USGS Publications Warehouse

    Clague, David A.; Dalrymple, G. Brent

    1973-01-01

    KAr ages obtained by the conventional isotope-dilution and the 40Ar/39Ar techniques on two sanidine trachytes, four basalts, and a phonolite dredged from the top of Ko¯ko Seamount, 300 km north of the Hawaiian-Emperor bend, show that the seamount is 46.4 ± 1.1 my old. These data indicate that the volcanoes in the Hawaiian-Emperor chain continue to increase in age to the west and north beyond Midway Atoll, as predicted by the melting-spot hypothesis for the origin of the chain, and that the rate of volcanic migration along the chain was nonlinear between the time of formation of the island of Hawaii and Ko¯ko Seamount.

  19. Gender differences between hypocretin/orexin knockout and wild type mice: age, body weight, body composition, metabolic markers, leptin and insulin resistance.

    PubMed

    Ramanathan, Lalini; Siegel, Jerome M

    2014-12-01

    Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20-60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7-9 months) as well as old (18-20 months) female KO mice compared to age-matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age-matched WT mice, but no significant change in body weight. Respiratory quotient (-19%) and metabolic rates (-14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18-20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age- and sex-matched WT mice. We conclude that absence of the Hcrt peptide has gender-specific effects. In contrast, Hcrt-ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

  20. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain.

    PubMed

    Leishman, Emma; Mackie, Ken; Luquet, Serge; Bradshaw, Heather B

    2016-06-01

    A leading hypothesis of N-acyl ethanolamine (NAE) biosynthesis, including the endogenous cannabinoid anandamide (AEA), is that it depends on hydrolysis of N-acyl-phosphatidylethanolamines (NAPE) by a NAPE-specific phospholipase D (NAPE-PLD). Thus, deletion of NAPE-PLD should attenuate NAE levels. Previous analyses of two different NAPE-PLD knockout (KO) strains produced contradictory data on the importance of NAPE-PLD to AEA biosynthesis. Here, we examine this hypothesis with a strain of NAPE-PLD KO mice whose lipidome is uncharacterized. Using HPLC/MS/MS, over 70 lipids, including the AEA metabolite, N-arachidonoyl glycine (NAGly), the endocannabinoid 2-arachidonyl glycerol (2-AG) and prostaglandins (PGE(2) and PGF(2α)), and over 60 lipoamines were analyzed in 8 brain regions of KO and wild-type (WT) mice. Lipidomics analysis of this third NAPE-PLD KO strain shows a broad range of lipids that were differentially affected by lipid species and brain region. Importantly, all 6 NAEs measured were significantly reduced, though the magnitude of the effect varied by fatty acid saturation length and brain region. 2-AG levels were only impacted in the brainstem, where levels were significantly increased in KO mice. Correspondingly, levels of arachidonic acid were significantly decreased exclusively in brainstem. NAGly levels were significantly increased in 4 brain regions and levels of PGE(2) increased in 6 of 8 brain regions in KO mice. These data indicate that deletion of NAPE-PLD has far broader effects on the lipidome than previously recognized. Therefore, behavioral characteristics of suppressing NAPE-PLD activity may be due to a myriad of effects on lipids and not simply due to reduced AEA biosynthesis. PMID:26956082

  1. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain.

    PubMed

    Leishman, Emma; Mackie, Ken; Luquet, Serge; Bradshaw, Heather B

    2016-06-01

    A leading hypothesis of N-acyl ethanolamine (NAE) biosynthesis, including the endogenous cannabinoid anandamide (AEA), is that it depends on hydrolysis of N-acyl-phosphatidylethanolamines (NAPE) by a NAPE-specific phospholipase D (NAPE-PLD). Thus, deletion of NAPE-PLD should attenuate NAE levels. Previous analyses of two different NAPE-PLD knockout (KO) strains produced contradictory data on the importance of NAPE-PLD to AEA biosynthesis. Here, we examine this hypothesis with a strain of NAPE-PLD KO mice whose lipidome is uncharacterized. Using HPLC/MS/MS, over 70 lipids, including the AEA metabolite, N-arachidonoyl glycine (NAGly), the endocannabinoid 2-arachidonyl glycerol (2-AG) and prostaglandins (PGE(2) and PGF(2α)), and over 60 lipoamines were analyzed in 8 brain regions of KO and wild-type (WT) mice. Lipidomics analysis of this third NAPE-PLD KO strain shows a broad range of lipids that were differentially affected by lipid species and brain region. Importantly, all 6 NAEs measured were significantly reduced, though the magnitude of the effect varied by fatty acid saturation length and brain region. 2-AG levels were only impacted in the brainstem, where levels were significantly increased in KO mice. Correspondingly, levels of arachidonic acid were significantly decreased exclusively in brainstem. NAGly levels were significantly increased in 4 brain regions and levels of PGE(2) increased in 6 of 8 brain regions in KO mice. These data indicate that deletion of NAPE-PLD has far broader effects on the lipidome than previously recognized. Therefore, behavioral characteristics of suppressing NAPE-PLD activity may be due to a myriad of effects on lipids and not simply due to reduced AEA biosynthesis.

  2. Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin.

    PubMed

    Hunsley, M S; Curtis, W R; Palmiter, R D

    2006-08-01

    We investigated the interaction between norepinephrine (NE) and orexin/hypocretin (Hcrt) in the control of sleep behavior and narcoleptic symptoms by creating mice that were deficient in both neurotransmitters. Mice with a targeted disruption of the dopamine beta-hydroxylase (Dbh) gene (deficient in NE and epinephrine) or the Hcrt gene were bred to generate double knockouts (DKOs), each single KO (Dbh-KO and Hcrt-KO), and control mice. The duration of wake, non-rapid eye movement (NREM) and REM sleep were monitored by electroencephalogram (EEG)/electromyogram (EMG) recording over a 24-h period, and the occurrence of behavioral arrests was monitored by video/EEG recording for 4 h. Overall, there was very little interaction between the two genes; for most parameters that were measured, the DKO mice resembled either Dbh-KO or Hcrt-KO mice. REM sleep was increased in both DKO and Hcrt-KO mice at night relative to the other groups, but DKO mice had significantly more REM sleep during the day than the other three groups. Sleep latency in response to saline or amphetamine injections was reduced in Dbh-KO and DKO mice relative to other groups. Behavioral arrests, that are frequent in Hcrt-KO mice, were not exacerbated in DKO mice.

  3. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. PMID:26905951

  4. IL-4 Knock out Mice Display Anxiety-like Behavior

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Blevins, Neil A.; Lawson, Marcus A.; Gainey, Stephen J.; Towers, Albert E.; McNeil, Leslie K.; Freund, Gregory G.

    2015-01-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety. PMID:25772794

  5. IL-4 Knock Out Mice Display Anxiety-Like Behavior.

    PubMed

    Moon, Morgan L; Joesting, Jennifer J; Blevins, Neil A; Lawson, Marcus A; Gainey, Stephen J; Towers, Albert E; McNeil, Leslie K; Freund, Gregory G

    2015-07-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety.

  6. The Rpe65rd12 Allele Exerts a Semidominant Negative Effect on Vision in Mice

    PubMed Central

    Wright, Charles B.; Chrenek, Micah A.; Feng, Wei; Getz, Shannon E.; Duncan, Todd; Pardue, Machelle T.; Feng, Yue; Redmond, T. Michael; Boatright, Jeffrey H.; Nickerson, John M.

    2014-01-01

    Purpose. The rd12 mouse was reported as a recessively inherited Rpe65 mutation. We asked if the rd12 mutation resides in Rpe65 and how the mutation manifests itself. Methods. A complementation test was performed by mating Rpe65KO (KO/KO) and rd12 mice together to determine if the rd12 mutation is in the Rpe65 gene. Visual function of wild-type (+/+), KO/+, rd12/+, KO/KO, rd12/rd12, and KO/rd12 mice was measured by optokinetic tracking (OKT) and ERG. Morphology was assessed by retinal cross section. qRT-PCR quantified Rpe65 mRNA levels. Immunoblotting measured the size and level of RPE65 protein. Rpe65 mRNA localization was visualized with RNA fluorescence in situ hybridization (FISH). Fractions of Rpe65 mRNA-bound proteins were separated by linear sucrose gradient fractionation. Results. The KO and rd12 alleles did not complement. The rd12 allele induced a negative semidominant effect on visual function; OKT responses became undetectable 120 days earlier in rd12/rd12 mice compared with KO/KO mice. rd12/+ mice lost approximately 21% visual acuity by P210. rd12/rd12 mice had fewer cone photoreceptor nuclei than KO/KO mice at P60. rd12/rd12 mice expressed 71% +/+ levels of Rpe65 mRNA, but protein was undetectable. Mutant mRNA was appropriately spliced, exported to the cytoplasm, trafficked, and contained no other coding mutation aside from the known nonsense mutation. Mutant mRNA was enriched on ribosome-free messenger ribonucleoproteins (mRNPs), whereas wild-type mRNA was enriched on actively translating polyribosomes. Conclusions. The rd12 lesion is in Rpe65. The rd12 mutant phenotype inherits in a semidominant manner. The effects of the mutant mRNA on visual function may result from inefficient binding to ribosomes for translation. PMID:24644049

  7. Altered L-type Ca2+ channel activity contributes to exacerbated hypoperfusion and mortality in smooth muscle cell BK channel-deficient septic mice.

    PubMed

    Xu, Hui; Garver, Hannah; Fernandes, Roxanne; Galligan, James J; Fink, Gregory D

    2014-07-15

    We determined the contribution of vascular large conductance Ca2+-activated K+ (BK) and L-type Ca2+ channel dysregulation to exaggerated mortality in cecal ligation/puncture (CLP)-induced septic BK channel β1-subunit knockout (BK β1-KO, smooth muscle specific) mice. CLP-induced hemodynamic changes and mortality were assessed over 7 days in wild-type (WT) and BK β1-KO mice that were either untreated, given volume resuscitation (saline), or saline + calcium channel blocker nicardipine. Some mice were euthanized 24 h post-CLP to measure tissue injury and vascular and immune responses. CLP-induced hypotension was similar in untreated WT and BK β1-KO mice, but BK β1-KO mice died sooner. At 24 h post-CLP (mortality latency in BK β1-KO mice), untreated CLP-BK β1-KO mice showed more severe hypothermia, lower tissue perfusion, polymorphonuclear neutrophil infiltration-independent severe intestinal necrosis, and higher serum cytokine levels than CLP-WT mice. Saline resuscitation improved survival in CLP-WT but not CLP-BK β1-KO mice. Saline + nicardipine-treated CLP-BK β1-KO mice exhibited longer survival times, higher tissue perfusion, less intestinal injury, and lower cytokines versus untreated CLP-BK β1-KO mice. These improvements were absent in treated CLP-WT mice, although saline + nicardipine improved blood pressure similarly in both septic mice. At 24 h post-CLP, BK and L-type Ca2+ channel functions in vitro were maintained in mesenteric arteries from WT mice. Mesenteric arteries from BK β1-KO mice had blunted BK/enhanced L-type Ca2+ channel function. We conclude that vascular BK channel deficiency exaggerates mortality in septic BK β1-KO mice by activating L-type Ca2+ channels leading to blood pressure-independent tissue ischemia.

  8. Sociophonetic Variations in Korean Constituent Final "-Ko" and "-To"

    ERIC Educational Resources Information Center

    Yi, So Young L.

    2015-01-01

    The purpose of this dissertation is to examine (i) linguistic and extralinguistic factors that influence vowel raising of /o/ in constituent-final "-ko" and "-to" in Seoul Korean and (ii) listeners' perceptions of this vowel raising and social meanings of the raised variant. The analyses are based on production data collected…

  9. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  10. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  11. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  12. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  13. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice.

    PubMed

    Kong, Bo; Huang, Jiansheng; Zhu, Yan; Li, Guodong; Williams, Jessica; Shen, Steven; Aleksunes, Lauren M; Richardson, Jason R; Apte, Udayan; Rudnick, David A; Guo, Grace L

    2014-05-15

    Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an endocrine FGF highly expressed in the small intestine of mice. Emerging evidence suggests that FGF15 is critical for regulating hepatic functions; however, the role of FGF15 in liver regeneration is unclear. This study assessed whether liver regeneration is altered in FGF15 knockout (KO) mice following 2/3 partial hepatectomy (PHx). The results showed that FGF15 KO mice had marked mortality, with the survival rate influenced by genetic background. Compared with wild-type mice, the KO mice displayed extensive liver necrosis and marked elevation of serum bile acids and bilirubin. Furthermore, hepatocyte proliferation was reduced in the KO mice because of impaired cell cycle progression. After PHx, the KO mice had weaker activation of signaling pathways that are important for liver regeneration, including signal transducer and activator of transcription 3, nuclear factor-κB, and mitogen-activated protein kinase. Examination of the KO mice at early time points after PHx revealed a reduced and/or delayed induction of immediate-early response genes, including growth-control transcription factors that are critical for liver regeneration. In conclusion, the results suggest that FGF15 deficiency severely impairs liver regeneration in mice after PHx. The underlying mechanism is likely the result of disrupted bile acid homeostasis and impaired priming of hepatocyte proliferation.

  14. Anxiety-like behaviors in mice lacking GIT2

    PubMed Central

    Schmalzigaug, Robert; Rodriguiz, Ramona M.; Phillips, Lindsey E.; Davidson, Collin E.; Wetsel, William C.; Premont, Richard T.

    2008-01-01

    G protein-coupled receptor kinase-interactor 2 (GIT2) is a signaling scaffold protein that also functions as GTPase-activating protein (GAPs) for ADP-ribosylation factor (Arf) small GTP-binding proteins. GIT2 has been implicated in the regulation of G protein-coupled receptor trafficking and cell adhesion and migration. To evaluate possible neurobehavioral functions of GIT2 in vivo, we evaluated GIT2-knockout (KO) mice for abnormalities in emotionality and mood. Male and female GIT2-KO mice presented with anxiety-like behaviors in the zero-maze and light-dark emergence tests. Immobility times in tail suspension were reduced in GIT2-KO males, but were normal in GIT2-KO females. Hence, GIT2-KO mice display anxiety-like behavior in an absence of depressive-like responses. PMID:19114090

  15. Anxiety-like behaviors in mice lacking GIT2.

    PubMed

    Schmalzigaug, Robert; Rodriguiz, Ramona M; Phillips, Lindsey E; Davidson, Collin E; Wetsel, William C; Premont, Richard T

    2009-02-20

    G protein-coupled receptor kinase-interactor 2 (GIT2) is a signaling scaffold protein that also functions as GTPase-activating protein (GAPs) for ADP-ribosylation factor (Arf) small GTP-binding proteins. GIT2 has been implicated in the regulation of G protein-coupled receptor trafficking and cell adhesion and migration. To evaluate possible neurobehavioral functions of GIT2 in vivo, we evaluated GIT2-knockout (KO) mice for abnormalities in emotionality and mood. Male and female GIT2-KO mice presented with anxiety-like behaviors in the zero-maze and light-dark emergence tests. Immobility times in tail suspension were reduced in GIT2-KO males, but were normal in GIT2-KO females. Hence, GIT2-KO mice display anxiety-like behavior in an absence of depressive-like responses. PMID:19114090

  16. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli.

    PubMed

    Hasen, Nina S; Gammie, Stephen C

    2011-03-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female.

  17. Lack of antiviral antibody response in koalas infected with koala retroviruses (KoRV).

    PubMed

    Fiebig, Uwe; Keller, Martina; Möller, Annekatrin; Timms, Peter; Denner, Joachim

    2015-02-16

    Many wild koalas are infected with the koala retrovirus, KoRV, some of which suffer from lymphoma and chlamydial disease. Three subgroups, KoRV-A, KoRV-B and KoRV-J, have so far been described. It is well known that other closely related gammaretroviruses can induce tumours and severe immunodeficiencies in their respective hosts and a possible role for KoRV infection in lymphoma and chlamydial disease in koalas has been suggested. In many wild koalas, KoRV-A has become endogenised, i.e., it is integrated in the germ-line and is passed on with normal cellular genes. In this study, sera from koalas in European zoos and from wild animals in Australia were screened for antibodies against KoRV-A. These naturally infected animals all carry endogenous KoRV-A and two zoo animals are also infected with KoRV-B. The antibody response is generally an important diagnostic tool for detecting retrovirus infections. However, when Western blot analyses were performed using purified virus or recombinant proteins corresponding to KoRV-A, none of the koalas tested positive for specific antibodies, suggesting a state of tolerance. These results have implications for koala vaccination, as they suggest that therapeutic immunisation of animals carrying and expressing endogenous KoRV-A will not be successful. However, it remains unclear whether these animals can be immunised against KoRV-B and immunisation of uninfected koalas could still be worthwhile.

  18. Lack of antiviral antibody response in koalas infected with koala retroviruses (KoRV).

    PubMed

    Fiebig, Uwe; Keller, Martina; Möller, Annekatrin; Timms, Peter; Denner, Joachim

    2015-02-16

    Many wild koalas are infected with the koala retrovirus, KoRV, some of which suffer from lymphoma and chlamydial disease. Three subgroups, KoRV-A, KoRV-B and KoRV-J, have so far been described. It is well known that other closely related gammaretroviruses can induce tumours and severe immunodeficiencies in their respective hosts and a possible role for KoRV infection in lymphoma and chlamydial disease in koalas has been suggested. In many wild koalas, KoRV-A has become endogenised, i.e., it is integrated in the germ-line and is passed on with normal cellular genes. In this study, sera from koalas in European zoos and from wild animals in Australia were screened for antibodies against KoRV-A. These naturally infected animals all carry endogenous KoRV-A and two zoo animals are also infected with KoRV-B. The antibody response is generally an important diagnostic tool for detecting retrovirus infections. However, when Western blot analyses were performed using purified virus or recombinant proteins corresponding to KoRV-A, none of the koalas tested positive for specific antibodies, suggesting a state of tolerance. These results have implications for koala vaccination, as they suggest that therapeutic immunisation of animals carrying and expressing endogenous KoRV-A will not be successful. However, it remains unclear whether these animals can be immunised against KoRV-B and immunisation of uninfected koalas could still be worthwhile. PMID:25596496

  19. Failure to process dentin sialophosphoprotein into fragments leads to periodontal defects in mice.

    PubMed

    Gibson, Monica P; Jani, Priyam; Liu, Ying; Wang, Xiaofang; Lu, Yongbo; Feng, Jian Q; Qin, Chunlin

    2013-12-01

    Dentin sialophosphoprotein (DSPP) plays a vital role in dentinogenesis. Previously, we showed that, in addition to dentin, DSPP is also highly expressed in alveolar bone and cellular cementum, and plays a crucial role in maintaining periodontal integrity; Dspp-deficient mice demonstrate severe periodontal defects, including alveolar bone loss, decreased cementum deposition, abnormal osteocyte morphology in the alveolar bone, and apical migration of periodontal ligament. Dentin sialophosphoprotein in dentin and bone is cleaved into NH₂ -terminal and COOH-terminal fragments. Whilst our previous study showed that the proteolytic processing of DSPP is critical for dentinogenesis, it is unclear whether the post-translational cleavage of DSPP also plays an essential role in maintaining a healthy periodontium. In this study, we analyzed the periodontal tissues from transgenic mice expressing the uncleavable full-length DSPP in the Dspp knockout (Dspp-KO) background (named 'Dspp-KO/D452A-Tg mice'), in comparison with those from wild-type mice, Dspp-KO mice, and mice expressing the normal Dspp transgene in the Dspp-KO background (designated 'Dspp-KO/normal-Tg mice'). We found that transgenic expression of the normal DSPP fully rescued the periodontal defects of the Dspp-KO mice, whereas this was not the case in Dspp-KO/D452A-Tg mice. These results indicate that proteolytic processing of DSPP is essential to periodontal integrity.

  20. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    PubMed

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  1. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  2. Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice.

    PubMed

    Krieger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C

    2010-11-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known; however, its role in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav-1 KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan (Telm), and cardiac function was assessed by echocardiography. Treatment of Cav-1 KO mice with Telm significantly improved cardiac function compared with age-matched vehicle-treated Cav-1 KO mice, whereas Telm did not affect cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by Telm in Cav-1 KO but not in WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides A and B, β-myosin heavy chain and TGF-β, and Telm treatment normalized the expression of these genes. Telm reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, Telm treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  3. Doublecortin knockout mice show normal hippocampal-dependent memory despite CA3 lamination defects.

    PubMed

    Germain, Johanne; Bruel-Jungerman, Elodie; Grannec, Gael; Denis, Cécile; Lepousez, Gabriel; Giros, Bruno; Francis, Fiona; Nosten-Bertrand, Marika

    2013-01-01

    Mutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability.

  4. Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects

    PubMed Central

    Grannec, Gael; Denis, Cécile; Lepousez, Gabriel; Giros, Bruno; Francis, Fiona; Nosten-Bertrand, Marika

    2013-01-01

    Mutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability. PMID:24073232

  5. Altered emotionality, spatial memory and cholinergic function in caveolin-1 knock-out mice.

    PubMed

    Gioiosa, Laura; Raggi, Carla; Ricceri, Laura; Jasmin, Jean-François; Frank, Philippe G; Capozza, Franco; Lisanti, Michael P; Alleva, Enrico; Sargiacomo, Massimo; Laviola, Giovanni

    2008-04-01

    Neurological phenotypes associated with loss of caveolin 1 (cav-1) (the defining structural protein in caveolar vesicles, which regulate signal transduction and cholesterol trafficking in cells) in mice have been reported recently. In brain, cav-1 is highly expressed in neurons and glia. We investigated emotional and cognitive behavioural domains in mice deficient in cav-1 (CavKO mice). CavKO mice were more anxious and spent more time in self-directed grooming behaviour than wild-type (wt) mice. In a spatial/working memory task, CavKO mice failed to recognize the object displacement, thus showing a spatial memory impairment. CavKO mice showed higher locomotor activity than wt mice, thus suggesting reduced inhibitory function by CNS cholinergic systems. Behavioural response to the cholinergic muscarinic antagonist, scopolamine (2 mg/Kg), was decreased in CavKO mice. Few behavioural sex differences emerged in mice; whereas the sex differences were generally attenuated or even reverted in the null genotype. Our data confirm a distinct behavioural phenotype in CavKO mice and indicate a selective alteration in central cholinergic function.

  6. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders.

    PubMed

    Jaehne, Emily J; Ramshaw, Hayley; Xu, Xiangjun; Saleh, Eiman; Clark, Scott R; Schubert, Klaus Oliver; Lopez, Angel; Schwarz, Quenten; Baune, Bernhard T

    2015-11-01

    Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to reverse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KO mice were administered clozapine (5mg/kg) for two weeks prior to being analysed in a test battery of cognition, anxiety, and despair (depression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific anatomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine density observed in 14-3-3ζ KO mice. Our results suggest that clozapine may have beneficial effects on clinical behaviours associated with deficiencies in the 14-3-3ζ molecular pathway, despite having no effects on morphological defects. These findings may provide mechanistic insight to the action of this drug.

  7. Behavioral and pharmacological phenotypes of brain-specific diacylglycerol kinase δ-knockout mice.

    PubMed

    Usuki, Takako; Takato, Tamae; Lu, Qiang; Sakai, Hiromichi; Bando, Kana; Kiyonari, Hiroshi; Sakane, Fumio

    2016-10-01

    Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we reported that the δ isozyme of DGK was abundantly expressed in the mouse brain. However, the functions of DGKδ in the brain are still unclear. Because conventional DGKδ-knockout (KO) mice die within 24h after birth, we have generated brain-specific conditional DGKδ-KO mice to circumvent the lethality. In the novel object recognition test, the number of contacts in the DGKδ-KO mice to novel and familiar objects was greatly increased compared to the control mice, indicating that the DGKδ-KO mice showed irrational contacts with objects such as compulsive checking. In the marble burying test, which is used for analyzing obsessive-compulsive disorder (OCD)-like phenotypes, the DGKδ-KO mice buried more marbles than the control mice. Additionally, these phenotypes were significantly alleviated by the administration of an OCD remedy, fluoxetine. These results indicate that the DGKδ-KO mice showed OCD-like behaviors. Moreover, the number of long axon/neurites increased in both DGKδ-KO primary cortical neurons and DGKδ-knockdown neuroblastoma Neuro-2a cells compared to control cells. Conversely, overexpression of DGKδ decreased the number of long axon/neurites of Neuro-2a cells. Taken together, these results strongly suggest that a deficiency of DGKδ induces OCD-like behavior through enhancing axon/neurite outgrowth. PMID:27423518

  8. LCAT deficiency in mice is associated with a diminished adrenal glucocorticoid function.

    PubMed

    Hoekstra, Menno; Korporaal, Suzanne J A; van der Sluis, Ronald J; Hirsch-Reinshagen, Veronica; Bochem, Andrea E; Wellington, Cheryl L; Van Berkel, Theo J C; Kuivenhoven, Jan Albert; Van Eck, Miranda

    2013-02-01

    In vitro studies have suggested that HDL and apoB-containing lipoproteins can provide cholesterol for synthesis of glucocorticoids. Here we assessed adrenal glucocorticoid function in LCAT knockout (KO) mice to determine the specific contribution of HDL-cholesteryl esters to adrenal glucocorticoid output in vivo. LCAT KO mice exhibit an 8-fold higher plasma free cholesterol-to-cholesteryl ester ratio (P < 0.001) and complete HDL-cholesteryl ester deficiency. ApoB-containing lipoprotein and associated triglyceride levels are increased in LCAT KO mice as compared with C57BL/6 control mice (44%; P < 0.05). Glucocorticoid-producing adrenocortical cells within the zona fasciculata in LCAT KO mice are devoid of neutral lipids. However, adrenal weights and basal corticosterone levels are not significantly changed in LCAT KO mice. In contrast, adrenals of LCAT KO mice show compensatory up-regulation of genes involved in cholesterol synthesis (HMG-CoA reductase; 516%; P < 0.001) and acquisition (LDL receptor; 385%; P < 0.001) and a marked 40-50% lower glucocorticoid response to adrenocorticotropic hormone exposure, endotoxemia, or fasting (P < 0.001 for all). In conclusion, our studies show that HDL-cholesteryl ester deficiency in LCAT KO mice is associated with a 40-50% lower adrenal glucocorticoid output. These findings further highlight the important novel role for HDL as cholesterol donor for the synthesis of glucocorticoids by the adrenals. PMID:23178225

  9. Behavioral and pharmacological phenotypes of brain-specific diacylglycerol kinase δ-knockout mice.

    PubMed

    Usuki, Takako; Takato, Tamae; Lu, Qiang; Sakai, Hiromichi; Bando, Kana; Kiyonari, Hiroshi; Sakane, Fumio

    2016-10-01

    Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we reported that the δ isozyme of DGK was abundantly expressed in the mouse brain. However, the functions of DGKδ in the brain are still unclear. Because conventional DGKδ-knockout (KO) mice die within 24h after birth, we have generated brain-specific conditional DGKδ-KO mice to circumvent the lethality. In the novel object recognition test, the number of contacts in the DGKδ-KO mice to novel and familiar objects was greatly increased compared to the control mice, indicating that the DGKδ-KO mice showed irrational contacts with objects such as compulsive checking. In the marble burying test, which is used for analyzing obsessive-compulsive disorder (OCD)-like phenotypes, the DGKδ-KO mice buried more marbles than the control mice. Additionally, these phenotypes were significantly alleviated by the administration of an OCD remedy, fluoxetine. These results indicate that the DGKδ-KO mice showed OCD-like behaviors. Moreover, the number of long axon/neurites increased in both DGKδ-KO primary cortical neurons and DGKδ-knockdown neuroblastoma Neuro-2a cells compared to control cells. Conversely, overexpression of DGKδ decreased the number of long axon/neurites of Neuro-2a cells. Taken together, these results strongly suggest that a deficiency of DGKδ induces OCD-like behavior through enhancing axon/neurite outgrowth.

  10. Metabolic characteristics of long-lived mice.

    PubMed

    Bartke, Andrzej; Westbrook, Reyhan

    2012-01-01

    Genetic suppression of insulin/insulin-like growth factor signaling (IIS) can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH) release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor I. Long-lived GH-resistant GHR-KO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1(df)) and Snell dwarf (Pit1(dw)) mice lacking GH (along with prolactin and TSH), are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHR-KO mice. Indirect calorimetry revealed that both Ames dwarf and GHR-KO mice utilize more oxygen per gram (g) of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO(2)) were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO(2) did not differ between GHR-KO and normal mice. Thus, the increased metabolic rate of the GHR-KO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of GHR-KO mice.

  11. Interleukin-1 deficiency prolongs ovarian lifespan in mice

    PubMed Central

    Uri-Belapolsky, Shiri; Shaish, Aviv; Eliyahu, Efrat; Grossman, Hadas; Levi, Mattan; Chuderland, Dana; Ninio-Many, Lihi; Hasky, Noa; Shashar, David; Almog, Tal; Kandel-Kfir, Michal; Harats, Dror; Shalgi, Ruth; Kamari, Yehuda

    2014-01-01

    Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1β–KO mice. IL-1α–KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α–KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α–KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1β–KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α–KO mice. The protein and mRNA of both IL-1α and IL-1β mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2–associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1β, IL-6, and TNF-α in ovaries of IL-1α–KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways. PMID:25114230

  12. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt.

  13. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  14. The susceptibility of Aire(-/-) mice to experimental myasthenia gravis involves alterations in regulatory T cells.

    PubMed

    Aricha, Revital; Feferman, Tali; Scott, Hamish S; Souroujon, Miriam C; Berrih-Aknin, Sonia; Fuchs, Sara

    2011-02-01

    The autoimmune regulator (Aire) is involved in the prevention of autoimmunity by promoting thymic expression of tissue restricted antigens which leads to elimination of self-reactive T cells. We found that Aire knockout (KO) mice as well as mouse strains that are susceptible to experimental autoimmune myasthenia gravis (EAMG) have lower thymic expression of acetylcholine receptor (AChR- the main autoantigen in MG), compared to wild type (WT) mice and EAMG-resistant mouse strains, respectively. We demonstrated that Aire KO mice have a significant and reproducible lower frequency of CD4+Foxp3+ cells and a higher expression of Th17 markers in their thymus, compared to wild type (WT) mice. These findings led us to expect that Aire KO mice would display increased susceptibility to EAMG. Surprisingly, when EAMG was induced in young (2 month-old) mice, EAMG was milder in Aire KO than in WT mice for several weeks until the age of about 5 months. However, when EAMG was induced in relatively aged (6 month-old) mice, Aire KO mice presented higher disease severity than WT controls. This age-related change in susceptibility to EAMG correlated with an elevated proportion of Treg cells in the spleens of young but not old KO, compared to WT mice, suggesting a role for peripheral Treg cells in the course of disease. Our observations point to a possible link between Aire and Treg cells and suggest an involvement for both in the pathogenesis of myasthenia.

  15. Results of Life-Supporting GalT-KO kidneys in Cynomolgus Monkeys Using Two Different Sources of GalT-KO Swine

    PubMed Central

    Sekijima, Mitsuhiro; Waki, Shiori; Sahara, Hisashi; Tasaki, Masayuki; Wilkinson, Robert A.; Villani, Vincenzo; Shimatsu, Yoshiki; Nakano, Kazuaki; Matsunari, Hitomi; Nagashima, Hiroshi; Fishman, Jay A.; Shimizu, Akira; Yamada, Kazuhiko

    2014-01-01

    Background Various durations of survival have been observed in the xenotransplantation of life-supporting alpha-1,3-galactosyltransferase knockout (GalT-KO) porcine kidneys into nonhuman primates (NHPs). While others have demonstrated loss of GalT-KO transplanted kidneys within two weeks, we have reported an average survival of 51 days with the co-transplantation of the kidney and vascularized thymus and an average of 29 days with the kidney alone. In order to determine the factors responsible for this difference in survival time, we performed xenogeneic kidney transplantations into cynomolgus monkeys with an anti-CD40L-based regimen using two different strains of GalT-KO swine, one derived from MGH-Miniature swine and the other obtained from Meji University. Materials and Methods Eight cynomolgus moneys received GalT-KO kidneys. Three kidney grafts were from MGH/NIBS GalT-KO pigs and 5 GalT-KO grafts were from MEIJI GalT-KO swine. All cynomolgus recipients were treated identically. Results Recipients of kidneys from the MGH GalT-KO swine, produced by nuclear transfer in Japan, survived an average of 28.7 days, while recipients of MEIJI GalT-KO swine survived an average of 9.2 days. Among the differences between these two groups, one potentially revealing disparity was that the MEIJI swine were positive for porcine-CMV, while the MGH-derived swine were negative. Conclusions This is the first study comparing renal xenotransplantation from two different sources of GalT-KO swine into NHPs at a single center. The results demonstrate that porcine-CMV may be responsible for early loss of GalTKO swine kidney xenografts. PMID:25243512

  16. Similar phenotypes of Girdin germ-line and conditional knockout mice indicate a crucial role for Girdin in the nestin lineage.

    PubMed

    Asai, Masato; Asai, Naoya; Murata, Ayana; Yokota, Hirofumi; Ohmori, Kenji; Mii, Shinji; Enomoto, Atsushi; Murakumo, Yoshiki; Takahashi, Masahide

    2012-10-01

    Girdin is an Akt substrate and actin-binding protein. Mice with germ-line deletions of Girdin (a non-conditional knockout, (ncKO)) exhibit complete postnatal lethality accompanied by growth retardation and neuronal cell migration defects, which results in hypoplasia of the olfactory bulb and granule cell dispersion in the dentate gyrus. However, the physiological and molecular abnormalities in Girdin ncKO mice are not fully understood. In this study, we first defined the distribution of Girdin in neonates (P1) and adults (6months or older) using β-galactosidase activity in tissues from ncKO mice. The results indicate that Girdin is expressed throughout the nervous system (brain, spinal cord, enteric and autonomic nervous systems). In addition, β-galactosidase activity was detected in non-neural tissues, particularly in tissues with high tensile force, such as tendons, heart valves, and skeletal muscle. In order to identify the cellular population where the Girdin ncKO phenotype originates, newly generated Girdin flox mice were crossed with nestin promoter-driven Cre transgenic mice to obtain Girdin conditional knockout (cKO) mice. The phenotype of Girdin cKO mice was almost identical to ncKO mice, including postnatal lethality, growth retardation and decreased neuronal migration. Our findings indicate that loss of Girdin in the nestin cell lineage underlies the phenotype of Girdin ncKO mice. PMID:22974978

  17. Bex1 knock out mice show altered skeletal muscle regeneration

    SciTech Connect

    Koo, Jae Hyung Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-11-16

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca{sup 2+}/CaM may be involved in skeletal muscle regeneration.

  18. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice.

    PubMed

    Dansie, L E; Phommahaxay, K; Okusanya, A G; Uwadia, J; Huang, M; Rotschafer, S E; Razak, K A; Ethell, D W; Ethell, I M

    2013-08-29

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder. Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in "fragile X mental retardation gene" knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4- and 8-week-long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model.

  19. The Metabotropic Glutamate 5 Receptor Modulates Extinction and Reinstatement of Methamphetamine-Seeking in Mice

    PubMed Central

    Chesworth, Rose; Brown, Robyn M.; Kim, Jee Hyun; Lawrence, Andrew J.

    2013-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience. PMID:23861896

  20. Kinetics of ethanol production by recombinant Escherichia coli KO11

    SciTech Connect

    Olsson, L.; Hahn-Haegerdal, B. Lund Inst. of Tech. )

    1995-02-20

    The fermentation kinetics for separate as well as simultaneous glucose and xylose fermentation with recombinant ethanologenic Escherichia coli KO11 are presented. Glucose and xylose were consumed simultaneously and exhibited mutual inhibition. The glucose exhibited 15 times stronger inhibition in xylose fermentation than vice versa. The fermentation of condensate from steam-pretreated willow (Salix) was investigated. The kinetics were studied in detoxified as well as in nondetoxified condensate. The fermentation of the condensate followed two phases: first the glucose and some of the pentoses (xylose in addition to small amounts of arabinose) were fermented simultaneously, and then the remaining part of the pentoses were fermented. The rate of the first phase was independent of the detoxification method used, whereas the rate of the second phase was found to be strongly dependent. When the condensate was detoxified with overliming in combination with sulfite, which was the best detoxification method investigated, the sugars in the condensate, 9 g/L, were fermented in 11 h. The same fermentation took 150 h in nondetoxified condensate. The experimental data were used to develop an empirical model, describing the batch fermentation of recombinant E. coli KO11 in the condensate. The model is based on Monod kinetics including substrate and product inhibition and the sum of the inhibition exerted by the rest of the inhibitors, lumped together.

  1. Characterization of mice lacking the gene for cholecystokinin.

    PubMed

    Lo, Chun-Min; Samuelson, Linda C; Chambers, James Brad; King, Alexandra; Heiman, Justin; Jandacek, Ronald J; Sakai, Randall R; Benoit, Stephen C; Raybould, Helen E; Woods, Stephen C; Tso, Patrick

    2008-03-01

    CCK acts peripherally as a satiating peptide released during meals in response to lipid feeding and centrally functions in the modulation of feeding, exploratory, and memory activities. The present study determined metabolic parameters, food intake, anxiety-like behaviors, and cognitive function in mice lacking the CCK gene. We studied intestinal fat absorption, body composition, and food intake of CCK knockout (CCK-KO) mice by using the noninvasive measurement of intestinal fat absorption along with quantitative magnetic resonance (QMR) imaging and the DietMax system, respectively. Additionally, exploratory and memory capacities were assessed by monitoring running wheel activity and conducting elevated plus-maze and Morris water-maze tests with these mice. Compared with wild-type (WT) littermate controls, CCK-KO mice had normal food intake, fat absorption, body weight, and body mass. CCK-KO mice ate more food than control animals during the light period and less food during the dark period. Energy expenditure was unchanged between the genotypes; however, CCK-KO mice displayed greater fatty acid oxidation. CCK-KO mice were as active as WT animals in the running wheel test. CCK-KO mice spent more time in the closed arms of an elevated plus-maze, indicative of increased anxiety. Additionally, CCK-KO mice exhibited attenuated performance in a passive avoidance task and impaired spatial memory in the Morris water maze test. We conclude that CCK is involved in metabolic rate and is important for memory and exploration. CCK is intimately involved in multiple processes related to cognitive function and food intake regulation. PMID:18160529

  2. Neuregulin 3 Knockout Mice Exhibit Behaviors Consistent with Psychotic Disorders.

    PubMed

    Hayes, Lindsay N; Shevelkin, Alexey; Zeledon, Mariela; Steel, Gary; Chen, Pei-Lung; Obie, Cassandra; Pulver, Ann; Avramopoulos, Dimitrios; Valle, David; Sawa, Akira; Pletnikov, Mikhail V

    2016-07-01

    Neuregulin 3 (NRG3) is a paralog of NRG1. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, and several intronic single nucleotide polymorphisms in NRG3 are associated with delusions in patients with schizophrenia. In order to gain insights into the biological function of the gene, we generated a novel Nrg3 knockout (KO) mouse model and tested for neurobehavioral phenotypes relevant to psychotic disorders. KO mice displayed novelty-induced hyperactivity, impaired prepulse inhibition of the acoustic startle response, and deficient fear conditioning. No gross cytoarchitectonic or layer abnormalities were noted in the brain of KO mice. Our findings suggest that deletion of the Nrg3 gene leads to alterations consistent with aspects of schizophrenia. We propose that KO mice will provide a valuable animal model to determine the role of the NRG3 in the molecular pathogenesis of schizophrenia and other psychotic disorders. PMID:27606322

  3. Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*

    PubMed Central

    Bancroft, Tara; Bouaouina, Mohamed; Roberts, Sophia; Lee, Monica; Calderwood, David A.; Schwartz, Martin; Simons, Michael; Sessa, William C.; Kyriakides, Themis R.

    2015-01-01

    Vascular remodeling is essential for tissue repair and is regulated by multiple factors, including thrombospondin-2 (TSP2) and hypoxia/VEGF-induced activation of Akt. In contrast to TSP2 knock-out (KO) mice, Akt1 KO mice have elevated TSP2 expression and delayed tissue repair. To investigate the contribution of increased TSP2 to Akt1 KO mice phenotypes, we generated Akt1/TSP2 double KO (DKO) mice. Full-thickness excisional wounds in DKO mice healed at an accelerated rate when compared with Akt1 KO mice. Isolated dermal Akt1 KO fibroblasts expressed increased TSP2 and displayed altered morphology and defects in migration and adhesion. These defects were rescued in DKO fibroblasts or after TSP2 knockdown. Conversely, the addition of exogenous TSP2 to WT cells induced cell morphology and migration rates that were similar to those of Akt1 KO cells. Akt1 KO fibroblasts displayed reduced adhesion to fibronectin with manganese stimulation when compared with WT and DKO cells, revealing an Akt1-dependent role for TSP2 in regulating integrin-mediated adhesions; however, this effect was not due to changes in β1 integrin surface expression or activation. Consistent with these results, Akt1 KO fibroblasts displayed reduced Rac1 activation that was dependent upon expression of TSP2 and could be rescued by a constitutively active Rac mutant. Our observations show that repression of TSP2 expression is a critical aspect of Akt1 function in tissue repair. PMID:25389299

  4. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies.

    PubMed

    Rachel, Rivka A; Yamamoto, Erin A; Dewanjee, Mrinal K; May-Simera, Helen L; Sergeev, Yuri V; Hackett, Alice N; Pohida, Katherine; Munasinghe, Jeeva; Gotoh, Norimoto; Wickstead, Bill; Fariss, Robert N; Dong, Lijin; Li, Tiansen; Swaroop, Anand

    2015-07-01

    Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies. PMID:25859007

  5. Role of connexin 32 in acetaminophen toxicity in a knockout mice model.

    PubMed

    Igarashi, Isao; Maejima, Takanori; Kai, Kiyonori; Arakawa, Shingo; Teranishi, Munehiro; Sanbuissho, Atsushi

    2014-03-01

    Gap junctional intercellular communication (GJIC), by which glutathione (GSH) and inorganic ions are transmitted to neighboring cells, is recognized as being largely involved in toxic processes of chemicals. We examined acetaminophen (APAP)-induced hepatotoxicity clinicopathologically using male wild-type mice and mice lacking the gene for connexin32, a major gap junction protein in the liver [knockout (Cx32KO) mice]. When APAP was intraperitoneally administered at doses of 100, 200, or 300mg/kg, hepatic centrilobular necrosis with elevated plasma aminotransferase activities was observed in wild-type mice receiving 300mg/kg, and in Cx32KO mice given 100mg/kg or more. At 200mg/kg or more, hepatic GSH and GSSG contents decreased significantly and the effect was more severe in wild-type mice than in Cx32KO mice. On the other hand, markedly decreased GSH staining was observed in the hepatic centrilobular zones of Cx32KO mice compared to that of wild-type mice. These results demonstrate that Cx32KO mice are more susceptible to APAP hepatotoxicity than wild-type mice, and indicate that the distribution of GSH of the centrilobular zones in the hepatic lobules, rather than GSH and GSSG contents in the liver, is important in APAP hepatotoxicity. In conclusion, Cx32 protects against APAP-induced hepatic centrilobular necrosis in mice, which may be through the GSH transmission to neighboring hepatocytes by GJIC.

  6. Hepatic Mttp deletion reverses gallstone susceptibility in L-Fabp knockout mice.

    PubMed

    Xie, Yan; Fung, Ho Yee Joyce; Newberry, Elizabeth P; Kennedy, Susan; Luo, Jianyang; Crooke, Rosanne M; Graham, Mark J; Davidson, Nicholas O

    2014-03-01

    Previous studies demonstrated that L-Fabp KO mice are more susceptible to lithogenic diet (LD)-induced gallstones because of altered hepatic cholesterol metabolism and increased canalicular cholesterol secretion. Other studies demonstrated that liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) reduced LD-induced gallstone formation by increasing biliary phospholipid secretion. Here we show that mice with combined deletion (i.e., DKO mice) are protected from LD-induced gallstone formation. Following 2 weeks of LD feeding, 73% of WT and 100% of L-Fabp KO mice developed gallstones versus 18% of Mttp-LKO and 23% of DKO mice. This phenotype was recapitulated in both WT and L-Fabp KO mice treated with an Mttp antisense oligonucleotide (M-ASO). Biliary cholesterol secretion was increased in LD-fed L-Fabp KO mice and decreased in DKO mice. However, phospholipid secretion was unchanged in LD-fed Mttp-LKO and DKO mice as well as in M-ASO-treated mice. Expression of the canalicular export pump ABCG5/G8 was reduced in LD-fed DKO mice and in M-ASO-treated L-Fabp KO mice. We conclude that liver-specific Mttp deletion not only eliminates apical lipoprotein secretion from hepatocytes but also attenuates canalicular cholesterol secretion, which in turn decreases LD-induced gallstone susceptibility.

  7. CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE

    EPA Science Inventory

    We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...

  8. Role of Olfaction in the Conditioned Sucrose Preference of Sweet-Ageusic T1R3 Knockout Mice

    PubMed Central

    Zukerman, Steven; Touzani, Khalid; Margolskee, Robert F.

    2009-01-01

    Prior work has shown that sweet taste–deficient T1R3 knockout (KO) mice developed significant sucrose preferences when given long-term sugar versus water tests. The current study investigated the role of olfaction in this experience-conditioned sucrose preference. T1R3 KO and C57BL/6 wild-type (WT) mice were given 24-h sugar versus water tests with ascending concentrations of sucrose (0.5–32%), after which the mice received olfactory bulbectomy (OBx) or sham surgery. When retested with sucrose, the Sham-KO mice preferred all sugar solutions to water, although their intake and preference were less than those of the Sham-WT mice. The OBx-KO mice, in contrast, showed no or weak preferences for dilute sucrose solutions (0.5–8%) although they strongly preferred concentrated sugar solutions (16–32%). OBx-WT mice displayed only a partial reduction in their sucrose preference. Although the OBx mice of both genotypes underconsumed dilute sucrose solutions relative to Sham mice, they overconsumed concentrated sucrose. These results indicate that olfaction plays a critical role in the conditioned preference of T1R3 KO mice for dilute sugar solutions. Further, the fact that OBx-KO mice preferred concentrated sucrose solutions in the absence of normal sweet taste and olfactory sensations underscores the potency of postoral nutritive signals in promoting ingestion. PMID:19736224

  9. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.

  10. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects. PMID:17875609

  11. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  12. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    PubMed

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD).

  13. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  14. Effects of enriched environment on gene expression and signal pathways in cortex of hippocampal CA1 specific NMDAR1 knockout mice.

    PubMed

    Li, Chunxia; Niu, Wenze; Jiang, Cecilia H; Hu, Yinghe

    2007-03-30

    N-methyl-D-aspartate glutamate receptor 1 (NMDAR1) plays a pivotal role in different forms of memory. Indeed, hippocampal CA1 region specific knockout (KO) of NMDAR1 in mice showed memory impairment. Recently, it has been reported that environmental enrichment enhanced memory and rescued the memory deficits of the NMDAR1-KO mice. It is well known that cortex has synaptic connections with hippocampus and is the storage region of the brain for long-term memory. To understand the molecular mechanisms of the memory impairments in the NMDAR1-KO mice, we have examined gene expression profiles in cortex from the receptor KO mice compared to wild type mice. Furthermore, since memory deficits were rescued after exposure of the NMDAR1-KO mice to enriched environment, we also analyzed the gene expression in the cortex of the KO mice after 3 hours, 2 days and 2 weeks enrichment. We found that the expression levels of 104 genes were altered in the cortex of NMDAR1-KO mice. Environmental enrichment for 3 hours, 2 days and 2 weeks affected the expression of 45, 34 and 56 genes, respectively. Genes involved in multiple signal pathways were regulated in the NMDAR1-KO mice, such as neurotransmission, structure, transcription, protein synthesis and protein processing. It is not surprising that since enriched environment rescued the memory decline in the NMDAR1-KO mice, the expression changes of a number of genes involved in these signal pathways were recovered or even reversed after enrichment. Our results further demonstrated that reelin and Notch signal pathways could be involved in the enrichment effects on memory improvement in the KO mice.

  15. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  16. Knock-out of nexilin in mice leads to dilated cardiomyopathy and endomyocardial fibroelastosis.

    PubMed

    Aherrahrou, Zouhair; Schlossarek, Saskia; Stoelting, Stephanie; Klinger, Matthias; Geertz, Birgit; Weinberger, Florian; Kessler, Thorsten; Aherrahrou, Redouane; Moreth, Kristin; Bekeredjian, Raffi; Hrabě de Angelis, Martin; Just, Steffen; Rottbauer, Wolfgang; Eschenhagen, Thomas; Schunkert, Heribert; Carrier, Lucie; Erdmann, Jeanette

    2016-01-01

    Cardiomyopathy is one of the most common causes of chronic heart failure worldwide. Mutations in the gene encoding nexilin (NEXN) occur in patients with both hypertrophic and dilated cardiomyopathy (DCM); however, little is known about the pathophysiological mechanisms and relevance of NEXN to these disorders. Here, we evaluated the functional role of NEXN using a constitutive Nexn knock-out (KO) mouse model. Heterozygous (Het) mice were inter-crossed to produce wild-type (WT), Het, and homozygous KO mice. At birth, 32, 46, and 22 % of the mice were WT, Het, and KO, respectively, which is close to the expected Mendelian ratio. After postnatal day 6, the survival of the Nexn KO mice decreased dramatically and all of the animals died by day 8. Phenotypic characterizations of the WT and KO mice were performed at postnatal days 1, 2, 4, and 6. At birth, the relative heart weights of the WT and KO mice were similar; however, at day 4, the relative heart weight of the KO group was 2.3-fold higher than of the WT group. In addition, the KO mice developed rapidly progressive cardiomyopathy with left ventricular dilation and wall thinning and decreased cardiac function. At day 6, the KO mice developed a fulminant DCM phenotype characterized by dilated ventricular chambers and systolic dysfunction. At this stage, collagen deposits and some elastin deposits were observed within the left ventricle cavity, which resembles the features of endomyocardial fibroelastosis (EFE). Overall, these results further emphasize the role of NEXN in DCM and suggest a novel role in EFE.

  17. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    PubMed

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards.

  18. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    PubMed

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. PMID:21803530

  19. Protective role of TNF-α, IL-10 and IL-2 in mice infected with the Oshima strain of Tick-borne encephalitis virus

    PubMed Central

    Tun, Mya Myat Ngwe; Aoki, Kotaro; Senba, Masachika; Buerano, Corazon C.; Shirai, Kenji; Suzuki, Ryuji; Morita, Kouichi; Hayasaka, Daisuke

    2014-01-01

    Tick-borne encephalitis virus (TBEV) causes acute central nervous system disease. Here, we investigated the roles of the TNF-α, IL-10 and other cytokines in appropriate KO mice following infection with Oshima and Sofjin strains of TBEV. Following infection with the Oshima strain, mortality rates were significantly increased in TNF-α KO and IL-10 KO mice compared with wild type (WT) mice. These results suggested that TNF-α and IL-10 play protective roles against fatal infection due to Oshima strain infection. However, viral loads and proinflammatory cytokine levels in the brain of TNF-α KO andIL-10 KO mice were not significantly different compared with those of WT mice. On the other hand, all WT, TNF-α KO and IL-10 KO mice died following infection with Sofjin strain. Interestingly, Sofjin-infected mice did not exhibit an up-regulated mRNA level of IL-2 in the spleen in all groups of mice, whereas Oshima-infected mice showed significantly increased level of IL-2 compared with mock-infected mice. From these results, we suggest that TNF-α, IL-10 and IL-2 are key factors for disease remission from fatal encephalitis due to infection with Oshima strain of TBEV. PMID:24938868

  20. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics.

    PubMed

    Bonkowski, Michael S; Pamenter, Richard W; Rocha, Juliana S; Masternak, Michal M; Panici, Jacob A; Bartke, Andrzej

    2006-06-01

    There is conflicting information on the physiological role of growth hormone (GH) in the control of aging. This study reports dual-energy x-ray absorptiometry (DXA) measurements of body composition and bone characteristics in young, adult, and aged long-lived GH receptor knockout (GHR-KO) and normal mice to determine the effects of GH resistance during aging. Compared to controls, GHR-KO mice showed an increased percentage of body fat. GHR-KO mice have reduced total-body bone mineral density (BMD), bone mineral content, and bone area, but these parameters increased with age. In addition, GHR-KO mice have decreased femur length, femur BMD, and lower lumbar BMD compared to controls in all age groups. These parameters also continued to increase with age. Our results indicate that GH resistance alters body composition, bone growth, and bone maintenance during aging in GHR-KO mice.

  1. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.

    PubMed

    Hellekant, Göran; Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A

    2015-07-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span.

  2. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.

    PubMed

    Hellekant, Göran; Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A

    2015-07-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  3. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span

    PubMed Central

    Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A.

    2015-01-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  4. Osteopontin Deficiency Accelerates Spontaneous Colitis in Mice with Disrupted Gut Microbiota and Macrophage Phagocytic Activity

    PubMed Central

    Toyonaga, Takahiko; Nakase, Hiroshi; Ueno, Satoru; Matsuura, Minoru; Yoshino, Takuya; Honzawa, Yusuke; Itou, Ayako; Namba, Kazuyoshi; Minami, Naoki; Yamada, Satoshi; Koshikawa, Yorimitsu; Uede, Toshimitsu; Chiba, Tsutomu; Okazaki, Kazuichi

    2015-01-01

    Background Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear. Aims To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice. Methods We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay. Results OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml. Conclusions OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity. PMID:26274807

  5. Nqrs Data for C8H9KO6 [C8H5KO4·2(H2O)] (Subst. No. 1092)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C8H9KO6 [C8H5KO4·2(H2O)] (Subst. No. 1092)

  6. Effect of sodium arsenite dose administered in the drinking water on the urinary bladder epithelium of female arsenic (+3 oxidation state) methyltransferase knockout mice.

    PubMed

    Yokohira, Masanao; Arnold, Lora L; Pennington, Karen L; Suzuki, Shugo; Kakiuchi-Kiyota, Satoko; Herbin-Davis, Karen; Thomas, David J; Cohen, Samuel M

    2011-06-01

    The enzyme arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions converting inorganic arsenic to methylated metabolites, some of which are highly cytotoxic. In a previous study, female As3mt knockout (KO) mice treated with diet containing 100 or 150 ppm arsenic as arsenite showed systemic toxicity and significant effects on the urothelium. In the present study, we showed that the cytotoxic and proliferative effects of arsenite administration on the urothelium are dose dependent. Female wild-type C57BL/6 mice and As3mt KO mice were divided into five groups (n = 7) with free access to drinking water containing 0, 1, 10, 25, or 50 ppm arsenic as arsenite for 4 weeks. At sacrifice, urinary bladders of both As3mt KO and wild-type mice showed hyperplasia by light microscopy; however, the hyperplasia was more severe in the As3mt KO mice. Intracytoplasmic granules were detected in the urothelium of As3mt KO and wild-type mice at arsenic doses ≥ 10 ppm but were more numerous, more extensive, and larger in the KO mice. A no effect level for urothelial effects was identified at 1 ppm arsenic in the wild-type and As3mt KO mice. In As3mt KO mice, livers showed mild acute inflammation and kidneys showed hydronephrosis. The present study shows a dose-response for the effects of orally administered arsenite on the bladder urothelium of wild-type and As3mt KO mice, with greater effects in the KO strain but with a no effect level of 1 ppm for both.

  7. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice.

    PubMed

    Walker, Paul D; Jarosz, Patricia A; Bouhamdan, Mohamad; MacKenzie, Robert G

    2015-01-01

    Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome.

  8. Obese carboxypeptidase E knockout mice exhibit multiple defects in peptide hormone processing contributing to low bone mineral density

    PubMed Central

    Cawley, Niamh X.; Yanik, Tulin; Woronowicz, Alicja; Chang, Weizhong; Marini, Joan C.

    2010-01-01

    Carboxypeptidase E (CPE) is a prohormone/proneuropeptide processing enzyme, and mice bearing CPE mutations exhibit an obese and diabetic phenotype. Studies on CPE knockout (KO) mice revealed poor prohormone processing, resulting in deficiencies in peptide hormones/neuropeptides such as insulin, gonadotropin-releasing hormone, and cocaine- and amphetamine-regulated transcript (CART). Here, we show that CPE KO mice, an obese animal model, have low bone mineral density (BMD) accompanied by elevated plasma CTX-1 (carboxy-terminal collagen crosslinks), and osteocalcin, indicators of increased bone turnover. Receptor activator for NF-κB ligand (RANKL) expression was elevated ∼2-fold relative to osteoprotegerin in the femur of KO animals, suggesting increased osteoclastic activity in the KO mice. In the hypothalamus, mature CART, a peptide involved in eating behavior and implicated in bone metabolism, was undetectable. The melanocortin and neuropeptide Y (NPY) systems in the hypothalamus have also been implicated in bone remodeling, since MC4R KO and NPY KO mice have increased BMD. However, reduction of α-MSH, the primary ligand of MC4R by up to 94% and the lack of detectable NPY in the hypothalamus of CPE KO do not recapitulate the single-gene KO phenotypes. This study highlights the complex physiological interplay between peptides involved in energy metabolism and bone formation and furthermore suggests the possibility that patients, bearing CPE and CART mutations leading to inactive forms of these molecules, may be at a higher risk of developing osteoporosis. PMID:20460579

  9. Fluoxetine Protection in Decompression Sickness in Mice is Enhanced by Blocking TREK-1 Potassium Channel with the “spadin” Antidepressant

    PubMed Central

    Vallée, Nicolas; Lambrechts, Kate; De Maistre, Sébastien; Royal, Perrine; Mazella, Jean; Borsotto, Marc; Heurteaux, Catherine; Abraini, Jacques; Risso, Jean-Jacques; Blatteau, Jean-Eric

    2016-01-01

    In mice, disseminated coagulation, inflammation, and ischemia induce neurological damage that can lead to death. These symptoms result from circulating bubbles generated by a pathogenic decompression. Acute fluoxetine treatment or the presence of the TREK-1 potassium channel increases the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50 mg/kg) in wild-type (WT) and TREK-1 deficient mice (knockout homozygous KO and heterozygous HET). Then, we combined the same fluoxetine treatment with a 5-day treatment protocol with spadin, in order to specifically block TREK-1 activity (KO-like mice). KO and KO-like mice were regarded as antidepressed models. In total, 167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux) constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive) constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux) and 4% of mice treated with both spadin and fluoxetine (KO-likeflux) died from decompression sickness (DCS) symptoms. These values are much lower than those of WT control (62%) or KO-like mice (41%). After the decompression protocol, mice showed significant consumption of their circulating platelets and leukocytes. Spadin antidepressed mice were more likely to exhibit DCS. Nevertheless, mice which had both blocked TREK-1 channels and fluoxetine treatment were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but concomitant fluoxetine treatment not only decreased DCS severity but increased the survival rate. PMID:26909044

  10. Effects of cinnarizine, a calcium antagonist that produces human parkinsonism, in parkin knock out mice.

    PubMed

    Serrano, A; Menéndez, J; Casarejos, M J; Solano, R M; Gallego, E; Sánchez, M; Mena, M A; García de Yebenes, J

    2005-08-01

    Cinnarizine, a calcium antagonist that produces parkinsonism in humans, induces behavioural changes such as alopecia, buco-lingual dyskinesia and reduction of motor activity in female parkin knock out (PK-KO) mice but not in wild-type (WT) controls. PK-KO mice have high striatal dopamine levels and increased dopamine metabolism in spite of low reduced tyrosine hydroxylase protein. Cinnarizine, which blocks dopamine receptors and increases dopamine release, further increased dopamine metabolism. PK-KO mice increased GSH levels as a compensatory mechanism against enhanced free radical production related to acceleration of dopamine turnover. Neuronal markers, such as beta-tubulin slightly increased in PK-KO and furthermore with cinnarizine. Astroglial markers were decreased in PK-KO mice, and this effect was potentiated by cinnarizine, suggesting abnormal glia in these animals. Microglia was hyperactivated in PK-KO midbrain, suggesting inflammation in these animals. Proapoptotic proteins were increased by cinnarizine and, to a lesser extent, in PK-KO mice. Our data indicate that mutation of parkin is a risk factor for drug-induced parkinsonism. PMID:15993444

  11. The skeletal structure of insulin-like growth factor I-deficient mice

    NASA Technical Reports Server (NTRS)

    Bikle, D.; Majumdar, S.; Laib, A.; Powell-Braxton, L.; Rosen, C.; Beamer, W.; Nauman, E.; Leary, C.; Halloran, B.

    2001-01-01

    The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (muCT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact.

  12. Nrf2 deficiency impairs fracture healing in mice.

    PubMed

    Lippross, Sebastian; Beckmann, Rainer; Streubesand, Nadine; Ayub, Ferda; Tohidnezhad, Mersedeh; Campbell, Graeme; Kan, Yuet Wai; Horst, Fischer; Sönmez, Tolga Taha; Varoga, Deike; Lichte, Philipp; Jahr, Holger; Pufe, Thomas; Wruck, Christoph Jan

    2014-10-01

    Oxidative stress plays an important role in wound healing but data relating oxidative stress to fracture healing are scarce. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the major transcription factor that controls the cellular defence essential to combat oxidative stress by regulating the expression of antioxidative enzymes. This study examined the impact of Nrf2 on fracture healing using a standard closed femoral shaft fracture model in wild-type (WT) and Nrf2-knockout (Nrf2-KO)-mice. Healing was evaluated by histology, real-time RT-PCR, µCT and biomechanical measurements. We showed that Nrf2 expression is activated during fracture healing. Bone healing and remodelling were retarded in the Nrf2-KO compared to the WT-mice. Nrf2-KO-mice developed significantly less callus tissue compared to WT-mice. In addition, biomechanical testing demonstrated lower strength against shear stress in the Nrf2-KO-group compared to WT. The expression of vascular endothelial growth factor (VEGF) and osteocalcin is reduced during fracture healing in Nrf2-KO-mice. Taken together, our results demonstrate that Nrf2 deficiency in mice results in impaired fracture healing suggesting that Nrf2 plays an essential role in bone regeneration. Pharmacological activation of Nrf2 may have therapeutic potential for the enhancement of fracture healing.

  13. [BEHAVIOR, MEMORY AND IMMUNOLOGICAL STATUS IN MICE MODEL OF DESYNCHRONOSIS].

    PubMed

    Dubrovina, N I; Shurlygina, A V; Litvinenko, G I; Melnikova, E V; Tenditnik, M V; Chasovskich, M I; Trufakin, V A

    2015-05-01

    Interstrain differences in behavior and parameters of the immune system of CBA and C57BL/6 mice with round the clock coverage (KO) were investigated. Open field, light/dark, acoustic startle response, forced swimming, elevated plus-maze, passive avoidance were used for measuring emotional behavior and memory. The number of lymphocyte subpopulations CD3+, CD4+8-, CD4-8+, CD4+8+, CD19+, CD3+hi spleen and thymus, the ratio of cells in different phases of the cell cycle was determined by flow cytometry. C57BL/6J mice strictly increased anxiety in response to the KO compared to CBA mice. Moreover, KO-treated C57BL/6J mice impaired the passive avoidance learning. We found that KO evoked significant changes in the cellular composition of the thymus and decrease of thymocytes proliferation in C57BL/6J mice. In opposite KO-treated CBA mice showed change of splenic cellular structure with increased % CD19+ cells and the proliferation of splenocytes. Our study demonstrated genotype-dependent reactions of the nervous and immune systems in response chronic constant light.

  14. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    PubMed Central

    Hattori, Satoko; Takao, Keizo; Tanda, Koichi; Toyama, Keiko; Shintani, Norihito; Baba, Akemichi; Hashimoto, Hitoshi; Miyakawa, Tsuyoshi

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory. PMID:23060763

  15. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice.

    PubMed

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2007-07-01

    Ghrelin is well known for its feeding and growth hormone-releasing actions. It may also be involved in sleep regulation; intracerebroventricular administration and hypothalamic microinjections of ghrelin stimulate wakefulness in rats. Hypothalamic ghrelin, together with neuropeptide Y and orexin form a food intake-regulatory circuit. We hypothesized that this circuit also promotes arousal. To further investigate the role of ghrelin in the regulation of sleep-wakefulness, we characterized spontaneous and homeostatic sleep regulation in ghrelin knockout (KO) and wild-type (WT) mice. Both groups of mice exhibited similar diurnal rhythms with more sleep and less wakefulness during the light period. In ghrelin KO mice, spontaneous wakefulness and rapid-eye-movement sleep (REMS) were slightly elevated, and non-rapid-eye-movement sleep (NREMS) was reduced. KO mice had more fragmented NREMS than WT mice, as indicated by the shorter and greater number of NREMS episodes. Six hours of sleep deprivation induced rebound increases in NREMS and REMS and biphasic changes in electroencephalographic slow-wave activity (EEG SWA) in both genotypes. Ghrelin KO mice recovered from NREMS and REMS loss faster, and the delayed reduction in EEG SWA, occurring after sleep loss-enhanced increases in EEG SWA, was shorter-lasting compared with WT mice. These findings suggest that the basic sleep-wake regulatory mechanisms in ghrelin KO mice are not impaired and they are able to mount adequate rebound sleep in response to a homeostatic challenge. It is possible that redundancy in the arousal systems of the brain or activation of compensatory mechanisms during development allow for normal sleep-wake regulation in ghrelin KO mice. PMID:17409264

  16. Basigin null mutant male mice are sterile and exhibit impaired interactions between germ cells and Sertoli cells

    PubMed Central

    Bi, Jiajia; Li, Yanfen; Sun, Fengyun; Saalbach, Anja; Klein, Claudia; Miller, David J.; Hess, Rex; Nowak, Romana A.

    2013-01-01

    Basigin (BSG) is a multifunctional glycoprotein that plays an important role in male reproduction since male knockout (KO) mice are sterile. The Bsg KO testis lacks elongated spermatids and mature spermatozoa, a phenotype similar to that of alpha-mannosidase IIx (MX) KO mice. MX regulates formation of N-acetylglucosamine (GlcNAc) terminated N-glycans that participate in germ cell-Sertoli cell adhesion. Results showed that Bsg KO spermatocytes displayed normal homologous chromosome synapsis and progression through meiosis. However, only punctate expression of the round spermatid marker SP-10 in the acrosomal granule of germ cells of Bsg KO mice was detected indicating that spermatogenesis in Bsg KO mice was arrested at the early round spermatid stages. We observed a large increase in the number of germ cells undergoing apoptosis in Bsg KO testes. Using lectin blotting, we determined that GlcNAc terminated N-glycans are linked to BSG. GlcNAc terminated N-glycans were significantly reduced in Bsg KO testes. These observations indicate that BSG may act as a germ cell-Sertoli cell attachment molecule. Loss of BSG significantly reduced adhesion between GC-2 and SF7 cells. Moreover, wild type testes showed strong expression of N-cadherin (CDH2) while expression was greatly reduced in the testes of Bsg KO mice. In addition, the integrity of the blood-testis barrier (BTB) was compromised in Bsg KO testes. In conclusion, although some Bsg KO spermatogonia can undergo normal progression to the spermatocyte stage, BSG-mediated germ cell-Sertoli cell interactions appear to be necessary for integrity of the BTB and spermatocyte progression to mature spermatozoa. PMID:23727514

  17. Epithelial Tyrosine Phosphatase SHP-2 Protects against Intestinal Inflammation in Mice

    PubMed Central

    Coulombe, Geneviève; Leblanc, Caroline; Cagnol, Sébastien; Maloum, Faiza; Lemieux, Étienne; Perreault, Nathalie; Feng, Gen-Sheng; Boudreau, François

    2013-01-01

    Polymorphisms of PTPN11 encoding SHP-2 are biomarkers for ulcerative colitis (UC) susceptibility. However, their functional relevance is unknown. We thus investigated the role of epithelial SHP-2 in the control of intestinal homeostasis. Mice with an intestinal epithelial cell-specific SHP-2 deletion (SHP-2IEC-KO mice) were generated. Control and SHP-2IEC-KO mice were monitored for clinical symptoms and sacrificed for histological staining and Western blot analyses. Cytokines and chemokines, as well as intestinal permeability, were quantified. SHP-2 mRNA expression was evaluated in control and UC patients. SHP-2IEC-KO mice showed growth retardation compared to control littermates and rapidly developed severe colitis. Colon architecture was markedly altered with infiltration of immune cells, crypt abscesses, neutrophil accumulation, and reduced goblet cell numbers. Decreased expression of claudins was associated with enhanced intestinal permeability in mutant SHP-2IEC-KO mice. Inflammatory transcription factors Stat3 and NF-κB were hyperactivated early in the mutant colonic epithelium. Levels of several epithelial chemokines and cytokines were markedly enhanced in SHP-2IEC-KO mice. Of note, antibiotic treatment remarkably impaired the development of colitis in SHP-2IEC-KO mice. Finally, SHP-2 mRNA levels were significantly reduced in intestinal biopsy specimens from UC patients. Our results establish intestinal epithelial SHP-2 as a critical determinant for prevention of gut inflammation. PMID:23530062

  18. Caspr3-Deficient Mice Exhibit Low Motor Learning during the Early Phase of the Accelerated Rotarod Task

    PubMed Central

    Hirata, Haruna; Takahashi, Aki; Shimoda, Yasushi; Koide, Tsuyoshi

    2016-01-01

    Caspr3 (Contactin-associated protein-like 3, Cntnap3) is a neural cell adhesion molecule belonging to the Caspr family. We have recently shown that Caspr3 is expressed abundantly between the first and second postnatal weeks in the mouse basal ganglia, including the striatum, external segment of the globus pallidus, subthalamic nucleus, and substantia nigra. However, its physiological role remains largely unknown. In this study, we conducted a series of behavioral analyses on Capsr3-knockout (KO) mice and equivalent wild-type (WT) mice to investigate the role of Caspr3 in brain function. No significant differences were observed in most behavioral traits between Caspr3-KO and WT mice, but we found that Caspr3-KO mice performed poorly during the early phase of the accelerated rotarod task in which latency to falling off a rod rotating with increasing velocity was examined. In the late phase, the performance of the Caspr3-KO mice caught up to the level of WT mice, suggesting that the deletion of Caspr3 caused a delay in motor learning. We then examined changes in neural activity after training on the accelerated rotarod by conducting immunohistochemistry using antibody to c-Fos, an indirect marker for neuronal activity. Experience of the accelerated rotarod task caused increases in the number of c-Fos-positive cells in the dorsal striatum, cerebellum, and motor cortex in both Caspr3-KO and WT mice, but the number of c-Fos-positive cells was significantly lower in the dorsal striatum of Caspr3-KO mice than in that of WT mice. The expression of c-Fos in the ventral striatum of Caspr3-KO and WT mice was not altered by the training. Our findings suggest that reduced activation of neural cells in the dorsal striatum in Caspr3-KO mice leads to a decline in motor learning in the accelerated rotarod task. PMID:26807827

  19. Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene.

    PubMed

    Li, Chaoyang; Ominsky, Michael S; Tan, Hong-Lin; Barrero, Mauricio; Niu, Qing-Tian; Asuncion, Franklin J; Lee, Edward; Liu, Min; Simonet, William S; Paszty, Chris; Ke, Hua Zhu

    2011-12-01

    Humans with inherited sclerostin deficiency have high bone mass. Targeted deletion of the sclerostin gene in mice (SOST-KO) causes increases in bone formation, bone mass and bone strength. Inhibition of sclerostin by a monoclonal antibody increases bone formation and enhances fracture healing in rodent and primate models. In this study, we describe the temporal progression of femoral fracture healing in SOST-KO mice compared with wild type (WT) control mice to further characterize the role of sclerostin in fracture healing. Sixty-seven male 9-10 week-old SOST-KO (N=37) and WT (N=30) mice underwent a closed femoral fracture. Weekly radiography was used to monitor the progress of healing. Histologic sections were used to characterize callus composition, evaluate callus bridging, and quantify lamellar bone formation on days 14 and 28. Densitometry and biomechanical testing were utilized to characterize bone mass and strength at the fractured and contralateral femurs on day 45. A significant improvement in time to radiographic healing (no discernible fracture line) was observed in SOST-KO mice, which corresponded to an increase in histologic bony bridging at 14 days (38% versus 0% in WT). Both genotypes appeared to be nearly fully bridged at 28 days post-fracture. The increased bridging at 14 days was associated with 97% greater bone area and 40% lower cartilage area in the callus of SOST-KO mice as compared to WT mice. Bone formation-related endpoints were higher in SOST-KO mice at both 14 and 28 days. At 45 days post-fracture, peak load and bone mass were significantly greater in the fractured femurs of SOST-KO mice as compared to WT mice. In conclusion, fractures in mice lacking sclerostin showed accelerated bridging, greater callus maturation, and increased bone formation and strength in the callus.

  20. Effect of peripheral administration of cholecystokinin on food intake in apolipoprotein AIV knockout mice.

    PubMed

    Yoshimichi, Go; Lo, Chunmin C; Tamashiro, Kellie L K; Ma, Liyun; Lee, Dana M; Begg, Denovan P; Liu, Min; Sakai, Randall R; Woods, Stephen C; Yoshimatsu, Hironobu; Tso, Patrick

    2012-06-01

    Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.

  1. Generation and Characterization of Mice Carrying a Conditional Allele of the Wwox Tumor Suppressor Gene

    PubMed Central

    Ludes-Meyers, John H.; Kil, Hyunsuk; Parker-Thornburg, Jan; Kusewitt, Donna F.; Bedford, Mark T.; Aldaz, C. Marcelo

    2009-01-01

    WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO) mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s) resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoeisis, leukopenia, and splenic atrophy. Impaired hematopoeisis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues. PMID:19936220

  2. Dietary calcium and 1,25-dihydroxyvitamin D3 regulate transcription of calcium transporter genes in calbindin-D9k knockout mice.

    PubMed

    Ko, Sang-Hwan; Lee, Geun-Shik; Vo, Thuy T B; Jung, Eui-Man; Choi, Kyung-Chul; Cheung, Ki-Wha; Kim, Jae Wha; Park, Jong-Gil; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-04-01

    The effect(s) of oral calcium and vitamin D(3) were examined on the expression of duodenal and renal active calcium transport genes, i.e., calbindin-D9k (CaBP-9k) and calbindin-D28k (CaBP-28k), transient receptor potential cation channels (TRPV5 and TRPV6), Na(+)/Ca(2+) exchanger 1 (NCX1) and plasma membrane calcium ATPase 1b (PMCA1b), in CaBP-9k KO mice. Wild-type (WT) and KO mice were provided with calcium and vitamin D(3)-deficient diets for 10 weeks. The deficient diet significantly decreased body weights compared with the normal diet groups. The serum calcium concentration of the WT mice was decreased by the deficient diet but was unchanged in the KO mice. The deficient diet significantly increased duodenal transcription of CaBP-9k and TRPV6 in the WT mice, but no alteration was observed in the KO mice. In the kidney, the deficient diet significantly increased renal transcripts of CaBP-9k, TRPV6, PMCA1b, CaBP-28k and TRPV5 in the WT mice but did not alter calcium-relating genes in the KO mice. Two potential mediators of calcium-processing genes, vitamin D receptor (VDR) and parathyroid hormone receptor (PTHR), have been suggested to be useful for elucidating these differential regulations in the calcium-related genes of the KO mice. Expression of VDR was not significantly affected by diet or the KO mutation. Renal PTHR mRNA levels were reduced by the diet, and reduced expression was also seen in the KO mice given the normal diet. Taken together, these results suggest that the active calcium transporting genes in KO mice may have resistance to the deficiency diet of calcium and vitamin D(3).

  3. Age dependent course of EAE in Aire-/- mice.

    PubMed

    Aharoni, Rina; Aricha, Revital; Eilam, Raya; From, Ido; Mizrahi, Keren; Arnon, Ruth; Souroujon, Miriam C; Fuchs, Sara

    2013-09-15

    This study explores the consequences of deficiency in the autoimmune regulator (Aire) on the susceptibility to experimental autoimmune encephalomyelitis (EAE). Increased susceptibility to EAE was found in Aire knockout (KO) compared to wild type (WT) in 6month old mice. In contrast, 2month old Aire KO mice were less susceptible to EAE than WT mice, and this age-related resistance correlated with elevated proportions of T regulatory (Treg) cells in their spleen and brain. Combined with our previous findings in experimental autoimmune myasthenia gravis, we suggest an age-related association between Aire and Treg cells in the susceptibility to autoimmunity.

  4. Serotonergic involvement in the amelioration of behavioral abnormalities in dopamine transporter knockout mice by nicotine.

    PubMed

    Uchiumi, Osamu; Kasahara, Yoshiyuki; Fukui, Asami; Hall, F Scott; Uhl, George R; Sora, Ichiro

    2013-01-01

    Dopamine transporter knockout (DAT KO) mice exhibit elevated extracellular dopamine levels in brain regions that include the striatum and the nucleus accumbens, but not the prefrontal cortex. DAT KO mice model some aspects of psychiatric disorders, including schizophrenia. Smoking is more common in patients with schizophrenia, suggesting that nicotine might ameliorate aspects of the behavioral abnormalities and/or treatment side effects seen in these individuals. We report nicotine-induced normalization of effects on locomotion and prepulse inhibition of acoustic startle (PPI) in DAT KO mice that require intact serotonin 5-HT1A systems. First, we observed that the marked hyperactivity displayed by DAT KO mice was reduced by administration of nicotine. This nicotine effect was blocked by pretreatment with the non-specific nicotinic acetylcholine (nACh) receptor antagonist mecamylamine, or the 5-HT1A antagonist WAY100635. Secondly, we examined the effects of nicotine on PPI in DAT KO mice. Treatment with nicotine significantly ameliorated the PPI deficits observed in DAT KO mice. The ameliorating action of nicotine on PPI deficits in DAT KO mice was blocked by mecamylamine, the α₇ nACh receptor antagonist methyllycaconitine or WAY100635, while the α₄β₂ nACh receptor antagonist dihydro-β-erythroidinehydrobromide (DHβE) produced only a non-significant trend toward attenuation of nicotine effects. Finally, we observed that administration of the 5-HT1A receptor agonist 8-OH-DPAT also ameliorated the deficit in PPI observed in DAT KO mice. This amelioration was antagonized by pretreatment with WAY100635. These data support the idea that nicotine might ameliorate some of the cognitive dysfunctions found in schizophrenia in a 5-HT1A-dependent fashion. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  5. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.

    PubMed

    She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J

    2010-04-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice. PMID:20133434

  6. Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits

    ERIC Educational Resources Information Center

    Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.

    2012-01-01

    Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…

  7. Pubertal and adult Leydig cell function in Mullerian inhibiting substance-deficient mice.

    PubMed

    Wu, Xiufeng; Arumugam, Ramamani; Baker, Stephen P; Lee, Mary M

    2005-02-01

    Mullerian inhibiting substance (MIS) causes Mullerian duct regression during sexual differentiation and regulates postnatal Leydig cell development. MIS knockout (MIS-KO) mice with targeted deletions of MIS develop Leydig cell hyperplasia, but their circulating androgen concentrations are reportedly unaltered. We compared reproductive hormone profiles, androgen biosynthesis, and the expression of key steroidogenic and metabolic enzymes in MIS-KO and wild-type (WT) mice at puberty (36 d) and sexual maturity (60 d). In pubertal animals, basal testosterone and LH concentrations in plasma were lower in MIS-KO than WT mice, whereas human chorionic gonadotropin-stimulated testosterone concentrations were similar. In adults, basal LH, and both basal and human chorionic gonadotropin (hCG)-stimulated testosterone concentrations were similar. Purified Leydig cells from pubertal MIS-KO mice had lower testosterone but higher androstanediol and androstenedione production rates. In contrast, testosterone, androstanediol, and androstenedione production rates were all lower in adult MIS-KO Leydig cells. Steroidogenic acute regulatory protein expression was lower in pubertal MIS-KO mice compared with WT, whereas 17beta-hydroxy-steroid dehydrogenase and 5alpha-reductase were greater, and P450c17 and P450scc were similar. The expression of steroidogenic acute regulatory protein and 17beta-hydroxysteroid dehydrogenase was lower in adult MIS-KO mice, whereas that of 5alpha-reductase, P450c17, and P450scc was similar. Collectively, these results suggest that in the absence of MIS, Leydig cells remain less differentiated, causing an altered intratesticular androgen milieu that may contribute to the infertility of MIS-KO mice. In immature mice, this deficit in steroidogenic capacity appears to be mediated by a direct loss of MIS action in Leydig cells as well as by indirect effects via the hypothalamic-pituitary-gonadal axis.

  8. Sustained hypertension despite endothelial-specific eNOS rescue in eNOS-deficient mice.

    PubMed

    Suvorava, Tatsiana; Stegbauer, Johannes; Thieme, Manuel; Pick, Stephanie; Friedrich, Sebastian; Rump, Lars C; Hohlfeld, Thomas; Kojda, Georg

    2015-03-13

    The aim of the study was to evaluate the possible contribution of non-endothelial eNOS to the regulation of blood pressure (BP). To accomplish this, a double transgenic strain expressing eNOS exclusively in the vascular endothelium (eNOS-Tg/KO) has been generated by endothelial-specific targeting of bovine eNOS in eNOS-deficient mice (eNOS-KO). Expression of eNOS was evaluated in aorta, myocardium, kidney, brain stem and skeletal muscle. Organ bath studies revealed a complete normalization of aortic reactivity to acetylcholine, phenylephrine and the NO-donors in eNOS-Tg/KO. Function of eNOS in resistance arteries was demonstrated by acute i.v. infusion of acetylcholine and the NOS-inhibitor L-NAME. Acetylcholine decreased mean arterial pressure in all strains but eNOS-KO responded significantly less sensitive as compared eNOS-Tg/KO and C57BL/6. Likewise, acute i.v. L-NAME application elevated mean arterial pressure in C57BL/6 and eNOS-Tg/KO, but not in eNOS-KO. In striking contrast to these findings, mean, systolic and diastolic BP in eNOS-Tg/KO remained significantly elevated and was similar to values of eNOS-KO. Chronic oral treatment with L-NAME increased BP to the level of eNOS-KO only in C57BL/6, but had no effect on hypertension in eNOS-KO and eNOS-Tg/KO. Taken together, functional reconstitution of eNOS in the vasculature of eNOS-KO not even partially lowered BP. These data suggest that the activity of eNOS expressed in non-vascular tissue might play a role in physiologic BP regulation. PMID:25680465

  9. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions.

    PubMed

    Perona, Maria T G; Waters, Shonna; Hall, Frank Scott; Sora, Ichiro; Lesch, Klaus-Peter; Murphy, Dennis L; Caron, Marc; Uhl, George R

    2008-09-01

    Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1), and dopamine (DAT/SLC6A3). Many antidepressants block several of these transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET, and SERT knockout (KO) mice and wild-type littermates were studied in the forced swim test (FST), the tail suspension test, and for sucrose consumption. To dissociate general activity from potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing, and swimming. In confirmation of earlier reports, both DAT KO and NET KO mice exhibited less immobility than wild-type littermates whereas SERT KO mice did not. Effects of DAT deletion were not simply because of hyperactivity, as decreased immobility was observed in DAT+/- mice that were not hyperactive as well as in DAT-/- mice that displayed profound hyperactivity. Climbing was increased, whereas swimming was almost eliminated in DAT-/- mice, and a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of FST results in antidepressant animal models, whereas selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the tail suspension test, where DAT, NET, and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether these

  10. Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice

    PubMed Central

    Shi, Chen-Zhang; Chen, Hong-Qi; Liang, Yong; Xia, Yang; Yang, Yong-Zhi; Yang, Jun; Zhang, Jun-Dong; Wang, Shu-Hai; Liu, Jing; Qin, Huan-Long

    2014-01-01

    AIM: To investigate the protective effects of combinations of probiotic (Bifico) on interleukin (IL)-10-gene-deficient (IL-10 KO) mice and Caco-2 cell monolayers. METHODS: IL-10 KO mice were used to assess the benefits of Bifico in vivo. IL-10 KO and control mice received approximately 1.5 × 108 cfu/d of Bifico for 4 wk. Colons were then removed and analyzed for epithelial barrier function by Ussing Chamber, while an ELISA was used to evaluate proinflammatory cytokines. The colon epithelial cell line, Caco-2, was used to test the benefit of Bifico in vitro. Enteroinvasive Escherichia coli (EIEC) and the probiotic mixture Bifico, or single probiotic strains, were applied to cultured Caco-2 monolayers. Barrier function was determined by measuring transepithelial electrical resistance and tight junction protein expression. RESULTS: Treatment of IL-10 KO mice with Bifico partially restored body weight, colon length, and epithelial barrier integrity to wild-type levels. In addition, IL-10 KO mice receiving Bifico treatment had reduced mucosal secretion of tumor necrosis factor-α and interferon-γ, and attenuated colonic disease. Moreover, treatment of Caco-2 monolayers with Bifico or single-strain probiotics in vitro inhibited EIEC invasion and reduced the secretion of proinflammatory cytokines. CONCLUSION: Bifico reduced colon inflammation in IL-10 KO mice, and promoted and improved epithelial-barrier function, enhanced resistance to EIEC invasion, and decreased proinflammatory cytokine secretion. PMID:24782616

  11. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice

    PubMed Central

    Patankar, Jay V.; Chandak, Prakash G.; Obrowsky, Sascha; Pfeifer, Thomas; Diwoky, Clemens; Uellen, Andreas; Sattler, Wolfgang; Stollberger, Rudolf; Hoefler, Gerald; Heinemann, Akos; Battle, Michele; Duncan, Stephen; Kratky, Dagmar

    2011-01-01

    Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance. PMID:21177287

  12. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury

    PubMed Central

    Kage, Hidenori; Flodby, Per; Gao, Danping; Kim, Yong Ho; Marconett, Crystal N.; DeMaio, Lucas; Kim, Kwang-Jin; Crandall, Edward D.

    2014-01-01

    Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury. PMID:25106430

  13. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    PubMed

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink

  14. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  15. Task-specific enhancement of hippocampus-dependent learning in mice deficient in monoacylglycerol lipase, the major hydrolyzing enzyme of the endocannabinoid 2-arachidonoylglycerol

    PubMed Central

    Kishimoto, Yasushi; Cagniard, Barbara; Yamazaki, Maya; Nakayama, Junko; Sakimura, Kenji; Kirino, Yutaka; Kano, Masanobu

    2015-01-01

    Growing evidence indicates that the endocannabinoid system is important for the acquisition and/or extinction of learning and memory. However, it is unclear which endocannabinoid(s) play(s) a crucial role in these cognitive functions, especially memory extinction. To elucidate the physiological role of 2-arachidonoylglycerol (2-AG), a major endocannabinoid, in behavioral and cognitive functions, we conducted a comprehensive behavioral test battery in knockout (KO) mice deficient in monoacylglycerol lipase (MGL), the major hydrolyzing enzyme of 2-AG. We found age-dependent increases in spontaneous physical activity (SPA) in MGL KO mice. Next, we tested the MGL KO mice using 5 hippocampus-dependent learning paradigms (i.e., Morris water maze (MWM), contextual fear conditioning, novel object recognition test, trace eyeblink conditioning, and water-finding test). In the MWM, MGL KO mice showed normal acquisition of reference memory, but exhibited significantly faster extinction of the learned behavior. Moreover, they showed faster memory acquisition on the reversal-learning task of the MWM. In contrast, in the contextual fear conditioning, MGL KO mice tended to show slower memory extinction. In the novel object recognition and water-finding tests, MGL KO mice exhibited enhanced memory acquisition. Trace eyeblink conditioning was not altered in MGL KO mice throughout the acquisition and extinction phases. These results indicate that 2-AG signaling is important for hippocampus-dependent learning and memory, but its contribution is highly task-dependent. PMID:26082696

  16. Increased sensitivity to kindling in mice lacking TSP1.

    PubMed

    Mendus, D; Rankin-Gee, E K; Mustapha, M; Porter, B E

    2015-10-01

    The development of a hyperexcitable neuronal network is thought to be a critical event in epilepsy. Thrombospondins (TSPs) regulate synaptogenesis by binding the neuronal α2δ subunit of the voltage-gated calcium channel. TSPs regulate synapse formation during development and in the mature brain following injury. It is unclear if TSPs are involved in hyperexcitability that contributes to the development of epilepsy. Here we explore the development of epilepsy using a pentylenetetrazole (PTZ) kindling model in mice lacking TSP1 and TSP2. Unexpectedly, we found increased sensitivity to PTZ kindling in mice lacking TSP1, while mice lacking TSP2 kindled similar to wild-type. We found that the increased seizure susceptibility in the TSP1 knockout (KO) mice was not due to a compensatory increase in TSP2 mRNA as TSP1/2 KO mice were sensitive to PTZ, similar to the TSP1 KO mice. Furthermore, there were similar levels of TGF-B signal activation during kindling in the TSP1 KO mice compared to wild-type. We observed decreased expression of voltage-dependent calcium channel subunit CACNA2D1 mRNA in TSP1, TSP2, and TSP1/2 KO mice. Decreased CACNA2D2 mRNA was only detected in mice that lacked TSP1 and α2δ-1/2 protein levels in the cortex were lower in the TSP 1/2 KO mice. CACNA2D2 knockout mice have spontaneous seizures and increased PTZ seizure susceptibility. Here we report similar findings, TSP1, and TSP1/2 KO mice have low levels of CACNA2D2 mRNA expression and α2δ-1/2 receptor level in the cortex, and are more susceptible to seizures. CACNA2D2 mutations in mice and humans can cause epilepsy. Our data suggest TSP1 in particular may control CACNA2D2 levels and could be a modifier of seizure susceptibility.

  17. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque

    PubMed Central

    Powell, David R; Gay, Jason P; Smith, Melinda; Wilganowski, Nathaniel; Harris, Angela; Holland, Autumn; Reyes, Maricela; Kirkham, Laura; Kirkpatrick, Laura L; Zambrowicz, Brian; Hansen, Gwenn; Platt, Kenneth A; van Sligtenhorst, Isaac; Ding, Zhi-Ming; Desai, Urvi

    2016-01-01

    Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease. PMID:27382320

  18. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque.

    PubMed

    Powell, David R; Gay, Jason P; Smith, Melinda; Wilganowski, Nathaniel; Harris, Angela; Holland, Autumn; Reyes, Maricela; Kirkham, Laura; Kirkpatrick, Laura L; Zambrowicz, Brian; Hansen, Gwenn; Platt, Kenneth A; van Sligtenhorst, Isaac; Ding, Zhi-Ming; Desai, Urvi

    2016-01-01

    Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease. PMID:27382320

  19. Košice meteorite - recovery and the strew field

    NASA Astrophysics Data System (ADS)

    Toth, J.; Porubčan, V.; Borovička, J.; Igaz, A.; Spurný, P.; Svoreň, J.; Husárik, M.; Kornoš, L.; Vereš, P.; Zigo, P.; Koza, J.; Kučera, A.; Gajdoš, S.; Világi, J.; Čapek, D.; Šilha, J.; Schunová, E.; Krišandová, Z.; Tomko, D.; Bodnárová, M.; Búzová, D.; Krejčová, T.

    2012-09-01

    The glare of the bolide on the night of February 28, 2010, illuminated streets and interior of apartments, at some places in Eastern Slovakia and Northern Hungary and cannon-like burst or series of low frequency blasts were heard. Due to bad weather, cloudy skies and scatter showers the Central European Fireball Network (operated by Pavel Spurný of the Czech Academy of Sciences) did not take direct optical records of the bolide and also the Slovak Video Meteor Network (operated by Juraj Tóth of Comenius University in Bratislava) did not operate that night so that at first moment it seemed that there were no scientific records available of this event. Fortunately, fast photoelectric sensors on 7 automated fireball stations in the Czech Republic (6) and Austria (1) worked also under cloudy sky and recorded the light curve of the bolide. It enabled to determine the exact time and duration of the event and to estimate its brightness as well. The bolide reached the maximum brightness of at least -18 magnitudes in one huge flare. This light curve was used also for modeling of meteoroid atmospheric fragmentation. Later, several surveillance cameras data were published showing the moment when the night became a day. Three videos from Hungary (Örkény village, Fazzi Daniella and Vass Gábor; Telki village, contact persons Sárneczky Krisztián, Kiss László and Budapest) actually captured the fireball itself. Thanks to calibration of videos by several members of the Hungarian Astronomical Association (MCSE - www.mcse.hu, namely by Igaz Antal) and the trajectory analysis done by Jiří Borovička gave the hope that significant number of meteorite fragments reached the surface. He also calculated the impact area western of the city of Košice in Eastern Slovakia. The data from the Local Seismic Network of Eastern Slovakia (Peter Moczo of the Comenius University) analyzed by Pavel Kalenda confirmed the atmospheric trajectory as well [1].

  20. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice.

    PubMed

    Pati, Paramita; Fulton, David J R; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A; Stepp, David W; Rudic, R Daniel

    2016-03-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension.

  1. β-Catenin is Essential for Ethanol Metabolism and Protection Against Alcohol-mediated Liver Steatosis in Mice

    PubMed Central

    Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep

    2011-01-01

    The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene expression studies were performed. Plasma alcohol and ammonia levels were measured using standard assays. Ethanol-fed KO mice exhibited systemic toxicity and early mortality. KO mice exhibited severe macrovesicular steatosis and five to six-fold higher serum ALT and AST levels. KO mice had modest increase in hepatic oxidative stress, lower expression of mitochondrial superoxide dismutase (SOD-2), and lower citrate synthase activity, the first step in the tricarboxylic acid cycle. N-Acetyl cysteine (NAC) did not prevent ethanol-induced mortality in KO mice. In WT livers, β-catenin was found to co-precipitate with FoxO3, the upstream regulator of SOD-2. Hepatic alcohol dehydrogenase and aldehyde dehydrogenase activities and expression were lower in KO mice. Hepatic cytochrome P450 2E1 protein levels were upregulated in ethanol-fed WT mice but were nearly undetectable in KO mice. These changes in ethanol-metabolizing enzymes were associated with 30-fold higher blood alcohol levels in KO mice. Conclusion β-catenin is essential for hepatic ethanol metabolism and plays a protective role in alcohol-mediated liver steatosis. Our results strongly suggest that integration of these functions by β-catenin is critical for adaptation to ethanol ingestion in vivo. PMID:22031168

  2. RZ Cas, KO Aql and S Equ: a Piece of Cake of Case A RLOF?

    NASA Astrophysics Data System (ADS)

    De Greve, J. P.; Mennekens, N.; Rensbergen, W. V.; Yungelson, L.

    2009-08-01

    We determine the present evolutionary state and the restrictions on the initial mass ratios of RZ Cas, KO Aql and S Equ. The gainers are in an early main sequence stage (X_c > 0.5), with KO Aql being almost unevolved. The initial donor/gainer mass ratios Mdi /Mgi must be larger than three to obtain the present mass and luminosity of the gainers. However, conservative mass transfer leads to considerable overflow of the gainer's radius over the Roche radius.

  3. Mood and memory-associated behaviors in neuropeptide Y5 knockout mice.

    PubMed

    Ito, Masanobu; Dumont, Yvan; Quirion, Remi

    2013-04-01

    Recent data led to suggest that in addition to Y1 and Y2 subtypes, Y5 receptors may be involved in mood-related behaviors (Morales-Medina et al., 2010). In the present study, using a battery of behavioral tests to assess anxiety and depression-like paradigms, as well as memory function, we evaluated the potential behavioral changes induced in mice devoid of Y5 receptors. Those paradigms were assessed using the open field (OF), elevated plus maze (EPM), forced swim test (FST), social interaction test (SI), object recognition test (ORT) and Morris water maze (MWM) in Y5 knockout (KO) mice and wild type (WT) animals. In the tests associated to anxiety related behaviors (OF, EPM and SI), no difference for locomotion and time spent in the lateral area of open field were observed between Y5 KO and WT mice. Similar results were observed for time and number of entries in open arms in EPM. Additionally, in SI test, Y5 KO mice spent same amount of time and number of entries in the stranger chamber as compared to WT animals. In the FST, as compared to WT mice, Y5 KO mice had similar immobility time on day 1. No memory dysfunction was observed in the MWM and ORT in Y5 KO mice, as compared to WT. Altogether these data suggest that under basal conditions Y5 KO and WT mice display similar mood behaviors and memory functions. However, as compared to WT, Y5 KO mice display increased grooming and rearing in the OF, lower ratio entries in open arms in the EPM and increased immobility time on the second day of the FST.

  4. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice.

    PubMed

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice.

  5. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  6. Attenuation of lithium-induced natriuresis and kaliuresis in P2Y2 receptor knockout mice

    PubMed Central

    Zhang, Yue; Li, Lijun; Kohan, Donald E.; Ecelbarger, Carolyn M.

    2013-01-01

    Whole body knockout (KO) of the P2Y2 receptor (P2Y2R) results in enhanced vasopressin V2 receptor activity and increased renal Na+ conservation. We hypothesized that P2Y2R KO mice would be less sensitive to lithium-induced natriuresis and kaliuresis due to attenuated downregulation of one or more of the major renal Na+ or K+ transporter/channel proteins. KO and wild-type (WT) mice were fed a control or lithium-added diet (40 mmol/kg food) for 14 days. Lithium-induced natriuresis and kaliuresis were significantly (∼25%) attenuated in KO mice. The subunits of the epithelial Na+ channel (ENaC) were variably affected by lithium and genotype, but, overall, medullary levels were decreased substantially by lithium (15–60%) in both genotypes. In contrast, cortical, β-, and γ-ENaC were increased by lithium (∼50%), but only in WT mice. Moreover, an assessment of ENaC activity by benzamil sensitivity suggested that lithium increased ENaC activity in WT mice but in not KO mice. In contrast, medullary levels of Na+-K+-2Cl− cotransporter 2 and cortical levels of the renal outer medullary K+ channel were not downregulated by lithium and were significantly (15–76%) higher in KO mice under both dietary conditions. In addition, under control conditions, tissue osmolality of the inner medulla as well as furosemide sensitivity were significantly higher in KO mice versus WT mice. Therefore, we suggest that increased expression of these proteins, particularly in the control state, reduces Na+ delivery to the distal nephron and provides a buffer to attenuate collecting duct-mediated natriuresis and kaliuresis. Additional studies are warranted to explore the potential therapeutic benefits of purinergic antagonism. PMID:23739592

  7. Deletion of Adenosine A2A Receptors from Astrocytes Disrupts Glutamate Homeostasis Leading to Psychomotor and Cognitive Impairment: Relevance to Schizophrenia

    PubMed Central

    Matos, Marco; Shen, Hai-Ying; Augusto, Elisabete; Wang, Yumei; Wei, Catherine J.; Wang, Yu Tian; Agostinho, Paula; Boison, Detlev; Cunha, Rodrigo A.; Chen, Jiang-Fan

    2016-01-01

    BACKGROUND Adenosine A2A receptors (A2AR) modulate dopamine and glutamate signaling and thereby may influence some of the psychomotor and cognitive processes associated with schizophrenia. Because astroglial A2AR regulate the availability of glutamate, we hypothesized that they might play an unprecedented role in some of the processes leading to the development of schizophrenia, which we investigated using a mouse line with a selective deletion of A2AR in astrocytes (Gfa2-A2AR knockout [KO] mice]. METHODS We examined Gfa2-A2AR KO mice for behaviors thought to recapitulate some features of schizophrenia, namely enhanced MK-801 psychomotor response (positive symptoms) and decreased working memory (cognitive symptoms). In addition, we probed for neurochemical alterations in the glutamatergic circuitry, evaluating glutamate uptake and release and the levels of key proteins defining glutamatergic signaling (glutamate transporter-I [GLT-I], N-methyl-D-aspartate receptors [NMDA-R] and α-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors [AMPA-R]) to provide a mechanistic understanding of the phenotype encountered. RESULTS We show that Gfa2-A2AR KO mice exhibited enhanced MK-801 psychomotor response and decreased working memory; this was accompanied by a disruption of glutamate homeostasis characterized by aberrant GLT-I activity, increased presynaptic glutamate release, NMDA-R 2B subunit upregulation, and increased internalization of AMPA-R. Accordingly, selective GLT-I inhibition or blockade of GluR1/2 endocytosis prevented the psychomotor and cognitive phenotypes in Gfa2-A2AR KO mice, namely in the nucleus accumbens. CONCLUSIONS These results show that the dysfunction of astrocytic A2AR, by controlling GLT-I activity, triggers an astrocyte-to-neuron wave of communication resulting in disrupted glutamate homeostasis, thought to underlie several endophenotypes relevant to schizophrenia. PMID:25869810

  8. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine.

    PubMed

    Ip, Joanna Y; Sone, Masamitsu; Nashiki, Chieko; Pan, Qun; Kitaichi, Kiyoyuki; Yanaka, Kaori; Abe, Takaya; Takao, Keizo; Miyakawa, Tsuyoshi; Blencowe, Benjamin J; Nakagawa, Shinichi

    2016-01-01

    The long noncoding RNA Gomafu/MIAT/Rncr2 is thought to function in retinal cell specification, stem cell differentiation and the control of alternative splicing. To further investigate physiological functions of Gomafu, we created mouse knockout (KO) model that completely lacks the Gomafu gene. The KO mice did not exhibit any developmental deficits. However, behavioral tests revealed that the KO mice are hyperactive. This hyperactive behavior was enhanced when the KO mice were treated with the psychostimulant methamphetamine, which was associated with an increase in dopamine release in the nucleus accumbens. RNA sequencing analyses identified a small number of genes affected by the deficiency of Gomafu, a subset of which are known to have important neurobiological functions. These observations suggest that Gomafu modifies mouse behavior thorough a mild modulation of gene expression and/or alternative splicing of target genes. PMID:27251103

  9. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine

    PubMed Central

    Ip, Joanna Y.; Sone, Masamitsu; Nashiki, Chieko; Pan, Qun; Kitaichi, Kiyoyuki; Yanaka, Kaori; Abe, Takaya; Takao, Keizo; Miyakawa, Tsuyoshi; Blencowe, Benjamin J.; Nakagawa, Shinichi

    2016-01-01

    The long noncoding RNA Gomafu/MIAT/Rncr2 is thought to function in retinal cell specification, stem cell differentiation and the control of alternative splicing. To further investigate physiological functions of Gomafu, we created mouse knockout (KO) model that completely lacks the Gomafu gene. The KO mice did not exhibit any developmental deficits. However, behavioral tests revealed that the KO mice are hyperactive. This hyperactive behavior was enhanced when the KO mice were treated with the psychostimulant methamphetamine, which was associated with an increase in dopamine release in the nucleus accumbens. RNA sequencing analyses identified a small number of genes affected by the deficiency of Gomafu, a subset of which are known to have important neurobiological functions. These observations suggest that Gomafu modifies mouse behavior thorough a mild modulation of gene expression and/or alternative splicing of target genes. PMID:27251103

  10. Requirements and tasks of cohorts and registers, the German KoRegIT project.

    PubMed

    Michalik, Claudia; Dress, Jochen; Ngouongo, Sylvie; Stäubert, Sebastian; Weber, Ulrike; Brockmeyer, Norbert; Paulus, Ursula; Stausberg, Jürgen

    2014-01-01

    Epidemiological cohorts and registers (KoReg) are long lasting and complex research projects, which need systematic and extensive planning and steering. The aim of the KoRegIT project was to develop a generic catalogue of requirements to support the organisational- and IT-structure of KoReg. The catalogue of requirements comprises the top level (TL) tasks of the core processes. All TL were classified into the following project phases: 1. Development, 2. Operation, 3. Completion. According to the defined TL tasks, the appropriate use cases (UC) were identified. The catalogue currently specifies 45 TL tasks and 207 UC. The UC were elaborated by a short and standardized description of the task, the involved actors (human or external systems), the preconditions, which have to be fulfilled in order to realize this task, the normal flow of the task and the post conditions. The developed catalogue was reviewed by representatives of different KoReg in Germany. The draft catalogue of requirements was revised according to the reviewer's feedback and discussion. The revised and complete catalogue with all elaborated UC was reviewed again by further experts. The developed KoRegIT catalogue of requirements offers a supporting tool to set-up the organisational structures and processes of KoReg as well as the definition of the needed IT-infrastructure. In addition it can be used to optimize or to expand these structures. PMID:25160356

  11. The Deficiency of Indoleamine 2,3-Dioxygenase Aggravates the CCl4-Induced Liver Fibrosis in Mice.

    PubMed

    Ogiso, Hideyuki; Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Kanbe, Ayumu; Ando, Kazuki; Ishikawa, Tetsuya; Saito, Kuniaki; Hara, Akira; Moriwaki, Hisataka; Shimizu, Masahito; Seishima, Mitsuru

    2016-01-01

    In the present study, we examined the role of indoleamine 2,3-dioxygenase (IDO) in the development of CCl4-induced hepatic fibrosis. The liver fibrosis induced by repetitive administration with CCl4 was aggravated in IDO-KO mice compared to WT mice. In IDO-KO mice treated with CCl4, the number of several inflammatory cells and the expression of pro-inflammatory cytokines increased in the liver. In the results, activated hepatic stellate cells (HSCs) and fibrogenic factors on HSCs increased after repetitive CCl4 administration in IDO-KO mice compared to WT mice. Moreover, the treatment with l-tryptophan aggravated the CCl4-induced hepatic fibrosis in WT mice. Our findings demonstrated that the IDO deficiency enhanced the inflammation in the liver and aggravated liver fibrosis in repetitive CCl4-treated mice. PMID:27598994

  12. The Deficiency of Indoleamine 2,3-Dioxygenase Aggravates the CCl4-Induced Liver Fibrosis in Mice

    PubMed Central

    Ogiso, Hideyuki; Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Kanbe, Ayumu; Ando, Kazuki; Ishikawa, Tetsuya; Saito, Kuniaki; Hara, Akira; Moriwaki, Hisataka; Shimizu, Masahito; Seishima, Mitsuru

    2016-01-01

    In the present study, we examined the role of indoleamine 2,3-dioxygenase (IDO) in the development of CCl4-induced hepatic fibrosis. The liver fibrosis induced by repetitive administration with CCl4 was aggravated in IDO-KO mice compared to WT mice. In IDO-KO mice treated with CCl4, the number of several inflammatory cells and the expression of pro-inflammatory cytokines increased in the liver. In the results, activated hepatic stellate cells (HSCs) and fibrogenic factors on HSCs increased after repetitive CCl4 administration in IDO-KO mice compared to WT mice. Moreover, the treatment with l-tryptophan aggravated the CCl4-induced hepatic fibrosis in WT mice. Our findings demonstrated that the IDO deficiency enhanced the inflammation in the liver and aggravated liver fibrosis in repetitive CCl4-treated mice. PMID:27598994

  13. Maternal profiling of corticotropin-releasing factor receptor 2 deficient mice in association with restraint stress

    PubMed Central

    D’Anna, Kimberly L.; Stevenson, Sharon A.; Gammie, Stephen C.

    2008-01-01

    Mice deficient in corticotropin releasing factor receptor 2 (CRF2) (C57BL/6J:129Sv background) exhibit impaired maternal defense (protection of offspring) and are more reactive to stressors than wild-type mice. To further understand CRF2’s role in maternal behavior, we crossed the knockout mice with a line bred for high maternal defense that also has elevated maternal care relative to inbred lines. Maternal care was normal in knockout mice (relative to wild-type). Maternal defense was impaired as previously observed. Exposure to a mild stressor (15 min restraint) did not trigger deficits in maternal defense in either genotype as determined by a two-way repeated measures ANOVA analysis. However, when examining difference scores between unrestrained and restrained conditions, knockout mice exhibited significant decreases in maternal defense with stress, suggesting knockouts are more susceptible to a mild stressor’s effects. To gain possible insights into brain activity differences between WT and KO mice, we examined c-Fos expression in association with stress. Unrestrained KO mice exhibited significantly lower c-Fos levels relative to unrestrained WT mice in 9 regions, including lateral septum and periaqueductal gray. For WT mice, restraint stress triggered c-Fos activity increases in 3 regions while for KO mice, restraint stress triggered c-Fos increases in 16 regions. Taken together, our results suggest both altered behavioral and c-Fos responses to stress in lactating CRF2 KO mice. PMID:18817761

  14. Resilience to audiogenic seizures is associated with p-ERK1/2 dephosphorylation in the subiculum of Fmr1 knockout mice

    PubMed Central

    Curia, Giulia; Gualtieri, Fabio; Bartolomeo, Regina; Vezzali, Riccardo; Biagini, Giuseppe

    2013-01-01

    Young, but not adult, fragile X mental retardation gene (Fmr1) knockout (KO) mice display audiogenic seizures (AGS) that can be prevented by inhibiting extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation. In order to identify the cerebral regions involved in these phenomena, we characterized the response to AGS in Fmr1 KO mice and wild type (WT) controls at postnatal day (P) 45 and P90. To characterize the diverse response to AGS in various cerebral regions, we evaluated the activity markers FosB/ΔFosB and phosphorylated ERK1/2 (p-ERK1/2). Wild running (100% of tested mice) followed by clonic/tonic seizures (30%) were observed in P45 Fmr1 KO mice, but not in WT mice. In P90 Fmr1 KO mice, wild running was only present in 25% of tested animals. Basal FosB/ΔFosB immunoreactivity was higher (P < 0.01 vs. WT) in the CA1 and subiculum of P45 Fmr1 KO mice. Following the AGS test, FosB/ΔFosB expression consistently increased in most of the analyzed regions in both groups at P45, but not at P90. Interestingly, FosB/ΔFosB immunoreactivity was significantly higher in P45 Fmr1 KO mice in the medial geniculate body (P < 0.05 vs. WT) and CA3 (P < 0.01). Neurons presenting with immunopositivity to p-ERK1/2 were more abundant in the subiculum of Fmr1 KO mice in control condition (P < 0.05 vs. WT, in both age groups). In this region, p-ERK1/2-immunopositive cells significantly decreased (–75%, P < 0.01) in P90 Fmr1 KO mice exposed to the AGS test, but no changes were found in P45 mice or in other brain regions. In both age groups of WT mice, p-ERK1/2-immunopositive cells increased in the subiculum after exposure to the acoustic test. Our findings illustrate that FosB/ΔFosB markers are overexpressed in the medial geniculate body and CA3 in Fmr1 KO mice experiencing AGS, and that p-ERK1/2 is markedly decreased in the subiculum of Fmr1 KO mice resistant to AGS induction. These findings suggest that resilience to AGS is associated with dephosphorylation of p-ERK1

  15. Comprehensive Behavioral Analysis of Calcium/Calmodulin-Dependent Protein Kinase IV Knockout Mice

    PubMed Central

    Takao, Keizo; Tanda, Koichi; Nakamura, Kenji; Kasahara, Jiro; Nakao, Kazuki; Katsuki, Motoya; Nakanishi, Kazuo; Yamasaki, Nobuyuki; Toyama, Keiko; Adachi, Minami; Umeda, Masahiro; Araki, Tsutomu; Fukunaga, Kohji; Kondo, Hisatake; Sakagami, Hiroyuki; Miyakawa, Tsuyoshi

    2010-01-01

    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO) mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency. PMID:20209163

  16. Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus

    PubMed Central

    Denis, Cécile; Germain, Johanne; Dinh Tuy, Françoise Phan; Verstraeten, Soraya; Alvarez, Chantal; Métin, Christine; Chelly, Jamel; Giros, Bruno; Miles, Richard; Depaulis, Antoine; Francis, Fiona

    2008-01-01

    Patients with Doublecortin (DCX) mutations have severe cortical malformations associated with mental retardation and epilepsy. Dcx knockout (KO) mice show no major isocortical abnormalities, but have discrete hippocampal defects. We questioned the functional consequences of these defects and report here that Dcx KO mice are hyperactive and exhibit spontaneous convulsive seizures. Changes in neuropeptide Y and calbindin expression, consistent with seizure occurrence, were detected in a large proportion of KO animals, and convulsants, including kainate and pentylenetetrazole, also induced seizures more readily in KO mice. We show that the dysplastic CA3 region in KO hippocampal slices generates sharp wave-like activities and possesses a lower threshold for epileptiform events. Video-EEG monitoring also demonstrated that spontaneous seizures were initiated in the hippocampus. Similarly, seizures in human patients mutated for DCX can show a primary involvement of the temporal lobe. In conclusion, seizures in Dcx KO mice are likely to be due to abnormal synaptic transmission involving heterotopic cells in the hippocampus and these mice may therefore provide a useful model to further study how lamination defects underlie the genesis of epileptiform activities. PMID:18575605

  17. Feeding-elicited cataplexy in orexin knockout mice

    PubMed Central

    Clark, Erika L.; Baumann, Christian R.; Cano, Georgina; Scammell, Thomas E.; Mochizuki, Takatoshi

    2009-01-01

    Mice lacking orexin/hypocretin signaling have sudden episodes of atonia and paralysis during active wakefulness. These events strongly resemble cataplexy, episodes of sudden muscle weakness triggered by strong positive emotions in people with narcolepsy, but it remains unknown whether murine cataplexy is triggered by positive emotions. To determine whether positive emotions elicit murine cataplexy, we placed orexin knockout (KO) mice on a scheduled feeding protocol with regular or highly palatable food. Baseline sleep/wake behavior was recorded with ad lib regular chow. Mice were then placed on a scheduled feeding protocol in which they received 60% of their normal amount of chow 3 hr after dark onset for the next 10 days. Wild-type and KO mice rapidly entrained to scheduled feeding with regular chow, with more wake and locomotor activity prior to the feeding time. On day 10 of scheduled feeding, orexin KO mice had slightly more cataplexy during the food-anticipation period and more cataplexy in the second half of the dark period, when they may have been foraging for residual food. To test whether more palatable food increases cataplexy, mice were then switched to scheduled feeding with an isocaloric amount of Froot Loops, a food often used as a reward in behavioral studies. With this highly palatable food, orexin KO mice had much more cataplexy during the food-anticipation period and throughout the dark period. The increase in cataplexy with scheduled feeding, especially with highly palatable food, suggests that positive emotions may trigger cataplexy in mice, just as in people with narcolepsy. Establishing this connection helps validate orexin KO mice as an excellent model of human narcolepsy and provides an opportunity to better understand the mechanisms that trigger cataplexy. PMID:19362119

  18. Animal models of depression in dopamine, serotonin and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions

    PubMed Central

    Perona, Maria T.G.; Waters, Shonna; Hall, F. Scott; Sora, Ichiro; Lesch, Klaus-Peter; Murphy, Dennis L.; Caron, Marc; Uhl, George R.

    2008-01-01

    Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1) and dopamine (DAT/SLC6A3). Many antidepressants block several ofthese transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET and SERT KO mice and wildtype littermates were studied in the forced swim test (FST), the tail suspension test (TST) and for sucrose consumption. In order to dissociate general activity from the potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing and swimming. In confirmation of previous reports, both DAT KO and NET KO mice exhibited less immobility than wildtype littermates while SERT KO mice did not. Effects of DAT deletion were not simply due to hyperactivity as decreased immobility was observed in DAT +/- mice that were not hyperactive as well as in DAT -/- mice that displayed profound hyperactivity. Climbing was increased, while swimming was almost eliminated in DAT -/-mice, while a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of forced swim test results in antidepressant animal models, while selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the TST, where DAT, NET and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether these effects of

  19. What have we learned about GPER function in physiology and disease from knockout mice?

    PubMed Central

    Prossnitz, Eric R.; Hathaway, Helen J.

    2015-01-01

    Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and patho-physiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also revealed roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. PMID:26189910

  20. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes

    NASA Technical Reports Server (NTRS)

    Wu, Huaizhu; Prince, Joseph E.; Brayton, Cory F.; Shah, Chirayu; Zeve, Daniel; Gregory, Stephen H.; Smith, C. Wayne; Ballantyne, Christie M.

    2003-01-01

    Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P < 0.01). Quantitative organ culture showed that numbers of Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.

  1. Metabolic characteristics of long-lived mice.

    PubMed

    Bartke, Andrzej; Westbrook, Reyhan

    2012-01-01

    Genetic suppression of insulin/insulin-like growth factor signaling (IIS) can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH) release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor I. Long-lived GH-resistant GHR-KO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1(df)) and Snell dwarf (Pit1(dw)) mice lacking GH (along with prolactin and TSH), are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHR-KO mice. Indirect calorimetry revealed that both Ames dwarf and GHR-KO mice utilize more oxygen per gram (g) of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO(2)) were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO(2) did not differ between GHR-KO and normal mice. Thus, the increased metabolic rate of the GHR-KO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of GHR-KO mice

  2. Lack of Endogenous IL-10 Enhances Production of Proinflammatory Cytokines and Leads to Brucella abortus Clearance in Mice

    PubMed Central

    Corsetti, Patrícia P.; de Almeida, Leonardo A.; Carvalho, Natália B.; Azevedo, Vasco; Silva, Teane M. A.; Teixeira, Henrique C.; Faria, Ana C.; Oliveira, Sergio C.

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  3. Somatostatin is essential for the sexual dimorphism of GH secretion, corticosteroid-binding globulin production, and corticosterone levels in mice.

    PubMed

    Adams, Jessica M; Otero-Corchon, Veronica; Hammond, Geoffrey L; Veldhuis, Johannes D; Qi, Nathan; Low, Malcolm J

    2015-03-01

    Distinct male and female patterns of pituitary GH secretion produce sexually differentiated hepatic gene expression profiles, thereby influencing steroid and xenobiotic metabolism. We used a fully automated system to obtain serial nocturnal blood samples every 15 minutes from cannulated wild-type (WT) and somatostatin knockout (Sst-KO) mice to determine the role of SST, the principal inhibitor of GH release, in the generation of sexually dimorphic GH pulsatility. WT males had lower mean and median GH values, less random GH secretory bursts, and longer trough periods between GH pulses than WT females. Each of these parameters was feminized in male Sst-KO mice, whereas female Sst-KO mice had higher GH levels than all other groups, but GH pulsatility was unaffected. We next performed hepatic mRNA profiling with high-density microarrays. Male Sst-KO mice exhibited a globally feminized pattern of GH-dependent mRNA levels, but female Sst-KO mice were largely unaffected. Among the differentially expressed female-predominant genes was Serpina6, which encodes corticosteroid-binding globulin (CBG). Increased CBG was associated with elevated diurnal peak plasma corticosterone in unstressed WT females and both sexes of Sst-KO mice compared with WT males. Sst-KO mice also had exaggerated ACTH and corticosterone responses to acute restraint stress. However, consistent with their lack of phenotypic signs of excess glucocorticoids, cerebrospinal fluid concentrations of free corticosterone in Sst-KO mice were not elevated. In summary, SST is necessary for the prolonged interpulse troughs that define masculinized pituitary GH secretion. SST also contributes to sexual dimorphism of the hypothalamic-pituitary-adrenal axis via GH-dependent regulation of hepatic CBG production.

  4. Histamine responses of large neostriatal interneurons in histamine H1 and H2 receptor knock-out mice.

    PubMed

    Ogawa, Sachie; Yanai, Kazuhiko; Watanabe, Takeshi; Wang, Zhi-Ming; Akaike, Hironari; Ito, Yushi; Akaike, Norio

    2009-03-16

    Histamine (HA) is an important neuro-modulator, contributing to a variety of physiological responses in the mammalian central nervous system (CNS). However there is little information about the cell/signaling mechanism underlying its role. In the present study, we characterized HA responses in single large neostriatal neurons acutely dissociated from wild type (WT) and HA receptor knock-out (KO) mice, with a particular emphasis on identifying the role of HA receptor subtypes. HA (10 microM) and a selective H(2) receptor agonist dimaprit (1 microM) both evoked an inward current in H(1)-KO mice, and HA and a selective H(1) receptor agonist HTMT (10 microM) both evoked an inward current in H(2)-KO mice. In the H(1) and H(2) double (H(1/2)) KO mice, there was no response to either the application of HA or the selective H(1), H(2) receptor agonists. Hence we have confirmed that the targeted genes were indeed absent in these KO mice and that both receptor subtypes contribute to HA's excitatory actions. Furthermore the HA-induced inward currents were mediated by a decrease in current through K(+) channels. In addition, we observed the effects of methamphetamine (METH) on the locomotor activity of WT and HA receptor KO mice, and found that METH-induced behavioral sensitization is evident in H(1/2)-KO mice, but not in H(1)- or H(2)-KO mice. These observations suggest that suppressive roles of HA on methamphetamine-induced behavioral sensitization would be mediated through both H(1) and H(2) receptors in the CNS including neostriatum.

  5. Parturition failure in mice lacking Mamld1.

    PubMed

    Miyado, Mami; Miyado, Kenji; Katsumi, Momori; Saito, Kazuki; Nakamura, Akihiro; Shihara, Daizou; Ogata, Tsutomu; Fukami, Maki

    2015-10-05

    In mice, the onset of parturition is triggered by a rapid decline in circulating progesterone. Progesterone withdrawal occurs as a result of functional luteolysis, which is characterized by an increase in the enzymatic activity of 20α-hydroxysteroid dehydrogenase (20α-HSD) in the corpus luteum and is mediated by the prostaglandin F2α (PGF2α) signaling. Here, we report that the genetic knockout (KO) of Mamld1, which encodes a putative non-DNA-binding regulator of testicular steroidogenesis, caused defective functional luteolysis and subsequent parturition failure and neonatal deaths. Progesterone receptor inhibition induced the onset of parturition in pregnant KO mice, and MAMLD1 regulated the expression of Akr1c18, the gene encoding 20α-HSD, in cultured cells. Ovaries of KO mice at late gestation were morphologically unremarkable; however, Akr1c18 expression was reduced and expression of its suppressor Stat5b was markedly increased. Several other genes including Prlr, Cyp19a1, Oxtr, and Lgals3 were also dysregulated in the KO ovaries, whereas PGF2α signaling genes remained unaffected. These results highlight the role of MAMLD1 in labour initiation. MAMLD1 likely participates in functional luteolysis by regulating Stat5b and other genes, independent of the PGF2α signaling pathway.

  6. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice.

    PubMed

    Ambrée, Oliver; Buschert, Jens; Zhang, Weiqi; Arolt, Volker; Dere, Ekrem; Zlomuzica, Armin

    2014-08-01

    The histamine H1-receptor (H1R) is expressed in wide parts of the brain including the hippocampus, which is involved in spatial learning and memory. Previous studies in H1R knockout (H1R-KO) mice revealed deficits in a variety of learning and memory tasks. It was also proposed that H1R activation is crucial for neuronal differentiation of neural progenitors. Therefore, the aim of this study was to investigate negatively reinforced spatial learning in the water-maze and to assess survival and neuronal differentiation of newborn cells in the adult hippocampus of H1R-KO mice. H1R-KO and wild-type (WT) mice were subjected to the following sequence of tests: (a) cued version, (b) place learning, (c) spatial probe, (d) long-term retention and (e) reversal learning. Furthermore hippocampal neurogenesis in terms of survival and differentiation was assessed in H1R-KO and WT mice. H1R-KO mice showed normal cued learning, but impaired place and reversal learning as well as impaired long-term retention performance. In addition, a marked reduction of newborn neurons in the hippocampus but no changes in differentiation of neural progenitors into neuronal and glial lineage was found in H1R-KO mice. Our data suggest that H1R deficiency in mice is associated with pronounced deficits in hippocampus-dependent spatial learning and memory. Furthermore, we herein provide first evidence that H1R deficiency in the mouse leads to a reduced neurogenesis. However, the exact mechanisms for the reduced number of cells in H1R-KO mice remain elusive and might be due to a reduced survival of newborn hippocampal neurons and/or a reduction in cell proliferation.

  7. MicroRNA-155 deletion reduces anxiety- and depressive-like behaviors in mice.

    PubMed

    Fonken, Laura K; Gaudet, Andrew D; Gaier, Kristopher R; Nelson, Randy J; Popovich, Phillip G

    2016-01-01

    Depressive disorders have complex and multi-faceted underlying mechanisms, rendering these disorders difficult to treat consistently and effectively. One under-explored therapeutic strategy for alleviating mood disorders is the targeting of microRNAs (miRs). miRs are small non-coding RNAs that cause sequestration/degradation of specific mRNAs, thereby preventing protein translation and downstream functions. miR-155 has validated and predicted neurotrophic factor and inflammatory mRNA targets, which led to our hypothesis that miR-155 deletion would modulate affective behaviors. To evaluate anxiety-like behavior, wildtype (wt) and miR-155 knockout (ko) mice (littermates; both male and female) were assessed in the open field and on an elevated plus maze. In both tests, miR-155 ko mice spent more time in open areas, suggesting they had reduced anxiety-like behavior. Depressive-like behaviors were assessed using the forced swim test. Compared to wt mice, miR-155 ko mice exhibited reduced float duration and increased latency to float. Further, although all mice exhibited a strong preference for a sucrose solution over water, this preference was enhanced in miR-155 ko mice. miR-155 ko mice had no deficiencies in learning and memory (Barnes maze) or social preference/novelty suggesting that changes in mood were specific. Finally, compared to wt hippocampi, miR-155 ko hippocampi had a reduced inflammatory signature (e.g., decreased IL-6, TNF-a) and female miR-155 ko mice increased ciliary neurotrophic factor expression. Together, these data highlight the importance of studying microRNAs in the context of anxiety and depression and identify miR-155 as a novel potential therapeutic target for improving mood disorders.

  8. MicroRNA-155 deletion reduces anxiety- and depressive-like behaviors in mice.

    PubMed

    Fonken, Laura K; Gaudet, Andrew D; Gaier, Kristopher R; Nelson, Randy J; Popovich, Phillip G

    2016-01-01

    Depressive disorders have complex and multi-faceted underlying mechanisms, rendering these disorders difficult to treat consistently and effectively. One under-explored therapeutic strategy for alleviating mood disorders is the targeting of microRNAs (miRs). miRs are small non-coding RNAs that cause sequestration/degradation of specific mRNAs, thereby preventing protein translation and downstream functions. miR-155 has validated and predicted neurotrophic factor and inflammatory mRNA targets, which led to our hypothesis that miR-155 deletion would modulate affective behaviors. To evaluate anxiety-like behavior, wildtype (wt) and miR-155 knockout (ko) mice (littermates; both male and female) were assessed in the open field and on an elevated plus maze. In both tests, miR-155 ko mice spent more time in open areas, suggesting they had reduced anxiety-like behavior. Depressive-like behaviors were assessed using the forced swim test. Compared to wt mice, miR-155 ko mice exhibited reduced float duration and increased latency to float. Further, although all mice exhibited a strong preference for a sucrose solution over water, this preference was enhanced in miR-155 ko mice. miR-155 ko mice had no deficiencies in learning and memory (Barnes maze) or social preference/novelty suggesting that changes in mood were specific. Finally, compared to wt hippocampi, miR-155 ko hippocampi had a reduced inflammatory signature (e.g., decreased IL-6, TNF-a) and female miR-155 ko mice increased ciliary neurotrophic factor expression. Together, these data highlight the importance of studying microRNAs in the context of anxiety and depression and identify miR-155 as a novel potential therapeutic target for improving mood disorders. PMID:26555429

  9. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice.

    PubMed

    Budry, Lionel; Bouyakdan, Khalil; Tobin, Stephanie; Rodaros, Demetra; Marcher, Ann-Britt; Mandrup, Susanne; Fulton, Stephanie; Alquier, Thierry

    2016-10-15

    Diazepam is well known for its anxiolytic properties, which are mediated via activation of the GABAA receptor. Diazepam Binding Inhibitor (DBI), also called acyl-CoA binding protein (ACBP), is a ubiquitously expressed protein originally identified based on its ability to displace diazepam from its binding site on the GABAA receptor. Central administration of ACBP or its cleaved fragment, commonly referred to as endozepines, induces proconflict and anxiety-like behaviour in rodents. For this reason, ACBP is known as an anxiogenic peptide. However, the role of endogenous ACBP in anxiety-like behaviour and anxiolytic responses to diazepam has not been investigated. To address this question, we assessed anxiety behaviour and anxiolytic responses to diazepam in two complementary loss-of-function mouse models including astrocyte-specific ACBP KO (ACBP(GFAP) KO) and whole-body KO (ACBP KO) mice. Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam.

  10. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    SciTech Connect

    Ryu, Min Sook; Woo, Min-Yeong; Kwon, Daeho; Hong, Allen E.; Song, Kye Yong; Park, Sun; Lim, In Kyoung

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  11. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice

    PubMed Central

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M.; Fröhlich, Esther E.; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for “enviromimetics”, therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  12. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal Decline.

    PubMed

    Shi, Qiaoqiao; Colodner, Kenneth J; Matousek, Sarah B; Merry, Katherine; Hong, Soyon; Kenison, Jessica E; Frost, Jeffrey L; Le, Kevin X; Li, Shaomin; Dodart, Jean-Cosme; Caldarone, Barbara J; Stevens, Beth; Lemere, Cynthia A

    2015-09-23

    The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on

  13. Reduced acute nociception and chronic pain in Shank2-/- mice.

    PubMed

    Ko, Hyoung-Gon; Oh, Seog-Bae; Zhuo, Min; Kaang, Bong-Kiun

    2016-01-01

    Autism spectrum disorder is a debilitating mental illness and social issue. Autism spectrum disorder patients suffer from social isolation, cognitive deficits, compulsive behavior, and sensory deficits, including hyposensitivity to pain. However, recent studies argued that autism spectrum disorder patients show physiological pain response and, in some cases, even extremely intense pain response to harmless stimulation. Recently, Shank gene family was reported as one of the genetic risk factors of autism spectrum disorder. Thus, in this study, we used Shank2(-) (/) (-) (Shank2 knock-out, KO) mice to investigate the controversial pain sensitivity issue and found that Shank2 KO mice showed reduced tactile perception and analgesia to chronic pain. PMID:27145803

  14. Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1α Knockout and Wild-Type Mice.

    PubMed

    Wang, Ximing; Chandrashekar, Kiran; Wang, Lei; Lai, En Yin; Wei, Jin; Zhang, Gensheng; Wang, Shaohui; Zhang, Jie; Juncos, Luis A; Liu, Ruisheng

    2016-04-01

    We recently showed that α, β, and γ splice variants of neuronal nitric oxide synthase (NOS1) expressed in the macula densa and NOS1β accounts for most of the NO generation. We have also demonstrated that the mice with deletion of NOS1 specifically from the macula densa developed salt-sensitive hypertension. However, the global NOS1 knockout (NOS1KO) strain is neither hypertensive nor salt sensitive. This global NOS1KO strain is actually an NOS1αKO model. Consequently, we hypothesized that inhibition of NOS1β in NOS1αKO mice induces salt-sensitive hypertension. NOS1αKO and C57BL/6 wild-type (WT) mice were implanted with telemetry transmitters and divided into 7-nitroindazole (10 mg/kg/d)-treated and nontreated groups. All of the mice were fed a normal salt (0.4% NaCl) diet for 5 days, followed by a high-salt diet (4% NaCl). NO generation by the macula densa was inhibited by >90% in WT and NOS1αKO mice treated with 7-nitroindazole. Glomerular filtration rate in conscious mice was increased by ≈ 40% after a high-salt diet in both NOS1αKO and WT mice. In response to acute volume expansion, glomerular filtration rate, diuretic and natriuretic response were significantly blunted in the WT and knockout mice treated with 7-nitroindazole. Mean arterial pressure had no significant changes in mice fed a high-salt diet, but increased ≈ 15 mm Hg similarly in NOS1αKO and WT mice treated with 7-nitroindazole. We conclude that NOS1β, but not NOS1α, plays an important role in control of sodium excretion and hemodynamics in response to either an acute or a chronic salt loading.

  15. Altered Immune Cytokine Expression Associated with KoRV B Infection and Season in Captive Koalas

    PubMed Central

    Higgins, Damien P.

    2016-01-01

    Koala (Phascolarctos cinereus) populations are increasingly vulnerable and one of the main threats is chlamydial infection. Koala retrovirus (KoRV) has been proposed as an underlying cause of the koala’s susceptibility to infection with Chlamydia and high rates of lymphoid neoplasia; however, the regionally ubiquitous, endogenous nature of this virus suggests that KoRV A infection is not sufficient for immune suppression to occur. A recently discovered exogenous variant of KoRV, KoRV B, has several structural elements that cause increased pathogenicity in related retroviruses and was associated with lymphoid neoplasia in one study. The present study assesses whether KoRV B infection is associated with alterations in immune function. Cytokine gene expression by mitogen stimulated lymphocytes of KoRV B positive (n = 5–6) and negative (n = 6–7) captive koalas was evaluated by qPCR four times (April 2014-February 2015) to control for seasonal variation. Key immune genes in the Th1 pathway (IFNγ, TNFα), Th2 pathway (IL 10, IL4, IL6) and Th17 pathway (IL17A), along with CD4:CD8 ratio, were assessed. KoRV B positive koalas showed significantly increased up-regulation of IL17A and IL10 in three out of four sampling periods and IFNγ, IL6, IL4 and TNFα in two out of four. IL17A is an immune marker for chlamydial pathogenesis in the koala; increased expression of IL17A in KoRV B positive koalas, and concurrent immune dysregulation, may explain the differences in susceptibility to chlamydial infection and severity of disease seen between individuals and populations. There was also marked seasonal variation in up-regulation for most of the cytokines and the CD4:CD8 ratio. The up-regulation in both Th1 and Th2 cytokines mirrors changes associated with immune dysregulation in humans and felids as a result of retroviral infections. This is the first report of altered immune expression in koalas infected by an exogenous variant of KoRV and also the first report of

  16. Effects of Estrogens on Adipokines and Glucose Homeostasis in Female Aromatase Knockout Mice

    PubMed Central

    Van Sinderen, Michelle L.; Steinberg, Gregory R.; Jørgensen, Sebastian B.; Honeyman, Jane; Chow, Jenny D.; Herridge, Kerrie A.; Winship, Amy L.; Dimitriadis, Evdokia; Jones, Margaret E. E.; Simpson, Evan R.; Boon, Wah Chin

    2015-01-01

    The maintenance of glucose homeostasis within the body is crucial for constant and precise performance of energy balance and is sustained by a number of peripheral organs. Estrogens are known to play a role in the maintenance of glucose homeostasis. Aromatase knockout (ArKO) mice are estrogen-deficient and display symptoms of dysregulated glucose metabolism. We aim to investigate the effects of estrogen ablation and exogenous estrogen administration on glucose homeostasis regulation. Six month-old female wildtype, ArKO, and 17β-estradiol (E2) treated ArKO mice were subjected to whole body tolerance tests, serum examination of estrogen, glucose and insulin, ex-vivo muscle glucose uptake, and insulin signaling pathway analyses. Female ArKO mice display increased body weight, gonadal (omental) adiposity, hyperinsulinemia, and liver triglycerides, which were ameliorated upon estrogen treatment. Tolerance tests revealed that estrogen-deficient ArKO mice were pyruvate intolerant hence reflecting dysregulated hepatic gluconeogenesis. Analyses of skeletal muscle, liver, and adipose tissues supported a hepatic-based glucose dysregulation, with a down-regulation of Akt phosphorylation (a key insulin signaling pathway molecule) in the ArKO liver, which was improved with E2 treatment. Concurrently, estrogen treatment lowered ArKO serum leptin and adiponectin levels and increased inflammatory adipokines such as tumour necrosis factor alpha (TNFα) and interleukin 6 (IL6). Furthermore, estrogen deficiency resulted in the infiltration of CD45 macrophages into gonadal adipose tissues, which cannot be reversed by E2 treatment. This study describes the effects of estrogens on glucose homeostasis in female ArKO mice and highlights a primary phenotype of hepatic glucose dysregulation and a parallel estrogen modified adipokine profile. PMID:26317527

  17. Alteration of the Glucagon Axis in GPR120 (FFAR4) Knockout Mice

    PubMed Central

    Suckow, Arthur T.; Polidori, David; Yan, Wen; Chon, Suhyoun; Ma, Jing Ying; Leonard, James; Briscoe, Celia P.

    2014-01-01

    GPR40 (FFAR1) and GPR120 (FFAR4) are G-protein-coupled receptors (GPCRs) that are activated by long chain fatty acids (LCFAs). GPR40 is expressed at high levels in islets and mediates the ability of LCFAs to potentiate glucose-stimulated insulin secretion (GSIS). GPR120 is expressed at high levels in colon, adipose, and pituitary, and at more modest levels in pancreatic islets. The role of GPR120 in islets has not been explored extensively. Here, we confirm that saturated (e.g. palmitic acid) and unsaturated (e.g. docosahexaenoic acid (DHA)) LCFAs engage GPR120 and demonstrate that palmitate- and DHA-potentiated glucagon secretion are greatly reduced in isolated GPR120 KO islets. Remarkably, LCFA potentiated glucagon secretion is similarly reduced in GPR40 KO islets. Compensatory changes in mRNA expression of GPR120 in GPR40 KO islets, and vice versa, do not explain that LCFA potentiated glucagon secretion seemingly involves both receptors. LCFA-potentiated GSIS remains intact in GPR120 KO islets. Consistent with previous reports, GPR120 KO mice are hyperglycemic and glucose intolerant; however, our KO mice display evidence of a hyperactive counter-regulatory response rather than insulin resistance during insulin tolerance tests. An arginine stimulation test and a glucagon challenge confirmed both increases in glucagon secretion and liver glucagon sensitivity in GPR120 KO mice relative to WT mice. Our findings demonstrate that GPR120 is a nutrient sensor that is activated endogenously by both saturated and unsaturated long chain fatty acids and that an altered glucagon axis likely contributes to the impaired glucose homeostasis observed in GPR120 KO mice. PMID:24742677

  18. NRSF/REST neuronal deficient mice are more vulnerable to the neurotoxin MPTP.

    PubMed

    Yu, Mei; Suo, Haiyun; Liu, Ming; Cai, Lei; Liu, Jie; Huang, Yufang; Xu, Jing; Wang, Yancong; Zhu, Cuiqing; Fei, Jian; Huang, Fang

    2013-03-01

    Parkinson's disease (PD) is characterized by progressing loss of dopaminergic neurons in the midbrain. Abnormal gene expression plays a critical role in its pathogenesis. Neuron-restrictive silencer factor (NRSF)/neuronal repressor element-1 silencing transcription factor (REST), a member of the zinc finger transcription factors, inhibits the expression of neuron-specific genes in nonneuronal cells, and regulates neurogenesis. Our previous work showed that 1-methyl-4-phenyl-pyridinium ion triggers dynamic changes of messenger RNA and protein expression of NRSF in human dopaminergic SH-SY5Y cells, and alteration of NRSF expression exacerbates 1-methyl-4-phenyl-pyridinium ion-induced cell death. The purpose of this study was to explore the in vivo role of NRSF in the progress of PD by using NRSF/REST neuron-specific conditional knockout mice (cKO). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was adopted to generate PD models in the cKO mice and wild type littermates. At 1, 3, 7, 14, 21, and 28 days after MPTP injection, behavioral tests were performed, and cKO mice displayed some impairments in locomotor activities. Also, the reduction of tyrosine hydroxylase protein in the striatum and the loss of dopaminergic neurons in the substantia nigra were more severe in the cKO mice. Meanwhile, the cKO mice exhibited a more dramatic depletion of striatal dopamine, accompanied by an increase in glial fibrillary acidic protein (GFAP) expression and sustained interleukin-1β transcription. These results suggested that NRSF/REST neuronal cKO mice are more vulnerable to the dopaminergic neurotoxin MPTP. Disturbance of the homeostasis of NRSF and its target genes, gliogenesis, and inflammation may contribute to the higher MPTP sensitivity in NRSF/REST neuronal cKO mice. PMID:22766071

  19. Knockout Mice Reveal Key Roles for Claudin 18 in Alveolar Barrier Properties and Fluid Homeostasis

    PubMed Central

    Li, Guanglei; Flodby, Per; Luo, Jiao; Kage, Hidenori; Sipos, Arnold; Gao, Danping; Ji, Yanbin; Beard, LaMonta L.; Marconett, Crystal N.; DeMaio, Lucas; Kim, Yong Ho; Kim, Kwang-Jin; Laird-Offringa, Ite A.; Minoo, Parviz; Liebler, Janice M.; Zhou, Beiyun; Crandall, Edward D.

    2014-01-01

    Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased β-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase β1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability. PMID:24588076

  20. Lithological and petrographic features of tills in the Koźmin region and their value for stratigraphical interpretation of glacial Lake Koźmin deposits, Central Poland

    NASA Astrophysics Data System (ADS)

    Czubla, Piotr; Forysiak, Jacek; Petera-Zganiacz, Joanna

    2010-12-01

    In the middle section, the Warta River valley runs through the Adamów graben. The graben was characterized by subsidence since the end of the Paleogene and favoured accumulation during the Neogene and the Quaternary. The Quaternary deposits consist of several till horizons separated mainly by a series of fluvioglacial sand and a thick series of glaciolacustrine sediments. The research was concentrated on three upper levels of tills and selected series of sand available in Koźmin and Koźmin-Północ "Adamów" opencast mines. The lithological, petrographical features and long-axis azimuth of pebbles were analyzed. The results showed that the lower till could be dated to the Elsterian, middle till to the Wartanian, and the upper till is probably also Wartanian. Glaciolacustrine deposits which filled the erosional form and appeared in the middle till correlate with the end of the Wartanian.

  1. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice

    PubMed Central

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-01-01

    Aim: To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Methods: Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1–3, respectively, and 18% in week 4–7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Results: Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Conclusion: Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system. PMID:24998256

  2. Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+ 3 oxidation state) methyltransferase knockout mice. A preliminary report

    SciTech Connect

    Yokohira, Masanao; Arnold, Lora L.; Pennington, Karen L.; Suzuki, Shugo; Kakiuchi-Kiyota, Satoko; Herbin-Davis, Karen; Thomas, David J.; Cohen, Samuel M.

    2010-07-15

    Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild type mice after exposure to inorganic arsenic. Female wild type C57BL/6 mice and As3mt KO mice were divided into 3 groups each (n = 8) with free access to a diet containing 0, 100 or 150 ppm of arsenic as arsenite (As{sup III}). During the first week of As{sup III} exposure, As3mt KO mice exhibited severe and lethal systemic toxicity. At termination, urinary bladders of both As3mt KO and wild type mice showed hyperplasia by light microscopy. As expected, arsenic-containing granules were found in the superficial urothelial layer of wild type mice. In As3mt KO mice these granules were present in all layers of the bladder epithelium and were more abundant and larger than in wild type mice. Scanning electron microscopy of the bladder urothelium of As3mt KO mice treated with 100 ppm As{sup III} showed extensive superficial necrosis and hyperplastic changes. In As3mt KO mice, livers showed severe acute inflammatory changes and spleen size and lymphoid areas were decreased compared with wild type mice. Thus, diminished arsenic methylation in As3mt KO mice exacerbates systemic toxicity and the effects of As{sup III} on the bladder epithelium, showing that altered kinetic and dynamic behavior of arsenic can affect its toxicity.

  3. Activation of the central histaminergic system is involved in hypoxia-induced stroke tolerance in adult mice

    PubMed Central

    Fan, Yan-ying; Hu, Wei-wei; Dai, Hai-bin; Zhang, Jian-xiang; Zhang, Lu-yi; He, Ping; Shen, Yao; Ohtsu, Hiroshi; Wei, Er-qing; Chen, Zhong

    2011-01-01

    We hypothesized that activation of the central histaminergic system is required for neuroprotection induced by hypoxic preconditioning. Wild-type (WT) and histidine decarboxylase knockout (HDC-KO) mice were preconditioned by 3 hours of hypoxia (8% O2) and, 48 hours later, subjected to 30 minutes of middle cerebral artery (MCA) occlusion, followed by 24 hours of reperfusion. Hypoxic preconditioning improved neurologic function and decreased infarct volume in WT or HDC-KO mice treated with histamine, but not in HDC-KO or WT mice treated with α-fluoromethylhistidine (α-FMH, an inhibitor of HDC). Laser-Doppler flowmetry analysis showed that hypoxic preconditioning ameliorated cerebral blood flow (CBF) in the periphery of the MCA territory during ischemia in WT mice but not in HDC-KO mice. Histamine decreased in the cortex of WT mice after 2, 3, and 4 hours of hypoxia, and HDC activity increased after 3 hours of hypoxia. Vascular endothelial growth factor (VEGF) mRNA and protein expressions showed a greater increase after hypoxia than those in HDC-KO or α-FMH-treated WT mice. In addition, the VEGF receptor-2 antagonist SU1498 prevented the protective effect of hypoxic preconditioning in infarct volume and reversed increased peripheral CBF in WT mice. Therefore, endogenous histamine is an essential mediator of hypoxic preconditioning. It may function by enhancing hypoxia-induced VEGF expression. PMID:20588322

  4. Activation of the central histaminergic system is involved in hypoxia-induced stroke tolerance in adult mice.

    PubMed

    Fan, Yan-ying; Hu, Wei-wei; Dai, Hai-bin; Zhang, Jian-xiang; Zhang, Lu-yi; He, Ping; Shen, Yao; Ohtsu, Hiroshi; Wei, Er-qing; Chen, Zhong

    2011-01-01

    We hypothesized that activation of the central histaminergic system is required for neuroprotection induced by hypoxic preconditioning. Wild-type (WT) and histidine decarboxylase knockout (HDC-KO) mice were preconditioned by 3 hours of hypoxia (8% O(2)) and, 48 hours later, subjected to 30 minutes of middle cerebral artery (MCA) occlusion, followed by 24 hours of reperfusion. Hypoxic preconditioning improved neurologic function and decreased infarct volume in WT or HDC-KO mice treated with histamine, but not in HDC-KO or WT mice treated with α-fluoromethylhistidine (α-FMH, an inhibitor of HDC). Laser-Doppler flowmetry analysis showed that hypoxic preconditioning ameliorated cerebral blood flow (CBF) in the periphery of the MCA territory during ischemia in WT mice but not in HDC-KO mice. Histamine decreased in the cortex of WT mice after 2, 3, and 4 hours of hypoxia, and HDC activity increased after 3 hours of hypoxia. Vascular endothelial growth factor (VEGF) mRNA and protein expressions showed a greater increase after hypoxia than those in HDC-KO or α-FMH-treated WT mice. In addition, the VEGF receptor-2 antagonist SU1498 prevented the protective effect of hypoxic preconditioning in infarct volume and reversed increased peripheral CBF in WT mice. Therefore, endogenous histamine is an essential mediator of hypoxic preconditioning. It may function by enhancing hypoxia-induced VEGF expression.

  5. Maneb causes pro-oxidant effects in the hippocampus of Nrf2 knockout mice.

    PubMed

    Kurzatkowski, Daniela M; Trombetta, Louis D

    2013-09-01

    The effects of maneb were investigated in C57BL/6 Nrf2 wildtype and knockout mice. Treated KO mice showed significant weight loss as compared to WT counterparts. ICPAAS analysis demonstrated a significant increase in manganese concentration in the tissues of treated KO mice as compared to WT. Biochemical analysis revealed significant decreases of antioxidants including glutathione, glutathione reductase and heme oxygenase-1. Levels of TBARS were significantly increased in hippocampal tissue in Nrf2 KO mice at the 30 and 60mg doses. qPCR demonstrated that the only gene mediated by the Nrf2 transcription pathway that was significantly modulated by at least 1.5 fold was glutathione peroxidase 4. GPX4 was significantly upregulated in Nrf2 WT mice treated with 30mg/kg maneb and significantly downregulated in Nrf2 KO mice treated with the same dose. Microscopy revealed neuronal pyknosis and eosinophilia of the cytoplasm in the hippocampi of both WT and KO animals treated with 60mg/kg maneb. PMID:23764462

  6. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  7. Maneb causes pro-oxidant effects in the hippocampus of Nrf2 knockout mice.

    PubMed

    Kurzatkowski, Daniela M; Trombetta, Louis D

    2013-09-01

    The effects of maneb were investigated in C57BL/6 Nrf2 wildtype and knockout mice. Treated KO mice showed significant weight loss as compared to WT counterparts. ICPAAS analysis demonstrated a significant increase in manganese concentration in the tissues of treated KO mice as compared to WT. Biochemical analysis revealed significant decreases of antioxidants including glutathione, glutathione reductase and heme oxygenase-1. Levels of TBARS were significantly increased in hippocampal tissue in Nrf2 KO mice at the 30 and 60mg doses. qPCR demonstrated that the only gene mediated by the Nrf2 transcription pathway that was significantly modulated by at least 1.5 fold was glutathione peroxidase 4. GPX4 was significantly upregulated in Nrf2 WT mice treated with 30mg/kg maneb and significantly downregulated in Nrf2 KO mice treated with the same dose. Microscopy revealed neuronal pyknosis and eosinophilia of the cytoplasm in the hippocampi of both WT and KO animals treated with 60mg/kg maneb.

  8. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice

    PubMed Central

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  9. Progressive Axonal Degeneration of Nigrostriatal Dopaminergic Neurons in Calcium-Independent Phospholipase A2β Knockout Mice.

    PubMed

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2016-01-01

    Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal dopaminergic system in patients with PLA2G6 mutations. We previously observed slowly progressive motor deficits in iPLA2β-knockout (KO) mice. To clarify whether a deficiency of iPLA2β leads to the degeneration of nigrostriatal dopaminergic neurons, we analyzed the striatum of iPLA2β-KO mice. At all clinical stages, nerve terminals in the striatum were immunopositive for tyrosine hydroxylase (TH) and dopamine transporter (DAT) in wild-type (WT) control mice. In iPLA2β-KO mice, focal loss of nerve terminals positive for TH and DAT was found from 56 weeks (early clinical stage), although iPLA2β-KO mice at 56 weeks showed no significant decrease in the number of dopaminergic neurons in the substantia nigra compared with age-matched WT mice, as reported previously. At 100 weeks (late clinical stage), greater decreases in DAT immunoreactivity were observed in the striatum of iPLA2β-KO mice. Moreover, strongly TH-positive structures, presumed to be deformed axons, were observed in the neuropils of the striatum of iPLA2β-KO mice starting at 15 weeks (preclinical stage) and increased with age. These results suggest that the degeneration of dopaminergic neurons occurs mainly in the distal region of axons in iPLA2β-KO mice. PMID:27078024

  10. mPGES-2 deletion remarkably enhances liver injury in streptozotocin-treated mice via induction of GLUT2

    PubMed Central

    Yang, Guangrui; Kakizoe, Yutaka; Liu, Mi; Yang, Kevin T.; Liu, Ying; Yang, Baoxue; Yang, Tianxin

    2015-01-01

    Background & Aims Microsomal prostaglandin E synthase-2 (mPGES-2) deletion does not influence in vivo PGE2 production and the function of this enzyme remains elusive. The present study was undertaken to investigate the role of mPGES-2 in streptozotocin (STZ)-induced type-1 diabetes and organ injuries. Methods mPGES-2 wild type (WT) and knockout (KO) mice were treated by a single intraperitoneal injection of STZ at the dose of 120 mg/kg to induce type-1 diabetes. Subsequently, glycemic status and organ injuries were evaluated. Results Following 4 days of STZ administration, mPGES-2 KO mice exhibited severe lethality in contrast to the normal phenotype observed in WT control mice. In a separate experiment, the analysis was performed at day 3 of the STZ treatment in order to avoid lethality. Blood glucose levels were similar between STZ-treated KO and WT mice. However, the livers of KO mice were yellowish with severe global hepatic steatosis, in parallel with markedly elevated liver enzymes and remarkable stomach expansion. However, the morphology of the other organs was largely normal. The STZ-treated KO mice displayed extensive hepatocyte apoptosis compared with WT mice in parallel with markedly enhanced inflammation and oxidative stress. More interestingly, a liver-specific 50% upregulation of GLUT2 was found in the KO mice accompanied with a markedly enhanced STZ accumulation and this induction of GLUT2 was likely to be associated with the insulin/SREBP-1c pathway. Primary cultured hepatocytes of KO mice exhibited an increased sensitivity to STZ-induced injury and higher cellular STZ content, which was markedly blunted by the selective GLUT2 inhibitor phloretin. Conclusions mPGES-2 deletion enhanced STZ-induced liver toxicity possibly via GLUT2-mediated STZ uptake, independently of diabetes mellitus. PMID:25076362

  11. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice.

    PubMed

    Li, Wen; Jin, Denan; Hata, Masaki; Takai, Shinji; Yamanishi, Kyosuke; Shen, Weili; El-Darawish, Yosif; Yamanishi, Hiromichi; Okamura, Haruki

    2016-08-01

    Interleukin-18 (IL-18) was discovered as an interferon-γ-inducing factor and has been regarded as a proinflammatory cytokine. However, IL-18 is ubiquitously expressed both in immune/inflammatory cells and in nonimmune cells, and its biological roles have not been sufficiently elucidated. Here, we demonstrate that IL-18-deficient [IL-18 knockout (KO)] mice have heart abnormalities that may be related to impaired autophagy. In endurance running tests, IL-18KO mice ran significantly shorter distances compared with wild-type (WT) mice. Echocardiographs indicated disability in the systolic and diastolic functions of the IL-18KO mouse heart. Immunostaining of connexin 43 showed heterogeneous localization of gap junctions in the lateral membranes of the IL-18KO cardiac myocytes. Western blotting analysis revealed decreased phosphorylated connexin 43 in the IL-18KO heart. Electron microscopy revealed unusual localization of intercalated disks, swollen or damaged mitochondria, and broad, indistinct Z-lines in the IL-18KO heart. In accordance with the morphological observation, mitochondrial respiratory function, including that of complexes I and IV, was impaired, and production of reactive oxygen species was augmented in IL-18KO hearts. Notably, levels of LC3-II were markedly lower in the IL-18KO hearts than in WT hearts. In the culture of cardiac myocytes of IL-18KO neonates, exogenous IL-18 upregulated LC3-II and increased the number of intact mitochondria with high mitochondrial membrane potential. These results indicated that IL-18 has roles apart from those as a proinflammatory cytokine in cardiac myocytes and suggested that IL-18 contributes to the homeostatic maintenance of mitochondrial function and gap-junction turnover in cardiac myocytes, possibly by upregulating autophagy.

  12. Tumor suppressor p53 protects mice against Listeria monocytogenes infection.

    PubMed

    Wang, Shaohui; Liu, Pingping; Wei, Jianchao; Zhu, Zixiang; Shi, Zixue; Shao, Donghua; Ma, Zhiyong

    2016-01-01

    Tumor suppressor p53 is involved in regulating immune responses, which contribute to antitumor and antiviral activity. However, whether p53 has anti-bacterial functions remains unclear. Listeria monocytogenes (LM) causes listeriosis in humans and animals, and it is a powerful model for studying innate and adaptive immunity. In the present study, we illustrate an important regulatory role of p53 during LM infection. p53 knockout (p53KO) mice were more susceptible to LM infection, which was manifested by a shorter survival time and lower survival rate. p53KO mice showed significant impairments in LM eradication. Knockdown of p53 in RAW264.7 and HeLa cells resulted in increased invasion and intracellular survival of LM. Furthermore, the invasion and intracellular survival of LM was inhibited in p53-overexpressing RAW264.7 and HeLa cells. LM-infected p53KO mice exhibited severe clinical symptoms and organ injury, presumably because of the abnormal production of the pro-inflammatory cytokines TNF-α, IL-6, IL-12, and IL-18. Decreased IFN-γ and GBP1 productions were observed in LM-infected p53-deficient mice or cells. The combination of these defects likely resulted in the overwhelming LM infection in the p53KO mice. These observations indicate that p53 serves as an important regulator of the host innate immune that protects against LM infection. PMID:27644341

  13. Tumor suppressor p53 protects mice against Listeria monocytogenes infection

    PubMed Central

    Wang, Shaohui; Liu, Pingping; Wei, Jianchao; Zhu, Zixiang; Shi, Zixue; Shao, Donghua; Ma, Zhiyong

    2016-01-01

    Tumor suppressor p53 is involved in regulating immune responses, which contribute to antitumor and antiviral activity. However, whether p53 has anti-bacterial functions remains unclear. Listeria monocytogenes (LM) causes listeriosis in humans and animals, and it is a powerful model for studying innate and adaptive immunity. In the present study, we illustrate an important regulatory role of p53 during LM infection. p53 knockout (p53KO) mice were more susceptible to LM infection, which was manifested by a shorter survival time and lower survival rate. p53KO mice showed significant impairments in LM eradication. Knockdown of p53 in RAW264.7 and HeLa cells resulted in increased invasion and intracellular survival of LM. Furthermore, the invasion and intracellular survival of LM was inhibited in p53-overexpressing RAW264.7 and HeLa cells. LM-infected p53KO mice exhibited severe clinical symptoms and organ injury, presumably because of the abnormal production of the pro-inflammatory cytokines TNF-α, IL-6, IL-12, and IL-18. Decreased IFN-γ and GBP1 productions were observed in LM-infected p53-deficient mice or cells. The combination of these defects likely resulted in the overwhelming LM infection in the p53KO mice. These observations indicate that p53 serves as an important regulator of the host innate immune that protects against LM infection. PMID:27644341

  14. Tumor suppressor p53 protects mice against Listeria monocytogenes infection.

    PubMed

    Wang, Shaohui; Liu, Pingping; Wei, Jianchao; Zhu, Zixiang; Shi, Zixue; Shao, Donghua; Ma, Zhiyong

    2016-01-01

    Tumor suppressor p53 is involved in regulating immune responses, which contribute to antitumor and antiviral activity. However, whether p53 has anti-bacterial functions remains unclear. Listeria monocytogenes (LM) causes listeriosis in humans and animals, and it is a powerful model for studying innate and adaptive immunity. In the present study, we illustrate an important regulatory role of p53 during LM infection. p53 knockout (p53KO) mice were more susceptible to LM infection, which was manifested by a shorter survival time and lower survival rate. p53KO mice showed significant impairments in LM eradication. Knockdown of p53 in RAW264.7 and HeLa cells resulted in increased invasion and intracellular survival of LM. Furthermore, the invasion and intracellular survival of LM was inhibited in p53-overexpressing RAW264.7 and HeLa cells. LM-infected p53KO mice exhibited severe clinical symptoms and organ injury, presumably because of the abnormal production of the pro-inflammatory cytokines TNF-α, IL-6, IL-12, and IL-18. Decreased IFN-γ and GBP1 productions were observed in LM-infected p53-deficient mice or cells. The combination of these defects likely resulted in the overwhelming LM infection in the p53KO mice. These observations indicate that p53 serves as an important regulator of the host innate immune that protects against LM infection.

  15. TNF-α and Temporal Changes in Sleep Architecture in Mice Exposed to Sleep Fragmentation

    PubMed Central

    2012-01-01

    TNF-α plays critical roles in host-defense, sleep-wake regulation, and the pathogenesis of various disorders. Increases in the concentration of circulating TNF-α after either sleep deprivation or sleep fragmentation (SF) appear to underlie excessive daytime sleepiness in patients with sleep apnea (OSA). Following baseline recordings, mice were subjected to 15 days of SF (daily for 12 h/day from 07.00 h to 19.00 h), and sleep parameters were recorded on days1, 7 and 15. Sleep architecture and sleep propensity were assessed in both C57BL/6J and in TNF-α double receptor KO mice (TNFR KO). To further confirm the role of TNF-α, we also assessed the effect of treatment with a TNF- α neutralizing antibody in C57BL/6J mice. SF was not associated with major changes in global sleep architecture in C57BL/6J and TNFR KO mice. TNFR KO mice showed higher baseline SWS delta power. Further, following 15 days of SF, mice injected with TNF-α neutralizing antibody and TNFR KO mice showed increased EEG SWS activity. However, SWS latency, indicative of increased propensity to sleep, was only decreased in C57BL/6J, and was unaffected in TNFR KO mice as well as in C57BL/6J mice exposed to SF but treated with TNF-α neutralizing antibody. Taken together, our findings show that the excessive sleepiness incurred by recurrent arousals during sleep may be due to activation of TNF-alpha-dependent inflammatory pathways, despite the presence of preserved sleep duration and global sleep architecture. PMID:23029133

  16. Ultrastructural organization of dentin in mice lacking dentin sialo-phosphoprotein.

    PubMed

    Fang, Ping-An; Verdelis, Kostas; Yang, Xu; Lukashova, Lyudmila; Boskey, Adele L; Beniash, Elia

    2014-08-01

    Dentin Sialophosphoprotein (DSPP) is the major non-collagenous protein of dentin and plays a significant role in dentin mineralization. Recently, animal models lacking DSPP have been developed and the DSPP KO phenotype has been characterized at the histological level. Little is known, however, about the DSPP KO dentin at nano- and meso-scale. Dentin is a hierarchical material spanning from nano- to macroscale, hence information on the effects of DSPP deficiency at the submicron scale is essential for understanding of its role in dentin biomineralization. To bridge this gap, we have conducted ultrastructural studies of dentin from DSPP KO animals. Transmission electron microscopy (TEM) studies of DSPP KO dentin revealed that although the overall ultrastructural organization was similar to the WT, the mineral particles were less organized. Scanning electron microscopy in the back-scattered mode (BS-SEM) of the DSPP KO dentin revealed that circumpulpal dentin comprises large areas of non-mineralized matrix, with numerous spherulitic mineralized inclusions, while the mantle dentin appeared largely unaffected. Analysis of the mineral distribution in the circumpulpal dentin of the DSPP KO mice suggests a reduction in the number of mineral nucleation sites and an increase in the nucleation barrier in DSPP KO dentin. These preliminary results indicate that in addition to the reduction of mineralized and total dentin volume in DSPP KO animals significant changes in the ultrastructural organization exist. These changes are likely related to the role of DSPP in the regulation of mineral formation and organization in dentin.

  17. Ethanol metabolism in ALDH2 knockout mice--blood acetate levels.

    PubMed

    Kiyoshi, Ameno; Weihuan, Wang; Mostofa, Jamal; Mitsuru, Kumihashi; Toyoshi, Isse; Toshihiro, Kawamoto; Kyoko, Kitagawa; Keiichi, Nakayama; Iwao, Ijiri; Hiroshi, Kinoshita

    2009-04-01

    We described here blood acetate levels in aldehyde dehydrogenase 2 knockout (ALDH2 KO) male mice based on C57BL/6J strain after ethanol (EtOH) dosing (2 g/kg). Blood samples were collected at 30, 60, 90, 120 180, and 240 min after decapitation, and then EtOH, acetaldehyde (AcH) and acetate were determined by head-space gas chromatography. We found that blood acetate levels in ALDH2 KO mice were slightly lower than those in wild type (WT), whereas EtOH and AcH levels in ALDH2 KO were significantly higher than those in WT. These observations indicate that high EtOH, AcH and low acetate in the blood of ALDH2 KO are due to the deficient effect of ALDH2 enzyme activity. PMID:19356968

  18. A facile one-step strategy for the generation of conditional knockout mice to explore the role of Notch1 in oroesophageal tumorigenesis.

    PubMed

    Mandasari, Masita; Sawangarun, Wanlada; Katsube, Ken-ichi; Kayamori, Kou; Yamaguchi, Akira; Sakamoto, Kei

    2016-01-15

    NOTCH1 plays an important role in epithelial differentiation and carcinogenesis. To investigate the impact of Notch1 inactivation in oroesophageal epithelium, we generated conditional knockout (cKO) mice, using a combined construct which induces the expression of single guide RNA targeting Notch1 and Cas9 by the KRT14 promoter. The cKO mice exhibited patchy hair loss and multiple NOTCH1-negative areas in the tongue epithelium, indicative of heterogeneous knockout. The cKO mice showed susceptibility to esophageal tumorigenesis, underscoring Notch1 as a tumor suppressor. Our one-step strategy for generation of cKO mice provides a versatile method to examine a gene function in vivo. PMID:26682927

  19. Chronic stress does not further exacerbate the abnormal psychoneuroendocrine phenotype of Cbg-deficient male mice.

    PubMed

    de Medeiros, Gabriela F; Minni, Amandine M; Helbling, Jean-Christophe; Moisan, Marie-Pierre

    2016-08-01

    Chronic stress leads to a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis which can constitute a base for pathophysiological consequences. Using mice totally deficient in Corticosteroid binding globulin (CBG), we have previously demonstrated the important role of CBG in eliciting an adequate response to an acute stressor. Here, we have studied its role in chronic stress situations. We have submitted Cbg ko and wild-type (WT) male mice to two different chronic stress paradigms - the unpredictable chronic mild stress and the social defeat. Then, their impact on neuroendocrine function - through corticosterone and CBG measurement - and behavioral responses - via anxiety and despair-like behavioral tests - was evaluated. Both chronic stress paradigms increased the display of despair-like behavior in WT mice, while that from Cbg ko mice - which was already high - was not aggravated. We have also found that control and defeated (stressed) Cbg ko mice show no difference in the social interaction test, while defeated WT mice reduce their interaction time when compared to unstressed WT mice. Interestingly, the same pattern was observed for corticosterone levels, where both chronic stress paradigms lowered the corticosterone levels of WT mice, while those from Cbg ko mice remained low and unaltered. Plasma CBG binding capacity remained unaltered in WT mice regardless of the stress paradigm. Through the use of the Cbg ko mice, which only differs genetically from WT mice by the absence of CBG, we demonstrated that CBG is crucial in modulating the effects of stress on plasma corticosterone levels and consequently on behavior. In conclusion, individuals with CBG deficiency, whether genetically or environmentally-induced, are vulnerable to acute stress but do not have their abnormal psychoneuroendocrine phenotype further affected by chronic stress.

  20. Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration

    PubMed Central

    Ribeiro-Resende, Victor Túlio; Gomes, Tiago Araújo; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  1. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice.

    PubMed

    Ambs, S; Ogunfusika, M O; Merriam, W G; Bennett, W P; Billiar, T R; Harris, C C

    1998-07-21

    High concentrations of nitric oxide (NO) cause DNA damage and apoptosis in many cell types. Thus, regulation of NO synthase (NOS) activity is essential for minimizing effects of cytotoxic and genotoxic nitrogen oxide species. We have shown previously that NO-induced p53 protein accumulation down-regulates basal and cytokine-modulated inducible NOS (NOS2) expression in human cells in vitro. To further characterize the feedback loop between NOS2 and p53, we have investigated NO production, i.e., urinary nitrate plus nitrite excretion, and NOS2 expression in homozygous p53 knockout (KO) mice. We report here that untreated p53 KO mice excreted 70% more nitrite plus nitrate than mice with wild-type (wt) p53. NOS2 protein expression was constitutively detected in the spleen of untreated p53 KO mice, whereas it was undetectable in the spleen of wt p53 controls. Upon treatment with heat-inactivated Corynebacterium parvum, urinary nitrite plus nitrate excretion of p53 KO mice exceeded that of wt controls by approximately 200%. C. parvum treatment also induced p53 accumulation in the liver. Splenectomy reduced the NO output of C. parvum-treated p53 KO mice but not of wt p53 controls. Although NO production and NOS2 protein expression were increased similarly in KO and wt p53 mice 10 days after injection of C. parvum, NOS2 expression returned to baseline levels only in wt p53 controls while remaining up-regulated in p53 KO mice. These genetic and functional data indicate that p53 is an important transrepressor of NOS2 expression in vivo and attenuates excessive NO production in a regulatory negative feedback loop. PMID:9671763

  2. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus.

  3. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans.

    PubMed

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hammer, Monia; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-06-28

    A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  4. Role of WNT16 in the Regulation of Periosteal Bone Formation in Female Mice

    PubMed Central

    Wergedal, Jon E.; Kesavan, Chandrasekhar; Brommage, Robert; Das, Subhashri

    2015-01-01

    In this study, we evaluated the role of WNT16 in regulating bone size, an important determinant of bone strength. Mice with targeted disruption of the Wnt16 gene exhibited a 24% reduction in tibia cross-sectional area at 12 weeks of age compared with that of littermate wild-type (WT) mice. Histomorphometric studies revealed that the periosteal bone formation rate and mineral apposition rate were reduced (P < .05) by 55% and 32%, respectively, in Wnt16 knockout (KO) vs WT mice at 12 weeks of age. In contrast, the periosteal tartrate resistant acid phosphatase-labeled surface was increased by 20% in the KO mice. Because mechanical strain is an important physiological regulator of periosteal bone formation (BF), we determined whether mechanical loading–induced periosteal BF is compromised in Wnt16 KO mice. Application of 4800-μe strain to the right tibia using a 4-point bending loading method for 2 weeks (2-Hz frequency, 36 cycles per day, 6 days/wk) produced a significant increase in cross-sectional area (11% above that of the unloaded left tibia, P < .05, n = 6) in the WT but not in the KO mice (−0.2% change). Histomorphometric analyses revealed increases in the periosteal bone formation rate and mineral apposition rate in the loaded bones of WT but not KO mice. Wnt16 KO mice showed significant (20%–70%) reductions in the expression levels of markers of canonical (β-catenin and Axin2) but not noncanonical (Nfatc1 and Tnnt2) WNT signaling in the periosteum at 5 weeks of age. Our findings suggest that WNT16 acting via canonical WNT signaling regulates mechanical strain-induced periosteal BF and bone size. PMID:25521583

  5. Impaired Bacterial Clearance in Type 3 Deiodinase-Deficient Mice Infected with Streptococcus pneumoniae

    PubMed Central

    Boelen, Anita; Kwakkel, Joan; Wieland, Catharina W.; St. Germain, Donald L.; Fliers, Eric; Hernandez, Arturo

    2009-01-01

    The activation of type 3 deiodinase (D3) has been postulated to play a role in the reduction of thyroid hormone levels during illness. Using a mouse model of acute bacterial infection, we have recently demonstrated marked D3 immunostaining in neutrophils infiltrating infected organs. These observations suggest a possible additional role for this enzyme in the innate immune response. To further assess the role of D3 in the response to acute bacterial infection, we used null D3 [D3 knockout (D3KO)] and wild type (WT) mice and infected them with Streptococcus pneumoniae. Marked reductions in serum thyroid hormone levels were observed both in D3KO and WT mice. Infection resulted also in a decrease in liver D1 activity in WT, but not in infected D3KO mice. Upon infection, pulmonary neutrophilic influx (measured by myeloperoxidase levels) and IL-6 and TNF concentrations increased equally in D3KO and WT mice, and histological examination of infected mice showed similar pulmonary inflammation in both strains. However, D3KO animals demonstrated significantly higher bacterial load in blood, lung, and spleen compared with WT mice. We conclude that 1) D3 is not required to generate the systemic manifestations of the nonthyroidal illness syndrome in this model; 2) the lack of D3 does not affect the extent of pulmonary inflammation; and 3) bacterial outgrowth in blood, spleen, and lung of D3KO mice is significantly higher than in WT mice. Our results suggest a protective role for D3 in the defense against acute bacterial infection, probably by reinforcing the microbial killing capacity of neutrophils. PMID:19036878

  6. Generation and Behavior Characterization of CaMKIIβ Knockout Mice

    PubMed Central

    Tu, Tao; Goulding, Danielle S.; Haiech, Jacques; Watterson, D. Martin; Van Eldik, Linda J.

    2014-01-01

    The calcium/calmodulin-dependent protein kinase II (CaMKII) is abundant in the brain, where it makes important contributions to synaptic organization and homeostasis, including playing an essential role in synaptic plasticity and memory. Four genes encode isoforms of CaMKII (α, β, δ, γ), with CaMKIIα and CaMKIIβ highly expressed in the brain. Decades of molecular and cellular research, as well as the use of a large number of CaMKIIα mutant mouse lines, have provided insight into the pivotal roles of CaMKIIα in brain plasticity and cognition. However, less is known about the CaMKIIβ isoform. We report the development and extensive behavioral and phenotypic characterization of a CaMKIIβ knockout (KO) mouse. The CaMKIIβ KO mouse was found to be smaller at weaning, with an altered body mass composition. The CaMKIIβ KO mouse showed ataxia, impaired forelimb grip strength, and deficits in the rotorod, balance beam and running wheel tasks. Interestingly, the CaMKIIβ KO mouse exhibited reduced anxiety in the elevated plus maze and open field tests. The CaMKIIβ KO mouse also showed cognitive impairment in the novel object recognition task. Our results provide a comprehensive behavioral characterization of mice deficient in the β isoform of CaMKII. The neurologic phenotypes and the construction of the genotype suggest the utility of this KO mouse strain for future studies of CaMKIIβ in brain structure, function and development. PMID:25127391

  7. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice

    PubMed Central

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-01-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. PMID:26946128

  8. Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission.

    PubMed

    Nascimento, Filipe; Sebastião, Ana M; Ribeiro, Joaquim A

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A(1) receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4-6 weeks old) and symptomatic (12-14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg(2+) paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N (6)-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.

  9. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  10. Intragastric fat self-administration is impaired in GPR40/120 double knockout mice

    PubMed Central

    Sclafani, Anthony; Touzani, Khalid; Ackroff, Karen

    2015-01-01

    Mice acquire strong preferences for flavors paired with intragastric (IG) fat infusions. This IG fat conditioning is attenuated in double knockout (DoKO) mice missing GPR40 and GPR120 fatty acid receptors. Here we determined if GPR40/120 DoKO mice are also impaired in IG fat self-administration in an operant lick task. In daily 1-h sessions the mice were trained with a sipper spout that contained dry food pellets; licks on the spout triggered infusions of IG fat (Intralipid). The training sessions were followed by test sessions with an empty spout. GPR40/120 DoKO mice self-infused more 20% fat than wild type (WT) C57BL/6 mice in training with a food-baited spout (2.4 vs. 2.0 kcal/h) but self-infused less 20% fat than WT mice in empty spout tests (1.2 vs. 1.7 kcal/h). The DoKO mice also self-infused less 5% fat than WT mice (0.6 vs. 1.3 kcal/h) although both groups emitted more licks for 5% fat than 20% fat. The DoKO and WT mice did not differ, however, in their self-infusion of 12.5% glucose (1.5 vs. 1.6 kcal/h), which is isocaloric to 5% fat. A second 5% IL test showed that the DoKO mice reverted to a reduced self-infusion compared to WT mice. When the infusion was shifted to water, WT mice reduced licking in the first extinction session, whereas DoKO mice were less sensitive to the absence of infused fat. Our results indicate that post-oral GPR40/120 signaling is not required to process IG fat infusions in food-baited spout training sessions but contributes to post-oral fat reinforcement in empty spout tests and flavor conditioning tests. PMID:25911263

  11. Combined behavioral studies and in vivo imaging of inflammatory response and expression of mGlu5 receptors in schnurri-2 knockout mice.

    PubMed

    Choi, Ji-Kyung; Zhu, Aijun; Jenkins, Bruce G; Hattori, Satoko; Kil, Kun-Eek; Takagi, Tsuyoshi; Ishii, Shunsuke; Miyakawa, Tsuyoshi; Brownell, Anna-Liisa

    2015-11-16

    Schnurri-2 (Shn-2) knockout (KO) mice have been proposed as a preclinical neuroinflammatory schizophrenia model. We used behavioral studies and imaging markers that can be readily translated to human populations to explore brain effects of inflammation. Shn-2 KO mice and their littermate control mice were imaged with two novel PET ligands; an inflammation marker [(11)C]PBR28 and the mGluR5 ligand [(18)F]FPEB. Locomotor activity was measured using open field exploration with saline, methamphetamine or amphetamine challenge. A significantly increased accumulation of [(11)C]PBR28 was found in the cortex, striatum, hippocampus and olfactory bulb of Shn-2 KO mice. Increased mGluR5 binding was also observed in the cortex and hippocampus of the Shn-2 KO mice. Open field locomotor testing revealed a large increase in novelty-induced hyperlocomotion in Shn-2 KO mice with abnormal (decreased) responses to either methamphetamine or amphetamine. These data provide additional support to demonstrate that the Shn-2 KO mouse model exhibits several behavioral and pathological markers resembling human schizophrenia making it an attractive translational model for the disease.

  12. Impaired theta-gamma coupling in APP-deficient mice

    PubMed Central

    Zhang, Xiaomin; Zhong, Wewei; Brankačk, Jurij; Weyer, Sascha W.; Müller, Ulrike C.; Tort, Adriano B. L.; Draguhn, Andreas

    2016-01-01

    Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer’s disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level. PMID:26905287

  13. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice.

    PubMed

    Sugimoto, Masayuki; Shimizu, Yoichi; Zhao, Songji; Ukon, Naoyuki; Nishijima, Ken-ichi; Wakabayashi, Masato; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Tamaki, Nagara; Hanamatsu, Hisatoshi; Igarashi, Yasuyuki; Kuge, Yuji

    2016-08-01

    Sphingomyelin synthase 2 (SMS2) is a proposed potential therapeutic target for obesity and insulin resistance. However, the contributions of SMS2 to glucose metabolism in tissues and its possible therapeutic mechanisms remain unclear. Thus, to determine whole-body glucose utilization and the contributions of each insulin-targeted tissue to glucose uptake, we performed a glucose kinetics study, using the radiolabeled glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG), in wild-type (WT) and SMS2 knockout (KO) mice. Insulin signaling was enhanced in the liver, white adipose tissue and skeletal muscle of SMS2 KO mice compared with those of WT mice. In addition, compared with in WT mice, blood clearance of (18)F-FDG was accelerated in SMS2 KO mice when they were fed either a normal or a high fat diet. (18)F-FDG uptake was also increased in insulin-targeted tissues such as skeletal muscle in the SMS2 KO mice. Whereas skeletal muscle sphingolipid content was not clearly affected, plasma levels of very long-chain fatty acid (VLCFA)-containing ceramides were markedly increased in SMS2 KO mice, compared with in WT mice. We also generated liver-conditional SMS2 KO mice and performed glucose and insulin tolerance tests on mice with a high fat diet. However, no significant effect was observed. Thus, our study provided evidence that genetic inhibition of SMS2 elevated glucose clearance through activation of glucose uptake into insulin-targeted tissues such as skeletal muscle by a mechanism independent of hepatic SMS2. Our findings further indicate that this occurs, at least in part, via indirect mechanisms such as elevation of VLCFA-containing ceramides.

  14. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice.

    PubMed

    Sugimoto, Masayuki; Shimizu, Yoichi; Zhao, Songji; Ukon, Naoyuki; Nishijima, Ken-ichi; Wakabayashi, Masato; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Tamaki, Nagara; Hanamatsu, Hisatoshi; Igarashi, Yasuyuki; Kuge, Yuji

    2016-08-01

    Sphingomyelin synthase 2 (SMS2) is a proposed potential therapeutic target for obesity and insulin resistance. However, the contributions of SMS2 to glucose metabolism in tissues and its possible therapeutic mechanisms remain unclear. Thus, to determine whole-body glucose utilization and the contributions of each insulin-targeted tissue to glucose uptake, we performed a glucose kinetics study, using the radiolabeled glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG), in wild-type (WT) and SMS2 knockout (KO) mice. Insulin signaling was enhanced in the liver, white adipose tissue and skeletal muscle of SMS2 KO mice compared with those of WT mice. In addition, compared with in WT mice, blood clearance of (18)F-FDG was accelerated in SMS2 KO mice when they were fed either a normal or a high fat diet. (18)F-FDG uptake was also increased in insulin-targeted tissues such as skeletal muscle in the SMS2 KO mice. Whereas skeletal muscle sphingolipid content was not clearly affected, plasma levels of very long-chain fatty acid (VLCFA)-containing ceramides were markedly increased in SMS2 KO mice, compared with in WT mice. We also generated liver-conditional SMS2 KO mice and performed glucose and insulin tolerance tests on mice with a high fat diet. However, no significant effect was observed. Thus, our study provided evidence that genetic inhibition of SMS2 elevated glucose clearance through activation of glucose uptake into insulin-targeted tissues such as skeletal muscle by a mechanism independent of hepatic SMS2. Our findings further indicate that this occurs, at least in part, via indirect mechanisms such as elevation of VLCFA-containing ceramides. PMID:27151272

  15. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth.

    PubMed

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-01-01

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20A(flox/flox) mice, we created K14-Cre;Fam20A(flox/flox) (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues.

  16. The M2 muscarinic receptors are essential for signaling in the heart left ventricle during restraint stress in mice.

    PubMed

    Tomankova, Hana; Valuskova, Paulina; Varejkova, Eva; Rotkova, Jana; Benes, Jan; Myslivecek, Jaromir

    2015-01-01

    We hypothesized that muscarinic receptors (MRs) in the heart have a role in stress responses and thus investigated changes in MR signaling (gene expression, number of receptors, adenylyl cyclase (AC), phospholipase C (PLC), protein kinase A and C (PKA and PKC) and nitric oxide synthase [NOS]) in the left ventricle, together with telemetric measurement of heart rate (HR) in mice (wild type [WT] and M2 knockout [KO]) during and after one (1R) or seven sessions (7R) of restraint stress (seven mice per group). Stress decreased M2 MR mRNA and cell surface MR in the left ventricle in WT mice. In KO mice, 1R, but not 7R, decreased surface MR. Similarly, AC activity was decreased in WT mice after 1R and 7R, whereas in KO mice, there was no change. PLC activity was also decreased after 1R in WT and KO mice. This is in accord with the concept that cAMP is a key player in HR regulation. No change was found with stress in NOS activity. Amount of AC and PKA protein was not changed, but was altered for PKC isoenzymes (PKCα, β, γ, η and ϵ (increased) in KO mice, and PKCι (increased) in WT mice). KO mice were more susceptible to stress as shown by inability to compensate HR during 120 min following repeated stress. The results imply that not only M2 but also M3 are involved in stress signaling and in allostasis. We conclude that for a normal stress response, the expression of M2 MR to mediate vagal responses is essential.

  17. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth

    PubMed Central

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-01-01

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20Aflox/flox mice, we created K14-Cre;Fam20Aflox/flox (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues. PMID:27281036

  18. Haploinsufficiency for Steroidogenic Factor 1 Affects Maternal Behavior in Mice

    PubMed Central

    Spanic, Tanja; Grgurevic, Neza; Majdic, Gregor

    2016-01-01

    Steroidogenic factor 1 (SF-1), officially designated NR5A1, is essential for gonadal and adrenal development and for the normal structure of the ventromedial hypothalamus (VMH), as demonstrated by SF-1 knockout mice (SF-1 KO), but much less is known about the possible effects of haploinsufficiency of the SF-1 gene. In the present study, maternal behavior in SF-1 KO heterozygous mice was evaluated. Behavioral tests revealed that SF-1 KO heterozygous females have impaired maternal behavior. In comparison to wild-type (WT) females, SF-1 KO heterozygous females retrieved significantly fewer pups into their nests, latency to retrieve and crouch over the pups was longer, and their nests were lower quality. As suggested by previous studies full dosage of SF-1 gene is needed for appropriate stress response and expression of brain-derived neurotrophic factor (BDNF) in the brain, and this might present a mechanism through which maternal behavior in SF-1 KO heterozygous females is impaired. PMID:27445727

  19. Haploinsufficiency for Steroidogenic Factor 1 Affects Maternal Behavior in Mice.

    PubMed

    Spanic, Tanja; Grgurevic, Neza; Majdic, Gregor

    2016-01-01

    Steroidogenic factor 1 (SF-1), officially designated NR5A1, is essential for gonadal and adrenal development and for the normal structure of the ventromedial hypothalamus (VMH), as demonstrated by SF-1 knockout mice (SF-1 KO), but much less is known about the possible effects of haploinsufficiency of the SF-1 gene. In the present study, maternal behavior in SF-1 KO heterozygous mice was evaluated. Behavioral tests revealed that SF-1 KO heterozygous females have impaired maternal behavior. In comparison to wild-type (WT) females, SF-1 KO heterozygous females retrieved significantly fewer pups into their nests, latency to retrieve and crouch over the pups was longer, and their nests were lower quality. As suggested by previous studies full dosage of SF-1 gene is needed for appropriate stress response and expression of brain-derived neurotrophic factor (BDNF) in the brain, and this might present a mechanism through which maternal behavior in SF-1 KO heterozygous females is impaired. PMID:27445727

  20. Role of corticosteroid binding globulin in emotional reactivity sex differences in mice.

    PubMed

    Minni, A M; de Medeiros, G F; Helbling, J C; Duittoz, A; Marissal-Arvy, N; Foury, A; De Smedt-Peyrusse, V; Pallet, V; Moisan, M P

    2014-12-01

    Sex differences exist for stress reactivity as well as for the prevalence of depression, which is more frequent in women of reproductive age and often precipitated by stressful events. In animals, the differential effect of stress on male's and female's emotional behavior has been well documented. Crosstalk between the gonadal and stress hormones, in particular between estrogens and glucocorticoids, underlie these sex differences on stress vulnerability. We have previously shown that corticosteroid binding globulin (CBG) deficiency in a mouse model (Cbg k.o.) leads, in males, to an increased despair-like behavior caused by suboptimal corticosterone stress response. Because CBG displays a sexual dimorphism and is regulated by estrogens, we have now investigated whether it plays a role in the sex differences observed for emotional reactivity in mice. By analyzing Cbg k.o. and wild-type (WT) animals of both sexes, we detected sex differences in despair-like behavior in WT mice but not in Cbg k.o. animals. We showed through ovariectomy and estradiol (E2) replacement that E2 levels explain the sex differences found in WT animals. However, the manipulation of E2 levels did not affect the emotional behavior of Cbg k.o. females. As Cbg k.o. males, Cbg k.o. females have markedly reduced corticosterone levels across the circadian cycle and also after stress. Plasma free corticosterone levels in Cbg k.o. mice measured immediately after stress were blunted in both sexes compared to WT mice. A trend for higher mean levels of ACTH in Cbg k.o. mice was found for both sexes. The turnover of a corticosterone bolus was increased in Cbg k.o. Finally, the glucocorticoid-regulated immediate early gene early growth response 1 (Egr1) showed a blunted mRNA expression in the hippocampus of Cbg k.o. mutants while mineralocorticoid and glucocorticoid receptors presented sex differences but equivalent mRNA expression between genotypes. Thus, in our experimental conditions, sex differences for

  1. Role of corticosteroid binding globulin in emotional reactivity sex differences in mice.

    PubMed

    Minni, A M; de Medeiros, G F; Helbling, J C; Duittoz, A; Marissal-Arvy, N; Foury, A; De Smedt-Peyrusse, V; Pallet, V; Moisan, M P

    2014-12-01

    Sex differences exist for stress reactivity as well as for the prevalence of depression, which is more frequent in women of reproductive age and often precipitated by stressful events. In animals, the differential effect of stress on male's and female's emotional behavior has been well documented. Crosstalk between the gonadal and stress hormones, in particular between estrogens and glucocorticoids, underlie these sex differences on stress vulnerability. We have previously shown that corticosteroid binding globulin (CBG) deficiency in a mouse model (Cbg k.o.) leads, in males, to an increased despair-like behavior caused by suboptimal corticosterone stress response. Because CBG displays a sexual dimorphism and is regulated by estrogens, we have now investigated whether it plays a role in the sex differences observed for emotional reactivity in mice. By analyzing Cbg k.o. and wild-type (WT) animals of both sexes, we detected sex differences in despair-like behavior in WT mice but not in Cbg k.o. animals. We showed through ovariectomy and estradiol (E2) replacement that E2 levels explain the sex differences found in WT animals. However, the manipulation of E2 levels did not affect the emotional behavior of Cbg k.o. females. As Cbg k.o. males, Cbg k.o. females have markedly reduced corticosterone levels across the circadian cycle and also after stress. Plasma free corticosterone levels in Cbg k.o. mice measured immediately after stress were blunted in both sexes compared to WT mice. A trend for higher mean levels of ACTH in Cbg k.o. mice was found for both sexes. The turnover of a corticosterone bolus was increased in Cbg k.o. Finally, the glucocorticoid-regulated immediate early gene early growth response 1 (Egr1) showed a blunted mRNA expression in the hippocampus of Cbg k.o. mutants while mineralocorticoid and glucocorticoid receptors presented sex differences but equivalent mRNA expression between genotypes. Thus, in our experimental conditions, sex differences for

  2. TNF-α knockout mice have increased corpora cavernosa relaxation

    PubMed Central

    2010-01-01

    Introduction Erectile dysfunction (ED) is considered an early clinical manifestation of vascular disease and an independent risk factor for cardiovascular events associated with endothelial dysfunction and increased levels of pro-inflammatory cytokines. Tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine, suppresses endothelial nitric oxide synthase (eNOS) expression. Aim Considering that nitric oxide (NO) is of critical importance in penile erection, we hypothesized that blockade of TNF-α actions would increase cavernosal smooth muscle relaxation through an increase in NOS expression. Methods In vitro organ bath studies were used to measure cavernosal reactivity in wild type and TNF-α knockout (TNF-α KO) mice and NOS expression was evaluated by western blot. In addition, spontaneous erections (in vivo) were evaluated by videomonitoring the animals (30 min.). Collagen and elastin expression were evaluated by Masson trichrome and Verhoff-van Gieson stain reaction, respectively. Main Outcome Measures Corpora cavernosa from TNF-α KO mice exhibited increased NO-dependent relaxation, which was associated with increased eNOS and neuronal NOS (nNOS) cavernosal expression. Results Cavernosal strips from TNF-α KO mice displayed increased endothelium-dependent [97.4±5.3 vs Control: 76.3±6.3, %] and nonadrenergic-noncholinergic (NANC) [93.3±3.0 vs Control: 67.5±16.0; 16 Hz] relaxation compared to control animals. These responses were associated with increased protein expression of eNOS and nNOS (p<0.05). Sympathetic-mediated [0.69±0.16 vs Control: 1.22±0.22; 16 Hz] as well as phenylephrine-induced contractile responses [1.6±0.1 vs Control: 2.5±0.1, mN] were attenuated in cavernosal strips from TNF-α KO mice. Additionally, corpora cavernosa from TNF-α KO mice displayed increased collagen and elastin expression. In vivo experiments demonstrated that TNF-α KO mice display increased number of spontaneous erections. Conclusion Corpora cavernosa from

  3. Analysis of development of lesions in mice with serine palmitoyltransferase (SPT) deficiency -Sptlc2 conditional knockout mice-.

    PubMed

    Ohta, Etsuko; Ohira, Takashi; Matsue, Kenta; Ikeda, Yuika; Fujii, Kenji; Ohwaki, Kenji; Osuka, Sou; Hirabayashi, Yoshio; Sasaki, Minoru

    2009-10-01

    Serine palmitoyltransferase (SPT) is the enzyme which catalyzes the first step of the biosynthesis of sphingolipids. However, the precise roles of SPT in vivo are not well understood, since complete knockout (KO) of genes which compose SPT results in a fetal lethal phenotype. A conditional KO (cKO) mouse of SPT long chain base 2 (Sptlc2) was therefore developed, and the effects of Sptlc2 deficiency were examined. Single cell necrosis in the epithelia of the crypts of the small and large intestines was observed as early as 24 h after induction of knockout. At 48 h after induction, decreases in spleen and thymus weights and decreases in numbers of reticulocytes and lymphocytes were observed in cKO mice, and single cell necrosis in the intestine became prominent. At 72 h after induction, decreases in body weight, spleen and thymus weights, and numbers of reticulocytes and lymphocytes became obvious in cKO mice. Histologically, atrophy of gastrointestinal mucosa and lymphoid necrosis as well as depletion of lymphoid and hematopoietic tissues were observed. These findings suggest that SPT plays important roles in the maintenance of the gastrointestinal mucosa, especially in the proliferation of the mucosal epithelial cells, and that deficiency of Sptlc2 induces necrotic lesions in gastrointestinal cells followed by atrophic change of the tissue in short term.

  4. Methylphenidate improves the behavioral and cognitive deficits of neurogranin knockout mice.

    PubMed

    Huang, F L; Huang, K-P

    2012-10-01

    Neurogranin (Ng), a brain-specific calmodulin-binding protein, is expressed highly in hippocampus, and is important for cognitive function. Deletion of the Ng gene from mice caused attenuation of signal reaction cascade in hippocampus, impairments in learning and memory and high frequency stimulation-induced long-term potentiation (LTP). Environmental enrichment alone failed to improve cognitive function. In this study, behavioral testing revealed that Ng knockout (NgKO) mice were both hyperactive and socially withdrawn. Methylphenidate (MPH) was given to mice while they were also kept under an enrichment condition. MPH treatment reduced the hyperactivity of NgKO mice tested in both the open field and forced swim chamber. MPH improved their social abilities such that mice recognized and interacted better with novel subjects. The cognitive memories of MPH-treated mutants were improved in both water maze and contextual fear conditioning tests. High frequency stimulation-induced LTP of NgKO mice was also improved by MPH. The present treatment regimen, however, did not fully reverse the deficits of the mutant mice. In contrast, MPH exerted only a minimal effect on the wild type mice. At the cellular level, MPH increased the number of glial fibrillary acidic protein-positive cells in hippocampus, particularly within the dentate gyrus of NgKO mice. Therefore it will be of interest to determine the nature of MPH-mediated astrocyte activation and how it may modulate behavior in future studies. Taken together these NgKO mice may be useful for the development of better drug treatment to improve cognitive and behavioral impairments.

  5. Lack of TRPM2 Impaired Insulin Secretion and Glucose Metabolisms in Mice

    PubMed Central

    Uchida, Kunitoshi; Dezaki, Katsuya; Damdindorj, Boldbaatar; Inada, Hitoshi; Shiuchi, Tetsuya; Mori, Yasuo; Yada, Toshihiko; Minokoshi, Yasuhiko; Tominaga, Makoto

    2011-01-01

    OBJECTIVE TRPM2 is a Ca2+-permeable nonselective cation channel activated by adenosine dinucleotides. We previously demonstrated that TRPM2 is activated by coapplication of heat and intracellular cyclic adenosine 5′-diphosphoribose, which has been suggested to be involved in intracellular Ca2+ increase in immunocytes and pancreatic β-cells. To clarify the involvement of TRPM2 in insulin secretion, we analyzed TRPM2 knockout (TRPM2-KO) mice. RESEARCH DESIGN AND METHODS Oral and intraperitoneal glucose tolerance tests (OGTT and IPGTT) were performed in TRPM2-KO and wild-type mice. We also measured cytosolic free Ca2+ in single pancreatic cells using fura-2 microfluorometry and insulin secretion from pancreatic islets. RESULTS Basal blood glucose levels were higher in TRPM2-KO mice than in wild-type mice without any difference in plasma insulin levels. The OGTT and IPGTT demonstrated that blood glucose levels in TRPM2-KO mice were higher than those in wild-type mice, which was associated with an impairment in insulin secretion. In isolated β-cells, smaller intracellular Ca2+ increase was observed in response to high concentrations of glucose and incretin hormone in TRPM2-KO cells than in wild-type cells. Moreover, insulin secretion from the islets of TRPM2-KO mice in response to glucose and incretin hormone treatment was impaired, whereas the response to tolbutamide, an ATP-sensitive potassium channel inhibitor, was not different between the two groups. CONCLUSIONS These results indicate that TRPM2 is involved in insulin secretion stimulated by glucose and that further potentiated by incretins. Thus, TRPM2 may be a new target for diabetes therapy. PMID:20921208

  6. Effect of mineralocorticoid treatment in mice with collecting duct-specific knockout of endothelin-1.

    PubMed

    Lynch, I Jeanette; Welch, Amanda K; Gumz, Michelle L; Kohan, Donald E; Cain, Brian D; Wingo, Charles S

    2015-12-15

    Aldosterone increases blood pressure (BP) by stimulating sodium (Na) reabsorption within the distal nephron and collecting duct (CD). Aldosterone also stimulates endothelin-1 (ET-1) production that acts within the CD to inhibit Na reabsorption via a negative feedback mechanism. We tested the hypothesis that this renal aldosterone-endothelin feedback system regulates electrolyte balance and BP by comparing the effect of a high-salt (NaCl) diet and mineralocorticoid stimulation in control and CD-specific ET-1 knockout (CD ET-1 KO) mice. Metabolic balance and radiotelemetric BP were measured before and after treatment with desoxycorticosterone pivalate (DOCP) in mice fed a high-salt diet with saline to drink. CD ET-1 KO mice consumed more high-salt diet and saline and had greater urine output than controls. CD ET-1 KO mice exhibited increased BP and greater fluid retention and body weight than controls on a high-salt diet. DOCP with high-salt feeding further increased BP in CD ET-1 KO mice, and by the end of the study the CD ET-1 KO mice were substantially hypernatremic. Unlike controls, CD ET-1 KO mice failed to respond acutely or escape from DOCP treatment. We conclude that local ET-1 production in the CD is required for the appropriate renal response to Na loading and that lack of local ET-1 results in abnormal fluid and electrolyte handling when challenged with a high-salt diet and with DOCP treatment. Additionally, local ET-1 production is necessary, under these experimental conditions, for renal compensation to and escape from the chronic effects of mineralocorticoids. PMID:26400543

  7. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    PubMed

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  8. Attenuated cardiovascular hypertrophy and oxidant generation in response to angiotensin II infusion in glutaredoxin-1 knockout mice

    PubMed Central

    Bachschmid, Markus M.; Xu, Shanqin; Maitland-Toolan, Karlene A.; Ho, Ye-Shih; Cohen, Richard A.; Matsui, Reiko

    2010-01-01

    Glutaredoxin-1 (Glrx) is a thioltransferase that regulates protein S-glutathiolation. To elucidate the role of endogenous Glrx in cardiovascular disease, Glrx knockout (KO) mice were infused with angiotensin II (Ang II) for 6 days. After Ang II infusion, body weight and blood pressure were similar between WT and Glrx KO mice. However, compared to WT mice, Glrx KO mice demonstrated (1) less cardiac and aortic medial hypertrophy, (2) less oxidant generation in aorta assessed by dihydroethidium staining and nitrotyrosine, (3) decreased phosphorylation of Akt in the heart, and (4) less expression of inducible NOS (iNOS) in aorta and heart. In cultured embryonic fibroblasts from Glrx KO mice, S-glutathiolation of actin was enhanced and actin depolymerization was impaired after hydrogen peroxide stimulation compared with WT cells. Furthermore, oxidant generation in phorbol ester-stimulated fibroblasts and RAW 264.7 macrophage-like cells was lower with Glrx siRNA knockdown. These data indicate that Ang II-induced oxidant production and hypertrophic responses were attenuated in Glrx KO mice, which may result from impaired NADPH oxidase activation. PMID:20638471

  9. Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders

    PubMed Central

    2014-01-01

    Background We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system. Results Neurogenesis in the subgranular zone of dentate gyrus was increased in BRINP1-KO mice creating a more immature neuronal population in granule cell layer. The number of parvalbumin expressing interneuron in hippocampal CA1 subregion was also increased in BRINP1-KO mice. Furthermore, BRINP1-KO mice showed abnormal behaviors with increase in locomotor activity, reduced anxiety-like behavior, poor social interaction, and slight impairment of working memory, all of which resemble symptoms of human psychiatric disorders such as schizophrenia and attention–deficit/hyperactivity disorder (ADHD). Conclusions Absence of BRINP1 causes deregulation of neurogenesis and impairments of neuronal differentiation in adult hippocampal circuitry. Abnormal behaviors comparable to those of human psychiatric disorders such as hyperactivity and poor social behavior were observed in BRINP1-KO mice. These abnormal behaviors could be caused by alteration of hippocampal circuitry as a consequence of the lack of BRINP1. PMID:24528488

  10. ERα in Tac2 Neurons Regulates Puberty Onset in Female Mice.

    PubMed

    Greenwald-Yarnell, Megan L; Marsh, Courtney; Allison, Margaret B; Patterson, Christa M; Kasper, Chelsea; MacKenzie, Alexander; Cravo, Roberta; Elias, Carol F; Moenter, Suzanne M; Myers, Martin G

    2016-04-01

    A variety of data suggest that estrogen action on kisspeptin (Kiss1)-containing arcuate nucleus neurons (which coexpress Kiss1, neurokinin B (the product of Tac2) and dynorphin (KNDy) neurons restrains reproductive onset and function, but roles for estrogen action in these Kiss1 neurons relative to a distinct population of rostral hypothalamic Kiss1 neurons (which does not express Tac2 or dynorphin) have not been directly tested. To test the role for estrogen receptor (ER)α in KNDy cells, we thus generated Tac2(Cre) and Kiss1(Cre) knock-in mice and bred them onto the Esr1(flox) background to ablate ERα specifically in Tac2-expressing cells (ERα(Tac2)KO mice) or all Kiss1 cells (ERα(Kiss1)KO mice), respectively. Most ERα-expressing Tac2 neurons represent KNDy cells. Arcuate nucleus Kiss1 expression was elevated in ERα(Tac2)KO and ERα(Kiss1)KO females independent of gonadal hormones, whereas rostral hypothalamic Kiss1 expression was normal in ERα(Tac2)KO but decreased in ERα(Kiss1)KO females; this suggests that ERα in rostral Kiss1 cells is crucial for control of Kiss1 expression in these cells. Both ERα(Kiss1)KO and ERα(Tac2)KO females displayed early vaginal opening, early and persistent vaginal cornification, increased gonadotropins, uterine hypertrophy, and other evidence of estrogen excess. Thus, deletion of ERα in Tac2 neurons suffices to drive precocious gonadal hyperstimulation, demonstrating that ERα in Tac2 neurons typically restrains pubertal onset and hypothalamic reproductive drive.

  11. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1.

    PubMed

    Tanner, Colby B; Madsen, Steven R; Hallowell, David M; Goring, Darren M J; Moore, Timothy M; Hardman, Shalene E; Heninger, Megan R; Atwood, Daniel R; Thomson, David M

    2013-10-15

    LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training.

  12. Heavy metal characteristics in Kočani Field soil-plant system (Republic of Macedonia)

    NASA Astrophysics Data System (ADS)

    Rogan Šmuc, Nastja; Dolenec, Tadej; Serafimovski, Todor; Tasev, Goran; Dolenec, Matej; Komar, Darja; Vrhovnik, Petra

    2014-05-01

    Contamination of soils with heavy metals is globally widespread and induces a long-term risk to ecosystem health. This research focuses on the heavy metal contamination, transfer values and health risk assessment in the Kočani Field soil-plant system (Republic of Macedonia). To identify the heavy metal concentrations in Kočani soils and crops (rice and maize) the geochemical analysis were performed by inductive coupled plasma mass spectrometer (ICP-MS), thereupon the transfer factor (TF) and estimated daily intake amount (EDIA) values in Kočani crops were calculated. Heavy metal contamination status of Kočani soils was also assessed by using sequential extraction procedure and by several environmental indexes: geoaccumulation index, contamination factor and contamination degree. The detected total concentrations of As, Cu, Cd, Pb and Zn in soil samples were highly above the threshold values considered to be phytotoxically excessive for the surface soils. The results of the applied indexes confirmed a very high contamination status for Kočani soils. According to the sum of the water soluble (1) and exchangeable (2) fractions for Ag, As, Cd, Cu, Mo, Ni, Pb, Sb and Zn measured in the soils, the mobility and bioavailability potential of the heavy metals studied declined in the following order: Cd > Mo > Sb > Zn > Cu > As > Pb > Ni > Ag. The highest As, Cd, Mo, Pb and Zn values were determined in the rice samples grown in the paddy fields near the Zletovska River. The highest Pb and Mo concentrations measured in the maize samples were from the maize fields near the Zletovska River and Ciflik city. High transfer factor values for Mo, Zn, Cd and Cu revealed a strong accumulation of Mo, Zn and Cd by rice and Mo and Zn by maize crops. The results of the estimated dialy intake showed that the regular consumption of rice and maize crops containing the highest Cd, Mo, Pb and Zn concentrations could pose a serious threat to human health, because the daily intake of Cd, Mo

  13. Mineralogy, petrography, geochemistry, and classification of the Košice meteorite

    NASA Astrophysics Data System (ADS)

    OzdíN, Daniel; PlavčAn, Jozef; HoråáčKová, Michaela; Uher, Pavel; PorubčAn, VladimíR.; Veis, Pavel; Rakovský, Jozef; Tóth, Juraj; KonečNý, Patrik; Svoreå, JáN.

    2015-05-01

    The Košice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Košice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan-like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black-gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe-Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase-like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Košice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Košice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Košice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron-microprobe analysis (EMPA) with focused and defocused electron beam, whole-rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration-free laser induced breakdown spectroscopy (CF-LIBS) were used to characterize the Košice fragments. The results provide further evidence that whole-rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF-LIBS), but only major and minor elements can be evaluated due to the

  14. Peroxynitrite reduces the endothelium-derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1-knockout mice.

    PubMed

    Liu, Yanping; Bubolz, Aaron H; Shi, Yang; Newman, Peter J; Newman, Debra K; Gutterman, David D

    2006-01-01

    Platelet endothelial cell adhesion molecule 1 (PECAM-1) is capable of transducing signals in endothelial cells exposed to shear; however, the biological consequences of this signal transduction are unknown. Because shear stress elicits flow-mediated dilation (FMD), we examined whether steady-state FMD in mouse coronary arteries (MCAs) is affected in the PECAM-1 knockout (KO) mouse. MCAs were isolated from wild-type (WT) or KO mice and prepared for videomicroscopy, histofluorescence, Western blotting, and immunohistochemistry. FMD was examined in the absence and presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) and l-NAME+indomethacin (INDO). FMD was reduced in KO relative to WT MCAs, but the l-NAME-inhibitable portion of FMD was similar between the two. The INDO-sensitive component of FMD was diminished in KO MCAs. In contrast, the residual component of dilation, presumably because of endothelium-derived hyperpolarizing factor (EDHF), was abolished in KO MCAs. Histofluorescence showed relatively more superoxide (O2-.; oxy-ethidium fluorescence) and peroxide production (dihydrochlorofluorescene fluoresecence) in KO MCAs at rest. Flow augmented O2-. and peroxide production in WT MCAs but had little effect on KO MCAs. Enhanced nitric oxide generation was observed in arteries from KO mice, accompanied with increased eNOS S1177 phosphorylation. In vessels from KO mice, treatment with ebselen decreased peroxynitrite (ONOO-) formation and improved the reduced FMD, largely due to restoration of the presumed EDHF component. These results suggest that PECAM-1 is necessary for normal FMD in the mouse coronary circulation. In the absence of this adhesion and signaling molecule, ONOO- production is increased concomitant with a reduction in both the EDHF and INDO-sensitive components of FMD. PMID:16166207

  15. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    SciTech Connect

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; LeCluyse, Edward L.; Budinsky, Robert A.; Rowlands, J. Craig; Thomas, Russell S.

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  16. Beta-Catenin Haplo Insufficient Male Mice Do Not Lose Bone in Response to Hindlimb Unloading.

    PubMed

    Maurel, Delphine B; Duan, Peipei; Farr, Joshua; Cheng, An-Lin; Johnson, Mark L; Bonewald, Lynda F

    2016-01-01

    As the β-catenin pathway has been shown to be involved in mechanotransduction, we sought to determine if haploinsufficiency would affect skeletal response to unloading. It has previously been shown that deletion of both alleles of β-catenin in bone cells results in a fragile skeleton highly susceptible to fracture, but deletion of one allele using Dmp1-Cre (Ctnnb1+/loxP; Dmp1-Cre, cKO HET) has little effect on the 2 mo old skeleton. We found that under normal housing conditions, trabecular bone volume was significantly less in 5 mo old male cKO HET mice compared to controls (Ctrl/HET:Tb. BV/TV = 13.96±2.71/8.92±0.95%, Tb.N. = 4.88±0.51/3.95±0.44/mm, Tb. Sp. = 0.20±0.02/0.26±0.03mm, a 36%, 19% and 30% change respectively) but not in females suggesting an age and gender related effect. Before performing suspension experiments and to control for the environmental effects, animals with the same tail attachment and housing conditions, but not suspended (NS), were compared to normally housed (NH) animals. Attachment and housing resulted in weight loss in both genders and phenotypes. Cortical bone loss was observed in the cKO HET males (NH/NS, Ct BV/TV: 90.45±0.72/89.12±0.56%) and both diaphyseal (0.19±0.01/0.17±0.01mm) and metaphyseal (0.10±0.01/0.08±0.01mm) thickness, but not in female cKO HET mice suggesting that male cKO HET mice are susceptible to attachment and housing conditions. These results with transgenic mice emphasizes the importance of proper controls when attributing skeletal responses to unloading. With suspension, cKO HET male mice did not lose bone unlike female cKO HET mice that had greater trabecular bone loss than controls (Ctrl 9%:cKO HET 21% decrease Tb. N; Ctrl 12%:cKO HET 27% increase Tb. Sp.). Suspended and non-suspended mice lost weight compared to normally housed animals. Taken together, the data suggest a protective effect of β-catenin against the effects of stress in males and partial protection against unloading in females

  17. Beta-Catenin Haplo Insufficient Male Mice Do Not Lose Bone in Response to Hindlimb Unloading

    PubMed Central

    Farr, Joshua; Cheng, An-Lin; Johnson, Mark L.; Bonewald, Lynda F.

    2016-01-01

    As the β-catenin pathway has been shown to be involved in mechanotransduction, we sought to determine if haploinsufficiency would affect skeletal response to unloading. It has previously been shown that deletion of both alleles of β-catenin in bone cells results in a fragile skeleton highly susceptible to fracture, but deletion of one allele using Dmp1-Cre (Ctnnb1+/loxP; Dmp1-Cre, cKO HET) has little effect on the 2 mo old skeleton. We found that under normal housing conditions, trabecular bone volume was significantly less in 5 mo old male cKO HET mice compared to controls (Ctrl/HET:Tb. BV/TV = 13.96±2.71/8.92±0.95%, Tb.N. = 4.88±0.51/3.95±0.44/mm, Tb. Sp. = 0.20±0.02/0.26±0.03mm, a 36%, 19% and 30% change respectively) but not in females suggesting an age and gender related effect. Before performing suspension experiments and to control for the environmental effects, animals with the same tail attachment and housing conditions, but not suspended (NS), were compared to normally housed (NH) animals. Attachment and housing resulted in weight loss in both genders and phenotypes. Cortical bone loss was observed in the cKO HET males (NH/NS, Ct BV/TV: 90.45±0.72/89.12±0.56%) and both diaphyseal (0.19±0.01/0.17±0.01mm) and metaphyseal (0.10±0.01/0.08±0.01mm) thickness, but not in female cKO HET mice suggesting that male cKO HET mice are susceptible to attachment and housing conditions. These results with transgenic mice emphasizes the importance of proper controls when attributing skeletal responses to unloading. With suspension, cKO HET male mice did not lose bone unlike female cKO HET mice that had greater trabecular bone loss than controls (Ctrl 9%:cKO HET 21% decrease Tb. N; Ctrl 12%:cKO HET 27% increase Tb. Sp.). Suspended and non-suspended mice lost weight compared to normally housed animals. Taken together, the data suggest a protective effect of β-catenin against the effects of stress in males and partial protection against unloading in females

  18. Suppression of experimental autoimmune myasthenia gravis in IL-10 gene-disrupted mice is associated with reduced B cells and serum cytotoxicity on mouse cell line expressing AChR.

    PubMed

    Poussin, M A; Goluszko, E; Hughes, T K; Duchicella, S I; Christadoss, P

    2000-11-01

    To analyze the role of interleukin-10 (IL-10) in experimental autoimmune myasthenia gravis (EAMG) pathogenesis, we induced clinical EAMG in C57BL/6 and IL-10 gene-knockout (KO) mice. IL-10 KO mice had a lower incidence and severity of EAMG, with less muscle acetylcholine receptor (AChR) loss. AChR-immunized IL-10 KO mice showed a significantly higher AChR-specific proliferative response, altered cytokine response, lower number of class II-positive cells and B-cells, but a greater CD5(+)CD19(+) population than C57BL/6 mice. The lower clinical incidence in IL-10 KO could be explained not by a reduction of the quantity, but by a possible difference in the pathogenicity of anti-AChR antibodies.

  19. Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator

    PubMed Central

    Deschemin, Jean-Christophe; Allouche, Sarah; Brouillard, Franck; Vaulont, Sophie

    2015-01-01

    Background Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Patients with CF suffer from chronic infections and severe inflammation, which lead to progressive pulmonary and gut diseases. Recently, an expanding body of evidence has suggested that iron homeostasis was abnormal in CF with, in particular, systemic iron deficiency and iron sequestration in the epithelium airway. The molecular mechanisms responsible for iron dysregulation and the relationship with inflammation in CF are unknown. Methods and Results We assessed the impact of CFTR deficiency on systemic and tissue iron homeostasis as well as inflammation in wildtype and CFTR knockout (KO) mice. First, in contrast to the systemic and intestinal inflammation we observed in the CFTR KO mice, we reported the absence of lung phenotype with regards to both inflammation and iron status. Second, we showed a significant decrease of plasma ferritin levels in the KO mice, as in CF patients, likely caused by a decrease in spleen ferritin levels. However, we measured unchanged plasma iron levels in the KO mice that may be explained by increased intestinal iron absorption. Conclusion These results indicate that in CF, the lung do not predominantly contributes to the systemic ferritin deficiency and we propose the spleen as the major organ responsible for hypoferritinemia in the KO mouse. These results should provide a better understanding of iron dysregulation in CF patients where treating or not iron deficiency remains a challenging question. PMID:26709821

  20. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background.

    PubMed

    Ding, Qi; Sethna, Ferzin; Wang, Hongbing

    2014-09-01

    Fragile X syndrome (FXS) is a monogenic disease caused by mutations in the FMR1 gene. The Fmr1 knockout (KO) mice show many aspects of FXS-related phenotypes, and have been used as a major pre-clinical model for FXS. Although FXS occurs in both male and female patients, most studies on the mouse model use male animals. Few studies test whether gender affects the face validity of the mouse model. Here, we examined multiple behavioral phenotypes with male hemizygous and female homozygous Fmr1 KO mice on C57BL/6 background. For each behavioral paradigm, we examined multiple cohorts from different litters. We found that both male and female Fmr1 KO mice displayed significant audiogenic seizures, hyperactivity in the open field test, deficits in passive avoidance and contextual fear memory, and significant enhancement of PPI at low stimulus intensity. Male and female Fmr1 KO mice also showed more transitional movement between the lit and dark chambers in the light-dark tests. The lack of gender effects suggests that the Fmr1 KO mouse is a reasonable tool to test the efficacy of potential FXS therapies.

  1. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice.

    PubMed

    Qiu, Guozhen; Chen, Shengqiang; Guo, Jialing; Wu, Jie; Yi, Yong-Hong

    2016-10-01

    Hyperactivity is a symptom found in several neurological and psychiatric disorders, including Fragile X syndrome (FXS). The animal model of FXS, fragile X mental retardation gene (Fmr1) knockout (KO) mouse, exhibits robust locomotor hyperactivity. Alpha (α)-asarone, a major bioactive component isolated from Acorus gramineus, has been shown in previous studies to improve various disease conditions including central nervous system disorders. In this study, we show that treatment with α-asarone alleviates locomotor hyperactivity in Fmr1 KO mice. To elucidate the mechanism underlying this improvement, we evaluated the expressions of various cholinergic markers, as well as acetylcholinesterase (AChE) activity and acetylcholine (ACh) levels, in the striatum of Fmr1 KO mice. We also analyzed the AChE-inhibitory activity of α-asarone. Striatal samples from Fmr1 KO mice showed decreased m1 muscarinic acetylcholine receptor (m1 mAChR) expression, increased AChE activity, and reduced ACh levels. Treatment with α-asarone improved m1 mAChR expression and ACh levels, and attenuated the increased AChE activity. In addition, α-asarone dose-dependently inhibited AChE activity in vitro. These results indicate that direct inhibition of AChE activity and up-regulation of m1 mAChR expression in the striatum might contribute to the beneficial effects of α-asarone on locomotor hyperactivity in Fmr1 KO mice. These findings might improve understanding of the neurobiological mechanisms responsible for locomotor hyperactivity.

  2. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice.

    PubMed

    Mikolajczak, Sebastian A; Vaughan, Ashley M; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E; Adams, John H; Sattabongkot, Jetsumon; Prachumsri, Jetsumon; Kappe, Stefan H I

    2015-04-01

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites-hypnozoites. The lack of tractable P. vivax animal models constitutes an obstacle in examining P. vivax liver stage infection and drug efficacy. To overcome this obstacle, we have used human liver-chimeric (huHep) FRG KO mice as a model for P. vivax infection. FRG KO huHep mice support P. vivax sporozoite infection, liver stage development, and hypnozoite formation. We show complete P. vivax liver stage development, including maturation into infectious exo-erythrocytic merozoites as well as the formation and persistence of hypnozoites. Prophylaxis or treatment with the antimalarial primaquine can prevent and eliminate liver stage infection, respectively. Thus, P. vivax-infected FRG KO huHep mice are a model to investigate liver stage development and dormancy and may facilitate the discovery of drugs targeting relapsing malaria.

  3. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    PubMed

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. PMID:21640583

  4. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  5. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states. PMID:23233542

  6. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.; Wentz, Anna E.; André d'Avignon, D.

    2013-01-01

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1+/− mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states. PMID:23233542

  7. Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies.

    PubMed

    Ramm, Robert; Niemann, Heiner; Petersen, Björn; Haverich, Axel; Hilfiker, Andres

    2016-07-01

    Pre-clinical and clinical data have unequivocally demonstrated the usefulness of decellularized heart valve (HV) matrices implanted for HV replacement therapy. However, human donor valves applicable for decellularization are in short supply, which prompts the search for suitable alternatives, such as porcine grafts. Since decellularization might be insufficient to remove all xenoantigens, we analysed the interaction of human preformed antibodies with decellularized porcine HV in vitro to assess potential immune reactions upon implantation. Detergent-decellularized pulmonary HV from German Landrace wild-type (wt) or α1,3-galactosyltransferase knockout (GGTA1-KO) pigs were investigated by inhibition ELISA and GSL I-B4 staining to localize and quantify matrix-bound αGal epitopes, which represent the most prominent xenoantigen. Additionally, preformed human xenoantibodies were affinity purified by perfusing porcine kidneys. Binding of purified human antibodies to decellularized HV was investigated by inhibition ELISA. Furthermore, binding of human plasma proteins to decellularized matrices was determined by western blot. Decellularized human pulmonary artery served as controls. Decellularization of wt HV led to a reduction of αGal epitopes by 70 %. Residual epitopes were associated with the subendothelial extracellular matrix. As expected, no αGal epitopes were found on decellularized GGTA1-KO matrix. The strongest binding of preformed human anti-pig antibodies was found on wt matrices, whereas GGTA1-KO matrices bound similar or even fewer xenoantibodies than human controls. These results demonstrate the suitability of GGTA1-KO pigs as donors for decellularized heart valves for human patients. Besides the presence of αGal antibodies on decellularized heart valves, no further preformed xenoantibodies against porcine matrix were detected in tested human sera.

  8. Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies.

    PubMed

    Ramm, Robert; Niemann, Heiner; Petersen, Björn; Haverich, Axel; Hilfiker, Andres

    2016-07-01

    Pre-clinical and clinical data have unequivocally demonstrated the usefulness of decellularized heart valve (HV) matrices implanted for HV replacement therapy. However, human donor valves applicable for decellularization are in short supply, which prompts the search for suitable alternatives, such as porcine grafts. Since decellularization might be insufficient to remove all xenoantigens, we analysed the interaction of human preformed antibodies with decellularized porcine HV in vitro to assess potential immune reactions upon implantation. Detergent-decellularized pulmonary HV from German Landrace wild-type (wt) or α1,3-galactosyltransferase knockout (GGTA1-KO) pigs were investigated by inhibition ELISA and GSL I-B4 staining to localize and quantify matrix-bound αGal epitopes, which represent the most prominent xenoantigen. Additionally, preformed human xenoantibodies were affinity purified by perfusing porcine kidneys. Binding of purified human antibodies to decellularized HV was investigated by inhibition ELISA. Furthermore, binding of human plasma proteins to decellularized matrices was determined by western blot. Decellularized human pulmonary artery served as controls. Decellularization of wt HV led to a reduction of αGal epitopes by 70 %. Residual epitopes were associated with the subendothelial extracellular matrix. As expected, no αGal epitopes were found on decellularized GGTA1-KO matrix. The strongest binding of preformed human anti-pig antibodies was found on wt matrices, whereas GGTA1-KO matrices bound similar or even fewer xenoantibodies than human controls. These results demonstrate the suitability of GGTA1-KO pigs as donors for decellularized heart valves for human patients. Besides the presence of αGal antibodies on decellularized heart valves, no further preformed xenoantibodies against porcine matrix were detected in tested human sera. PMID:27154491

  9. Effects of Deletion of ERα in Osteoblast-Lineage Cells on Bone Mass and Adaptation to Mechanical Loading Differ in Female and Male Mice.

    PubMed

    Melville, Katherine M; Kelly, Natalie H; Surita, Gina; Buchalter, Daniel B; Schimenti, John C; Main, Russell P; Ross, F Patrick; van der Meulen, Marjolein C H

    2015-08-01

    Estrogen receptor alpha (ERα) has been implicated in bone's response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed-background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell-specific ERαKO mice. Therefore, we crossed ERα floxed (ERα(fl/fl)) and osteocalcin-Cre (OC-Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO) and littermate controls (LC). At 10 weeks of age, the left tibia was loaded in vivo for 2 weeks. We analyzed bone mass through micro-CT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared with LC, female pOC-ERαKO mice had decreased cortical and cancellous bone mass, whereas male pOC-ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC-ERαKO female L(5) vertebrae and with increased maximum moment in pOC-ERαKO male femora. Female pOC-ERαKO mice responded more to mechanical loading, whereas the response of pOC-ERαKO male animals was similar to their littermate controls. PMID:25707500

  10. Effects of deletion of ER-alpha in osteoblast-lineage cells on bone mass and adaptation to mechanical loading differs in female and male mice

    PubMed Central

    Melville, Katherine M.; Kelly, Natalie H.; Surita, Gina; Buchalter, Daniel B.; Schimenti, John C.; Main, Russell P.; Ross, F. Patrick; van der Meulen, Marjolein C. H.

    2015-01-01

    Estrogen receptor alpha (ERα) has been implicated in bone’s response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell-specific ERαKO mice. Therefore, we crossed ERα floxed (ERαfl/fl) and osteocalcin-Cre (OC-Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO) and littermate controls (LC). At 10 weeks of age the left tibia was loaded in vivo for two weeks. We analyzed bone mass through microCT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared to LC, female pOC-ERαKO mice had decreased cortical and cancellous bone mass, while male pOC-ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC-ERαKO female L5 vertebrae, and with increased maximum moment in pOC-ERαKO male femora. Female pOC-ERαKO mice responded more to mechanical loading, while the response of pOC-ERαKO male animals was similar to their littermate controls. PMID:25707500

  11. Kdo hydroxylase is an inner core assembly enzyme in the Ko-containing lipopolysaccharide biosynthesis

    PubMed Central

    Chung, Hak Suk; Yang, Eun Gyeong; Hwang, Dohyeon; Lee, Ji Eun; Guan, Ziqiang; Raetz, Christian R.H.

    2014-01-01

    The lipopolysaccharide (LPS) isolated from certain important Gram-negative pathogens including a human pathogen Yersinia pestis and opportunistic pathogens Burkholderia mallei and Burkholderia pseudomallei contains D-glycero-D-talo-oct-2-ulosonic acid (Ko), an isosteric analog of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Kdo 3-hydroxylase (KdoO), a Fe2+/α-KG/O2 dependent dioxygenase from Burkholderia ambifaria and Yersinia pestis is responsible for Ko formation with Kdo2-lipid A as a substrate, but in which stage KdoO functions during the LPS biosynthesis has not been established. Here we purify KdoO from B. ambifaria (BaKdoO) to homogeneity for the first time and characterize its substrates. BaKdoO utilizes Kdo2-lipid IVA or Kdo2-lipid A as a substrate, but not Kdo-lipid IVA in vivo as well as in vitro and Kdo-(Hep)kdo-lipid A in vitro. These data suggest that KdoO is an inner core assembly enzyme that functions after the Kdo-transferase KdtA but before the heptosyl-transferase WaaC enzyme during the Ko-containing LPS biosynthesis. PMID:25204504

  12. Elementary model of severe plastic deformation by KoBo process

    SciTech Connect

    Gusak, A.; Storozhuk, N.; Danielewski, M. Korbel, A.; Bochniak, M.

    2014-01-21

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In this very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.

  13. Kdo hydroxylase is an inner core assembly enzyme in the Ko-containing lipopolysaccharide biosynthesis.

    PubMed

    Chung, Hak Suk; Yang, Eun Gyeong; Hwang, Dohyeon; Lee, Ji Eun; Guan, Ziqiang; Raetz, Christian R H

    2014-09-26

    The lipopolysaccharide (LPS) isolated from certain important Gram-negative pathogens including a human pathogen Yersinia pestis and opportunistic pathogens Burkholderia mallei and Burkholderia pseudomallei contains d-glycero-d-talo-oct-2-ulosonic acid (Ko), an isosteric analog of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo). Kdo 3-hydroxylase (KdoO), a Fe(2+)/α-KG/O2 dependent dioxygenase from Burkholderia ambifaria and Yersinia pestis is responsible for Ko formation with Kdo2-lipid A as a substrate, but in which stage KdoO functions during the LPS biosynthesis has not been established. Here we purify KdoO from B. ambifaria (BaKdoO) to homogeneity for the first time and characterize its substrates. BaKdoO utilizes Kdo2-lipid IVA or Kdo2-lipid A as a substrate, but not Kdo-lipid IVAin vivo as well as in vitro and Kdo-(Hep)kdo-lipid A in vitro. These data suggest that KdoO is an inner core assembly enzyme that functions after the Kdo-transferase KdtA but before the heptosyl-transferase WaaC enzyme during the Ko-containing LPS biosynthesis. PMID:25204504

  14. Elementary model of severe plastic deformation by KoBo process

    NASA Astrophysics Data System (ADS)

    Gusak, A.; Danielewski, M.; Korbel, A.; Bochniak, M.; Storozhuk, N.

    2014-01-01

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In this very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.

  15. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs.

    PubMed

    Burlak, C; Paris, L L; Lutz, A J; Sidner, R A; Estrada, J; Li, P; Tector, M; Tector, A J

    2014-08-01

    Xenotransplantation using genetically modified pig organs could solve the donor organ shortage problem. Two inactivated genes that make humans unique from pigs are GGTA1 and CMAH, the products of which produce the carbohydrate epitopes, aGal and Neu5Gc that attract preformed human antibody. When the GGTA1 and CMAH genes were deleted in pigs, human antibody binding was reduced in preliminary analysis. We analyzed the binding of human IgM and IgG from 121 healthy human serum samples for binding to GGTA1 KO and GGTA1/CMAH KO peripheral blood mononuclear cells (PBMCs). We analyzed a sub population for reactivity toward genetically modified pig PBMCs as compared to chimpanzee and human PBMCs. Deletion of the GGTA1 and CMAH genes in pigs improved the crossmatch results beyond those observed with chimpanzees. Sorting the 121 human samples tested against the GGTA1/CMAH KO pig PBMCs did not reveal a distinguishing feature such as blood group, age or gender. Modification of genes to make pig carbohydrates more similar to humans has improved the crossmatch with human serum significantly.

  16. Impact of growth hormone resistance on female reproductive function: new insights from growth hormone receptor knockout mice.

    PubMed

    Zaczek, Denise; Hammond, James; Suen, Lii; Wandji, Serge; Service, Darlene; Bartke, Andrzej; Chandrashekar, Varadaraj; Coschigano, Karen; Kopchick, John

    2002-10-01

    We examined multiple aspects of reproductive function in growth hormone receptor gene knockout (GHR-KO) and normal mice to clarify the role of growth hormone in female reproduction. In adult animals, estrous cycle duration was comparable in all mice housed individually but was significantly longer in group-housed GHR-KO females. Histological evaluation of ovaries of adult females at estrus showed that the numbers of preovulatory follicles and corpora lutea were significantly reduced in GHR-KO mice, as was the plasma estradiol level. The number of atretic preovulatory follicles was reduced in GHR gene-ablated animals. Although reverse transcription polymerase chain reaction analysis revealed reduced ovarian insulin-like growth factor I (IGF-I) mRNA expression in GHR-KO females, the expression of several steroidogenic enzyme mRNAs did not differ between groups. The numbers of active corpora lutea and uterine implantation sites were reduced in GHR-KO females at Day 7 of gestation. When young females were mated to normal males, latency to first mating and age of the female at first mating were significantly delayed in GHR-KO females, but maternal age at first conception was similar between groups. Significantly fewer virgin GHR-KO females exhibited pseudopregnancies when initially placed with vasectomized normal males than did normal female counterparts. Growth hormone resistance and IGF-I insufficiency negatively impacted 1) follicular development/ovulation rate, 2) sexual maturation, 3) production of and responsiveness to pheromonal signals, and 4) the ability of virgin females to respond to coitus by activation of luteal function. Although GHR-KO female mice are fertile, they exhibit quantitative deficits in various parameters of reproductive function.

  17. Arginase II Deletion Increases Corpora Cavernosa Relaxation in Diabetic Mice

    PubMed Central

    Toque, Haroldo; Tostes, Rita; Yao, Lin; Xu, Zhimin; Webb, Clinton R.; Caldwell, Ruth; Caldwell, Robert

    2010-01-01

    Introduction Diabetes-induced erectile dysfunction involves elevated arginase (Arg) activity and expression. Because nitric oxide (NO) synthase and Arg share and compete for their substrate L-arginine, NO production is likely linked to regulation of Arg. Arg is highly expressed and implicated in erectile dysfunction. Aim It was hypothesized that Arg-II isoform deletion enhances relaxation function of corpora cavernosal (CC) smooth muscle in a streptozotocin (STZ) diabetic model. Methods Eight weeks after STZ-induced diabetes, vascular functional studies, Arg activity assay, and protein expression levels of Arg and constitutive NOS (using western blots) were assessed in CC tissues from non-diabetic wild type (WT), diabetic (D) WT (WT+D), Arg-II knockout (KO) and Arg-II KO+D mice (N=8–10 per group). Main Outcome Measures Inhibition or lack of arginase results in facilitation of CC relaxation in diabetic CC. Results Strips of CC from Arg-II KO mice exhibited an enhanced maximum endothelium-dependent relaxation (from 70+3% to 84+4%) and increased nitrergic relaxation (by 55%, 71%, 42%, 42%, and 24% for 1, 2, 4, 8 and 16 Hz, respectively) compared to WT mice. WT+D mice showed a significant reduction of endothelium-dependent maximum relaxation (44+8%), but this impairment of relaxation was significantly prevented in Arg-II KO+D mice (69+4%). Sympathetic-mediated and alpha-adrenergic agent-induced contractile responses also were increased in CC strips from D compared to non-D controls. Contractile responses were significantly lower in Arg-II KO control and D versus the WT groups. WT+D mice increased Arg activity (1.5-fold) and Arg-II protein expression and decreased total and phospho-eNOS at Ser-1177, and nNOS levels. These alterations were not seen in Arg-II KO mice. Additionally, the Arg inhibitor BEC (50 μM) enhanced nitrergic and endothelium-dependent relaxation in CC of WT+D mice. Conclusion These studies show for the first time that Arg-II deletion improves CC

  18. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    PubMed

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses.

  19. Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes

    PubMed Central

    2014-01-01

    Background We previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved. Results We generated mGluR3 knockout (KO) mice and conducted comprehensive behavioral analyses. KO mice showed hyperactivity in the open field, light/dark transition, and 24-hour home cage monitoring tests, impaired reference memory for stressful events in the Porsolt forced swim test, impaired contextual memory in cued and contextual fear conditioning test, and impaired working memory in the T-Maze forced alternation task test. Hyperactivity and impaired working memory are known as endophenotypes of schizophrenia. We examined long-term synaptic plasticity by assessing long-term potentiation (LTP) in the CA1 region in the hippocampi of KO and wild-type (WT) mice. We observed no differences in the amplitude of LTP between the two genotypes, suggesting that mGluR3 is not essential for LTP in the CA1 region of the mouse hippocampus. As hyperactivity is typically associated with increased dopaminergic transmission, we performed in vivo microdialysis measurements of extracellular dopamine in the nucleus accumbens of KO and WT mice. We observed enhancements in the methamphetamine (MAP)-induced release of dopamine in KO mice. Conclusions These results demonstrate that a disturbance in the glutamate-dopamine interaction may be involved in the pathophysiology of schizophrenia-like behavior, such as hyperactivity in mGluR3 KO mice. PMID:24758191

  20. Elevation of Endogenous Anandamide Impairs LTP, Learning and Memory through CB1 Receptor Signaling in Mice

    PubMed Central

    Basavarajappa, Balapal S.; Nagre, Nagaraja N.; Xie, Shan; Subbanna, Shivakumar

    2014-01-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. PMID:24648181

  1. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice

    SciTech Connect

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi; Guo Xiaoxuan; Hawgood, Samuel; Phelps, David S.; Floros, Joanna . E-mail: jfloros@psu.edu

    2007-04-01

    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure.

  2. Naphthalene cytotoxicity in microsomal epoxide hydrolase deficient mice.

    PubMed

    Carratt, S A; Morin, D; Buckpitt, A R; Edwards, P C; Van Winkle, L S

    2016-03-30

    Naphthalene (NA) is a ubiquitous pollutant to which humans are widely exposed. 1,2-Dihydro-1,2-dihydroxynaphthalene (NA-dihydrodiol) is a major metabolite of NA generated by microsomal epoxide hydrolase (mEH). To investigate the role of the NA-dihydrodiol and subsequent metabolites (i.e. 1,2-naphthoquinone) in cytotoxicity, we exposed both male and female wild type (WT) and mEH null mice (KO) to NA by inhalation (5, 10, 20 ppm for 4h). NA-dihydrodiol was ablated in the KO mice. High-resolution histopathology was used to study site-specific cytotoxicity, and formation of naphthalene metabolites was measured by HPLC in microdissected airways. Swollen and vacuolated airway epithelial cells were observed in the intra- and extrapulmonary airways of all mice at and below the current OSHA standard (10 ppm). Female mice may be more susceptible to this acute cytotoxicity. In the extrapulmonary airways, WT mice were more susceptible to damage than KO mice, indicating that the metabolites associated with mEH-mediated metabolism could be partially responsible for cytotoxicity at this site. The level of cytotoxicity in the mEH KO mice at all airway levels suggests that non-mEH metabolites are contributing to NA cellular damage in the lung. Our results indicate that the apparent contribution of mEH-dependent metabolites to toxicity differs by location in the lung. These studies suggest that metabolites generated through the mEH pathway may be of minor importance in distal airway toxicity and subsequent carcinogenesis from NA exposure.

  3. Premature aging in vitamin D receptor mutant mice.

    PubMed

    Keisala, Tiina; Minasyan, Anna; Lou, Yan-Ru; Zou, Jing; Kalueff, Allan V; Pyykkö, Ilmari; Tuohimaa, Pentti

    2009-07-01

    Hypervitaminosis vitamin D(3) has been recently implicated in premature aging through the regulation of 1alpha hydroxylase expression by klotho and fibroblast growth factor-23 (Fgf-23). Here we examined whether the lack of hormonal function of vitamin D(3) in mice is linked to aging phenomena. For this, we used vitamin D(3) receptor (VDR) "Tokyo" knockout (KO) mice (fed with a special rescue diet) and analyzed their growth, skin and cerebellar morphology, as well as overall motor performance. We also studied the expression of aging-related genes, such as Fgf-23, nuclear factor kappaB (NF-kappaB), p53, insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R), in liver, as well as klotho in liver, kidney and prostate tissues. Overall, VDR KO mice showed several aging related phenotypes, including poorer survival, early alopecia, thickened skin, enlarged sebaceous glands and development of epidermal cysts. There was no difference either in the structure of cerebellum or in the number of Purkinje cells. Unlike the wildtype controls, VDR KO mice lose their ability to swim after 6 months of age. Expression of all the genes was lower in old VDR KO mice, but only NF-kappaB, Fgf-23, p53 and IGF1R were significantly lower. Since the phenotype of aged VDR knockout mice is similar to mouse models with hypervitaminosis D(3), our study suggests that VDR genetic ablation promotes premature aging in mice, and that vitamin D(3) homeostasis regulates physiological aging.

  4. Nepro is localized in the nucleolus and essential for preimplantation development in mice.

    PubMed

    Hashimoto, Masakazu; Sato, Tatsuya; Muroyama, Yuko; Fujimura, Lisa; Hatano, Masahiko; Saito, Tetsuichiro

    2015-09-01

    We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2-cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria-associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus-associated protein, and its loss leads to the apoptosis before blastocyst formation in mice.

  5. Differential effects of krill oil and fish oil on the hepatic transcriptome in mice.

    PubMed

    Burri, Lena; Berge, Kjetil; Wibrand, Karin; Berge, Rolf K; Barger, Jamie L

    2011-01-01

    Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil (FO) or krill oil (KO). We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (KO) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that KO-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from FO modulated fewer pathways than a KO-supplemented diet and did not modulate key metabolic pathways regulated by KO, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, FO upregulated the cholesterol synthesis pathway, which was the opposite effect of krill-supplementation. Neither diet elicited changes in plasma levels of lipids, glucose, or insulin, probably because the mice used in this study were young and were fed a low-fat diet. Further studies of KO-supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects.

  6. Acrolein-induced oxidative stress in NAD(P)H Oxidase Subunit gp91phox knock-out mice and its modulation of NFκB and CD36.

    PubMed

    Yousefipour, Zivar; Zhang, Chelsea; Monfareed, Mahdieh; Walker, James; Newaz, Mohammad

    2013-11-01

    An essential component of NAD(P)H, gp91phox, maintains the functionality of the enzyme in producing oxygen radicals. NAD(P)H oxidase plays an important role in oxidative stress but its precise contribution in acrolein-induced toxicity was not explored. We examined the involvement of NAD(P)H oxidase and other oxidant system in acrolein toxicity using gp91phox knockout mice. Male gp91phox knockout (KO) mice (20-25 gm) or wild type (WT) controls were treated with acrolein (0.5 μg/kg; 1 week). Animals were sacrificed and the liver was used to determine biochemical parameters. Knockout mice generated low (1.43 ±.02 pg/μg protein) free radicals as evident in 8-Isoprostane compared with the WT mice (2.19 ± 0.1). Acrolein increased 8-Isoprostane in WT (P<.05) and KO (p<.05) mice. Xanthine Oxidase (XO) activity was higher (p<.05) in KO (0.56 ± 0.06 μ unit/μg protein) than WT mice. Acrolein increased XO in KO mice, but significantly increased it only in WT. Cycloxygenase (COX) activity was not different between WT and KO mice, although acroelin increased COX in WT. Knockout mice exhibited a significantly low (2.1 ± 0.2 μmol/mg protein) total antioxidant status (TAS) compared with the WT (3.5 ± 0.3). Acrolein reduced TAS in both WT and KO mice equally. Baseline NFκB was significantly higher in KO mice, although acrolein increased NFκB in WT but not in KO. CD36 was higher (p<.05) in KO mice than the WT and acrolein increased (p<.05) CD36 further in KO but not in WT mice. These data suggest that NAD(P)H oxidase contributes significantly in acrolein-induced oxidative stress. We also suggests that in the absence of NAD(P)H oxidase XO plays a definitive role together with reduced antioxidant ability to compound the toxic effects of acrolein. We propose that in absence of NAD(P)H oxidase a different signaling process may involve that utilizes CD36 besides NFκB.

  7. Perfluorooctanoic acid (PFOA)-induced liver lesions in two strains of mice following developmental exposures: PPARα is not required

    PubMed Central

    Filgo, Adam J.; Quist, Erin M.; Hoenerhoff, Mark J.; Brix, Amy E.; Kissling, Grace E.; Fenton, Suzanne E.

    2014-01-01

    Perfluorooctanoate acid (PFOA) is a ubiquitous pollutant that causes liver toxicity in rodents, a process believed to be dependent on peroxisome proliferation activated receptor alpha (PPARα) activation. Differences between humans and rodents have made the human relevance of some health effects caused by PFOA controversial. We analyzed liver toxicity at 18 months following gestational PFOA exposure in CD-1 and 129/Sv strains of mice and compared PFOA-induced effects between strains and in wild type (WT) and PPARα-knockout (KO) 129/Sv mice. Pregnant mice were exposed daily to doses (0.01–5mg/kg/BW) of PFOA from gestation days 1–17. The female offspring were necropsied at 18 months and liver sections underwent a full pathology review. Hepatocellular adenomas formed in PFOA-exposed PPARα-KO 129/Sv and CD-1 mice, and were absent in untreated controls from those groups and WT 129/Sv. Hepatocellular hypertrophy was significantly increased by PFOA exposure in CD-1 and an increased severity was found in WT 129/Sv mice. PFOA significantly increased non-neoplastic liver lesions in PPARα-KO mice (hepatocyte hypertrophy, bile duct hyperplasia and hematopoietic cell proliferation). Low dose gestational exposures to PFOA induced latent PPARα independent liver toxicity that was observed in aged mice. Evidence of liver toxicity in PPARα-KO mice warrants further investigation into PPARα independent pathways. PMID:25398757

  8. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice.

    PubMed

    Esposito, Matthew; Pellinen, Jacob; Kapás, Levente; Szentirmai, Éva

    2012-01-01

    Ghrelin receptors are expressed by key components of the arousal system. Exogenous ghrelin induces behavioral activation, promotes wakefulness and stimulates eating. We hypothesized that ghrelin-sensitive mechanisms play a role in the arousal system. To test this, we investigated the responsiveness of ghrelin receptor knockout (KO) mice to two natural wake-promoting stimuli. Additionally, we assessed the integrity of their homeostatic sleep-promoting system using sleep deprivation. There was no significant difference in the spontaneous sleep-wake activity between ghrelin receptor KO and wild-type (WT) mice. WT mice mounted robust arousal responses to a novel environment and food deprivation. Wakefulness increased for 6 h after cage change accompanied by increases in body temperature and locomotor activity. Ghrelin receptor KO mice completely lacked the wake and body temperature responses to new environment. When subjected to 48 h food deprivation, WT mice showed marked increases in their waking time during the dark periods of both days. Ghrelin receptor KO mice failed to mount an arousal response on the first night and wake increases were attenuated on the second day. The responsiveness to sleep deprivation did not differ between the two genotypes. These results indicate that the ghrelin-receptive mechanisms play an essential role in the function of the arousal system but not in homeostatic sleep-promoting mechanisms.

  9. Normal Performance of Fmr1 Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task.

    PubMed

    Leach, Prescott T; Hayes, Jane; Pride, Michael; Silverman, Jill L; Crawley, Jacqueline N

    2016-01-01

    Fragile X syndrome is a neurodevelopmental disorder characterized by mild-to-severe cognitive deficits. The complete absence of Fmr1 and its protein product in the mouse model of fragile X (Fmr1 KO) provides construct validity. A major conundrum in the field is the remarkably normal performance of Fmr1 mice on cognitive tests in most reports. One explanation may be insufficiently challenging cognitive testing procedures. Here we developed a delayed nonmatching to position touchscreen task to test the hypothesis that paradigms placing demands on working memory would reveal robust and replicable cognitive deficits in the Fmr1 KO mouse. We first tested Fmr1 KO mice (Fmr1) and their wild-type (WT) littermates in a simple visual discrimination task, followed by assessment of reversal learning. We then tested Fmr1 and WT mice in a new touchscreen nonmatch to position task and subsequently challenged their working memory abilities by adding delays, representing a higher cognitive load. The performance by Fmr1 KO mice was equal to WTs on both touchscreen tasks. Last, we replicated previous reports of normal performance by Fmr1 mice on Morris water maze spatial navigation and reversal. These results indicate that, while the Fmr1 mouse model effectively recapitulates many molecular and cellular aspects of fragile X syndrome, the cognitive profile of Fmr1 mice generally does not recapitulate the primary cognitive deficits in the human syndrome, even when diverse and challenging tasks are imposed.

  10. D4 RECEPTOR DEFICIENCY IN MICE HAS LIMITED EFFECTS ON IMPULSIVITY AND NOVELTY SEEKING

    PubMed Central

    Helms, C. M.; Gubner, N. R.; Wilhelm, C. J.; Mitchell, S. H.; Grandy, D. K.

    2008-01-01

    Alleles of the human dopamine D4 receptor (D4R) gene (DRD4.7) have repeatedly been found to correlate with novelty seeking, substance abuse, pathological gambling, and attention deficit hyperactivity disorder (ADHD). If these various psychopathologies are a result of attenuated D4R-mediated signaling, mice lacking D4Rs (D4KO) should be more impulsive than wild-type (WT) mice and exhibit more novelty seeking. However, in our study, D4KO and WT mice showed similar levels of impulsivity as measured by delay discounting performance and response inhibition on a Go/No-go test, suggesting that D4R-mediated signaling may not affect impulsivity. D4KO mice were more active than WT mice in the first 5 min of a novel open field test, suggesting greater novelty seeking but for both genotypes, with the more impulsive D4KO mice habituated less readily in the novel open field. These data suggest that the absence of D4Rs is not sufficient to cause psychopathologies associated with heightened impulsivity and novelty seeking. PMID:18456309

  11. Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice.

    PubMed

    Slätis, Katharina; Gåfvels, Mats; Kannisto, Kristina; Ovchinnikova, Olga; Paulsson-Berne, Gabrielle; Parini, Paolo; Jiang, Zhao-Yan; Eggertsen, Gösta

    2010-11-01

    To investigate the effects of abolished cholic acid (CA) synthesis in the ApoE knockout model [apolipoprotein E (apoE) KO],a double-knockout (DKO) mouse model was created by crossbreeding Cyp8b1 knockout mice (Cyp8b1 KO), unable to synthesize the primary bile acid CA, with apoE KO mice. After 5 months of cholesterol feeding, the development of atherosclerotic plaques in the proximal aorta was 50% less in the DKO mice compared with the apoE KO mice. This effect was associated with reduced intestinal cholesterol absorption, decreased levels of apoB-containing lipoproteins in the plasma, enhanced bile acid synthesis, reduced hepatic cholesteryl esters, and decreased hepatic activity of ACAT2. The upregulation of Cyp7a1 in DKO mice seemed primarily caused by reduced expression of the intestinal peptide FGF15. Treatment of DKO mice with the farnesoid X receptor (FXR) agonist GW4064 did not alter the intestinal cholesterol absorption, suggesting that the action of CA in this process is confined mainly to formation of intraluminal micelles and less to its ability to activate the nuclear receptor FXR. Inhibition of CA synthesis may offer a therapeutic strategy for the treatment of hyperlipidemic conditions that lead to atherosclerosis.

  12. miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity

    PubMed Central

    Gaudet, Andrew D.; Fonken, Laura K.; Gushchina, Liubov V.; Aubrecht, Taryn G.; Maurya, Santosh K.; Periasamy, Muthu; Nelson, Randy J.; Popovich, Phillip G.

    2016-01-01

    Obesity is a growing epidemic in developed countries. Obese individuals are susceptible to comorbidities, including cardiovascular disease and metabolic disorder. Increasing the ability of adipose tissue to expend excess energy could improve protection from obesity. One promising target is microRNA (miR)-155-5p. We demonstrate that deletion of miR-155 (-5p and -3p) in female mice prevents diet-induced obesity. Body weight gain did not differ between wild-type (WT) and miR-155 knockout (KO) mice fed control diet (CD); however, miR-155 KO mice fed high-fat diet (HFD) gained 56% less body weight and 74% less gonadal white adipose tissue (WAT) than WT mice. Enhanced WAT thermogenic potential, brown adipose tissue differentiation, and/or insulin sensitivity might underlie this obesity resistance. Indeed, miR-155 KO mice on HFD had 21% higher heat release than WT HFD mice. Compared to WT adipocytes, miR-155 KO adipocytes upregulated brown (Ucp1, Cidea, Pparg) and white (Fabp4, Pnpla2, AdipoQ, Fasn) adipogenic genes, and glucose metabolism genes (Glut4, Irs1). miR-155 deletion abrogated HFD-induced adipocyte hypertrophy and WAT inflammation. Therefore, miR-155 deletion increases adipogenic, insulin sensitivity, and energy uncoupling machinery, while limiting inflammation in WAT, which together could restrict HFD-induced fat accumulation. Our results identify miR-155 as a novel candidate target for improving obesity resistance. PMID:26953132

  13. KoFlux: Korean Regional Flux Network in AsiaFlux

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  14. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    SciTech Connect

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho; Williams, Stuart; Chen, Qin M.

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  15. Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze.

    PubMed

    Sultana, Ruby; Ameno, Kiyoshi; Jamal, Mostofa; Miki, Takanori; Tanaka, Naoko; Ono, Junichiro; Kinoshita, Hiroshi; Nakamura, Yu

    2013-06-01

    Here, we investigated the effects of nicotine on spatial memory in ApoE-knockout (ApoE-KO) and wild-type (WT) mice in a radial arm maze. Training occurred on three consecutive days and the test was performed on day 4, with one trial per day. Then on day 4, animals were administered nicotine (0.1, 0.25, 0.5, and 1.0 mg/kg) or the antagonist of nicotinic receptors (nAChRs) mecamylamine (MEC 2 mg/kg) alone or together with 0.1 mg/kg nicotine. The number of errors in the first eight choices was recorded. The results were that 0.1 mg/kg nicotine decreased errors in ApoE-KO mice, while 0.1 and 0.25 mg/kg nicotine reduced errors in WT mice, indicating that lower doses of nicotine elicit a memory improvement. In contrast, 1.0 mg/kg nicotine increased errors in WT mice, but not in ApoE-KO mice. MEC alone had no noticeable effect on errors in either strain of mice. However, co-administration of 0.1 mg/kg nicotine and MEC increased errors and reduced the effects of nicotine in WT mice, but not in ApoE-KO mice. Our study found a biphasic effect of nicotine in WT mice: it improves spatial memory at lower doses and impairs it at a higher dose. In ApoE-KO mice, nicotine improves memory at a low dose and has no effect at a higher dose, suggesting that the ApoE deficiency may influence the efficacy of nicotine. Moreover, a reversal of nicotinic effects with MEC was seen in WT mice, indicating the likelihood of the involvement of nAChRs in the spatial-memory response to nicotine.

  16. Listeria monocytogenes (delta-actA mutant) infection in tumor necrosis factor receptor p55-deficient neonatal mice.

    PubMed

    Sonje, Marina Bubonja; Abram, Maja; Stenzel, Werner; Deckert, Martina

    2010-10-01

    Using TNF receptor 1 knock out (TNFR1KO) mice, we investigated the role played by TNFR1 in immune regulation during neonatal listeriosis. Induction of protective immune response in wild type pups resulted in the prompt control of infection with an attenuated DeltaactA mutant Listeria monocytogenes, accompanied by enhanced hepatic expression of mRNA for IFN-gamma, TNF-alpha, and IL-10. Conversely, the lack of TNFR1 signalling in TNFR1KO neonatal mice resulted in substantial changes in the profile of inflammatory mediators and ultimately fatal outcome of the infected pups. Despite remarkable increase in indoleamine 2, 3-dioxygenase (IDO) and inducible nitric oxide synthase (iNOS) mRNA detected in the liver of TNFR1KO mice, bacterial proliferation was unrestrained. Increased mRNA expression of IDO, iNOS, TNF-alpha, IFN-gamma, MCP-1, and MIP-1alpha was found in the spleens of infected KO mice, and in the brains mRNA encoding iNOS, IDO, IFN-gamma, IL-12p40, IL-10, and RANTES was also upregulated. Large necrotic lesions consisting of granulocytes and macrophages were scattered throughout the liver of these mice. TNFR1KO neonates were unable to clear neutrophils and switch from the innate immune response to a specific reaction mediated by T cells. These results prove that TNF-alpha signalling is crucial and irreplaceable in antilisterial protection during the neonatal period. PMID:20685289

  17. Impaired chronotropic response to exercise in mice lacking catecholamines in adrenergic cells.

    PubMed

    Bao, Xuping; Liu, Fujun; Gu, Yusu; Lu, Chuanyi M; Ziegler, Michael G

    2008-12-01

    To define the in vivo role of adrenergic catecholamines (CAs), we generated a mouse model whereby tyrosine hydroxylase (TH) was knocked out (KO) in phenylethanolamine N-methyltransferase-expressing cells. These adrenergic specific TH-KO mice were viable and grossly normal. Their resting heart rate and blood pressure, as monitored by telemetry, were unchanged. However, when challenged with treadmill exercise, their chronotropic responses were significantly reduced by 14% compared to wild-type mice. Thus, our data suggest that adrenergic CA is required for normal chronotropic responses to stress, but not required for prenatal and postnatal development or normal cardiovascular function at rest.

  18. Impaired striatum-dependent behavior in GASP-1-knock-out mice.

    PubMed

    Mathis, C; Bott, J-B; Candusso, M-P; Simonin, F; Cassel, J-C

    2011-04-01

    G protein-coupled receptor (GPCR) associated sorting protein-1 (GASP-1) is suspected to play a key role in recycling and degradation of several GPCRs. In a previous study, we have shown that GASP-1-knock-out (GASP-1-KO) mice displayed deficits in acquiring a cocaine self-administration task, associated with an exacerbated down-regulation of striatal dopaminergic and cholinergic receptors. Among several possibilities, GASP-1 deficiency could have impaired memory processes underlying the acquisition of the operant conditioning task. Therefore, the present study investigated cognitive performances of GASP-1-KO mice and their wild-type littermates (WT) in a broad variety of memory tasks. Consistent with a deficit in procedural memory, GASP-1-KO mice showed delayed acquisition of a food-reinforced bar-press task. During water-maze training in hidden- or visible-platform paradigms, mutant and WT mice acquired the tasks at the same rate. However, GASP-1 mice exhibited persistent thigmotaxic swimming, longer distance to the platform, and reduced swim speed. There was no deficit in several tasks requiring simple behavioral responses (Barnes maze, object recognition and passive avoidance tasks). Thus, the ability to acquire and/or express complex responses seems affected in GASP-1-deficient mice. Hippocampal functions were preserved, as the retention of an acquired memory in spatial tasks remained unaffected. The pattern of behavioral deficits observed in GASP-1-KO mice is coherent with current knowledge on the role of striatal GPCRs in acquisition/expression of skilled behavior and in motivation. Together with the previous findings, the so far established phenotype of GASP-1-KO mice makes them a potentially exciting tool to study striatal functions.

  19. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    PubMed

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia. PMID:25799505

  20. Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro

    PubMed Central

    Hammerl, Jens Andre; Jäckel, Claudia; Lanka, Erich; Roschanski, Nicole; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages. PMID:27527206

  1. Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro.

    PubMed

    Hammerl, Jens Andre; Jäckel, Claudia; Lanka, Erich; Roschanski, Nicole; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages. PMID:27527206

  2. Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro.

    PubMed

    Hammerl, Jens Andre; Jäckel, Claudia; Lanka, Erich; Roschanski, Nicole; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages.

  3. Flavor preference conditioning by different sugars in sweet ageusic Trpm5 knockout mice.

    PubMed

    Sclafani, Anthony; Ackroff, Karen

    2015-03-01

    Knockout (KO) mice missing the taste signaling protein Trpm5 have greatly attenuated sweetener preferences but develop strong preferences for glucose in 24-h tests, which is attributed to post-oral sugar conditioning. Trpm5 KO mice express mild preferences for galactose but no preferences for fructose in 24-h tests, which suggests that these sugars differ in their post-oral reinforcing effects. Here we investigated sugar-conditioned flavor preferences in Trpm5 KO and C57BL/6J wildtype (B6) mice. The mice were trained to consume a flavored (CS+, e.g. grape) 8% sugar solution and flavored (CS-, e.g., cherry) water on alternating days followed by two-bottle choice tests with CS+ vs. CS- flavors in water and with unflavored sugar vs. water. The KO mice displayed strong preferences (>80%) for the CS+ glucose and CS+ galactose but not for the CS+ fructose flavor. They also preferred glucose and galactose, but not fructose to water. In contrast, the B6 mice preferred all three CS+ flavors to the CS- flavor, and all three sugars to water. In tests with the non-metabolizable sugar α-methyl-d-glucopyranoside (MDG), the KO and B6 mice preferred 8% MDG to water but did not prefer the CS+ 8% MDG to CS-. However, they preferred a CS+ flavor mixed with 4% MDG over the CS- flavor. Trpm5 KO mice also preferred galactose and MDG to fructose in direct choice tests. The Trpm5 KO data indicate that glucose and, to a lesser extent, galactose and MDG have post-oral reinforcing actions that stimulate intake and preference while fructose has a much weaker effect. The CS+ flavor and sugar preferences of B6 mice may be mediated by the sweet taste and/or post-oral actions of the various sugars. Glucose, galactose, and MDG, but not fructose, are ligands for the sodium-glucose transporter 1 (SGLT1) which is implicated in post-oral sugar conditioning in B6 mice.

  4. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    PubMed Central

    Li, Guoxi; Zhou, Libin; Zhu, Ying; Wang, Conghui; Sha, Sha; Xian, Xunde; Ji, Yong; Liu, George; Chen, Ling

    2015-01-01

    ABSTRACT The seipin gene (BSCL2) was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2). Neuronal seipin-knockout (seipin-nKO) mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG) and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT) mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi). In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1) and neurogenic differentiation 1 (NeuroD1) mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705) was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice. PMID

  5. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice.

    PubMed

    Harrill, Joshua A; Hukkanen, Renee R; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; Lecluyse, Edward L; Budinsky, Robert A; Rowlands, J Craig; Thomas, Russell S

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague-Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ~30-45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. PMID:23859880

  6. T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to Polycose: implications for saccharide taste receptors in mice.

    PubMed

    Treesukosol, Yada; Blonde, Ginger D; Spector, Alan C

    2009-04-01

    The T1R2 and T1R3 proteins are expressed in taste receptor cells and form a heterodimer binding with compounds described as sweet by humans. We examined whether Polycose taste might be mediated through this heterodimer by testing T1R2 knockout (KO) and T1R3 KO mice and their wild-type (WT) littermate controls in a series of brief-access taste tests (25-min sessions with 5-s trials). Sucrose, Na-saccharin, and Polycose were each tested for three consecutive sessions with order of presentation varied among subgroups in a Latin-Square manner. Both KO groups displayed blunted licking responses and initiated significantly fewer trials of sucrose and Na-saccharin across a range of concentrations. KO mice tested after Polycose exposure demonstrated some degree of concentration-dependent licking of sucrose, likely attributable to learning related to prior postingestive experience. These results are consistent with prior findings in the literature, implicating the T1R2+3 heterodimer as the principal taste receptor for sweet-tasting ligands, and also provide support for the potential of postingestive experience to influence responding in the KO mice. In contrast, T1R2 KO and T1R3 KO mice displayed concentration-dependent licking responses to Polycose that tracked those of their WT controls and in some cases licked midrange concentrations more; the number of Polycose trials initiated overall did not differ between KO and WT mice. Thus, the T1R2 and T1R3 proteins are individually unnecessary for normal concentration-dependent licking of Polycose to be expressed in a brief-access test. Whether at least one of these T1R protein subunits is necessary for normal Polycose responsiveness remains untested. Alternatively, there may be a novel taste receptor(s) that mediates polysaccharide taste. PMID:19158407

  7. Cellular prion protein regulates the motor behaviour performance and anxiety-induced responses in genetically modified mice.

    PubMed

    Lobão-Soares, Bruno; Walz, Roger; Carlotti, Carlos Gilberto; Sakamoto, Américo Ceiki; Calvo, Fabrício; Terzian, Ana Luiza Bernardes; da Silva, Juliana Almeida; Wichert-Ana, Lauro; Coimbra, Norberto Cysne; Bianchin, Marino Muxfeldt

    2007-10-01

    The cellular prion protein (PrP(C)) is a sialoglycoprotein involved in neuroplasticity processes and synaptic transmission. This study investigated behavioural responses (balance in the rota-rod test at 24 rpm, motility in the open-field test, anxiety in the elevated plus-maze test) in Zurich developed wild-type adult mice (WT, controls of normal PrP(C) expression), in knockout (KO) mice (Prnp(0/0), with no PrP(C) expression), and in PrP(C) overexpressing Tg-20 mice. After 8 min in the rota-rod test, Tg-20 animals presented significantly fewer falls (1.08+/-1.56 falls) than both WT (7.27+/-4.36) and KO (7.6+/-6.15) mice (p<0.01). In the open field test, Tg-20 animals showed significantly increased motility [rearing=23.4+/-7.85, crossing=97.30+/-32.11) when compared with KO mice (rearing=5.45+/-3.69 and crossing=59.73+/-15.43) or WT mice (rearing=6.5+/-20.23 and crossing=45.18+/-20.33) (p<0.01). In the elevated plus-maze test, Tg-20 mice showed less anxiety (head projections=7.3+/-1.62) when compared with WT animals (3.38+/-0.67) (p<0.05). Moreover, KO mice spent more time in the centre of the plus maze (37.80+/-5.57 s) than did WT mice (22.57+/-3.82) (p<0.05). PrP(C) overexpressing mice evoked increased motility, less anxiety, and increased equilibrium when compared with WT control animals in the behavioural protocols used. KO animals also tended to evoke fewer anxiety-related responses in the elevated plus-maze test. These findings indicate that the levels of PrP(C) in adult life are associated with possible changes in motility, anxiety, and equilibrium.

  8. Pharmacological ceramide reduction alleviates alcohol-induced steatosis and hepatomegaly in adiponectin knockout mice

    PubMed Central

    Correnti, Jason M.; Juskeviciute, Egle; Swarup, Aditi

    2014-01-01

    Hepatosteatosis, the ectopic accumulation of lipid in the liver, is one of the earliest clinical signs of alcoholic liver disease (ALD). Alcohol-dependent deregulation of liver ceramide levels as well as inhibition of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPAR-α) activity are thought to contribute to hepatosteatosis development. Adiponectin can regulate lipid handling in the liver and has been shown to reduce ceramide levels and activate AMPK and PPAR-α. However, the mechanisms by which adiponectin prevents alcoholic hepatosteatosis remain incompletely characterized. To address this question, we assessed ALD progression in wild-type (WT) and adiponectin knockout (KO) mice fed an ethanol-containing liquid diet or isocaloric control diet. Adiponectin KO mice relative to WT had increased alcohol-induced hepatosteatosis and hepatomegaly, similar modest increases in serum alanine aminotransferase, and reduced liver TNF. Restoring circulating adiponectin levels using recombinant adiponectin ameliorated alcohol-induced hepatosteatosis and hepatomegaly in adiponectin KO mice. Alcohol-fed WT and adiponectin KO animals had equivalent reductions in AMPK protein and PPAR-α DNA binding activity compared with control-fed animals. No difference in P-AMPK/AMPK ratio was detected, suggesting that alcohol-dependent deregulation of AMPK and PPAR-α in the absence of adiponectin are not primary causes of the observed increase in hepatosteatosis in these animals. By contrast, alcohol treatment increased liver ceramide levels in adiponectin KO but not WT mice. Importantly, pharmacological inhibition of de novo ceramide synthesis in adiponectin KO mice abrogated alcohol-mediated increases in liver ceramides, steatosis, and hepatomegaly. These data suggest that adiponectin reduces alcohol-induced steatosis and hepatomegaly through regulation of liver ceramides, but its absence does not exacerbate alcohol-induced liver damage. PMID

  9. Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-05-16

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732

  10. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    PubMed

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. PMID:25872793

  11. Differential Pharmacological Regulation of Sensorimotor Gating Deficit in CB1 Knockout Mice and Associated Neurochemical and Histological Alterations

    PubMed Central

    Ortega-Álvaro, Antonio; Navarrete, Francisco; Aracil-Fernández, Auxiliadora; Navarro, Daniela; Berbel, Pere; Manzanares, Jorge

    2015-01-01

    The endocannabinoid system has been widely involved in the pathophysiology of sensorimotor gating deficits. This study aimed to evaluate the pharmacological modulation of the sensorimotor gating impairment induced by cannabinoid CB1 receptor (CB1r) deletion. For this purpose, the prepulse inhibition (PPI) paradigm was used to evaluate the effect of two antipsychotics drugs (risperidone and haloperidol) and a psychostimulant (methylphenidate) on the preattentional deficit presented by CB1KO mice. Furthermore, the effects of the CB1r antagonist AM251 on PPI were evaluated in WT mice. Real-time PCR and immunohistochemical studies were carried out to analyze dopamine transporter (DAT) and α-2C adrenergic receptor (ADRA2C) gene expressions and the distribution of parvalbumin (PV) and cholecystokinin-8 (CCK) immunoreactive (ir) cortical neurons, respectively. Neither risperidone nor haloperidol significantly modified the PPI of WT and CB1KO mice, whereas methylphenidate improved the preattentional deficit of CB1KO mice. In addition, treatment with AM251 (3 mg/kg; i.p.) significantly decreased the PPI of WT animals. The administration of methylphenidate increased DAT and ADRA2C gene expressions in CB1KO mice without producing any effect in WT animals. Immunohistochemical studies revealed that there were no significant changes in CCK immunolabeling between WT and CB1KO mice, whereas the radial distribution of PV-ir neurons was abnormal in CB1KO mice. These data further support the important role of CB1r in sensorimotor gating regulation and the therapeutic usefulness of methylphenidate for the treatment of psychiatric disorders with associated preattentional deficits. PMID:25895455

  12. Knockout Zbtb33 gene results in an increased locomotion, exploration and pre-pulse inhibition in mice.

    PubMed

    Kulikov, Alexander V; Korostina, Valeria S; Kulikova, Elizabeth A; Fursenko, Dariya V; Akulov, Andrey E; Moshkin, Mikhail P; Prokhortchouk, Egor B

    2016-01-15

    The Zbtb33 gene encodes the Kaiso protein-a bimodal transcriptional repressor. Here, the effects of Zbtb33 gene disruption on the brain and behaviour of the Kaiso-deficient (KO) and C57BL/6 (WT) male mice were investigated. Behaviour was studied using the open field, novel object, elevated plus maze and acoustic startle reflex tests. Brain morphology was investigated with magnetic resonance imaging. Biogenic amine levels and gene expression in the brain were measured with high-performance liquid chromatography and quantitative real-time RT-PCR, respectively. Zbtb33 gene mRNA was not detected in the brain of KO mice. KO mice exhibited increased locomotion, exploration in the open field, novel object and elevated plus-maze test. At the same time, Zbtb33 gene disruption did not alter anxiety-related behaviour in the elevated plus-maze test. KO mice showed elevated amplitudes and pre-pulse inhibitions of the acoustic startle reflex. These behavioural alterations were accompanied by significant reductions in the volumes of the lateral ventricles without significant alterations in the volumes of the hippocampus, striatum, thalamus and corpus callosum. Norepinephrine concentration was reduced in the hypothalami and hippocampi in KO mice, while the levels of serotonin, dopamine, their metabolites as well as mRNA of the gene coding brain-derived neurotrophic factor were not altered in the brain of KO mice compared to WT mice. This study is the first to reveal the involvement of the Zbtb33 gene in the regulation of behaviour and the central nervous system.

  13. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice

    PubMed Central

    Yao, Wei; Zhang, Ji-chun; Ishima, Tamaki; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Suganuma, Hiroyuki; Ushida, Yusuke; Yamamoto, Masayuki; Hashimoto, Kenji

    2016-01-01

    The transcription factor Keap1-Nrf2 system plays a key role in inflammation which is involved in depression. We found lower expression of Keap1 and Nrf2 proteins in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of hippocampus in mice with depression-like phenotype compared to control mice. Serum levels of pro-inflammatory cytokines in Nrf2 knock-out (KO) mice were higher than those of wild-type mice, suggestive of enhanced inflammation in KO mice. Decreased brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-receptor-kinase B (TrkB) signaling in the PFC, CA3 and DG plays a role in the depression-like phenotype of Nrf2 KO mice. TrkB agonist 7,8-dihydroxyflavone, but not antagonist ANA-12, produced antidepressant effects in Nrf2 KO mice, by stimulating TrkB in the PFC, CA3 and DG. Pretreatment with Nrf2 activator sulforaphane (SFN) prevented the depression-like phenotype induced after repeated social defeat stress. Interestingly, dietary intake of 0.1% glucoraphanin (a precursor of SFN) containing food during juvenile and adolescent stages also prevented the depression-like phenotype evoked in adulthood, after repeated social defeat stress. These findings suggest that Keap1-Nrf2 system plays a key role in depression and that dietary intake of SFN-rich food during juvenile stages and adolescence can confer stress resilience in adulthood. PMID:27470577

  14. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    SciTech Connect

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-09-12

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  15. Sexual partner preference requires a functional aromatase (cyp19) gene in male mice.

    PubMed

    Bakker, J; Honda, S; Harada, N; Balthazart, J

    2002-09-01

    Sexual motivation, sexual partner preference, and sexual performance represent three different aspects of sexual behavior that are critical in determining the reproductive success of a species. Although the display of sexual behavior is under strict hormonal control in both sexes, the relative roles of androgen and estrogen receptors in activating the various components of male sexual behavior are still largely unknown. A recently developed mouse model that is deficient in estradiol due to targeted disruption of exons 1 and 2 of the Cyp19 gene (aromatase knockout (ArKO) mice) was used here to analyze the role of estradiol in the control of all three aspects of male sexual behavior. When tested in a Y-maze providing volatile olfactory cues, male ArKO mice did not show a preference for the odors from an estrous female over those from an intact male, whereas wild-type (WT) and heterozygous (HET) males clearly preferred to sniff estrous odors. When provided with visual and olfactory cues, male ArKO mice also failed to show a preference for an estrous female when given a choice between an estrous female and an empty arm. However, sexual partner preferences of male ArKO mice were not sex-reversed: they did not prefer to investigate an intact male over an estrous female or empty arm. Thus, male ArKO mice seemed to have general deficits in discriminating between conspecifics by using olfactory and visual cues. Male coital behavior was also severely impaired in male ArKO mice: they displayed significantly fewer mounts, intromissions, and ejaculations than WT and HET males. Latencies to first mount or intromission were also significantly longer in ArKO males compared to WT and HET males, in addition to them showing less interest in investigating olfactory and visual cues in a Y-maze, suggesting that they were sexually less motivated. However, three out of seven male ArKO mice were capable of siring litters provided they were housed with a female for a prolonged period of

  16. Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment

    PubMed Central

    Kim, Munkyung; Piaia, Alessandro; Shenoy, Neeta; Kagan, David; Gapp, Berangere; Kueng, Benjamin; Weber, Delphine; Dietrich, William; Ksiazek, Iwona

    2015-01-01

    Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome. PMID:26555339

  17. Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2.

    PubMed

    Sorvajärvi, Tapio; Viljanen, Jan; Toivonen, Juha; Marshall, Paul; Glarborg, Peter

    2015-04-01

    The addition reaction of potassium atoms with oxygen has been studied using the collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) method. KCl vapor was photolyzed with 266 nm pulses and the absorbance by K atoms at 766.5 nm was measured at various delay times with a narrow line width diode laser. Experiments were carried out with O2/N2 mixtures at a total pressure of 1 bar, over 748-1323 K. At the lower temperatures single exponential decays of [K] yielded the third-order rate constant for addition, kR1, whereas at higher temperatures equilibration was observed in the form of double exponential decays of [K], which yielded both kR1 and the equilibrium constant for KO2 formation. kR1 can be summarized as 1.07 × 10(-30)(T/1000 K)(-0.733) cm(6) molecule(-2) s(-1). Combination with literature values leads to a recommended kR1 of 5.5 × 10(-26)T(-1.55) exp(-10/T) cm(6) molecule(-2) s(-1) over 250-1320 K, with an error limit of a factor of 1.5. A van't Hoff analysis constrained to fit the computed ΔS298 yields a K-O2 bond dissociation enthalpy of 184.2 ± 4.0 kJ mol(-1) at 298 K and ΔfH298(KO2) = -95.2 ± 4.1 kJ mol(-1). The corresponding D0 is 181.5 ± 4.0 kJ mol(-1). This value compares well with a CCSD(T) extrapolation to the complete basis set limit, with all electrons correlated, of 177.9 kJ mol(-1). PMID:25775408

  18. Parsing the hedonic and motivational influences of nociceptin on feeding using licking microstructure analysis in mice.

    PubMed

    Mendez, Ian A; Maidment, Nigel T; Murphy, Niall P

    2016-09-01

    Opioid peptides are implicated in processes related to reward and aversion; however, how specific opioid peptides are involved remains unclear. We investigated the role of nociceptin (NOC) in voluntary licking for palatable and aversive tastants by studying the effect of intracerebroventricularly administered NOC on licking microstructure in wild-type and NOC receptor knockout (NOP KO) mice. Compared with the wild-type mice, NOP KO mice emitted fewer bouts of licking when training to lick for a 20% sucrose solution. Correspondingly, intracerebroventricular administration of NOC increased the number of licking bouts for sucrose and sucralose in wild-type, but not in NOP KO mice. The ability of NOC to initiate new bouts of licking for sweet solutions suggests that NOC may drive motivational aspects of feeding behavior. Conversely, adulterating a sucrose solution with the aversive tastant quinine reduced licking bout lengths in wild-type and NOP KOs, suggesting that NOC signaling is not involved in driving voluntary consumption of semiaversive tastants. Interestingly, when consuming sucrose following 20 h of food deprivation, NOP KO mice emitted longer bouts of licking than wild types, suggesting that under hungry conditions, NOC may also contribute toward hedonic aspects of feeding. Together, these results suggest differential roles for NOC in the motivational and hedonic aspects of feeding. PMID:27100061

  19. Behavioral characterization of striatal-enriched protein tyrosine phosphatase (STEP) knockout mice.

    PubMed

    Sukoff Rizzo, S J; Lotarski, S M; Stolyar, P; McNally, T; Arturi, C; Roos, M; Finley, J E; Reinhart, V; Lanz, T A

    2014-09-01

    Striatal-enriched protein tyrosine phosphatase (STEP) has been described as a regulator of multiple kinases and glutamate receptor subunits critical for synaptic plasticity. Published behavioral and biochemical characterization from the founder line of STEP knockout (KO) mice revealed superior cognitive performance, with enhanced phosphorylation of substrates such as ERK, Fyn and GluN2B; suggesting that inhibitors of STEP may have potential as therapeutic agents for the treatment of neuropsychiatric disorders. The objectives of this work aimed to replicate and extend the previously reported behavioral consequences of STEP knockout. Consistent with previous reported data, STEP KO mice demonstrated exploratory activity levels and similar motor coordination relative to WT littermate controls as well as intact memory in a Y-maze spatial novelty test. Interestingly, KO mice demonstrated deficits in pre-pulse inhibition as well as reduced seizure threshold relative to WT controls. Immunohistochemical staining of brains revealed the expected gene-dependent reduction in STEP protein confirming knockout in the mice. The present data confirm expression and localization of STEP and the absence in KO mice, and describe functional downstream implications of reducing STEP levels in vivo.

  20. Reduced ethanol consumption and preference in cocaine- and amphetamine-regulated transcript (CART) knockout mice.

    PubMed

    Salinas, Armando G; Nguyen, Chinh T Q; Ahmadi-Tehrani, Dara; Morrisett, Richard A

    2014-03-01

    Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide implicated in addiction to drugs of abuse. Several studies have characterized the role of CART in addiction to psychostimulants, but few have examined the role of CART in alcohol use disorders including alcoholism. The current study utilized a CART knockout (KO) mouse model to investigate the role of CART in ethanol appetitive behaviors. A two-bottle choice, unlimited-access paradigm was used to compare ethanol appetitive behaviors between CART wild type (WT) and KO mice. The mice were presented with an ethanol solution (3%-21%) and water, each concentration for 4 days, and their consumption was measured daily. Consumption of quinine (bitter) and saccharin (sweet) solutions was measured following the ethanol preference tests. In addition, ethanol metabolism rates and ethanol sensitivity were compared between genotypes. CART KO mice consumed and preferred ethanol less than their WT counterparts in both sexes. This genotype effect could not be attributed to differences in bitter or sweet taste perception or ethanol metabolism rates. There was also no difference in ethanol sensitivity in male mice; however, CART KO female mice showed a greater ethanol sensitivity than the WT females. Taken together, these data demonstrate a role for CART in ethanol appetitive behaviors and as a possible therapeutic drug target for alcoholism and abstinence enhancement.

  1. Attenuation of Cystitis and Pain Sensation in Mice Lacking Fatty Acid Amide Hydrolase

    PubMed Central

    Wang, Zun-Yi; Wang, Peiqing; Hillard, Cecilia J.; Bjorling, Dale E.

    2015-01-01

    Endocannabinoids, such as N-arachidonylethanolamine (AEA, also called anandamide), exert potent analgesic and anti-inflammatory effects. Fatty acid amide hydrolase (FAAH) is primarily responsible for degradation of AEA, and deletion of FAAH increases AEA content in various tissues. Since FAAH has been shown to be present in the bladder of various species, we compared bladder function, severity of experimental cystitis, and cystitis-associated referred hyperalgesia in male wild type (WT) and FAAH knock-out (KO) mice. Basal concentrations of AEA were greater, and the severity of cyclophosphamide (CYP)-induced cystitis was reduced in bladders from FAAH KO compared to WT mice. Cystitis-associated increased peripheral sensitivity to mechanical stimuli and enhanced bladder activity (as reflected by increased voiding frequency) were attenuated in FAAH KO compared to WT mice. Further, abundances of mRNA for several pro-inflammatory compounds were increased in bladder mucosa after CYP treatment of WT mice, and this increase was inhibited in FAAH KO mice. These data indicate that endogenous substrates of FAAH, including the cannabinoid AEA, play an inhibitory role in bladder inflammation and subsequent changes in pain perception. Therefore, FAAH could be a therapeutic target to treat clinical symptoms of painful inflammatory bladder diseases. PMID:25374388

  2. Assessment of Behaviors Modeling Aspects of Schizophrenia in Csmd1 Mutant Mice

    PubMed Central

    Distler, Margaret G.; Opal, Mark D.; Dulawa, Stephanie C.; Palmer, Abraham A.

    2012-01-01

    Schizophrenia is a debilitating psychotic disorder that affects up to 1.5% of the population worldwide. Two recent studies in humans identified genome-wide significant associations between schizophrenia and single-nucleotide polymorphisms (SNPs) in an intron of CSMD1. The effect of deleting CSMD1 on mouse behavior is unknown. The present study utilized mice with a mutant Csmd1 allele in which the first exon had been ablated (KO mice). All Csmd1 transcripts that included the first exon were absent in the brains of KO mice, but there was persistent expression of at least one other transcript that does not include the first exon. Wild type (WT), heterozygous (HET), and KO mice were assessed using several well-established behavioral paradigms that model aspects of schizophrenia. Csmd1 KO mice did not differ from wild-type littermates for sensorimotor gating (measured as prepulse inhibition), social interaction, anhedonia (measured by sucrose preference), or sensitivity to the locomotor stimulant effects of the dopaminergic agent d-amphetamine. These data demonstrate that loss of Csmd1 transcripts that include the first exon does not alter multiple well-established behaviors that model aspects of schizophrenia. The SNP most strongly associated with schizophrenia in humans is between exons 3 and 4; therefore, ablation of exon 1 appeared to be a logical animal model. Nevertheless, future studies should consider alternative mouse models including gain-of-function mutations, and loss-of-function mutations that target alternative transcripts of Csmd1. PMID:23284669

  3. The Idea of an Innovated Concept of the Košice Geothermal Project

    NASA Astrophysics Data System (ADS)

    Bujanská, Alena; Böszörményi, László

    2015-11-01

    Slovakia has very limited amounts of fossil resources. However, it has a relatively high potential of geothermal energy which use is far below its possibilities. The most abundant geothermal resource, not only in Slovakia but throughout the central Europe, is Košice basin. Since the publication of the first ideas about the ambitious goal to exploit the geothermal potential of this site, 20 years has passed and three geothermal wells has been made but without any progress. In the article the authors present the idea of a fundamental change in the approach to improve the energy and economic efficiency of the project.

  4. Prime role of bone IL-1 in mice may lie in emergency Ca(2+)-supply to soft tissues, not in bone-remodeling.

    PubMed

    Deng, Xue; Oguri, Senri; Funayama, Hiromi; Ohtaki, Yuko; Ohsako, Masafumi; Yu, Zhiqian; Sugawara, Shunji; Endo, Yasuo

    2012-12-01

    IL-1 and TNF-α are thought to be important bone-remodeling regulators. However, mice lacking either them or their receptors reportedly grow healthily. Here, we examined the roles of IL-1 and TNF-α in bone. Although a significant IL-1 level was detected in the tibia of non-stimulated wild-type (WT) mice, no significant physicochemical, morphological, or histological defects were detected in the tibias in mice lacking IL-1 (both α and β types) (IL-1KO) or lacking both IL-1 and TNF-α (IL-1/TNF-αKO). Injection of sub-lethal doses of lipopolysaccharide (LPS) into WT mice induced a transient hypocalcemia, increased IL-1 (in the plasma and markedly in the tibia), and increased TNF-α (markedly in the plasma, but only slightly in the tibia). LPS-induced hypocalcemia was modest in IL-1KO mice, and not detected in IL-1/TNFαKO mice. IL-1α (but not TNFα) induced hypocalcemia in both WT and IL-1KO mice. In both WT and IL-1KO mice treated with clodronate (osteoclast inhibitor), the LPS-induced hypocalcemia was markedly augmented. Nifedipine (inhibitor of both voltage-activated and capacitative Ca(2+)-entry) reduced the LPS-induced hypocalcemia. These results suggest that in mice: (i) IL-1 and TNF-α may contribute little to physiological bone-formation, and (ii) a time-lag between IL-1- and TNF-α-stimulated Ca(2+)-entry into cells throughout the body from the circulation and IL-1-stimulated Ca(2+)-release from the bone may cause the observed transient LPS-induced hypocalcemia. Thus, the prime role of bone IL-1 may reside in the supply of Ca(2+) from the bone to cells throughout the body when the need is urgent.

  5. Apolipoprotein A-V deficiency enhances chylomicron production in lymph fistula mice

    PubMed Central

    Xu, Min; Yang, Qing; Ryan, Robert O.; Howles, Philip; Tso, Patrick

    2015-01-01

    Apolipoprotein A-V (apoA-V), a liver-synthesized apolipoprotein discovered in 2001, strongly modulates fasting plasma triglycerides (TG). Little is reported on the effect of apoA-V on postprandial plasma TG, an independent predictor for atherosclerosis. Overexpressing apoA-V in mice suppresses postprandial TG, but mechanisms focus on increased lipolysis or clearance of remnant particles. Unknown is whether apoA-V suppresses the absorption of dietary lipids by the gut. This study examines how apoA-V deficiency affects the steady-state absorption and lymphatic transport of dietary lipids in chow-fed mice. Using apoA-V knockout (KO, n = 8) and wild-type (WT, n = 8) lymph fistula mice, we analyzed the uptake and lymphatic transport of lipids during a continuous infusion of an emulsion containing [3H]triolein and [14C]cholesterol. ApoA-V KO mice showed a twofold increase in 3H (P < 0.001) and a threefold increase in 14C (P < 0.001) transport into the lymph compared with WT. The increased lymphatic transport was accompanied by a twofold reduction (P < 0.05) in mucosal 3H, suggesting that apoA-V KO mice more rapidly secreted [3H]TG out of the mucosa into the lymph. ApoA-V KO mice also produced chylomicrons more rapidly than WT (P < 0.05), as measured by the transit time of [14C]oleic acid from the intestinal lumen to lymph. Interestingly, apoA-V KO mice produced a steadily increasing number of chylomicron particles over time, as measured by lymphatic apoB output. The data suggest that apoA-V suppresses the production of chylomicrons, playing a previously unknown role in lipid metabolism that may contribute to the postprandial hypertriglyceridemia associated with apoA-V deficiency. PMID:25617349

  6. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor

    PubMed Central

    Yang, Hongwei; Zhang, Jian; Breyer, Richard M.; Chen, Chu

    2008-01-01

    Our laboratory demonstrated previously that PGE2-induced modulation of hippocampal synaptic transmission is via a presynaptic PGE2 EP2 receptor. However, little is known about whether the EP2 receptor is involved in hippocampal long-term synaptic plasticity and cognitive function. Here we show that long-term potentiation (LTP) at the hippocampal perforant path synapses was impaired in mice deficient in the EP2 (KO), while membrane excitability and passive properties in granule neurons were normal. Importantly, escape latency in the water maze in EP2 KO was longer than that in age-matched EP2 wild-type littermates (WT). We also observed that LTP was potentiated in EP2 WT animals that received lipopolysaccharide (LPS, i.p.), but not in EP2 KO. Bath application of PGE2 or butaprost, an EP2 receptor agonist, increased synaptic transmission and decreased paired-pulses ratio (PPR) in EP2 WT mice, but failed to induce the changes in EP2 KO mice. Meanwhile, synaptic transmission was elevated by application of forskolin, an adenylyl cyclase activator, both in EP2 KO and WT animals. In addition, the PGE2-enhanced synaptic transmission was significantly attenuated by application of PKA, IP3 or MAPK inhibitors in EP2 WT animals. Our results show that hippocampal long-term synaptic plasticity is impaired in mice deficient in the EP2, suggesting that PGE2-EP2 signaling is important for hippocampal long-term synaptic plasticity and cognitive function. PMID:19012750

  7. Locomotion and self-administration induced by cocaine in 129/OlaHsd mice lacking galanin

    PubMed Central

    Brabant, Christian; Kuschpel, Anna S; Picciotto, Marina R

    2010-01-01

    Previous studies have demonstrated that the galanin system modulates responses to drugs of abuse such as morphine. The current study examined whether genetic deletion of galanin could affect the locomotor and reinforcing effects of cocaine in mice. We examined spontaneous motor activity and cocaine-induced hyperactivity in wild-type (GAL-WT) and knockout mice lacking galanin (GAL-KO) maintained on the 129/OlaHsd background. Our results indicate that cocaine enhanced locomotion (defined as moving more than 5 cm) dose-dependently in GAL-WT and GAL-KO mice. However, general activity (total beam breaks) was increased by cocaine only in GAL-WT mice. An additional experiment indicated that galnon, a non-selective galanin receptor agonist, did not affect cocaine-induced hyperactivity. In a second set of experiments, mice of both genotypes were trained to self-administer cocaine under a fixed ratio schedule and tested with various doses of cocaine under different schedules of reinforcement. This set of experiments showed that cocaine self-administration did not differ markedly between genotypes. However, while GAL-WT mice acquired cocaine self-administration, a median split analysis showed that mice could be divided into large and small drug takers, whereas all GAL-KO mice were small drug takers. Our results indicate that wild-type and galanin knockout mice on a congenic 129/OlaHsd background are responsive to the locomotor effects of cocaine and can acquire i.v. cocaine self-administration. However, the phenotype observed in GAL-KO mice does not support a major role for galanin in cocaine-induced hyperlocomotion and self-administration. PMID:21038934

  8. Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice.

    PubMed

    Deng, Pan-Yue; Klyachko, Vitaly A

    2016-09-20

    Altered neuronal excitability is one of the hallmarks of fragile X syndrome (FXS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Here, we find that pyramidal cells in the entorhinal cortex of Fmr1 KO mice, an established FXS mouse model, display a decreased AP threshold and increased neuronal excitability. The AP threshold changes in Fmr1 KO mice are caused by increased persistent sodium current (INaP). Our results indicate that this abnormal INaP in Fmr1 KO animals is mediated by increased mGluR5-PLC-PKC (metabotropic glutamate receptor 5/phospholipase C/protein kinase C) signaling. These findings identify Na(+) channel dysregulation as a major cause of neuronal hyperexcitability in cortical FXS neurons and uncover a mechanism by which abnormal mGluR5 signaling causes neuronal hyperexcitability in a FXS mouse model. PMID:27653682

  9. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress.

  10. [Homozygote mice deficient in serotonin 5-HT1B receptor and antidepressant effect of selective serotonin reuptake inhibitors].

    PubMed

    Trillat, A C; Malagié, I; Bourin, M; Jacquot, C; Hen, R; Gardier, A M

    1998-01-01

    We use the knockout mice strategy to investigate the contribution of the 5-HT1B receptor in mediating the effects of selective serotonin reuptake inhibitors (SSRI). Using microdialysis in awake 129/Sv mice, we show that the absence of the 5-HT1B receptor in mutant mice (KO 1B -/-) potentiated the effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, but not in the frontal cortex compared to wild-type mice (WT). Furthermore, using the forced swimming test, we demonstrate that SSRIs decreased immobility of WT mice, and this effect is absent in KO 1B -/- mice showing therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these findings suggest that 5-HT1B autoreceptors limit the effects of SSRI particularly in the hippocampus while postsynaptic 5-HT1B receptors are required for the antidepressant activity of SSRIs.

  11. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal.

    PubMed

    Hosken, Ihaia T; Sutton, Steven W; Smith, Craig M; Gundlach, Andrew L

    2015-02-01

    Anatomical and pharmacological evidence suggests the neuropeptide, relaxin-3, is the preferred endogenous ligand for the relaxin family peptide-3 receptor (RXFP3) and suggests a number of putative stress- and arousal-related roles for RXFP3 signalling. However, in vitro and in vivo evidence demonstrates exogenous relaxin-3 can activate other relaxin peptide family receptors, and the role of relaxin-3/RXFP3 signalling in specific brain circuits and associated behaviours in mice is not well described. In this study, we characterised the behaviour of cohorts of male and female Rxfp3 gene knockout (KO) mice (C57/B6J(RXFP3TM1/DGen)), relative to wild-type (WT) littermates to determine if this receptor KO strain has a similar phenotype to its ligand KO equivalent. Rxfp3 KO mice displayed similar performance to WT littermates in several acute behavioural paradigms designed to gauge motor coordination (rotarod test), spatial memory (Y-maze), depressive-like behaviour (repeat forced-swim test) and sensorimotor gating (prepulse inhibition of acoustic startle). Notably however, male and female Rxfp3 KO mice displayed robust and consistent (dark phase) hypoactivity on voluntary home-cage running wheels (∼20-60% less activity/h), and a small but significant decrease in anxiety-like behavioural traits in the elevated plus maze and light/dark box paradigms. Importantly, this phenotype is near identical to that observed in two independent lines of relaxin-3 KO mice, suggesting these phenotypes are due to the elimination of ligand or receptor and RXFP3-linked signalling. Furthermore, this behavioural characterisation of Rxfp3 KO mice identifies them as a useful experimental model for studying RXFP3-linked signalling and assessing the selectivity and/or potential off-target actions of RXFP3 agonists and antagonists, which could lead to an improved understanding of dysfunctional arousal in mental health disorders, including depression, anxiety, insomnia and neurodegenerative

  12. Diel vertical migration and feeding rhythm of copepods under sea ice at Saroma-ko Lagoon

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Hattori, Hiroshi

    1997-02-01

    Diel vertical migration and feeding rhythm of copepods were investigated in Saroma-ko Lagoon, Japan, one of the southernmost areas covered by seasonal sea ice in the Northern Hemisphere. Copepods were collected under sea ice every 4 h for 24 h at five depths (0, 1, 3, 6 and 9 m from the under-surface of the sea ice) to examine their density and ingestion rate. Distinct changes in the vertical distribution and ingestion rate of copepods were observed at dusk, when they migrated upward from the near-bottom layer to the food-abundant sub-ice layer. However, most copepods left the food-abundant sub-ice layer by midnight and reached near bottom again before sunrise. The ingestion rates of copepods increased after sunset throughout the water column as in areas without ice cover. The ingestion rates at the food-poor near-bottom layer were higher than those during the day in the food-abundant sub-ice layer. The estimated grazing rate by zooplankton, predominately copepods, was between 0.056 and 0.08% of the chlorophyll standing stock in the water column per day. This estimate is lower than that observed under Arctic sea ice, due to the lower biomass of copepods under sea ice at Saroma-ko Lagoon.

  13. The Košice meteorite fall: Recovery and strewn field

    NASA Astrophysics Data System (ADS)

    Tóth, Juraj; Svoreå, JáN.; BorovičKa, Jiří; Spurný, Pavel; Igaz, Antal; Kornoš, Leonard; Vereš, Peter; HusáRik, Marek; Koza, Július; KučEra, Aleš; Zigo, Pavel; Gajdoš, Å. Tefan; ViláGi, Jozef; ČApek, David; KrišAndová, Zuzana; Tomko, Šdušan; Ilha, Jiří; Schunová, Eva; BodnáRová, Marcela; Búzová, Diana; KrejčOvá, Tereza

    2015-05-01

    We provide the circumstances and details of the fireball observation, search expeditions, recovery, strewn field, and physical characteristics of the Košice meteorite that fell in Slovakia on February 28, 2010. The meteorite was only the 15th case of an observed bolide with a recovered mass and subsequent orbit determination. Despite multiple eyewitness reports of the bolide, only three videos from security cameras in Hungary were used for the strewn field determination and orbit computation. Multiple expeditions of professionals and individual searchers found 218 fragments with total weight of 11.3 kg. The strewn field with the size of 5 × 3 km is characterized with respect to the space distribution of the fragments, their mass and size-frequency distribution. This work describes a catalog of 78 fragments, mass, size, volume, fusion crust, names of discoverers, geographic location, and time of discovery, which represents the most complex study of a fresh meteorite fall. From the analytical results, we classified the Košice meteorite as an ordinary H5 chondrite.

  14. Copepod community succession during warm season in Lagoon Notoro-ko, northeastern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshizumi; Ichikawa, Hideaki; Kitamura, Mitsuaki; Nishino, Yasuto; Taniguchi, Akira

    2015-06-01

    Lagoon Notoro-ko, located on the northeastern coast of Hokkaido, Japan, and connected to the Okhotsk Sea by a human-made channel, is strongly influenced by local hydrography, as water masses in the lagoon are seasonally influenced by the Soya Warm Current and the East Sakhalin Current. We here report on the succession of copepod communities during the warm season in relation to water mass exchange. Copepods were categorized into four seasonal communities (spring/early-summer, mid-summer, late-summer/fall, and early-winter) via a cluster analysis based on Bray-Curtis similarities. Spring/early-summer and early-winter communities were characterized by the temperate-boreal calanoid Pseudocalanus newmani, comprising 34.9%-77.6% of the total abundance of copepods during times of low temperature/salinity, as influenced by the prevailing East Sakhalin Current. Late-summer/fall communities were characterized by the neritic warm-water calanoid Paracalanus parvus s.l., comprising 63.9%-96.3% of the total abundance, as influenced by the Soya Warm Current. Mid-summer communities comprised approximately equal abundances of P. parvus, Eurytemora herdmani, Scolecithricella minor, and Centropages abdominalis (12.8%-28.2%); this community is transitional between those of the spring/early-summer and late-summer/fall. Copepod community succession in Lagoon Notoro-ko can be largely explained by seasonal changes in water masses.

  15. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.

  16. β-Adrenoceptor-mediated Relaxation of Urinary Bladder Muscle in β2-Adrenoceptor Knockout Mice

    PubMed Central

    Propping, Stefan; Lorenz, Kristina; Michel, Martin C.; Wirth, Manfred P.; Ravens, Ursula

    2016-01-01

    Background and Objective: In order to characterize the β-adrenoceptor (AR) subtypes involved in agonist-stimulated relaxation of murine urinary bladder we studied the effects of (-)-isoprenaline and CL 316,243 on tonic contraction and spontaneous contractions in detrusor strips of wild-type (WT) and β2-AR knockout (β2-AR KO) mice. Materials and Methods: Urinary bladders were isolated from male WT and β2-AR KO mice. β-AR subtype expression was determined with quantitative real-time PCR. Intact muscle strips pre-contracted with KCl (40 mM) were exposed to cumulatively increasing concentrations of (-)-isoprenaline or β3-AR agonist CL 316,243 in the presence and absence of the subtype-selective β-AR blockers CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Results: Quantitative real-time PCR confirmed lack of β2-AR expression in bladder tissue from β2-AR KO mice. In isolated detrusor strips, pre-contraction with KCl increased basal tone and enhanced spontaneous activity significantly more in β2-AR KO than in WT. (-)-Isoprenaline relaxed tonic tension and attenuated spontaneous activity with similar potency, but the concentrations required were two orders of magnitude higher in β2-AR KO than WT. The concentration-response curves (CRCs) for relaxation were not affected by CGP 20712A (300 nM), but were shifted to the right by ICI 118,551 (50 nM) and L748,337 (10 μM). The -logEC50 values for (-)-isoprenaline in WT and β2-AR KO tissue were 7.98 and 6.00, respectively, suggesting a large receptor reserve of β2-AR. (-)-CL 316,243 relaxed detrusor and attenuated spontaneous contractions from WT and β2-AR KO mice with a potency corresponding to the drug’s affinity for β3-AR. L743,337 shifted the CRCs to the right. Conclusion: Our findings in β2-AR KO mice suggest that there is a large receptor reserve for β2-AR in WT mice so that this β-AR subtype will mediate relaxation of tone and attenuation of spontaneous activity under physiological

  17. Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol.

    PubMed

    Li, Zhiqiang; Park, Tae-Sik; Li, Yan; Pan, Xiaoyue; Iqbal, Jahangir; Lu, David; Tang, Weiqing; Yu, Liqing; Goldberg, Ira J; Hussain, M Mahmood; Jiang, Xian-Cheng

    2009-04-01

    Serine palmitoyltransferase (SPT) is the key enzyme for the biosynthesis of sphingolipids. It has been reported that oral administration of myriocin (an SPT inhibitor) decreases plasma sphingomyelin (SM) and cholesterol levels, and reduces atherosclerosis in apoE knockout (KO) mice. We studied cholesterol absorption in myriocin-treated WT or apoE KO animals and found that, after myriocin treatment, the mice absorbed significantly less cholesterol than controls, with no observable pathological changes in the small intestine. More importantly, we found that heterozygous Sptlc1 (a subunit of SPT) KO mice also absorbed significantly less cholesterol than controls. To understand the mechanism, we measured protein levels of Niemann-Pick C1-like 1 (NPC1L1), ABCG5, and ABCA1, three key factors involved in intestinal cholesterol absorption. We found that NPC1L1 and ABCA1 were decreased, whereas ABCG5 was increased in the SPT deficient small intestine. SM levels on the apical membrane were also measured and they were significantly decreased in SPT deficient mice, compared with controls. In conclusion, SPT deficiency might reduce intestinal cholesterol absorption by altering NPC1L1 and ABCG5 protein levels in the apical membranes of enterocytes through lowering apical membrane SM levels. This may be also true for ABCA1 which locates on basal membrane of enterocytes. Manipulation of SPT activity could thus provide a novel alternative treatment for dyslipidemia. PMID:19416652

  18. Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol.

    PubMed

    Li, Zhiqiang; Park, Tae-Sik; Li, Yan; Pan, Xiaoyue; Iqbal, Jahangir; Lu, David; Tang, Weiqing; Yu, Liqing; Goldberg, Ira J; Hussain, M Mahmood; Jiang, Xian-Cheng

    2009-04-01

    Serine palmitoyltransferase (SPT) is the key enzyme for the biosynthesis of sphingolipids. It has been reported that oral administration of myriocin (an SPT inhibitor) decreases plasma sphingomyelin (SM) and cholesterol levels, and reduces atherosclerosis in apoE knockout (KO) mice. We studied cholesterol absorption in myriocin-treated WT or apoE KO animals and found that, after myriocin treatment, the mice absorbed significantly less cholesterol than controls, with no observable pathological changes in the small intestine. More importantly, we found that heterozygous Sptlc1 (a subunit of SPT) KO mice also absorbed significantly less cholesterol than controls. To understand the mechanism, we measured protein levels of Niemann-Pick C1-like 1 (NPC1L1), ABCG5, and ABCA1, three key factors involved in intestinal cholesterol absorption. We found that NPC1L1 and ABCA1 were decreased, whereas ABCG5 was increased in the SPT deficient small intestine. SM levels on the apical membrane were also measured and they were significantly decreased in SPT deficient mice, compared with controls. In conclusion, SPT deficiency might reduce intestinal cholesterol absorption by altering NPC1L1 and ABCG5 protein levels in the apical membranes of enterocytes through lowering apical membrane SM levels. This may be also true for ABCA1 which locates on basal membrane of enterocytes. Manipulation of SPT activity could thus provide a novel alternative treatment for dyslipidemia.

  19. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice

    PubMed Central

    Nai, Antonella; Rubio, Aude; Campanella, Alessandro; Gourbeyre, Ophélie; Artuso, Irene; Bordini, Jessica; Gineste, Aurélie; Latour, Chloé; Besson-Fournier, Céline; Lin, Herbert Y.; Coppin, Hélène; Roth, Marie-Paule; Camaschella, Clara; Silvestri, Laura

    2016-01-01

    Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein–mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling. PMID:26755707

  20. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice.

    PubMed

    Wyatt, Letisha R; Finn, Deborah A; Khoja, Sheraz; Yardley, Megan M; Asatryan, Liana; Alkana, Ronald L; Davies, Daryl L

    2014-06-01

    P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems. PMID:24671605

  1. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice

    PubMed Central

    Wyatt, Letisha R.; Finn, Deborah A.; Khoja, Sheraz; Yardley, Megan M; Asatryan, Liana; Alkana, Ronald L.; Davies, Daryl L.

    2014-01-01

    P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular ATP. The P2X4 subtype is abundantly expressed in the CNS and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol’s effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-hr and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50% less in the P2X4R KO mice. Western blot analysis identified significant changes in -γ aminobutyric acidA receptor (GABAAR) α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems. PMID:24671605

  2. Cortico-subcortical neuromodulation involved in the amelioration of prepulse inhibition deficits in dopamine transporter knockout mice.

    PubMed

    Arime, Yosefu; Kasahara, Yoshiyuki; Hall, F Scott; Uhl, George R; Sora, Ichiro

    2012-10-01

    Prepulse inhibition (PPI) deficits are among the most reproducible phenotypic markers found in schizophrenic patients. We recently reported that nisoxetine, a selective norepinephrine transporter (NET) inhibitor, reversed the PPI deficits that have been identified in dopamine transporter (DAT) knockout (KO) mice. However, the mechanisms underlying nisoxetine-induced PPI recovery in DAT KO mice were unclear in previous experiments. To clarify these mechanisms, PPI was tested after microinjections of nisoxetine into the medial prefrontal cortex (mPFc) or nucleus accumbens (NAc) in wildtype (WT) and DAT KO mice. c-Fos immunohistochemistry provided an indicator of neural activation. Multiple-fluorescent-labeling procedures and the retrograde tracer fluorogold were employed to identify nisoxetine-activated neurons and circuits. Systemic nisoxetine activated the mPFc, the NAc shell, the basolateral amygdala, and the subiculum. Infusions of nisoxetine into the mPFc reversed PPI deficits in DAT KO mice, but produced no changes in WT mice, while infusion of nisoxetine into the NAc had no effect on PPI in both WT and DAT KO mice. Experiments using multiple-fluorescent labeling/fluorogold revealed that nisoxetine activates presumed glutamatergic pyramidal cells that project from the mPFc to the NAc. Activated glutamatergic projections from the mPFc to the NAc appear to have substantial roles in the ability of a NET inhibitor to normalize PPI deficits in DAT KO. Thus, this data suggest that selective NET inhibitors such as nisoxetine might improve information processing deficits in schizophrenia via regulation of cortico-subcortical neuromodulation.

  3. Regulation of Prolactin in Mice with Altered Hypothalamic Melanocortin Activity

    PubMed Central

    Dutia, Roxanne; Kim, Andrea J.; Mosharov, Eugene; Savontaus, Eriika; Chua, Streamson C.; Wardlaw, Sharon L.

    2012-01-01

    This study used two mouse models with genetic manipulation of the melanocortin system to investigate prolactin regulation. Mice with overexpression of the melanocortin receptor (MC-R) agonist, α-melanocyte-stimulating hormone (Tg-MSH) or deletion of the MC-R antagonist agouti-related protein (AgRP KO) were studied. Male Tg-MSH mice had lower blood prolactin levels at baseline (2.9±0.3 vs 4.7±0.7 ng/ml) and after restraint stress(68 ±6.5 vs 117±22 ng/ml) versus WT (p<0.05); however, pituitary prolactin content was not different. Blood prolactin was also decreased in male AgRP KO mice at baseline (4.2±0.5 vs 7.6±1.3 ng/ml) and after stress (60±4.5 vs 86.1±5.7 ng/ml) vs WT (p <0.001). Pituitary prolactin content was lower in male AgRP KO mice (4.3±0.3 vs 6.7±0.5 μg/pituitary, p <0.001) versus WT. No differences in blood or pituitary prolactin levels were observed in female AgRP KO mice versus WT. Hypothalamic dopamine activity was assessed as the potential mechanism responsible for changes in prolactin levels. Hypothalamic tyrosine hydroxylase mRNA was measured in both genetic models versus WT mice and hypothalamic dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content were measured in male AgRP KO and WT mice but neither were significantly different. However, these results do not preclude changes in dopamine activity as dopamine turnover was not directly investigated. This is the first study to show that baseline and stress-induced prolactin release and pituitary prolactin content are reduced in mice with genetic alterations of the melanocortin system and suggests that changes in hypothalamic melanocortin activity may be reflected in measurements of serum prolactin levels. PMID:22800691

  4. Regulation of prolactin in mice with altered hypothalamic melanocortin activity.

    PubMed

    Dutia, Roxanne; Kim, Andrea J; Mosharov, Eugene; Savontaus, Eriika; Chua, Streamson C; Wardlaw, Sharon L

    2012-09-01

    This study used two mouse models with genetic manipulation of the melanocortin system to investigate prolactin regulation. Mice with overexpression of the melanocortin receptor (MC-R) agonist, α-melanocyte-stimulating hormone (Tg-MSH) or deletion of the MC-R antagonist agouti-related protein (AgRP KO) were studied. Male Tg-MSH mice had lower blood prolactin levels at baseline (2.9±0.3 vs. 4.7±0.7ng/ml) and after restraint stress (68±6.5 vs. 117±22ng/ml) vs. WT (p<0.05); however, pituitary prolactin content was not different. Blood prolactin was also decreased in male AgRP KO mice at baseline (4.2±0.5 vs. 7.6±1.3ng/ml) and after stress (60±4.5 vs. 86.1±5.7ng/ml) vs. WT (p<0.001). Pituitary prolactin content was lower in male AgRP KO mice (4.3±0.3 vs. 6.7±0.5μg/pituitary, p<0.001) vs. WT. No differences in blood or pituitary prolactin levels were observed in female AgRP KO mice vs. WT. Hypothalamic dopamine activity was assessed as the potential mechanism responsible for changes in prolactin levels. Hypothalamic tyrosine hydroxylase mRNA was measured in both genetic models vs. WT mice and hypothalamic dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content were measured in male AgRP KO and WT mice but neither were significantly different. However, these results do not preclude changes in dopamine activity as dopamine turnover was not directly investigated. This is the first study to show that baseline and stress-induced prolactin release and pituitary prolactin content are reduced in mice with genetic alterations of the melanocortin system and suggests that changes in hypothalamic melanocortin activity may be reflected in measurements of serum prolactin levels.

  5. Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice

    PubMed Central

    Zhou, Siru; Xie, Yangli; Li, Wei; Huang, Junlan; Wang, Zuqiang; Tang, Junzhou; Xu, Wei; Sun, Xianding; Tan, Qiaoyan; Huang, Shuo; Luo, Fengtao; Xu, Meng; Wang, Jun; Wu, Tingting; chen, Liang; Chen, Hangang; Su, Nan; Du, Xiaolan; Shen, Yue; Chen, Lin

    2016-01-01

    Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a common degenerative disease in adult, which is characterized by progressive destruction of the articular cartilage. To investigate the role of FGFR3 in the homeostasis of TMJ cartilage during adult stage, we generated Fgfr3f/f; Col2a1-CreERT2 (Fgfr3 cKO) mice, in which Fgfr3 was deleted in chondrocytes at 2 months of age. OA-like defects were observed in Fgfr3 cKO TMJ cartilage. Immunohistochemical staining and quantitative real-time PCR analyses revealed a significant increase in expressions of COL10, MMP13 and AMAMTS5. In addition, there was a sharp increase in chondrocyte apoptosis at the Fgfr3 cKO articular surface, which was accompanied by a down-regulation of lubricin expression. Importantly, the expressions of RUNX2 and Indian hedgehog (IHH) were up-regulated in Fgfr3 cKO TMJ. Primary Fgfr3 cKO chondrocytes were treated with IHH signaling inhibitor, which significantly reduced expressions of Runx2, Col10, Mmp13 and Adamts5. Furthermore, the IHH signaling inhibitor partially alleviated OA-like defects in the TMJ of Fgfr3 cKO mice, including restoration of lubricin expression and improvement of the integrity of the articular surface. In conclusion, our study proposes that FGFR3/IHH signaling pathway plays a critical role in maintaining the homeostasis of TMJ articular cartilage during adult stage. PMID:27041063

  6. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells

    PubMed Central

    Sondhi, Varun; Owen, Bryn M.; Liu, Jiayan; Chomic, Robert; Kliewer, Steven A.; Hughes, Beverly A.; Arlt, Wiebke; Mangelsdorf, David J.

    2016-01-01

    Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5flox/flox:Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings. PMID:26974035

  7. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice

    PubMed Central

    2014-01-01

    Background Traumatic brain injury (TBI) enhances pro-inflammatory responses, neuronal loss and long-term behavioral deficits. Caveolins (Cavs) are regulators of neuronal and glial survival signaling. Previously we showed that astrocyte and microglial activation is increased in Cav-1 knock-out (KO) mice and that Cav-1 and Cav-3 modulate microglial morphology. We hypothesized that Cavs may regulate cytokine production after TBI. Methods Controlled cortical impact (CCI) model of TBI (3 m/second; 1.0 mm depth; parietal cortex) was performed on wild-type (WT; C57Bl/6), Cav-1 KO, and Cav-3 KO mice. Histology and immunofluorescence microscopy (lesion volume, glia activation), behavioral tests (open field, balance beam, wire grip, T-maze), electrophysiology, electron paramagnetic resonance, membrane fractionation, and multiplex assays were performed. Data were analyzed by unpaired t tests or analysis of variance (ANOVA) with post-hoc Bonferroni’s multiple comparison. Results CCI increased cortical and hippocampal injury and decreased expression of MLR-localized synaptic proteins (24 hours), enhanced NADPH oxidase (Nox) activity (24 hours and 1 week), enhanced polysynaptic responses (1 week), and caused hippocampal-dependent learning deficits (3 months). CCI increased brain lesion volume in both Cav-3 and Cav-1 KO mice after 24 hours (P < 0.0001, n = 4; one-way ANOVA). Multiplex array revealed a significant increase in expression of IL-1β, IL-9, IL-10, KC (keratinocyte chemoattractant), and monocyte chemoattractant protein 1 (MCP-1) in ipsilateral hemisphere and IL-9, IL-10, IL-17, and macrophage inflammatory protein 1 alpha (MIP-1α) in contralateral hemisphere of WT mice after 4 hours. CCI increased IL-2, IL-6, KC and MCP-1 in ipsilateral and IL-6, IL-9, IL-17 and KC in contralateral hemispheres in Cav-1 KO and increased all 10 cytokines/chemokines in both hemispheres except for IL-17 (ipsilateral) and MIP-1α (contralateral) in Cav-3 KO (versus WT CCI). Cav-3 KO CCI

  8. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  9. Normal Performance of Fmr1 Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task123

    PubMed Central

    Hayes, Jane; Pride, Michael; Silverman, Jill L.; Crawley, Jacqueline N.

    2016-01-01

    Abstract Fragile X syndrome is a neurodevelopmental disorder characterized by mild-to-severe cognitive deficits. The complete absence of Fmr1 and its protein product in the mouse model of fragile X (Fmr1 KO) provides construct validity. A major conundrum in the field is the remarkably normal performance of Fmr1 mice on cognitive tests in most reports. One explanation may be insufficiently challenging cognitive testing procedures. Here we developed a delayed nonmatching to position touchscreen task to test the hypothesis that paradigms placing demands on working memory would reveal robust and replicable cognitive deficits in the Fmr1 KO mouse. We first tested Fmr1 KO mice (Fmr1) and their wild-type (WT) littermates in a simple visual discrimination task, followed by assessment of reversal learning. We then tested Fmr1 and WT mice in a new touchscreen nonmatch to position task and subsequently challenged their working memory abilities by adding delays, representing a higher cognitive load. The performance by Fmr1 KO mice was equal to WTs on both touchscreen tasks. Last, we replicated previous reports of normal performance by Fmr1 mice on Morris water maze spatial navigation and reversal. These results indicate that, while the Fmr1 mouse model effectively recapitulates many molecular and cellular aspects of fragile X syndrome, the cognitive profile of Fmr1 mice generally does not recapitulate the primary cognitive deficits in the human syndrome, even when diverse and challenging tasks are imposed. PMID:27022628

  10. Butyrylcholinesterase Deficiency Promotes Adipose Tissue Growth and Hepatic Lipid Accumulation in Male Mice on High-Fat Diet.

    PubMed

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Stout, Michael B; Jensen, Michael D; Brimijoin, Stephen

    2016-08-01

    Despite numerous reports of relationships between weight gain and butyrylcholinesterase (BChE), this enzyme's role in the genesis of obesity remains unclear, but recent research points to strong links with ghrelin, the "hunger hormone." The availability of BChE knockout (KO) mice provides an opportunity to clarify the causal relationship between BChE and obesity onset. We now find that young KO mice have abnormally high plasma ghrelin levels that slowly decline during long-term high-fat feeding and ultimately drop below those in wild-type mice. On such a diet, the KO mice gained notably more weight, more white fat, and more hepatic fat than wild-type animals. In addition to a greater burden of hepatic triglycerides, the livers of these KO mice show distinctly higher levels of inflammatory markers. Finally, their energy expenditure proved to be lower than in wild-type mice despite similar activity levels and increased caloric intake. A gene transfer of mouse BChE with adeno-associated virus vector restored nearly all aspects of the normal phenotype. Our results indicate that BChE strongly affects fat metabolism, has an important impact on fat accumulation, and may be a promising tool for combating obesity. PMID:27300766

  11. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter.

    PubMed

    Khan, Saeed R; Glenton, Patricia A

    2008-05-01

    The most common theories about the pathogenesis of idiopathic kidney stones consider precipitation of calcium phosphate (CaP) within the kidneys critical for the development of the disease. We decided to test the hypothesis that a CaP substrate can promote the deposition of calcium oxalate (CaOx) in the kidneys. Experimental hyperoxaluria was induced by feeding glyoxylate to male mice with knockout (KO) of NaP(i) IIa (Npt2a), a sodium-phosphate cotransporter. Npt2a KO mice are hypercalciuric and produce CaP deposits in their renal tubules. Experimental hyperoxaluria led to CaOx crystalluria in both the hypercalciuric KO mice and the normocalciuric control B6 mice. Only the KO mice produced CaOx crystal deposits in their kidneys, but the CaOx crystals deposited separately from the CaP deposits. Perhaps CaP deposits were not available for a CaOx overgrowth. These results also validate earlier animal model observations that showed that CaP substrate is not required for renal deposition of CaOx and that other factors, such as local supersaturation, may be involved. The absence of CaOx deposition in the B6 mice despite extreme hyperoxaluria also signifies the importance of both calcium and oxalate in the development of CaOx nephrolithiasis.

  12. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice

    PubMed Central

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-01

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot–Marie–Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages. PMID:26778110

  13. Lack of tumor necrosis factor receptor type 1 inhibits liver fibrosis induced by carbon tetrachloride in mice.

    PubMed

    Sudo, Kaori; Yamada, Yasuhiro; Moriwaki, Hisataka; Saito, Kuniaki; Seishima, Mitsuru

    2005-03-01

    Chronic liver injury causes liver regeneration, resulting in fibrosis. The proinflammatory cytokine tumor necrosis factor (TNF) is involved in the pathogenesis of many acute and chronic liver diseases. TNF has pleiotropic functions, but its role in liver fibrosis has not been clarified. Chronic repeated injection of CCl4 induces liver fibrosis in mice. We examined whether signaling through TNF receptors was critical for this process, using mice lacking either TNF receptor (TNFR) type 1 or TNFR type 2 to define the pathophysiologic role of TNFR signals in liver fibrosis. Liver fibrosis caused by chronic CCl4 exposure was TNF-dependent; histological fibrosis was seen in wild-type (WT) and TNFR-2 knockout (KO) mice, but not in TNFR-1 KO mice. Furthermore, a marked reduction in procollagen and TGF-beta synthesis was observed in TNFR-1 KO mice, which also had little detectable NF-kappa B, STAT3, and AP1 binding, and reduced levels of liver interleukin-6 (IL-6) mRNA compared to WT and TNFR-2 KO mice. In conclusion, our results indicate the possibility that NF-kappa B, STAT3, and AP1 binding by signals transduced through TNFR-1 plays an important role in liver fibrosis formation.

  14. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in mu-opioid receptor knockout mice.

    PubMed

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-06-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the mu-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from our butorphanol-induced mechanical antinociception experiments, assessed by the Randall-Selitto test, were similar to the results obtained from the thermal antinociception experiments in these mice. Interestingly, however, butorphanol retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice. The butorphanol-induced visceral chemical antinociception that was retained in homozygous MOP-KO mice was completely blocked by pretreatment with nor-binaltorphimine, a kappa-opioid receptor (KOP) antagonist. In vitro binding and cyclic adenosine monophosphate assays also showed that butorphanol possessed higher affinity for KOPs and MOPs than for delta-opioid receptors. These results molecular pharmacologically confirmed previous studies implicating MOPs, and partially KOPs, in mediating butorphanol-induced analgesia. PMID:18417173

  15. Loss of AMP-Activated Protein Kinase Induces Mitochondrial Dysfunction and Proinflammatory Response in Unstimulated Abcd1-Knockout Mice Mixed Glial Cells

    PubMed Central

    Suhail, Hamid; Giri, Shailendra

    2015-01-01

    X-linked adrenoleukodystrophy (X-ALD) is caused by mutations and/or deletions in the ABCD1 gene. Similar mutations/deletions can give rise to variable phenotypes ranging from mild adrenomyeloneuropathy (AMN) to inflammatory fatal cerebral adrenoleukodystrophy (ALD) via unknown mechanisms. We recently reported the loss of the anti-inflammatory protein adenosine monophosphate activated protein kinase (AMPKα1) exclusively in ALD patient-derived cells. X-ALD mouse model (Abcd1-knockout (KO) mice) mimics the human AMN phenotype and does not develop the cerebral inflammation characteristic of human ALD. In this study we document that AMPKα1 levels in vivo (in brain cortex and spinal cord) and in vitro in Abcd1-KO mixed glial cells are similar to that of wild type mice. Deletion of AMPKα1 in the mixed glial cells of Abcd1-KO mice induced spontaneous mitochondrial dysfunction (lower oxygen consumption rate and ATP levels). Mitochondrial dysfunction in ALD patient-derived cells and in AMPKα1-deleted Abcd1-KO mice mixed glial cells was accompanied by lower levels of mitochondrial complex (1-V) subunits. More importantly, AMPKα1 deletion induced proinflammatory inducible nitric oxide synthase levels in the unstimulated Abcd1-KO mice mixed glial cells. Taken together, this study provides novel direct evidence for a causal role for AMPK loss in the development of mitochondrial dysfunction and proinflammatory response in X-ALD. PMID:25861159

  16. Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4-Cre-mediated knockout of the tuberous sclerosis complex 1 gene.

    PubMed

    Xiang, Xinxin; Yuan, Fang; Zhao, Jing; Li, Ziru; Wang, Xian; Guan, Youfei; Tang, Chaoshu; Sun, Guang; Li, Yin; Zhang, Weizhen

    2013-03-01

    Tuberous sclerosis complex 1 (TSC1) forms a heterodimmer with tuberous sclerosis complex 2, to inhibit signalling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). The mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as gene transcription and protein translation, in response to growth factors and nutrient signals. Originally designed to test the role of TSC1 in adipocyte function, mice in which the gene for TSC1 was specifically deleted by the fatty acid binding protein 4 (FABP4)-Cre (Fabp4-Tsc1cKO mice) died prematurely within 48 h after birth. The Fabp4-Tsc1cKO mouse revealed a much smaller phenotype relative to the wild-type littermates. Maternal administration of rapamycin, a classical mTOR inhibitor, significantly increased the survival time of Fabp4-Tsc1cKO mice for up to 23 days. Both macroscopic and microscopic haemorrhages were observed in the lungs of Fabp4-Tsc1cKO mice, while other tissues showed no significant changes. Levels of surfactant proteins A and B demonstrated a significant decrease in the Fabp4-Tsc1cKO mice, which was rescued by maternal injection of rapamycin. Co-localization of FABP4 or TSC1 with surfactant protein B was also detected in neonatal pulmonary tissues. Our study suggests that TSC1-mTORC1 may be critical for the synthesis of surfactant proteins A and B.

  17. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice.

    PubMed

    Zietak, Marika; Kozak, Leslie P

    2016-03-01

    It has been proposed that diet-induced obesity at thermoneutrality (TN; 29°C) is reduced by a UCP1-dependent thermogenesis; however, it has not been shown how UCP1-dependent thermogenesis can be activated in the absence of sympathetic activity. A recent study provides such a mechanism by showing that dietary bile acids (BAs) suppress obesity in mice fed a high-fat diet (HFD) by a mechanism dependent on type 2 deiodinase (DIO2); however, neither a role for UCP1 nor the influence of sympathetic activity was properly assessed. To test whether the effects of BAs on adiposity are independent of Ucp1 and cold-activated thermogenesis, obesity phenotypes were determined in C57BL6/J.(+)/(+) (WT) and C57BL6/J.Ucp1.(-)/(-) mice (Ucp1-KO) housed at TN and fed a HFD with or without 0.5% (wt/wt) cholic acid (CA) for 9 wk. CA in a HFD reduced adiposity and hepatic lipogenesis and improved glucose tolerance in WT but not in Ucp1-KO mice and was accompanied by increases in food intake and energy expenditure (EE). In iBAT, CA increased Ucp1 mRNA and protein levels 1.5- and twofold, respectively, and increased DIO2 and TGR5 protein levels in WT mice. Despite enhanced Dio2 expression in Ucp1-KO and Ucp1-KO-CA treated mice, this did not enhance the ability of BAs to reduce obesity. By comparing the effects of BAs on WT and Ucp1-KO mice at TN, our study showed that BAs suppress diet-induced obesity by increasing EE through a mechanism dependent on Ucp1 expression, which is likely independent of adrenergic signaling. PMID:26714852

  18. Deletion of α-neurexin II results in autism-related behaviors in mice.

    PubMed

    Dachtler, J; Glasper, J; Cohen, R N; Ivorra, J L; Swiffen, D J; Jackson, A J; Harte, M K; Rodgers, R J; Clapcote, S J

    2014-11-25

    Autism is a common and frequently disabling neurodevelopmental disorder with a strong genetic basis. Human genetic studies have discovered mutations disrupting exons of the NRXN2 gene, which encodes the synaptic adhesion protein α-neurexin II (Nrxn2α), in two unrelated individuals with autism, but a causal link between NRXN2 and the disorder remains unclear. To begin to test the hypothesis that Nrxn2α deficiency contributes to the symptoms of autism, we employed Nrxn2α knockout (KO) mice that genetically model Nrxn2α deficiency in vivo. We report that Nrxn2α KO mice displayed deficits in sociability and social memory when exposed to novel conspecifics. In tests of exploratory activity, Nrxn2α KO mice displayed an anxiety-like phenotype in comparison with wild-type littermates, with thigmotaxis in an open field, less time spent in the open arms of an elevated plus maze, more time spent in the enclosure of an emergence test and less time spent exploring novel objects. However, Nrxn2α KO mice did not exhibit any obvious changes in prepulse inhibition or in passive avoidance learning. Real-time PCR analysis of the frontal cortex and hippocampus revealed significant decreases in the mRNA levels of genes encoding proteins involved in both excitatory and inhibitory transmission. Quantification of protein expression revealed that Munc18-1, encoded by Stxbp1, was significantly decreased in the hippocampus of Nrxn2α KO mice, which is suggestive of deficiencies in presynaptic vesicular release. Our findings demonstrate a causal role for the loss of Nrxn2α in the genesis of autism-related behaviors in mice.

  19. Pancreatic Protein Tyrosine Phosphatase 1B Deficiency Exacerbates Acute Pancreatitis in Mice.

    PubMed

    Bettaieb, Ahmed; Koike, Shinichiro; Chahed, Samah; Bachaalany, Santana; Griffey, Stephen; Sastre, Juan; Haj, Fawaz G

    2016-08-01

    Acute pancreatitis (AP) is a common and devastating gastrointestinal disorder that causes significant morbidity. The disease starts as local inflammation in the pancreas that may progress to systemic inflammation and complications. Protein tyrosine phosphatase 1B (PTP1B) is implicated in inflammatory signaling, but its significance in AP remains unclear. To investigate whether PTP1B may have a role in AP, we used pancreas PTP1B knockout (panc-PTP1B KO) mice and determined the effects of pancreatic PTP1B deficiency on cerulein- and arginine-induced acute pancreatitis. We report that PTP1B protein expression was increased in the early phase of AP in mice and rats. In addition, histological analyses of pancreas samples revealed enhanced features of AP in cerulein-treated panc-PTP1B KO mice compared with controls. Moreover, cerulein- and arginine-induced serum amylase and lipase were significantly higher in panc-PTP1B KO mice compared with controls. Similarly, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B, IL-6, and tumor necrosis factor-α were increased in panc-PTP1B KO mice compared with controls. Furthermore, panc-PTP1B KO mice exhibited enhanced cerulein- and arginine-induced NF-κB inflammatory response accompanied with increased mitogen-activated protein kinases activation and elevated endoplasmic reticulum stress. Notably, these effects were recapitulated in acinar cells treated with a pharmacological inhibitor of PTP1B. These findings reveal a novel role for pancreatic PTP1B in cerulein- and arginine-induced acute pancreatitis. PMID:27461362

  20. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    PubMed

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs. PMID:23428971

  1. Sociocommunicative and sensorimotor impairments in male P2X4-deficient mice.

    PubMed

    Wyatt, Letisha R; Godar, Sean C; Khoja, Sheraz; Jakowec, Michael W; Alkana, Ronald L; Bortolato, Marco; Davies, Daryl L

    2013-09-01

    Purinergic P2X receptors are a family of ligand-gated ion channels gated by extracellular adenosine 5'-triphosphate (ATP). Of the seven P2X subtypes, P2X4 receptors (P2X4Rs) are richly expressed in the brain, yet their role in behavioral organization remains poorly understood. In this study, we examined the behavioral responses of P2X4R heterozygous (HZ) and knockout (KO) mice in a variety of testing paradigms designed to assess complementary aspects of sensory functions, emotional reactivity, and cognitive organization. P2X4R deficiency did not induce significant alterations of locomotor activity and anxiety-related indices in the novel open field and elevated plus-maze tests. Conversely, P2X4R KO mice displayed marked deficits in acoustic startle reflex amplitude, as well as significant sensorimotor gating impairments, as assessed by the prepulse inhibition of the startle. In addition, P2X4R KO mice displayed enhanced tactile sensitivity, as signified by a lower latency in the sticky-tape removal test. Moreover, both P2X4R HZ and KO mice showed significant reductions in social interaction and maternal separation-induced ultrasonic vocalizations in pups. Notably, brain regions of P2X4R KO mice exhibited significant brain-regional alterations in the subunit composition of glutamate ionotropic receptors. These results collectively document that P2X4-deficient mice exhibit a spectrum of phenotypic abnormalities partially akin to those observed in other murine models of autism-spectrum disorder. In conclusion, our findings highlight a putative role of P2X4Rs in the regulation of perceptual and sociocommunicative functions and point to these receptors as putative targets for disturbances associated with neurodevelopmental disorders. PMID:23604007

  2. Sociocommunicative and Sensorimotor Impairments in Male P2X4-Deficient Mice

    PubMed Central

    Wyatt, Letisha R; Godar, Sean C; Khoja, Sheraz; Jakowec, Michael W; Alkana, Ronald L; Bortolato, Marco; Davies, Daryl L

    2013-01-01

    Purinergic P2X receptors are a family of ligand-gated ion channels gated by extracellular adenosine 5′-triphosphate (ATP). Of the seven P2X subtypes, P2X4 receptors (P2X4Rs) are richly expressed in the brain, yet their role in behavioral organization remains poorly understood. In this study, we examined the behavioral responses of P2X4R heterozygous (HZ) and knockout (KO) mice in a variety of testing paradigms designed to assess complementary aspects of sensory functions, emotional reactivity, and cognitive organization. P2X4R deficiency did not induce significant alterations of locomotor activity and anxiety-related indices in the novel open field and elevated plus-maze tests. Conversely, P2X4R KO mice displayed marked deficits in acoustic startle reflex amplitude, as well as significant sensorimotor gating impairments, as assessed by the prepulse inhibition of the startle. In addition, P2X4R KO mice displayed enhanced tactile sensitivity, as signified by a lower latency in the sticky-tape removal test. Moreover, both P2X4R HZ and KO mice showed significant reductions in social interaction and maternal separation-induced ultrasonic vocalizations in pups. Notably, brain regions of P2X4R KO mice exhibited significant brain-regional alterations in the subunit composition of glutamate ionotropic receptors. These results collectively document that P2X4-deficient mice exhibit a spectrum of phenotypic abnormalities partially akin to those observed in other murine models of autism-spectrum disorder. In conclusion, our findings highlight a putative role of P2X4Rs in the regulation of perceptual and sociocommunicative functions and point to these receptors as putative targets for disturbances associated with neurodevelopmental disorders. PMID:23604007

  3. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    PubMed

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs.

  4. 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation.

    PubMed

    Zielinski, Mark R; Taishi, Ping; Clinton, James M; Krueger, James M

    2012-06-01

    Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.

  5. Subchronic exposure to ethyl tertiary butyl ether resulting in genetic damage in Aldh2 knockout mice.

    PubMed

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2013-09-15

    Ethyl tertiary butyl ether (ETBE) is biofuel additive recently used in Japan and some other countries. Limited evidence shows that ETBE has low toxicity. Acetaldehyde (AA), however, as one primary metabolite of ETBE, is clearly genotoxic and has been considered to be a potential carcinogen. The aim of this study was to evaluate the effects of ALDH2 gene on ETBE-induced genotoxicity and metabolism of its metabolites after inhalation exposure to ETBE. A group of wild-type (WT) and Aldh2 knockout (KO) C57BL/6 mice were exposed to 500ppm ETBE for 1-6h, and the blood concentrations of ETBE metabolites, including AA, tert-butyl alcohol and 2-methyl-1,2-propanediol, were measured. Another group of mice of WT and KO were exposed to 0, 500, 1750, or 5000ppm ETBE for 6h/day with 5 days per weeks for 13 weeks. Genotoxic effects of ETBE in these mice were measured by the alkaline comet assay, 8-hydroxyguanine DNA-glycosylase modified comet assay and micronucleus test. With short-term exposure to ETBE, the blood concentrations of all the three metabolites in KO mice were significantly higher than the corresponding concentrations of those in WT mice of both sexes. After subchronic exposure to ETBE, there was significant increase in DNA damage in a dose-dependent manner in KO male mice, while only 5000ppm exposure significantly increased DNA damage in male WT mice. Overall, there was a significant sex difference in genetic damage in both genetic types of mice. These results showed that ALDH2 is involved in the detoxification of ETBE and lack of enzyme activity may greatly increase the sensitivity to the genotoxic effects of ETBE, and male mice were more sensitive than females. PMID:23810710

  6. Endothelial Expression of Scavenger Receptor Class B, Type I Protects against Development of Atherosclerosis in Mice

    PubMed Central

    Vaisman, Boris L.; Vishnyakova, Tatyana G.; Freeman, Lita A.; Amar, Marcelo J.; Demosky, Stephen J.; Liu, Chengyu; Stonik, John A.; Sampson, Maureen L.; Pryor, Milton; Bocharov, Alexander V.; Eggerman, Thomas L.; Patterson, Amy P.; Remaley, Alan T.

    2015-01-01

    The role of scavenger receptor class B, type I (SR-BI) in endothelial cells (EC) was examined in several novel transgenic mouse models expressing SR-BI in endothelium of mice with normal C57Bl6/N, apoE-KO, or Scarb1-KO backgrounds. Mice were also created expressing SR-BI exclusively in endothelium and liver. Endothelial expression of the Tie2-Scarb1 transgene had no significant effect on plasma lipoprotein levels in mice on a normal chow diet but on an atherogenic diet, significantly decreased plasma cholesterol levels, increased plasma HDL cholesterol (HDL-C) levels, and protected mice against atherosclerosis. In 8-month-old apoE-KO mice fed a normal chow diet, the Tie2-Scarb1 transgene decreased aortic lesions by 24%. Mice expressing SR-BI only in EC and liver had a 1.5 ± 0.1-fold increase in plasma cholesterol compared to mice synthesizing SR-BI only in liver. This elevation was due mostly to increased HDL-C. In EC culture studies, SR-BI was found to be present in both basolateral and apical membranes but greater cellular uptake of cholesterol from HDL was found in the basolateral compartment. In summary, enhanced expression of SR-BI in EC resulted in a less atherogenic lipoprotein profile and decreased atherosclerosis, suggesting a possible role for endothelial SR-BI in the flux of cholesterol across EC. PMID:26504816

  7. Impaired conditioned fear response and startle reactivity in epinephrine deficient mice

    PubMed Central

    Toth, Mate; Ziegler, Michael; Sun, Ping; Gresack, Jodi; Risbrough, Victoria

    2013-01-01

    Norepinephrine and epinephrine signaling is thought to facilitate cognitive processes related to emotional events and heightened arousal, however, the specific role of epinephrine in these processes is less known. To investigate the selective impact of epinephrine on arousal and fear-related memory retrieval, mice unable to synthesize epinephrine (phenylethanolamine N-methyltransferase knockout, PNMT-KO) were tested in context and cued fear conditioning. To assess the role of epinephrine in other cognitive and arousal-based behaviors these mice were also tested for acoustic startle, prepulse inhibition, novel object recognition and open field activity. Our results show that compared to wild-type (WT) mice, PNMT-KO mice displayed reduced context fear but normal cued fear. Mice exhibited normal memory performance in the short-term version of the novel object recognition task suggesting PNMT mice exhibit more selective memory effects on highly emotional and/or long term memories. Similarly, open field activity was unaffected by epinephrine deficiency, suggesting differences in freezing are not related to changes in overall anxiety or exploratory drive. Startle reactivity to acoustic pulses was reduced in PNMT-KO mice while prepulse inhibition was increased. These findings provide further evidence for a selective role of epinephrine in contextual fear learning, and support its potential role in acoustic startle. PMID:23268986

  8. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    PubMed

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  9. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome

    PubMed Central

    2010-01-01

    In this study, we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared with wild-type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared with WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding predrug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice. PMID:21116467

  10. Impairment of Immune Response against Dematiaceous Fungi in Card9 Knockout Mice.

    PubMed

    Wu, Weiwei; Zhang, Ruijun; Wang, Xiaowen; Song, Yinggai; Liu, Zhengyang; Han, Wenling; Li, Ruoyu

    2016-10-01

    Dematiaceous fungi are a large group of pathogens that can cause a wide range of diseases in both immunocompetent and immunocompromised hosts. Based on our previous finding of caspase recruitment domain-containing protein 9 (CARD9) mutations in patients with subcutaneous phaeohyphomycosis caused by Phialophora verrucosa (P. verrucosa), we further investigated the exact role of CARD9 in the pathogenesis of phaeohyphomycosis using Card9 knockout (Card9 KO) mice. We showed that Card9 KO mice are profoundly susceptible to P. verrucosa infection compared with wild-type mice, reflected by significantly more severe footpad swelling, higher fungal burden, lower survival, and systemic dissemination. The inability of Card9 KO mice to control P. verrucosa infection was associated with lack of Th17 differentiation and reduction of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-17A levels in footpad homogenates. In vitro experiments showed a defect of fungal conidia killing and pro-inflammatory cytokine production in Card9 KO bone marrow-derived macrophages and dendritic cells. Furthermore, ex vivo coculture and in vitro T cell differentiation assay demonstrated that Card9 signaling pathway acts indispensably on differentiation of Th17 cells. In conclusion, our findings suggest that CARD9 mediate the innate immune and Th17-mediated adaptive immune responses against dematiaceous fungal infections at the early stage of infection.

  11. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    PubMed

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context.

  12. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    PubMed

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context. PMID:23324378

  13. [KoMPASS--design, implementation and experiences concerning a structured communication skills training for physicians dealing with oncology].

    PubMed

    Vitinius, Frank; Sonntag, Bernd; Barthel, Yvette; Brennfleck, Barbara; Kuhnt, Susanne; Werner, Andreas; Schönefuß, Götz; Petermann-Meyer, Andrea; Gutberlet, Susanne; Stein, Barbara; Söllner, Wolfgang; Kruse, Johannes; Keller, Monika

    2013-12-01

    Goal of the KoMPASS project is to develop and test a training program that effectively improves oncologists' communication skills. The training draws with regard to concept, content and didactic methods to the specific challenges arising in interactions with cancer patients. Concept and didactical methods for an intensive training (KoMPASS Training) are being presented and complemented with experiences gathered during 39 trainings with 335 physicians, as well as findings from the training evaluation by participants. The participants' feedback after 4 months indicates successful transfer into clinical practice along with personal relief, improved self-efficacy, and communicative competencies. Even experienced practitioners ascribe high practical usefulness, and personal learning achievements to the KoMPASS training. The results of the concomitant study concerning self-efficacy, empathy, work-related stress and communicative competence will be published later.

  14. Switching of the rotational direction of rhizoidal colonies in a newly isolated Bacillus mycoides strain Ko01.

    PubMed

    Cochran, Courtney; Masuda, Hisako

    2016-01-01

    Bacillus mycoides are known to form rhizoidal colonies on solid medium. In this study, a new strain of B. mycoides, strain Ko01, was isolated from soil. Genetic and growth patterns indicated that this strain belongs to subgroup II of the B. cereus group. Strain Ko01 forms extensive rhizoidal colonies with predictable directions of rotation. The concentration of the agar, and not the chemical composition, altered the direction of the colony rotation, switching from counterclockwise to clockwise. Agar concentration-dependent switching of rotation direction was unique to strain Ko01 and was not seen in colonies of other B. mycoides strains that were tested. Factors affecting colony chirality patterns appeared to be variable among B. mycoides strains. This feature can be used for the classification of B. mycoides strains. PMID:27118071

  15. Transcription factor ZFP38 is essential for meiosis prophase I in male mice.

    PubMed

    Yan, Zechen; Fan, Dandan; Meng, Qingjun; Yang, Jinjian; Zhao, Wei; Guo, Fei; Song, Dongjian; Guo, Ruiming; Sun, Ke; Wang, Jiaxiang

    2016-11-01

    The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity. Zfp38 mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generated Zfp38 conditional knockout mice (Zfp38(flox/flox), Stra8-Cre, hereafter called Zfp38 cKO) and found that spermatogenesis did not progress beyond meiosis prophase I in Zfp38 cKO mice. Using a chromosomal spread technique, we observed that Zfp38 cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted in Zfp38 cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced in Zfp38 cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair-associated protein expression during meiotic progression in mouse.

  16. A1 adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice

    PubMed Central

    Teng, Bunyen; Smith, Jonathan D.; Rosenfeld, Michael E.; Robinet, Peggy; Davis, Mary E.; Morrison, R. Ray; Mustafa, S. Jamal

    2014-01-01

    Aims The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. Methods and results Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. Conclusion The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties. PMID:24525840

  17. Transcription factor ZFP38 is essential for meiosis prophase I in male mice.

    PubMed

    Yan, Zechen; Fan, Dandan; Meng, Qingjun; Yang, Jinjian; Zhao, Wei; Guo, Fei; Song, Dongjian; Guo, Ruiming; Sun, Ke; Wang, Jiaxiang

    2016-11-01

    The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity. Zfp38 mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generated Zfp38 conditional knockout mice (Zfp38(flox/flox), Stra8-Cre, hereafter called Zfp38 cKO) and found that spermatogenesis did not progress beyond meiosis prophase I in Zfp38 cKO mice. Using a chromosomal spread technique, we observed that Zfp38 cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted in Zfp38 cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced in Zfp38 cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair-associated protein expression during meiotic progression in mouse. PMID:27492080

  18. Motor coordination deficits in mice lacking RGS9.

    PubMed

    Blundell, Jacqueline; Hoang, Chau V; Potts, Bryan; Gold, Stephen J; Powell, Craig M

    2008-01-23

    RGS9-2 is a striatum-enriched protein that negatively modulates dopamine and opioid receptor signaling. We examined the role of RGS9-2 in modulating complex behavior. Genetic deletion of RGS9-2 does not lead to global impairments, but results in selective abnormalities in certain behavioral domains. RGS9 knockout (KO) mice have decreased motor coordination on the accelerating rotarod and deficits in working memory as measured in the delayed-match-to-place version of the water maze. In contrast, RGS9 KO mice exhibit normal locomotor activity, anxiety-like behavior, cue and contextual fear conditioning, startle threshold, and pre-pulse inhibition. These studies are the first to describe a role for RGS9-2 in motor coordination and working memory and implicate RGS9-2 as a potential therapeutic target for motor and cognitive dysfunction.

  19. Ethanol and Acetaldehyde After Intraperitoneal Administration to Aldh2-Knockout Mice-Reflection in Blood and Brain Levels.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Tanaka, Naoko; Ito, Asuka; Takakura, Ayaka; Kumihashi, Mitsuru; Kinoshita, Hiroshi

    2016-05-01

    This paper reports, for the first time, on the analysis of ethanol (EtOH) and acetaldehyde (AcH) concentrations in the blood and brains of Aldh2-knockout (Aldh2-KO) and C57B6/6J (WT) mice. Animals were administrated EtOH (1.0, 2.0 or 4.0 g/kg) or 4-methylpyrazole (4-MP, 82 mg/kg) plus AcH (50, 100 or 200 mg/kg) intraperitoneally. During the blood tests, samples from the orbital sinus of the eye were collected. During the brain tests, dialysates were collected every 5 min (equal to a 15 µl sample) from the striatum using in vivo brain microdialysis. Samples were collected at 5, 10, 15, 20, 25, 30 and 60 min intervals post-EtOH and -AcH injection, and then analyzed by head-space GC. In the EtOH groups, high AcH levels were found in the blood and brains of Aldh2-KO mice, while only small traces of AcH were seen in the blood and brains of WT mice. No significant differences in EtOH levels were observed between the WT and the Aldh2-KO mice for either the EtOH dose. EtOH concentrations in the brain were comparable to the EtOH concentrations in the blood, but the AcH concentrations in the brain were four to five times lower compared to the AcH concentrations in the blood. In the AcH groups, high AcH levels were found in both WT and Aldh2-KO mice. Levels reached a sharp peak at 5 min and then quickly declined for 60 min. Brain AcH concentrations were almost equal to the concentrations found in the blood, where the AcH concentrations were approximately two times higher in the Aldh2-KO mice than in the WT mice, both in the blood and the brain. Our results suggest that systemic EtOH and AcH administration can cause a greater increase in AcH accumulation in the blood and brains of Aldh2-KO mice, where EtOH concentrations in the Aldh2-KO mice were comparable to the EtOH concentrations in the WT mice. Furthermore, detection of EtOH and AcH in the blood and brain was found to be dose-dependent in both genotypes. PMID:26646001

  20. Compensatory Changes in Calcium Metabolism Accompany the Loss of Vitamin D Receptor (VDR) From the Distal Intestine and Kidney of Mice.

    PubMed

    Reyes-Fernandez, Perla C; Fleet, James C

    2016-01-01

    1,25 Dihydroxyvitamin D3 (1,25(OH)2 D) increases intestinal Ca absorption when dietary Ca intake is low by inducing gene expression through the vitamin D receptor (VDR). 1,25(OH)2 D-regulated Ca absorption has been studied extensively in the small intestine, but VDR is also present in the large intestine. Our goal was to determine the impact of large intestinal VDR deletion on Ca and bone metabolism. We used transgenic mice expressing Cre-recombinase driven by the 9.5-kb human caudal type homeobox 2 (CDX2) promoter to delete floxed VDR alleles from the caudal region of the mouse (CDX2-KO). Weanling CDX2-KO mice and control littermates were fed low (0.25%) or normal (0.5%) Ca diets for 7 weeks. Serum and urinary Ca, vitamin D metabolites, bone parameters, and gene expression were analyzed. Loss of the VDR in CDX2-KO was confirmed in colon and kidney. Unexpectedly, CDX2-KO had lower serum PTH (-65% of controls, p < 0.001) but normal serum 1,25(OH)2 D and Ca levels. Despite elevated urinary Ca loss (eightfold higher in CDX2-KO) and reduced colonic target genes TRPV6 (-90%) and CaBPD9k (-80%) mRNA levels, CDX2-KO mice had only modestly lower femoral bone density. Interestingly, duodenal TRPV6 and CaBPD9k mRNA expression was fourfold and threefold higher, respectively, and there was a trend toward increased duodenal Ca absorption (+19%, p = 0.076) in the CDX2-KO mice. The major finding of this study is that large intestine VDR significantly contributes to whole-body Ca metabolism but that duodenal compensation may prevent the consequences of VDR deletion from large intestine and kidney in growing mice.

  1. Fermentation of sugars in orange peel hydrolysates to ethanol by recombinant Escherichia coli KO11

    SciTech Connect

    Grohmann, K.; Cameron, R.G.; Buslig, B.S.

    1995-12-31

    The conversion of monosaccharides in orange peel hydrolysates to ethanol by recombinant Escherichia coli KO11 has been investigated in pH-controlled batch fermentations at 32 and 37{degrees}C. pH values and concentration of peel hydrolysate were varied to determine approximate optimal conditions and limitations of these fermentations. Very high yields of ethanol were achieved by this microorganism at reasonable ethanol concentrations (28-48 g/L). The pH range between 5.8 and 6.2 appears to be optimal. The microorganism can convert all major monosaccharides in orange peel hydrolysates to ethanol and to smaller amounts of acetic and lactic acids. Acetic acid is coproduced in equimolar amounts with ethanol by catabolism of salts of galacturonic acid.

  2. Sensitive and critical periods in the development of handling induced seizures in mice lacking synapsins: differences between synapsin I and synapsin II knockouts.

    PubMed

    Etholm, Lars; Bahonjic, Elma; Heggelund, Paul

    2013-09-01

    Mice lacking either synapsin I or synapsin II develop handling induced seizures from around two months of age. In mice lacking synapsin I (synapsin 1 knock-out mice, Syn1KO mice) such seizures can either consist of mild myoclonic jerks or of fully developed generalized tonic-clonic seizures, and the two seizure types are quite evenly distributed. In mice lacking synapsin II (synapsin 2 knock-out mice, Syn2KO mice) all seizures are in the form of generalized tonic-clonic seizures. Through the use of specialized animal rearing procedures whereby human-animal interaction was minimized (minimal handling procedures), this study investigated effects of handling also prior to the emergence of actual seizures. The effect of minimal handling procedures was significant in both genotypes, but most pronounced in Syn1KO mice. In this genotype, minimal handling reduced the frequency of mild seizures, and completely eliminated generalized tonic-clonic seizures when the animals were tested with regular handling at 4 1/2 months of age. Neither seizure frequency nor generalized tonic-clonic seizures could be re-established through regular handling from 4 1/2 to 8 months. This suggests that the period up to 4 1/2 months constitute a sensitive period for seizures in general, and a critical period for generalized tonic-clonic seizures in this genotype. In Syn2KO mice minimal handling did not remove generalized tonic-clonic seizures, as such seizures were present when handling was introduced at 4 1/2 months. We found an initial reduction of seizure frequency, but the seizure frequency eventually reached levels seen in mice kept under regular handling regimes. Thus, it is unlikely that the period up to 4 1/2 months is a sensitive period in the Syn2KO genotype.

  3. Sensitive and critical periods in the development of handling induced seizures in mice lacking synapsins: differences between synapsin I and synapsin II knockouts.

    PubMed

    Etholm, Lars; Bahonjic, Elma; Heggelund, Paul

    2013-09-01

    Mice lacking either synapsin I or synapsin II develop handling induced seizures from around two months of age. In mice lacking synapsin I (synapsin 1 knock-out mice, Syn1KO mice) such seizures can either consist of mild myoclonic jerks or of fully developed generalized tonic-clonic seizures, and the two seizure types are quite evenly distributed. In mice lacking synapsin II (synapsin 2 knock-out mice, Syn2KO mice) all seizures are in the form of generalized tonic-clonic seizures. Through the use of specialized animal rearing procedures whereby human-animal interaction was minimized (minimal handling procedures), this study investigated effects of handling also prior to the emergence of actual seizures. The effect of minimal handling procedures was significant in both genotypes, but most pronounced in Syn1KO mice. In this genotype, minimal handling reduced the frequency of mild seizures, and completely eliminated generalized tonic-clonic seizures when the animals were tested with regular handling at 4 1/2 months of age. Neither seizure frequency nor generalized tonic-clonic seizures could be re-established through regular handling from 4 1/2 to 8 months. This suggests that the period up to 4 1/2 months constitute a sensitive period for seizures in general, and a critical period for generalized tonic-clonic seizures in this genotype. In Syn2KO mice minimal handling did not remove generalized tonic-clonic seizures, as such seizures were present when handling was introduced at 4 1/2 months. We found an initial reduction of seizure frequency, but the seizure frequency eventually reached levels seen in mice kept under regular handling regimes. Thus, it is unlikely that the period up to 4 1/2 months is a sensitive period in the Syn2KO genotype. PMID:23570901

  4. Vesicular glutamate transporter 2 is required for the respiratory and parasympathetic activation produced by optogenetic stimulation of catecholaminergic neurons in the rostral ventrolateral medulla of mice in vivo.

    PubMed

    Abbott, Stephen B G; Holloway, Benjamin B; Viar, Kenneth E; Guyenet, Patrice G

    2014-01-01

    Catecholaminergic neurons of the rostral ventrolateral medulla (RVLM-CA neurons; C1 neurons) contribute to the sympathetic, parasympathetic and neuroendocrine responses elicited by physical stressors such as hypotension, hypoxia, hypoglycemia, and infection. Most RVLM-CA neurons express vesicular glutamate transporter (VGLUT)2, and may use glutamate as a ionotropic transmitter, but the importance of this mode of transmission in vivo is uncertain. To address this question, we genetically deleted VGLUT2 from dopamine-β-hydroxylase-expressing neurons in mice [DβH(Cre/0) ;VGLUT2(flox/flox) mice (cKO mice)]. We compared the in vivo effects of selectively stimulating RVLM-CA neurons in cKO vs. control mice (DβH(Cre/0) ), using channelrhodopsin-2 (ChR2-mCherry) optogenetics. ChR2-mCherry was expressed by similar numbers of rostral ventrolateral medulla (RVLM) neurons in each strain (~400 neurons), with identical selectivity for catecholaminergic neurons (90-99% colocalisation with tyrosine hydroxylase). RVLM-CA neurons had similar morphology and axonal projections in DβH(Cre/0) and cKO mice. Under urethane anesthesia, photostimulation produced a similar pattern of activation of presumptive ChR2-positive RVLM-CA neurons in DβH(Cre/0) and cKO mice. Photostimulation in conscious mice produced frequency-dependent respiratory activation in DβH(Cre/0) mice but no effect in cKO mice. Similarly, photostimulation under urethane anesthesia strongly activated efferent vagal nerve activity in DβH(Cre/0) mice only. Vagal responses were unaffected by α1 -adrenoreceptor blockade. In conclusion, two responses evoked by RVLM-CA neuron stimulation in vivo require the expression of VGLUT2 by these neurons, suggesting that the acute autonomic responses driven by RVLM-CA neurons are mediated by glutamate.

  5. Loss of Sodium/Hydrogen Exchanger NHA2 Exacerbates Obesity- and Aging-Induced Glucose Intolerance in Mice

    PubMed Central

    Deisl, Christine; Anderegg, Manuel; Albano, Giuseppe; Lüscher, Benjamin P.; Cerny, David; Soria, Rodrigo; Bouillet, Elisa; Rimoldi, Stefano; Scherrer, Urs

    2016-01-01

    We previously demonstrated that the sodium/hydrogen exchanger NHA2, also known as NHEDC2 or SLC9B2, is critical for insulin secretion by β–cells. To gain more insights into the role of NHA2 on systemic glucose homeostasis, we studied the impact of loss of NHA2 during the physiological aging process and in the setting of diet-induced obesity. While glucose tolerance was normal at 2 months of age, NHA2 KO mice displayed a significant glucose intolerance at 5 and 12 months of age, respectively. An obesogenic high fat diet further exacerbated the glucose intolerance of NHA2 KO mice. Insulin levels remained similar in NHA2 KO and WT mice during aging and high fat diet, but fasting insulin/glucose ratios were significantly lower in NHA2 KO mice. Peripheral insulin sensitivity, measured by insulin tolerance tests and hyperinsulinemic euglycemic clamps, was unaffected by loss of NHA2 during aging and high fat diet. High fat diet diminished insulin secretion capacity in both WT and NHA2 KO islets and reduced expression of NHA2 in WT islets. In contrast, aging was characterized by a gradual increase of NHA2 expression in islets, paralleled by an increasing difference in insulin secretion between WT and NHA2 KO islets. In summary, our results demonstrate that loss of the sodium/hydrogen exchanger NHA2 exacerbates obesity- and aging-induced glucose intolerance in mice. Furthermore, our data reveal a close link between NHA2 expression and insulin secretion capacity in islets. PMID:27685945

  6. Geothermal characteristics of the Krško basin, Slovenia, based on geophysical research

    NASA Astrophysics Data System (ADS)

    Rajver, Dušan; Ravnik, Danilo

    The Krško basin with its thermal springs is a syncline, filled with low permeable Tertiary and some Quaternary sediments. Their thickness reaches about 1.8 km in its central eastern part. This is perceivable also in geotherms reflecting a conductive temperature field. In the syncline basement, especially in Triassic and Jurassic carbonates, but less in Cretaceous rocks, convective thermal field predominates. The syncline pattern and structure have been determined from the results of gravimetric, seismic and geoelectrical measurements and deep drilling since 1959. The most important geothermal anomaly is the Čatež field with the greatest concentration of investigations. There, the highest borehole temperatures have been reached, ranging from 50 to 64 °C. Geothermal anomalies at other localities have been less investigated, and temperatures do not exceed 36 °C. Deep boreholes which were available for geothermal measurements are found mostly along the southern rim of the basin. In much wider area the only source of data for the construction of geotherms were geoelectrical soundings, applied to elaborate geothermal maps and cross-sections. This was enabled by a conversion from resistivity and borehole lithology into temperature data, using one-dimensional simplified solution of Laplace’s equation. In such a way an approximative knowledge of geothermal conditions below surface and beyond known geothermal anomalies has been extended. Circulation of meteoric water into few kilometers deep fissured and fractured hot zones is the only heating possibility for thermal water in the Čatež field. Water circulation is probably the deepest there than elsewhere in the Krško basin. Taking into account all information collected until now, we assume that geothermal reservoir could extend at least 2-2.5 km deep below the surface.

  7. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice.

    PubMed

    Lin, Ai-Ling; Pulliam, Daniel A; Deepa, Sathyaseelan S; Halloran, Jonathan J; Hussong, Stacy A; Burbank, Raquel R; Bresnen, Andrew; Liu, Yuhong; Podlutskaya, Natalia; Soundararajan, Anuradha; Muir, Eric; Duong, Timothy Q; Bokov, Alex F; Viscomi, Carlo; Zeviani, Massimo; Richardson, Arlan G; Van Remmen, Holly; Fox, Peter T; Galvan, Veronica

    2013-10-01

    Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders.

  8. Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-α2 controlling glutamate uptake in astrocytes.

    PubMed

    Matos, Marco; Augusto, Elisabete; Agostinho, Paula; Cunha, Rodrigo A; Chen, Jiang-Fan

    2013-11-20

    Astrocytic glutamate transporter-1 (GLT-I) is critical to control the bulk of glutamate uptake and, thus, to regulate synaptic plasticity and excitotoxicity. GLT-I glutamate uptake is driven by the sodium gradient implemented by Na(+)/K(+)-ATPases (NKAs) and the α2 subunit of NKA (NKA-α2) is actually linked to GLT-I to regulate astrocytic glutamate transport. We recently found that adenosine A2A receptors (A2ARs), which control synaptic plasticity and neurodegeneration, regulate glutamate uptake through unknown mechanisms. Here we report that A2AR activation decreases NKA activity selectively in astrocytes to inhibit glutamate uptake. Furthermore, we found a physical association of A2ARs with NKA-α2s in astrocytes, as gauged by coimmunoprecipitation and in situ proximity ligation assays, in the cerebral cortex and striatum, two brain regions where A2ARs inhibit the astrocytic glutamate uptake. Moreover, the selective deletion of A2ARs in astrocytes (using Gfa2-A2AR-KO mice) leads to a concurrent increase of both astrocytic glutamate uptake and NKA-α2 levels and activity in the striatum and cortex. This coupling of astrocytic A2ARs to the regulation of glutamate transport through modulation of NKA-α2 activity provides a novel mechanism linking neuronal activity to ion homeostasis controlling glutamatergic activity, all of which are processes intricately associated with the etiology of several brain diseases.

  9. Involvement of mitogen-activated protein kinases (MAPKs) during testicular ischemia-reperfusion injury in nuclear factor-kappaB knock-out mice.

    PubMed

    Minutoli, Letteria; Antonuccio, Pietro; Polito, Francesca; Bitto, Alessandra; Fiumara, Tiziana; Squadrito, Francesco; Nicotina, Piero Antonio; Arena, Salvatore; Marini, Herbert; Romeo, Carmelo; Altavilla, Domenica

    2007-07-12

    Nuclear factor kappa-B (NF-kappaB), extracellular regulated kinase (ERK 1/2) and c-jun-N terminal kinase (JNK) play an important role in testicular ischemia. We investigated the patterns of ERK1/2, JNK and p38 activation in NF-kappaB knockout (KO) mice subjected to testicular torsion. KO and normal littermate wild-type (WT) animals underwent at 1 h testicular ischemia followed by 24 h reperfusion (TI/R). Sham testicular ischemia-reperfusion mice served as controls. ERK 1/2, JNK and p38 expression by western blot analysis, tumor necrosis factor-alpha (TNF-alpha) expression (RT-PCR and western blot analysis) and a complete histological examination were carried out. TI/R caused a greater increase in phosphorylated form of ERK 1/2 in KO mice than in WT animals in either the ischemic testis and the contralateral one. By contrary, active form of JNK and p38 were completely abrogated in both testes of KO mice, while WT animals showed a significant activation of those kinases in both testes. TNF-alpha expression was markedly reduced in KO mice when compared to WT mice either at the mRNA and the protein level. Finally TI/R-induced histological damage was markedly reduced in KO mice. Our data indicate that NF-kappaB plays a pivotal role in the development of testicular ischemia-reperfusion injury and suggest that, in the absence of the transcriptional factor, the up-stream signal JNK and p38 may be abrogated while ERK 1/2 activity is enhanced.

  10. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests.

    PubMed

    Lainiola, Mira; Procaccini, Chiara; Linden, Anni-Maija

    2014-06-01

    Polymorphisms in the metabotropic glutamate receptor 3 (mGluR3) encoding gene GRM3 have been linked to schizophrenia and cognitive performance in humans. Our aim was to analyze the role of mGluR3 in basal working memory and attentional processes, and also when these functions were distracted by the psychotomimetic N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). mGluR3 knockout (KO) mice were used. Spontaneous alternation in a T-maze test was significantly reduced in mGluR3-KO mice compared to wildtype (WT) mice, particularly after a low dose of MK-801 (0.03 mg/kg, i.p., 30 min). In a Y-maze novelty discrimination test, the locomotor stimulatory effect of MK-801 (0.1mg/kg) was enhanced in mGluR3-KO mice. Interestingly, mGluR3-KO mice showed the significantly reduced alternation in the spontaneous alternation T-maze test and the significantly enhanced sensitivity to MK-801 in the Y-maze test only when forced to enter the right arm first, not when the forced arm was on the left. A side-biased response was also found in a rewarded alternation T-maze test, where mGluR3-KO mice made significantly more incorrect visits to the left arm than the right arm after a 25-s delay. No genotype difference was found in the novelty discrimination in the Y-maze test, rewarded alternation with a 5-s delay, preference for left or right when free to enter either arm or in MK-801-induced circling. Our findings indicate cognitive disturbance and left-right asymmetry in certain behavioral responses of mGluR3-KO mice. This novel observation warrants further elucidation, and should also be considered in other studies of mGluR3 in brain functions.

  11. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests.

    PubMed

    Lainiola, Mira; Procaccini, Chiara; Linden, Anni-Maija

    2014-06-01

    Polymorphisms in the metabotropic glutamate receptor 3 (mGluR3) encoding gene GRM3 have been linked to schizophrenia and cognitive performance in humans. Our aim was to analyze the role of mGluR3 in basal working memory and attentional processes, and also when these functions were distracted by the psychotomimetic N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). mGluR3 knockout (KO) mice were used. Spontaneous alternation in a T-maze test was significantly reduced in mGluR3-KO mice compared to wildtype (WT) mice, particularly after a low dose of MK-801 (0.03 mg/kg, i.p., 30 min). In a Y-maze novelty discrimination test, the locomotor stimulatory effect of MK-801 (0.1mg/kg) was enhanced in mGluR3-KO mice. Interestingly, mGluR3-KO mice showed the significantly reduced alternation in the spontaneous alternation T-maze test and the significantly enhanced sensitivity to MK-801 in the Y-maze test only when forced to enter the right arm first, not when the forced arm was on the left. A side-biased response was also found in a rewarded alternation T-maze test, where mGluR3-KO mice made significantly more incorrect visits to the left arm than the right arm after a 25-s delay. No genotype difference was found in the novelty discrimination in the Y-maze test, rewarded alternation with a 5-s delay, preference for left or right when free to enter either arm or in MK-801-induced circling. Our findings indicate cognitive disturbance and left-right asymmetry in certain behavioral responses of mGluR3-KO mice. This novel observation warrants further elucidation, and should also be considered in other studies of mGluR3 in brain functions. PMID:24631392

  12. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    PubMed

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor.

  13. GPRC6a is not Required for the Effects of a High-Protein Diet on Body Weight in Mice

    PubMed Central

    Kinsey-Jones, James S; Alamshah, Amin; McGavigan, Anne K; Spreckley, Eleanor; Banks, Katherine; Cereceda Monteoliva, Nicholas; Norton, Mariana; Bewick, Gavin A; Murphy, Kevin G

    2015-01-01

    Objective The G-protein coupled receptor family C group 6 member A (GPRC6A) is activated by proteinogenic amino acids and may sense amino acids in the gastrointestinal tract and the brain. The study investigated whether GPRC6A was necessary for the effects of low- and high-protein diets on body weight and food intake in mice. Methods The role of GPRC6A in mediating the effects of a low-protein diet on body weight was investigated in GPRC6a knockout (GPRC6a-KO) and wild-type (WT) mice fed a control diet (18% protein) or a low-protein diet (6% protein) for 9 days. The role of GPRC6A in mediating the effects of a high-protein diet on body weight was investigated in GPRC6a-KO and WT mice fed a control diet (18% protein) or a high-protein diet (50% protein) for 5 weeks. Results A high-protein diet reduced body weight gain and food intake compared with a control diet in both WT and GPRC6a-KO mice. A low-protein diet decreased body weight gain in GPRC6a-KO mice. Conclusions GPRC6A was not necessary for the effects of a low- or high-protein diet on body weight and likely does not play a role in protein-induced satiety. PMID:25958858

  14. Impairment of Oligodendroglia Maturation Leads to Aberrantly Increased Cortical Glutamate and Anxiety-Like Behaviors in Juvenile Mice

    PubMed Central

    Chen, Xianjun; Zhang, Weiguo; Li, Tao; Guo, Yu; Tian, Yanping; Wang, Fei; Liu, Shubao; Shen, Hai-Ying; Feng, Yue; Xiao, Lan

    2015-01-01

    Adolescence is the critical time for developing proper oligodendrocyte (OL)-neuron interaction and the peak of onset for many cognitive diseases, among which anxiety disorders display the highest prevalence. However, whether impairment of de novo OL development causes neuronal abnormalities and contributes to the early onset of anxiety phenotype in childhood still remains unexplored. In this study, we tested the hypothesis that defects in OL maturation manifests cortical neuron function and leads to anxiety-like behaviors in juvenile mice. We report here that conditional knockout of the Olig2 gene (Olig2 cKO) specifically in differentiating OLs in the mouse brain preferentially impaired OL maturation in the gray matter of cerebral cortex. Interestingly, localized proton magnetic resonance spectroscopy revealed that Olig2 cKO mice displayed abnormally elevated cortical glutamate levels. In addition, transmission electron microscopy demonstrated increased vesicle density in excitatory glutamatergic synapses in the cortex of the Olig2 cKO mice. Moreover, juvenile Olig2 cKO mice exhibited anxiety-like behaviors and impairment in behavioral inhibition. Taken together, our results suggest that impaired OL development affects glutamatergic neuron function in the cortex and causes anxiety-related behaviors in juvenile mice. These discoveries raise an intriguing possibility that OL defects may be a contributing mechanism for the onset of anxiety in childhood. PMID:26696827

  15. Ghrelin O-acyltransferase knockout mice show resistance to obesity when fed high-sucrose diet.

    PubMed

    Kouno, Tetsuya; Akiyama, Nobuteru; Ito, Takahito; Okuda, Tomohiko; Nanchi, Isamu; Notoya, Mitsuru; Oka, Shogo; Yukioka, Hideo

    2016-02-01

    Ghrelin is an appetite-stimulating hormone secreted from stomach. Since the discovery that acylation of the serine-3 residue by ghrelin O-acyltransferase (GOAT) is essential for exerting its functions, GOAT has been regarded as an therapeutic target for attenuating appetite, and thus for the treatment of obesity and diabetes. However, contrary to the expectations, GOAT-knockout (KO) mice have not shown meaningful body weight reduction, under high-fat diet. Here, in this study, we sought to determine whether GOAT has a role in body weight regulation and glucose metabolism with a focus on dietary sucrose, because macronutrient composition of diet is important for appetite regulation. We found that peripherally administered acylated-ghrelin, but not unacylated one, stimulated sucrose consumption in a two-bottle-drinking test. The role of acylated-ghrelin in sucrose preference was further supported by the finding that GOAT KO mice consumed less sucrose solution compared with WT littermates. Then, we investigated the effect of dietary composition of sucrose on food intake and body weight in GOAT KO and WT mice. As a result, when fed on high-fat diet, food intake and body weight were similar between GOAT KO and WT mice. However, when fed on high-fat, high-sucrose diet, GOAT KO mice showed significantly reduced food intake and marked resistance to obesity, leading to amelioration of glucose metabolism. These results suggest that blockade of acylated-ghrelin production offers therapeutic potential for obesity and metabolic disorders caused by overeating of palatable food.

  16. Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B deficient mice

    PubMed Central

    Bortolato, Marco; Godar, Sean C; Davarian, Shieva; Chen, Kevin; Shih, Jean C

    2009-01-01

    Monoamine oxidase (MAO) B catalyzes the degradation of β-phenylethylamine (PEA), a trace amine neurotransmitter implicated in mood regulation. Although several studies have shown an association between low MAO B activity in platelets and behavioral disinhibition in humans, the nature of this relation remains undefined. To investigate the impact of MAO B deficiency on the emotional responses elicited by environmental cues, we tested MAO B knockout (KO) mice in a set of behavioral assays capturing different aspects of anxiety-related manifestations, such as the elevated plus maze, defensive withdrawal, marble burying and hole-board. Furthermore, MAO B KO mice were evaluated for their exploratory patterns in response to unfamiliar objects and risk-taking behaviors. In comparison to their wild-type (WT) littermates, MAO B KO mice exhibited significantly lower anxiety-like responses and shorter latency to engage in risk-taking behaviors and exploration of unfamiliar objects. To determine the neurobiological bases of the behavioral differences between WT and MAO B KO mice, we measured the brain-regional levels of PEA in both genotypes. Although PEA levels were significantly higher in all brain regions of MAO B KO in comparison to WT mice, the most remarkable increments were observed in striatum and prefrontal cortex, two key regions for the regulation of behavioral disinhibition. However, no significant differences in transcript levels of PEA’s selective receptor, trace amine-associated receptor 1 (TAAR1), were detected in either region. Taken together, these results suggest that MAO B deficiency may lead to behavioral disinhibition and decreased anxiety-like responses partially through regional increases of PEA levels. PMID:19710633

  17. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    SciTech Connect

    Ilic, Zoran; Crawford, Dana; Egner, Patricia A.; Sell, Stewart

    2010-02-01

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N{sup 7}-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N{sup 7}-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.

  18. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1.

    PubMed

    Ilic, Zoran; Crawford, Dana; Vakharia, Dilip; Egner, Patricia A; Sell, Stewart

    2010-02-01

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N(7)-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N(7)-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3. PMID:19850059

  19. Resistance of R-Ras knockout mice to skin tumour induction

    PubMed Central

    May, Ulrike; Prince, Stuart; Vähätupa, Maria; Laitinen, Anni M.; Nieminen, Katriina; Uusitalo-Järvinen, Hannele; Järvinen, Tero A. H.

    2015-01-01

    The R-ras gene encodes a small GTPase that is a member of the Ras family. Despite close sequence similarities, R-Ras is functionally distinct from the prototypic Ras proteins; no transformative activity and no activating mutations of R-Ras in human malignancies have been reported for it. R-Ras activity appears inhibitory towards tumour proliferation and invasion, and to promote cellular quiescence. Contrary to this, using mice with a deletion of the R-ras gene, we found that R-Ras facilitates DMBA/TPA-induced skin tumour induction. The tumours appeared in wild-type (WT) mice on average 6 weeks earlier than in R-Ras knockout (R-Ras KO) mice. WT mice developed almost 6 times more tumours than R-Ras KO mice. Despite strong R-Ras protein expression in the dermal blood vessels, no R-Ras could be detected in the epidermis from where the tumours arose. The DMBA/TPA skin tumourigenesis-model is highly dependent upon inflammation, and we found a greatly attenuated skin inflammatory response to DMBA/TPA-treatment in the R-Ras KO mice in the context of leukocyte infiltration and proinflammatory cytokine expression. Thus, these data suggest that despite its characterised role in promoting cellular quiescence, R-Ras is pro-tumourigenic in the DMBA/TPA tumour model and important for the inflammatory response to DMBA/TPA treatment. PMID:26133397

  20. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    PubMed

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.

  1. Decreased pulmonary inflammation after ethanol exposure and burn injury in intercellular adhesion molecule-1 knockout mice.

    PubMed

    Bird, Melanie D; Morgan, Michelle O; Ramirez, Luis; Yong, Sherri; Kovacs, Elizabeth J

    2010-01-01

    Clinical and laboratory evidence suggests that alcohol consumption dysregulates immune function. Burn patients who consume alcohol before their injuries demonstrate higher rates of morbidity and mortality, including acute respiratory distress syndrome, than patients without alcohol at the time of injury. Our laboratory observed higher levels of proinflammatory cytokines and leukocyte infiltration in the lungs of mice after ethanol exposure and burn injury than with either insult alone. To understand the mechanism of the increased pulmonary inflammatory response in mice treated with ethanol and burn injury, we investigated the role of intercellular adhesion molecule (ICAM)-1. Wild-type and ICAM-1 knockout (KO) mice were treated with vehicle or ethanol and subsequently given a sham or burn injury. Twenty-four hours postinjury, lungs were harvested and analyzed for indices of inflammation. Higher numbers of neutrophils were observed in the lungs of wild-type mice after burn and burn with ethanol treatment. This increase in pulmonary inflammatory cell accumulation was significantly lower in the KO mice. In addition, levels of KC, interleukin-1beta, and interleukin-6 in the lung were decreased in the ICAM-1 KO mice after ethanol exposure and burn injury. Interestingly, no differences were observed in serum or lung tissue content of soluble ICAM-1 24 hours postinjury. These data suggest that upregulation of adhesion molecules such as ICAM-1 on the vascular endothelium may play a critical role in the excessive inflammation seen after ethanol exposure and burn injury.

  2. Chlamydia trachomatis mouse pneumonitis lung infection in IL-18 and IL-12 knockout mice: IL-12 is dominant over IL-18 for protective immunity.

    PubMed Central

    Lu, H.; Yang, X.; Takeda, K.; Zhang, D.; Fan, Y.; Luo, M.; Shen, C.; Wang, S.; Akira, S.; Brunham, R. C.

    2000-01-01

    BACKGROUND: Interferon (IFN)-gamma is a key to protective immunity against a variety of intracellular bacterial infections, including Chlamydia trachomatis. Interleukin (IL)-18, a recently identified Th1 cytokine, together with IL-12 is a strong stimulator for IFN-gamma production. We investigated the relative roles of IL-18 and IL- 12 in protective immunity to C. trachomatis mouse pneumonitis (MoPn) infection using gene knockout (KO) and wild-type (WT) mice. MATERIALS AND METHODS: Mice were intranasally infected with C. trachomatis MoPn and protective immunity was assessed among groups of mice by daily body weight changes, lung growth of MoPn, and histopathological appearances at day 10 postinfection. The corresponding immune responses for each group of mice at the same postinfection time point were evaluated by measuring antigen-specific antibody isotype responses and cytokine profiles. RESULTS: Our results showed that IL-18 deficiency had little or no influence on clearance of MoPn from the lung, although KO mice exhibited slightly more severe inflammatory reactions in lung tissues, as well as reduced systemic and local IFN-gamma production, compared with WT mice. Results with IL-18 KO mice were in sharp contrast to those observed with IL-12 KO mice that showed substantially reduced clearance of MoPn from the lungs, substantial reductions of antigen-specific systemic and lung IFN-gamma production, decreased ratio of MoPn-specific immunoglobulin G (IgG)2a/IgG1, and severe pathological changes in the lung with extensive polymorphonuclear, instead of mononuclear, cell infiltration. Exogenous IL-12 or IL-18 was able to increase IFN-gamma production in IL-18 KO mice; whereas, only exogenous IL-12, but not IL-18, enhanced IFN-gamma production in IL-12 KO mice. Caspase-1 is the key protease for activation of IL-18 precursor into the bioactive form, and caspase-1 KO mice also displayed similar bacterial clearance and body weight loss to that in WT mice at early stages

  3. Enhanced response to mouse thyroid-stimulating hormone (TSH) receptor immunization in TSH receptor-knockout mice.

    PubMed

    Nakahara, Mami; Mitsutake, Norisato; Sakamoto, Hikaru; Chen, Chun-Rong; Rapoport, Basil; McLachlan, Sandra M; Nagayama, Yuji

    2010-08-01

    Graves-like hyperthyroidism is induced in BALB/c mice by immunization with adenovirus expressing the human TSH receptor (TSHR) A-subunit (amino acids 1-289). However, because of nonidentity between the human and mouse TSHR ( approximately 87% amino acid homology), we compared the responses of mice immunized with adenoviruses expressing either the mouse or the human TSHR A-subunit. Wild-type (wt) BALB/c mice immunized with the mouse A-subunit developed neither TSHR antibodies (measured by flow cytometry) nor thyroid lymphocytic infiltration. However, wt C57BL/6 mice developed sparse intrathyroidal lymphocyte infiltration without antibody production. Depletion of naturally occurring regulatory CD4(+)CD25(+) T cells had little effect. These results indicate the inability to break tolerance to the mouse TSHR in wt mice. In contrast, TSHR knockout (KO) BALB/c mice generated mouse TSHR antibodies in response to mouse A-subunit immunization and augmented human TSHR antibody response to human A-subunit immunization. Thyroid-stimulating antibody titers measured in a functional bioassay were comparable in human A-subunit immunized wt mice and in TSHR KO mice immunized with either the mouse or human A-subunit. In conclusion, immune response to the mouse TSHR is readily induced in TSHR KO but not in wt mice. Only in the former does immunization with adenovirus expressing the mouse A-subunit generate antibodies capable of activating the mouse TSHR. TSHR KO mice are, therefore, of value for future studies dissecting the autoimmune response to the mouse TSHR.

  4. Increased mitochondrial ATP production capacity in brain of healthy mice and a mouse model of isolated complex I deficiency after isoflurane anesthesia.

    PubMed

    Manjeri, Ganesh R; Rodenburg, Richard J; Blanchet, Lionel; Roelofs, Suzanne; Nijtmans, Leo G; Smeitink, Jan A; Driessen, Jacques J; Koopman, Werner J H; Willems, Peter H

    2016-01-01

    We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81% at postnatal (PN) 22-25 days and 1.68 and 0.65% at PN 31-34 days for wildtype (WT) and CI-deficient KO, respectively). A more severe respiratory depression was caused by 1.0 MAC isoflurane in KO mice (respiratory rate values of 86 and 45 at PN 22-25 days and 69 and 29 at PN 31-34 days for anesthetized WT and KO, respectively). Here, we address the idea that isoflurane anesthesia causes a much larger decrease in brain mitochondrial ATP production in KO mice thus explaining their increased sensitivity to this anesthetic. Brains from WT and KO mice of the above study were removed immediately after MAC determination at PN 31-34 days and a mitochondria-enriched fraction was prepared. Aliquots were used for measurement of maximal ATP production in the presence of pyruvate, malate, ADP and creatine and, after freeze-thawing, the maximal activity of the individual RC complexes in the presence of complex-specific substrates. CI activity was dramatically decreased in KO, whereas ATP production was decreased by only 26% (p < 0.05). The activities of CII, CIII, and CIV were the same for WT and KO. Isoflurane anesthesia decreased the activity of CI by 30% (p < 0.001) in WT. In sharp contrast, it increased the activity of CII by 37% (p < 0.001) and 50% (p < 0.001) and that of CIII by 37% (p < 0.001) and 40% (p < 0.001) in WT and KO, respectively, whereas it tended to increase that of CIV in both WT and KO. Isoflurane anesthesia increased ATP production by 52 and 69% in WT (p < 0.05) and KO (p < 0.01), respectively. Together these findings indicate that isoflurane anesthesia interferes positively rather than negatively with the ability of CI-deficient mice brain mitochondria to convert their main substrate pyruvate into ATP.

  5. Methods for In-Flight Wing Shape Predictions of Highly Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2010-01-01

    The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.

  6. Acquisition of the Korean Imperfective Aspect Markers "-ko iss-" and "-a iss-" by Japanese Learners: A Multiple-Factor Account

    ERIC Educational Resources Information Center

    Ryu, Ju-Yeon; Horie, Kaoru; Shirai, Yasuhiro

    2015-01-01

    Although cross-linguistic research on second language tense-aspect acquisition has uncovered universal tendencies concerning the association between verbal semantics and tense-aspect markers, it is still unclear what mechanisms underlie this link. This study investigates the acquisition of two imperfective aspect markers ("-ko iss-" and…

  7. Effect of sclerostin removal in vivo on experimental periodontitis in mice.

    PubMed

    Yang, Xianrui; Han, Xianglong; Shu, Rui; Jiang, Fulin; Xu, Li; Xue, Chaoran; Chen, Tian; Bai, Ding

    2016-01-01

    We explored the effects of sclerostin removal in vivo on experimental periodontitis in mice. A ligature of Porphyromonas gingivalis-saturated collagen silk was applied to the cervical region of the first molar tooth in 10 wild-type (WT) mice and 10 sclerostin-knockout (SOST-KO) mice, and the animals were fed 10% sucrose for 2 months. Another 10 WT mice and 10 SOST-KO mice were similarly treated, but then fed a normal diet for 2 months. The maxillae were then harvested for morphological and molecular examinations. The mice with periodontitis showed significantly more severe alveolar bone loss than control mice, the most significant absorption being observed in WT mice. Immunohistochemical staining demonstrated upregulation of RANKL and ERK1/2-MAPK expression and downregulation of OPG expression in mice with periodontitis, especially WT mice. Therefore, removal of sclerostin appears to modestly protect the alveolar bone from resorption in this experimental setting. (J Oral Sci 58, 271-276, 2016). PMID:27349550

  8. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle