Sample records for a2b receptor antagonist

  1. Non-selectivity of new bradykinin antagonists for B1 receptors.

    PubMed

    Rhaleb, N E; Gobeil, F; Regoli, D

    1992-01-01

    Two new B1 receptor antagonists, [Hyp3,Thi5,DTic7,Oic8]desArg9-BK and DArg[Hyp3,Thi5,DTic7,Oic8]desArg9-BK were tested in vitro on the rabbit jugular vein and the guinea pig ileum (preparations containing B2 receptors) and on the rabbit aorta (preparation containing B1 receptors) for pharmacological characterization. The results indicate that both compounds are antagonists on both B1 and B2 receptors, are competitive and discriminate between B2A and B2B receptor subtypes.

  2. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but not much Y295W), were crucial for the high affinity of MEN16132. In conclusion, MEN16132 is a new, potent, and selective nonpeptide bradykinin B2 receptor antagonist.

  3. Could the 5-HT1B receptor inverse agonism affect learning consolidation?

    PubMed

    Meneses, A

    2001-03-01

    Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits induced by both cholinergic and glutamatergic antagonist. Hence, 5-HT1B receptor inverse agonists or antagonists could represent drugs for the treatment of learning and memory dysfunctions.

  4. Kinin B1 receptor antagonists containing alpha-methyl-L-phenylalanine: in vitro and in vivo antagonistic activities.

    PubMed

    Gobeil, F; Charland, S; Filteau, C; Perron, S I; Neugebauer, W; Regoli, D

    1999-03-01

    -To protect from metabolism and to improve potency of the AcLys-[D-betaNal7,Ile8]desArg9-bradykinin (BK) (R 715), we prepared and tested 3 analogues containing alpha-methyl-L-Phe ([alphaMe]Phe) in position 5: these are the AcLys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 892), Lys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 913), and AcLys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 914). The new compounds were tested against the contractile effect induced by desArg9BK on 2 B1 receptor bioassays, the human umbilical vein, and the rabbit aorta. Their antagonistic activities were compared with those of the early prototypes (Lys-[Leu8]desArg9BK and [Leu8]desArg9BK) and with other recently described peptide antagonists. The 3 (alphaMe)Phe analogues showed high antagonistic potencies (pA2) at both the human (8.8, 7.7, and 8. 7, respectively) and rabbit (8.6, 7.8, and 8.6, respectively) B1 receptors. No antagonistic effects (pA2<5) were observed on the B2 receptors that mediate the contractile effects of BK on the human umbilical vein, the rabbit jugular vein, and the guinea pig ileum. Moreover, these new B1 antagonists were found to be resistant to in vitro degradation by purified angiotensin-converting enzyme from rabbit lung. The Nalpha-acetylated forms, R 892 and R 914, were resistant to aminopeptidases from human plasma. In vivo antagonistic potencies (ID50) of B1 receptor antagonists were evaluated in anesthetized lipopolysaccharide-treated (for B1 receptor) and nontreated (for B2 receptor) rabbits against the hypotensive effects of exogenous desArg9BK and BK. R 892 efficiently inhibited (ID50 2.8 nmol/kg IV) hypotension induced by desArg9BK without affecting that evoked by BK (ID50 >600 nmol/kg IV). Conversely, the peptide antagonists Lys-Lys-[Hyp3,Igl5,D-Igl7,Oic8]desArg9BK (B 9858) and DArg-[Hyp3,Thi5,D-Tic7,Oic8] desArg9BK (S 0765) showed dual B1/B2 receptor antagonism in vitro and in vivo. It is concluded that R 892 and congeners provide selective, highly potent, and metabolically stable B1 kinin receptor antagonists that can be useful for the assessment of the physiological and pathological roles of kinin B1 receptors.

  5. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Delgar, Claudia G; Koch, Karina; Brown, Patricia M G E; Møller, Charlotte; Han, Liwei; Huynh, Tri H V; Hansen, Stinne W; Nielsen, Birgitte; Bowie, Derek; Pickering, Darryl S; Kastrup, Jette Sandholm; Frydenvang, Karla; Bunch, Lennart

    2017-01-12

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (K i = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC 50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.

  6. Ranakinestatin-PPF from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyi fukienensis: a prototype of a novel class of bradykinin B2 receptor antagonist peptide from ranid frogs.

    PubMed

    Ma, Jie; Luo, Yu; Ge, Lilin; Wang, Lei; Zhou, Mei; Zhang, Yingqi; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin-a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10(-6)M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10(-11)M and 10(-5)M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin-PPF-thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

  7. Diadenosine polyphosphates as antagonists of the endogenous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones

    PubMed Central

    Vigne, Paul; Breittmayer, Jean Philippe; Frelin, Christian

    2000-01-01

    Diadenosine polyphosphates (ApnAs, n=2–7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of ApnAs in clones of rat brain capillary endothelial cells that express P2Y1 receptors (B10 cells) or both P2Y1 and P2Y2 receptors (B7 cells).B10 cells responded to Ap3A with rises in intracellular Ca2+ concentration ([Ca2+]i). This response was prevented by adenosine-3′-phosphate-5′-phosphate, an antagonist of P2Y1 receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.ApnAs inhibited ADP induced increases in [Ca2+]i mediated by P2Y1 receptors by shifting ADP concentration-response curves to larger concentrations. Apparent Ki values were estimated to be 6 μM for Ap4A, 10 μM for Ap5A and 47 μM for Ap6A. Ap2A and Ap3A were much less active.ApnAs were neither agonists nor antagonists of the endogenous P2Y2 receptor in B7 cells.ApnAs are neither agonists nor antagonists of the Gi-coupled, ADP receptor in B10 cells.The results suggest that most actions of ApnAs in B7 and B10 cells can be accounted for by endogenous P2Y1 receptors. Ap4A, Ap5A and Ap6A are specific antagonists of endogenous Ca2+-coupled P2Y1 receptors. PMID:10742308

  8. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    PubMed

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  9. Serotonin (1A) receptor involvement in acute 3,4-methylenedioxymethamphetamine (MDMA) facilitation of social interaction in the rat.

    PubMed

    Morley, Kirsten C; Arnold, Jonathon C; McGregor, Iain S

    2005-06-01

    The current study assessed whether various co-administered serotonin (5-HT) receptor antagonists could prevent some of the acute behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") in rats. In the social interaction test, MDMA (5 mg/kg) significantly increased the duration of total social interaction between two conspecifics meeting for the first time. Microanalysis showed that MDMA increased adjacent lying and approach behaviours while reducing anogenital sniffing. MDMA (5 mg/kg) also caused elements of the serotonin syndrome including low body posture and piloerection. In the emergence test, MDMA significantly increased hide time and emergence latency indicating increased anxiety-like behavior. Pretreatment with the 5HT 1A receptor antagonist, WAY 100635 (1 mg/kg), prevented MDMA-induced increases in social interaction and markers of the serotonin syndrome while the 5-HT 1B receptor antagonist GR 55562 (1 mg/kg) and 5-HT 2A receptor antagonist ketanserin (1 mg/kg) were ineffective. The 5-HT 2B/2C receptor antagonist, SB 206553 (2 mg/kg), prevented MDMA-induced prosocial effects but caused pronounced thigmotaxis (hyperactivity at the periphery of the testing chamber). The anxiogenic effect of MDMA on the emergence test was not prevented by pretreatment with any of the 5-HT receptor antagonists tested. These results indicate that prosocial effect of MDMA may involve 5-HT 1A and possibly 5-HT 2B/2C receptors. In contrast, MDMA-induced generalised anxiety, as measured by the emergence test, seems unlikely to involve the 5-HT 1A, 5-HT 1B or 5-HT 2A, 5-HT 2B or 5-HT 2C receptors.

  10. Atypical sympathomimetic drug lerimazoline mediates contractile effects in rat aorta predominantly by 5-HT2A receptors.

    PubMed

    Rizvić, Eldina; Janković, Goran; Kostić-Rajačić, Slađana; Savić, Miroslav M

    2017-08-20

    Lerimazoline is a sympathomimetic drug that belongs to the imidazoline class of compounds, and is used as a nasal decongestant. Studies on lerimazoline are rare, and its pharmacological profile is not completely understood. Here, we analyzed the affinity of lerimazoline for dopamine receptor D2, serotonin 5-HT1A and 5-HT2A receptors and α1-adrenoceptor, and investigated lerimazoline contractile effects in isolated rat thoracic aorta. We also determined the effect of several antagonists on the contractile response to lerimazoline, including prazosin (α1-adrenoceptor antagonist), RX 821002 and rauwolscine (α2-adrenoceptor antagonists), JP 1302 (α2C-adrenoceptor antagonist), methiothepin (non-selective 5-HT receptor antagonist), SB 224289 (5-HT1B receptor antagonist), BRL 15572 (5-HT1D receptor antagonist), and ketanserin (5-HT2A receptor antagonist). Lerimazoline displayed high affinity for the 5-HT1A receptor (Ki = 162.5 nM), similar to the previously reported affinity for the 5-HT1D receptor. Binding affinity estimates (Ki) for α1, 5-HT2A, and D2 receptors were 6656, 4202 and 3437.5 nM, respectively (the literature reported Ki for 5-HT1B receptor is 3480 nM). Lerimazoline caused concentration-dependent contractions in 70% of preparations, varying in the range between 40% and 55% of the maximal contraction elicited by phenylephrine. While prazosin reduced the maximum contractile response to lerimazoline, rauwolscine showed a non-significant trend in reduction of the response. Both ketanserin (10 nM and 1 µM) and methiothepin strongly suppressed the maximum response to lerimazoline. Overall, our results suggest that 5-HT2A and, less distinctly, α1-adrenergic receptors are involved in the lerimazoline-induced contractions, which makes lerimazoline an "atypical" decongestant.

  11. Sex differences and serotonergic mechanisms in the behavioural effects of psilocin.

    PubMed

    Tylš, Filip; Páleníček, Tomáš; Kadeřábek, Lukáš; Lipski, Michaela; Kubešová, Anna; Horáček, Jiří

    2016-06-01

    Psilocybin has recently attracted a great deal of attention as a clinical research and therapeutic tool. The aim of this paper is to bridge two major knowledge gaps regarding its behavioural pharmacology - sex differences and the underlying receptor mechanisms. We used psilocin (0.25, 1 and 4 mg/kg), an active metabolite of psilocybin, in two behavioural paradigms - the open-field test and prepulse inhibition (PPI) of the acoustic startle reaction. Sex differences were evaluated with respect to the phase of the female cycle. The contribution of serotonin receptors in the behavioural action was tested in male rats with selective serotonin receptor antagonists: 5-HT1A receptor antagonist (WAY100635 1 mg/kg), 5-HT2A receptor antagonist (MDL100907 0.5 mg/kg), 5-HT2B receptor antagonist (SB215505 1 mg/kg) and 5-HT2C receptor antagonist (SB242084 1 mg/kg). Psilocin induced dose-dependent inhibition of locomotion and suppression of normal behaviour in rats (behavioural serotonin syndrome, impaired PPI). The effects were more pronounced in male rats than in females. The inhibition of locomotion was normalized by 5-HT1A and 5-HT2B/C antagonists; however, PPI was not affected significantly by these antagonists. Our findings highlight an important issue of sex-specific reactions to psilocin and that apart from 5-HT2A-mediated effects 5-HT1A and 5-HT2C/B receptors also play an important role. These findings have implications for recent clinical trials.

  12. Receptors for bradykinin and related kinins: a critical analysis.

    PubMed

    Regoli, D; Jukic, D; Gobeil, F; Rhaleb, N E

    1993-08-01

    Kinins exert a variety of biological actions and have been implicated in the pathogenesis of inflammation, pain, asthma, and other diseases. Kinins act through specific receptors that are widespread and belong to two major categories, B1 and B2. B2 has been cloned and shown to be of the rhodopsin type, consisting of seven hydrophobic membrane domains connected by extracellular and intracellular loops. Recent pharmacological findings from various laboratories suggest the existence of new receptor types, which have been named B3, B4, and B5. These findings are analysed critically, especially with respect to the criteria that have been used for affirming the existence of new receptor entities. The analysis is restricted to data obtained in isolated organs, almost exclusively smooth muscle preparations. Criteria for receptor characterization and classification are the order of potency of agonists and the apparent affinities of antagonists. The analysis reveals that receptors for bradykinin and related kinins are of two types, B1 and B2. B1 mediates the rapid acute response (smooth muscle contraction or relaxation) as well as some effects occurring more slowly (e.g., collagen synthesis). B1 receptor functions have been shown to be modulated by interleukins. B2 receptors are responsible for most of the kinins' biological effects, including arterial vasodilatation, plasma extravasation, venoconstriction, activation of sensory fibers (e.g., fibers for pain), and stimulation of the release of prostaglandins, endothelium-dependent relaxing factor (from endothelia), noradrenaline (from nerve terminals and adrenals), and other endogenous agents. The pharmacological characteristics of the receptor sites (B2) mediating this array of biological effects show differences between species, and two B2 receptor subtypes are proposed, namely B2A (rabbit, dog, and possibly man) and B2B (guinea pig, hamster, rat). B2A and B2B receptor subtypes have been characterized by using fairly selective agonists and competitive antagonists (e.g., D-Arg[Hyp3, D-Phe7,Leu8]BK). Noncompetitive antagonists (non-equilibrium), such as HOE 140, do not discriminate between B2A and B2B subtypes. Species differences cannot account for the multiplicity of receptors that have been proposed for rat vas deferens, pre- and post-junctional sites, and rat uterus, guinea pig ileum, and rat blood pressure. The existence of hypothetical new receptor sites was based on data obtained with partial agonists and have not been substantiated by data obtained with potent pure antagonists. The B3 receptor, proposed to explain the unusual behaviour of the guinea pig tracheal response to kinins, has to be carefully reconsidered after the finding that HOE 140 acts as a pure antagonist on this tissue and shows a fairly high affinity for the tracheal site.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.

    PubMed

    Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S

    2001-12-01

    The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in dermal papilla cells might play a role in the production of adenosine.

  14. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    PubMed

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  15. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their functional profiles in vivo.

  16. Pharmacological characterization of a β-adrenergic-like octopamine receptor in Plutella xylostella.

    PubMed

    Huang, Qing-Ting; Ma, Hai-Hao; Deng, Xi-Le; Zhu, Hang; Liu, Jia; Zhou, Yong; Zhou, Xiao-Mao

    2018-04-25

    The β-adrenergic-like octopamine receptor (OA2B2) belongs to the class of G-protein coupled receptors. It regulates important physiological functions in insects, thus is potentially a good target for insecticides. In this study, the putative open reading frame sequence of the Pxoa2b2 gene in Plutella xylostella was cloned. Orthologous sequence alignment, phylogenetic tree analysis, and protein sequence analysis all showed that the cloned receptor belongs to the OA2B2 protein family. PxOA2B2 was transiently expressed in HEK-293 cells. It was found that PxOA2B2 could be activated by both octopamine and tyramine, resulting in increased intracellular cyclic AMP (cAMP) levels, whereas dopamine and serotonin were not effective in eliciting cAMP production. Further studies with series of PxOA2B2 agonists and antagonists showed that all four tested agonists (e.g., naphazoline, clonidine, 2-phenylethylamine, and amitraz) could activate the PxOA2B2 receptor, and two of tested antagonists (e.g., phentolamine and mianserin) had significant antagonistic effects. However, antagonist of yohimbine had no effects. Quantitative real-time polymerase chain reaction analysis showed that Pxoa2b2 gene was expressed in all developmental stages of P. xylostella and that the highest expression occurred in male adults. Further analysis with fourth-instar P. xylostella larvae showed that the Pxoa2b2 gene was mainly expressed in Malpighian tubule, epidermal, and head tissues. This study provides both a pharmacological characterization and the gene expression patterns of the OA2B2 in P. xylostella, facilitating further research for insecticides using PxOA2B2 as a target. © 2018 Wiley Periodicals, Inc.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K.S.

    Norepinephrine has previously been demonstrated by this laboratory to potentiate the in vitro T-dependent antibody response through the stimulation of {beta}-adrenergic receptors. The role of {beta}-adrenergic receptor subtypes in norepinephrine-induced potentiation of the antibody responses was examined with selective {beta}-adrenergic antagonists. The antagonists were metoprolol ({beta}{sub 1}-selective), ICI 118-551 ({beta}{sub 2}-selective), and propranolol ({beta}-non-selective). Both propranolol and ICI 118-551 blocked norepinephrine-induced potentiation of the antibody response, but metoprolol was ineffective. Receptor binding competition of antagonists with the radioligant, ({sup 3}H)CGP-12177 was examined and results were analyzed with the computer program, LIGAND. Competition by ICI 118-551 identified 75% {beta}{sub 2}- andmore » 25% {beta}{sub 1}-adrenergic receptors on splenic mononuclear cells. Enriched T lymphocytes exhibited 75% {beta}{sub 2}-adrenergic receptors, while enriched B lymphocytes contained 90% {beta}{sub 2}-adrenergic receptors as identified by ICI 118-551. Greater than twice as many total receptors were identified on B lymphocytes than T lymphocytes. A T cell lymphoma contained about 60% {beta}{sub 2}-receptors, while 100% were {beta}{sub 2} receptors on a B cell lymphoma, as assessed by ICI 118-551. Results support a heterogeneous {beta}-adrenergic receptor population on T lymphocytes and a more homogeneous {beta}{sub 2}-population on B lymphocytes.« less

  18. Characterization of bradykinin receptors in human lung fibroblasts using the binding of 3[H][Des-Arg10,Leu9]kallidin and [3H]NPC17731.

    PubMed

    Zhang, S P; Codd, E E

    1998-01-01

    Bradykinin (BK) receptors are involved in pain and inflammation. Two BK receptor subtypes, B1 and B2, have been defined based on their pharmacological properties. Both B1 and B2 receptors are G-protein coupled membrane receptors. B1 receptors are present in smooth muscle tissue, whereas B2 receptors are found in both smooth muscle tissue and neurons. [Des-Arg10,Leu9]kallidin (DALKD) is a selective B1 receptor antagonist, and NPC17731 is a selective B2 receptor antagonist. To develop binding assays for the two known BK receptor subtypes, [3H]DALKD and [3H]NPC17731 were used as selective ligands for B1 and B2 receptors respectively. Both ligands bound to the CCD-16 human lung fibroblast membranes reaching equilibrium at 25 degrees C within 30 min. Binding was stable for at least 60 min. The Kd of [3H]DALKD was 0.33 nM and Bmax was 52 fmol/mg membrane protein. The Kd of [3H]NPC17731 was 0.39 nM and Bmax was 700 fmol/mg membrane protein. Competition for [3H]DALKD binding with BK receptor agonists was in the order: [des-Arg10]KD (DAKD) > KD > [des-Arg9]BK (DABK) > BK, and competition for [3H]DALKD binding with BK receptor antagonists was in the order: DALKD > [des-Arg10]Hoe 140 (DAHoe 140) > [des-Arg9,Leu8]BK (DALBK) > NPC17731 > Hoe 140 > DNMFBK, suggesting that [3H]DALKD bound selectively to B1 receptors. By contrast, competition for [3H]NPC17731 binding by BK agonists was in the order: BK > KD > DAKD > DABK, and competition for [3H]NPC17731 binding by BK antagonists was in the order: NPC17731 = Hoe 140 > DNMFBK > DAHoe 140 > DALBK > DALKD, indicating that [3H]NPC17731 labeled B2 receptors selectively. These results demonstrate that [3H]DALKD and [3H]NPC17731 can be used with CCD-16 human lung fibroblast membranes to provide a pair of binding assays for the simultaneous evaluation of B1 and B2 BK receptor subtypes.

  19. Characterization of kinin receptors by bioassays.

    PubMed

    Gobeil, F; Regoli, D

    1994-08-01

    1. Using the classical pharmacological criteria recommended by Schild, namely the order of potency of selective agonists (e.g., bradykinin, desArg9-bradykinin, [Hyp3]BK and [Aib7]BK) and the apparent affinity of competitive antagonists (e.g., DArg[Hyp3,DPhe7,Leu8]BK and WIN 64338), we have attempted to characterize B2 receptor subtypes. It has been shown that vascular tissues (e.g., dog carotid and renal arteries, rabbit jugular vein and rabbit aorta) are very sensitive to kinin agonists and antagonists (pD2 and pA2 values for BK and HOE 140 on B2 receptors are 8.5-10.1 and 9.2-9.4, respectively, and for desArg9BK and desArg9[Leu8]BK on B1 receptors they are 7.3-8.6 and 7.3-7.8, respectively). Mechanisms of action of kinins differ between pharmacological preparations. Kinin may act directly on the smooth muscle (e.g., rabbit jugular vein and rabbit aorta) as well as indirectly through other endogenous mediators such as nitric oxide (EDRF) (e.g., dog carotid and renal arteries) and prostaglandins (e.g., dog renal artery). 2. Pharmacological analysis of rabbit jugular vein (RJV) and guinea pig ileum (GPI) has revealed different sensitivities to certain synthetic analogs of BK and to competitive B2 receptor antagonists between the two tissues. 3. Agonist order of potency ([Hyp3]BK > BK > [Aib7]BK) obtained for RJV differed from that obtained for GPI (BK > or = [Aib7]BK > [Hyp3]BK). Competitive antagonists such as DArg[Hyp3, DPhe7, Leu8]BK and WIN 64338 discriminate in favor of B2A (RJV) and B2B (GPI) receptor subtypes, respectively. These data demonstrate the existence of B2 receptor subtypes. Correlation between data obtained in the present study and those reported for binding to the human B2 receptor support the view that the human receptor is similar to that of the rabbit.

  20. In vitro contractile effects of neurokinin receptor blockade in the human ureter.

    PubMed

    Nakada, S Y; Jerde, T J; Bjorling, D E; Saban, R

    2001-10-01

    We identified the predominance of neurokinin-2 receptors and evaluated the inhibition of spontaneous contraction via the blockade of neurokinin-2 receptors in human ureteral segments. Excess ureteral segments from human subjects undergoing donor nephrectomy or reconstructive procedures were suspended in tissue baths containing Krebs buffer. After spontaneous contractions were recorded, tissues were incubated with 1 microM. solutions of phosphoramidon and captopril (to inhibit peptide degradation) and either the neurokinin-1 receptor antagonist CP 99,994, the neurokinin-2 receptor antagonist SR 48,968, the neurokinin-3 receptor antagonist SR 142,801 or dimethyl sulfoxide (control) for 1 hour. Contraction magnitude and frequency were again recorded and compared with spontaneous levels. Concentration-response curves to the tachykinins substance P, and neurokinins A and B were determined in the presence and absence of antagonists. Neurokinin A increased contractility at lower concentrations than substance P or neurokinin B (p <0.013). Neurokinin-2 receptor blockade produced a 100-fold rightward shift of the concentration-response curves (p <0.013), while neurokinins 1 and 3 receptor blockade had no effect. SR 48,968 significantly reduced contractility during the 1-hour incubation period, causing a 97% reduction in spontaneous rates compared with a 29% reduction in control tissues. CP 99,994 and SR 142,801 had no significant effect. Neurokinin-2 is the predominant receptor subtype responsible for tachykinin induced contraction of human ureteral smooth muscle. In vitro treatment with the neurokinin-2 antagonist SR 48,968 reduces the spontaneous contraction rate by 97% in vitro. Neurokinin-2 receptor antagonists may have clinical applications for ureteral disease.

  1. Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics

    PubMed Central

    Manning, M; Misicka, A; Olma, A; Bankowski, K; Stoev, S; Chini, B; Durroux, T; Mouillac, B; Corbani, M; Guillon, G

    2012-01-01

    We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V1a, V1b and V2 receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V1b receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V1a agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V2/V1a antagonist, conivaptan and the V2 antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V1a, V1b and V2 antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences. PMID:22375852

  2. Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules

    PubMed Central

    McLean, Peter G.; Ahluwalia, Amrita; Perretti, Mauro

    2000-01-01

    Using intravital microscopy, we examined the role played by B1 receptors in leukocyte trafficking across mouse mesenteric postcapillary venules in vivo. B1 receptor blockade attenuated interleukin (IL)-1β–induced (5 ng intraperitoneally, 2 h) leukocyte–endothelial cell interactions and leukocyte emigration (∼50% reduction). The B1 receptor agonist des-Arg9bradykinin (DABK), although inactive in saline- or IL-8–treated mice, caused marked neutrophil rolling, adhesion, and emigration 24 h after challenge with IL-1β (when the cellular response to IL-1β had subsided). Reverse transcriptase polymerase chain reaction and Western blot revealed a temporal association between the DABK-induced response and upregulation of mesenteric B1 receptor mRNA and de novo protein expression after IL-1β treatment. DABK-induced leukocyte trafficking was antagonized by the B1 receptor antagonist des-arg10HOE 140 but not by the B2 receptor antagonist HOE 140. Similarly, DABK effects were maintained in B2 receptor knockout mice. The DABK-induced responses involved the release of neuropeptides from C fibers, as capsaicin treatment inhibited the responses. Treatment with the neurokinin (NK)1 and NK3 receptor antagonists attenuated the responses, whereas NK2, calcitonin gene-related peptide, or platelet-activating factor receptor antagonists had no effect. Substance P caused leukocyte recruitment that, similar to DABK, was inhibited by NK1 and NK3 receptor blockade. Mast cell depletion using compound 48/80 reduced DABK-induced leukocyte trafficking, and DABK treatment was shown histologically to induce mast cell degranulation. DABK-induced trafficking was inhibited by histamine H1 receptor blockade. Our findings provide clear evidence that B1 receptors play an important role in the mediation of leukocyte–endothelial cell interactions in postcapillary venules, leading to leukocyte recruitment during an inflammatory response. This involves activation of C fibers and mast cells, release of substance P and histamine, and stimulation of NK1, NK3, and H1 receptors. PMID:10934225

  3. Nondopaminergic treatments for Parkinson's disease: current and future prospects

    PubMed Central

    Freitas, Maria Eliza; Fox, Susan H

    2016-01-01

    Parkinson's disease is primarily caused by dysfunction of dopaminergic neurons, however, nondopaminergic (ND) systems are also involved. ND targets are potentially useful to reduce doses of levodopa or to treat nonlevodopa-responsive symptoms. Recent studies have investigated the role of ND drugs for motor and nonmotor symptoms. Adenosine A2A receptor antagonists, mixed inhibitors of sodium/calcium channels and monoamine oxidase-B have recently been found to improve motor fluctuations. N-methyl-d-aspartate receptor antagonists and serotonin 5HT1B receptor agonists demonstrated benefit in levodopa-induced dyskinesia. Conversely, studies using antiepileptic drugs and adrenoreceptor antagonist had conflicting results. Moreover, metabotropic glutamate receptor antagonists also failed to improve symptoms. The current review summarizes the most recent findings on ND drugs over the last 2 years. PMID:27230697

  4. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    PubMed

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  5. Synthesis of water-soluble polyamine derivatives effective as N-methyl-D-aspartate receptor antagonists.

    PubMed

    Masuko, Takashi; Yoshida, Shuhei; Metori, Koichi; Kizawa, Yasuo; Kusama, Tadashi; Miyake, Muneharu

    2010-06-01

    The novel water-soluble N-methyl-D-aspartate (NMDA) receptor antagonists, N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}-p-toluenesulfonamide trihydrochloride (1a, TsHSPMG), N-{4-[4-(4-Guanidinobutylamino)butylamino]butyl}butane-1-sulfonamide trihydrochloride (1b, BsHSPMG), N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}-p-toluenesulfonamide trihydrochroride (2a, TsSPMG) and N-{3-[4-(3-Guanidinopropylamino)butylamino]propyl}butane-1-sulfonamide trihydrochroride (2b, BsSPMG), were synthesized, and the effects of these polyamine derivatives on NMDA receptors were studied using voltage-clamp recordings of recombinant NMDA receptors expressed in Xenopus oocytes. Although spermine potentiates 153% and 310% of NMDA (NR1A/NR2B) receptors in the presence of saturated and unsaturated glycine, respectively, all the novel polyamine derivatives, TsHSPMG (1a), BsHSPMG (1b), TsSPMG (2a) and BsSPMG (2b), significantly inhibited NR1A/NR2B receptors in both conditions. The degree of NMDA receptor inhibition by TsHSPMG (1a) and BsHSPMG (1b) was stronger than that by TsSPMG (2a) and BsSPMG (2b).

  6. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    PubMed

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis and SAR studies of novel 2-(6-aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists.

    PubMed

    Napier, Susan E; Letourneau, Jeffrey J; Ansari, Nasrin; Auld, Douglas S; Baker, James; Best, Stuart; Campbell-Wan, Leigh; Chan, Ray; Craighead, Mark; Desai, Hema; Ho, Koc-Kan; MacSweeney, Cliona; Milne, Rachel; Richard Morphy, J; Neagu, Irina; Ohlmeyer, Michael H J; Pick, Jack; Presland, Jeremy; Riviello, Chris; Zanetakos, Heather A; Zhao, Jiuqiao; Webb, Maria L

    2011-06-15

    Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide.

    PubMed

    Sanna, Fabrizio; Bratzu, Jessica; Argiolas, Antonio; Melis, Maria Rosaria

    2017-11-01

    Oxytocin (5-100ng), but not Arg 8 -vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH 2 ) 5 Tyr(Me) 2 -Orn 8 -vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABA A receptor antagonist, phaclofen (5μg), a GABA B receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Attenuation of Persistent Experimental Pancreatitis Pain by a Bradykinin B2 Receptor Antagonist

    PubMed Central

    Chen, Qingmin; Vera-Portocarrero, Louis P.; Ossipov, Michael H.; Vardanyan, Marina; Lai, Josephine; Porreca, Frank

    2017-01-01

    Objective The role of bradykinin (BK) receptors in activating and sensitizing peripheral nociceptors is well known. Recently, we showed that spinal dynorphin was pronociceptive through direct or indirect BK receptor activation. Here, we explored the potential role of BK receptors in pain associated with persistent pancreatitis in rats. Methods Experimental pancreatitis and abdominal hypersensitivity were induced by intravenous administrations of dibutyltin dichloride (DBTC). [des-Arg9-Leu8]BK (B1 antagonist) and HOE 140 (B2 antagonist) were given by intraperitoneal or intrathecal injection. Dynorphin antiserum was given intrathecally. Reverse transcription–polymerase chain reaction was used to detect spinal mRNA for BK receptors. Results Dibutyltin dichloride–induced pancreatitis upregulated B1 and B2 mRNA in the thoracic dorsal root ganglion and B2, but not B1, in the pancreas. No changes in spinal B1 or B2 mRNA were observed. Intraperitoneal or intrathecal administration of HOE 140 dose dependently abolished DBTC-induced abdominal hypersensitivity, whereas [des-Arg9-Leu8]BK was without effect by either route of administration. Antiserum to dynorphin (intrathecal) abolished DBTC-induced hypersensitivity. Conclusions These results suggest that blockade of peripheral or spinal BK B2 receptors may be an effective approach for diminishing pain associated with pancreatitis. Moreover, it is suggested that spinal dynorphin may maintain pancreatitis pain through direct or indirect activation of BK B2 receptors in the spinal cord. PMID:20531238

  10. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease even in the absence of signs of fluid retention. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with boundmore » ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.« less

  12. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    PubMed Central

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2017-01-01

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity. PMID:28760974

  13. Emerging drugs for neuropathic pain.

    PubMed

    Gilron, Ian; Dickenson, Anthony H

    2014-09-01

    Neuropathic pain is a costly and disabling condition, which affects up to 8% of the population. Available therapies often provide incomplete pain relief and treatment-related side effects are common. Preclinical neuropathic pain models have facilitated identification of several promising targets, which have progressed to human clinical phases of evaluation. A systematic database search yielded 25 new molecular entities with specified pharmacological mechanisms that have reached Phase II or III clinical trials. These include calcium channel antagonists, vanilloid receptor antagonists, potassium channel agonists, NMDA antagonists, novel opioid receptor agonists, histamine H3 receptor antagonists, a novel sodium channel antagonist, serotonin modulators, a novel acetylcholine receptor agonist, α-2b adrenoreceptor agonist, cannabinoid CB2 receptor agonist, nitric oxide synthase inhibitor, orexin receptor antagonist, angiotensin II 2 antagonist, imidazoline I2 receptor agonist, apoptosis inhibitor and fatty acid amide hydrolase inhibitor. Although the diversity of pharmacological mechanisms of interest emphasise the complexity of neuropathic pain transmission, the considerable number of agents under development reflect a continued enthusiasm in drug development for neuropathic pain. Ongoing enhancements in methodology of both preclinical and clinical research and closer translation in both directions are expected to more efficiently identify new agents, which will improve the management of neuropathic pain.

  14. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors.

    PubMed

    Wang, Rui; Xu, Ying; Wu, Hong-Li; Li, Ying-Bo; Li, Yu-Hua; Guo, Jia-Bin; Li, Xue-Jun

    2008-01-06

    Curcuma longa is a main constituent of many traditional Chinese medicines, such as Xiaoyao-san, used to manage mental disorders effectively. Curcumin is a major active component of C. longa and its antidepressant-like effect has been previously demonstrated in the forced swimming test. The purpose of this study was to explore the possible contribution of serotonin (5-HT) receptors in the behavioral effects induced by curcumin in this animal model of depression. 5-HT was depleted by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA, 100 mg/kg, i.p.) prior to the administration of curcumin, and the consequent results showed that PCPA blocked the anti-immobility effect of curcumin in forced swimming test, suggesting the involvement of the serotonergic system. Moreover, pre-treatment of pindolol (10 mg/kg, i.p., a beta-adrenoceptors blocker/5-HT(1A/1B) receptor antagonist), 4-(2'-methoxy-phenyl)-1-[2'-(n-2''-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (p-MPPI, 1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane, 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist) was found to prevent the effect of curcumin (10 mg/kg) in forced swimming test. On the other hand, a sub-effective dose of curcumin (2.5 mg/kg, p.o.) produced a synergistic effect when given jointly with (+)-8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT, 1 mg/kg, i.p., a 5-HT(1A) receptor agonist), anpirtoline (0.25 mg/kg, i.p., a 5-HT(1B) receptor agonist) or ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist with higher affinity to 5-HT(2A) receptor) or R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1 mg/kg, i.p., a 5-HT(2A) receptor agonist). Taken together, these results indicate that the antidepressant-like effect of curcumin in the forced swimming test is related to serotonergic system and may be mediated by, at least in part, an interaction with 5-HT(1A/1B) and 5-HT(2C) receptors.

  15. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine.

    PubMed

    Qu, Mei-Hua; Ji, Wan-Sheng; Zhao, Ting-Kun; Fang, Chun-Yan; Mao, Shu-Mei; Gao, Zhi-Qin

    2016-02-15

    To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK.

  16. Design, synthesis, and action of oxotremorine-related hybrid-type allosteric modulators of muscarinic acetylcholine receptors.

    PubMed

    Disingrini, Teresa; Muth, Mathias; Dallanoce, Clelia; Barocelli, Elisabetta; Bertoni, Simona; Kellershohn, Kerstin; Mohr, Klaus; De Amici, Marco; Holzgrabe, Ulrike

    2006-01-12

    A novel series of muscarinic receptor ligands of the hexamethonio-type was prepared which contained, on one side, the phthalimidopropane or 1,8-naphthalimido-2,2-dimethylpropane moiety typical for subtype selective allosteric antagonists and, on the other, the acetylenic fragment typical for the nonselective orthosteric muscarinic agonists oxotremorine, oxotremorine-M, and related muscarinic agonists. Binding experiments in M(2) receptors using [(3)H]N-methylscopolamine as an orthosteric probe proved an allosteric action of both groups of hybrids, 7a-10a and 8b-10b. The difference in activity between a-group and b-group hybrids corresponded with the activity difference between the allosteric parent compounds. In M(1)-M(3) muscarinic isolated organ preparations, most of the hybrids behaved as subtype selective antagonists. [(35)S]GTPgammaS binding assays using human M(2) receptors overexpressed in CHO cells revealed that a weak intrinsic efficacy was preserved in 8b-10b. Thus, attaching muscarinic allosteric antagonist moieties to orthosteric muscarinic agonists may lead to hybrid compounds in which functions of both components are mixed.

  17. Pharmacological characterization of the bradykinin B2 receptor: inter-species variability and dissociation between binding and functional responses

    PubMed Central

    Paquet, J -L; Luccarini, J -M; Fouchet, C; Defrêne, E; Loillier, B; Robert, C; Bélichard, P; Cremers, B; Pruneau, D

    1999-01-01

    The present study addresses the differences in binding profiles and functional properties of the human and rat bradykinin (BK) B2 receptor using various kinin receptor peptide derivatives as well as the non-peptide receptor antagonists WIN 64338 (phosphonium, [[4-[[2-[[bis(cyclohexylamino)methylene]amino]-3-(2-naphtalenyl)1-oxopropyl]amino]-phenyl]-methyl]tributyl, chloride, monohydro-chloride), and FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[-N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl)oxymethyl]-phenyl]N-methylamino carbonyl methyl] acrylamide. [3H]-BK bound with a similar affinity to membranes of Chinese hamster ovary cells (CHO-K1) expressing the cloned human (hB2-CHO) or rat (rB2-CHO) B2 receptor, human embryonic intestine cells (INT407) expressing the native B2 receptor, human umbilical vein (HUV) and rat uterus (RU). WIN 64338 and FR173657 bound with a 3.8–6.6 fold and 7.0–16.3 fold higher affinity the rat than the human B2 receptor, respectively. The affinity values of BK derivatives as well as non-peptide antagonists were reduced by 6–23 fold in physiological HBSS compared to low ionic strength TES binding buffer. BK (0.01–3000 nM) increased inositol triphosphates (IP3) levels in hB2-CHO, rB2-CHO and INT407 cells. The B2 receptor antagonist, Hoe 140 (D-Arg0-[ Hyp3, Thi5, D-Tic7, Oic8]-BK) at 10−7 M, significantly shifted to the right the IP3 response curves to BK giving apparent pKB values of 8.56, 9.79 and 8.84 for hB2-CHO, rB2-CHO and INT407 cells, respectively. In human isolated umbilical vein, Hoe 140, D-Arg0-[Hyp3, D-Phe7, Leu8]-BK and NPC 567 had a lower potency in functional assays (pKB 8.18, 5.77 and 5.60, respectively) than expected from their affinity in binding studies (pKi 10.52, 8.64 and 8.27, respectively). FR173657 behaved as a high affinity ligand with pKi values of 8.59 and 9.81 and potent competitive antagonist with pKB values of 7.80 and 8.17 in HUV and RU, respectively. FR173657 bound with a similar affinity the cloned and native bradykinin B2 receptor in human (pKi of 8.66 and 8.59, respectively) and in rat (pKi 9.67 and 9.81, respectively). In conclusion, we suggest that the binding buffer composition has to be taken into account when screening new compounds and that inter-species differences should be considered when setting up animal models with the aim of developing bradykinin B2 receptor antagonists as therapeutic agents. PMID:10204994

  18. Neurotransmitter-mediated anxiogenic action of PACAP-38 in rats.

    PubMed

    Telegdy, G; Adamik, A

    2015-03-15

    The action of PACAP-38 was studied by measuring the anxiogenic-anxiolytic behavior of rats in an elevated plus maze. PACAP-38 was administered into the lateral brain ventricle and the behavior of the animals was measured 3h later. The possible involvement of transmitters was measured by pretreating the animals with receptor blockers which alone did not influence the task, but in the doses used were effective with other neuropeptides. The receptor antagonist PACAP 6-38 (a PAC 1/VPAC2 receptor antagonist of PACAP-38 receptor), haloperidol (a non-selective dopamine receptor antagonist), phenoxybenzamine (an α1/α2β-adrenergic receptor antagonist), propranolol(a β-adrenergic receptor antagonist), bicuculline (a gamma-aminobutyric acid subunit A receptor antagonist), methysergide (a nonselective 5-HT2 serotonergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), naloxone (a nonselective opioid receptor antagonist) and nitro-l-arginine which acts by blocking the enzyme nitric oxide synthase, thereby blocking the nitric oxide synthesis, were tested. The following parameters were measured: the time spent in open arms/the time spent in total entries. PACAP-38 decreased the ratio of time spent in open arms to the time spent in total entries, indicating anxiogenic action. The total number of entries was not altered significantly either by PACAP-38 or by the receptor blockers. The following receptor blockers diminished the action of PACAP-38: PACAP 6-38,haloperidol, methysergide, naloxone and nitro-l-arginine. Pretreatment with atropine, phenoxybenzamine, propranolol and bicuculline did not influence the action of PACAP-38 on the time spent in open arms. The results demonstrate that PACAP-38 administered into the lateral brain ventricle exerted anxiogenic action at 3 h following treatment. Pretreatment of the animals with various receptor blockers indicated that a nonselective dopaminergic receptor antagonist, 5HT2 serotonergic and opioid receptors, nitric oxide and PAC1 receptors are involved in the anxiogenic action induced by PACAP-38. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 1. Synthesis and SAR of alpha,alpha-dimethylglycine sulfonamides.

    PubMed

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Berettoni, Marco; Calvani, Federico; Catrambone, Fernando; Felicetti, Patrizia; Gensini, Martina; Terracciano, Rosa; Altamura, Maria; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2006-06-15

    We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.

  20. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABA A-ρ1 Receptors

    DOE PAGES

    Xie, A.; Yan, J.; Yue, L.; ...

    2011-08-02

    All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brownmore » Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists differed in their effects on nSTR and PhNR; antagonists with GABA(B) agonist properties enhanced light-driven responses whereas 2-AEMP did not.« less

  1. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 2. Synthesis and structure-activity relationships of alpha,alpha-cycloalkylglycine sulfonamides.

    PubMed

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Caciagli, Valerio; Catrambone, Fernando; D'Andrea, Piero; Felicetti, Patrizia; Gensini, Martina; Marastoni, Elena; Nannicini, Rossano; Paris, Marielle; Terracciano, Rosa; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2007-02-08

    Recently we reported on the design and synthesis of a novel class of selective nonpeptide bradykinin (BK) B2 receptor antagonists (J. Med. Chem. 2006, 3602-3613). This work led to the discovery of MEN 15442, an antagonist with subnanomolar affinity for the human B2 receptor (hB2R), which also displayed significant and prolonged activity in vivo (for up to 210 min) against BK-induced bronchoconstriction in the guinea-pig at a dose of 300 nmol/kg (it), while demonstrating only a slight effect on BK-induced hypotension. Here we describe the further optimization of this series of compounds aimed at maximizing the effect on bronchoconstriction and minimizing the effect on hypotension, with a view to developing topically delivered drugs for airway diseases. The work led to the discovery of MEN 16132, a compound which, after intratracheal or aerosol administration, inhibited, in a dose-dependent manner, BK-induced bronchoconstricton in the airways, while showing minimal systemic activity. This compound was selected as a preclinical candidate for the topical treatment of airway diseases involving kinin B2 receptor stimulation.

  2. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  3. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the emerging notion that 5-HT plays a key role on memory formation.

  4. Crosstalk between the angiotensin and endothelin system in the cerebrovasculature after experimental induced subarachnoid hemorrhage.

    PubMed

    Wanderer, Stefan; Mrosek, Jan; Vatter, Hartmut; Seifert, Volker; Konczalla, Juergen

    2018-04-01

    Under physiologic conditions, losartan showed a dose-dependent antagonistic effect to the endothelin-1 (ET-1)-mediated vasoconstriction. This reduced vasoconstriction was abolished after preincubation with an endothelin B 1 receptor (ET(B 1 )-receptor) antagonist. Also, an increased ET(B 1 )-receptor-dependent relaxation to sarafotoxin S6c (S6c; an ET(B 1 )-receptor agonist) was detected by preincubation with losartan. Investigations after experimental induced subarachnoid hemorrhage (SAH) are still missing. Therefore, we analyzed losartan in a further pathological setup. Cerebral vasospasm was induced by a modified double hemorrhage model. Rats were sacrificed on day 3 and isometric force of basilar artery ring segments was measured. Parallel to physiological conditions, after SAH, the ET-1-induced vasoconstriction was decreased by preincubation with losartan. This reduced contraction has been abolished after preincubation with BQ-788, an ET(B 1 )-receptor antagonist. In precontracted vessels, ET-1 induced a higher vasorelaxation under losartan and the endothelin A receptor (ET(A)-receptor) antagonist BQ-123. After SAH, losartan caused a modulatory effect on the ET(B 1 )-receptor-dependent vasorelaxation. It further induced an upregulation of the NO pathway. Under losartan, the formerly known loss of the ET(B 1 )-receptor vasomotor function was abolished and a significantly increased relaxation, accompanied with an enhanced sensitivity of the ET(B 1 )-receptor, has been detected. Also, the dose-dependent antagonistic effect to the ET-1-induced contraction can be effected by angiotensin II type 1 receptor (AT 1 -receptor) antagonism due to losartan directly via the ET(B 1 )-receptor.

  5. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  6. CRF1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse

    PubMed Central

    Bruijnzeel, Adrie W.; Prado, Melissa; Isaac, Shani

    2010-01-01

    Background Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of CRF receptors with a non-specific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine seeking. Methods The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. Results In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450, but not the CRF2 receptor antagonist astressin-2B, prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450, but not astressin-2B, prevented stress-induced reinstatement of extinguished nicotine seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. Conclusions These studies indicate that CRF1 receptors, but not CRF2 receptors, play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine seeking. PMID:19217073

  7. Impact and benefit of A(2B)-adenosine receptor agonists for the respiratory tract: mucociliary clearance, ciliary beat frequency, trachea muscle tonus and cytokine release.

    PubMed

    Walaschewski, Robin; Begrow, Frank; Verspohl, Eugen J

    2013-01-01

    Adenosine is known to induce a bronchospasm in asthma- and COPD patients. The role of A(2B) receptors was investigated with respect to several parameters of the respiratory tract: tonus of smooth muscle, ciliary beat frequency as measured by high-speed video camera connected to a microscope (both in rats) and mucociliary clearance (MCC; transport of a fluorescent dye using a microdialysis procedure) in mice.  NECA (5'-N-ethylcarboxamidoadenosine) (a non-selective adenosine receptor agonist) was able to acutely induce a contraction, which was reversed to a relaxation after repeated dosing. This relaxation was completely abolished by PSB-1115, an A(2B) receptor antagonist. IL-13 (cytokine) was not involved mediating acute contractility effects. MCC was increased by BAY 60-6583 (A(2B) receptor agonist) and NECA (counteracted by the A(2B) receptor antagonist PSB-1115). Activation of A(2B) adenosine receptors by BAY 60-6583 induced an increase of the ciliary beat frequency, which could be reduced by administration of PSB-1115. Several cytokines were increased by NECA although only some are relevant because they are not blocked by A(2B) receptor antagonism. The A(2B) receptors are involved in airway relaxation, MCC improvement and ciliary beat frequency. A(2B) receptor agonists may be of therapeutic value and should be developed. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  8. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    NASA Astrophysics Data System (ADS)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new hits with structures not connected to the molecules used for pharmacophore development. A few of these structures were purchased and tested. The results of the binding studies show about a 33 % success rate with a correlation between the number of pharmacophore points fulfilled and their antagonistic potency. Some of these structures are disclosed in the present work.

  9. Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance.

    PubMed

    Rivier, Jean E; Rivier, Catherine L

    2014-04-01

    Elusive for more than half a century, corticotropin-releasing factor (CRF) was finally isolated and characterized in 1981 from ovine hypothalami and shortly thereafter, from rat brains. Thirty years later, much has been learned about the function and localization of CRF and related family members (Urocortins 1, 2 and 3) and their 2 receptors, CRF receptor type 1 (CRFR1) and CRF receptor type 2 (CRFR2). Here, we report the stepwise development of peptide CRF agonists and antagonists, which led to the CRFR1 agonist Stressin1; the long-acting antagonists Astressin2-B which is specific for CRFR2; and Astressin B, which binds to both CRFR1 and CRFR2.This analog has potential for the treatment of CRF-dependent diseases in the periphery, such as irritable bowel syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. In vivo electroretinographic studies of the role of GABA C receptors in retinal signal processing

    DOE PAGES

    Wang, Jing; Mojumder, Deb Kumar; Yan, Jun; ...

    2015-07-08

    The retina expresses all three classes of receptors for the inhibitory neurotransmitter GABA (GABAR). Our study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats.more » The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. Furthermore, the negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists differed in their effects on nSTR and PhNR; antagonists with GABA(B) agonist properties enhanced light-driven responses whereas 2-AEMP did not.« less

  11. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder.

    PubMed

    Kawaura, Kazuaki; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2014-08-15

    A 5-trial inhibitory avoidance test using spontaneously hypertensive rat (SHR) pups has been used as an animal model of attention deficit hyperactivity disorder (ADHD). However, the roles of noradrenergic systems, which are involved in the pathophysiology of ADHD, have not been investigated in this model. In the present study, the effects of adrenergic α2 receptor stimulation, which has been an effective treatment for ADHD, on attention/cognition performance were investigated in this model. Moreover, neuronal mechanisms mediated through adrenergic α2 receptors were investigated. We evaluated the effects of both clonidine, a non-selective adrenergic α2 receptor agonist, and guanfacine, a selective adrenergic α2A receptor agonist, using a 5-trial inhibitory avoidance test with SHR pups. Juvenile SHR exhibited a shorter transfer latency, compared with juvenile Wistar Kyoto (WKY) rats. Both clonidine and guanfacine significantly prolonged the transfer latency of juvenile SHR. The effects of clonidine and guanfacine were significantly blocked by pretreatment with an adrenergic α2A receptor antagonist. In contrast, the effect of clonidine was not attenuated by pretreatment with an adrenergic α2B receptor antagonist, or an adrenergic α2C receptor antagonist, while it was attenuated by a non-selective adrenergic α2 receptor antagonist. Furthermore, the effects of neither clonidine nor guanfacine were blocked by pretreatment with a selective noradrenergic neurotoxin. These results suggest that the stimulation of the adrenergic α2A receptor improves the attention/cognition performance of juvenile SHR in the 5-trial inhibitory avoidance test and that postsynaptic, rather than presynaptic, adrenergic α2A receptor is involved in this effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phasemore » diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.« less

  13. The role of serotonin-2 (5-HT2) and dopamine receptors in the behavioral actions of the 5-HT2A/2C agonist, DOI, and putative 5-HT2C inverse agonist, SR46349B.

    PubMed

    Scarlota, Laura C; Harvey, John A; Aloyo, Vincent J

    2011-02-01

    Atypical antipsychotic efficacy is often attributed to actions at serotonin-2 (5-HT(2)) and dopamine receptors, indicating a potential benefit of understanding the interplay between these systems. Currently, it is known that 5-HT(2) receptors modulate dopamine release, although the role of specific dopamine receptors in 5-HT(2)-mediated behavior is not well understood. We examined the role of 5-HT(2A), 5-HT(2C), and dopamine (D1 and D2) receptors in the behavioral response to a 5-HT(2A/2C) agonist (DOI) and 5-HT(2A/2C) antagonist (SR46349B). Effects were assessed by measuring rabbit head bobs (previously characterized as 5-HT(2A) receptor-mediated) and body shakes (5-HT(2C)-mediated). As expected, DOI produced head bobs and body shakes, and these DOI-elicited behaviors were attenuated by the SR46349B pretreatment. Unexpectedly, SR46349B also induced head bobs when administered alone. However, SR46349B-elicited head bobs are distinguishable from those produced by DOI since the 5-HT(2A) antagonist, ketanserin, only attenuated DOI-elicited head bobs. Conversely, 5-HT(2C) ligands (SB242084 and SB206553) inhibited SR46349B but not DOI-induced head bobs. Furthermore, when administered alone, SB206553 (a 5-HT(2C) inverse agonist) produced head bobs, indicating the behavior can be either 5-HT(2A) or 5-HT(2C) mediated. Next, it was revealed that D1 and D2 receptors play a role in DOI-elicited head bobs, but only D1 receptors are required for SR46349B-elicited head bobs. 5-HT(2A) receptor agonism and 5-HT(2C) inverse agonism produce the same behavior, likely due to similar downstream actions at D1 receptors. Consequently, 5-HT(2C) agonism or D1 agonism may be effective therapies for disorders, such as schizophrenia, currently being treated with 5-HT(2A) antagonists.

  14. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADPmore » (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.« less

  15. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases.

    PubMed

    Ali, Hydar

    2016-12-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.

  16. Synthesis and serotonergic activity of variously substituted (3-amido)phenylpiperazine derivatives and benzothiophene-4-piperazine derivatives: novel antagonists for the vascular 5-HT1B receptor.

    PubMed

    Moloney, Gerard P; Garavelas, Agatha; Martin, Graeme R; Maxwell, Miles; Glen, Robert C

    2004-04-01

    The synthesis and vascular 5-HT(1B) receptor activity of a novel series of substituted 3-amido phenylpiperazine and 4-(4-methyl-1-piperazinyl)-1-benzo[b]thiophene derivatives is described. Modifications to the amido linked sidechains of the 3-amidophenyl-piperazine derivatives and to the 2-sidechain of the 1-benzo[b]thiophene derivatives have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B) receptor of pK(B) > 7.0. From the 3-amidophenyl-piperazine series, N-(4-(4-chlorophenyl)thiazol-2-yl-3-(4-methyl-1-piperazinyl)benzamide (30) and from the benzo[b]thiophene-4-piperazine series N-(2-ethylphenyl)-4-(4-methyl-1- piperazinyl)-1-benzo[b]thiophene-2-carboxamide (38) were identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B) receptor mediated agonist activity in the rabbit femoral artery) and competitive vascular 5-HT(1B) receptor antagonist. The affinity of compounds from these two series of compounds for the vascular 5-HT(1B) receptor is discussed as well as a proposed mode of binding to the receptor pharmacophore.

  17. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/B receptors.

    PubMed

    Jiang, Jinhong; Peng, Yali; He, Zhen; Wei, Lijuan; Jin, Weidong; Wang, Xiaoli; Chang, Min

    2017-07-01

    Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, is primarily localized within the cortex and hippocampus. In the hippocampus, CST-14 inhibits CA1 neuronal pyramidal cell firing and co-exists with GABA. However, its role in cognitive is still not clarified. The first aim of our study was to elucidate the role of CST-14 signaling in consolidation and reconsolidation of recognition memory in mice, using novel object recognition task. The results showed that central CST-14 induced in impairment of long-term and short-term recognition memory, indicating memory consolidation impairment effect. Similarly, we found that CST-14 did not impaired long-term and short-term reconsolidation recognition memory. To further investigate the underlying mechanisms of CST-14 in memory process, we used cyclosomatostatin (c-SOM, a selective sst 1-5 receptor antagonist), cyanamid154806 (a selective sst 2 receptor antagonist), ODN-8 (a high affinity and selectivity compound for sst 3 receptor), [d-Lys 3 ]GHRP-6 (a selective ghrelin receptor antagonist), picrotoxin (PTX, a GABA A receptor antagonist), and sacolfen (a GABA B receptor antagonist) to research its effects in recognition. Our results firstly indicated that the memory-impairing effects of CST-14 were significantly reversed by c-SOM, cyanamid154806, [d-Lys 3 ]GHRP-6, PTX and sacolfen, but not ODN-8, suggesting that the blockage of recognition memory consolidation induced by CST-14 involves sst 2 , ghrelin and GABA system. The present study provides a potential strategy to regulate memory processes, providing new evidence that reconsolidation is not a simple reiteration of consolidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    PubMed

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  19. Behavioural Assessment of the A2a/NR2B Combination in the Unilateral 6-OHDA-Lesioned Rat Model: A New Method to Examine the Therapeutic Potential of Non-Dopaminergic Drugs

    PubMed Central

    Michel, Anne; Downey, Patrick; Van Damme, Xavier; De Wolf, Catherine; Schwarting, Rainer; Scheller, Dieter

    2015-01-01

    In Parkinson’s disease (PD), dopaminergic therapies are often associated with the development of motor complications. Attention has therefore been focused on the use of non-dopaminergic drugs. This study developed a new behavioural method capable of demonstrating the added value of combining adenosinergic and glutamatergic receptor antagonists in unilateral 6-OHDA lesioned rats. Rats were dosed orally with Tozadenant, a selective A2A receptor antagonist, and three different doses of Radiprodil, an NR2B-selective NMDA receptor antagonist. The drugs were given alone or in combination and rats were placed in an open-field for behavioural monitoring. Video recordings were automatically analysed. Five different behaviours were scored: distance traveled, ipsi- and contraversive turns, body position, and space occupancy. The results show that A2A or NR2B receptor antagonists given alone or in combination did not produce enhanced turning as observed with an active dose of L-Dopa/benserazide. Instead the treated rats maintained a straight body position, were able to shift from one direction to the other and occupied a significantly larger space in the arena. The highest “Tozadenant/Radiprodil” dose combination significantly increased all five behavioural parameters recorded compared to rats treated with vehicle or the same doses of the drugs alone. Our data suggest that the A2A/NR2B antagonist combination may be able to stimulate motor activity to a similar level as that achieved by L-Dopa but in the absence of the side-effects that are associated with dopaminergic hyperstimulation. If these results translate into the clinic, this combination could represent an alternative symptomatic treatment option for PD. PMID:26322641

  20. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  1. Pharmacological lineage analysis revealed the binding affinity of broad-spectrum substance P antagonists to receptors for gonadotropin-releasing peptide.

    PubMed

    Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki

    2015-02-15

    A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Distortion of KB estimates of endothelin-1 ETA and ETB receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism.

    PubMed

    Angus, James A; Hughes, Richard J A; Wright, Christine E

    2017-12-01

    Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  3. GluN2B-containing NMDA receptors and AMPA receptors in medial prefrontal cortex are necessary for odor span in rats.

    PubMed

    Davies, Don A; Greba, Quentin; Howland, John G

    2013-01-01

    Working memory is a type of short-term memory involved in the maintenance and manipulation of information essential for complex cognition. While memory span capacity has been extensively studied in humans as a measure of working memory, it has received considerably less attention in rodents. Our aim was to examine the role of the N-methyl-D-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in odor span capacity using systemic injections or infusions of receptor antagonists into the medial prefrontal cortex (mPFC). Long Evans rats were trained on a well-characterized odor span task (OST). Initially, rats were trained to dig for a food reward in sand followed by training on a non-match to sample discrimination using sand scented with household spices. The rats were then required to perform a serial delayed non-match to sample procedure which was their odor span. Systemic injection of the broad spectrum NMDA receptor antagonist 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) (10 mg/kg) or the GluN2B-selective antagonist Ro 25-6981 (10 mg/kg but not 6 mg/kg) significantly reduced odor span capacity. Infusions of the GluN2B- selective antagonist Ro 25-6981 (2.5 μg/hemisphere) into mPFC reduced span capacity, an effect that was nearly significant (p = 0.069). Infusions of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (1.25 μg/hemisphere) into mPFC reduced span capacity and latency for the rats to make a choice in the task. These results demonstrate span capacity in rats depends on ionotropic glutamate receptor activation in the mPFC. Further understanding of the circuitry underlying span capacity may aid in the novel therapeutic drug development for persons with working memory impairments as a result of disorders such as schizophrenia and Alzheimer's disease.

  4. The antinociceptive effect of intravenous imipramine in colorectal distension-induced visceral pain in rats: the role of serotonergic and noradrenergic receptors.

    PubMed

    İlkaya, Fatih; Bilge, S Sırrı; Bozkurt, Ayhan; Baş, Duygu B; Erdal, Arzu; Çiftçioğlu, Engin; Kesim, Yüksel

    2014-07-01

    It has been shown that imipramine, a tricyclic antidepressant (TCA), is a potent analgesic agent. However, the effect of imipramine on visceral pain has not been extensively investigated. In the current study, our aim was to characterise the putative analgesic effect of intravenous imipramine on visceral pain in rats. Our second aim was to assess the involvement of serotonergic (5-HT₂,₃,₄) and noradrenergic (α(2A, 2B, 2C)) receptor subtypes in this putative antinociceptive effect of imipramine. Male Sprague Dawley rats (250-300 g) were implanted with venous catheters for drug administration and implanted with enamelled nichrome electrodes for electromyography of the external oblique muscles. Noxious visceral stimulation was applied via by colorectal distension (CRD). The visceromotor responses (VMRs) to CRD were quantified electromyographically before and after imipramine administration at 5, 15, 30, 60, 90 and 120 min. In the antagonist groups, the agents were administered 10 min before imipramine. The administration of imipramine (5-40 mg/kg) produced a dose-dependent reduction in VMR. The administration of yohimbine (a nonselective α₂-adrenoceptor antagonist, 1 mg/kg), BRL-44408 (an α(2A)-adrenoceptor antagonist, 1 mg/kg) or MK-912 (an α2C-adrenoceptor antagonist, 300 μg/kg) but not imiloxan (an α(2B)-adrenoceptor antagonist, 1 mg/kg) inhibited the antinociceptive effect of imipramine (20 mg/kg). Additionally, ketanserin (a 5-HT₂ receptor antagonist, 0.5, 1, and 2 mg/kg) and GR113808 (a 5-HT₄ receptor antagonist, 1 mg/kg) enhanced, and ondansetron (a 5-HT₃ receptor antagonist, 0.5, 1, and 2 mg/kg) failed to alter the imipramine-induced antinociceptive effect. Our data demonstrated that, in the CDR-induced rat visceral pain model, intravenous imipramine appeared to have antinociceptive potential and that α(2A)-/α(2C)-adrenoceptors and 5-HT₂/5-HT₄ receptors may be responsible for the antinociceptive effect of imipramine on visceral pain in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Decreased plasma ghrelin contributes to anorexia following novelty stress.

    PubMed

    Saegusa, Yayoi; Takeda, Hiroshi; Muto, Shuichi; Nakagawa, Koji; Ohnishi, Shunsuke; Sadakane, Chiharu; Nahata, Miwa; Hattori, Tomohisa; Asaka, Masahiro

    2011-10-01

    We hypothesized that anorexia induced by novelty stress caused by exposure to a novel environment may be due to activation of corticotropin-releasing factor (CRF) and subsequently mediated by decreasing peripheral ghrelin concentration via serotonin (5-HT) and melanocortin-4 receptors (MC4R). Each mouse was transferred from group-housed cages to individual cages to establish the novelty stress. We observed the effect of changes in feeding behavior in a novel environment using the method of transferring group-housed mice to individual cages. We investigated the effect of an intracerebroventricular injection of antagonists/agonists of CRF1/2 receptors (CRF1/2Rs), 5-HT(1B)/(2C) receptors (5-HT(1B)/(2C)R), and MC4R to clarify the role of each receptor on the decrease in food intake. Plasma ghrelin levels were also measured. The novelty stress caused a reduction in food intake that was abolished by administering a CRF1R antagonist. Three hours after the novelty stress, appetite reduction was associated with reduced levels of neuropeptide Y/agouti-related peptide mRNA, increased levels of proopiomelanocortin mRNA in the hypothalamus, and a decrease in plasma ghrelin level. Administering a CRF1R antagonist, a 5-HT(1B)/(2C)R antagonist, an MC4R antagonist, exogenous ghrelin, and an enhancer of ghrelin secretion, rikkunshito, resolved the reduction in food intake 3 h after the novelty stress by enhancing circulating ghrelin concentrations. We showed that anorexia during a novelty stress is a process in which CRF1R is activated at the early stage of appetite loss and is subsequently activated by a 5-HT(1B)/(2C)R and MC4R stimulus, leading to decreased peripheral ghrelin concentrations.

  6. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle.

    PubMed

    Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G

    2000-12-01

    Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.

  7. Antagonism of corticotropin-releasing factor CRF1 receptors blocks the enhanced response to cocaine after social stress.

    PubMed

    Ferrer-Pérez, Carmen; Reguilón, Marina D; Manzanedo, Carmen; Aguilar, M Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2018-03-15

    Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF 1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF 2 receptor antagonist Astressin 2 -B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF 1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF 2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF 1 receptor antagonist, while peripheral CRF 2 receptor antagonist did not show effect. Acute administration of Astressin 2 -B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Further investigation of the effects of 5-hydroxytryptamine, 8-OH-DPAT and DOI to mediate contraction and relaxation responses in the intestine and emesis in Suncus murinus.

    PubMed

    Javid, Farideh A; Afshin-Javid, Saeed; Horn, Charles C

    2018-02-15

    5-HT receptors are implicated in many gastrointestinal disorders. However, the precise role of 5-HT in mediating GI responses in Suncus murnius is still unclear. Therefore in this study, the effects of 5-HT and its agonists were investigated in Suncus. The involvement of 5-HT 2C receptors in mediating emesis was also investigated. The ability of 5-HT and its agonists/antagonists at 5-HT 1A and 5-HT 2 to modify GI motility was investigated in vitro and in vivo. WAY100635 (a 5-HT 1A antagonist) inhibited the contraction response to 5-HT in the proximal segments without affecting the maximum response; whilst enhancing the contraction to 5-HT (>30.0nM) in the distal intestine. The selective 5-HT 2A and 5-HT 2B receptor antagonists MDL-100907 and RS-127445 attenuated 5-HT-induced contractions (<10.0µM) in the distal segments. RS-127445 also attenuated 5-HT-induced contractions in the central segments. The selective 5-HT 2C receptor antagonist SB-242084, attenuated the responses to 5-HT (> 3.0nM) in the proximal and central but not the distal regions. 8-OH-DPAT-induced relaxation was resistant to the antagonism by 5-HT 1A/7 antagonists. DOI in the presence of 5-HT 1A/2A/2B/2C antagonists induced greater contraction responses (>1.0µM) in most tissues, whilst RS-127445, or SB-242084, reduced the responses to DOI (< 1.0µM) in some tissues. SB-242084 also suppressed emesis-induced by motion and intragastric CuSO 4 . In conclusion, within different regions of intestine, 5-HT 2 receptors are differently involved in contraction and emetic responses and that 8-OH-DPAT induces relaxation via non-5-HT 1A/7 receptors. Suncus could provide a model to investigate these diverse actions of 5-HT. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Endothelin A receptor antagonists in congestive heart failure: blocking the beast while leaving the beauty untouched?

    PubMed

    Spieker, L E; Noll, G; Ruschitzka, F T; Lüscher, T F

    2001-12-01

    Congestive heart failure (CHF) is a disease process characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. Thus, mediators involved in the control of myocardial function and vascular tone may be involved in its pathophysiology. The family of endothelins (ET) consists of four closely related peptides, ET-1, ET-2, ET-3, and ET-4, which cause vasoconstriction, cell proliferation, and myocardial effects through activation of ET(A) receptors. In contrast, endothelial ET(B) receptors mediate vasodilation via release of nitric oxide and prostacyclin. In addition, ET(B) receptors in the lung are a major pathway for the clearance of ET-1 from plasma. Thus, infusion of an ET(A) receptor antagonist into the brachial artery in healthy humans leads to vasodilation whereas infusion of an ET(B) receptor antagonist causes vasoconstriction. ET-1 plasma levels are elevated in CHF and correlate both with the hemodynamic severity and with symptoms. Plasma levels of ET-1 and its precursor, big ET-1, are strong independent predictors of death in patients after myocardial infarction and with CHF. ET-1 contributes to increased systemic and pulmonary vascular resistance, vascular dysfunction, myocardial ischemia, and renal impairment in CHF. Selective ET(A) as well as combined ET(A/B) receptor antagonists have been studied in patients with CHF showing impressive hemodynamic improvements (i.e. reduced peripheral vascular and pulmonary resistance as well as increased cardiac output). These results indicate that ET receptor antagonists indeed have a potential to improve hemodynamics, symptoms, and potentially prognosis of CHF which still carries a high mortality.

  10. Discovery of Fevipiprant (NVP-QAW039), a Potent and Selective DP2 Receptor Antagonist for Treatment of Asthma

    PubMed Central

    2017-01-01

    Further optimization of an initial DP2 receptor antagonist clinical candidate NVP-QAV680 led to the discovery of a follow-up molecule 2-(2-methyl-1-(4-(methylsulfonyl)-2-(trifluoromethyl)benzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)acetic acid (compound 11, NVP-QAW039, fevipiprant), which exhibits improved potency on human eosinophils and Th2 cells, together with a longer receptor residence time, and is currently in clinical trials for severe asthma. PMID:28523115

  11. Radioligand binding characterization of the bradykinin B(2) receptor in the rabbit and pig ileal smooth muscle.

    PubMed

    Meini, Stefania; Cucchi, Paola; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Giuliani, Sandro; Maggi, Carlo Alberto

    2010-06-10

    Several species-related differences have been reported in kinin B(2) receptor pharmacology. The present study aimed to evaluate the affinity of the bradykinin B(2) receptor antagonist MEN16132 for the rabbit and pig B(2) receptor, and radioligand binding experiments using [(3)H]bradykinin and membranes of rabbit and pig ileum smooth muscle were conducted. The [(3)H]bradykinin binding was characterized by homologous displacement curves indicating K(d) values of 0.65 and 0.33nM in rabbit and pig, respectively. The B(2) receptor specificity of [(3)H]bradykinin binding was shown by the low affinity (>microM) displayed by agonists ([desArg(9)]bradykinin and Lys[desArg(9)]bradykinin) and antagonists [Leu(8),desArg(9)]bradykinin and Lys[Leu(8),desArg(9)]bradykinin) selective for the B(1) receptor. The affinity of MEN16132 and other antagonists was determined by inhibition curves (pK(i) values in the rabbit and pig assay, respectively): MEN16132 (10.4 and 10.3) and peptide compounds such as icatibant (10.1 and 9.9) and MEN11270 (10.3 and 10.1) displayed subnanomolar potency in both assays; the nonpeptide LF16-0687 (8.4 and 8.5) and FR173657 (8.2 and 9.1) exhibited a different affinity pattern, whereas WIN64338 displayed low affinity (5.7 and

  12. Investigation of the antidyskinetic site of action of metabotropic and ionotropic glutamate receptor antagonists. Intracerebral infusions in 6-hydroxydopamine-lesioned rats with levodopa-induced dyskinesia.

    PubMed

    Maranis, Sotirios; Stamatis, Dimitrios; Tsironis, Christos; Konitsiotis, Spiridon

    2012-05-15

    Long-term levodopa replacement therapy in Parkinson's disease is confounded by abnormal involuntary movements, known as levodopa induced dyskinesia (LID). Dysfunctional glutamatergic neurotransmission has been implicated in the pathogenesis of LID making metabotropic and ionotropic glutamate receptors attractive novel therapeutic targets. The objective of the present study was to investigate the antidyskinetic site of action of different glutamate receptor antagonists in the brain. For that purpose, metabotropic glutamate subtype 5 (3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride, MTEP), NMDA NR2B selective ((aR,bS)-a-(4-Hydroxyphenyl)-b-methyl-4-(phenylmethyl)-1-piperidinepropanol maleate, Ro 25-6981) and AMPA (2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt, NBQX) receptor antagonists or saline were administered by intracerebral infusion in the caudate-putamen (CPu), the substantia nigra zona reticulata (SNr) or the subthalamic nucleus (STN) of 6-hydroxydopamine-lesioned rats exhibiting LID. Dyskinesia was assessed with the modified version of the rat Abnormal Involuntary Movements scale (AIMS). Ro 25-6981 and to a lesser extent NBQX improved dyskinesia (82% and 19% reduction in AIM score respectively) after infusion in the caudate-putamen. None of the three drugs managed to noticeably reduce AIM score after infusion in the SNr. MTEP was the only drug that produced a reduction in AIM score (48%) when infused in STN. In conclusion, while the striatum proved important in the antidyskinetic action of NMDA and AMPA receptor antagonists, the results of this study highlight also the importance of the metabotropic glutamate receptors that reside in the STN as therapeutic targets in the treatment of LID. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease

    PubMed Central

    Feng, Hong-Qiang; Weymouth, Nate D.; Rockey, Don C.

    2009-01-01

    Endothelin-1 (ET-1), a potent vasoactive peptide, plays an important role in the pathogenesis of liver disease and portal hypertension. Two major endothelin receptors (ET-A and ET-B) mediate biological effects, largely on the basis of their known downstream signaling pathways. We hypothesized that the different receptors are likely to mediate divergent effects in portal hypertensive mice. Liver fibrosis and cirrhosis and portal hypertension were induced in 8-wk-old male BALB/c mice by gavage with carbon tetrachloride (CCl4). Portal pressure was recorded acutely during intravenous infusion of endothelin receptor antagonists in normal or portal hypertensive mice. In vivo microscopy was used to monitor sinusoidal dynamics. Additionally, the effect of chronic exposure to endothelin antagonists was assessed in mice during induction of fibrosis and cirrhosis with CCl4 for 8 wk. Intravenous infusion of ET-A receptor antagonists into normal and cirrhotic mice reduced portal pressure whereas ET-B receptor antagonism increased portal pressure. A mixed endothelin receptor antagonist also significantly reduced portal pressure. Additionally, the ET-A receptor antagonist caused sinusoidal dilation, whereas the ET-B receptor antagonist caused sinusoidal constriction. Chronic administration of each the endothelin receptor antagonists during the induction of fibrosis and portal hypertension led to reduced fibrosis, a significant reduction in portal pressure, and altered sinusoidal dynamics relative to controls. Acute effects of endothelin receptor antagonists are likely directly on the hepatic and sinusoidal vasculature, whereas chronic endothelin receptor antagonism appears to be more complicated, likely affecting fibrogenesis and the hepatic microcirculation. The data imply a relationship between hepatic fibrogenesis or fibrosis and vasomotor responses. PMID:19299580

  14. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain.

  15. Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors.

    PubMed

    Lu, J; Goula, D; Sousa, N; Almeida, O F X

    2003-01-01

    Glutamate receptors have been proposed to mediate the apoptotic actions of glucocorticoids in hippocampal cells. To further analyze the role of glutamate receptors in this process, we pretreated primary hippocampal cells from neonatal (postnatal day 4) rats with antagonists of ionotropic glutamate receptor (iGluR) and metabotropic glutamate receptor (mGluR) antagonists before exposure to the specific glucocorticoid receptor agonist dexamethasone (DEX) at a dose of 1 microM. Dizocilpine (MK801; a general N-methyl-D-aspartic acid [NMDA] receptor antagonist, NMDAR antagonist) and ifenprodil (a specific ligand of the NMDAR 2B subunit, NR2B), were used to block iGluR; (RS)-alpha-ethyl-4-carboxyphenylglycine (E4CPG) and (RS)-alpha-cyclopropyl-4-phosphonophenyl-glycine (CPPG) were employed as I/II (E4CPG) and II/III (CPPG) mGluR antagonists. Blockade of iGluR resulted in a significant attenuation of DEX-induced cell death; the finding that ifenprodil exerted a similar potency to MK801 demonstrates the involvement of NR2B receptors in glucocorticoid-induced cell death. Apoptosis accounted for a significant amount of the cell loss observed, as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling histochemistry for the in situ labeling of DNA breaks; apoptotic cells were distinguished from necrosis on the basis of morphological criteria, including chromatin condensation, membrane blebbing and presence of apoptotic bodies. Treatment with E4CPG and CPPG completely abolished the apoptotic response to DEX, thus showing the additional contribution of mGluR to the phenomenon. Further, dose-response studies with NMDA revealed that whereas high (10 microM) doses of NMDA themselves elicit cytotoxic responses, low (1-5 microM) concentrations of NMDA can effectively oppose DEX-induced cell death. Interestingly, the neuroprotective actions of low dose NMDA stimulation were abolished when either synaptic or extrasynaptic NMDA receptors were blocked with MK801 in combination with the GABA receptor antagonist bicuculline (synaptic) or ifenprodil (extrasynaptic). In summary, the present data show that both iGluR and mGluR mediate the neurotoxic effects of glucocorticoids on hippocampal cells and that pre-treatment with low doses of NMDA, by acting on synaptic and extrasynaptic receptors, render hippocampal cells less vulnerable to glucocorticoid insults.

  16. Chronic 5-HT2 receptor blockade unmasks the role of 5-HT1F receptors in the inhibition of rat cardioaccelerator sympathetic outflow.

    PubMed

    García-Pedraza, José Ángel; Hernández-Abreu, Oswaldo; García, Mónica; Morán, Asunción; Villalón, Carlos M

    2018-04-01

    Serotonin (5-hydroxytryptamine; 5-HT) inhibits the rat cardioaccelerator sympathetic outflow by 5-HT 1B/1D/5 receptors. Because chronic blockade of sympatho-excitatory 5-HT 2 receptors is beneficial in several cardiovascular pathologies, this study investigated whether sarpogrelate (a 5-HT 2 receptor antagonist) alters the pharmacological profile of the above sympatho-inhibition. Rats were pretreated for 2 weeks with sarpogrelate in drinking water (30 mg/kg per day; sarpogrelate-treated group) or equivalent volumes of drinking water (control group). Animals were pithed and prepared for spinal stimulation (C 7 -T 1 ) of the cardioaccelerator sympathetic outflow or for intravenous (i.v.) bolus injections of noradrenaline. Both procedures produced tachycardic responses remaining unaltered after saline. Continuous i.v. infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT receptor agonists 5-carboxamidotryptamine (5-CT; 5-HT 1/5A ), CP 93,129 (5-HT 1B ), or PNU 142633 (5-HT 1D ), but not by indorenate (5-HT 1A ) in both groups; whereas LY344864 (5-HT 1F ) mimicked 5-HT only in sarpogrelate-treated rats. In sarpogrelate-treated animals, i.v. GR 127935 (310 μg/kg; 5-HT 1B/1D/1F receptor antagonist) attenuated 5-CT-induced sympatho-inhibition and abolished LY344864-induced sympatho-inhibition; while GR 127935 plus SB 699551 (1 mg/kg; 5-HT 5A receptor antagonist) abolished 5-CT-induced inhibition. These results confirm the cardiac sympatho-inhibitory role of 5-HT 1B , 5-HT 1D , and 5-HT 5A receptors in both groups; nevertheless, sarpogrelate treatment specifically unmasked a cardiac sympatho-inhibition mediated by 5-HT 1F receptors.

  17. Synaptic GluN2A and GluN2B Containing NMDA Receptors within the Superficial Dorsal Horn Activated following Primary Afferent Stimulation

    PubMed Central

    MacDermott, Amy B.

    2014-01-01

    NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are heterotetramers, typically composed of two GluN1 and two of four GluN2 subunits: GluN2A-2D. Mice lacking some of the GluN2 subunits show deficits in pain transmission yet functional synaptic localization of these receptor subtypes in the dorsal horn has not been fully resolved. In this study, we have investigated the composition of synaptic NMDA receptors expressed in monosynaptic and polysynaptic pathways from peripheral sensory fibers to lamina I neurons in rats. We focused on substance P receptor-expressing (NK1R+) projection neurons, critical for expression of hyperalgesia and allodynia. EAB-318 and (R)-CPP, GluN2A/B antagonists, blocked both monosynaptic and polysynaptic NMDA EPSCs initiated by primary afferent activation by ∼90%. Physiological measurements exploiting the voltage dependence of monosynaptic EPSCs similarly indicated dominant expression of GluN2A/B types of synaptic NMDA receptors. In addition, at synapses between C fibers and NK1R+ neurons, NMDA receptor activation initiated a secondary, depolarizing current. Ifenprodil, a GluN2B antagonist, caused modest suppression of monosynaptic NMDA EPSC amplitudes, but had a widely variable, sometimes powerful, effect on polysynaptic responses following primary afferent stimulation when inhibitory inputs were blocked to mimic neuropathic pain. We conclude that GluN2B subunits are moderately expressed at primary afferent synapses on lamina I NK1R+ neurons, but play more important roles for polysynaptic NMDA EPSCs driven by primary afferents following disinhibition, supporting the view that the analgesic effect of the GluN2B antagonist on neuropathic pain is at least in part, within the spinal cord. PMID:25122884

  18. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    PubMed

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-03

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Endothelin-1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention.

    PubMed

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G; Dashwood, Michael R

    2017-04-01

    Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin-1 (ET-1) and the role of endothelin ET A and ET B receptors in haemorrhoid tissue. Protein expression of ET-1, ET A and ET B receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET-1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Dense binding of [ 125 I]-ET-1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ET B than ET A receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ET A and ET B receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ET B receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET-1 and affected by the ET A selective antagonist, but sarafotoxin S6a-induced contractions were more pronounced in veins and antagonized by a selective ET B receptor antagonist. ET A and ET B receptors are present in human haemorrhoids with ET B receptors predominating. ET A receptors are activated by ET-1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a - a response that involves ET B receptors at low concentrations. Selective ET B agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. © 2017 The British Pharmacological Society.

  20. Effects of YM471, a nonpeptide AVP V1A and V2 receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells

    PubMed Central

    Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro

    2001-01-01

    YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400

  1. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  2. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An immunocapture/scintillation proximity analysis of G alpha q/11 activation by native serotonin (5-HT)2A receptors in rat cortex: blockade by clozapine and mirtazapine.

    PubMed

    Mannoury La Cour, C; Chaput, C; Touzard, M; Millan, M J

    2009-02-01

    Though transduction mechanisms recruited by heterologously expressed 5-HT(2A) receptors have been extensively studied, their interaction with specific subtypes of G-protein remains to be directly evaluated in cerebral tissue. Herein, as shown by an immunocapture/scintillation proximity analysis, 5-HT, the prototypical 5-HT(2A) agonist, DOI, and Ro60,0175 all enhanced [(35)S]GTPgammaS binding to G alpha q/11 in rat cortex with pEC(50) values of 6.22, 7.24 and 6.35, respectively. No activation of G o or G s/olf was seen at equivalent concentrations of DOI. Stimulation of G alpha q/11 by 5-HT (30 microM) and DOI (30 microM) was abolished by the selective 5-HT(2A) vs. 5-HT(2C)/5-HT(2B) antagonists, ketanserin (pK(B) values of 9.11 and 8.88, respectively) and MDL100,907 (9.82 and 9.68). By contrast, 5-HT-induced [(35)S]GTPgammaS binding to G alpha q/11 was only weakly inhibited by the preferential 5-HT(2C) receptor antagonists, RS102,221 (6.94) and SB242,084 (7.39), and the preferential 5-HT(2B) receptor antagonist, LY266,097 (6.66). The antipsychotic, clozapine, which had marked affinity for 5-HT(2A) receptors, blocked the recruitment of G alpha q/11 by 5-HT and DOI with pK(B) values of 8.54 and 8.14, respectively. Its actions were mimicked by the "atypical" antidepressant and 5-HT(2A) receptor antagonist, mirtazapine, which likewise blocked 5-HT and DOI-induced G alpha q/11 protein activation with pK(B) values of 7.90 and 7.76, respectively. In conclusion, by use of an immunocapture/scintillation proximity strategy, this study shows that native 5-HT(2A) receptors in rat frontal cortex specifically recruit G alpha q/11 and that this action is blocked by clozapine and mirtazapine. Quantification of 5-HT(2A) receptor-mediated G alpha q/11 activation in frontal cortex should prove instructive in characterizing the actions of diverse classes of psychotropic agent. 2008 Wiley-Liss, Inc.

  4. Identification of two H3-histamine receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less

  5. Naftopidil inhibits 5-hydroxytryptamine-induced bladder contraction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-01-30

    Naftopidil is an α(1D) and α(1A) subtype-selective α(1)-adrenoceptor antagonist that has been used to treat lower urinary tract symptoms of benign prostatic hyperplasia. In this study, we investigated the effects of naftopidil on 5-hydroxytryptamine (5-HT)-induced rat bladder contraction (10(-8)-10(-4) M). Naftopidil (0.3, 1, and 3 μM) inhibited 5-HT-induced bladder contraction in a concentration-dependent manner. On the other hand, other α(1)-adrenoceptor antagonists, tamsulosin, silodosin or prazosin, did not inhibit 5-HT-induced bladder contraction. The 5-HT-induced bladder contraction was inhibited by both ketanserin and 4-(4-fluoronaphthalen-1-yl)-6-propan-2-ylpyrimidin-2-amine (RS127445), serotonin 5-HT(2A) and 5-HT(2B) receptor antagonists, respectively. In addition, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and α-methyl-5-HT, 5-HT(2A) and 5-HT(2) receptor agonists, respectively, induced bladder contraction. The 5-HT-induced bladder contraction was not inhibited by N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide (WAY-100635), [1-[2[(methylsulfonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate (GR113808) or (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulphonyl]phenol (SB269970), 5-HT(1A), 5-HT(4) and 5-HT(7) receptor antagonists, respectively. Naftopidil inhibited both the 5-HT(2A) and 5-HT(2) receptor agonists-induced bladder contractions. Naftopidil binds to the human 5-HT(2A) and 5-HT(2B) receptors with pKi values of 6.55 and 7.82, respectively. These results suggest that naftopidil inhibits 5-HT-induced bladder contraction via blockade of the 5-HT(2A) and 5-HT(2B) receptors in rats. Furthermore, 5-HT-induced bladder contraction was enhanced in bladder strips obtained from bladder outlet obstructed rats, with this contraction inhibited by naftopidil. The beneficial effects of naftopidil on storage symptoms such as urinary frequency and nocturia in patients with benign prostatic hyperplasia may be due, in part, to the blockade of the 5-HT(2A) and 5-HT(2B) receptors in the bladder. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis.

    PubMed

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-12-11

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis*

    PubMed Central

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-01-01

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. PMID:26475855

  8. Jak2 and Ca2+/calmodulin are key intermediates for bradykinin B2 receptor-mediated activation of Na+/H+ exchange in KNRK and CHO cells.

    PubMed

    Lefler, David; Mukhin, Yurii V; Pettus, Tobiah; Leeb-Lundberg, L M Fredrik; Garnovskaya, Maria N; Raymond, John R

    2003-04-01

    Na(+)/H(+) exchangers are ubiquitous in mammalian cells, carrying out key functions, such as cell volume defense, acid-base homeostasis, and regulation of the cytoskeleton. We used two screening technologies (FLIPR and microphysiometry) to characterize the signal transduction pathway used by the bradykinin B(2) receptor to activate Na(+)/H(+) exchange in two cell lines, KNRK and CHO. In both cell types, B(2) receptor activation resulted in rapid increases in the rate of proton extrusion that were sodium-dependent and could be blocked by the Na(+)/H(+) exchange inhibitors EIPA and MIA or by replacing extracellular sodium with TMA. Activation of Na(+)/H(+) exchange by bradykinin was concentration-dependent and could be blocked by the selective B(2) receptor antagonist HOE140, but not by the B(1) receptor antagonist des-Arg10-HOE140. Inhibitors of Jak2 tyrosine kinase (genistein and AG490) and of CAM (W-7 and calmidazolium) attenuated bradykinin-induced activation of Na(+)/H(+) exchange. Bradykinin induced formation of a complex between CAM and Jak2, supporting a regulatory role for Jak2 and CAM in the activation of Na(+)/H(+) exchange in KNRK and CHO cells. We propose that this pathway (B(2) receptor --> Jak2 --> CAM --> Na(+)/H(+) exchanger) is a fundamental regulator of Na(+)/H(+) exchange activity.

  9. Discovery of sodium R-(+)-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor.

    PubMed

    Chen, Chen; Wu, Dongpei; Guo, Zhiqiang; Xie, Qiu; Reinhart, Greg J; Madan, Ajay; Wen, Jenny; Chen, Takung; Huang, Charles Q; Chen, Mi; Chen, Yongsheng; Tucci, Fabio C; Rowbottom, Martin; Pontillo, Joseph; Zhu, Yun-Fei; Wade, Warren; Saunders, John; Bozigian, Haig; Struthers, R Scott

    2008-12-11

    The discovery of novel uracil phenylethylamines bearing a butyric acid as potent human gonadotropin-releasing hormone receptor (hGnRH-R) antagonists is described. A major focus of this optimization was to improve the CYP3A4 inhibition liability of these uracils while maintaining their GnRH-R potency. R-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyric acid sodium salt, 10b (elagolix), was identified as a potent and selective hGnRH-R antagonist. Oral administration of 10b suppressed luteinizing hormone in castrated macaques. These efforts led to the identification of 10b as a clinical compound for the treatment of endometriosis.

  10. Do serotonin(1-7) receptors modulate short and long-term memory?

    PubMed

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  11. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    PubMed

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  12. Evaluation of EMD 128 130 occupancy of the 5-HT1A and the D2 receptor: a human PET study with [11C]WAY-100635 and [11C]raclopride.

    PubMed

    Rabiner, Eugenii A; Gunn, Roger N; Wilkins, Martin R; Sedman, Ewen; Grasby, Paul M

    2002-09-01

    The use of so-called, atypical antipsychotic medication is becoming more widespread in the treatment of psychotic disorders. EMD 128 130 is a novel compound acting as an agonist at the 5-HT1A receptor, and as an antagonist at the dopamine-2 (D2) receptor. This dual action may confer additional benefits over selective D2 antagonists in the treatment of psychotic disorders. In this study, we investigated the occupancy of EMD 128 130 in vivo at the human D2 and 5-HT1A receptors with positron emission tomography using the radiotracers [11C]raclopride and [11C]WAY-100635. Seven healthy volunteers were examined before and after 5 days of treatment with EMD 128 130, administered in an incremental dose building up to 50 mg, b.d. A significant occupancy was demonstrated at the human D2 receptor (40% following a dose of 50 mg, b.d.) while there was no consistent effect observed at the 5-HT1A receptor, despite a similar affinity of EMD 128 130 for cloned human D2 and 5-HT1A receptors, and the presence of typical, central 5-HT1A agonist side-effects. The differential effects of EMD 128 130 at the D2 and the 5-HT1A receptor (antagonist at D2 receptor, agonist at the 5-HTIA receptor) may explain the differences in occupancy observed.

  13. Modulation of 3H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and β-adrenoceptors in mouse tissues

    PubMed Central

    Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K

    2000-01-01

    Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669

  14. Hypoxia facilitates neurogenic dural plasma protein extravasation in mice: a novel animal model for migraine pathophysiology

    PubMed Central

    Hunfeld, Anika; Segelcke, Daniel; Bäcker, Ingo; Mecheri, Badreddine; Hemmer, Kathrin; Dlugosch, Elisabeth; Andriske, Michael; Paris, Frank; Zhu, Xinran; Lübbert, Hermann

    2015-01-01

    Migraine animal models generally mimic the onset of attacks and acute treatment processes. A guinea pig model used the application of meta-chlorophenylpiperazine (mCPP) to trigger immediate dural plasma protein extravasation (PPE) mediated by 5-HT2B receptors. This model has predictive value for antimigraine drugs but cannot explain the delayed onset of efficacy of 5-HT2B receptor antagonists when clinically used for migraine prophylaxis. We found that mCPP failed to induce dural PPE in mice. Considering the role 5-HT2B receptors play in hypoxia-induced pulmonary vessel muscularization, we were encouraged to keep mice under hypoxic conditions and tested whether this treatment will render them susceptible to mCPP-induced dural PPE. Following four-week of hypoxia, PPE, associated with increased transendothelial transport, was induced by mCPP. The effect was blocked by sumatriptan. Chronic application of 5-HT2B receptor or nitric oxide synthase blockers during hypoxia prevented the development of susceptibility. Here we present a migraine model that distinguishes between a migraine-like state (hypoxic mice) and normal, normoxic mice and mimics processes that are related to chronic activation of 5-HT2B receptors under hypoxia. It seems striking, that chronic endogenous activation of 5-HT2B receptors is crucial for the sensitization since 5-HT2B receptor antagonists have strong, albeit delayed migraine prophylactic efficacy. PMID:26644235

  15. Cloning and pharmacological characterization of the rabbit bradykinin B2 receptor.

    PubMed

    Bachvarov, D R; Saint-Jacques, E; Larrivée, J F; Levesque, L; Rioux, F; Drapeau, G; Marceau, F

    1995-12-01

    Degenerate primers, corresponding to consensus sequences of third and sixth transmembrane domains of G protein-coupled receptor superfamily, were used for the polymerase chain reaction amplification and consecutive characterization of G protein-coupled receptors present in cultured rabbit aortic smooth muscle cells. One of the isolated resulting fragments was highly homologous to the corresponding region of the bradykinin (BK) B2 receptor cloned in other species. The polymerase chain reaction fragment was used to screen a rabbit genomic library, which allowed the identification of an intronless 1101-nucleotide open reading frame which codes for a 367-amino acid receptor protein. The rabbit B2 receptor sequence is more than 80% identical to the ones determined in three other species and retain putative glycosylation, palmitoylation and phosphorylation sites. In the rabbit genomic sequence, an acceptor splice sequence was found 8 base pairs upstream of the start codon. Northern blot analysis showed a high expression of a major transcript (4.2 kilobases) in the rabbit kidney and duodenum, and a less abundant expression in other tissues. Southern blot experiments suggest that a single copy of this gene exists in the rabbit genome. The cloned rabbit B2 receptor expressed in COS-1 cells binds [3H]BK in a saturable manner (KD 2.1 nM) and this ligand competes with a series of kinin agonists and antagonist with a rank order consistent with the B2 receptor identity. The insurmountable character of the antagonism exerted by Hoe 140 against BK on the rabbit B2 receptor, previously shown in pharmacological experiments, was confirmed in binding experiments with the cloned receptor expressed in a controlled manner. By contrast, Hoe 140 competed with [3H]BK in a surmountable manner for the human B2 receptor expressed in COS-1 cells. The cloning of the rabbit B2 receptor will be useful notably for the study of the structural basis of antagonist binding and for studies on receptor regulation in a relatively large animal.

  16. Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells

    PubMed Central

    Yamamoto, Shunsuke; Ohta, Noriyuki; Matsumoto, Atsuhiro; Horiguchi, Yu; Koide, Moe; Fujino, Yuji

    2016-01-01

    Background Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB. Material/Methods Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol. Results Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist. Conclusions The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-κB signaling via the dopamine D2 receptor. PMID:26842661

  17. Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells.

    PubMed

    Yamamoto, Shunsuke; Ohta, Noriyuki; Matsumoto, Atsuhiro; Horiguchi, Yu; Koide, Moe; Fujino, Yuji

    2016-02-04

    BACKGROUND Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB. MATERIAL AND METHODS Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol. RESULTS Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist. CONCLUSIONS The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-kB signaling via the dopamine D2 receptor.

  18. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen administration in the VTA or NACs was also preceded by administration of NTX (0.1, 1, 5 μg, 0.5 h), BFNA (0.4, 4 μg, 24 h), NBNI (0.6, 6 μg, 0.5 h) or NTI (0.4, 4 μg, 0.5 h) into the other site with intake measured 1, 2 and 4 h after agonist treatment. VTA NTX significantly reduced NACs baclofen-induced feeding. Correspondingly, NACs NTX significantly reduced VTA baclofen-induced feeding, indicating a robust and bidirectional general opioid and GABA-B receptor feeding interaction. Whereas the high, but not low VTA BFNA dose reduced NACs baclofen-induced feeding, NACs BFNA failed to affect VTA baclofen-induced feeding, indicating a unidirectional mu opioid and GABA-B receptor feeding interaction. Whereas VTA NBNI at both doses reduced NACs baclofen-induced feeding, the high, but not low NACs NBNI dose significantly reduced VTA baclofen-induced feeding, indicating a bidirectional kappa opioid and GABA-B receptor feeding interaction. Whereas VTA NTI only transiently reduced NACs baclofen-induced feeding, NACs NTI failed to affect VTA baclofen-induced feeding, indicating a weak unidirectional delta opioid and GABA-B receptor interaction. Whereas administration of NTX or BFNA into the NACs or VTA marginally reduced spontaneous food intake, NBNI or NTI into the same sites failed to alter food intake alone. Therefore, the present study suggests that GABA employs a distributed brain network in mediating its ingestive effects that is dependent upon intact opioid receptor signaling with kappa opioid receptors more involved than mu and delta opioid receptors underlying these regional effects. An alternative hypothesis to be considered is that these effects could be the sum of two independent drug effects (opioid antagonists decreasing and baclofen increasing food intake). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Functional and molecular characterization of kinin B1 and B 2 receptors in human bladder cancer: implication of the PI3Kγ pathway.

    PubMed

    Sgnaolin, V; Pereira, T C B; Bogo, M R; Zanin, R; Battastini, A M O; Morrone, F B; Campos, M M

    2013-08-01

    Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg(9)-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg(9)-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg(9)-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.

  1. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.

    PubMed

    Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J

    2002-05-01

    Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.

  2. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  3. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    PubMed

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Adenosine signaling in reserpine-induced depression in rats.

    PubMed

    Minor, Thomas R; Hanff, Thomas C

    2015-06-01

    A single, 6 mg/kg intraperitoneal injection of reserpine increased floating time during forced swim testing 24h after administration in rats in five experiments. Although such behavioral depression traditionally is attributed to drug-induced depletion of brain monoamines, we examined the potential contribution of adenosine signaling, which is plausibly activated by reserpine treatment and contributes to behavioral depression in other paradigms. Whereas peripheral administration of the highly selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.5, 1.0, or 5.0mg/kg i.p.) 15 min before swim testing failed to improve performance in reserpine-treated rats, swim deficits were completely reversed by 7 mg/kg of the nonselective receptor antagonist caffeine. Performance deficits were also reversed by the nonselective A2 antagonist 3,7-dimethylxanthine (0, 0.5, 1.0mg/kg i.p.), and the highly selective A2A receptor antagonist (CSC: 8-(3 chlorostyral)caffeine) (0.01, 0.1, or 1.0mg/kg i.p.) in a dose-dependent manner. The highly selective A2B antagonist alloxazine had no beneficial effect on swim performance at any dose under study (0.1, 1.0, and 5.0mg/kg i.p.). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor

    PubMed Central

    Fox, Alyson; Kaur, Satbir; Li, Bifang; Panesar, Moh; Saha, Uma; Davis, Clare; Dragoni, Ilaria; Colley, Sian; Ritchie, Tim; Bevan, Stuart; Burgess, Gillian; McIntyre, Peter

    2005-01-01

    We describe the properties of a novel nonpeptide kinin B1 receptor antagonist, NVP-SAA164, and demonstrate its in vivo activity in models of inflammatory pain in transgenic mice expressing the human B1 receptor. NVP-SAA164 showed high affinity for the human B1 receptor expressed in HEK293 cells (Ki 8 nM), and inhibited increases in intracellular calcium induced by desArg10kallidin (desArg10KD) (IC50 33 nM). While a similar high affinity was observed in monkey fibroblasts (Ki 7.7 nM), NVP-SAA164 showed no affinity for the rat B1 receptor expressed in Cos-7 cells. In transgenic mice in which the native B1 receptor was deleted and the gene encoding the human B1 receptor was inserted (hB1 knockin, hB1-KI), hB1 receptor mRNA was induced in tissues following LPS treatment. No mRNA encoding the mouse or human B1 receptor was detected in mouse B1 receptor knockout (mB1-KO) mice following LPS treatment. Freund's complete adjuvant-induced mechanical hyperalgesia was similar in wild-type and hB1-KI mice, but was significantly reduced in mB1-KO animals. Mechanical hyperalgesia induced by injection of the B1 agonist desArg10KD into the contralateral paw 24 h following FCA injection was similar in wild-type and hB1-KI mice, but was absent in mB1-KO animals. Oral administration of NVP-SAA164 produced a dose-related reversal of FCA-induced mechanical hyperalgesia and desArg10KD-induced hyperalgesia in hB1-KI mice, but was inactive against inflammatory pain in wild-type mice. These data demonstrate the use of transgenic technology to investigate the in vivo efficacy of species selective agents and show that NVP-SAA164 is a novel orally active B1 receptor antagonist, providing further support for the utility of B1 receptor antagonists in inflammatory pain conditions in man. PMID:15685199

  6. The relevance of kalikrein-kinin system via activation of B2 receptor in LPS-induced fever in rats.

    PubMed

    Soares, Denis de Melo; Santos, Danielle R; Rummel, Christoph; Ott, Daniela; Melo, Míriam C C; Roth, Joachim; Calixto, João B; Souza, Glória E P

    2017-11-01

    This study evaluated the involvement of endogenous kallikrein-kinin system and the bradykinin (BK) B 1 and B 2 receptors on LPS- induced fever and the POA cells involved in this response. Male Wistar rats received either i.v. (1 mg/kg), i.c.v. (20 nmol) or i.h. (2 nmol) injections of icatibant (B 2 receptor antagonist) 30 or 60 min, respectively, before the stimuli. DALBK (B 1 receptor antagonist) was given either 15min before BK (i.c.v.) or 30 min before LPS (i.v.). Captopril (5 mg/kg, sc.,) was given 1 h prior LPS or BK. Concentrations of BK and total kininogenon CSF, plasma and tissue kallikrein were evaluated. Rectal temperatures (rT) were assessed by telethermometry. Ca ++ signaling in POA cells was performed in rat pup brain tissue microcultures. Icatibant reduced LPS fever while, captopril exacerbated that response, an effect abolished by icatibant. Icatibant (i.h.) reduced fever to BK (i.h.) but not that induced by LPS (i.v.). BK increased intracellular calcium concentration in neurons and astrocytes. LPS increased levels of bradykinin, tissue kallikrein and total kininogen. BK (i.c.v.) increased rT and decreased tail skin temperature. Captopril potentiated BK-induced fever an effect abolished by icatibant. DALBK reduced the fever induced by BK. BK (i.c.v.) increased the CSF PGE 2 concentration. Effect abolished by indomethacin (i.p.). LPS activates endogenous kalikrein-kinin system leading to production of BK, which by acting on B 2 -receptors of POA cells causes prostaglandin synthesis that in turn produces fever. Thus, a kinin B 2 -receptor antagonist that enters into the brain could constitute a new and interesting strategy to treat fever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    PubMed

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  8. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body.

    PubMed

    Xiaopeng, Bai; Tanaka, Yoshimasa; Ihara, Eikichi; Hirano, Katsuya; Nakano, Kayoko; Hirano, Mayumi; Oda, Yoshinao; Nakamura, Kazuhiko

    2017-02-15

    Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH 2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK 1 ) and NK 2 antagonists, but not by an NK 3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK 1 , NK 2 and NK 3 ) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK 1 and NK 2 antagonists, but not by the NK 3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK 1/2 . Gap junctions were indispensable in this tachykinin-induced response. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    PubMed

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations.

    PubMed

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2007-05-25

    It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapine

  11. Characterisation of endogenous A2A and A2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor™ biosensor: Evidence for an allosteric mechanism of action for the A2B-selective antagonist PSB 603.

    PubMed

    Goulding, Joelle; May, Lauren T; Hill, Stephen J

    2018-01-01

    Endogenous adenosine A 2B receptors (A 2B AR) mediate cAMP accumulation in HEK 293 cells. Here we have used a biosensor to investigate the mechanism of action of the A 2B AR antagonist PSB 603 in HEK 293 cells. The A 2A agonist CGS 21680 elicited a small response in these cells (circa 20% of that obtained with NECA), suggesting that they also contain a small population of A 2A receptors. The responses to NECA and adenosine were antagonised by PSB 603, but not by the selective A 2A AR antagonist SCH 58261. In contrast, CGS 21680 responses were not antagonised by high concentrations of PSB 603, but were sensitive to inhibition by SCH 58261. Analysis of the effect of increasing concentrations of PSB 603 on the response to NECA indicated a non-competitive mode of action yielding a marked reduction in the NECA E MAX with no significant effect on EC 50 values. Kinetics analysis of the effect of PSB 603 on the A 2B AR-mediated NECA responses confirmed a saturable effect that was consistent with an allosteric mode of antagonism. The possibility that PSB 603 acts as a negative allosteric modulator of A 2B AR suggests new approaches to the development of therapeutic agents to treat conditions where adenosine levels are high. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    PubMed

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  13. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells.

    PubMed

    Tahara, A; Tsukada, J; Tomura, Y; Wada, K i; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Tanaka, A

    2000-01-01

    [(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. British Journal of Pharmacology (2000) 129, 131 - 139

  14. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists.

    PubMed

    Bonet, Isis; Franco-Montero, Pedro; Rivero, Virginia; Teijeira, Marta; Borges, Fernanda; Uriarte, Eugenio; Morales Helguera, Aliuska

    2013-12-23

    A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.

  15. Contribution of B2 receptors for bradykinin in Arthus reaction-induced plasma extravasation in wild-type or B2 transgenic knockout mice

    PubMed Central

    Samadfam, R; Teixeira, C; Bkaily, G; Sirois, P; de Brum-Fernandes, A; D'Orleans-Juste, P

    2000-01-01

    The aim of the present study was to investigate the contribution of bradykinin (BK) B1 and B2 receptors in a model of type III hypersensitivity, the reverse passive Arthus reaction (RPA), in wild-type mice and transgenic B2 knockout littermates.BK (10 μg mouse−1) or bovine serum albumin (0.5 mg mouse−1) induced a sustained Evans blue extravasation for more than 80 min in naive or rabbit anti-bovine serum albumin-treated mice (RPA model), respectively. The response to the two stimuli was prevented by the B2 receptor antagonist, HOE-140, but not by [Leu8]desArg9-BK (B1 receptor antagonist).In contrast to the wild-type littermates, RPA and bradykinin were unable to trigger an increase in plasma extravasation in B2 knockout mice.Furthermore, endothelin-1 (5 μg mouse−1) and a selective NK-1 receptor agonist [Sar9,Met (O2)11]-SP (20 μg mouse−1), triggered a significant increase in peritoneal plasma extravasation in both wild-type and B2 knockout animals.A pretreatment with indomethacin (200 μg mouse−1) significantly reduced the RPA-induced but not the BK-induced increase in Evans blue extravasation. Furthermore, RPA, but not BK, triggered a significant indomethacin-sensitive increase in peritoneal prostaglandin E2 content.Our results suggest a pivotal role for B2 receptors in the mechanism of plasma extravasation which occurs during the reverse passive Arthus reaction in the mouse. Moreover, our results suggest an important contribution of prostanoids in the plasma leakage mechanisms triggered by RPA but not by bradykinin. PMID:10780980

  16. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    PubMed

    Stratton, Matthew S; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J; Majdic, Gregor; Tobet, Stuart A

    2014-01-01

    Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  17. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    PubMed

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  18. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine.

    PubMed

    Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark Jeremy

    2010-12-17

    Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity. In this study, we examined the effect of 0.5 μl intra-NAc infusion of 3.2 μg SCH23390 (D1 antagonist), 10 μg raclopride (D2 antagonist) and saline on ketamine-induced changes in motor and oscillatory activity. We found that local blockade of D1 receptors attenuated ketamine-induced increases in motor activity and blockade of D2 receptors produced a much weaker effect, with respect to saline-infused control groups. In contrast, none of the antagonists, infused separately or together, significantly modified the power or dominant frequency of ketamine-induced increases in HFO, but changes in delta and theta frequency bands were observed. Together, these findings suggest, that, in contrast to delta and theta frequency bands, the generation of ketamine enhanced-HFO in the NAc is not causally related to locomotor activation and occurs largely independently of local changes in dopamine receptor activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII.

    PubMed

    Jin, Dao-Zhong; Xue, Bing; Mao, Li-Min; Wang, John Q

    2015-10-22

    Metabotropic and ionotropic glutamate receptors are closely clustered in postsynaptic membranes and are believed to interact actively with each other to control excitatory synaptic transmission. Metabotropic glutamate receptor 5 (mGluR5), for example, has been well documented to potentiate ionotropic NMDA receptor activity, although underlying mechanisms are poorly understood. In this study, we investigated the role of mGluR5 in regulating trafficking and subcellular distribution of NMDA receptors in adult rat striatal neurons. We found that the mGluR1/5 agonist DHPG concentration-dependently increased NMDA receptor GluN1 and GluN2B subunit expression in the surface membrane. Meanwhile, DHPG reduced GluN1 and GluN2B levels in the intracellular compartment. The effect of DHPG was blocked by an mGluR5 selective antagonist MTEP but not by an mGluR1 selective antagonist 3-MATIDA. Pretreatment with an inhibitor or a specific inhibitory peptide for synapse-enriched Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) also blocked the DHPG-stimulated redistribution of GluN1 and GluN2B. In addition, DHPG enhanced CaMKIIα activity and elevated GluN2B phosphorylation at a CaMKII-sensitive site (serine 1303). These results demonstrate that mGluR5 regulates trafficking of NMDA receptors in striatal neurons. Activation of mGluR5 appears to induce rapid trafficking of GluN1 and GluN2B to surface membranes through a signaling pathway involving CaMKII. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    PubMed

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  1. The involvement of medial septum 5-HT1 and 5-HT2 receptors on ACPA-induced memory consolidation deficit: possible role of TRPC3, TRPC6 and TRPV2.

    PubMed

    Najar, Farzaneh; Nasehi, Mohammad; Haeri-Rohani, Seyed-Ali; Zarrindast, Mohammad-Reza

    2015-11-01

    The present study evaluates the roles of serotonergic receptors of the medial septum on amnesia induced by arachidonylcyclopropylamide (ACPA; as selective cannabinoid CB1 receptor agonist) in adult male Wistar rats. Cannulae were implanted in the medial septum of the brain of the rats. The animals were trained in a passive avoidance learning apparatus, and were tested 24 hours after training for step-through latency. Results indicated that post-training medial septum administration of CP94253 (5-HT1B/1D receptor agonist) and cinancerine (as 5-HT2 receptor antagonist) reduced the step-through latency showing an amnesic response, while GR127935 (5-HT1B/1D receptor antagonist) and αm5htm (as 5-HT2A/2B/2D receptor agonist) did not alter memory consolidation by themselves. On continuing the test, the results showed that CP94253 increased and GR127935 did not alter ACPA (0.02 µg/rat)-induced memory impairment, respectively. Other data indicated that αm5htm induced a modulatory effect, while cinancerine restored ACPA-induced amnesia. Using SKF-96365 (inhibitor of transient receptor potential TRPC3/6 and TRPV2 channels) demonstrated that TRPC3, TRPC3 and TRPV2 channels have a significant role, according to our results. © The Author(s) 2015.

  2. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat.

    PubMed

    Wang, Xiaofang; Gattone, Vincent; Harris, Peter C; Torres, Vicente E

    2005-04-01

    cAMP plays a major role in cystogenesis. Recent in vitro studies suggested that cAMP stimulates B-Raf/ERK activation and proliferation of cyst-derived cells in a Ca(2+) inhibitable, Ras-dependent manner. OPC-31260, a vasopressin V2 receptor (VPV2) antagonist, was shown to lower renal cAMP and inhibit renal disease development and progression in models orthologous to human cystic diseases. Here it is shown that OPC-41061, an antagonist chosen for its potency and selectivity for human VPV2, is effective in PCK rats. PCK kidneys have increased Ras-GTP and phosphorylated ERK levels and 95-kD/68-kD B-Raf ratios, changes that are corrected by the administration of OPC-31260 or OPC-41061. These results support the importance of cAMP in the pathogenesis of polycystic kidney disease, confirm the effectiveness of a VPV2 antagonist to be used in clinical trials for this disease, and suggest that OPC-31260 and OPC-41061 inhibit Ras/mitogen-activated protein kinase signaling in polycystic kidneys.

  3. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  4. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    ERIC Educational Resources Information Center

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  5. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    PubMed

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in the CRF(2)-mediated animal model whereby the inhibition of gastric emptying of a solid meal in mice by urocortin administered intraperitoneally at time zero is antagonized by the administration of astressin(2)-B but not by antisauvagine-30 at times -3 and -6 h while both peptides are effective when given 10 min before urocortin.

  6. Cholecystokinin type B receptor antagonist PD-136,450 is a partial secretory agonist in the stomach and a full agonist in the pancreas of the rat.

    PubMed Central

    Schmassmann, A; Garner, A; Flogerzi, B; Hasan, M Y; Sanner, M; Varga, L; Halter, F

    1994-01-01

    Gastrin (cholecystokinin type B (CCK-B)) receptor antagonists may help to elucidate the physiological role of gastrin, have therapeutic potential as acid antisecretory drugs, and may be of use as adjuvant therapy for gastrin sensitive tumours. In binding studies, the gastrin receptor antagonist PD-136,450 had at least 1000 fold greater affinity for gastrin (CCK-B) than CCK-A receptors. In this study the biological activity of PD-136,450 was evaluated in conscious and anaesthetised rats. PD-136,450 antagonised gastrin stimulated acid secretion after subcutaneous (IC50: 0.28 mumol/kg; conscious rats) and intravenous (IC50: 0.17 mumol/kg; anaesthetised rats) administration. In basal secreting fistula animals, the compound stimulated acid output to 30 (5)% of the maximal response to gastrin. Stimulant activity was not caused by gastrin release. As an agonist PD-136,450 was about 350 times less potent than gastrin-17 on a molar basis. In addition, PD-136,450 was a powerful agonist of pancreatic secretion in anaesthetised rats. The specific gastrin antagonist L-365,260 inhibited the (partial) agonist activity of PD-136,450 in the stomach and the specific CCK-A receptor antagonist L-364,718 inhibited the agonist activity of PD-136,450 in the pancreas. It is concluded that the agonist effect of PD-136,450 is mediated via interaction with the gastrin (CCK-B) receptor in the stomach and the CCK-A receptor in the pancreas. PMID:8307482

  7. Convergent mechanisms underlying rapid antidepressant action

    PubMed Central

    Zanos, Panos; Thompson, Scott M.; Duman, Ronald S.; Zarate, Carlos A.; Gould, Todd D.

    2018-01-01

    Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal and anti-anhedonic actions following a single administration to depressed patients. Proposed mechanisms of ketamine’s antidepressant action include N-methyl-D-aspartate receptor (NMDAR) modulation, GABAergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergoing pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine - pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists (i.e. GLYX-13 (rapastinel)), metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation. PMID:29516301

  8. Kinin receptor classification.

    PubMed

    Regoli, D; Jukic, D; Tousignant, C; Rhaleb, N E

    1992-01-01

    Apparent affinities of kinin agonists and antagonists were determined in terms of pD2 and pA2 respectively, on three isolated smooth muscles: rabbit jugular vein (Rb.J.V.), rabbit aorta (Rb.A.) and guinea pig ileum (G.P.I.). Both kinin agonists and antagonists were evaluated for their ability to induce the release of histamine from rat mastocytes. Our results indicate that the kininase I metabolites (desArg9-BK and desArg10-KD) were inactive on Rb.J.V. and G.P.I. (B2 preparations) and were full agonists on Rb.A. (B1) while [Tyr(Me)8]-BK and [Hyp3,Tyr(Me)8]-BK were inactive on Rb.A. and maintain a high affinity on Rb.J.V. and G.P.I. In addition, [Hyp3]-BK was a potent agonist on Rb.J.V. (pD2 = 8.88) and was of a moderate affinity on G.P.I. (pD2 = 7.27). On the other hand, the affinity of [Aib7]-BK was identical to that of BK on G.P.I. (pD2 = 7.90) but drastically reduced in Rb.J.V. (pD2 = 6.28). Conctractile effects of kinins in the Rb.J.V. and G.P.I. were reduced or eliminated by B2 receptor antagonists but at different concentration levels (e.g. DArg[Hyp3,DPhe7,Leu8]-BK showed pA2 values of 8.86 on Rb.J.V., but only 6.77 on G.P.I. DArg[Hyp3,Gly6,Leu8]BK showed high affinity on Rb.J.V. (pA2 = 7.60) but was a full agonist on G.P.I. Conversely, DArg[Tyr3,DPhe7,Leu8,BK] showed high agonistic activity on Rb.J.V. (pD2 = 8.30, alpha E = 1.0) and showed a pA2 value of 6.80 on G.P.I. All compounds (agonists and antagonists) were quite potent on histamine release induced in rat mastocytes. [Arg1(Tos),Hyp3,Thi5,DTic7,Oic8]-BK and DArg[Hyp3,Thi5,DTic7,Oic8]-BK showed almost similar pA2 values on both Rb.J.V. and G.P.I., but were inactive on Rb.A. (B1). These results suggest that kinins act on at least four functional sites: B1 (Rb.A.), B2A (Rb.J.V.), B2B (G.P.I.) and BH. However, there is no clear evidence of a kinin receptor on rat mast cells and the release of histamine may simply be a non-receptor phenomenon. Our data also show that B2A and B2B receptor subtypes might simply be variations of the B2 receptor in different species.

  9. Characterization of kinin receptors modulating neurogenic contractions of the mouse isolated vas deferens.

    PubMed

    Maas, J; Rae, G A; Huidobro-Toro, J P; Calixto, J B

    1995-04-01

    1. This study analyses the receptors mediating the effects of bradykinin (BK) and analogues on neurogenic twitch contractions of the mouse isolated vas deferens evoked, in the presence of captopril (3 microM), by electrical field stimulation with trains of 4 rectangular 0.5 ms pulses of supramaximal strength, delivered at a frequency of 10 Hz every 20 s. 2. BK (0.1-300 nM) induced a graded potentiation of twitches, with an EC50 (geometric mean and 95% confidence limits) of 4.5 nM (1.7-11.6) and an Emax of 315 +/- 19 mg per 10 mg of wet tissue (n = 6). Similar results were obtained in tissues challenged with Lys-BK, [Hyp3]-BK, Met,Lys-BK and the selective B2 receptor agonist [Tyr(Me)8]-BK (0.1-300 nM). 3. The selective B2 receptor antagonists, Hoe 140 (1-10 nM) and NPC 17731 (3-30 nM), caused graded rightward shifts of the curve to BK-induced twitch potentiation, yielding apparent pA2 values of 9.65 +/- 0.09 and 9.08 +/- 0.13, respectively, and Schild plot slopes not different from 1. Both antagonists (100 nM) failed to modify similar twitch potentiations induced by substance P (3 nM) or endothelin-1 (1 nM). Preincubation with the selective B1 receptor antagonist, [Leu8,des-Arg9]-BK (1 microM), increased the potentiating effect of BK on twitches at 30-300 nM. 4. In contrast to BK, the selective B1 receptor agonist, [des-Arg9]-BK (0.3-1000 nM) reduced the amplitude of twitches in a graded fashion, with an IC50 of 13.7 nM (10.4-16.1) and an Imax of 175 +/- 11 mg (n = 4). The twitch depression induced by [des-Arg9]-BK (300 nM) was not affected by Hoe140 (30nM) or NPC 17731 (100nM), but was abolished by the selective B1 receptor antagonist,[Leu8,des-Arg9]-BK (1 microM), which did not modify the twitch inhibitory effect of clonidine (1 nM) or morphine (300 nM).5. In non-stimulated preparations, BK (100 nM) also potentiated, in a Hoe 140-sensitive (10 nM)manner, the contractions induced by ATP (100 microM), but not by noradrenaline (10 microM), whereas[des-Arg9]-BK (300 nM) did not modify the contractions induced by either agonist.6. It is concluded that the mouse vas deferens expresses both B1 and B2 receptors, which modulate sympathetic neurotransmission in opposing ways. Neurogenic contractions are inhibited by stimulation of possibly prejunctional B, receptors, whereas activation of B2 receptors increases twitch contractions,in part by amplifying the responsiveness of the smooth muscle cells to the sympathetic co-transmitter ATP.

  10. SCH 206272: a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist.

    PubMed

    Anthes, John C; Chapman, Richard W; Richard, Christian; Eckel, Stephen; Corboz, Michel; Hey, John A; Fernandez, Xiomara; Greenfeder, Scott; McLeod, Robbie; Sehring, Susan; Rizzo, Charles; Crawley, Yvette; Shih, Neng-Yang; Piwinski, John; Reichard, Greg; Ting, Pauline; Carruthers, Nick; Cuss, Francis M; Billah, Motasim; Kreutner, William; Egan, Robert W

    2002-08-23

    Experiments were performed to characterize the pharmacology of SCH 206272 [(R,R)-1'[5-[(3,5-dichlorobenzoyl)methylamino]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl]-N-methyl-2-oxo-[1,4'bipiperidine]-3-acetamide] as a potent and selective antagonist of tachykinin (NK) NK(1), NK(2), and NK(3) receptors. SCH 206272 inhibited binding at human tachykinin NK(1), NK(2), and NK(3) receptors (K(i) = 1.3, 0.4, and 0.3 nM, respectively) and antagonized [Ca(2+)](i) mobilization in Chinese hamster ovary (CHO) cells expressing the cloned human tachykinin NK(1), NK(2), or NK(3) receptors. SCH 206272 inhibited relaxation of the human pulmonary artery (pK(b) = 7.7 +/- 0.3) induced by the tachykinin NK(1) receptor agonist, [Met-O-Me] substance P and contraction of the human bronchus (pK(b = 8.2 +/- 0.3) induced by the tachykinin NK(2) receptor agonist, neurokinin A. In isolated guinea pig tissues, SCH 206272 inhibited substance P-induced enhancement of electrical field stimulated contractions of the vas deferens, (pK(b = 7.6 +/- 0.2), NKA-induced contraction of the bronchus (pK(b) = 7.7 +/- 0.2), and senktide-induced contraction of the ileum. In vivo, oral SCH 206272 (0.1-10 mg/kg, p.o.) inhibited substance P-induced airway microvascular leakage and neurokinin A-induced bronchospasm in the guinea pig. In a canine in vivo model, SCH 206272 (0.1-3 mg/kg, p.o.) inhibited NK(1) and NK(2) activities induced by exogenous substance P and neurokinin A. Furthermore, in guinea pig models involving endogenously released tachykinins, SCH 206272 inhibited hyperventilation-induced bronchospasm, capsaicin-induced cough, and airway microvascular leakage induced by nebulized hypertonic saline. These data demonstrate that SCH 206272 is a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist. This compound may have beneficial effects in diseases thought to be mediated by tachykinins, such as cough, asthma, and chronic obstructive pulmonary disease. Copyright 2002 Elsevier Science B.V.

  11. Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation

    PubMed Central

    Nagahama, Masahiro; Morimitsu, Shinsuke; Kihara, Atsushi; Akita, Masahiko; Setsu, Koujun; Sakurai, Jun

    2003-01-01

    Clostridium perfringens beta-toxin causes dermonecrosis and oedema in the dorsal skin of animals. In the present study, we investigated the mechanisms of oedema induced by the toxin. The toxin induced plasma extravasation in the dorsal skin of Balb/c mice. The extravasation was significantly inhibited by diphenhydramine, a histamine 1 receptor antagonist. However, the toxin did not cause the release of histamine from mouse mastocytoma cells. Tachykinin NK1 receptor antagonists, [D-Pro2, D-Trp7,9]-SP, [D-Pro4, D-Trp7,9]-SP and spantide, inhibited the toxin-induced leakage in a dose-dependent manner. Furthermore, the non-peptide tachykinin NK1 receptor antagonist, SR140333, markedly inhibited the toxin-induced leakage. The leakage induced by the toxin was markedly reduced in capsaicin-pretreated mouse skin but the leakage was not affected by systemic pretreatment with a calcitonin gene-related peptide receptor antagonist (CGRP8-37). The toxin-induced leakage was significantly inhibited by the N-type Ca2+ channel blocker, ω-conotoxin MVIIA, and the bradykinin B2 receptor antagonist, HOE140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), but was not affected by the selective L-type Ca2+ channel blocker, verapamil, the P-type Ca2+ channel blocker, ω-agatoxin IVA, tetrodotoxin (TTX), the TTX-resistant Na+ channel blocker, carbamazepine, or the sensory nerve conduction blocker, lignocaine. These results suggest that plasma extravasation induced by beta-toxin in mouse skin is mediated via a mechanism involving tachykinin NK1 receptors. PMID:12522069

  12. Effects of combined administration of 5-HT1A and/or 5-HT1B receptor antagonists and paroxetine or fluoxetine in the forced swimming test in rats.

    PubMed

    Tatarczyńska, Ewa; Kłodzińska, Aleksandra; Chojnacka-Wójcik, Ewa

    2002-01-01

    Clinical data suggest that coadministration of pindolol, a 5-HT1A/5-HT1B/beta-adrenoceptor antagonist, and selective serotonin reuptake inhibitors (SSRIs) may shorten the time of onset of a clinical action and may increase beneficial effects of the therapy of drug-resistant depression. Effects of combined administration of SSRIs and 5-HT receptor ligands are currently evaluated in animal models for the detection of an antidepressant-like activity; however, the obtained results turned out to be inconsistent. The aim of the present study was to investigate effects of a 5-HT1A antagonist (WAY 100635), 5-HT1B antagonists (SB 216641 and GR 127935) or pindolol, given in combination with paroxetine or fluoxetine (SSRIs), in the forced swimming test in rats (Porsolt test). When given alone, paroxetine (10 and 20 mg/kg), fluoxetine (10 and 20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), SB 216641 (2 mg/kg), GR 127935 (10 and 20 mg/kg) and pindolol (4 and 8 mg/kg) did not shorten the immobility time of rats in that test. Interestingly, SB 216641 administered alone at a dose of 4 mg/kg produced a significant reduction of the immobility time in that test. A combination of paroxetine (20 mg/kg) and WAY 100635 or pindolol failed to reveal a significant interaction; on the other hand, when paroxetine was given jointly with SB 216641 (2 mg/kg) or GR 127935 (10 and 20 mg/kg), that combination showed a significant antiimmobility action in the forced swimming test in rats. The active behaviors in that test did not reflect increased general activity because combined administration of both the 5-HT1B antagonists and paroxetine failed to alter the locomotor activity of rats, measured in the open field test. Coadministration of fluoxetine and all the antagonists used did not affect the behavior of rats in the forced swimming test. The obtained results seem to indicate that blockade of 5-HT1B receptors, but not 5-HT1A ones, can facilitate the antidepressant-like effect of paroxetine in the forced swimming test in rats. No interaction was observed between fluoxetine and 5-HT1A/5-HT1B receptor antagonists.

  13. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  14. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    PubMed

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

    PubMed

    Filho, Carlos B; Del Fabbro, Lucian; de Gomes, Marcelo G; Goes, André T R; Souza, Leandro C; Boeira, Silvana P; Jesse, Cristiano R

    2013-01-05

    The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Published by Elsevier B.V.

  16. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi

    2016-10-15

    Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster.

    PubMed

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster , a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT 1A , Dm5-HT 1B , and Dm5-HT 7 couple to cAMP signaling cascades, the Dm5-HT 2A receptor leads to Ca 2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT 2B receptor. Knowledge about this receptor's pharmacological properties is very limited. This is quite surprising because Dm5-HT 2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT 2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT 2B 's pharmacology, we evaluated the receptor's response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT 2B signaling in vitro and in vivo .

  18. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme.

    PubMed

    Geneste, Hervé; Amberg, Wilhelm; Backfisch, Gisela; Beyerbach, Armin; Braje, Wilfried M; Delzer, Jürgen; Haupt, Andreas; Hutchins, Charles W; King, Linda L; Sauer, Daryl R; Unger, Liliane; Wernet, Wolfgang

    2006-04-01

    In our efforts to further pursue one of the most selective dopamine D(3)-receptor antagonists reported to date, we now describe the synthesis and SAR of novel and highly selective dopamine D(3) antagonists based on a 1H-pyridin-2-one or on a urea scaffold. The most potent compounds exhibited K(i) values toward the D(3) receptor in the nano- to subnanomolar range and high selectivity versus the related D(2) dopamine receptor. Thus, 1H-pyridin-2-one 7b displays oral bioavailability (F=37%) as well as brain penetration (brain plasma ratio 3.7) in rat. Within the urea series, an excellent D(3) versus D(2) selectivity (>100-fold) could be achieved by removal of one NH group (compound 6), although bioavailability (rat) was suboptimal (F<10%). These data significantly enhance our understanding of the D(3) pharmacophore and are expected to lead to novel approaches for the treatment of schizophrenia.

  19. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats

    PubMed Central

    Blacktop, Jordan M.; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A.; Mantsch, John R.

    2015-01-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 hrs/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 40 sec; range 10–70 sec) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 µg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. PMID:26596556

  20. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder

    PubMed Central

    Naß, Janine; Efferth, Thomas

    2017-01-01

    Background: Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. Methods: We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. Results: SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. Conclusion: The combination of genetic and pharmacological research may lead to novel target-based drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. PMID:27834145

  2. A new serotonin 5-HT6 receptor antagonist with procognitive activity - Importance of a halogen bond interaction to stabilize the binding

    NASA Astrophysics Data System (ADS)

    González-Vera, Juan A.; Medina, Rocío A.; Martín-Fontecha, Mar; Gonzalez, Angel; de La Fuente, Tania; Vázquez-Villa, Henar; García-Cárceles, Javier; Botta, Joaquín; McCormick, Peter J.; Benhamú, Bellinda; Pardo, Leonardo; López-Rodríguez, María L.

    2017-01-01

    Serotonin 5-HT6 receptor has been proposed as a promising therapeutic target for cognition enhancement though the development of new antagonists is still needed to validate these molecules as a drug class for the treatment of Alzheimer’s disease and other pathologies associated with memory deficiency. As part of our efforts to target the 5-HT6 receptor, new benzimidazole-based compounds have been designed and synthesized. Site-directed mutagenesis and homology models show the importance of a halogen bond interaction between a chlorine atom of the new class of 5-HT6 receptor antagonists identified herein and a backbone carbonyl group in transmembrane domain 4. In vitro pharmacological characterization of 5-HT6 receptor antagonist 7 indicates high affinity and selectivity over a panel of receptors including 5-HT2B subtype and hERG channel, which suggests no major cardiac issues. Compound 7 exhibited in vivo procognitive activity (1 mg/kg, ip) in the novel object recognition task as a model of memory deficit.

  3. Effect of endothelin-1 and endothelin receptor blockade on the release of microparticles.

    PubMed

    Jung, Christian; Lichtenauer, Michael; Wernly, Bernhard; Franz, Marcus; Goebel, Bjoern; Rafnsson, Arnar; Figulla, Hans-Reiner; Pernow, John

    2016-08-01

    Increased levels of endothelial cell microparticles (EMP) are known to reflect endothelial dysfunction (ED). In diabetes mellitus type 2 (T2DM), the expression of endothelin (ET)-1 is increased. As treatment with an ET-1 antagonist significantly inhibited atherosclerosis in animal models, we sought to investigate whether treatment with ET-1 antagonists affects EMP levels in vitro and in vivo in patients with T2DM. In vitro study: Human umbilical vein endothelial cells (HUVEC) were stimulated with ET-1 alone and ET-1 in combination with a dual ET-A and ET-B endothelin receptor blocker. In vivo study: Patients with T2DM were randomized to treatment with the ET receptor antagonist bosentan or placebo. After 4 weeks, the patients were re-examined and blood samples were obtained. EMP counts in supernatants and plasma samples were determined using flow cytometry. In vitro study: In supernatants of ET-1-stimulated HUVECs, the increased release of EMP was reduced significantly by co-incubation with an ET-1 receptor antagonist (e.g. CD31+/CD42b-EMP decreased from 37·1% ± 2·8 to 31·5% ± 2·8 SEM, P = 0·0078). In vivo study: No changes in EMP levels in blood samples of patients with T2DM were found after 4 weeks of bosentan treatment (n = 36, P = ns). Our in vitro results suggest that ET-1 stimulates the release of EMP from HUVECs via a receptor-dependent mechanism. Co-incubation with an endothelin receptor blocker abolished ET-1-dependent EMP release. However, treatment with bosentan for 4 weeks failed to alter EMP levels in patients with T2DM. Other factors seem to have influenced EMP release in patients with T2DM independent of ET-1 receptor-mediated mechanisms. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  4. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain.

    PubMed

    Abe, Tetsuya; Matsumura, Shinji; Katano, Tayo; Mabuchi, Tamaki; Takagi, Kunio; Xu, Li; Yamamoto, Akitsugu; Hattori, Kotaro; Yagi, Takeshi; Watanabe, Masahiko; Nakazawa, Takanobu; Yamamoto, Tadashi; Mishina, Masayoshi; Nakai, Yoshihide; Ito, Seiji

    2005-09-01

    Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.

  6. Antagonist profile of ibodutant at the tachykinin NK2 receptor in guinea pig isolated bronchi.

    PubMed

    Santicioli, Paolo; Meini, Stefania; Giuliani, Sandro; Lecci, Alessandro; Maggi, Carlo Alberto

    2013-10-24

    In this study we have characterized the pharmacological profile of the non-peptide tachykinin NK 2 receptor antagonist ibodutant (MEN15596) in guinea pig isolated main bronchi contractility. The antagonist potency of ibodutant was evaluated using the selective NK 2 receptor agonist [βAla 8 ]NKA(4-10)-mediated contractions of guinea pig isolated main bronchi. In this assay ibodutant (30, 100 and 300nM) induced a concentration-dependent rightward shift of the [βAla 8 ]NKA(4-10) concentration-response curves without affecting the maximal contractile effect. The analysis of the results yielded a Schild-plot linear regression with a slope not different from unity (0.95, 95% c.l. 0.65-1.25), thus indicating a surmountable behaviour. The calculated apparent antagonist potency as pK B value was 8.31±0.05. Ibodutant (0.3-100nM), produced a concentration-dependent inhibition of the nonadrenergic-noncholinergic (NANC) contractile response induced by electrical field stimulation (EFS) of intrinsic airway nerves in guinea pig isolated main bronchi. At the highest concentration tested (100nM) ibodutant almost abolished the EFS-induced bronchoconstriction (95±4% inhibition), the calculated IC 50 value was 2.98nM (95% c.l. 1.73-5.16nM). In bronchi from ovalbumin (OVA) sensitized guinea pigs ibodutant (100nM) did not affect the maximal contractile response to OVA, but completely prevented the slowing in the fading of the motor response induced by phosphoramidon pretreatment linked to the endogenous neurokinin A release. Altogether, the present study demonstrate that ibodutant is a potent NK 2 receptor antagonist in guinea pig airways. © 2013 Published by Elsevier B.V.

  7. Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses.

    PubMed

    Courtin, Noémie; Fotso, Aurélien Fotso; Fautrad, Pierre; Mas, Floriane; Alessi, Marie-Christine; Riteau, Béatrice

    2017-07-01

    Influenza viruses are one of the most important respiratory pathogens worldwide, causing both epidemic and pandemic infections. The aim of the study was to evaluate the effect of FPR2 antagonists PBP10 and BOC2 on influenza virus replication. We determined that these molecules exhibit antiviral effects against influenza A (H1N1, H3N2, H6N2) and B viruses. FPR2 antagonists used in combination with oseltamivir showed additive antiviral effects. Mechanistically, the antiviral effect of PBP10 and BOC2 is mediated through early inhibition of virus-induced ERK activation. Finally, our preclinical studies showed that FPR2 antagonists protected mice from lethal infections induced by influenza, both in a prophylactic and therapeutic manner. Thus, FPR2 antagonists might be explored for novel treatments against influenza. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An antagonistic monoclonal antibody (B-N6) specific for the human neurotensin receptor-1.

    PubMed

    Ovigne, J M; Vermot-Desroches, C; Lecron, J C; Portier, M; Lupker, J; Pecceu, F; Wijdenes, J

    1998-06-01

    The neuropeptide neurotensin (NT) interacts with two types of human receptors (hNTR) termed hNTR-1 and hNTR-2. This study describes a monoclonal antibody (MAb) specific for hNTR-1, B-N6. This MAb binds specifically to hNTR-1, but not to hNTR-2 transfected CHO cells. B-N6 and NT display a reciprocal competition and react in a similar way to trypsin, suggesting that the B-N6 epitope is at or close to the NT binding site on the third extracellular loop. Unlike B-N6, NT induces hNTR-1 internalization. Although neither NT-FITC nor B-N6 binding was detected by flow cytometry on different human cells, specific mRNA expression for hNTR-1 was detected in these cells. In CHO cells expressing hNTR-1 and a luciferase gene coupled to the krox24 reporter, B-N6 and the antagonist SR 48692 inhibited NT-induced intracellular activation of krox24 in a dose-dependent manner. From these results it is concluded that B-N6 is an antagonistic anti-hNTR-1 MAb.

  9. A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure.

    PubMed

    Oh, Kwang-Seok; Lee, Jeong Hyun; Yi, Kyu Yang; Lim, Chae Jo; Park, Byung Kil; Seo, Ho Won; Lee, Byung Ho

    2017-03-15

    Urotensin II and its receptor are thought to be involved in various cardiovascular diseases such as heart failure, pulmonary hypertension and atherosclerosis. Since the regulation of the urotensin II/urotensin II receptor offers a great potential for therapeutic strategies related to the treatment of cardiovascular diseases, the study of selective and potent antagonists for urotensin II receptor is more fascinating. This study was designed to determine the potential therapeutic effects of a newly developed novel urotensin II receptor antagonist, N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl)benzo[b]thiophene-3-carboxamide (KR-36996), in experimental models of heart failure. KR-36996 displayed a high binding affinity (Ki=4.44±0.67nM) and selectivity for urotensin II receptor. In cell-based study, KR-36996 significantly inhibited urotensin II-induced stress fiber formation and cellular hypertrophy in H9c2 UT cells. In transverse aortic constriction-induced cardiac hypertrophy model in mice, the daily oral administration of KR-36996 (30mg/kg) for 14 days significantly decreased left ventricular weight by 40% (P<0.05). In myocardial infarction-induced chronic heart failure model in rats, repeated echocardiography and hemodynamic measurements demonstrated remarkable improvement of the cardiac performance by KR-36996 treatment (25 and 50mg/kg/day, p.o.) for 12 weeks. Moreover, KR-36996 decreased interstitial fibrosis and cardiomyocyte hypertrophy in the infarct border zone. These results suggest that potent and selective urotensin II receptor antagonist could efficiently attenuate both cardiac hypertrophy and dysfunction in experimental heart failure. KR-36996 may be useful as an effective urotensin II receptor antagonist for pharmaceutical or clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Breathing is affected by dopamine D2-like receptors in the basolateral amygdala.

    PubMed

    Sugita, Toshihisa; Kanamaru, Mitsuko; Iizuka, Makito; Sato, Kanako; Tsukada, Setsuro; Kawamura, Mitsuru; Homma, Ikuo; Izumizaki, Masahiko

    2015-04-01

    The precise mechanisms underlying how emotions change breathing patterns remain unclear, but dopamine is a candidate neurotransmitter in the process of emotion-associated breathing. We investigated whether basal dopamine release occurs in the basolateral amygdala (BLA), where sensory-related inputs are received and lead to fear or anxiety responses, and whether D1- and D2-like receptor antagonists affect breathing patterns and dopamine release in the BLA. Adult male mice (C57BL/6N) were perfused with artificial cerebrospinal fluid, a D1-like receptor antagonist (SCH 23390), or a D2-like receptor antagonist ((S)-(-)-sulpiride) through a microdialysis probe in the BLA. Respiratory variables were measured using a double-chamber plethysmograph. Dopamine release was measured by an HPLC. Perfusion of (S)-(-)-sulpiride in the BLA, not SCH 23390, specifically decreased respiratory rate without changes in local release of dopamine. These results suggest that basal dopamine release in the BLA, at least partially, increases respiratory rates only through post-synaptic D2-like receptors, not autoreceptors, which might be associated with emotional responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.

    PubMed

    Rivera, Alicia

    2007-09-01

    Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.

  12. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function.

    PubMed

    Kargl, Julia; Brown, Andrew J; Andersen, Liisa; Dorn, Georg; Schicho, Rudolf; Waldhoer, Maria; Heinemann, Akos

    2013-07-01

    The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol (LPI) receptor that is also responsive to certain cannabinoids. Although GPR55 has been implicated in several (patho)physiologic functions, its role remains enigmatic owing mainly to the lack of selective GPR55 antagonists. Here we show that the compound CID16020046 ((4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo[3,4-c]pyrazol-5-yl] benzoic acid) is a selective GPR55 antagonist. In yeast cells expressing human GPR55, CID16020046 antagonized agonist-induced receptor activation. In human embryonic kidney (HEK293) cells stably expressing human GPR55, the compound behaved as an antagonist on LPI-mediated Ca²⁺ release and extracellular signal-regulated kinases activation, but not in HEK293 cells expressing cannabinoid receptor 1 or 2 (CB₁ or CB₂). CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor κ of activated B cells (NF-κB) and serum response element, translocation of NFAT and NF-κB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation, suggesting a novel role for GPR55 in platelet and endothelial cell function. CID16020046 is therefore a valuable tool to study GPR55-mediated mechanisms in primary cells and tissues.

  13. Inhibition of mechanotransducer currents in crayfish sensory neuron by CGS 9343B, a calmodulin antagonist.

    PubMed

    Lin, J H; Rydqvist, B

    2000-05-26

    The effects of CGS 9343B (zaldaride maleate), a calmodulin antagonist, on mechanosensitive channels were examined in crayfish slowly adapting sensory neurons using the two-electrode voltage clamp technique. In addition to its inhibition of voltage-gated Na(+) and K(+) currents, CGS 9343B (<30 microM) blocked reversibly the receptor current in a dose-dependent and voltage-dependent manner with a dissociation constant (K(d)) of 26.8 microM. The time course of the block was 265 s. Within the extension range of 3-30%, the reduction in receptor current was stimulus-independent and the gating mechanisms were not affected. Extracellular Ca(2+) was not necessary for its blocking effects. No changes in passive muscle tension were observed in the presence of 20 microM CGS 9343B. These results suggest that CGS 9343B, as a calmodulin antagonist, can also block mechanosensitive channels, possibly by being incorporated into the lipid membrane and/or interacting with the channel protein.

  14. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    PubMed Central

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  15. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    PubMed

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  16. NMDA/glutamate mechanism of magnesium-induced anxiolytic-like behavior in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Wróbel, Andrzej; Fidecka, Sylwia; Nowak, Gabriel

    2008-01-01

    The anxiolytic-like activity of magnesium in mice during the elevated plus maze (EPM) has been demonstrated previously. In the present study, we examined the involvement of NMDA/glutamate receptor ligands on the magnesium effect on the EPM. We demonstrated that low, ineffective doses of NMDA antagonists (the competitive NMDA antagonist CGP 37849, 0.3 mg/kg; an antagonist of the glycineB sites, L-701,324, 1 mg/kg; a partial agonist of the glycineB sites, D-cycloserine, 2.5 mg/kg; and the non-competitive NMDA antagonist MK-801, 0.05 mg/kg) administered together with an ineffective dose of magnesium (10 mg/kg) evoked a significant increase in the percentage of time spent in the open arm of the maze (an index of anxiety). Moreover, magnesium-induced anxiolytic-like activity (20 mg/kg) was antagonized by D-serine (100 nmol/mouse), an agonist of glycineB site of the NMDA receptor complex. The present study demonstrates the involvement of the NMDA/glutamate pathway in the magnesium anxiolytic-like activity in the EPM in mice, and that this activity particularly involves the glycineB sites.

  17. Cholecystokinin (CCK) and CCK receptor expression by human gliomas: Evidence for an autocrine/paracrine stimulatory loop.

    PubMed

    Oikonomou, Eftychia; Buchfelder, Michael; Adams, Eric F

    2008-06-01

    Cholecystokinin (CCK) is a gut-brain peptide has been described to be able to induce mitosis according to recent studies. Additionally, conflicting data has been published on whether tumours of the central and peripheral nervous system in general, and gliomas in particular, express CCK receptors. In the present in vitro study we employed reverse transcription followed by the polymerase chain reaction (RT-PCR) to investigate whether mRNA for CCK-A and CCK-B receptors as well as CCK peptide itself is present in primary human gliomas and the U-87 MG GBM cell line. The data show that 14/14 (100%) of the primary gliomas exhibited mRNA expression for the CCK peptide gene and the B receptor including the U-87 MG cells, whereas, only 2/14 (14%) showed presence of the CCK-A receptor. The presence of CCK receptors together with CCK peptide expression itself suggests presence of an autocrine loop controlling glioma cell growth. In support of this conclusion, a neutralizing antibody against the CCK peptide exhibited a dose dependent inhibition of cell growth whereas, antagonists to CCK caused a dose depend inhibition of exogenous stimulated glioma cell growth in vitro, via the CCK-B receptor which is PKC activated. Assessment of apoptosis and proteasome activity were undertaken and we report that treatment with CCK antagonists decreased proteasome and increased caspase-3 activity. These data indicate that CCK peptide and CCK-B are abundant in human gliomas and they act to stimulate cell growth in an autocrine manner, primarily via the high affinity CCK-B receptor, which was blocked by antagonists to CCK, perhaps via apoptosis.

  18. Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin B1 and B2 receptors

    PubMed Central

    Abdouh, M; Talbot, S; Couture, R; Hasséssian, H M

    2008-01-01

    Background and purpose: We investigated whether or not kinin receptors play a role in diabetic blood–retinal barrier breakdown, which is a leading cause of vision loss. Experimental approach: Blood–retinal barrier breakdown was quantified using Evans blue, and expression of kinin B1 receptor mRNA was measured using quantitative reverse transcrition-PCR. Diabetic rats (streptozotocin (STZ), 65 mg kg−1) received a single intraocular injection of bradykinin (BK) or des-Arg9-BK, alone, or in combination with antagonists for B1 (des-Arg10-Hoe140, R-715) and/or B2 (Hoe140) receptors, given intraocularly or intravenously (i.v.). Key results: In control rats, BK (0.1–10 nmol) dose-dependently increased plasma extravasation, which was inhibited by Hoe140 (0.2 nmol), whereas des-Arg9-BK (0.1 and 1 nmol) was without effect. B1 receptor mRNA was markedly increased in retinas of diabetic rats, and this was prevented by N-acetyl-L-cysteine (1 g kg−1 day−1 for 7 days). Plasma extravasation in retinas of STZ-diabetic rats was higher than in controls and enhanced by des-Arg9-BK. Response to des-Arg9-BK was inhibited by intraocular or i.v. injection of B1 receptor antagonists. Diabetes-induced plasma extravasation was inhibited only by a combination of des-Arg10-Hoe140 and Hoe 140 (100 nmol kg−1, i.v. 15 min earlier) or by R-715 (1 μmol kg−1, i.v.) injected daily for 7 days. Conclusions and implications: Kinin B1 receptors are upregulated in retinas of STZ-diabetic rats through a mechanism involving oxidative stress. Both kinin B1 and B2 receptors contribute to increased plasma extravasation in diabetic retinopathy. Chronic inhibition of both kinin receptors, possibly with antioxidant adjuvants, may be a novel therapeutic strategy for diabetic retinopathy. PMID:18311190

  19. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    PubMed

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  20. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice

    PubMed Central

    Sullivan, Timothy; Miao, Zhenhua; Dairaghi, Daniel J.; Krasinski, Antoni; Wang, Yu; Zhao, Bin N.; Baumgart, Trageen; Ertl, Linda S.; Pennell, Andrew; Seitz, Lisa; Powers, Jay; Zhao, Ruiping; Ungashe, Solomon; Wei, Zheng; Boring, Landin; Tsou, Chia-Lin; Charo, Israel; Schall, Thomas J.; Jaen, Juan C.

    2013-01-01

    Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function. PMID:23986513

  1. New targets for rapid antidepressant action.

    PubMed

    Machado-Vieira, Rodrigo; Henter, Ioline D; Zarate, Carlos A

    2017-05-01

    Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others. Published by Elsevier Ltd.

  2. New Targets for Rapid Antidepressant Action

    PubMed Central

    Machado-Vieira, Rodrigo; Henter, Ioline D; Zarate, Carlos A.

    2016-01-01

    Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-D-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: 1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); 2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); 3) NMDA receptor glycine-site partial agonists (GLYX-13); and 4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others. PMID:26724279

  3. The anti-influenza drug oseltamivir evokes hypothermia in mice through dopamine D2 receptor activation via central actions.

    PubMed

    Fukushima, Akihiro; Fukui, Arisa; Takemura, Yuki; Maeda, Yasuhiro; Ono, Hideki

    2018-01-01

    Oseltamivir has a hypothermic effect in mice when injected intraperitoneally (i.p.) and intracerebroventricularly (i.c.v.). Here we show that the hypothermia evoked by i.c.v.-oseltamivir is inhibited by non-selective dopamine receptor antagonists (sulpiride and haloperidol) and the D 2 -selective antagonist L-741,626, but not by D 1 /D 5 -selective and D 3 -selective antagonists (SCH-23390 and SB-277011-A, respectively). The hypothermic effect of i.p.-administered oseltamivir was not inhibited by sulpiride, haloperidol, L-741,626 and SCH-23390. In addition, neither sulpiride, haloperidol nor SCH-23390 blocked hypothermia evoked by i.c.v.-administered oseltamivir carboxylate (a hydrolyzed metabolite of oseltamivir). These results suggest that oseltamivir in the brain induces hypothermia through activation of dopamine D 2 receptors. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Orexin Receptors: Pharmacology and Therapeutic Opportunities

    PubMed Central

    Scammell, Thomas E.; Winrow, Christopher J.

    2011-01-01

    Orexin-A and -B (also known as hypocretin-1 and -2) are neuropeptides produced in the lateral hypothalamus that promote many aspects of arousal through the OX1 and OX2 receptors. In fact, they are necessary for normal wakefulness, as loss of the orexin-producing neurons causes narcolepsy in humans and rodents. This has generated considerable interest in developing small-molecule orexin receptor antagonists as a novel therapy for the treatment of insomnia. Orexin antagonists, especially those that block OX2 or both OX1 and OX2 receptors, clearly promote sleep in animals, and clinical results are encouraging: Several compounds are in Phase III trials. As the orexin system mainly promotes arousal, these new compounds will likely improve insomnia without incurring many of the side effects encountered with current medications. PMID:21034217

  5. Orexin receptors: pharmacology and therapeutic opportunities.

    PubMed

    Scammell, Thomas E; Winrow, Christopher J

    2011-01-01

    Orexin-A and -B (also known as hypocretin-1 and -2) are neuropeptides produced in the lateral hypothalamus that promote many aspects of arousal through the OX1 and OX2 receptors. In fact, they are necessary for normal wakefulness, as loss of the orexin-producing neurons causes narcolepsy in humans and rodents. This has generated considerable interest in developing small-molecule orexin receptor antagonists as a novel therapy for the treatment of insomnia. Orexin antagonists, especially those that block OX2 or both OX1 and OX2 receptors, clearly promote sleep in animals, and clinical results are encouraging: Several compounds are in Phase III trials. As the orexin system mainly promotes arousal, these new compounds will likely improve insomnia without incurring many of the side effects encountered with current medications.

  6. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    PubMed

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and obsessive compulsive disorder. Copyright © 2016. Published by Elsevier Ltd.

  7. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    PubMed

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  8. [11C]AZ10419096 - a full antagonist PET radioligand for imaging brain 5-HT1B receptors.

    PubMed

    Lindberg, Anton; Nag, Sangram; Schou, Magnus; Takano, Akihiro; Matsumoto, Junya; Amini, Nahid; Elmore, Charles S; Farde, Lars; Pike, Victor W; Halldin, Christer

    2017-11-01

    The serotonergic system is widely present in all regions of the central nervous system (CNS) and plays a key modulatory role in many of its functions. Positron emission tomography (PET) is used to study several serotonin receptors in CNS in vivo. The G-protein coupled receptor 5-HT 1B is mostly present in the occipital cortex and in midbrain and is linked to several psychiatric disorders. There is evidence that agonist PET radioligands for neuroreceptors are more sensitive to endogenous neurotransmitters than antagonists. Our previously developed 5-HT 1B receptor PET radioligand, [ 11 C]AZ10419369, is now considered a partial agonist. In this work we are aiming to develop a full antagonist PET radioligand for imaging brain 5-HT 1B receptors, and evaluate its sensitivity to increased endogenous serotonin concentration. [ 11 C]AZ10419096 was synthesized by rapid methylation of the prepared corresponding N-desmethyl precursor with [ 11 C]methyl triflate. Five PET measurements were performed in cynomolgus monkeys, consisting of two at baseline, one after treatment of a monkey with a 5-HT 1B antagonist, AR-A000002, and two in which fenfluramine was administered during scanning to induce endogenous serotonin release. [ 11 C]AZ10419096 was synthesized in high yield and purity within 30 min, including purification, formulation and sterile filtration. The baseline PET measurements demonstrated [ 11 C]AZ10419096 to have favorable radioligand characteristics, including high specific binding in brain regions that have high 5-HT 1B density, such as occipital cortex and globus pallidus, as well as subsequent rapid elimination from brain and a minor abundance of lipophilic radiometabolites in plasma. AR-A00002 completely blocked radioligand receptor-specific binding. Fenfluramine produced a distinct displacement of radioligand consistent with an expected increase of synaptic endogenous serotonin concentration. [ 11 C]AZ10419096, a full 5-HT 1B antagonist PET radioligand, demonstrates high specific binding in monkey brain that is sensitive to competition from a known 5-HT 1B antagonist as well as to putatively increased endogenous serotonin levels. Published by Elsevier Inc.

  9. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study.

    PubMed

    Kumar, Gaurav; Patnaik, Ranjana

    2016-07-01

    N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thoracic vagal efferent nerve stimulation evokes substance P-induced early airway bronchonstriction and late proinflammatory and oxidative injury in the rat respiratory tract.

    PubMed

    Li, Ping-Chia; Li, Sheng-Chung; Lin, Yuan-Ju; Liang, Jin-Tung; Chien, Chiang-Ting; Shaw, Chen-Fu

    2005-01-01

    Electrical stimulation of efferent thoracic vagus nerve (TVN) evoked neurogenic inflammation in respiratory tract of atropine-treated rats by an undefined mechanism. We explored whether efferent TVN stimulation via substance P facilitates neurogenic inflammation via action of nuclear factor-kappaB (NF-kappaB) activation and reactive oxygen species (ROS) production. Our results showed that increased frequency of TVN stimulation concomitantly increased substance P-enhanced hypotension, and bronchoconstriction (increases in smooth muscle electromyographic activity and total pulmonary resistance). The enhanced SP release evoked the appearance of endothelial gap in silver-stained leaky venules, India-ink labeled extravasation, and accumulations of inflammatory cells in the respiratory tract, contributing to trachea plasma extravasation as well as increases in blood O (2)(-) and H(2)O(2) ROS amount. L-732138 (NK(1) receptor antagonist), SR-48968 (NK(2) receptor antagonist), dimethylthiourea (H(2)O(2) scavenger) or catechins (O (2)(-) and H(2)O(2) scavenger) pretreatment reduced efferent TVN stimulation-enhanced hypotension, bronchoconstriction, and plasma extravasation. Increased frequency of TVN stimulation significantly upregulated the expression of nuclear factor-kappaB (NF-kappaB) in nuclear protein and intercellular adhesion molecule-1 (ICAM-1) in total protein of the lower respiratory tract tissue. The upregulation of NF-kappaB and ICAM-1 was attenuated by NK receptor antagonist and antioxidants. In conclusion, TVN efferent stimulation increases substance P release to trigger NF-kappaB mediated ICAM-1 expression and O (2)(-) and H(2)O(2) ROS production in the respiratory tract.

  11. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human interleukin-1 receptor antagonist treatment was not statistically significant. We report a heterogeneous effect of recombinant human interleukin-1 receptor antagonist on 28-day sepsis mortality that is potentially predictable by plasma interleukin-1 receptor antagonist in one trial. A precision clinical trial of recombinant human interleukin-1 receptor antagonist targeted to septic patients with high plasma interleukin-1 receptor antagonist may be worthy of consideration.

  12. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    PubMed

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder.

    PubMed

    Naß, Janine; Efferth, Thomas

    2017-01-01

    Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. The combination of genetic and pharmacological research may lead to novel targetbased drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Assessments of cellular melatonin receptor signaling pathways: β-arrestin recruitment, receptor internalization, and impedance variations.

    PubMed

    Dupré, Clémence; Bruno, Olivier; Bonnaud, Anne; Giganti, Adeline; Nosjean, Olivier; Legros, Céline; Boutin, Jean A

    2018-01-05

    Melatonin receptors belong to the family of G-protein coupled receptors. Agonist-induced receptor activation is terminated with the recruitment of β-arrestin, which leads to receptor internalization. Furthermore, agonist binding induces a shift in cellular shape that translates into a change in the electric impedance of the cell. In the present study, we employed engineered cells to study these internalization-related processes in the context of the two melatonin receptors, MT 1 and MT 2 . To assess these three receptor internalization-related functions and validate the results, we employed four classical ligands of melatonin receptors: the natural agonist melatonin; the super-agonist 2-iodo-melatonin and the two antagonists luzindole and 4-phenyl-2-propionamidotetralin. The assessments confirmed the nature of the agonistic ligands but showed that 4-phenyl-2-propionamidotetralin, a described antagonist, is a biased partial agonist at MT 2 with poorer affinity for MT 1 . The methods are now available to be applied to any receptor system for which multiple signaling pathways must be evaluated for new molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Potential role for ET-2 acting through ETA receptors in experimental colitis in mice.

    PubMed

    Claudino, R F; Leite, D F; Bento, A F; Chichorro, J G; Calixto, J B; Rae, G A

    2017-02-01

    This study attempted to clarify the roles of endothelins and mechanisms associated with ET A /ET B receptors in mouse models of colitis. Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ET A receptor antagonist, 10 mg/kg), A-192621 (ET B receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1β, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ET A and ET B receptors mRNA were increased at 24, 48 and 72 h after colitis induction. Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ET A receptors might be a potential target for inflammatory bowel diseases.

  16. In vitro and in vivo biotransformation of WMS-1410, a potent GluN2B selective NMDA receptor antagonist.

    PubMed

    Falck, Evamaria; Begrow, Frank; Verspohl, Eugen J; Wünsch, Bernhard

    2014-06-01

    Structural modification of the GluN2B selective NMDA receptor antagonist ifenprodil led to the 3-benzazepine WMS-1410 with similar GluN2B affinity but higher receptor selectivity. Herein the in vitro and in vivo biotransformation of WMS-1410 is reported. Incubation of WMS-1410 with rat liver microsomes and different cofactors resulted in four hydroxylated phase I metabolites, two phase II metabolites and five combined phase I/II metabolites. With exception of catechol 4, these metabolites were also identified in the urine of a rat treated with WMS-1410. However the metabolites 7, 8 and 12 clearly show that the catechol metabolite 4 was also formed in vivo. As shown for ifenprodil the phenol of WMS-1410 represents the metabolically most reactive structural element. The biotransformation of WMS-1410 is considerably slower than the biotransformation of ifenprodil indicating a higher metabolic stability. From the viewpoint of metabolic stability the bioisosteric replacement of the phenol of WMS-1410 by a metabolically more stable moiety should be favourable. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Centralization of Noxious Stimulus-induced Analgesia (NSIA) is Related to Activity at Inhibitory Synapses in the Spinal Cord

    PubMed Central

    Tambeli, Claudia H.; Levine, Jon D.; Gear, Robert W.

    2009-01-01

    The duration of noxious stimulus-induced antinociception (NSIA) has been shown to outlast the pain stimulus that elicited it, however, the mechanism that determines the duration of analgesia is unknown. We evaluated the role of spinal excitatory and inhibitory receptors (NMDA, mGluR-5, mu-opioid, GABA-A, and GABA-B), previously implicated in NSIA initiation, in its maintenance. As in our previous studies, the supraspinal trigeminal jaw-opening reflex (JOR) in the rat was used for nociceptive testing because of its remoteness from the region of drug application, the lumbar spinal cord. NSIA was reversed by antagonists for two inhibitory receptors (GABA-B and mu-opioid) but not by antagonists for either of the two excitatory receptors (NMDA and mGluR-5), indicating that NSIA is maintained by ongoing activity at inhibitory synapses in the spinal cord. Furthermore, spinal administration of the GABA-B agonist baclofen mimicked NSIA in that it could be blocked by prior injection of the mu-opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) in nucleus accumbens. CTAP also blocked baclofen antinociception when administered in the spinal cord. We conclude that analgesia induced by noxious stimulation is maintained by activity in spinal inhibitory receptors. PMID:19375225

  18. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  19. Serotonin Receptor Binding Characteristics of Geissoschizine Methyl Ether, an Indole Alkaloid in Uncaria Hook

    PubMed Central

    Ikarashi, Yasushi; Sekiguchi, Kyoji; Mizoguchi, Kazushige

    2018-01-01

    Background: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symp-toms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor sub-types in the brains using our own data and previous findings. Methods: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was me-tabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cor-tex. Conclusion: These results suggest that GM is a pharmacologically important alkaloid that regulates vari-ous serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS. PMID:28322152

  20. Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones in live human cells

    PubMed Central

    Seidel, Lisa; Zarzycka, Barbara; Zaidi, Saheem A; Katritch, Vsevolod; Coin, Irene

    2017-01-01

    The activation mechanism of class B G-protein-coupled receptors (GPCRs) remains largely unknown. To characterize conformational changes induced by peptide hormones, we investigated interactions of the class B corticotropin-releasing factor receptor type 1 (CRF1R) with two peptide agonists and three peptide antagonists obtained by N-truncation of the agonists. Surface mapping with genetically encoded photo-crosslinkers and pair-wise crosslinking revealed distinct footprints of agonists and antagonists on the transmembrane domain (TMD) of CRF1R and identified numerous ligand-receptor contact sites, directly from the intact receptor in live human cells. The data enabled generating atomistic models of CRF- and CRF(12-41)-bound CRF1R, further explored by molecular dynamics simulations. We show that bound agonist and antagonist adopt different folds and stabilize distinct TMD conformations, which involves bending of helices VI and VII around flexible glycine hinges. Conservation of these glycine hinges among all class B GPCRs suggests their general role in activation of these receptors. DOI: http://dx.doi.org/10.7554/eLife.27711.001 PMID:28771403

  1. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?

    PubMed

    Riese, David J

    2011-02-01

    INTRODUCTION: Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. AREAS COVERED: Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. EXPERT OPINION: While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and -independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics.

  2. Effects of intra-accumbal administration of dopamine and ionotropic glutamate receptor drugs on delay discounting performance in rats.

    PubMed

    Yates, Justin R; Bardo, Michael T

    2017-10-01

    Nucleus accumbens core (NAcc) has been implicated in impulsive choice, as measured in delay discounting. The role of dopamine (DA) in impulsive choice has received considerable attention, whereas glutamate (Glu) has recently been shown to be an important mediator of discounting. However, research has not examined how DA or Glu receptors in NAcc mediate different aspects of delay discounting performance, that is, (a) sensitivity to reinforcer magnitude and (b) sensitivity to delayed reinforcement. Adult male Sprague-Dawley rats were first trained in a delay discounting task, in which the delay to a large magnitude food reinforcer increased across blocks of trials. Following behavioral training, rats received bilateral implantation of guide cannulas into NAcc. Half of the rats (n = 12) received infusions of the DA-selective ligands SKF 38393 (D1-like agonist: 0.03 or 0.1 μg), SCH 23390 (D1-like antagonist: 0.3 or 1.0 μg), quinpirole (D2-like agonist: 0.3 or 1.0 μg), and eticlopride (D2-like antagonist: 0.3 or 1.0 μg). The other half received infusions of the ionotropic Glu ligands MK-801 (NMDA uncompetitive antagonist: 0.3 or 1.0 μg), AP-5 (NMDA competitive antagonist: 0.3 or 1.0 μg), ifenprodil (noncompetitive antagonist at NR2B-containing NMDA receptors: 0.3 or 1.0 μg), and CNQX (AMPA competitive antagonist: 0.2 or 0.5 μg). Results showed that SCH 23390 (0.3 μg) decreased sensitivity to reinforcer magnitude without altering impulsive choice, whereas ifenprodil (1.0 μg) decreased sensitivity to delayed reinforcement (i.e., impulsive choice). The current results show that DA and NMDA receptors in NAcc mediate distinct aspects of discounting performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains

    PubMed Central

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137

  4. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    PubMed Central

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo. PMID:28553207

  5. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed

    Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A

    1990-07-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor-mediated) or toward the contractile effect of neurokinin B in the rat portal vein (NK3 receptor-mediated). 6. These results provide pharmacological evidence for heterogeneity of NK2 receptors in the RPA and HT. The NK2 receptors present in these tissues are not discriminated by natural tachykinins or selective agonists, but are recognized with very different affinity by NK2 receptor antagonists.

  6. Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys

    PubMed Central

    Grundt, Peter; Cao, Jianjing; Platt, Donna M.; Newman, Amy Hauck; Spealman, Roger D.

    2010-01-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are consistent with a role for D3 and D2 receptor mechanisms in cocaine's DS effects and cocaine-induced reinstatement of drug seeking, but provide no evidence for a major role of D3 receptors in the direct reinforcing effects of cocaine. PMID:20494958

  7. Peripheral 5-HT3 Receptors Are Involved in the Antinociceptive Effect of Bunodosine 391.

    PubMed

    Ferreira Junior, Wilson Alves; Zaharenko, Andre Junqueira; Kazuma, Kohei; Picolo, Gisele; Gutierrez, Vanessa Pacciari; de Freitas, Jose Carlos; Konno, Katsuhiro; Cury, Yara

    2017-12-27

    Bunodosine 391 (BDS 391), a low molecular weight compound isolated from the sea anemone Bunodosoma cangicum , increases the nociceptive threshold and inhibits inflammatory hyperalgesia. Serotonin receptors are involved in those effects. In this study, we have expanded the characterization of the antinociceptive effect of BDS 391 demonstrating that, in rats: (a) the compound inhibits (1.2-12 ng/paw) overt pain, in the formalin test, and mechanical hyperalgesia (0.6-6.0 ng/paw) detected in a model of neuropathic pain; (b) intraplantar administration of ondansetron, a selective 5-HT3 receptor antagonist, blocks the effect of BDS 391, whereas ketanserin, a 5-HT2 receptor antagonist, partially reversed this effect, indicating the involvement of peripheral 5-HT2 and 5-HT3 receptors in BDS 391 antinociception; and (c) in binding assay studies, BDS 391 was not able to displace the selective 5-HT receptor antagonists, suggesting that this compound does not directly bind to these receptors. The effect of biguanide, a selective 5-HT3 receptor agonist, was also evaluated. The agonist inhibited the formalin's nociceptive response, supporting an antinociceptive role for 5-HT3 receptors. Our study is the first one to show that a non-peptidic low molecular weight compound obtained from a sea anemone is able to induce antinociception and that activation of peripheral 5-HT3 receptors contributes to this effect.

  8. Peripheral 5-HT3 Receptors Are Involved in the Antinociceptive Effect of Bunodosine 391

    PubMed Central

    Ferreira Junior, Wilson Alves; Zaharenko, Andre Junqueira; Kazuma, Kohei; Picolo, Gisele; Gutierrez, Vanessa Pacciari; de Freitas, Jose Carlos; Konno, Katsuhiro

    2017-01-01

    Bunodosine 391 (BDS 391), a low molecular weight compound isolated from the sea anemone Bunodosoma cangicum, increases the nociceptive threshold and inhibits inflammatory hyperalgesia. Serotonin receptors are involved in those effects. In this study, we have expanded the characterization of the antinociceptive effect of BDS 391 demonstrating that, in rats: (a) the compound inhibits (1.2–12 ng/paw) overt pain, in the formalin test, and mechanical hyperalgesia (0.6–6.0 ng/paw) detected in a model of neuropathic pain; (b) intraplantar administration of ondansetron, a selective 5-HT3 receptor antagonist, blocks the effect of BDS 391, whereas ketanserin, a 5-HT2 receptor antagonist, partially reversed this effect, indicating the involvement of peripheral 5-HT2 and 5-HT3 receptors in BDS 391 antinociception; and (c) in binding assay studies, BDS 391 was not able to displace the selective 5-HT receptor antagonists, suggesting that this compound does not directly bind to these receptors. The effect of biguanide, a selective 5-HT3 receptor agonist, was also evaluated. The agonist inhibited the formalin’s nociceptive response, supporting an antinociceptive role for 5-HT3 receptors. Our study is the first one to show that a non-peptidic low molecular weight compound obtained from a sea anemone is able to induce antinociception and that activation of peripheral 5-HT3 receptors contributes to this effect. PMID:29280949

  9. Effect of a kinin B2 receptor antagonist on LPS- and cytokine-induced neutrophil migration in rats

    PubMed Central

    Santos, Danielle R; Calixto, João B; Souza, Glória E P

    2003-01-01

    This study examines the involvement of kinins in neutrophil migration into rat subcutaneous air pouches triggered by lipopolysaccharide (LPS), as well as the putative roles played by kinin B1 and B2 receptors, tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and selectins in this response. LPS (5 ng to 10 μg cavity−1) injected into the 6-day-old pouch induced a dose- and time-dependent neutrophil migration which peaked between 4 and 6 h, and was maximal following the dose of 100 ng cavity−1 (saline: 0.46±0.1; LPS: 43±3.70 × 106 cells cavity−1 at 6 h). Bradykinin (BK) (600 nmol) injected into the pouch of saline-treated rats induced only modest neutrophil migration (0.73±0.16 × 106 cells cavity−1). A more robust response to BK (3.2±0.25 × 106 cells cavity−1) was seen in animals pretreated with captopril, but this was still smaller than the responses to IL-1β or TNF-α (15 pmol: 23±2.2 × 106 and 75 pmol: 29.5±2 × 106 cells cavity−1, respectively). Nevertheless, the B1 agonist des-Arg9-BK (600 nmol) failed to induce neutrophil migration. HOE-140 (1 and 2 mg kg−1), a B2 receptor antagonist, reduced LPS-induced neutrophil migration. HOE-140 also reduced the neutrophil migration induced by BK, but had no effect on the migration promoted by IL-1β or TNF-α. des-Arg9-[Leu8]-BK, B1 receptor antagonist was ineffective in changing neutrophil migration caused by any of these stimuli. Neutrophil migration induced by LPS or BK was reduced by interleukin-1 receptor antagonist (IL-1ra) (1 mg kg−1), sheep anti-rat TNF serum (anti-TNF serum) (0.3 ml cavity−1), and the nonspecific selectin inhibitor fucoidin (10 mg kg−1). TNF-α levels in the pouch fluid were increased by LPS or BK injection, peaking at 0.5–1 h and gradually declining thereafter up to 6 h. IL-1β levels increased steadily throughout the 6 h period. HOE-140 markedly inhibited the rise in IL-1β and TNF-α levels in pouch fluid triggered by both stimuli. These results indicate that BK participates importantly in selectin-dependent neutrophil migration into the air pouch triggered by LPS in the rat, by stimulating B2 receptors coupled to synthesis/release of TNF-α and IL-1β. PMID:12770932

  10. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Xiaohong, E-mail: xuxh63@zjnu.cn; Ye Yinping; Li Tao

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs.more » The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.« less

  11. Serial femtosecond crystallography datasets from G protein-coupled receptors

    PubMed Central

    White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  12. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    PubMed

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-08-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

  13. Characterization of kinin receptors modulating neurogenic contractions of the mouse isolated vas deferens.

    PubMed Central

    Maas, J; Rae, G A; Huidobro-Toro, J P; Calixto, J B

    1995-01-01

    1. This study analyses the receptors mediating the effects of bradykinin (BK) and analogues on neurogenic twitch contractions of the mouse isolated vas deferens evoked, in the presence of captopril (3 microM), by electrical field stimulation with trains of 4 rectangular 0.5 ms pulses of supramaximal strength, delivered at a frequency of 10 Hz every 20 s. 2. BK (0.1-300 nM) induced a graded potentiation of twitches, with an EC50 (geometric mean and 95% confidence limits) of 4.5 nM (1.7-11.6) and an Emax of 315 +/- 19 mg per 10 mg of wet tissue (n = 6). Similar results were obtained in tissues challenged with Lys-BK, [Hyp3]-BK, Met,Lys-BK and the selective B2 receptor agonist [Tyr(Me)8]-BK (0.1-300 nM). 3. The selective B2 receptor antagonists, Hoe 140 (1-10 nM) and NPC 17731 (3-30 nM), caused graded rightward shifts of the curve to BK-induced twitch potentiation, yielding apparent pA2 values of 9.65 +/- 0.09 and 9.08 +/- 0.13, respectively, and Schild plot slopes not different from 1. Both antagonists (100 nM) failed to modify similar twitch potentiations induced by substance P (3 nM) or endothelin-1 (1 nM). Preincubation with the selective B1 receptor antagonist, [Leu8,des-Arg9]-BK (1 microM), increased the potentiating effect of BK on twitches at 30-300 nM. 4. In contrast to BK, the selective B1 receptor agonist, [des-Arg9]-BK (0.3-1000 nM) reduced the amplitude of twitches in a graded fashion, with an IC50 of 13.7 nM (10.4-16.1) and an Imax of 175 +/- 11 mg (n = 4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7606350

  14. Evidence for involvement of protein kinases in the regulation of serotonin synthesis and turnover in the mouse brain in vivo.

    PubMed

    Stenfors, C; Ross, S B

    2002-11-01

    Inhibition of cAMP-dependent protein kinase (PKA) with N-[2-methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) almost completely antagonized the increase in 5-HTP accumulation and 5-HIAA/5-HT ratio in hypothalamus induced by NAS-181, a 5-HT(1B) receptor antagonist, but had no effect when the mice were treated with NAS-181 together with WAY-100,635, a selective 5-HT(1A) receptor antagonist. Inhibition of Ca(2+)-calmodulin-dependent protein kinase (CaM kinase II) with the calmodulin antagonist N-(4-aminobutyl)-5-chloro-2-naphtalenesulfonamide (W-13) did not antagonise the effect of NAS-181 alone, but counteracted that evoked by the combined treatment with NAS-181 and WAY-100,635. The results indicate that activation of tryptophan hydroxylase by reducing the tone from terminal 5-HT(1B) receptors involves PKA whereas the depolarisation-induced activation of tryptophan hydroxylase involves CaM kinase II. The increase in the 5-HIAA/5-HT ratio may under the experimental conditions used suggest CaM kinase II-induced phosphorylation of synapsin I resulting in increased 5-HT release.

  15. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Valette, G; Garcia, G; Pascal, M; Maffrand, J P; Le Fur, G

    2002-01-01

    The involvement of vasopressin (AVP) in several pathological states has been reported recently and the selective blockade of the different AVP receptors could offer new clinical perspectives. During the past few years, various selective, orally active AVP V1a (OPC-21268, SR49059 (Relcovaptan)), V2 (OPC-31260, OPC-41061 (Tolvaptan), VPA-985 (Lixivaptan), SR121463, VP-343, FR-161282) and mixed V1a/V2 (YM-087 (Conivaptan), JTV-605, CL-385004) receptor antagonists have been intensively studied in various animal models and have reached, Phase IIb clinical trials for some of them. For many years now, our laboratory has focused on the identification of nonpeptide vasopressin antagonists with suitable oral bioavailability. Using random screening on small molecule libraries, followed by rational SAR and modelization, we identified a chemical series of 1-phenylsulfonylindolines which first yielded SR49059, a V1a receptor antagonist prototype. This compound displayed high affinity for animal and human V1a receptors and antagonized various V1a AVP-induced effects in vitro and in vivo (intracellular [Ca2+] increase, platelet aggregation, vascular smooth muscle cell proliferation, hypertension and coronary vasospasm). We and others have used this compound to study the role of AVP in various animal models. Recent findings from clinical trials show a potential interest for SR49059 in the treatment of dysmenorrhea and in Raynaud's disease. Structural modifications and simplifications performed in the SR49059 chemical series yielded highly specific V2 receptor antagonists (N-arylsulfonyl-oxindoles), amongst them SR121463 which possesses powerful oral aquaretic properties in various animal species and in man. SR121463 is well-tolerated and dose-dependently increases urine output and decreases urine osmolality. It induces free water-excretion without affecting electrolyte balance in contrast to classical diuretics (e.g. furosemide and hydrochlorothiazide). Notably, in cirrhotic rats with ascites and impaired renal function, a 10-day oral treatment with SR121463 (0.5 mg/kg) totally corrected hyponatremia and restored normal urine excretion. This compound also displayed interesting new properties in a rabbit model of ocular hypertension, decreasing intraocular pressure after single or repeated instillation. Thus, V2 receptor blockade could be of interest in several water-retaining diseases such as the syndrome of inappropriate antidiuretic hormone secretion (SIADH), liver cirrhosis and congestive heart failure and deserves to be widely explored. Finally, further chemical developments in the oxindole family have led to the first specific and orally active V1b receptor antagonists (with SSR149415 as a representative), an awaited class of drugs with expected therapeutic interest mainly in ACTH-secreting tumors and various emotional diseases such as stress-related disorders, anxiety and depression. However, from the recently described tissue localization for this receptor, we could also speculate on other unexpected uses. In conclusion, the development of AVP receptor antagonists is a field of intensive pharmacological and clinical investigation. Selective and orally active compounds are now available to give new insight into the pathophysiological role of AVP and to provide promising drugs.

  16. Okadaic acid induces epileptic seizures and hyperphosphorylation of the NR2B subunit of the NMDA receptor in rat hippocampus in vivo.

    PubMed

    Arias, Clorinda; Montiel, Teresa; Peña, Fernando; Ferrera, Patricia; Tapia, Ricardo

    2002-09-01

    Overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors is closely related to epilepsy and excitotoxicity, and the phosphorylation of these receptors may facilitate glutamate-mediated synaptic transmission. Here we show that in awake rats the microinjection into the hippocampus of okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A, induces in about 20 min intense electroencephalographic and behavioral limbic-type seizures, which are suppressed by the systemic administration of the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine hydrogen maleate and by the intrahippocampal administration of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, an inhibitor of protein kinases. Two hours after okadaic acid, when the EEG seizures were intense, an increased serine phosphorylation of some hippocampal proteins, including an enhancement of the serine phosphorylation of the NMDA receptor subunit NR2B, was detected by immunoblotting. Twenty-four hours after okadaic acid a marked destruction of hippocampal CA1 region was observed, which was not prevented by the receptor antagonists. These findings suggest that hyperphosphorylation of glutamate receptors in vivo may result in an increased sensitivity to the endogenous transmitter and therefore induce neuronal hyperexcitability and epilepsy.

  17. Serotonergic and dopaminergic distinctions in the behavioral pharmacology of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD).

    PubMed

    Schindler, Emmanuelle A D; Dave, Kuldip D; Smolock, Elaine M; Aloyo, Vincent J; Harvey, John A

    2012-03-01

    After decades of social stigma, hallucinogens have reappeared in the clinical literature demonstrating unique benefits in medicine. The precise behavioral pharmacology of these compounds remains unclear, however. Two commonly studied hallucinogens, (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD), were investigated both in vivo and in vitro to determine the pharmacology of their behavioral effects in an animal model. Rabbits were administered DOI or LSD and observed for head bob behavior after chronic drug treatment or after pretreatment with antagonist ligands. The receptor binding characteristics of DOI and LSD were studied in vitro in frontocortical homogenates from naïve rabbits or ex vivo in animals receiving an acute drug injection. Both DOI- and LSD-elicited head bobs required serotonin(2A) (5-HT(2A)) and dopamine(1) (D(1)) receptor activation. Serotonin(2B/2C) receptors were not implicated in these behaviors. In vitro studies demonstrated that LSD and the 5-HT(2A/2C) receptor antagonist, ritanserin, bound frontocortical 5-HT(2A) receptors in a pseudo-irreversible manner. In contrast, DOI and the 5-HT(2A/2C) receptor antagonist, ketanserin, bound reversibly. These binding properties were reflected in ex vivo binding studies. The two hallucinogens also differed in that LSD showed modest D(1) receptor binding affinity whereas DOI had negligible binding affinity at this receptor. Although DOI and LSD differed in their receptor binding properties, activation of 5-HT(2A) and D(1) receptors was a common mechanism for eliciting head bob behavior. These findings implicate these two receptors in the mechanism of action of hallucinogens. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors.

    PubMed

    Sestile, Caio César; Maraschin, Jhonatan Christian; Gama, Vanessa Scalco; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-09-01

    A wealth of evidence has shown that opioid and kinin systems may control proximal defense in the dorsal periaqueductal gray matter (dPAG), a critical panic-associated area. Studies with drugs that interfere with serotonin-mediated neurotransmission suggest that the μ-opioid receptor (MOR) synergistically interacts with the 5-HT 1A receptor in the dPAG to inhibit escape, a panic-related behavior. A similar inhibitory effect has also been reported after local administration of bradykinin (BK), which is blocked by the non-selective opioid receptor antagonist naloxone. The latter evidence, points to an interaction between BK and opioids in the dPAG. We further explored the existence of this interaction through the dPAG electrical stimulation model of panic. We also investigated whether intra-dPAG injection of captopril, an inhibitor of the angiotensin-converting enzyme (ACE) that also degrades BK, causes a panicolytic-like effect. Our results showed that intra-dPAG injection of BK inhibited escape performance in a dose-dependent way, and this panicolytic-like effect was blocked by the BK type 2 receptor (B2R) antagonist HOE-140, and by the selective MOR antagonist CTOP. Conversely, the panicolytic-like effect caused by local administration of the selective MOR agonist DAMGO was antagonized by pre-treatment with either CTOP or HOE-140, indicating cross-antagonism between MOR and B2R. Finally, intra-dPAG injection of captopril also impaired escape in a dose-dependent way, and this panicolytic-like effect was blocked by pretreatment with HOE-140, suggesting mediation by endogenous BK. The panicolytic-like effect of captopril indicates that the use of ACE inhibitors in the clinical management of panic disorder may be worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells.

    PubMed

    Kaji, Wakako; Tanaka, Satomi; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-04-01

    Regulatory T cells (Treg) play a role in suppression of immune response, including anti-tumor immunity. We have recently reported that treatment of naïve CD4 T cells with adenosine A(2B) receptor antagonist PSB603 under Treg-skewing conditions inhibits expression of Foxp3, a marker of differentiation to Treg, without blocking IL-2 production or CD25 expression, which are activation markers, in CD4 T cells. We hypothesized that PSB603 suppresses cancer growth and metastasis by inhibiting induction of Treg, thereby facilitating anti-tumor immunity. In this study, we first examined the effect of PSB603 on tumor growth in B16 melanoma-bearing C57BL/6 mice. Administration of PSB603 significantly suppressed the increase of tumor volume as well as the increase of Treg population in these mice. The populations of CD4 and CD8 T cells were higher and splenic lymphocyte-mediated cytotoxicity towards B16 melanoma was significantly increased in PSB603-treated mice. We confirmed that PSB603 did not reduce the viability of B16 melanoma cells in vitro. Moreover, we also examined the effect of PSB603 on tumor metastasis in pulmonary metastasis model mice intravenously injected with B16 melanoma cells. The metastasis was also suppressed in PSB603-treated mice, in which the population of Treg was significantly lower. Overall, our results suggest that A(2B) receptor antagonist PSB603 enhances anti-tumor immunity by inhibiting differentiation to Treg, resulting in a delay of tumor growth and a suppression of metastasis.

  20. Conference Support for the 1999 International Hypoxia Symposium

    DTIC Science & Technology

    2000-03-01

    selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion. Stroke 28: 1430-1436...bradykinin- and kallikrein-induced cerebral arteriolar dilation by a specific bradykinin antagonist. Stroke 18: 792-795,1987. 33. Földes, I., and B...role of bradykinin in mediating ischemic brain edema in rats. Stroke 24: 571-576,1993. Mediators of Cerebral Edema 13 7 48. Kawauchi, N., S., M

  1. Prostaglandin E2 Induces IL-6 and IL-8 Production by the EP Receptors/Akt/NF-κB Pathways in Nasal Polyp-Derived Fibroblasts.

    PubMed

    Cho, Jung-Sun; Han, In-Hye; Lee, Hye Rim; Lee, Heung-Man

    2014-09-01

    Interleukin 6 (IL-6) and IL-8 participate in the pathogenesis of chronic rhinosinusitis with nasal polyps, and their levels are increased by prostaglandin E2 (PGE2) in different cell types. The purposes of this study were to determine whether PGE2 has any effect on the increase in the levels of IL-6 and IL-8 in nasal polyp-derived fibroblasts (NPDFs) and subsequently investigate the possible mechanism of this effect. Different concentrations of PGE2 were used to stimulate NPDFs at different time intervals. NPDFs were treated with agonists and antagonists of E prostanoid (EP) receptors. To determine the signaling pathway for the expression of PGE2-induced IL-6 and IL-8, PGE2 was treated with Akt and NF-κB inhibitors in NPDFs. Reverse transcription-polymerase chain reaction for IL-6 and IL-8 mRNAs was performed. IL-6 and IL-8 levels were measured byenzyme-linked immunosorbent assay (ELISA). The activation of Akt and NF-κB was evaluated by western blot analysis. PGE2 significantly increased the mRNA and protein expression levels of IL-6 and IL-8 in NPDFs. The EP2 and EP4 agonists and antagonists induced and inhibited IL-6 expression. However, the EP4 agonist and antagonist were only observed to induce and inhibit IL-8 expression level. The Akt and NF-κB inhibitors significantly blocked PGE2-induced expression of IL-6 and IL-8. PGE2 increases IL-6 expression via EP2 and EP4 receptors, and IL-8 expression via the EP4 receptor in NPDFs. It also activates the Akt and NF-κB signal pathways for the production of IL-6 and IL-8 in NPDFs. These results suggest that signaling pathway for IL-6 and IL-8 expression induced by PGE2 might be a useful therapeutic target for the treatment of nasal polyposis.

  2. Tachykinin receptors in the guinea-pig renal pelvis: activation by exogenous and endogenous tachykinins.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Eglezos, A.; Quartara, L.; Giuliani, S.; Giachetti, A.

    1992-01-01

    1. The contractile response to substance P, neurokinin A, selective agonists for the NK1, NK2 and NK3 tachykinin receptors and the activity of receptor-selective antagonists has been investigated in circular muscle strips of the guinea-pig isolated renal pelvis in the presence of indomethacin (3 microM). 2. Neurokinin A was the most potent agonist tested, being about 32 times more potent than substance P. The action of both substance P and neurokinin A was enhanced by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The selective NK2 receptor agonist [beta Ala8] neurokinin A (4-10), was slightly less potent and effective than neurokinin A itself. The selective NK1 receptor agonist [Sar9] substance P sulphone was effective at low (nM) concentrations but its maximal effect did not exceed 30% of maximal response to substance P or neurokinin A. The NK3-selective agonist [MePhe7] neurokinin B was effective only at high (microM) concentrations. 3. The pseudopeptide derivative of neurokinin A(4-10), MDL 28,564, displayed a clear-cut agonist character, although it was less potent than neurokinin A. 4. The responses to roughly equieffective (25-35% of maximal response) concentrations of [beta Ala8] neurokinin A (4-10), MDL 28,564 and [MePhe7] neurokinin B were antagonized to a similar extent by MEN 10,376 (3 microM), a selective NK2 tachykinin receptor antagonist, while the response to [Sar9] substance P sulphone was unchanged. 5. The response to [Sar9] substance P sulphone was inhibited by the NK1 receptor-selective antagonist, GR 82,334 (3 microM) while the response to [beta Ala8] neurokinin A (4-10) was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384907

  3. Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats.

    PubMed

    Miszkiel, Joanna; Przegaliński, Edmund

    2013-01-01

    Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.

  4. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case–control sample of schizophrenia

    PubMed Central

    Ingason, A; Giegling, I; Hartmann, A M; Genius, J; Konte, B; Friedl, M; Ripke, S; Sullivan, P F; St. Clair, D; Collier, D A; O'Donovan, M C; Mirnics, K; Rujescu, D

    2015-01-01

    Antagonists of the N-methyl-D-aspartate (NMDA)-type glutamate receptor induce psychosis in healthy individuals and exacerbate schizophrenia symptoms in patients. In this study we have produced an animal model of NMDA receptor hypofunction by chronically treating rats with low doses of the NMDA receptor antagonist MK-801. Subsequently, we performed an expression study and identified 20 genes showing altered expression in the brain of these rats compared with untreated animals. We then explored whether the human orthologs of these genes are associated with schizophrenia in the largest schizophrenia genome-wide association study published to date, and found evidence for association for 4 out of the 20 genes: SF3B1, FOXP1, DLG2 and VGLL4. Interestingly, three of these genes, FOXP1, SF3B1 and DLG2, have previously been implicated in neurodevelopmental disorders. PMID:26460480

  5. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia.

    PubMed

    Ingason, A; Giegling, I; Hartmann, A M; Genius, J; Konte, B; Friedl, M; Ripke, S; Sullivan, P F; St Clair, D; Collier, D A; O'Donovan, M C; Mirnics, K; Rujescu, D

    2015-10-13

    Antagonists of the N-methyl-D-aspartate (NMDA)-type glutamate receptor induce psychosis in healthy individuals and exacerbate schizophrenia symptoms in patients. In this study we have produced an animal model of NMDA receptor hypofunction by chronically treating rats with low doses of the NMDA receptor antagonist MK-801. Subsequently, we performed an expression study and identified 20 genes showing altered expression in the brain of these rats compared with untreated animals. We then explored whether the human orthologs of these genes are associated with schizophrenia in the largest schizophrenia genome-wide association study published to date, and found evidence for association for 4 out of the 20 genes: SF3B1, FOXP1, DLG2 and VGLL4. Interestingly, three of these genes, FOXP1, SF3B1 and DLG2, have previously been implicated in neurodevelopmental disorders.

  6. Glutamate Receptor Antagonists as Fast-Acting Therapeutic Alternatives for the Treatment of Depression: Ketamine and Other Compounds

    PubMed Central

    Niciu, Mark J.; Henter, Ioline D.; Luckenbaugh, David A.; Zarate, Carlos A.; Charney, Dennis S.

    2014-01-01

    The N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has rapid and potent antidepressant effects in treatment-resistant major depressive disorder and bipolar depression. These effects are in direct contrast to the more modest effects seen after weeks of treatment with classic monoaminergic antidepressants. Numerous open-label and case studies similarly validate ketamine’s antidepressant properties. These clinical findings have been reverse-translated into preclinical models in an effort to elucidate ketamine’s antidepressant mechanism of action, and three important targets have been identified: mammalian target of rapamycin (mTOR), eukaryotic elongation factor 2 (eEF2), and glycogen synthase kinase-3 (GSK-3). Current clinical and preclinical research is focused on (a) prolonging/maintaining ketamine’s antidepressant effects, (b) developing more selective NMDA receptor antagonists free of ketamine’s adverse effects, and (c) identifying predictor, mediator/moderator, and treatment response biomarkers of ketamine’s antidepressant effects. PMID:24392693

  7. Morphine-induced antinociception in the rat: supra-additive interactions with imidazoline I₂ receptor ligands.

    PubMed

    Li, Jun-Xu; Zhang, Yanan; Winter, Jerrold C

    2011-11-01

    Pain remains a significant clinical challenge and currently available analgesics are not adequate to meet clinical needs. Emerging evidence suggests the role of imidazoline I(2) receptors in pain modulation primarily from studies of the non-selective imidazoline receptor ligand, agmatine. However, little is known of the generality of the effect to selective I(2) receptor ligands. This study examined the antinociceptive effects of two selective I(2) receptor ligands 2-BFI and BU224 (>2000-fold selectivity for I(2) receptors over α(2) adrenoceptors) in a hypertonic (5%) saline-induced writhing test and analyzed their interaction with morphine using a dose-addition analysis. Morphine, 2-BFI and BU224 but not agmatine produced a dose-dependent antinociceptive effect. Both composite additive curve analyses and isobolographical plots revealed a supra-additive interaction between morphine and 2-BFI or BU224, whereas the interaction between 2-BFI and BU224 was additive. The antinociceptive effect of 2-BFI and BU224 was attenuated by the I(2) receptor antagonist/α(2) adrenoceptor antagonist idazoxan but not by the selective α(2) adrenoceptor antagonist yohimbine, suggesting an I(2) receptor-mediated mechanism. Agmatine enhanced the antinociceptive effect of morphine, 2-BFI and BU224 and the enhancement was prevented by yohimbine, suggesting that the effect was mediated by α(2) adrenoceptors. Taken together, these data represent the first report that selective I(2) receptor ligands have substantial antinociceptive activity and produce antinociceptive synergy with opioids in a rat model of acute pain. These data suggest that drugs acting on imidazoline I(2) receptors may be useful either alone or in combination with opioids for the treatment of pain. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    PubMed

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to the 5-HT(1B) receptor, the 5-HT(1A) receptor signal plays the dominant role in improving the anti-immobility effect of fluoxetine in the IFN-alpha-induced depression; (2) combination of the 5-HT(1A) antagonist with subactive fluoxetine can be helpful in IFN-alpha-induced depression treatment.

  9. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells.

    PubMed

    Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P

    2011-05-01

    Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.

  10. Behavioral approach to nondyskinetic dopamine antagonists: identification of seroquel.

    PubMed

    Warawa, E J; Migler, B M; Ohnmacht, C J; Needles, A L; Gatos, G C; McLaren, F M; Nelson, C L; Kirkland, K M

    2001-02-01

    A great need exists for antipsychotic drugs which will not induce extrapyramidal symptoms (EPS) and tardive dyskinesias (TDs). These side effects are deemed to be a consequence of nonselective blockade of nigrostriatal and mesolimbic dopamine D2 receptors. Nondyskinetic clozapine (1) is a low-potency D2 dopamine receptor antagonist which appears to act selectively in the mesolimbic area. In this work dopamine antagonism was assessed in two mouse behavioral assays: antagonism of apomorphine-induced climbing and antagonism of apomorphine-induced disruption of swimming. The potential for the liability of dyskinesias was determined in haloperidol-sensitized Cebus monkeys. Initial examination of a few close cogeners of 1 enhanced confidence in the Cebus model as a predictor of dyskinetic potential. Considering dibenzazepines, 2 was not dyskinetic whereas 2a was dyskinetic. Among dibenzodiazepines, 1 did not induce dyskinesias whereas its N-2-(2-hydroxyethoxy)ethyl analogue 3 was dyskinetic. The emergence of such distinctions presented an opportunity. Thus, aromatic and N-substituted analogues of 6-(piperazin-1-yl)-11H-dibenz[b,e]azepines and 11-(piperazin-1-yl)dibenzo[b,f][1,4]thiazepines and -oxazepines were prepared and evaluated. 11-(4-[2-(2-Hydroxyethoxy)ethyl]piperazin-1-yl)dibenzo[b,f][1,4]thiazepine (23) was found to be an apomorphine antagonist comparable to clozapine. It was essentially nondyskinetic in the Cebus model. With 23 as a platform, a number of N-substituted analogues were found to be good apomorphine antagonists but all were dyskinetic.

  11. 5-HT2 receptor blockade exhibits 5-HT vasodilator effects via nitric oxide, prostacyclin and ATP-sensitive potassium channels in rat renal vasculature.

    PubMed

    García-Pedraza, J A; García, M; Martín, M L; Rodríguez-Barbero, A; Morán, A

    2016-04-01

    The aim of this study was to determine whether orally sarpogrelate (selective 5-HT2 antagonist) treatment (30 mg/kg/day; 14 days) could modify 5-HT renal vasoconstrictor responses, characterizing 5-HT receptors and mediator mechanisms involved in serotonergic responses in the in situ autoperfused rat kidney. Intra-arterial (i.a.) injections of 5-HT (0.00000125 to 0.1 μg/kg) decreased renal perfusion pressure (RPP) but did not affect the mean blood pressure (MBP). i.a. agonists 5-CT (5-HT1/7), CGS-12066B (5-HT1B), L-694,247 (5-HT1D) or AS-19 (5-HT7) mimicked renal 5-HT vasodilator effect. However, neither 8-OH-DPAT (5-HT1A) nor 1-phenylbiguanide (5-HT3) modified RPP. Moreover: (i) GR-55562 (5-HT1B antagonist) and L-NAME (nitric oxide synthase [NOS] inhibitor) blocked CGS-12066B-induced vasodilator response, (ii) LY310762 (5-HT1D antagonist) and indomethacin (non-selective cyclooxygenase inhibitor) blocked L-694,247-induced vasodilator response; (iii) SB-258719 (5-HT7 antagonist) and glibenclamide (ATP-sensitive K+ channel blocker) blocked AS-19-induced vasodilator response; and (iv) 5-HT- or 5-CT-elicited renal vasodilation was significantly blocked by the mixture of GR-55562 + LY310762 + SB-258719. Furthermore, eNOS and iNOS proteins and prostacyclin levels are overexpressed in sarpogrelate-treated rats. Our data suggest that 5-HT exerts renal vasodilator effect in the in situ autoperfused sarpogrelate-treated rat kidney, mediated by 5-HT1D, 5-HT1B and 5-HT7 receptors, involving cyclooxygenase-derived prostacyclin, nitric oxide synthesis/release and ATP-sensitive K+ channels, respectively.

  12. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  13. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  14. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist.

    PubMed

    Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J

    2010-11-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.

  15. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  16. In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist.

    PubMed

    Emonds-Alt, X; Doutremepuich, J D; Heaulme, M; Neliat, G; Santucci, V; Steinberg, R; Vilain, P; Bichon, D; Ducoux, J P; Proietto, V

    1993-12-21

    (S)1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)pip eridin-3- yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR140333) is a new non-peptide antagonist of tachykinin NK1 receptors. SR140333 potently, selectively and competitively inhibited substance P binding to NK1 receptors from various animal species, including humans. In vitro, it was a potent antagonist in functional assays for NK1 receptors such as [Sar9,Met(O2)11]substance P-induced endothelium-dependent relaxation of rabbit pulmonary artery and contraction of guinea-pig ileum. Up to 1 microM, it had no effect in bioassays for NK2 ([beta Ala8]neurokinin A-induced contraction of endothelium-deprived rabbit pulmonary artery) and NK3 ([MePhe7]neurokinin B-induced contraction of rat portal vein) receptors. The antagonism exerted by SR140333 toward NK1 receptors was apparently non-competitive, with pD2' values (antagonism potency evaluated by the negative logarithm of the molar concentration of antagonist that produces a 50% reduction of the maximal response to the agonist) between 9.65 and 10.16 in the different assays. SR140333 also blocked in vitro [Sar9,Met(O2)11]substance P-induced release of acetylcholine from rat striatum. In vivo, SR140333 exerted highly potent antagonism toward [Sar9,Met(O2)11]substance P-induced hypotension in dogs (ED50 = 3 micrograms/kg i.v.), bronchoconstriction in guinea-pig (ED50 = 42 micrograms/kg i.v.) and plasma extravasation in rats (ED50 = 7 micrograms/kg i.v.). Finally, it also blocked the activation of rat thalamic neurons after nociceptive stimulation (ED50 = 0.2 micrograms/kg i.v.).

  17. Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors.

    PubMed

    Michel, Anton D; Xing, Mengle; Thompson, Kyla M; Jones, Clare A; Humphrey, Patrick P A

    2006-03-18

    In this study we have studied decavanadate effects at P2X receptors. Decavanadate competitively blocked 2'- and 3'-O-(4benzoylbenzoyl) ATP (BzATP) stimulated ethidium accumulation in HEK293 cells expressing human recombinant P2X7 receptors (pK(B) 7.5). The effects of decavanadate were rapid (minutes) in both onset and offset and contrasted with the much slower kinetics of pyridoxal 5-phosphate (P5P), Coomassie brilliant blue (CBB) and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN62). Decavanadate competitively blocked the slowly reversible, or irreversible, blockade of the P2X7 receptor produced by P5P and oxidised ATP suggesting competition for a common binding site. However, the interaction between decavanadate and KN62 was non-competitive. Decavanadate also blocked P2X2 and P2X4 receptors but with slightly lower potency. These data demonstrate that decavanadate is the first reversible and competitive antagonist of the P2X7 receptor and is a useful tool for studying the mechanism of interaction of ligands with the P2X7 receptor.

  18. Antinociceptive synergism of MD-354 and clonidine. Part II. The alpha-adrenoceptor component.

    PubMed

    Young, Shawquia; Vainio, Minna; Scheinin, Mika; Dukat, Małgorzata

    2010-08-01

    Previously, we reported that antinociceptive synergism of a 5-HT(3)/alpha(2)-adrenoceptor ligand MD-354 (m-chlorophenylguanidine) and clonidine combination occurs, in part, through a 5-HT(3) receptor antagonist mechanism. In the present investigation, a possible role for alpha(2)-adrenoceptors was examined. Mechanistic studies using yohimbine (a subtype non-selective alpha(2)-adrenoceptor antagonist), BRL 44408 (a preferential alpha(2A)-adrenoceptor antagonist) and imiloxan (a preferential alpha(2B/C)-adrenoceptor antagonist) on the antinociceptive actions of a MD-354/clonidine combination were conducted. Subcutaneous pre-treatment with all three antagonists inhibited the antinociceptive synergism of MD-354 and clonidine in the mouse tail-flick assay in a dose-dependent manner (AD(50) = 0.33, 2.1, and 0.17 mg/kg, respectively). Enhancement of clonidine antinociception by MD-354 did not potentiate clonidine's locomotor suppressant activity in a mouse locomotor assay. When [ethyl-3H]RS-79948-197 was used as radioligand, MD-354 displayed almost equal affinity to alpha(2A)- and alpha(2B)-adrenoceptors (K(i) = 110 and 220 nM) and showed lower affinity at alpha(2C)-adrenoceptors (K(i) = 4,700 nM). MD-354 had no subtype-selectivity for the alpha(2)-adrenoceptor subtypes as an antagonist in functional [35S]GTPgammaS binding assays. MD-354 was a weak partial agonist at alpha(2A)-adrenoceptors. Overall, in addition to the 5-HT(3) receptor component, the present investigation found MD-354 to be a weak partial alpha(2A)-adrenoceptor agonist that enhances clonidine's thermal antinociceptive actions through an alpha(2)-adrenoceptor-mediated mechanism without augmenting sedation.

  19. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of pulmonary resistance arteries ETB receptor may contribute to this finding. PMID:19489130

  20. Potentiation of Paclitaxel-Induced Pain Syndrome in Mice by Angiotensin I Converting Enzyme Inhibition and Involvement of Kinins.

    PubMed

    Brusco, Indiara; Silva, Cássia Regina; Trevisan, Gabriela; de Campos Velho Gewehr, Camila; Rigo, Flávia Karine; La Rocca Tamiozzo, Lidia; Rossato, Mateus Fortes; Tonello, Raquel; Dalmolin, Gerusa Duarte; de Almeida Cabrini, Daniela; Gomez, Marcus Vinícius; Ferreira, Juliano; Oliveira, Sara Marchesan

    2017-12-01

    Paclitaxel is a chemotherapeutic agent used to treat solid tumours. However, it causes an acute and neuropathic pain syndrome that limits its use. Among the mechanisms involved in neuropathic pain caused by paclitaxel is activation of kinin receptors. Angiotensin converting enzyme (ACE) inhibitors can enhance kinin receptor signalling. The goal of this study was to evaluate the role of kinins on paclitaxel-associated acute pain syndromes (P-APS) and the effect of ACE inhibition on P-APS and paclitaxel-associated chronic peripheral neuropathy (P-CPN) in mice. Herein, we show that paclitaxel caused mechanical allodynia and spontaneous nociceptive behaviour that was reduced by antagonists of kinin receptors B 1 (DALBk and SSR240612) and B 2 (Hoe140 and FR173657). Moreover, enalapril (an ACE inhibitor) enhanced the mechanical allodynia induced by a low dose of paclitaxel. Likewise, paclitaxel injection inhibited ACE activity and increased the expressions of B 1 and B 2 receptors and bradykinin-related peptides levels in peripheral tissue. Together, our data support the involvement of kinin receptors in the P-APS and suggest kinin receptor antagonists to treat this syndrome. Because hypertension is the most frequent comorbidity affecting cancer patients, treatment of hypertension with ACE inhibitors in patients undergoing paclitaxel chemotherapy should be reviewed, since this could enhance the P-APS and P-CPN.

  1. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism.

    PubMed

    Mølck, Christina; Ryall, James; Failla, Laura M; Coates, Janine L; Pascussi, Jean-Marc; Heath, Joan K; Stewart, Gregory; Hollande, Frédéric

    2016-12-01

    Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A 2b adenosine receptor (A 2b -AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A 2b -AR to the behavior of colorectal cancer cells. The A 2b -AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A 2b -AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Pharmacological characterization of stress-induced hyperthermia in DBA/2 mice using metabotropic and ionotropic glutamate receptor ligands.

    PubMed

    Rorick-Kehn, Linda M; Hart, John C; McKinzie, David L

    2005-12-01

    Accumulating evidence suggests that drugs acting on the glutamatergic system may represent promising novel therapeutic targets for the treatment of anxiety disorders. The stress-induced hyperthermia paradigm has been used widely to model some of the physiological symptoms associated with anxiety disorders and has produced results that are predictive of clinical efficacy. We have modified this paradigm to measure the autonomic consequences of stress induced by the fear of predation in mice. To evaluate the efficacy of several classes of metabotropic and ionotropic glutamate receptor ligands, as well as known anxiolytics and psychotropic comparators, in attenuating predatory-stress-induced hyperthermia. Male DBA/2 mice were implanted with radiotelemetric transmitters in the peritoneal cavity to measure stress-related increases in core body temperature, following placement in a novel cage containing soiled rat shavings. Clinically active compounds such as chlordiazepoxide (5-10 mg/kg), alprazolam (0.3-3 mg/kg), and buspirone (10-30 mg/kg) exhibited an anxiolytic profile. Assessment of glutamatergic agents indicated that the mGlu1 receptor antagonist LY456236 (10-30 mg/kg), mGlu5 receptor antagonist MPEP (10-30 mg/kg), mGlu2/3 receptor agonist LY354740 (3-10 mg/kg), mGlu2 receptor potentiator LY566332 (30 and 100 mg/kg), mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (30-60 mg/kg), competitive NMDA receptor antagonist LY235959 (1 mg/kg), AMPA receptor antagonist GYKI-52466 (10-20 mg/kg), and glycine transporter-1 (GlyT-1) inhibitor ALX-5407 (3-10 mg/kg) dose-dependently attenuated stress-induced hyperthermia. The AMPA receptor potentiator LY451646, iGlu5 kainate receptor antagonist LY382884, glycine(B) receptor partial agonist D: -cycloserine, and GlyT-1 inhibitor ORG-24461 were ineffective in this model. Select metabotropic and ionotropic glutamate receptor ligands exhibited an anxiolytic profile, as measured by the attenuation of stress-induced hyperthermia, and may represent viable targets for the development of pharmacological treatments for anxiety-related disorders.

  3. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  4. Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster B(II) cell in vitro assay.

    PubMed

    Dinan, L; Bourne, P; Whiting, P; Dhadialla, T S; Hutchinson, T H

    2001-09-01

    The B(II) bioassay was developed as a rapid and reliable tool for detecting potential insect growth regulators acting as ecdysteroid receptor (ant)agonists. Based on an ecdysteroid-responsive cell line from Drosophila melanogaster, this microplate assay is ideally suited to the evaluation of environmental contaminants as potential endocrine disrupters. Data are presented for about 80 potential environmental contaminants, including industrial chemicals, pesticides, pharmaceuticals, phytoestrogens, and vertebrate steroids, and are compared with data for known (ant)agonists. Apart from androst-4-ene-3,17-dione (a weak antagonist), vertebrate steroids were inactive at concentrations up to 10(-3) M. The vast majority of xenobiotics also showed no (ant)agonist activity. Among the industrial chemicals, antagonistic activity was observed for bisphenol A median effective concentration (EC50) of 1.0 x 10(-4) M and diethylphthalate (EC50 of 2.0 x 10(-3) M). Some organochlorine compounds also showed weak antagonistic activity, including o,p'-dichlorodiphenyldichloroethylene (DDE), p,p'-DDE, dieldrin, and lindane (EC50 of 3.0 x 10(-5) M). For lindane, bisphenol A, and diethylphthalate, activity is not associated with impurities in the samples and, for lindane and bisphenol A at least, the compounds are able to compete with ecdysteroids for the ligand binding site on the receptor complex, albeit at concentrations very much higher than those found in the environment. The only pharmaceutical showing any detectable antagonist activity was 17alpha-ethynylestradiol. In the context of recent publications on potential endocrine disruption in marine and freshwater arthropods, these findings suggest that, for some compounds (e.g., diethylstilbestrol), ecdysteroid receptor-mediated responses are unlikely to be involved in producing chronic effects. The B(II) assay has a potentially valuable role to play in distinguishing between endocrine-mediated, which normally occur at submicromolar concentrations, and pharmacological effects in insects and crustaceans.

  5. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    PubMed

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thymoquinone, the main constituent of Nigella sativa, affects adenosine receptors in asthmatic guinea pigs

    PubMed Central

    Pejman, Laleh; Omrani, Hasan; Mirzamohammadi, Zahra; Keyhanmanesh, Rana

    2014-01-01

    Objective(s): For determining the mechanism of anti-asthmatic effect of thymoquinone, this investigation evaluated the effect of thymoquinone in the presence of selective A2A and A2B adenosine receptor antagonists (ZM241385 and MRS1706, respectively). Materials and Methods: Seventy guinea pigs were randomly divided to 7 groups; control (C), sensitized with ovalbumin (S), sensitized groups pretreated with thymoquinone (S+TQ), ZM241385 (S+Anta A2A), MRS1706 (S+Anta A2B), thymoquinone and antagonists (S+Anta A2A+TQ and S+Anta A2B+TQ). Thymoquinone and each of these antagonists with 3 mg/kg dose were injected i.p. on 10th day of sensitization protocol. Tracheal responsiveness (TR) to methacholine and ovalbumin (OA), and total and differential cell count in lung lavage fluid (LLF) in different groups were measured. Results: Increased EC50 and LLF neutrophil count and decreased TR to methacholine and OA, LLF eosinophil and basophil counts were observed in S+TQ group compared to S group (P<0.001 to P<0.05). Significant decrease in EC50 (P<0.01), LLF neutrophil, lymphocyte and monocyte count (P<0.001 for all) and significant increase in TR to OA (P<0.01), LLF total WBC (P<0.01) and eosinophil count (P<0.001) were observed in S+A2A group compared to S+TQ group. There was significant increase in LLF eosinophil and monocyte counts in S+Anta A2B group compared with S+TQ group (P<0.001 for both). In S+TQ+Anta A2A group, there was significant increase in LLF eosinophil (P<0.001) and significant decrease in LLF neutrophil (P<0.01) and monocyte (P<0.001) counts compared with S+TQ group. Conclusion: Thymoquinone affects adenosine receptors, which suggest that some of its anti-inflammatory effects may be mediated by these receptors. PMID:25859306

  7. In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor.

    PubMed

    Shoblock, James R; Welty, Natalie; Nepomuceno, Diane; Lord, Brian; Aluisio, Leah; Fraser, Ian; Motley, S Timothy; Sutton, Steve W; Morton, Kirsten; Galici, Ruggero; Atack, John R; Dvorak, Lisa; Swanson, Devin M; Carruthers, Nicholas I; Dvorak, Curt; Lovenberg, Timothy W; Bonaventure, Pascal

    2010-02-01

    The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor. Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist. The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y(2) bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release. JNJ-31020028 bound with high affinity (pIC(50) = 8.07 +/- 0.05, human, and pIC(50) = 8.22 +/- 0.06, rat) and was >100-fold selective versus human Y(1), Y(4), and Y(5) receptors. JNJ-31020028 was demonstrated to be an antagonist (pK(B) = 8.04 +/- 0.13) in functional assays. JNJ-31020028 occupied Y(2) receptor binding sites (approximately 90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake. These results suggest that Y(2) receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions.

  8. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    PubMed

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  9. The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition

    PubMed Central

    Zanos, Panos; Piantadosi, Sean C.; Wu, Hui-Qiu; Pribut, Heather J.; Dell, Matthew J.; Can, Adem; Snodgrass, H. Ralph; Zarate, Carlos A.; Schwarcz, Robert

    2015-01-01

    Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists. PMID:26265321

  10. The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition.

    PubMed

    Zanos, Panos; Piantadosi, Sean C; Wu, Hui-Qiu; Pribut, Heather J; Dell, Matthew J; Can, Adem; Snodgrass, H Ralph; Zarate, Carlos A; Schwarcz, Robert; Gould, Todd D

    2015-10-01

    Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus.

    PubMed

    Kunisawa, Kazuo; Kido, Kiwamu; Nakashima, Natsuki; Matsukura, Takuya; Nabeshima, Toshitaka; Hiramatsu, Masayuki

    2017-02-05

    GABA mediated neuronal system regulates hippocampus-dependent memory and stress responses by controlling plasticity and neuronal excitability. Here, we demonstrate that betaine ameliorates water-immersion restraint stress (WIRS)-induced memory impairments. This improvement was inhibited by a betaine/GABA transporter-1 (GABA transporter-2: GAT2) inhibitor, NNC 05-2090. In this study, we investigated whether memory amelioration by betaine was mediated by the GABAergic neuronal system. Adult male mice were co-administered betaine and GABA receptor antagonists after WIRS. We also examined whether memory impairment after WIRS was attenuated by GABA receptor agonists. The memory functions were evaluated using a novel object recognition test 3-6 days after WIRS and/or the step-down type passive avoidance test at 7-8 days. The co-administration of the GABA A receptor antagonist bicuculline (1mg/kg) or the GABA B receptor antagonist phaclofen (10mg/kg) 1h after WIRS suppressed the memory-improving effects induced by betaine. Additionally, the administration of the GABA A receptor agonist muscimol (1mg/kg) or the GABA B receptor agonist baclofen (10mg/kg) 1h after WIRS attenuated memory impairments. These results were similar to the data observed with betaine. The treatment with betaine after WIRS significantly decreased the expression of GABA transaminase, and this effect was partially blocked by NNC 05-2090 in the hippocampus. WIRS caused a transient increase in hippocampal GABA levels and the changes after WIRS were not affected by betaine treatment in an in vivo microdialysis study. These results suggest that the beneficial effects of betaine may be mediated in part by changing the GABAergic neuronal system. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dual Endothelin-A/Endothelin-B Receptor Blockade and Cardiac Remodeling in Heart Failure With Preserved Ejection Fraction

    PubMed Central

    Valero-Munoz, Maria; Li, Shanpeng; Wilson, Richard M.; Boldbaatar, Batbold; Iglarz, Marc; Sam, Flora

    2017-01-01

    Background Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no evidence-based therapies for HFpEF. Endothelin-1 (ET-1) antagonists are a possibility because elevated ET-1 levels are associated with adverse cardiovascular effects, such as arterial and pulmonary vasoconstriction, impaired left ventricular (LV) relaxation, and stimulation of LV hypertrophy. LV hypertrophy is a common phenotype in HFpEF, particularly when associated with hypertension. Methods and Results In the present study, we found that ET-1 levels were significantly elevated in patients with chronic stable HFpEF. We then sought to investigate the effects of chronic macitentan, a dual ET-A/ET-B receptor antagonist, on cardiac structure and function in a murine model of HFpEF induced by chronic aldosterone infusion. Macitentan caused LV hypertrophy regression independent of blood pressure changes in HFpEF. Although macitentan did not modulate diastolic dysfunction in HFpEF, it significantly reduced wall thickness and relative wall thickness after 2 weeks of therapy. In vitro studies showed that macitentan decreased the aldosterone-induced cardiomyocyte hypertrophy. These changes were mediated by a reduction in the expression of cardiac myocyte enhancer factor 2a. Moreover, macitentan improved adverse cardiac remodeling, by reducing the stiffer cardiac collagen I and titin n2b expression in the left ventricle of mice with HFpEF. Conclusions These findings indicate that dual ET-A/ET-B receptor inhibition improves HFpEF by abrogating adverse cardiac remodeling via antihypertrophic mechanisms and by reducing stiffness. Additional studies are needed to explore the role of dual ET-1 receptor antagonists in patients with HFpEF. PMID:27810862

  13. Dual Endothelin-A/Endothelin-B Receptor Blockade and Cardiac Remodeling in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Valero-Munoz, Maria; Li, Shanpeng; Wilson, Richard M; Boldbaatar, Batbold; Iglarz, Marc; Sam, Flora

    2016-11-01

    Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no evidence-based therapies for HFpEF. Endothelin-1 (ET-1) antagonists are a possibility because elevated ET-1 levels are associated with adverse cardiovascular effects, such as arterial and pulmonary vasoconstriction, impaired left ventricular (LV) relaxation, and stimulation of LV hypertrophy. LV hypertrophy is a common phenotype in HFpEF, particularly when associated with hypertension. In the present study, we found that ET-1 levels were significantly elevated in patients with chronic stable HFpEF. We then sought to investigate the effects of chronic macitentan, a dual ET-A/ET-B receptor antagonist, on cardiac structure and function in a murine model of HFpEF induced by chronic aldosterone infusion. Macitentan caused LV hypertrophy regression independent of blood pressure changes in HFpEF. Although macitentan did not modulate diastolic dysfunction in HFpEF, it significantly reduced wall thickness and relative wall thickness after 2 weeks of therapy. In vitro studies showed that macitentan decreased the aldosterone-induced cardiomyocyte hypertrophy. These changes were mediated by a reduction in the expression of cardiac myocyte enhancer factor 2a. Moreover, macitentan improved adverse cardiac remodeling, by reducing the stiffer cardiac collagen I and titin n2b expression in the left ventricle of mice with HFpEF. These findings indicate that dual ET-A/ET-B receptor inhibition improves HFpEF by abrogating adverse cardiac remodeling via antihypertrophic mechanisms and by reducing stiffness. Additional studies are needed to explore the role of dual ET-1 receptor antagonists in patients with HFpEF. © 2016 American Heart Association, Inc.

  14. Differential Modulation of Ethanol-Induced Sedation and Hypnosis by Metabotropic Glutamate Receptor Antagonists in C57BL/6J Mice

    PubMed Central

    Sharko, Amanda C.; Hodge, Clyde W.

    2008-01-01

    Background Emerging evidence implicates metabotropic glutamate receptor (mGluR) function in the neurobiological effects of ethanol. The recent development of subtype specific mGluR antagonists has made it possible to examine the roles of specific mGluRs in biochemical and behavioral responses to ethanol. The purpose of the present study was to determine if mGluRs modulate the acute sedative-hypnotic properties of ethanol in mice. Methods C57BL / 6J mice were tested for locomotor activity (sedation) and duration of loss of the righting reflex (hypnosis) following acute systemic administration of ethanol alone or in combination with the mGluR5-selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), the mGluR1-selective antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), or the mGluR2 / 3-selective antagonist (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495)). Results MPEP (10 and 30 mg / kg) significantly enhanced both the sedative and hypnotic effects of ethanol, while LY341495 (10 and 30 mg / kg) significantly reduced the sedative-hypnotic effects of ethanol. CPCCOEt had no effect at any concentration tested. Further loss of righting reflex experiments revealed that LY341495 (30 mg / kg) significantly reduced hypnosis induced by the gamma-aminobutyric acid type A (GABAA) positive modulators, pentobarbital (50 mg / kg) and midazolam (60 mg / kg), and the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine (150 mg / kg), while MPEP (30 mg / kg) only significantly enhanced the hypnotic properties of ketamine (150 mg / kg). Conclusions These findings suggest that specific subtypes of the metabotropic glutamate receptor differentially modulate the sedative-hypnotic properties of ethanol through separate mechanisms of action, potentially involving GABAA and NMDA receptors. PMID:18070246

  15. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  16. Identification of two benzopyrroloxazines acting as selective GPER antagonists in breast cancer cells and cancer-associated fibroblasts.

    PubMed

    Maggiolini, Marcello; Santolla, Maria Francesca; Avino, Silvia; Aiello, Francesca; Rosano, Camillo; Garofalo, Antonio; Grande, Fedora

    2015-01-01

    G-protein coupled estrogen receptor (GPER) is involved in numerous intracellular physiological and pathological events including cancer cell migration and proliferation. Its characterization is yet incomplete due to the limited number of specific ligands. Two novel selective GPER antagonists, based on a benzo[b]pyrrolo[1,2-d][1,4]oxazin-4-one structure, have been designed and synthesized. Their binding to the receptor was confirmed by a competition assay, while the antagonist effects were ascertained by their capability to prevent the ligand-stimulated action of GPER. The transcription mediated by the classical estrogen receptor was not influenced, demonstrating selectivity for GPER. These novel compounds may be considered useful leads toward the dissection of the GPER signaling and the development of new pharmacological treatments in breast cancer.

  17. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia.

    PubMed

    Randhawa, Shubhchintan; Cho, Byung S; Ghosh, Dipanjan; Sivina, Mariela; Koehrer, Stefan; Müschen, Markus; Peled, Amnon; Davis, Richard E; Konopleva, Marina; Burger, Jan A

    2016-08-01

    B cell acute lymphoblastic leukaemia (B-ALL) cells express high levels of CXCR4 chemokine receptors for homing and retention within the marrow microenvironment. Bone marrow stromal cells (BMSC) secrete CXCL12, the ligand for CXCR4, and protect B-ALL cells from cytotoxic drugs. Therefore, the therapeutic use of CXCR4 antagonists has been proposed to disrupt cross talk between B-ALL cells and the protective stroma. Because CXCR4 antagonists can have activating agonistic function, we compared the genetic and pharmacological deletion of CXCR4 in B-ALL cells, using CRISPR-Cas9 gene editing and CXCR4 antagonists that are in clinical use (plerixafor, BKT140). Both genetic and pharmacological CXCR4 inhibition significantly reduced B-ALL cell migration to CXCL12 gradients and beneath BMSC, and restored drug sensitivity to dexamethasone, vincristine and cyclophosphamide. NOD/SCID/IL-2rγnull mice injected with CXCR4 gene-deleted B-ALL cells had significant delay in disease progression and superior survival when compared to control mice injected with CXCR4 wild-type B-ALL cells. These findings indicate that anti-leukaemia activity of CXCR4 antagonists is primarily due to CXCR4 inhibition, rather than agonistic activity, and corroborate that CXCR4 is an important target to overcome stroma-mediated drug resistance in B-ALL. © 2016 John Wiley & Sons Ltd.

  18. Androgens influence microvascular dilation in PCOS through ET-A and ET-B receptors

    PubMed Central

    Wenner, Megan M.; Taylor, Hugh S.

    2013-01-01

    Hyperandrogenism and vascular dysfunction often coexist in women with polycystic ovary syndrome (PCOS). We hypothesized that testosterone compromises cutaneous microvascular dilation in women with PCOS via the endothelin-1 ET-B subtype receptor. To control and isolate testosterone's effects on microvascular dilation, we administered a gonadotropin-releasing hormone antagonist (GnRHant) for 11 days in obese, otherwise healthy women [controls, 22.0 (4) yr, 36.0 (3.2) kg/m2] or women with PCOS [23 (4) yr, 35.4 (1.3) kg/m2], adding testosterone (T; 2.5 mg/day) on days 8–11. Using laser Doppler flowmetry and cutaneous microdialysis, we measured changes in skin microcirculatory responsiveness (ΔCVC) to local heating while perfusing ET-A (BQ-123) and ET-B (BQ-788) receptor antagonists under three experimental conditions: baseline (BL; prehormone intervention), GnRHant (day 4 of administration), and T administration. At BL, ET-A receptor inhibition enhanced heat-induced vasodilation in both groups [ΔCVC control 2.03 (0.65), PCOS 2.10 (0.25), AU/mmHg, P < 0.05]; ET-B receptor inhibition reduced vasodilation in controls only [ΔCVC 0.98 (0.39), 1.41 (0.45) AU/mmHg for controls, PCOS] compared with saline [ΔCVC controls 1.27 (0.48), PCOS 1.31 (0.13) AU/mmHg]. GnRHant enhanced vasodilation in PCOS [saline ΔCVC 1.69 (0.23) AU/mmHg vs. BL, P < 0.05] and abolished the ET-A effect in both groups, a response reasserted with T in controls. ET-B receptor inhibition reduced heat-induced vasodilation in both groups during GnRHant and T [ΔCVC, controls: 0.95 (0.21) vs. 0.51 (13); PCOS: 1.27 (0.23) vs. 0.84 (0.27); for GnRHant vs. T, P < 0.05]. These data demonstrate that androgen suppression improves microvascular dilation in PCOS via ET-A and ET-B receptors. PMID:23921139

  19. Serotonergic modulation of the rat pup ultrasonic isolation call: studies with 5HT1 and 5HT2 subtype-selective agonists and antagonists.

    PubMed

    Winslow, J T; Insel, T R

    1991-01-01

    A modulatory role for serotonin has been described for the development and expression of the ultrasonic call of infant rat pups during brief maternal separations. In previous studies, serotonin reuptake inhibitors selectively reduced the rate of calling following acute administration to 9-11-day-old pups and a serotonin neurotoxin (MDMA) systematically disrupted the development of ultrasonic vocalizations but not other measures of motor development. In the current studies, we extended our investigations to include drugs with purported receptor subtype selectivities. Consistent with previous reports, acute administration of 5HT1A agonists buspirone and 8-OH-DPAT [+/-)-8-hydroxy-2-(di-N-propylamino)tetralin) reduced the rate of calling at doses which did not affect motor activity or core body temperature. The rate reducing effects of buspirone persisted up to 1 but not 2 h after injection. Administration of purported 5HT1B receptor agonists, CGS12066B (7-trifluoromethyl-4(4-methyl-1-piperazinyl)-pyrrolo[1,2-a] quinoxaline) and TFMPP (1-[3-fluoromethyl)phenyl]-piperazine) increased the rate of calling depending on the specificity of the drug for the 5HT1B receptor. d,l-Propranolol, a 5HT1 receptor antagonist, blocked the effects of both 8-OH-DPAT and TFMPP. m-CPP (1-(3-chlorophenyl)piperazine) and DOI [+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane), drugs with putative actions at 5HT1C and 5HT2 receptor sites both decreased calling but differed according to their effects on motor activity. Ritanserin, a 5HT2 and 5HT1C antagonist, produced a dose-related increase in call rate. A dose of ritanserin with no apparent intrinsic effects effectively antagonized DOI rate reducing effects but potentiated the rate reducing effects of m-CPP.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Novel Drugs that Target ErbB2

    DTIC Science & Technology

    2011-05-01

    Fig. 3C). 3. Role of cannabinoid receptors BA-induced downregulation of Sp transcription factors was proteasome-independent (Fig. 2) and...cancer cell lines show that cannabinoids (CBs) decrease Sp proteins (data not shown), the effects of CB1 and CB2 receptor antagonists AM251 and AM630...were observed in MDA-MB-453 cells confirming a role for the cannabinoid receptors in mediating the effects of BA on Sp and Sp-regulated genes

  1. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  2. Chemokine receptor antagonists: part 2.

    PubMed

    Pease, James E; Horuk, Richard

    2009-02-01

    The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.

  3. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  4. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    PubMed Central

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT2A/C antagonist ritanserin and the selective 5-HT2A antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT2A receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. PMID:20361986

  5. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less

  6. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Leukotriene B4 receptor type 2 protects against pneumolysin-dependent acute lung injury.

    PubMed

    Shigematsu, Misako; Koga, Tomoaki; Ishimori, Ayako; Saeki, Kazuko; Ishii, Yumiko; Taketomi, Yoshitaka; Ohba, Mai; Jo-Watanabe, Airi; Okuno, Toshiaki; Harada, Norihiro; Harayama, Takeshi; Shindou, Hideo; Li, Jian-Dong; Murakami, Makoto; Hoka, Sumio; Yokomizo, Takehiko

    2016-10-05

    Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B 4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection.

  8. Leukotriene B4 receptor type 2 protects against pneumolysin-dependent acute lung injury

    PubMed Central

    Shigematsu, Misako; Koga, Tomoaki; Ishimori, Ayako; Saeki, Kazuko; Ishii, Yumiko; Taketomi, Yoshitaka; Ohba, Mai; Jo-Watanabe, Airi; Okuno, Toshiaki; Harada, Norihiro; Harayama, Takeshi; Shindou, Hideo; Li, Jian-Dong; Murakami, Makoto; Hoka, Sumio; Yokomizo, Takehiko

    2016-01-01

    Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection. PMID:27703200

  9. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    PubMed

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  11. Pharmacological studies of stonefish (Synanceja trachynis) venom.

    PubMed

    Hopkins, B J; Hodgson, W C; Sutherland, S K

    1994-10-01

    The present study was designed to examine some of the pharmacological properties of venom from the stonefish (Synanceja trachynis), with particular reference to the presence in the venom of pain-producing/enhancing substances. Stonefish venom (1-6 micrograms/ml) produced concentration-dependent contractile responses in guinea-pig isolated ileum. No tachyphylaxis, or reduction in responses with time, was observed to venom (3 micrograms/ml) in ileum. The response to venom (3 micrograms/ml) was not significantly affected by the histamine antagonist mepyramine (0.5 microM), or a preceding anaphylactic response. Mecamylamine, 5HT-desensitization or EXP3174 failed to have any significant effect on responses to venom (3 micrograms/ml). Responses to venom (3 micrograms/ml) were significantly inhibited by the cyclooxygenase inhibitor indomethacin (5 microM), the leukotriene D4 receptor antagonist FLP55712 (1 microM), the thromboxane A2 receptor antagonist GR32191B (1 microM), the muscarinic receptor antagonist atropine (10 nM) and the neurokinin-1 receptor antagonist CP96345 (0.1 microM). Venom (6 micrograms/ml) produced contractile responses in the rat isolated vas deferens which were abolished by the alpha 1-adrenoceptor antagonist prazosin (0.3 microM) and significantly potentiated by the neuronal uptake inhibitor DMI (1 microM). However, noradrenergic transmitter depletion with reserpine (5 mg/kg, i.p.) did not significantly inhibit responses to venom (6 micrograms/ml). Histamine fluorometric and phospholipase A2 assays failed to detect significant quantities of either substance in the venom. These results suggest that stonefish venom may cause the release of acetylcholine, substance P, and cyclooxygenase products, or contain components which act at these receptors. The venom also appears to contain a component which is a substrate for neuronal uptake and has a direct action at alpha 1-adrenoceptors.

  12. Shifting physician prescribing to a preferred histamine-2-receptor antagonist. Effects of a multifactorial intervention in a mixed-model health maintenance organization.

    PubMed

    Brufsky, J W; Ross-Degnan, D; Calabrese, D; Gao, X; Soumerai, S B

    1998-03-01

    This study was undertaken to determine whether a program of education, therapeutic reevaluation of eligible patients, and performance feedback could shift prescribing to cimetidine from other histamine-2 receptor antagonists, which commonly are used in the management of ulcers and reflux, and reduce costs without increasing rates of ulcer-related hospital admissions. This study used an interrupted monthly time series with comparison series in a large mixed-model health maintenance organization. Physicians employed in health centers (staff model) and physicians in independent medical groups contracting to provide health maintenance organization services (group model) participated. The comparative percentage prescribed of specific histamine-2 receptor antagonists (market share), total histamine-2 receptor antagonist prescribing, cost per histamine-2 receptor antagonist prescription, and the rate of hospitalization for gastrointestinal illness were assessed. In the staff model, therapeutic reevaluation resulted in a sudden increase in market share of the preferred histamine-2 receptor antagonist cimetidine (+53.8%) and a sudden decrease in ranitidine (-44.7%) and famotidine (-4.8%); subsequently, cimetidine market share grew by 1.1% per month. In the group model, therapeutic reevaluation resulted in increased cimetidine market share (+9.7%) and decreased prescribing of other histamine-2 receptor antagonists (ranitidine -11.6%; famotidine -1.2%). Performance feedback did not result in further changes in prescribing in either setting. Use of omeprazole, an expensive alternative, essentially was unchanged by the interventions, as were overall histamine-2 receptor antagonist prescribing and hospital admissions for gastrointestinal illnesses. This intervention, which cost approximately $60,000 to implement, resulted in estimated annual savings in histamine-2 receptor antagonist expenditures of $1.06 million. Annual savings in histamine-2 receptor antagonist expenditures after this multifaceted intervention were more than implementation costs, with no discernible effects on numbers of hospitalizations. The magnitude of effect and cost savings were much greater in the staff model; organizational factors and economic incentives may have contributed to these differences. More research is needed to determine the generalizability of this approach to other technologies and managed care settings.

  13. NK-2 is the predominant tachykinin receptor subtype in the swine ureter.

    PubMed

    Jerde, T J; Saban, R; Bjorling, D E; Nakada, S Y

    1999-02-01

    To determine which of the known tachykinin receptor subtypes is predominant in the swine ureter. Ureters from adult pigs were harvested, cut into longitudinal strips and placed in 10 mL tissue baths containing Krebs buffer, under 4 g of initial tension. The magnitude and frequency of contractions were recorded. Tissues were incubated with 1 micromol/L solutions of peptidase inhibitors (phosphoramidon and captopril) for 1 h to inhibit degradation of peptides and treated with either CP 96,345 (NK-1 receptor antagonist), SR 48,968 (NK-2 receptor antagonist) or saline (control). Concentration-response curves to the tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) were determined. Ureteric segments showed a concentration-dependent response to all tachykinins; NKA stimulated increased contractions at a lower concentration than either SP or NKB (P<0.05). This was reflected by the difference in the effective concentration required to obtain half the maximal response (EC50 ) for each of the peptides. The mean (sd) EC50 values were (micromol/L): NKA, 0.2 (0.02); SP, 3.5 (0.7); and NKB, 4.5 (1.7). In addition, the selective NK-2 antagonist (SR 48,968) significantly reduced contractile responses to all peptides, as indicated by a 10-fold rightward shift of the concentration-response curves (P<0. 05), whereas the NK-1 antagonist (CP 96,345) had no significant effect. These results indicate that NK-2 is the predominant tachykinin receptor subtype responsible for contraction of ureteric smooth muscle. The use of mediators which act on NK-2 receptors may have clinical applications for the treatment of ureteric disease.

  14. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.

    PubMed

    Shamima, Abdul Rahman; Fakurazi, Sharida; Hidayat, Mohamad Taufik; Hairuszah, Ithnin; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2012-01-01

    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.

  15. 5-HT2C receptor involvement in the control of persistence in the reinforced spatial alternation animal model of obsessive-compulsive disorder.

    PubMed

    Papakosta, Vassiliki-Maria; Kalogerakou, Stamatina; Kontis, Dimitris; Anyfandi, Eleni; Theochari, Eirini; Boulougouris, Vasileios; Papadopoulos, Sokrates; Panagis, George; Tsaltas, Eleftheria

    2013-04-15

    The serotonergic system is implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, the distinct role of serotonin (5-HT) receptor subtypes remains unclear. This study investigates the contribution of 5-HT2A and 5-HT2C receptors in the modulation of persistence in the reinforced spatial alternation model of OCD. Male Wistar rats were assessed for spontaneous and pharmacologically induced (by m-chlorophenylpiperazine: mCPP) directional persistence in the reinforced alternation OCD model. Systemic administration of mCPP (non-specific 5-HT agonist, 2.5mg/kg), M100907 (selective 5-HT2A receptor antagonist, 0.08 mg/kg), SB242084 (selective 5-HT2C receptor antagonist, 0.5 mg/kg) and vehicle was used. Experiment 1 investigated M100907 and SB242084 effects in animals spontaneously exhibiting high and low persistence during the early stages of alternation training. Experiment 2 investigated M100900 and SB242084 effects on mCPP-induced persistence. Under the regime used in Experiment 1, 5-HT2A or 5-HT2C receptor antagonism did not affect spontaneous directional persistence in either high or low persistence groups. In Experiment 2, 5-HT2C but not 5-HT2A receptor antagonism significantly reduced, but did not abolish, mCPP-induced directional persistence. These findings suggest that 5-HT2C but not 5-HT2A receptors contribute to the modulation of mCPP-induced persistent behaviour, raising the possibility that the use of 5-HT2C antagonists may have a therapeutic value in OCD. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice.

    PubMed

    Smith, Jill P; Cooper, Timothy K; McGovern, Christopher O; Gilius, Evan L; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A; Gutkind, J Silvio; Matters, Gail L

    2014-10-01

    Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.

  17. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    PubMed Central

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  18. Inhibition of colonic motility and defecation by RS-127445 suggests an involvement of the 5-HT2B receptor in rodent large bowel physiology

    PubMed Central

    Bassil, AK; Taylor, CM; Bolton, VJN; Gray, KM; Brown, JD; Cutler, L; Summerfield, SG; Bruton, G; Winchester, WJ; Lee, K; Sanger, GJ

    2009-01-01

    Background: 5-HT2B receptors are localized within the myenteric nervous system, but their functions on motor/sensory neurons are unclear. To explore the role of these receptors, we further characterized the 5-HT2B receptor antagonist RS-127445 and studied its effects on peristalsis and defecation. Experimental approach: Although reported as a selective 5-HT2B receptor antagonist, any interactions of RS-127445 with 5-HT4 receptors are unknown; this was examined using the recombinant receptor and Biomolecular Interaction Detection technology. Mouse isolated colon was mounted in tissue baths for isometric recording of neuronal contractions evoked by electrical field stimulation (EFS), or under an intraluminal pressure gradient to induce peristalsis; the effects of RS-127445 on EFS-induced and on peristaltic contractions were measured. Faecal output of rats in grid-bottom cages was measured over 3 h following i.p. RS-127445 and separately, validation of the effective doses was achieved by determining the free, unbound fraction of RS-127445 in blood and brain. Key results: RS-127445 (up to 1 µmol·L−1) did not interact with the 5-HT4 receptor. RS-127445 (0.001–1 µmol·L−1) did not affect EFS-induced contractions of the colon, although at 10 µmol·L−1 the contractions were reduced (to 36 ± 8% of control, n= 4). RS-127445 (0.1–10 µmol·L−1) concentration-dependently reduced peristaltic frequency (n= 4). RS-127445 (1–30 mg·kg−1), dose-dependently reduced faecal output, reaching significance at 10 and 30 mg·kg−1 (n= 6–11). In blood and brain, >98% of RS-127445 was protein-bound. Conclusions and implications: High-protein binding of RS-127445 indicates that relatively high doses are required for efficacy. The results suggest that 5-HT2B receptors tonically regulate colonic motility. PMID:19371340

  19. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    PubMed

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine receptor-2 antagonists, but the survival benefit of 0.0167% favored proton pump inhibitors. Histamine receptor-2 antagonist therapy appears to reduce costs with survival benefit comparable to proton pump inhibitor therapy for stress ulcer prophylaxis. Ventilator-associated pneumonia and bleed are the variables most affecting these outcomes. The uncertainty in the findings justifies a prospective trial.

  20. In vitro effects of bethanechol on specimens of intestinal smooth muscle obtained from the duodenum and jejunum of healthy dairy cows

    PubMed Central

    Pfeiffer, Julia B. R.; Mevissen, Meike; Steiner, Adrian; Portier, Christopher J.; Meylan, Mireille

    2009-01-01

    Objective To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. Sample Population Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. Procedures Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (Amax), and area under the curve (AUC) were evaluated. Results Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M3 antagonists (more commonly for basal tone than for Amax and AUC). The M2 receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M3 receptor antagonists were generally more potent than the M2 receptor antagonists. In a protection experiment, an M3 receptor antagonist was less potent than when used in combination with an M2 receptor antagonist. Receptor antagonists for M1 and M4 did not affect contractility variables. Conclusions and Clinical Relevance Bethanechol acting on muscarinic receptor subtypes M2 and M3 may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows. PMID:17331022

  1. Enhanced attention and impulsive action following NMDA receptor GluN2B-selective antagonist pretreatment.

    PubMed

    Higgins, Guy A; Silenieks, Leo B; MacMillan, Cam; Sevo, Julia; Zeeb, Fiona D; Thevarkunnel, Sandy

    2016-09-15

    NMDA GluN2B (NR2B) subtype selective antagonists are currently in clinical development for a variety of indications, including major depression. We previously reported the selective NMDA GluN2B antagonists Ro 63-1908 and traxoprodil, increase premature responding in a 5-choice serial reaction time task (5-CSRTT) suggesting an effect on impulsive action. The present studies extend these investigations to a Go-NoGo and delay discounting task, and the 5-CSRTT under test conditions of both regular (5s) and short (2-5s) multiple ITI (Intertrial interval). Dizocilpine was included for comparison. Both Ro 63-1908 (0.1-1mg/kg SC) and traxoprodil (0.3-3mg/kg SC) increased premature and perseverative responses in both 5-CSRT tasks and improved attention when tested under a short ITI test condition. Ro 63-1908 but not traxoprodil increased motor impulsivity (false alarms) in a Go-NoGo task. Dizocilpine (0.01-0.06mg/kg SC) affected both measures of motor impulsivity and marginally improved attention. In a delay discounting test of impulsive choice, both dizocilpine and Ro 63-1908 decreased impulsive choice (increased choice for the larger, delayed reward), while traxoprodil showed a similar trend. Motor stimulant effects were evident following Ro 63-1908, but not traxoprodil treatment - although no signs of motor stereotypy characteristic of dizocilpine (>0.1mg/kg) were noted. The findings of both NMDA GluN2B antagonists affecting measures of impulsive action and compulsive behavior may underpin emerging evidence to suggest glutamate signaling through the NMDA GluN2B receptor plays an important role in behavioural flexibility. The profiles between Ro 63-1908 and traxoprodil were not identical, perhaps suggesting differences between members of this drug class. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tachykinin receptors in the guinea-pig isolated bronchi.

    PubMed

    Maggi, C A; Patacchini, R; Quartara, L; Rovero, P; Santicioli, P

    1991-05-17

    The aim of the study was to assess which tachykinin receptors mediate the contractile response in the guinea-pig isolated bronchi. Experiments with natural tachykinins and receptor-selective tachykinin agonists were performed in the absence or presence of peptidase inhibitors and in bronchi pretreated with phenoxybenzamine. Both NK-1 (substance P, substance P methylester and septide) and NK-2 (neurokinin A, [beta-Ala8]neurokinin A-(4-10) and MDL 28,564) receptor agonists produced concentration-dependent contraction. NK-3 agonists (senktide and [MePhe7]neurokinin B) were active only at high concentrations. Phenoxybenzamine pretreatment reduced the maximal response to NK-1 agonists and produced a rightward shift of the curve to NK-2 agonists, without depression of the maximum. Five tachykinin antagonists selective for the NK-1 (L 668,169) or the NK-2 (MEN 10,207, MEN 10,376, L 659,877 and R 396) receptor were tested against substance P methylester and [beta-Ala8]neurokinin A-(4-10). The results indicated that these receptor-selective antagonists maintain their characteristic even when tested in a multireceptor assay such as the guinea-pig bronchus. The rank order of potency of NK-2 antagonists against [beta-Ala8]neurokinin A-(4-10) was MEN 10,207 = MEN 10,376 greater than L 659,877 much greater than R 396. This pattern, with the observation of the full agonist activity of MDL 28,564, indicates that in addition to NK-1 receptors, NK-2 receptors also are present in the guinea-pig bronchi and belong to the same subtype (NK-2A) as present in the rabbit pulmonary artery.

  3. Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats

    PubMed Central

    Oliveras, Ignasi; Sánchez-González, Ana; Sampedro-Viana, Daniel; Piludu, Maria Antonietta; Río-Alamos, Cristóbal; Giorgi, Osvaldo; Corda, Maria G.; Aznar, Susana; González-Maeso, Javier; Gerbolés, Cristina; Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf

    2017-01-01

    Rationale Animal models with predictive and construct validity are necessary for developing novel and efficient therapeutics for psychiatric disorders. Objectives We have carried out a pharmacological characterization of the Roman high-(RHA-I) and low-avoidance (RLA-I) rat strains with different acutely administered propsychotic (DOI, MK-801) and antipsychotic drugs (haloperidol, clozapine), as well as apomorphine, on prepulse inhibition (PPI) of startle and locomotor activity (activity cages). Results RHA-I rats display a consistent deficit of PPI compared with RLA-I rats. The typical antipsychotic haloperidol (dopamine D2 receptor antagonist) reversed the PPI deficit characteristic of RHA-I rats (in particular at 65 and 70 dB prepulse intensities) and reduced locomotion in both strains. The atypical antipsychotic clozapine (serotonin/dopamine receptor antagonist) did not affect PPI in either strain, but decreased locomotion in a dose-dependent manner in both rat strains. The mixed dopamine D1/D2 agonist, apomorphine, at the dose of 0.05 mg/kg, decreased PPI in RHA-I, but not RLA-I rats. The hallucinogen drug DOI (5-HT2A agonist; 0.1–1.0 mg/kg) disrupted PPI in RLA-I rats in a dose-dependent manner at the 70 dB prepulse intensity, while in RHA-Irats, only the 0.5 mg/kg dose impaired PPI at the 80 dB prepulse intensity. DOI slightly decreased locomotion in both strains. Finally, clozapine attenuated the PPI impairment induced by the NMDA receptor antagonist MK-801 only in RLA-I rats. Conclusions These results add experimental evidence to the view that RHA-I rats represent a model with predictive and construct validity of some dopamine and 5-HT2A receptor-related features of schizophrenia. PMID:28154892

  4. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Xinchun

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, andmore » improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.« less

  5. Dopamine D2 receptors mediate the increase in reinstatement of the conditioned rewarding effects of cocaine induced by acute social defeat.

    PubMed

    Reguilón, Marina Daiana; Montagud-Romero, Sandra; Ferrer-Pérez, Carmen; Roger-Sánchez, Concepción; Aguilar, María Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2017-03-15

    Social stress modifies the activity of brain areas involved in the rewarding effects of psychostimulants, inducing neuroadaptations in the dopaminergic mesolimbic system and modifying the sensitivity of dopamine receptors. In the present study we evaluated the effect of the dopamine D 1 - and D 2 -like receptor antagonists (SCH23390 and raclopride, respectively) on the short-time effects of acute social defeat (ASD). Male OF1 mice were socially defeated before each conditioning session of the conditioned place preference (CPP) induced by 1mg/kg or 25mg/kg of cocaine plus the corresponding dopamine antagonist. A final experiment was designed to evaluate the effect of the dopamine antagonists on the CPP induced by 3mg/kg of cocaine with or without a stress experience. Mice exposed to ASD showed an increase in reinstatement of the conditioned reinforcing effects of cocaine that was blocked by all of the dopamine receptor antagonists. Blockade of dopamine D 2 -like receptors with raclopride specifically prevented the effects of stress without affecting the rewarding properties of cocaine. However, SCH23390 inhibited cocaine-induced preference in the control groups and even induced aversion in defeated mice conditioned with the lower dose of cocaine. Moreover, the lowest dose of SCH23390 blocked the rewarding effects of 3mg/kg of cocaine-induced CPP. Our results confirm that the dopamine D 2 receptor is involved in the short-term effects of ASD on the rewarding effects of cocaine. The dopamine D 1 receptor is clearly involved in the rewarding effects of cocaine, but its role in the effects of ASD remains to be demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Garcia, C; Lacour, C; Guiraudou, P; Christophe, B; Villanova, G; Nisato, D; Maffrand, J P; Le Fur, G

    1993-07-01

    SR 49059, a new potent and selective orally active, nonpeptide vasopressin (AVP) antagonist has been characterized in several in vitro and in vivo models. SR 49059 showed high affinity for V1a receptors from rat liver (Ki = 1.6 +/- 0.2) and human platelets, adrenals, and myometrium (Ki ranging from 1.1 to 6.3 nM). The previously described nonpeptide V1 antagonist, OPC-21268, was almost inactive in human tissues at concentrations up to 100 microM. SR 49059 exhibited much lower affinity (two orders of magnitude or more) for AVP V2 (bovine and human), V1b (human), and oxytocin (rat and human) receptors and had no measurable affinity for a great number of other receptors. In vitro, AVP-induced contraction of rat caudal artery was competitively antagonized by SR 49059 (pA2 = 9.42). Furthermore, SR 49059 inhibited AVP-induced human platelet aggregation with an IC50 value of 3.7 +/- 0.4 nM, while OPC-21268 was inactive up to 20 microM. In vivo, SR 49059 inhibited the pressor response to exogenous AVP in pithed rats (intravenous) and in conscious normotensive rats (intravenous and per os) with a long duration of action (> 8 h at 10 mg/kg p.o). In all the biological assays used, SR 49059 was devoid of any intrinsic agonistic activity. Thus, SR 49059 is the most potent and selective nonpeptide AVP V1a antagonist described so far, with marked affinity, selectivity, and efficacy toward both animal and human receptors. With this original profile, SR 49059 constitutes a powerful tool for exploring the therapeutical usefulness of a selective V1a antagonist.

  7. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis and Evaluation of Phenylxanthine Derivatives as Potential Dual A2AR Antagonists/MAO-B Inhibitors for Parkinson's Disease.

    PubMed

    Wang, Xuebao; Han, Chao; Xu, Yong; Wu, Kaiqi; Chen, Shuangya; Hu, Mangsha; Wang, Luyao; Ye, Yun; Ye, Faqing

    2017-06-17

    The aim of this research was to prove the speculation that phenylxanthine (PX) derivatives possess adenosine A2A receptor (A2AR)-blocking properties and to screening and evaluate these PX derivatives as dual A2AR antagonists/MAO-B inhibitors for Parkinson's disease. To explore this hypothesis, two series of PX derivatives were prepared and their antagonism against A2AR and inhibition against MAO-B were determined in vitro. In order to evaluate further the antiparkinsonian properties, pharmacokinetic and haloperidol-induced catalepsy experiments were carried out in vivo. The PX-D and PX-E analogues acted as potent A2AR antagonists with Ki values ranging from 0.27 to 10 μM, and these analogues displayed relatively mild MAO-B inhibition potencies, with inhibitor dissociation constants (Ki values) ranging from 0.25 to 10 μM. Further, the compounds PX-D-P6 and PX-E-P8 displayed efficacious antiparkinsonian properties in haloperidol-induced catalepsy experiments, verifying that these two compounds were potent A2AR antagonists and MAO-B inhibitors. We conclude that PX-D and PX-E analogues are a promising candidate class of dual-acting compounds for treating Parkinson's disease.

  9. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.

    PubMed

    Gass, Natalia; Becker, Robert; Sack, Markus; Schwarz, Adam J; Reinwald, Jonathan; Cosa-Linan, Alejandro; Zheng, Lei; von Hohenberg, Christian Clemm; Inta, Dragos; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang; Gass, Peter; Sartorius, Alexander

    2018-04-01

    Evidence indicates that ketamine's rapid antidepressant efficacy likely results from its antagonism of NR2B-subunit-containing NMDA receptors (NMDAR). Since ketamine equally blocks NR2A- and NR2B-containing NMDAR, and has affinity to other receptors, NR2B-selective drugs might have improved therapeutic efficiency and side effect profile. We aimed to compare the effects of (S)-ketamine and two different types of NR2B-selective antagonists on functional brain networks in rats, in order to find common circuits, where their effects intersect, and that might explain their antidepressant action. The experimental design comprised four parallel groups of rats (N = 37), each receiving (S)-Ketamine, CP-101,606, Ro 25-6981 or saline. After compound injection, we acquired resting-state functional magnetic resonance imaging time series. We used graph theoretical approach to calculate brain network properties. Ketamine and CP-101,606 diminished the global clustering coefficient and small-worldness index. At the nodal level, all compounds induced increased connectivity of the regions mediating reward and cognitive aspects of emotional processing, such as ventromedial prefrontal cortex, septal nuclei, and nucleus accumbens. The dorsal hippocampus and regions involved in sensory processing and aversion, such as superior and inferior colliculi, exhibited an opposite effect. The effects common to ketamine and NR2B-selective compounds were localized to the same brain regions as those reported in depression, but in the opposite direction. The upregulation of the reward circuitry might partially underlie the antidepressant and anti-anhedonic effects of the antagonists and could potentially serve as a translational imaging phenotype for testing putative antidepressants, especially those targeting the NR2B receptor subtype.

  10. Characterization of CCX140-B, an orally bioavailable antagonist of the CCR2 chemokine receptor, for the treatment of type 2 diabetes and associated complications.

    PubMed

    Sullivan, Timothy J; Dairaghi, Daniel J; Krasinski, Antoni; Miao, Zhenhua; Wang, Yu; Zhao, Bin N; Baumgart, Trageen; Berahovich, Rob; Ertl, Linda S; Pennell, Andrew; Seitz, Lisa; Miao, Shichang; Ungashe, Solomon; Wei, Zheng; Johnson, Dan; Boring, Landin; Tsou, Chia-Lin; Charo, Israel F; Bekker, Pirow; Schall, Thomas J; Jaen, Juan C

    2012-06-05

    The following manuscript was published as a Fast Forward article on February 29, 2012: Sullivan TJ, Dairaghi DJ, Krasinski A, Miao Z, Wang Y, Zhao BN, Baumgart T, Berahovich R, Ertl LS, Pennell A, Seitz L, Miao S, Ungashe S, Wei Z, Johnson D, Boring L, Tsou C-L, Charo IF, Bekker P, Schall TJ, and Jaen JC, Characterization of CCX140-B, an orally bioavailable antagonist of the CCR2 chemokine receptor, for the treatment of type 2 diabetes and associated complications. J Pharmacol Exp Ther jpet.111.190918; doi:10.1124/jpet.111.190918 It was later found that the chemical identity of a compound cited in the article, CCX140-B, was not sufficiently disclosed. The authors are unable, at this time, to provide the chemical identity of CCX140-B in accordance with the editorial policies of The Journal of Pharmacology and Experimental Therapeutics. As a result, the authors have voluntarily withdrawn this manuscript from publication. We apologize for any inconvenience this may cause JPET's readers.

  11. Endothelin-like action of Pausinystalia yohimbe aqueous extract on vascular and renal regional hemodynamics in Sprague Dawley rats.

    PubMed

    Ajayi, A A; Newaz, M; Hercule, H; Saleh, M; Bode, C O; Oyekan, A O

    2003-12-01

    The bark of the African tree Pausinystalia yohimbe has been used as a food additive with aphrodisiac and penile erection enhancing properties. The effect of an aqueous extract of P. yohimbe (CCD-X) on renal circulation was assessed in order to test the hypothesis that it possesses additional effects on nitric oxide production and/or endothelin-1 (ET-1)-like actions. In vivo studies with CCD-X in Sprague Dawley rats demonstrated a dose-dependent (1-1000 ng/kg) increase in mean blood pressure (p < 0.001) and an increase in medullary blood flow (MBF) (p < 0.001). Both the pressor action and renal medullary vasodilation were blocked by endothelinA (ETA) receptor antagonist BMS182874 and endothelinB (ETB) receptor antagonist BQ788 in combination. L-Nomega-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg) also inhibited the increase in MBF induced by CCD-X. In vitro studies in isolated perfused kidney and in pressurized renal microvessels confirmed the dose-dependent vasoconstrictor action of this extract. ETA receptor antagonist BQ610 and ETB receptor antagonist BQ788 separately and significantly attenuated the renal vasoconstrictor actions of the extract (p < 0.001 ANOVA). These preliminary observations indicate that, in addition to the alpha-adrenergic antagonist actions that characterize yohimbine, CCD-X possesses endothelin-like actions and affects nitric oxide (NO) production in renal circulation. These findings suggest a strong possibility of post-receptor cross-talk between alpha2-adrenoceptors and endothelin, as well as a direct effect of alpha2-adrenoceptors on renal NO production. (c) 2003 Prous Science

  12. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography.

    PubMed Central

    Gupta, N; McAllister, R; Drance, S M; Rootman, J; Cynader, M S

    1994-01-01

    Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis. Images PMID:7918268

  13. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  14. Pharmacological characterization of the cysteinyl-leukotriene antagonists CGP 45715A (iralukast) and CGP 57698 in human airways in vitro

    PubMed Central

    Capra, Valérie; Bolla, Manlio; Angelo Belloni, Pier; Mezzetti, Maurizio; Carlo Folco, G; Nicosia, Simonetta; Enrico Rovati, G

    1998-01-01

    Cysteinyl-leukotrienes (cysteinyl-LTs) are important mediators in the pathogenesis of asthma. They cause bronchoconstriction, mucus hypersecretion, increase in microvascular permeability, plasma extravasation and eosinophil recruitment. We investigated the pharmacological profile of the cysteinyl-LT antagonists CGP 45715A (iralukast), a structural analogue of LTD4 and CGP 57698, a quinoline type antagonist, in human airways in vitro, by performing binding studies on human lung parenchyma membranes and functional studies on human isolated bronchial strips. Competition curves vs [3H]-LTD4 on human lung parenchyma membranes demonstrated that: (a) both antagonists were able to compete for the two sites labelled by [3H]-LTD4; (b) as in all the G-protein coupled receptors, iralukast and CGP 57698 did not discriminate between the high and the low affinity states of the CysLT receptor labelled by LTD4 (Ki1=Ki2=16.6 nM±36% CV and Ki1= Ki2=5.7 nM±19% CV, respectively); (c) iralukast, but not CGP 57698, displayed a slow binding kinetic, because preincubation (15 min) increased its antagonist potency. In functional studies: (a) iralukast and CGP 57698 antagonized LTD4-induced contraction of human bronchi, with pA2 values of 7.77±4.3% CV and 8.51±1.6% CV, respectively, and slopes not significantly different from unity; (b) the maximal LTD4 response in the presence of CGP 57698 was actually increased, thus clearly deviating from apparent simple competition. Both antagonists significantly inhibited antigen-induced contraction of human isolated bronchial strips in a concentration-dependent manner, lowering the upper plateau of the anti-IgE curves. In conclusion, the results of the present in vitro investigation indicate that iralukast and CGP 57698 are potent antagonists of LTD4 in human airways, with affinities in the nanomolar range, similar to those obtained for ICI 204,219 and ONO 1078, two of the most clinically advanced CysLT receptor antagonists. Thus, these compounds might be useful drugs for the therapy of asthma and other allergic diseases. PMID:9504401

  15. Tachykinin-induced contraction of the guinea-pig isolated oesophageal mucosa is mediated by NK2 receptors

    PubMed Central

    Kerr, Karen P; Thai, Binh; Coupar, Ian M

    2000-01-01

    The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121

  16. Synthesis and biological investigation of new equatorial (β) stereoisomers of 3-aminotropane arylamides with atypical antipsychotic profile.

    PubMed

    Stefanowicz, Jacek; Słowiński, Tomasz; Wróbel, Martyna Zofia; Herold, Franciszek; Gomółka, Anna Edyta; Wesołowska, Anna; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Andres-Mach, Marta; Czuczwar, Stanisław Jerzy; Łuszczki, Jarogniew Jacek; Zagaja, Mirosław; Siwek, Agata; Nowak, Gabriel; Żołnierek, Maria; Bączek, Tomasz; Ulenberg, Szymon; Belka, Mariusz; Turło, Jadwiga

    2016-09-15

    A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki=0.6nM), 6c and 6i (Ki=0.4nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki=62.7nM and Ki=30.5nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nonpeptide vasopressin antagonists: a new group of hormone blockers entering the scene.

    PubMed

    Mayinger, B; Hensen, J

    1999-01-01

    After the story of success of hormone blockers for catecholamines, aldosterone and angiotensin II and their successful implementation into clinical practice another endocrine cardiovascular system has come into focus. It has long been known, that the hormone vasopressin plays an important role in peripheral vasoconstriction, hypertension and in several disease conditions with dilutional hyponatremia in edematous disorders, like congestive heart failure, liver cirrhosis, SIADH and nephrotic syndrome. A series of orally active nonpeptide antagonists against the vasopressin receptor subtypes has recently been synthesized and is now under intensive examination. Nonpeptide V1a-receptor specific antagonists, OPC 21268 and SR 49059, nonpeptide V2-receptor specific antagonists, SR 121463 A and VPA 985, and combined V1a-/V2-receptor antagonists, OPC 31260 and YM 087, have become available for clinical research. AVP-V2-receptor antagonists lead to a dose-dependent diabetes insipidus in animals and man. The term aquaretic drugs (aquaretics) has been coined for these drugs to highlight their different mechanism compared to the saluretic diuretic furosemide. V1a-receptor antagonists might offer new therapeutic advantages in the treatment of vasoconstriction and hypertension. Combined V1a-/V2-receptor antagonists might be beneficial in the treatment of congestive heart failure. Early results are promising and now need to be confirmed in large clinical studies.

  18. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics.

    PubMed

    Bradford, Andrea M; Savage, Kevin M; Jones, Declan N C; Kalinichev, Mikhail

    2010-10-01

    We evaluated locomotor hyperactivity induced in BALB/C mice by an N-methyl-D-aspartate receptor antagonist MK-801 as an assay for the detection of antipsychotic drugs. We assessed the effects of antipsychotic drugs to validate the assay (study 1), selective dopamine and serotonin ligands for pharmacological characterisation of the model (study 2) and a number of compounds with efficacy in models of schizophrenia to understand the predictive validity of the model (study 3). Adult males (n  = 9/group) were pretreated with a test compound, habituated to locomotor activity cages before receiving MK-801 (0.32 mg/kg) and activity recorded for a further 75 or 120 min. In study 1, we tested haloperidol, clozapine, olanzapine, risperidone, ziprasidone, aripiprazole, sertindole and quetiapine. In study 2, we tested SCH23390 (D(1) antagonist), sulpiride (D(2)/D(3) antagonist), raclopride (D(2)/D(3) antagonist), SB-277011 (D(3) antagonist), L-745,870 (D(4) antagonist), WAY100635 (5-HT(1A) antagonist), 8-OH-DPAT (5-HT(1A) agonist), ketanserin (5-HT(2A)/5-HT(2C) antagonist) and SB-242084 (5-HT(2C) antagonist). In study 3, we tested xanomeline (M(1)/M(4) receptor agonist), LY379268 (mGluR2/3 receptor agonist), diazepam (GABA(A) modulator) and thioperamide (H(3) receptor antagonist). All antipsychotics suppressed MK-801-induced hyperactivity in a dose-dependent and specific manner. The effects of antipsychotics appear to be mediated via dopamine D(1), D(2) and 5-HT(2) receptors. Xanomeline, LY379268 and diazepam were active in this assay while thioperamide was not. MK-801-induced hyperactivity in BALB/C mice model of positive symptoms has shown predictive validity with novel compounds acing at M(1)/M(4), mGluR2/3 and GABA(A) receptors and can be used as a screening assay for detection of novel pharmacotherapies targeting those receptors.

  19. Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.

    PubMed

    Park, Hae Jeong; Kim, Hak Jae; Park, Hyun-Kyung; Chung, Joo-Ho

    2009-11-01

    Histamine H(2) receptor antagonists have been reported to improve the motor symptoms of Parkinson's disease (PD) patients and to exert neuroprotective effects. In this study, we investigated the protective effects of the H(2) receptor antagonist ranitidine on rotenone-induced apoptosis in human dopaminergic SH-SY5Y cells, focusing on mitogen-activated protein kinases (MAPKs) and caspases (CASPs)-mediated apoptotic events. Ranitidine blocked the rotenone-induced phosphorylation of c-Jun NH(2)-terminal protein kinase (JNK) and P38 MAPK (P38), and promoted the phosphorylation of extracellular signal-regulated protein kinase (ERK). Ranitidine also prevented the down-regulation of B-cell CLL/lymphoma 2 (BCL2) and the up-regulation of BCL2-associated X protein (BAX) by rotenone. Furthermore, ranitidine not only attenuated rotenone-induced cleavages of CASP9, poly(ADP-ribose) polymerase-1 (PARP) and CASP3, but also suppressed CASP3 enzyme activity. These results indicate that ranitidine protects against rotenone-induced apoptosis, inhibiting phosphorylation of JNK and P38, and activation of CASPs in human dopaminergic SH-SY5Y cells.

  20. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist.

    PubMed

    Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin

    2008-12-25

    Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.

  1. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  2. Specific Roles of NMDA Receptor Subunits in Mental Disorders.

    PubMed

    Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.

  3. Molecular recognition at adenine nucleotide (P2) receptors in platelets.

    PubMed

    Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano

    2005-04-01

    Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

  4. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    PubMed

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  5. Characterization of the [125I]-neurokinin A binding site in the circular muscle of human colon

    PubMed Central

    Warner, Fiona J; Comis, Alfio; Miller, Robert C; Burcher, Elizabeth

    1999-01-01

    Neurokinin A (NKA) is a potent contractile agonist of human colon circular muscle. These responses are mediated predominantly through tachykinin NK2 receptors. In the present study, the NK2 receptor radioligand [125I]-NKA has been used to characterize binding sites in this tissue, using tachykinin agonists and antagonists. 125INKA labelled a single, high affinity binding site. Specific binding (95% of total binding) of [125I]-NKA was saturable (KD 0.47±0.05 nM), of high capacity (Bmax 2.1±0.1 fmol mg−1 wet weight tissue) and reversible (kinetically derived KD 0.36±0.07 nM). The rank order of agonists competing for the [125I]-NKA binding site was neuropeptide γ (NPγ)≥NKA≥[Lys5,MeLeu9,Nle10]NKA (4–10) (NK2 agonist)>>substance P (SP)>neurokinin B (NKB)≥[Pro9]SP (NK1 agonist)>>senktide (NK3 agonist), indicating binding to an NK2 site. The nonpeptide selective NK2 antagonist SR48968 showed higher affinity for the [125I]-NKA site than selective peptide NK2 antagonists. The rank order of potency for NK2 antagonists was SR48968≥MEN11420>GR94800≥MEN10627>MEN10376≥R396. The NK1 antagonist SR140333 was a weak competitor. The competition curve for SP could be resolved into two sites. When experiments were repeated in the presence of SR140333 (0.1 μM), the curve for SP became monophasic and showed a significant shift to the right, whereas curves to NKA and NKB were unaffected. In conclusion, binding of the radioligand [125I]-NKA to membranes from circular muscle is predominantly to the NK2 receptor. There may be a small component of binding to the NK1 receptor. The NK2 receptor mediates circular muscle contraction, whereas the role of the NK1 receptor in circular muscle is unclear. PMID:10455255

  6. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.

    PubMed

    Lambrecht, G

    2000-11-01

    P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.

  7. The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice.

    PubMed

    Carlsson, M L; Martin, P; Nilsson, M; Sorensen, S M; Carlsson, A; Waters, S; Waters, N

    1999-01-01

    The purpose of the present study was to compare the effectiveness of the selective 5-HT2A antagonist M100907 in different psychosis models. The classical neuroleptic haloperidol was used as reference compound. Two hyperdopaminergia and two hypoglutamatergia mouse models were used. Hyperdopaminergia was produced by the DA releaser d-amphetamine or the DA uptake inhibitor GBR 12909. Hypoglutamatergia was produced by the un-competitive NMDA receptor antagonist MK-801 or the competitive NMDA receptor antagonist D-CPPene. M100907 was found to counteract the locomotor stimulant effects of the NMDA receptor antagonists MK-801 and D-CPPene, but spontaneous locomotion, d-amphetamine- and GBR-12909-induced hyperactivity were not significantly affected. Haloperidol, on the other hand, antagonized both NMDA antagonist- and DA agonist-induced hyperactivity, as well as spontaneous locomotion in the highest dose used. Based on the present and previous results we draw the conclusion that 5-HT2A receptor antagonists are particularly effective against behavioural anomalies resulting from hypoglutamatergia of various origins. The clinical implications of our results and conclusions would be that a 5-HT2A receptor antagonist, due to i a the low side effect liability, could be the preferable treatment strategy in various disorders associated with hypoglutamatergia; such conditions might include schizophrenia, childhood autism and dementia disorders.

  8. Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle.

    PubMed

    Kitazawa, Takio; Hirama, Ryuichi; Masunaga, Kozue; Nakamura, Tatsuro; Asakawa, Koichi; Cao, Jinshan; Teraoka, Hiroki; Unno, Toshihiro; Komori, Sei-ichi; Yamada, Masahisa; Wess, Jürgen; Taneike, Tetsuro

    2008-06-01

    Functional muscarinic acetylcholine receptors present in the mouse uterus were characterized by pharmacological and molecular biological studies using control (DDY and wild-type) mice, muscarinic M2 or M3 single receptor knockout (M2KO, M3KO), and M2 and M3 receptor double knockout mice (M2/M3KO). Carbachol (10 nM-100 microM) increased muscle tonus and phasic contractile activity of uterine strips of control mice in a concentration-dependent manner. The maximum carbachol-induced contractions (Emax) differed between cervical and ovarian regions of the uterus. The stage of the estrous cycle had no significant effect on carbachol concentration-response relationships. Tetrodotoxin did not decrease carbachol-induced contractions, but the muscarinic receptor antagonists (11-[[2-[(diethylaminomethyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b[2,3-b][1,4]benzodiazepin6-one (AF-DX116), N-[2-[2-[(dipropylamino)methyl]-1-piperidinyl]ethyl]-5,6-dihydro-6-oxo-11H-pyrido[2,3-b][1,4] benzodiazepine-11-carboxamide (AF-DX384), 4-diphenylacetoxy-N-methyl-piperidine(4-DAMP), para-fluoro-hexa hydro-sila-diphenidol (p-F-HHSiD), himbacine, methoctramine, pirenzepine, and tropicamide) inhibited carbachol-induced contractions in a competitive fashion. The pKb values for these muscarinic receptor antagonists correlated well with the known pKi values of these antagonists for the M3 muscarinic receptor. In uterine strips isolated from mice treated with pertussis toxin (100 microg/kg, i.p. for 96 h), Emax values for carbachol were significantly decreased, but effective concentration that caused 50% of Emax values (EC50) remained unchanged. In uterine strips treated with 4-DAMP mustard (30 nM) and AF-DX116 (1 microM), followed by subsequent washout of AF-DX116, neither carbachol nor N,N,N,-trimethyl-4-(2-oxo-1-pyrolidinyl)-2-butyn-1-ammonium iodide (oxotremorine-M) caused any contractile responses. Both M2 and M3 muscarinic receptor messenger RNAs were detected in the mouse uterus via reverse transcription polymerase chain reaction. Carbachol also caused contraction of uterine strips isolated from M2KO mice, but the concentration-response curve was shifted to the right and downward compared with that for the corresponding wild-type mice. On the other hand, uterine strips isolated from M3KO and M2/M3 double KO mice were virtually insensitive to carbachol. In conclusion, although both M2 and M3 muscarinic receptors were expressed in the mouse uterus, carbachol-induced contractile responses were predominantly mediated by the M3 receptor. Activation of M2 receptors alone did not cause uterine contractions; however, M2 receptor activation enhanced M3 receptor-mediated contractions in the mouse uterus.

  9. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist.

    PubMed

    Cialdai, Cecilia; Tramontana, Manuela; Patacchini, Riccardo; Lecci, Alessandro; Catalani, Claudio; Catalioto, Rose-Marie; Meini, Stefania; Valenti, Claudio; Altamura, Maria; Giuliani, Sandro; Maggi, Carlo Alberto

    2006-11-07

    The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA2

  10. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    PubMed

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  11. Substance P Receptor Antagonist Suppresses Inflammatory Cytokine Expression in Human Disc Cells.

    PubMed

    Kepler, Christopher K; Markova, Dessislava Z; Koerner, John D; Mendelis, Joseph; Chen, Chiu-Ming; Vaccaro, Alexander R; Risbud, Makarand V; Albert, Todd J; Anderson, D Greg

    2015-08-15

    Laboratory study. To evaluate whether blockade of the Substance P (SP) NK1R attenuates its proinflammatory effect on human intervertebral disc cells (IVD), and to evaluate the signaling pathways associated with SP. SP and its receptors are expressed in human IVD cells, and cause upregulation of inflammatory mediators; however, the effects of blocking these receptors have not been studied in human IVD cells. Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were expanded in monolayer, and then suspended in alginate beads. The alginate beads were treated with culture medium first containing a high affinity NK1R antagonist (L-760735) at different concentrations, and then with medium containing both NK1R antagonist and SP at 2 concentrations. Ribonucleic acid was isolated and transcribed into cDNA. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate expression of interleukin (IL)-1β, IL-6, and IL-8. Western blot analysis was performed to examine levels of the phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB p65). The cells were pretreated with specific inhibitors of p38 (SB203580), ERK1/2 (PD98059), and p65 (SM7368) and then stimulated with SP. We detected expression of NK1R, neurokinin receptor 2 (NK2R), and neurokinin receptor 3 (NK3R) in AF and NP cells. Treatment of disc cells with the NK1R antagonist was able to suppress expression of IL-1β, IL-6, and IL-8 in a dose-dependent manner. SP stimulation increased phosphorylation of p38-MAPK and ERK1/2, but not of NFκB p65. This indicates that p38-MAPK and ERK1/2 control SP-induced cytokine expression independently from NF-kB p65. Inhibition of p38 and ERK1/2 activation reduced SP-induced IL-6 production in human disc cells. NK1R is responsible for the proinflammatory effect of SP on IVD cells and this effect can be blocked by preventing binding of SP to NK1R. This study shows for the first time that SP mediates signaling in disc cells through NK1R and that SP activates the proinflammatory p38-MAPK and ERK1/2 pathways. 4.

  12. Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems.

    PubMed

    Brüning, César Augusto; Souza, Ana Cristina Guerra; Gai, Bibiana Mozzaquatro; Zeni, Gilson; Nogueira, Cristina Wayne

    2011-05-11

    Serotonergic and opioid systems have been implicated in major depression and in the action mechanism of antidepressants. The organoselenium compound m-trifluoromethyl-diphenyl diselenide (m-CF(3)-PhSe)(2) shows antioxidant and anxiolytic activities and is a selective inhibitor of monoamine oxidase A activity. The present study was designed to investigate the antidepressant-like effect of (m-CF(3)-PhSe)(2) in female mice, employing the forced swimming test. The involvement of the serotonergic and opioid systems in the antidepressant-like effect of (m-CF(3)-PhSe)(2) was appraised. (m-CF(3)-PhSe)(2) at doses of 50 and 100mg/kg (p.o.) exhibited antidepressant-like action in the forced swimming test. The effect of (m-CF(3)-PhSe)(2) (50mg/kg p.o.) was prevented by pretreatment of mice with WAY100635 (0.1mg/kg, s.c. a selective 5-HT(1A) receptor antagonist), ritanserin (4 mg/kg, i.p., a non-selective 5HT(2A/2C) receptor antagonist), ondansetron (1mg/kg, i.p., a selective 5-HT(3) receptor antagonist) and naloxone (1mg/kg, i.p., a non-selective antagonist of opioid receptors). These results suggest that (m-CF(3)-PhSe)(2) produced an antidepressant-like effect in the mouse forced swimming test and this effect seems most likely to be mediated through an interaction with serotonergic and opioid systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Adenosinergic modulation of the discriminative-stimulus effects of methamphetamine in rats.

    PubMed

    Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Ferré, Sergi; Goldberg, Steven R

    2002-06-01

    A(1) and A(2A) adenosine receptors are co-localized with dopamine D(1) and D(2) receptors, respectively, and their stimulation attenuates dopaminergic functioning. To test whether adenosine antagonists with different selectivities for A(1) and A(2A) receptors mimic the discriminative-stimulus effects of dopamine releaser methamphetamine. Effects of the A(1) antagonist DPCPX, the preferential A(2A) antagonist DMPX and the non-selective adenosine antagonist caffeine were evaluated in Sprague-Dawley rats trained to discriminate 1.0 mg/kg, IP, methamphetamine from saline under a fixed-ratio 10 schedule of food presentation. The A(1) antagonist DPCPX (1.0-10.0 mg/kg) failed to substitute for methamphetamine. However, 5.6 mg/kg DPCPX shifted the methamphetamine dose-response curve to the left. The A(2A) antagonist DMPX (1.8-18.0 mg/kg) produced about 70% methamphetamine-appropriate responding and the non-selective antagonist caffeine (3.0-56.0 mg/kg) about 50% methamphetamine-appropriate responding at the highest tested doses. Both DMPX (5.6 mg/kg) and caffeine (30.0 mg/kg) shifted the methamphetamine dose-response curve to the left. Methamphetamine-like effects of DMPX were blocked fully by the D(2) antagonist spiperone (0.18 mg/kg) and partially by the D(1) antagonist SCH-23390 (0.018 mg/kg). Antagonism at A(2A) adenosine receptors directly mimics the discriminative-stimulus effects of methamphetamine through the interaction with dopamine receptors. Antagonism at A(1) adenosine receptors potentiates effects of lower methamphetamine doses and thus plays a rather indirect, modulatory role.

  14. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain.

    PubMed

    Harada, Yumi; Takayama, Kiyoshige; Ro, Shoki; Ochiai, Mitsuko; Noguchi, Masamichi; Iizuka, Seiichi; Hattori, Tomohisa; Yakabi, Koji

    2014-01-01

    This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague-Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Group III mGlu receptor agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block.

    PubMed

    De Sarro, Giovambattista; Chimirri, Alba; Meldrum, Brian S

    2002-09-06

    We report the anticonvulsant action in DBA/2 mice of two mGlu Group III receptor agonists: (R,S)-4-phosphonophenylglycine, (R,S)-PPG, a compound with moderate mGlu8 selectivity, and of (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid, ACPT-1, a selective agonist for mGlu4alpha receptors. Both compounds, given intracerebroventricularly at doses which did not show marked anticonvulsant activity, produced a consistent shift to the left of the dose-response curves (i.e. enhanced the anticonvulsant properties) of 1-(4'-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one hydrochloride, CFM-2, a noncompetitive AMPA receptor antagonist, and 3-((+/-)-2-carboxypiperazin-4-yl)-1-phosphonic acid, CPPene, a competitive NMDA receptor antagonist, in DBA/2 mice. In addition, (R,S)-PPG and ACPT-1 administered intracerebroventricularly prolonged the time course of the anticonvulsant properties of CFM-2 (33 micromol/kg, i.p.) and CPPene (3.3 micromol/kg, i.p.) administered intraperitoneally. We conclude that modest reduction of synaptic glutamate release by activation of Group III metabotropic receptors potentiates the anticonvulsant effect of AMPA and NMDA receptor blockade. Copyright 2002 Elsevier Science B.V.

  16. The role of bradykinin receptor type 2 in spontaneous extravasation in mice skin: implications for non-allergic angio-oedema.

    PubMed

    Bisha, Marion; Dao, Vu Thao-Vi; Gholamreza-Fahimi, Ehsan; Vogt, Michael; van Zandvoort, Marc; Weber, Sarah; Bas, Murat; Khosravani, Farbod; Kojda, Georg; Suvorava, Tatsiana

    2018-05-01

    Non-allergic angio-oedema is a life-threatening disease mediated by activation of bradykinin type 2 receptors (B 2 receptors). The aim of this study was to investigate whether activation of B 2 receptors by endogenous bradykinin contributes to physiological extravasation. This may shed new light on the assumption that treatment with an angiotensin converting enzyme inhibitor (ACEi) results in an alteration in the vascular barrier function predisposing to non-allergic angio-oedema. We generated a new transgenic mouse model characterized by endothelium-specific overexpression of the B 2 receptor (B2 tg ) and established a non-invasive two-photon laser microscopy approach to measure the kinetics of spontaneous extravasation in vivo. The B2 tg mice showed normal morphology and litter size as compared with their transgene-negative littermates (B2 n ). Overexpression of B 2 receptors was functional in conductance vessels and resistance vessels as evidenced by B 2 receptor-mediated aortic dilation to bradykinin in presence of non-specific COX inhibitor diclofenac and by significant hypotension in B2 tg respectively. Measurement of dermal extravasation by Miles assay showed that bradykinin induced extravasation was significantly increased in B2 tg as compared with B2 n . However, neither endothelial overexpression of B 2 receptors nor treatment with the ACEi moexipril or B 2 antagonist icatibant had any effect on spontaneous extravasation measured by two-photon laser microscopy. Activation of B 2 receptors does not appear to be involved in spontaneous extravasation. Therefore, the assumption that treatment with an ACEi results in an alteration in the physiological vascular barrier function predisposing to non-allergic angio-oedema is not supported by our findings. © 2018 The British Pharmacological Society.

  17. Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents

    PubMed Central

    Maheux, Jérôme; St-Hilaire, Michel; Voyer, David; Tirotta, Emanuele; Borrelli, Emiliana; Rouillard, Claude; Rompré, Pierre-Paul; Lévesque, Daniel

    2012-01-01

    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists. PMID:22912617

  18. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    PubMed

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  19. Discovery of spiropiperidine-based potent and selective Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Tomata, Yoshihide; Kunitomo, Jun; Hirozane, Mariko; Marui, Shogo

    2011-11-01

    To generate novel human Orexin-2 Receptor (OX2R) antagonists, a spiropiperidine based scaffold was designed and a SAR study was carried out. Compound 4f possessed the highest OX2R antagonistic activity with an IC(50) value of 3nM with 450-fold selectivity against Orexin-1 Receptor (OX1R). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews.

    PubMed

    Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.

  1. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews

    PubMed Central

    Ward, Alexander H.; Siegwart, John T.; Frost, Michael R.; Norton, Thomas T.

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 μL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development. PMID:28304244

  2. Effects of glutamate and {alpha}2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Mesbah; Danysz, Wojciech; Schmidt, Werner Juergen

    2009-10-15

    Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle insteadmore » of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.« less

  3. Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD).

    PubMed

    Dwoskin, Linda P; Joyce, B Matthew; Zheng, Guangrong; Neugebauer, Nichole M; Manda, Vamshi K; Lockman, Paul; Papke, Roger L; Bardo, Michael T; Crooks, Peter A

    2007-10-15

    Limitations in efficacy and high relapse rates of currently available smoking cessation agents reveal the need for more efficacious pharmacotherapies. One strategy is to develop subtype-selective nicotinic receptor (nAChR) antagonists that inhibit nicotine-evoked dopamine (DA) release, the primary neurotransmitter involved in nicotine reward. Simple alkylation of the pyridino N-atom converts nicotine from a potent agonist into a potent antagonist. The classical antagonists, hexamethonium and decamethonium, differentiate between peripheral nAChR subtypes. Using a similar approach, we interconnected varying quaternary ammonium moieties with a lipophilic linker to provide N,N'-bis-nicotinium analogs, affording a lead compound, N,N'-dodecyl-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), which inhibited nicotine-evoked DA release and decreased nicotine self-administration. The current work describes a novel compound, 1-(3-picolinium)-12-triethylammonium-dodecane dibromide (TMPD), a hybrid of bPiDDB and decamethonium. TMPD completely inhibited (IC(50)=500 nM) nicotine-evoked DA release from superfused rat striatal slices, suggesting that TMPD acts as a nAChR antagonist at more than one subtype. TMPD (1 microM) inhibited the response to acetylcholine at alpha3beta4, alpha4beta4, alpha4beta2, and alpha1beta1varepsilondelta receptors expressed in Xenopus oocytes. TMPD had a 2-fold higher affinity than choline for the blood-brain barrier choline transporter, suggesting brain bioavailability. TMPD did not inhibit hyperactivity in nicotine sensitized rats, but significantly and specifically decreased nicotine self-administration. Together, the results suggest that TMPD may have the ability to reduce the rewarding effect of nicotine with minimal side effects, a pharmacological profile indicative of potential clinical utility for the treatment of tobacco dependence.

  4. Evidence for a role of 5-HT2C receptors in the motor aspects of performance, but not the efficacy of food reinforcers, in a progressive ratio schedule.

    PubMed

    Bezzina, G; Body, S; Cheung, T H C; Hampson, C L; Bradshaw, C M; Glennon, J C; Szabadi, E

    2015-02-01

    5-Hydroxytryptamine2C (5-HT2C) receptor agonists reduce the breakpoint in progressive ratio schedules of reinforcement, an effect that has been attributed to a decrease of the efficacy of positive reinforcers. However, a reduction of the breakpoint may also reflect motor impairment. Mathematical models can help to differentiate between these processes. The effects of the 5-HT2C receptor agonist Ro-600175 ((αS)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine) and the non-selective 5-HT receptor agonist 1-(m-chlorophenyl)piperazine (mCPP) on rats' performance on a progressive ratio schedule maintained by food pellet reinforcers were assessed using a model derived from Killeen's Behav Brain Sci 17:105-172, 1994 general theory of schedule-controlled behaviour, 'mathematical principles of reinforcement'. Rats were trained under the progressive ratio schedule, and running and overall response rates in successive ratios were analysed using the model. The effects of the agonists on estimates of the model's parameters, and the sensitivity of these effects to selective antagonists, were examined. Ro-600175 and mCPP reduced the breakpoint. Neither agonist significantly affected a (the parameter expressing incentive value), but both agonists increased δ (the parameter expressing minimum response time). The effects of both agonists could be attenuated by the selective 5-HT2C receptor antagonist SB-242084 (6-chloro-5-methyl-N-{6-[(2-methylpyridin-3-yl)oxy]pyridin-3-yl}indoline-1-carboxamide). The effect of mCPP was not altered by isamoltane, a selective 5-HT1B receptor antagonist, or MDL-100907 ((±)2,3-dimethoxyphenyl-1-(2-(4-piperidine)methanol)), a selective 5-HT2A receptor antagonist. The results are consistent with the hypothesis that the effect of the 5-HT2C receptor agonists on progressive ratio schedule performance is mediated by an impairment of motor capacity rather than by a reduction of the incentive value of the food reinforcer.

  5. Orexin in sleep, addiction and more: is the perfect insomnia drug at hand?

    PubMed

    Hoyer, Daniel; Jacobson, Laura H

    2013-12-01

    Orexins A and B (hypocretins 1 and 2) and their two receptors (OX1R and OX2R) were discovered in 1998 by two different groups. Orexin A and B are derived from the differential processing of a common precursor, the prepro-orexin peptide. The neuropeptides are expressed in a few thousand cells located in the lateral hypothalamus (LH), but their projections and receptor distribution are widespread throughout the brain. Remarkably, prepro peptide and double (OX1R/OX2R) receptor knock out (KO) mice reproduce a sleep phenotype known in humans and dogs as narcolepsy/cataplexy. In humans, this disease is characterized by the absence of orexin producing cells in the LH, and severely depleted levels of orexin the cerebrospinal fluid. Null mutation of the individual OX1R or OX2R in mice substantially ameliorates the narcolepsy/cataplexy phenotype compared to the OX1R/OX2R KO, and highlights specific roles of the individual receptors in sleep architecture, the OX1R KO demonstrating an a attenuated sleep phenotype relative to the OX2R KO. It has therefore been suggested that orexin is a master regulator of the sleep-wake cycle, with high activity of the LH orexin cells during wake and almost none during sleep. Less than 10years later, the first orexin antagonist, almorexant, a dual orexin receptor antagonist (DORA), was reported to be effective in inducing sleep in volunteers and insomnia patients. Although development was stopped for almorexant and for Glaxo's DORA SB-649868, no less than 4 orexin receptor antagonists have reached phase II for insomnia, including Filorexant (MK-6096) and Suvorexant (MK-4305) from Merck. Suvorexant has since progressed to Phase III and dossier submission to the FDA. These four compounds are reported as DORAs, however, they equilibrate very slowly at one and/or the other orexin receptor, and thus at equilibrium may show more or less selectivity for OX1R or OX2R. The appropriate balance of antagonism of the two receptors for sleep is a point of debate, although in rodent models OX2R antagonism alone appears sufficient to induce sleep, whereas OX1R antagonism is largely devoid of this effect. Orexin is involved in a number of other functions including reward and feeding, where OX1R (possibly OX2R) antagonists display anti-addictive properties in rodent models of alcohol, smoking, and drug self-administration. However, despite early findings in feeding and appetite control, orexin receptor antagonists have not produced the anticipated effects in models of increased food intake or obesity in rodents, nor have they shown marked effects on weight in the existing clinical trials. The role of orexin in a number of other domains such as pain, mood, anxiety, migraine and neurodegenerative diseases is an active area of research. The progress of the orexin field is thus extraordinary, and the community awaits the clinical testing of more receptor selective antagonists in sleep and other disorders, as well as that of orexin agonists, with the latter expected to produce positive outcomes in narcolepsy/cataplexy and other conditions. Copyright © 2013. Published by Elsevier Ltd.

  6. Orexin research: patent news from 2016.

    PubMed

    Boss, Christoph; Roch, Catherine

    2017-10-01

    The orexin system consists of two G-protein-coupled receptors, orexin 1 and orexin 2 and two endogenous ligands, orexin A and orexin B . It is evolutionarily highly conserved. It is involved in the promotion of wakefulness as well as in anxiety and addictive disorders. In addition, its activation via the Ox1 receptor triggers apoptosis in several cancer cell lines. Dual orexin receptor antagonists are successfully used to treat primary insomnia. The major open questions are now related to the clinical validation of Ox1 selective antagonists. A strong rationale exists for orexin agonism in the treatment of narcolepsy with cataplexy. Areas covered: The patent applications from Thomson Reuters Integrity Database added in 2016 are summarized and discussed together with the most important findings published in the scientific literature. Expert opinion: The large number of patents shows the continuing interest in the orexin receptors as targets. The structural scope covered is narrow. Questions about novelty and inventiveness are evident. The additional information published on X-ray structures on both orexin receptors opens new ways of optimizing antagonists. It might also influence the efforts in the identification of orexin receptor agonists. Being potential treatments for narcolepsy with cataplexy.

  7. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C

    PubMed Central

    Al-Qudah, M.; Anderson, C. D.; Mahavadi, S.; Bradley, Z. L.; Akbarali, H. I.; Murthy, K. S.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation. PMID:24356881

  8. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C.

    PubMed

    Al-Qudah, M; Anderson, C D; Mahavadi, S; Bradley, Z L; Akbarali, H I; Murthy, K S; Grider, J R

    2014-02-15

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation.

  9. Autocrine regulation of human sperm motility by tachykinins

    PubMed Central

    2010-01-01

    Background We examined the presence and function of tachykinins and the tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP2) in human spermatozoa. Methods Freshly ejaculated semen was collected from forty-eight normozoospermic human donors. We analyzed the expression of substance P, neurokinin A, neurokinin B, hemokinin-1, NEP and NEP2 in sperm cells by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot and immunocytochemistry assays and evaluated the effects of the neprilysin and neprilysin-2 inhibitor phosphoramidon on sperm motility in the absence and presence of tachykinin receptor-selective antagonists. Sperm motility was measured using WHO procedures or computer-assisted sperm analysis (CASA). Results The mRNAs of the genes that encode substance P/neurokinin A (TAC1), neurokinin B (TAC3), hemokinin-1 (TAC4), neprilysin (MME) and neprilysin-2 (MMEL1) were expressed in human sperm. Immunocytochemistry studies revealed that tachykinin and neprilysin proteins were present in spermatozoa and show specific and differential distributions. Phosphoramidon increased sperm progressive motility and its effects were reduced in the presence of the tachykinin receptor antagonists SR140333 (NK1 receptor-selective) and SR48968 (NK2 receptor-selective) but unmodified in the presence of SR142801 (NK3 receptor-selective). Conclusion These data show that tachykinins are present in human spermatozoa and participate in the regulation of sperm motility. Tachykinin activity is regulated, at least in part, by neprilysins. PMID:20796280

  10. Autocrine regulation of human sperm motility by tachykinins.

    PubMed

    Pinto, Francisco M; Ravina, Cristina G; Subiran, Nerea; Cejudo-Román, Antonio; Fernández-Sánchez, Manuel; Irazusta, Jon; Garrido, Nicolas; Candenas, Luz

    2010-08-26

    We examined the presence and function of tachykinins and the tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP2) in human spermatozoa. Freshly ejaculated semen was collected from forty-eight normozoospermic human donors. We analyzed the expression of substance P, neurokinin A, neurokinin B, hemokinin-1, NEP and NEP2 in sperm cells by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot and immunocytochemistry assays and evaluated the effects of the neprilysin and neprilysin-2 inhibitor phosphoramidon on sperm motility in the absence and presence of tachykinin receptor-selective antagonists. Sperm motility was measured using WHO procedures or computer-assisted sperm analysis (CASA). The mRNAs of the genes that encode substance P/neurokinin A (TAC1), neurokinin B (TAC3), hemokinin-1 (TAC4), neprilysin (MME) and neprilysin-2 (MMEL1) were expressed in human sperm. Immunocytochemistry studies revealed that tachykinin and neprilysin proteins were present in spermatozoa and show specific and differential distributions. Phosphoramidon increased sperm progressive motility and its effects were reduced in the presence of the tachykinin receptor antagonists SR140333 (NK1 receptor-selective) and SR48968 (NK2 receptor-selective) but unmodified in the presence of SR142801 (NK3 receptor-selective). These data show that tachykinins are present in human spermatozoa and participate in the regulation of sperm motility. Tachykinin activity is regulated, at least in part, by neprilysins.

  11. Effects of Cannabinoid Agonists and Antagonists on Sleep and Breathing in Sprague-Dawley Rats.

    PubMed

    Calik, Michael W; Carley, David W

    2017-09-01

    There are no pharmacological treatments for obstructive sleep apnea syndrome, but dronabinol showed promise in a small pilot study. In anesthetized rats, dronabinol attenuates reflex apnea via activation of cannabinoid (CB) receptors located on vagal afferents; an effect blocked by cannabinoid type 1 (CB1) and/or type 2 (CB2) receptor antagonists. Here, using a natural model of central sleep apnea, we examine the effects of dronabinol, alone and in combination with selective antagonists in conscious rats chronically instrumented to stage sleep and measure cessation of breathing. Adult male Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography on multiple occasions separated by at least 3 days. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections: vehicle; vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol; dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonist. Dronabinol decreased the percent time spent in rapid eye movement (REM) sleep. CB receptor antagonists did not reverse this effect. Dronabinol also decreased apneas during sleep, and this apnea suppression was reversed by CB1 or CB1/CB2 receptor antagonism. Dronabinol's effects on apneas were dependent on CB1 receptor activation, while dronabinol's effects on REM sleep were CB receptor-independent. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. On the behavioural specificity of hypophagia induced in male rats by mCPP, naltrexone, and their combination.

    PubMed

    Wright, F L; Rodgers, R J

    2014-02-01

    Serotonergic (5-hydroxytryptamine, 5-HT) and opioidergic mechanisms are intimately involved in appetite regulation. In view of recent evidence of positive anorectic interactions between opioid and various non-opioid substrates, our aim was to assess the behavioural specificity of anorectic responses to the opioid receptor antagonist naltrexone, the 5-HT2C/1B receptor agonist mCPP and their combination. Behavioural profiling techniques, including the behavioural satiety sequence (BSS), were used to examine acute drug effects in non-deprived male rats tested with palatable mash. Experiment 1 characterised the dose-response profile of mCPP (0.1-3.0 mg/kg), while experiment 2 assessed the effects of combined treatment with a sub-anorectic dose of mCPP (0.1 mg/kg) and one of two low doses of naltrexone (0.1 and 1.0 mg/kg). Experiment 1 confirmed the dose-dependent anorectic efficacy of mCPP, with robust effects on intake and feeding-related measures observed at 3.0 mg/kg. However, that dose was also associated with other behavioural alterations including increased grooming, reductions in locomotion and sniffing, and disruption of the BSS. In experiment 2, naltrexone dose-dependently reduced food intake and time spent feeding, effects accompanied by a behaviourally selective acceleration in the BSS. However, the addition of 0.1 mg/kg mCPP did not significantly alter the behavioural changes observed in response to either dose of naltrexone given alone. In contrast to recently reported positive anorectic interactions involving low-dose combinations of opioid receptor antagonists or mCPP with cannabinoid CB1 receptor antagonists, present results would not appear to provide any support for potentially clinically relevant anorectic interactions between opioid and 5-HT2C/1B receptor mechanisms.

  13. Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice

    PubMed Central

    Kim, H J; Kim, D K; Kim, H; Koh, J Y; Kim, K M; Noh, M S; Lee, S; Kim, S; Park, S H; Kim, J J; Kim, S Y; Lee, C H

    2008-01-01

    Background and purpose: Recently, we reported that 12(S)-HPETE (12(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid) induces scratching in ICR mice. We hypothesized that 12(S)-HPETE might act as an agonist of the low-affinity leukotriene B4 receptor BLT2. To confirm the involvement of the BLT2 receptor in 12(S)-HPETE-induced scratching, we studied the scratch response using the BLT2 receptor agonists compound A (4′-{[pentanoyl (phenyl) amino]methyl}-1,1′-biphenyl-2-carboxylic acid) and 12(S)-HETE (12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid). Experimental approach: A video recording was used to determine whether the BLT2 receptor agonists caused itch-associated scratching in ICR mice. Selective antagonists and several chemicals were used. Key results: Both 12(S)-HETE and compound A dose dependently induced scratching in the ICR mice. The dose–response curve for compound A showed peaks at around 0.005–0.015 nmol per site. Compound A- and 12(S)-HETE-induced scratching was suppressed by capsaicin and naltrexon. We examined the suppressive effects of U75302 (6-[6-(3-hydroxy-1E,5Z-undecadienyl)-2-pyridinyl]-1,5-hexanediol, the BLT1 receptor antagonist) and LY255283 (1-[5-ethyl-2-hydroxy-4-[[6-methyl-6-(1H-tetrazol-5-yl)heptyl]oxy]phenyl]-ethanone, the BLT2 receptor antagonist) on the BLT2 agonist-induced scratching. LY255283 suppressed compound A- and 12(S)-HETE-induced scratching, but U75302 did not. LY255283 required a higher dose to suppress the compound A-induced scratching than it did to suppress the 12(S)-HETE-induced scratching. One of the BLT2 receptor agonists, 12(R)-HETE (12(R)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid), also induced scratching in the ICR mice. Conclusions and implications: Our present results corroborate the hypothesis that the BLT2 receptor is involved in 12(S)-lipoxygenase-product-induced scratching in ICR mice. We also confirmed that this animal model could be a valuable means of evaluating the effects of BLT2 receptor antagonists. PMID:18536755

  14. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia.

    PubMed

    O'Connor, W T

    2001-08-15

    Microdialysis was employed to investigate the dopamine, cholecystokinin (CCK) and neurotensin receptor regulation of ventral striopallidal GABA transmission by intra-accumbens perfusion with selective receptor ligands and monitoring local or ipsilateral ventral pallidal GABA release. In the dual probe studies intra-accumbens perfusion with the dopamine D1 and D2 receptor agonists SKF28293 and pergolide had no effect on ventral pallidal GABA, while both the D1 and D2 receptor antagonists SCH23390 and raclopride increased ventral pallidal GABA release. In contrast, intra-accumbens CCK decreased ventral pallidal GABA release and this was reversed by local perfusion with the CCK2 receptor antagonist PD134308 but not the CCK1 receptor antagonist L-364,718. In a single probe study intra-accumbens neurotensin increased local GABA release, which was strongly potentiated when the peptidase inhibitor phosphodiepryl 08 was perfused together with neurotensin. In addition, the neurotensin receptor antagonist SR48692 counteracted this phosphodiepryl 08 induced potentiated increased in GABA release. Taken together, these findings indicate that mesolimbic dopamine and CCK exert a respective tonic and phasic inhibition of ventral pallidal GABA release while the antipsychotic activity associated with D1 and D2 receptor antagonists may be explained by their ability to increase ventral striopallidal GABA transmission. Furthermore, the findings suggest that CCK2 receptor antagonists and neurotensin endopeptidase inhibitors may be useful antipsychotics.

  15. The scavenger activity of the human P2X7 receptor differs from P2X7 pore function by insensitivity to antagonists, genetic variation and sodium concentration: Relevance to inflammatory brain diseases.

    PubMed

    Ou, Amber; Gu, Ben J; Wiley, James S

    2018-04-01

    Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na + and K + media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids.

    PubMed

    Blanc, Landry; Gilleron, Martine; Prandi, Jacques; Song, Ok-Ryul; Jang, Mi-Seon; Gicquel, Brigitte; Drocourt, Daniel; Neyrolles, Olivier; Brodin, Priscille; Tiraby, Gérard; Vercellone, Alain; Nigou, Jérôme

    2017-10-17

    Mycobacterium tuberculosis is a major human pathogen that is able to survive inside host cells and resist immune clearance. Most particularly, it inhibits several arms of the innate immune response, including phagosome maturation or cytokine production. To better understand the molecular mechanisms by which M. tuberculosis circumvents host immune defenses, we used a transposon mutant library generated in a virulent clinical isolate of M. tuberculosis of the W/Beijing family to infect human macrophages, utilizing a cell line derivative of THP-1 cells expressing a reporter system for activation of the transcription factor NF-κB, a key regulator of innate immunity. We identified several M. tuberculosis mutants inducing a NF-κB activation stronger than that of the wild-type strain. One of these mutants was found to be deficient for the synthesis of cell envelope glycolipids, namely sulfoglycolipids, suggesting that the latter can interfere with innate immune responses. Using natural and synthetic molecular variants, we determined that sulfoglycolipids inhibit NF-κB activation and subsequent cytokine production or costimulatory molecule expression by acting as competitive antagonists of Toll-like receptor 2, thereby inhibiting the recognition of M. tuberculosis by this receptor. Our study reveals that producing glycolipid antagonists of pattern recognition receptors is a strategy used by M. tuberculosis to undermine innate immune defense. Sulfoglycolipids are major and specific lipids of M. tuberculosis , considered for decades as virulence factors of the bacilli. Our study uncovers a mechanism by which they may contribute to M. tuberculosis virulence.

  17. Unprecedented Therapeutic Potential with a Combination of A2A/NR2B Receptor Antagonists as Observed in the 6-OHDA Lesioned Rat Model of Parkinson's Disease

    PubMed Central

    Michel, Anne; Downey, Patrick; Nicolas, Jean-Marie; Scheller, Dieter

    2014-01-01

    In Parkinson's disease, the long-term use of dopamine replacing agents is associated with the development of motor complications; therefore, there is a need for non-dopaminergic drugs. This study evaluated the potential therapeutic impact of six different NR2B and A2A receptor antagonists given either alone or in combination in unilateral 6-OHDA-lesioned rats without (monotherapy) or with (add-on therapy) the co-administration of L-Dopa: Sch-58261+ Merck 22; Sch-58261+Co-101244; Preladenant + Merck 22; Preladenant + Radiprodil; Tozadenant + Radiprodil; Istradefylline + Co-101244. Animals given monotherapy were assessed on distance traveled and rearing, whereas those given add-on therapy were assessed on contralateral rotations. Three-way mixed ANOVA were conducted to assess the main effect of each drug separately and to determine whether any interaction between two drugs was additive or synergistic. Additional post hoc analyses were conducted to compare the effect of the combination with the effect of the drugs alone. Motor activity improved significantly and was sustained for longer when the drugs were given in combination than when administered separately at the same dose. Similarly, when tested as add-on treatment to L-Dopa, the combinations resulted in higher levels of contralateral rotation in comparison to the single drugs. Of special interest, the activity observed with some combinations could not be described by a simplistic additive effect and involved more subtle synergistic pharmacological interactions. The combined administration of A2A/NR2B-receptor antagonists improved motor behaviour in 6-OHDA rats. Given the proven translatability of this model such a combination may be expected to be effective in improving motor symptoms in patients. PMID:25513815

  18. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  19. Identification of the dopamine autoreceptor in the guinea-pig retina as D2 receptor using novel subtype-selective antagonists

    PubMed Central

    Weber, Bernd; Schlicker, Eberhard; Sokoloff, Pierre; Stark, Holger

    2001-01-01

    Dopamine release in the retina is subject to modulation via autoreceptors, which belong to the D2 receptor family (encompassing the D2, D3 and D4 receptors). The aim of the present study was to determine the receptor subtype (D2 vs D3) involved in the inhibition of dopamine release in guinea-pig retinal discs, using established (haloperidol, (S)-nafadotride) and novel dopamine receptor antagonists (ST-148, ST-198). hD2L and hD3 receptors were expressed in CHO cells and the pKi values determined in binding studies with [125I]-iodosulpride were: haloperidol 9.22 vs 8.54; ST-148 7.85 vs 6.60; (S)-nafadotride 8.52 vs 9.51; ST-198 6.14 vs 7.92. The electrically evoked tritium overflow from retinal discs preincubated with [3H]-noradrenaline (which represents quasi-physiological dopamine release) was inhibited by the dopamine receptor agonists B-HT 920 (talipexole) and quinpirole (maximally by 82 and 71%; pEC50 5.80 and 5.83). The concentration-response curves of these agonists were shifted to the right by haloperidol (apparent pA2 8.69 and 8.23) and ST-148 (7.52 and 7.66). (S)-Nafadotride 0.01 μM and ST-198 0.32 μM did not affect the concentration-response curve of B-HT 920. The dopamine autoreceptor in the guinea-pig retina can be classified as a D2 receptor. ST-148 and ST-198 show an improved selectivity for D2 and D3 receptors when compared to haloperidol and (S)-nafadotride, respectively. PMID:11498509

  20. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  1. Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats.

    PubMed

    Wang, Xiu-Li; Zhang, Hong-Mei; Li, De-Pei; Chen, Shao-Rui; Pan, Hui-Lin

    2006-03-01

    Activation of spinal muscarinic acetylcholine receptors (mAChRs) inhibits nociception. However, the cellular mechanisms of this action are not fully known. In this study, we determined the role of mAChR subtypes in regulation of synaptic glycine release in the spinal cord. Whole-cell voltage-clamp recordings were performed on lamina II neurones in the rat spinal cord slices. The mAChR agonist oxotremorine-M significantly increased the frequency of glycinergic sIPSCs but not mIPSCs. Surprisingly, the effect of oxotremorine-M on sIPSCs was largely attenuated at a higher concentration. On the other hand, 1-10 microm oxotremorine-M dose-dependently increased the frequency of sIPSCs in rats pretreated with intrathecal pertussis toxin. Furthermore, oxotremorine-M also dose-dependently increased the frequency of sIPSCs in the presence of himbacine (an M2/M4 mAChR antagonist) or AF-DX116 (an M2 mAChR antagonist). The M3 mAChR antagonist 4-DAMP abolished the stimulatory effect of oxotremorine-M on sIPSCs. Interestingly, the GABA(B) receptor antagonist CGP55845 potentiated the stimulatory effect of oxotremorine-M on sIPSCs. In the presence of CGP55845, both himbacine and AF-DX116 similarly reduced the potentiating effect of oxotremorine-M on sIPSCs. Collectively, these data suggest that the M3 subtype is present on the somatodendritic site of glycinergic neurones and is mainly responsible for muscarinic potentiation of glycinergic input to spinal dorsal horn neurones. Concurrent stimulation of mAChRs on adjacent GABAergic interneurones attenuates synaptic glycine release through presynaptic GABA(B) receptors on glycinergic interneurones. This study illustrates a complex dynamic interaction between GABAergic and glycinergic synapses in the spinal cord dorsal horn.

  2. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection.

    PubMed

    Zhang, Qiang; Shao, Yang; Zhao, Changsong; Cai, Juan; Sun, Sheng

    2014-12-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.

  3. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection

    PubMed Central

    ZHANG, QIANG; SHAO, YANG; ZHAO, CHANGSONG; CAI, JUAN; SUN, SHENG

    2014-01-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection. PMID:25371724

  4. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    PubMed Central

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where high intensity stimuli are prevalent. PMID:17532111

  5. The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors

    PubMed Central

    Thompson, A J; Lochner, M; Lummis, S C R

    2007-01-01

    Background and Purpose: The antimalarial compounds quinine, chloroquine and mefloquine affect the electrophysiological properties of Cys-loop receptors and have structural similarities to 5-HT3 receptor antagonists. They may therefore act at 5-HT3 receptors. Experimental Approach: The effects of quinine, chloroquine and mefloquine on electrophysiological and ligand binding properties of 5-HT3A receptors expressed in HEK 293 cells and Xenopus oocytes were examined. The compounds were also docked into models of the binding site. Key Results: 5-HT3 responses were blocked with IC 50 values of 13.4 μM, 11.8 μM and 9.36 μM for quinine, chloroquine and mefloquine. Schild plots indicated quinine and chloroquine behaved competitively with pA 2 values of 4.92 (K B=12.0 μM) and 4.97 (K B=16.4 μM). Mefloquine displayed weakly voltage-dependent, non-competitive inhibition consistent with channel block. On and off rates for quinine and chloroquine indicated a simple bimolecular reaction scheme. Quinine, chloroquine and mefloquine displaced [3H]granisetron with K i values of 15.0, 24.2 and 35.7 μ M. Docking of quinine into a homology model of the 5-HT3 receptor binding site located the tertiary ammonium between W183 and Y234, and the quinoline ring towards the membrane, stabilised by a hydrogen bond with E129. For chloroquine, the quinoline ring was positioned between W183 and Y234 and the tertiary ammonium stabilised by interactions with F226. Conclusions and Implications: This study shows that quinine and chloroquine competitively inhibit 5-HT3 receptors, while mefloquine inhibits predominantly non-competitively. Both quinine and chloroquine can be docked into a receptor binding site model, consistent with their structural homology to 5-HT3 receptor antagonists. PMID:17502851

  6. Tranylcypromine Substituted cis-Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D3 Receptor Antagonists

    PubMed Central

    2015-01-01

    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155

  7. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    PubMed

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification of both NK1 and NK2 receptors in guinea-pig airways.

    PubMed Central

    McKee, K. T.; Millar, L.; Rodger, I. W.; Metters, K. M.

    1993-01-01

    1. NK1 and NK2 receptors have been characterized in guinea-pig lung membrane preparations by use of [125I-Tyr8]-substance P and [125I]-neurokinin A binding assays in conjunction with tachykinin-receptor selective agonists ([Sar9Met(O2)11]substance P for NK1 and [beta Ala8]neurokinin A (4-10) for NK2) and antagonists (CP-99,994 for NK1 and SR48968 for NK2). 2. The presence of high affinity, G-protein-coupled NK1 receptors in guinea-pig lung parenchymal membranes has been confirmed. The rank order of affinity for competing tachykinins was as predicted for an NK1 receptor: substance P = [Sar9Met(O2)11]substance P > substance P-methyl ester = physalaemin > neurokinin A = neurokinin B >> [beta Ala8]neurokinin A (4-10). The novel NK1 antagonist CP-99,994 has a Ki of 0.4 nM at this NK1 site. 3. In order to characterize [125I]-neurokinin A binding to guinea-pig lung, the number of [125I]-neurokinin A specific binding sites was increased 3-4 fold by purification of the parenchymal membranes over discontinuous sucrose gradients. The rank order of affinity determined for NK1- and NK2-receptor agonists and antagonists in competition for these sites showed that the majority (80%) of [125I]-neurokinin A specific binding was also to the NK1 receptor. 4. Under conditions where the guinea-pig lung parenchymal NK1 receptor was fully occupied by a saturating concentration of either [Sar9Met(O2)11]substance P (1 microM) or CP-99,994 (2.7 microM), residual [125I]-neurokinin A specific binding was inhibited in a concentration-dependent manner by both [beta Ala8]neurokinin A and SR48968. This result shows that the NK2 receptor is also present in these preparations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7694756

  9. [Leukotriene antagonists: a new approach in the treatment of asthma].

    PubMed

    Devillier, P; Bessard, G; Advenier, C

    1997-06-01

    Inflammation plays an essential role in the genesis of airflow obstruction and bronchial hyper-reactivity in the early stages of clinical asthma. The treatment of bronchial inflammation has become an essential element in the therapeutic strategy and principally rests on inhaled glucocorticoids. Amongst a number of inflammatory mediators leukotrienes occupy a privileged place by the power of their inflammatory and constrictor effects on bronchial smooth muscles. These properties have justified the clinical development of inhibitors of their synthesis and of specific antagonists to their receptors. Leukotriene antagonists are specific for a sub type of leukotriene receptors C4, D4 and E4 which is implicated in the majority of the bronchial constrictor and inflammatory effects of leukotrienes. The antagonists of Cys-LT1 receptor but also the inhibitors of the leukotriene synthesis exert an additive bronchodilator effect to those of B2 stimulants confirming an efficacious protection vis a vis bronchial provocation tests and above all they improve the clinical scores, lung function and also enable a decrease in the consumption of beta 2 agonists. The marketing of these products represents a major event because it corresponds to the advent of a new therapeutic class. The ease of administration by the oral route, their demonstrated efficacy and their good tolerance profile (in particular for ICI 204.219, and antagonists to Cys-LT1 receptors) are elements which foresee a success for this new asthmatic treatment. However numerous studies, notably comparative studies vis a vis reference treatments will be necessary to define their place in the strategic approach to the treatment of asthma.

  10. Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.

    PubMed

    Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi

    2015-08-01

    Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A plant Kunitz-type inhibitor mimics bradykinin-induced cytosolic calcium increase and intestinal smooth muscle contraction.

    PubMed

    Andrade, Sheila Siqueira; Smaili, Soraya Soubhi; Monteforte, Priscila Totarelli; Miranda, Antônio; Kouyoumdjian, Maria; Sampaio, Misako Uemura; Lopes, Guiomar Silva; Oliva, Maria Luiza V

    2012-09-01

    BbKI is a kallikrein inhibitor with a reactive site sequence similar to that of kinins, the vasoactive peptides inserted in kininogen moieties. This structural similarity probably contributes to the strong interaction with plasma kallikrein, the enzyme that releases, from high-molecular weight kininogen (HMWK), the proinflammatory peptide bradykinin, which acts on B(2) receptors (B(2)R). BbKI was examined on smooth muscle contraction and Ca(2+) mobilization, in which the kallikrein-kinin system is involved. Contrary to expectations, BbKI (1.8 μm) increased [Ca(2+)](c) and contraction, as observed with BK (2.0 μm). Not blocked by B(1) receptors (B(1)R), the BbKI agonistic effect was blocked by the B(2)R antagonist, HOE-140 (6 μm), and the involvement of B(2)R was confirmed in B(2)R-knockout mice intestine. The same tissue response was obtained using a synthetic peptide derived from the BbKI reactive site structure, more resistant than BK to angiotensin I-converting enzyme (ACE) hydrolysis. Depending on the concentration, BbKI has a dual effect. At a low concentration, BbKI acts as a potent kallikrein inhibitor; however, due to the similarity to BK, in high concentrations, BbKI greatly increases Ca(2+) release from internal storages, as a consequence of its interaction with B(2)R. Therefore, the antagonistic and agonistic effects of BbKI may be considered in conditions of B(2)R involvement.

  12. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  13. Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system.

    PubMed

    Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M

    1997-04-01

    The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.

  14. Computational study of the binding mechanism between farnesoid X receptor α and antagonist N-benzyl-N-(3-(tertbutyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide.

    PubMed

    Du, Juan; Qiu, Miaoxue; Guo, Lizhong; Yao, Xiaojun

    2018-05-02

    Farnesoid X receptor α (FXRα) is a bile acid-activated transcription factor, which plays important roles in the regulation of multiple metabolic processes. Development of FXR antagonist has revealed great potential for the treatment of metabolic disorders. The compound N-Benzyl-N-(3-(tertbutyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino). Benzamide (NDB) was recently determined as a selective antagonist of FXRα, while the detailed interaction mechanism is not well understood. In this study, the combined computational methods including molecular dynamics simulations, binding free energy calculation, and principal component analysis were utilized to investigate the effect of NDB on the dynamics behaviors and dimerization of FXRα The binding free energy calculation indicated that the protein dimerization increases NDB affinity and the binding of NDB also stabilizes the interaction between two subunits of FXRα. Further decomposition of the overall binding free energies into individual residues identifies several residues significant for NDB binding, including Leu291, Met294, Ala295, His298, Met332, Ser336, Ala452, and Leu455. It also suggests that the interactions of L289(A)-W458(B), W458(A)-L289(B), R459(A)-N461(B), and N461(A)-R459(B) are important for the dimer stabilization. This study provides a molecular basis for the understanding of binding mechanism between antagonist NDB and FXRα and valuable information for the novel FXR modulators design for the treatment of metabolic syndrome.

  15. Participation of dorsal periaqueductal gray 5-HT1A receptors in the panicolytic-like effect of the κ-opioid receptor antagonist Nor-BNI.

    PubMed

    Maraschin, Jhonatan Christian; Almeida, Camila Biesdorf; Rangel, Marcel Pereira; Roncon, Camila Marroni; Sestile, Caio César; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-06-01

    Panic patients may have abnormalities in serotonergic and opioidergic neurotransmission. The dorsal periaqueductal gray (dPAG) plays an important role in organizing proximal defense, related to panic attacks. The 5-HT 1A receptor (5-HT 1A -R) is involved in regulating escape behavior that is organized in the dPAG. Activation of κ-opioid receptor (KOR) in this region causes anxiogenic effects. In this study, we investigated the involvement of KOR in regulating escape behavior, using systemic and intra-dPAG injection of the KOR antagonist Nor-BNI. As panic models, we used the elevated T-maze (ETM) and the dPAG electrical stimulation test (EST). We also evaluated whether activation of the 5-HT 1A -R or the μ-opioid receptor (MOR) in the dPAG contributes to the Nor-BNI effects. The results showed that systemic administration of Nor-BNI, either subcutaneously (2.0 and 4.0mg/kg) or intraperitoneally (2.0mg/kg), impaired escape in the EST, indicating a panicolytic-like effect. Intra-dPAG injection of this antagonist (6.8nmol) caused the same effect in the EST and in the ETM. Association of ineffective doses of Nor-BNI and the 5-HT 1A -R agonist 8-OH-DPAT caused panicolytic-like effect in these two tests. Previous administration of the 5-HT 1A -R antagonist WAY-100635, but not of the MOR antagonist CTOP, blocked the panicolytic-like effect of Nor-BNI. These results indicate that KOR enhances proximal defense in the dPAG through 5-HT 1A -R modulation, independently of MOR. Because former results indicate that the 5-HT 1A -R is involved in the antipanic action of antidepressants, KOR antagonists may be useful as adjunctive or alternative drug treatment of panic disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Opiate withdrawal induces dynamic expressions of AMPA receptors and its regulatory molecule CaMKIIalpha in hippocampal synapses.

    PubMed

    Zhong, Weixia; Dong, Zhifang; Tian, Meng; Cao, Jun; Xu, Tianle; Xu, Lin; Luo, Jianhong

    2006-07-24

    Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in nucleus accumbens or amygdala, but the influence of drug withdrawal on hippocampus is little known. Here, we have examined the expression of GluR1 and GluR2/3 in hippocampal membrane and synaptic fractions following repeated morphine exposure and subsequent withdrawal. Repeated morphine exposure for 12 d increased GluR1 and GluR2/3 in synaptosome but not in membrane fraction. Interestingly, CaMKIIalpha, known to be able to regulate the function of AMPA receptors, was decreased in synaptosome but not in membrane fraction; pCaMKIIalpha, the phosphorylated form of CaMKIIalpha, was increased in both fractions. However, during opiate withdrawal, GluR1 was generally reduced while GluR2/3 was prominently increased in both fractions; pCaMKIIalpha was strongly decreased immediately after withdrawal, but detectably increased in late phase of morphine withdrawal in both fractions. Importantly, the opiate withdrawal-induced increase in GluR2/3 was dependent on the activation of glucocorticoid receptors and NMDA receptors, as it was prevented by the glucocorticoid receptor antagonist RU38486, or intrahippocampal injection of the NMDA receptor antagonist AP-5 or the antagonist to NR2B-containing NMDA receptors, Ro25-6981. These findings indicate that opiate withdrawal induces dynamic expression of GluR1 and GluR2/3 subunits of AMPA receptors in hippocampal synapses, possibly revealing an adaptive process of the hippocampal functions following opiate withdrawal.

  17. Antagonism of bromocriptine-induced cage climbing behaviour in mice by the selective D-2 dopamine receptor antagonists, metoclopramide and molindone.

    PubMed

    Balsara, J J; Nandal, N V; Gada, V P; Bapat, T R; Chandorkar, A G

    1986-01-01

    Bromocriptine (5-30 mg/kg, ip), 2 hr after administration, induced cage climbing behaviour in mice. Pretreatment with haloperidol, an antagonist of both D-1 and D-2 dopamine receptors, metoclopramide and molindone, the selective D-2 dopamine receptor antagonists, effectively antagonised bromocriptine-induced climbing behaviour. The results indicate that bromocriptine most probably induces climbing behaviour in mice by stimulating the postsynaptic striatal D-2 dopamine receptors.

  18. The effects of angiotensin II on blood perfusion in the rat renal papilla

    PubMed Central

    Walker, L L; Rajaratne, A A J; Blair-West, J R; Harris, P J

    1999-01-01

    Systemic infusion of angiotensin II (AII) increased papillary blood perfusion (PBP) measured by laser-Doppler flowmetry in rats, aged about 5 weeks. The mechanisms involved in this response were determined by infusion of AII in the presence of systemic doses of losartan (a type 1 AII receptor antagonist), HOE-140 (a bradykinin B2 receptor antagonist), and an inhibitor of NO production - Nω -nitro-L-arginine (NOLA). Mean arterial blood pressure (MAP) and PBP increased in a dose-dependent manner in response to intravenous infusions of AII. Infusion of losartan abolished these responses to AII but HOE-140 was without effect. Infusion of NOLA abolished the increase in PBP but did not affect the pressor response to AII. Systemic infusion of sodium nitroprusside restored the response to AII in experiments with NOLA infusion. The results indicate that the increase in PBP caused by AII is mediated via angiotensin AT1 receptors and does not involve bradykinin B2 receptors. The AII-induced increase in PBP is dependent upon the presence of NO, thus providing a mechanism for maintenance of papillary perfusion in the face of generalized renal vasoconstriction due to AII. PMID:10432357

  19. Blonanserin reverses the phencyclidine (PCP)-induced impairment in novel object recognition (NOR) in rats: role of indirect 5-HT(1A) partial agonism.

    PubMed

    Horiguchi, M; Meltzer, H Y

    2013-06-15

    Blonanserin is an atypical antipsychotic drug (APD) which, compared to other atypical APDs, is a relatively selective serotonin (5-HT)2A and dopamine D2 antagonist. Comparing blonanserin with more broadly acting atypical APDs could be useful to test the contributions of actions at other monoamine receptors, e.g. 5-HT1A receptors, to the reversal of PCP-induced novel object recognition (NOR) deficit. In this study, we tested the effect of blonanserin alone, and in combination with 5-HT1A agents, on NOR deficit induced by subchronic treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP; 2 mg/kg), b.i.d., for 7 days. Blonanserin, 1mg/kg, but not 0.3mg/kg, improved the PCP-induced NOR deficit. However, at 1mg/kg, object exploration was diminished. Co-administration of sub-effective doses of blonanserin (0.3 mg/kg) and the 5-HT1A partial agonist, tandospirone (0.2 mg/kg), significantly reversed the NOR deficit without diminishing activity during the acquisition or retention periods. The combination of WAY100635 (0.6 mg/kg), a 5-HT1A antagonist, and blonanserin (1 mg/kg), also diminished object exploration which prevented assessment of the effect of this combination on NOR. WAY100635 (0.6 mg/kg) blocked the ameliorating effect of risperidone (0.1 mg/kg), another atypical APD with low affinity for 5-HT1A receptors, but did not impair exploration. These results suggest that blonansein and risperidone, atypical APDs which lack a direct action on 5-HT1A receptors require 5-HT1A receptor stimulation to reverse the subchronic PCP-induced NOR deficit and provide a support for clinical trial of blonanserin in combination with tandospirone to ameliorate cognitive impairment in schizophrenia and to have fewer side effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Affinity of D2-Like Dopamine Receptor Antagonists Determines the Time to Maximal Effect on Cocaine Self-Administration

    PubMed Central

    Tabet, Michael R.; Norman, Mantana K.; Fey, Brittney K.; Tsibulsky, Vladimir L.; Millard, Ronald W.

    2011-01-01

    Differences in the time to maximal effect (Tmax) of a series of dopamine receptor antagonists on the self-administration of cocaine are not consistent with their lipophilicity (octanol-water partition coefficients at pH 7.4) and expected rapid entry into the brain after intravenous injection. It was hypothesized that the Tmax reflects the time required for maximal occupancy of receptors, which would occur as equilibrium was approached. If so, the Tmax should be related to the affinity for the relevant receptor population. This hypothesis was tested using a series of nine antagonists having a 2500-fold range of Ki or Kd values for D2-like dopamine receptors. Rats self-administered cocaine at regular intervals and then were injected intravenously with a dose of antagonist, and the self-administration of cocaine was continued for 6 to 10 h. The level of cocaine at the time of every self-administration (satiety threshold) was calculated throughout the session. The satiety threshold was stable before the injection of antagonist and then increased approximately 3-fold over the baseline value at doses of antagonists selected to produce this approximately equivalent maximal magnitude of effect (maximum increase in the equiactive cocaine concentration, satiety threshold; Cmax). Despite the similar Cmax, the mean Tmax varied between 5 and 157 min across this series of antagonists. Furthermore, there was a strong and significant correlation between the in vivo Tmax values for each antagonist and the affinity for D2-like dopamine receptors measured in vitro. It is concluded that the cocaine self-administration paradigm offers a reliable and predictive bioassay for measuring the affinity of a competitive antagonist for D2-like dopamine receptors. PMID:21606176

  1. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K+ channels pathway and serotoninergic system.

    PubMed

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K + channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT 1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT 1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT 1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT 5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT 1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K + channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats. Copyright © 2016. Published by Elsevier Inc.

  2. PGE2 maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2 receptors

    PubMed Central

    Säfholm, J; Dahlén, S-E; Delin, I; Maxey, K; Stark, K; Cardell, L-O; Adner, M

    2013-01-01

    Background and Purpose The guinea pig trachea (GPT) is commonly used in airway pharmacology. The aim of this study was to define the expression and function of EP receptors for PGE2 in GPT as there has been ambiguity concerning their role. Experimental Approach Expression of mRNA for EP receptors and key enzymes in the PGE2 pathway were assessed by real-time PCR using species-specific primers. Functional studies of GPT were performed in tissue organ baths. Key Results Expression of mRNA for the four EP receptors was found in airway smooth muscle. PGE2 displayed a bell-shaped concentration–response curve, where the initial contraction was inhibited by the EP1 receptor antagonist ONO-8130 and the subsequent relaxation by the EP2 receptor antagonist PF-04418948. Neither EP3 (ONO-AE5-599) nor EP4 (ONO-AE3-208) selective receptor antagonists affected the response to PGE2. Expression of COX-2 was greater than COX-1 in GPT, and the spontaneous tone was most effectively abolished by selective COX-2 inhibitors. Furthermore, ONO-8130 and a specific PGE2 antibody eliminated the spontaneous tone, whereas the EP2 antagonist PF-04418948 increased it. Antagonists of other prostanoid receptors had no effect on basal tension. The relaxant EP2 response to PGE2 was maintained after long-term culture, whereas the contractile EP1 response showed homologous desensitization to PGE2, which was prevented by COX-inhibitors. Conclusions and Implications Endogenous PGE2, synthesized predominantly by COX-2, maintains the spontaneous tone of GPT by a balance between contractile EP1 receptors and relaxant EP2 receptors. The model may be used to study interactions between EP receptors. PMID:22934927

  3. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    PubMed

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and de novo protein synthesis.

    PubMed

    Sharifat, Narges; Mohammad Zadeh, Ghorban; Ghaffari, Mohammad-Ali; Dayati, Parisa; Kamato, Danielle; Little, Peter J; Babaahmadi-Rezaei, Hossein

    2017-01-01

    G protein-coupled receptor (GPCR) agonists through their receptors can transactivate protein tyrosine kinase receptors such as epidermal growth factor receptor and serine/threonine kinase receptors most notably transforming growth factor (TGF)-β receptor (TβRI). This signalling mechanism represents a major expansion in the cellular outcomes attributable to GPCR signalling. This study addressed the role and mechanisms involved in GPCR agonist, endothelin-1 (ET-1)-mediated transactivation of the TβRI in bovine aortic endothelial cells (BAECs). The in-vitro model used BAECs. Signalling intermediate phospho-Smad2 in the carboxy terminal was detected and quantified by Western blotting. ET-1 treatment of BAECs resulted in a time and concentration-dependent increase in pSmad2C. Peak phosphorylation was evident with 100 nm treatment of ET-1 at 4-6 h. TβRI antagonist, SB431542 inhibited ET-1-mediated pSmad2C. In the presence of bosentan, a mixed ET A and ET B receptor antagonist ET-1-mediated pSmad2C levels were inhibited. The ET-mediated pSmad2C was blocked by the protein synthesis inhibitor, cycloheximide. In BAECs, ET-1 via the ETB receptor is involved in transactivation of the TβRI. The transactivation-dependent response is dependent upon de novo protein synthesis. © 2016 Royal Pharmaceutical Society.

  5. Antagonist interaction with the human 5-HT7 receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect

    PubMed Central

    Klein, MT; Teitler, M

    2011-01-01

    BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551

  6. The Gamma-Aminobutyric Acid B Receptor in Depression and Reward.

    PubMed

    Jacobson, Laura H; Vlachou, Styliani; Slattery, David A; Li, Xia; Cryan, John F

    2018-06-01

    The metabotropic gamma-aminobutyric acid B (GABA B ) receptor was the first described obligate G protein-coupled receptor heterodimer and continues to set the stage for discoveries in G protein-coupled receptor signaling complexity. In this review, dedicated to the life and work of Athina Markou, we explore the role of GABA B receptors in depression, reward, and the convergence of these domains in anhedonia, a shared symptom of major depressive disorder and withdrawal from drugs of abuse. GABA B receptor expression and function are enhanced by antidepressants and reduced in animal models of depression. Generally, GABA B receptor antagonists are antidepressant-like and agonists are pro-depressive. Exceptions to this rule likely reflect the differential influence of GABA B1 isoforms in depression-related behavior and neurobiology, including the anhedonic effects of social stress. A wealth of data implicate GABA B receptors in the rewarding effects of drugs of abuse. We focus on nicotine as an example. GABA B receptor activation attenuates, and deactivation enhances, nicotine reward and associated neurobiological changes. In nicotine withdrawal, however, GABA B receptor agonists, antagonists, and positive allosteric modulators enhance anhedonia, perhaps owing to differential effects of GABA B1 isoforms on the dopaminergic system. Nicotine cue-induced reinstatement is more reliably attenuated by GABA B receptor activation. Separation of desirable and undesirable side effects of agonists is achievable with positive allosteric modulators, which are poised to enter clinical studies for drug abuse. GABA B1 isoforms are key to understanding the neurobiology of anhedonia, whereas allosteric modulators may offer a mechanism for targeting specific brain regions and processes associated with reward and depression. Copyright © 2018 Society of Biological Psychiatry. All rights reserved.

  7. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    PubMed

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  8. High-voltage electroencephalogram spindles in rats, aging and 5-HT2 antagonism.

    PubMed

    Moyanova, S; Kortenska, L; Kirov, R

    1998-03-09

    We examined the effects of serotonin-2 (5-hydroxytryptamine-2, 5-HT2) receptor antagonists on the so-called high-voltage spindles (HVS, electroencephalographic patterns, characterized by large amplitude rhythmic waves mainly in the alpha band), recorded from the frontal cortex of young, middle-aged and old freely-moving rats during waking immobility. The study was based on the assumption that the effects of 5-HT2 receptor antagonists on the HVS activity depend on the age of rats, because there is evidence for an age-related decrease in the 5-HT2 binding sites density. Four parameters of the electroencephalogram (EEG) were used to characterize the HVS activity: the square root-transformed EEG peak power in the alpha band, the frequency corresponding to this peak (both measured from the EEG power spectra using the fast Fourier transform), the HVS mean duration, and the HVS incidence (both measured from the EEG records). The EEG parameters were analyzed after i.p. administration of three 5-HT2 receptor antagonists: ketanserin, ritanserin and cyproheptadine. In young rats, the three drugs increased the alpha power, but did not change the alpha peak-corresponding frequency. Ketanserin and ritanserin did not change the HVS mean duration and HVS incidence, while cyproheptadine increased both these parameters in young rats. In middle-aged and old untreated rats, the HVS activity was significantly increased. The three 5-HT2 antagonists did not change the HVS activity in aged rats, which could be due to age-related suppression of the 5-HT2 receptor functions. Copyright 1998 Elsevier Science B.V.

  9. Paroxetine-induced reduction of sexual incentive motivation in female rats is not modified by 5-HT1B or 5-HT2C antagonists.

    PubMed

    Kaspersen, Helge; Agmo, Anders

    2012-03-01

    Clinical data show that paroxetine causes sexual dysfunction in a substantial proportion of women taking this compound. This work was conducted to determine whether chronic paroxetine reduces sexual incentive motivation in female rats and whether this compound can modify any aspect of paced mating. The role of the 5-HT(1B) and 5-HT(2C) receptors in any potential effects was also evaluated. Ovariectomized female rats were implanted with osmotic minipumps releasing 10 mg/kg per day of paroxetine or vehicle for 28 days. Tests for sexual incentive motivation and paced mating were performed just before implantation and at regular intervals thereafter. The females were primed with estradiol benzoate (25 μg/rat) and progesterone (1 mg/rat) before each of these tests. On days 25-27 of treatment, the females were injected with the 5-HT(1B) antagonist GR125,743 (5 mg/kg), the 5-HT(2C) antagonist SB206,553 (5 mg/kg) and vehicle in counterbalanced order. Preinjection time was 30 min. Paroxetine reduced sexual incentive motivation on day 20 of treatment without affecting any aspect of paced mating. None of the antagonists modified the inhibitory effect of paroxetine on sexual incentive motivation. In the group chronically treated with vehicle, SB206,553 reduced proceptive behaviors in the paced mating test. No other effect was obtained. The effects of paroxetine seen in female rats are similar to those observed in women, suggesting that disturbances of sexual incentive motivation in rats are predictive of sexual dysfunction in women. The 5-HT(1B) and 5-HT(2C) receptors do not seem to be of any importance for paroxetine's inhibitory effect.

  10. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    PubMed

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  11. Carbachol induces Ca(2+)-dependent contraction via muscarinic M2 and M3 receptors in rat intestinal subepithelial myofibroblasts.

    PubMed

    Iwanaga, Koichi; Murata, Takahisa; Okada, Muneyoshi; Hori, Masatoshi; Ozaki, Hiroshi

    2009-07-01

    Intestinal myofibroblasts (IMFs) that exist adjacent to the basement membrane of intestines have contractility and contribute to physical barriers of the intestine. Nerve endings distribute adjacent to IMFs, suggesting neurotransmitters may influence IMFs motility; however, there is no direct evidence showing the interaction. Here, we isolated IMFs from rat colon and investigated the effect of acetylcholine on IMFs contractility. In the collagen gel contraction assay, carbachol (1 - 10 microM) and the muscarinic receptor agonist bethanechol (30 - 300 microM) dose-dependently induced IMFs contraction. Pretreatment with the muscarinic receptor antagonist atropine (1 - 10 nM) inhibited carbachol-induced contraction. In RT-PCR, mRNA expression of all muscarinic receptor subtypes (M(1) - M(5)) was detected in IMFs. Subsequently we found pretreatment with the muscarinic M(2) receptor antagonist 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) (10 and 30 nM) or the muscarinic M(3) receptor antagonist 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) (3 and 10 nM) dose-dependently inhibited carbachol-induced contraction. In Ca(2+) measurement, 1 - 10 microM carbachol and 30 - 300 microM bethanechol elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)) in IMFs. Atropine (10 nM) eliminated carbachol-induced [Ca(2+)](i) elevation. The Ca(2+)-channel blocker LaCl(3) (3 microM) abolished carbachol-induced [Ca(2+)](i) elevation and contraction. Furthermore, AF-DX116 and 4-DAMP dose-dependently inhibited the carbachol-induced [Ca(2+)](i) elevation. These observations suggest that acetylcholine elicits Ca(2+)-dependent IMF contraction through muscarinic M(2) and M(3) receptors.

  12. Suppressing effect of COR659 on alcohol, sucrose, and chocolate self-administration in rats: involvement of the GABAB and cannabinoid CB1 receptors.

    PubMed

    Maccioni, Paola; Colombo, Giancarlo; Lorrai, Irene; Zaru, Alessandro; Carai, Mauro A M; Gessa, Gian Luigi; Brizzi, Antonella; Mugnaini, Claudia; Corelli, Federico

    2017-09-01

    COR659 [methyl2-(4-chlorophenylcarboxamido)-4-ethyl-5-methylthiophene-3-carboxylate] is a new, positive allosteric modulator (PAM) of the GABA B receptor. This study evaluated whether COR659 shared with previously tested GABA B PAMs the capacity to reduce alcohol self-administration in rats. Treatment with non-sedative doses of COR659 (2.5, 5, and 10 mg/kg; i.p.) suppressed lever-responding for alcohol (15% v/v) in Sardinian alcohol-preferring (sP) rats under the fixed ratio (FR) 4 (FR4) and progressive ratio (PR) schedules of reinforcement; COR659 was more potent and effective than the reference GABA B PAM, GS39783. Treatment with COR659, but not GS39783, suppressed (a) lever-responding for a sucrose solution (1-3% w/v) in sP rats under the FR4 and PR schedules, (b) lever-responding for a chocolate solution [5% (w/v) Nesquik®] in Wistar rats under the FR10 and PR schedules, and (c) cue-induced reinstatement of chocolate seeking in Wistar rats. Treatment with COR659 was completely ineffective on lever-responding (FR10) for regular food pellets in food-deprived Wistar rats. Pretreatment with the GABA B receptor antagonist, SCH50911, partially blocked COR659-induced reduction of alcohol self-administration, being ineffective on reduction of chocolate self-administration. Pretreatment with the cannabinoid CB 1 receptor antagonist, AM4113, fully blocked COR659-induced reduction of chocolate self-administration, being ineffective on reduction of alcohol self-administration. COR659 might exert its behavioral effects via a composite mechanism: (i) positive allosteric modulation of the GABA B receptor, responsible for a large proportion of reduction of alcohol self-administration; (ii) an action at other receptor system(s), including the cannabinoid CB 1 receptor, through which COR659 affects seeking and consumption of highly palatable foods.

  13. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    PubMed

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  14. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  15. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    PubMed

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  16. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  17. The pure estrogen receptor antagonist ICI 182,780 promotes a novel interaction of estrogen receptor-alpha with the 3',5'-cyclic adenosine monophosphate response element-binding protein-binding protein/p300 coactivators.

    PubMed

    Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L

    2006-11-01

    Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.

  18. MK-801, but not naloxone, attenuates high-dose dextromethorphan-induced convulsive behavior: Possible involvement of the GluN2B receptor.

    PubMed

    Tran, Hai-Quyen; Chung, Yoon Hee; Shin, Eun-Joo; Tran, The-Vinh; Jeong, Ji Hoon; Jang, Choon-Gon; Nah, Seung-Yeol; Yamada, Kiyofumi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2017-11-01

    Dextromethorphan (DM) is a dextrorotatory isomer of levorphanol, a typical morphine-like opioid. When administered at supra-antitussive doses, DM produces psychotoxic and neurotoxic effects in humans. Although DM abuse has been well-documented, few studies have examined the effects of high-dose DM. The present study aimed to explore the effects of a single high dose of DM on mortality and seizure occurrence. After intraperitoneal administration with a high dose of DM (80mg/kg), Sprague-Dawley rats showed increased seizure occurrence and intensity. Hippocampal expression levels of N-methyl-d-aspartate (NMDA) receptor subunits (GluN1

  19. Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat

    PubMed Central

    Jackson, Helen C; Bearham, M Clair; Hutchins, Lisa J; Mazurkiewicz, Sarah E; Needham, Andrew M; Heal, David J

    1997-01-01

    Sibutramine is a novel 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor (serotonin- noradrenaline reuptake inhibitor, SNRI) which is currently being developed as a treatment for obesity. Sibutramine has been shown to decrease food intake in the rat. In this study we have used a variety of monoamine receptor antagonists to examine the pharmacological mechanisms underlying sibutramine-induced hypophagia. Individually-housed male Sprague-Dawley rats were maintained on reversed phase lighting with free access to food and water. Drugs were administered at 09 h 00 min and food intake was monitored over the following 8 h dark period. Sibutramine (10 mg kg−1, p.o.) produced a significant decrease in food intake during the 8 h following drug administration. This hypophagic response was fully antagonized by the α1-adrenoceptor antagonist, prazosin (0.3 and 1 mg kg−1, i.p.), and partially antagonized by the β1-adrenoceptor antagonist, metoprolol (3 and 10 mg kg−1, i.p.) and the 5-HT receptor antagonists, metergoline (non-selective; 0.3 mg kg−1, i.p.); ritanserin (5-HT2A/2C; 0.1 and 0.5 mg kg−1, i.p.) and SB200646 (5-HT2B/2C; 20 and 40 mg kg−1, p.o.). By contrast, the α2-adrenoceptor antagonist, RX821002 (0.3 and 1 mg kg−1, i.p.) and the β2-adrenoceptor antagonist, ICI 118,551 (3 and 10 mg kg−1, i.p.) did not reduce the decrease in food intake induced by sibutramine. These results demonstrate that β1-adrenoceptors, 5-HT2A/2C-receptors and particularly α1-adrenoceptors, are involved in the effects of sibutramine on food intake and are consistent with the hypothesis that sibutramine-induced hypophagia is related to its ability to inhibit the reuptake of both noradrenaline and 5-HT, with the subsequent activation of a variety of noradrenaline and 5-HT receptor systems. PMID:9283694

  20. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  1. Concurrent targeting of EP1/EP4 receptors and COX-2 induces synergistic apoptosis in KSHV and EBV associated non-Hodgkin lymphoma cell lines

    PubMed Central

    Paul, Arun George; Chandran, Bala; Sharma-Walia, Neelam

    2014-01-01

    The effective anti-tumorigenic potential of non-steroidal anti-inflammatory drugs (NSAIDs) and eicosonoid (EP; EP1–4) receptor antagonists prompted us to test their efficacy in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) related lymphomas. Our study demonstrated that (1) EP1–4 receptor protein levels vary among the various non-Hodgkin’s lymphoma (NHL) cell lines tested (BCBL-1:KSHV+/EBV−;BC-3: KSHV+/EBV−; Akata/EBV+: KSHV−/EBV+; and JSC-1 cells: KSHV+/EBV+ cells); (2) 5.0 µM of EP1 antagonist (SC-51322) had a significant anti-proliferative effect on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; (3) 50.0 µM of EP2 antagonist (AH6809) was required to induce a significant anti-proliferative effect on BCBL-1, Akata/EBV+, and JSC-1 cells; (4) 5.0 µM of EP4 antagonist (GW 627368X) had a significant anti-proliferative effect on BC-3, Akata/EBV+, and JSC-1 cells; (5) COX-2 selective inhibitor celecoxib (5.0µM) had significant anti-proliferative effects on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; and (6) a combination of 1.0µM each of celecoxib, SC-51322 and GW 627368X could potentiate the pro-apoptotic properties of celecoxib or vice-versa. Overall, our studies identified the synergistic anti-proliferative effect of NSAIDs and EP receptor blockers on KSHV and EBV related B cell malignancies. PMID:23523954

  2. GPER-1 agonist G1 induces vasorelaxation through activation of epidermal growth factor receptor-dependent signalling pathway.

    PubMed

    Jang, Eun Jin; Seok, Young Mi; Arterburn, Jeffrey B; Olatunji, Lawrence A; Kim, In Kyeom

    2013-10-01

    The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor. Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1. G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L -N(ω) -nitroarginine methyl ester (L -NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1. G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta. © 2013 Royal Pharmaceutical Society.

  3. Drugs in development for Parkinson's disease.

    PubMed

    Johnston, Tom H; Brotchie, Jonathan M

    2004-07-01

    Pharmacological treatment of Parkinson's disease (PD) is entering a new and exciting era. Real promise now exists for the clinical application of a large range of molecules in development that will combat different aspects and stages of the condition. These include methyl- and ethyl-esterified forms of L-dopa (etilevodopa and melevodopa), inhibitors of enzymes such as monoamine oxidase type-B (eg, rasagiline), catechol-O-methyl transferase (eg, BIA-3202) and the monoamine re-uptake mechanism (eg, brasofensine). In addition, a range of full and partial dopamine agonists (eg, sumanirole, piribedil and BP-897) and their new formulations, for example, patch delivery systems (eg, rotigotine) are being developed. We also highlight non-dopaminergic treatments that will have wide ranging applications in the treatment of PD and L-dopa-induced dyskinesia. These include alpha2 adrenergic receptor antagonists (eg, fipamezole), adenosine A2A receptor antagonists (eg, istradefylline), AMPA receptor antagonists (eg, talampanel), neuronal synchronization modulators (eg, levetiracetam) and agents that interact with serotonergic systems such as 5-hydroxytryptamine (5-HT)1A agonists (eg, sarizotan) and 5-HT2A antagonists (eg, quetiapine). Lastly, we examine a growing number of neuroprotective agents that seek to halt or even reverse disease progression. These include anti-apoptotic kinase inhibitors (eg, CEP-1347), modulators of mitochondrial function (eg, creatine), growth factors (eg, leteprinim), neuroimmunophilins (eg, V-10367), estrogens (eg, MITO-4509), c-synuclein oligomerization inhibitors (eg, PAN-408) and sonic hedgehog ligands.

  4. Contribution of Endogenous Bradykinin to Fibrinolysis, Inflammation, and Blood Product Transfusion Following Cardiac Surgery: A Randomized Clinical Trial

    PubMed Central

    Balaguer, JM; Yu, C; Byrne, JG; Ball, SK; Petracek, MR; Brown, NJ; Pretorius, M

    2014-01-01

    Bradykinin increases during cardiopulmonary bypass (CPB) and stimulates the release of nitric oxide, inflammatory cytokines, and tissue-type plasminogen activator (t-PA), acting through its B2 receptor. This study tested the hypothesis that endogenous bradykinin contributes to the fibrinolytic and inflammatory response to CPB and that bradykinin B2 receptor antagonism reduces fibrinolysis, inflammation, and subsequent transfusion requirements. Patients (N = 115) were prospectively randomized to placebo, ε-aminocaproic acid (EACA), or HOE 140, a bradykinin B2 receptor antagonist. Bradykinin B2 receptor antagonism decreased intraoperative fibrinolytic capacity as much as EACA, but only EACA decreased D-dimer formation and tended to decrease postoperative bleeding. Although EACA and HOE 140 decreased fibrinolysis and EACA attenuated blood loss, these treatments did not reduce the proportion of patients transfused. These data suggest that endogenous bradykinin contributes to t-PA generation in patients undergoing CPB, but that additional effects on plasmin generation contribute to decreased D-dimer concentrations during EACA treatment. PMID:23361105

  5. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells

    PubMed Central

    Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro

    2000-01-01

    [3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. PMID:10694212

  6. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  7. Effects of endothelin receptor antagonists on renal hemodynamics in angiotensin II-infused rats on high NaCl intake.

    PubMed

    Saeed, Aso; Dibona, Gerald F; Guron, Gregor

    2012-01-01

    The aim was to investigate effects of selective endothelin (ET) receptor antagonists on renal hemodynamics and dynamic renal blood flow autoregulation (RBFA) in angiotensin II (Ang II)-infused rats on a high NaCl intake. Sprague-Dawley rats received Ang II (250 ng/kg/min, s.c.) and an 8% NaCl diet for 14 days after which renal clearance experiments were performed. After baseline measurements animals were administered either: (a) saline vehicle; (b) ETA receptor antagonist BQ-123 (30 nmol/kg/min); (c) ETB receptor antagonist BQ-788 (30 nmol/kg/min); or (d) BQ-123 + BQ-788, for six consecutive 20-minute clearance periods. BQ-123 reduced arterial pressure (AP) and selectively increased outer medullary perfusion versus vehicle (p<0.05). These effects were attenuated or abolished by combined BQ-123 and BQ-788. BQ-788 reduced renal blood flow and increased renovascular resistance (p<0.05). Ang II-infused rats on high NaCl intake showed abnormalities in dynamic RBFA characterized by an impaired myogenic response that were not significantly affected by ET receptor antagonists. In hypertensive Ang II-infused rats on a high-NaCl intake selective ETA antagonism with BQ-123 reduced AP and specifically increased OM perfusion and these effects were dependent on intact ETB receptor stimulation. Furthermore, ET receptor antagonists did not attenuate abnormalities in dynamic RBFA. Copyright © 2012 S. Karger AG, Basel.

  8. Activity of binary mixtures of drospirenone with progesterone and 17α-ethinylestradiol in vitro and in vivo.

    PubMed

    Rossier, Nadine Madeleine; Chew, Geraldine; Zhang, Kun; Riva, Francesco; Fent, Karl

    2016-05-01

    Despite potential exposure of aquatic organisms to mixtures of steroid hormones, very little is known on their joint activity in fish. Drospirenone (DRS) is a new synthetic progestin used in contraceptive pills in combination with 17α-ethinylestradiol (EE2). Here we systematically analyzed effects of DRS in binary mixtures with progesterone (P4) and EE2. First, we determined the in vitro activity of single compounds in recombinant yeast assays that express the human progesterone, androgen, or estrogen receptor, followed by determination of mixture activities of DRS and P4, DRS and EE2, as well as medroxyprogesterone acetate (MPA) and dydrogesterone (DDG). Mixtures of DRS and P4, as well as of DRS and EE2 showed additive progestogenic and androgenic activities. However, DDG and MPA showed non-additive progestogenic and androgenic activities. We then analyzed the in vivo activity of single compounds and mixtures of DRS and P4, as well as DRS and EE2, by assessing transcriptional changes of up to 14 selected target genes in zebrafish embryos at 48h post fertilization (hpf), and in eleuthero-embryos at 96hpf and 144hpf. DRS, P4, and EE2 led to significant transcriptional alteration of genes, including those encoding hormone receptors (pgr, esr1), a steroidogenic enzyme (hsd17b3), and estrogenic markers (vtg1, cyp19b), in particular at 144 hpf. In general, DRS showed stronger transcriptional changes than P4. In mixtures of DRS and P4, they were mainly non-additive (antagonistic interaction). In mixtures of DRS and EE2, transcriptional responses of esr1, vtg1 and cyp19b were dominated by EE2, suggesting an antagonistic interaction or independent action. Equi-effective mixtures of DRS and EE2, based on progesterone receptor transcripts, showed antagonistic interactions. Our data suggest that interactions in mixtures assessed in vitro in recombinant yeast cannot be translated to the in vivo situation. The receptor-based responses did not correspond well to the transcriptional responses in embryos which are much more complex due to the interplay between hormonal pathways, receptor crosstalk, and hormonal feedback loops. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tachykinin receptors in the guinea-pig renal pelvis: activation by exogenous and endogenous tachykinins.

    PubMed

    Maggi, C A; Patacchini, R; Eglezos, A; Quartara, L; Giuliani, S; Giachetti, A

    1992-09-01

    1. The contractile response to substance P, neurokinin A, selective agonists for the NK1, NK2 and NK3 tachykinin receptors and the activity of receptor-selective antagonists has been investigated in circular muscle strips of the guinea-pig isolated renal pelvis in the presence of indomethacin (3 microM). 2. Neurokinin A was the most potent agonist tested, being about 32 times more potent than substance P. The action of both substance P and neurokinin A was enhanced by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The selective NK2 receptor agonist [beta Ala8] neurokinin A (4-10), was slightly less potent and effective than neurokinin A itself. The selective NK1 receptor agonist [Sar9] substance P sulphone was effective at low (nM) concentrations but its maximal effect did not exceed 30% of maximal response to substance P or neurokinin A. The NK3-selective agonist [MePhe7] neurokinin B was effective only at high (microM) concentrations. 3. The pseudopeptide derivative of neurokinin A(4-10), MDL 28,564, displayed a clear-cut agonist character, although it was less potent than neurokinin A. 4. The responses to roughly equieffective (25-35% of maximal response) concentrations of [beta Ala8] neurokinin A (4-10), MDL 28,564 and [MePhe7] neurokinin B were antagonized to a similar extent by MEN 10,376 (3 microM), a selective NK2 tachykinin receptor antagonist, while the response to [Sar9] substance P sulphone was unchanged. 5. The response to [Sar9] substance P sulphone was inhibited by the NK1 receptor-selective antagonist, GR 82,334 (3 microM) while the response to [beta Ala8] neurokinin A (4-10) was unchanged. 6. The selective NK2 receptor antagonists MEN 10,376, L 659,877 and R 396 antagonized competitively the response to [PAla8] neurokinin A (4-10) with the following rank order of potency (pA2 values in parentheses): MEN 10,376 (7.41)>L 659,877 (7.15)>R 396 (6.43). MEN 10,376 and L 659,877 also competitively antagonized the response to neurokinin A, although with lower potency as compared to the selective NK2 receptor agonist.7. MEN 10,376, L 659,877 and R 396 reduced in a concentration-dependent manner the contractile response produced by electrical field stimulation (1 Hz, 100 V, 0.25 ms pulse width, trains of 10 s). The rank order of potency of NK2 receptor antagonists in blocking the response to electrical stimulation (MEN 10,376> L 659,877> R 396) closely mimicked their potency in antagonizing exogenous tachykinins.8. The inhibitory effect of MEN 10,376 toward responses produced by electrical field stimulation was significantly reduced when tested in the presence of peptidase inhibitors, which increased significantly the response to nerve stimulation.9. GR 82,334 (3 pM) did not significantly affect the response to nerve stimulation in untreated preparations and slightly reduced it in the presence of peptidase inhibitors.10. We conclude that both NK, and NK2 receptors mediate the contractile effect of tachykinins in the circular muscle of the guinea-pig renal pelvis and that the response ascribable to NK2 receptor stimulation is larger than that ascribed to NK, receptor stimulation. The NK2 receptor in the guinea-pig renal pelvis belongs to the same subtype previously identified in the rabbit pulmonary artery. NK2 receptors play a dominant role in the physiological response determined by the release of endogenous tachykinins and a contribution of NKI receptors becomes evident after inhibition of peptide degradation.

  10. 3,4-Dihydro-2H-benzoxazinones are 5-HT(1A) receptor antagonists with potent 5-HT reuptake inhibitory activity.

    PubMed

    Atkinson, Peter J; Bromidge, Steven M; Duxon, Mark S; Gaster, Laramie M; Hadley, Michael S; Hammond, Beverley; Johnson, Christopher N; Middlemiss, Derek N; North, Stephanie E; Price, Gary W; Rami, Harshad K; Riley, Graham J; Scott, Claire M; Shaw, Tracey E; Starr, Kathryn R; Stemp, Geoffrey; Thewlis, Kevin M; Thomas, David R; Thompson, Mervyn; Vong, Antonio K K; Watson, Jeannette M

    2005-02-01

    Starting from a high throughput screening hit, a series of 3,4-dihydro-2H-benzoxazinones has been identified with both high affinity for the 5-HT(1A) receptor and potent 5-HT reuptake inhibitory activity. The 5-(2-methyl)quinolinyloxy derivative combined high 5-HT(1A/1B/1D) receptor affinities with low intrinsic activity and potent inhibition of the 5-HT reuptake site (pK(i)8.2). This compound also had good oral bioavailability and brain penetration in the rat.

  11. The effect of the sigma-1 receptor selective compound LS-1-137 on the DOI-induced head twitch response in mice.

    PubMed

    Malik, Maninder; Rangel-Barajas, Claudia; Mach, Robert H; Luedtke, Robert R

    2016-09-01

    Several receptor mediated pathways have been shown to modulate the murine head twitch response (HTR). However, the role of sigma receptors in the murine (±)-2,5-dimethoxy-4-iodoamphetamine (DOI)-induced HTR has not been previously investigated. We examined the ability of LS-1-137, a novel sigma-1 vs. sigma-2 receptor selective phenylacetamide, to modulate the DOI-induced HTR in DBA/2J mice. We also assessed the in vivo efficacy of reference sigma-1 receptor antagonists and agonists PRE-084 and PPCC. The effect of the sigma-2 receptor selective antagonist RHM-1-86 was also examined. Rotarod analysis was performed to monitor motor coordination after LS-1-137 administration. Radioligand binding techniques were used to determine the affinity of LS-1-137 at 5-HT2A and 5-HT2C receptors. LS-1-137 and the sigma-1 receptor antagonists haloperidol and BD 1047 were able to attenuate a DOI-induced HTR, indicating that LS-1-137 was acting in vivo as a sigma-1 receptor antagonist. LS-1-137 did not compromise rotarod performance within a dose range capable of attenuating the effects of DOI. Radioligand binding studies indicate that LS-1-137 exhibits low affinity binding at both 5-HT2A and 5-HT2C receptors. Based upon the results from these and our previous studies, LS-1-137 is a neuroprotective agent that attenuates the murine DOI-induced HTR independent of activity at 5-HT2 receptor subtypes, D2-like dopamine receptors, sigma-2 receptors and NMDA receptors. LS-1-137 appears to act as a sigma-1 receptor antagonist to inhibit the DOI-induced HTR. Therefore, the DOI-induced HTR can be used to assess the in vivo efficacy of sigma-1 receptor selective compounds. Copyright © 2016. Published by Elsevier Inc.

  12. Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats

    PubMed Central

    Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu

    2012-01-01

    BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428

  13. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats.

    PubMed

    Yamamura, Y; Nakamura, S; Itoh, S; Hirano, T; Onogawa, T; Yamashita, T; Yamada, Y; Tsujimae, K; Aoyama, M; Kotosai, K; Ogawa, H; Yamashita, H; Kondo, K; Tominaga, M; Tsujimoto, G; Mori, T

    1998-12-01

    The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. OPC-41061 inhibited cAMP production induced by AVP with no intrinsic agonist activity. In rats, OPC-41061 inhibited [3H]-AVP binding to V1a-receptors (Ki = 325 +/- 41 nM) and V2-receptors (Ki = 1.33 +/- 0. 30 nM), showing higher receptor selectivity (V1a/V2 = 244) than with human receptors. A single oral administration of OPC-41061 in rats clearly produced dose-dependent aquaresis. In treatment by multiple OPC-41061 dosing for 28 days at 1 and 10 mg/kg p.o. in rats, significant aquaretic effects were seen throughout the study period. As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.

  14. The role of mineralocorticoid receptor antagonists in patients with American College of Cardiology/American Heart Association stage B heart failure.

    PubMed

    Pitt, Bertram

    2012-04-01

    This article focuses on the potential role of mineralocorticoid receptor antagonists (MRAs) in patients with stage B heart failure (HF) due to hypertension, diabetes mellitus, and/or visceral obesity with the metabolic syndrome. It briefly discusses the role of MRAs in patients with left ventricular dilatation due to nonischemic or ischemic cardiomyopathy and in those with a prior myocardial infarction but without left ventricular dilatation or evidence of HF. Copyright © 2012. Published by Elsevier Inc.

  15. Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP1 receptor antagonists.

    PubMed

    Atobe, Masakazu; Naganuma, Kenji; Kawanishi, Masashi; Morimoto, Akifumi; Kasahara, Ken-ichi; Ohashi, Shigeki; Suzuki, Hiroko; Hayashi, Takahiko; Miyoshi, Shiro

    2013-11-15

    We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Falsini, Matteo; Vincenzi, Fabrizio; Pasquini, Silvia; Varani, Katia; Colotta, Vittoria

    2018-07-23

    In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A 1 , A 2A , A 2B and A 3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA 1 and hA 2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A 1 /A 2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA 1 K i  = 10.2 nM; hA 2A K i  = 4.72 nM) and behaved as a potent A 1 /A 2A antagonist/inverse agonist (hA 1 IC 50  = 13.4 nM; hA 2A IC 50  = 5.34 nM). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat.

    PubMed

    Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin

    2014-01-03

    5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. © 2013.

  18. Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats.

    PubMed

    Sengupta, Trina; Jaryal, Ashok Kumar; Mallick, Hruda Nanda

    2016-10-01

    Glutamate when microinjected at the medial preoptic area (mPOA) influences brain temperature (T br ) and body temperature (T b ) in rats. Glutamate and its various receptors are present at the mPOA. The aim of this study was to identify the contribution of each of the ionotropic glutamatergic receptors at the mPOA on changes in T br and T b in freely moving rats. Adult male Wistar rats (n=40) were implanted with bilateral guide cannula with indwelling styli above the mPOA. A telemetric transmitter was implanted at the peritoneum to record T b and locomotor activity (LMA). A precalibrated thermocouple wire implanted near the hypothalamus was used to assess T br . Specific agonist for each ionotropic glutamate receptor was microinjected into the mPOA and its effects on temperature and LMA were measured in the rats. The rats were also microinjected with the respective ionotropic receptor antagonists, 15min prior to the microinjection of each agonist. Amongst amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA) and kainic acid, AMPA increased T b and LMA when injected at the mPOA. Specific antagonists for AMPA receptors was able to attenuate this increase (p<0.005). Pharmacological blockade of NMDA was able to lower T br only. Microinjection of kainic acid and its antagonist had no effect on the variables. The finding of the study suggests that activation of the AMPA receptors at the mPOA, leads to the rise in body temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  20. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Xiaohong, E-mail: xuxh63@zjnu.cn; Li Tao; Luo Qingqing

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showedmore » that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: > BPA rapidly extended the latency to step down from platform 1 h after footshock. > BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. > ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.« less

  1. 5HT(1A) and 5HT(1B) receptors of medial prefrontal cortex modulate anxiogenic-like behaviors in rats.

    PubMed

    Solati, Jalal; Salari, Ali-Akbar; Bakhtiari, Amir

    2011-10-31

    Medial prefrontal cortex (MPFC) is one of the brain regions which play an important role in emotional behaviors. The purpose of the present study was to evaluate the role of 5HT(1A) and 5HT(1B) receptors of the MPFC in modulation of anxiety behaviors in rats. The elevated plus maze (EPM) which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents, was used. Bilateral intra-MPFC administration of 5HT(1A) receptor agonist, 8-OH-DPAT (5, 10, and 50 ng/rat) decreased the percentages of open arm time (OAT%) and open arm entries (OAE%), indicating an anxiogenic response. Moreover, administration of 5HT(1A) receptor antagonist, NAN-190 (0.25, 0.5, and 1 μg/rat) significantly increased OAT% and OAE%. Pre-treatment administration of NAN-190 (0.5 μg/rat), which was injected into the MPFC, reversed the anxiogenic effects of 8-OH-DPAT (5, 10, and 50 ng/rat). Intra-MPFC microinjection of 5HT(1B) receptor agonist, CGS-12066A (0.25, 0.5, and 1 μg/rat) significantly decreased OAT% and OAE%, without any change in locomotor activity, indicating an anxiogenic effect. However, injection of 5HT(1B) receptor antagonist, SB-224289 (0.5, 1, and 2 μg/rat) into the MPFC showed no significant effect. In conclusion, these findings suggest that 5HT(1A) and 5HT(1B) receptors of the MPFC region modulate anxiogenic-like behaviors in rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. A role for serotonin in the antidepressant activity of NG-Nitro-L-arginine, in the rat forced swimming test.

    PubMed

    Gigliucci, Valentina; Buckley, Kathleen Niamh; Nunan, John; O'Shea, Karen; Harkin, Andrew

    2010-02-01

    The present study determined regional serotonin (5-HT) synthesis and metabolism changes associated with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA) and the influence of 5-HT receptor blockade in the antidepressant-like actions of L-NA in the forced swimming test (FST). Regional effects of L-NA (5,10 and 20mg/kg i.p.) on tryptophan hydroxylase (TPH) activity, the rate limiting enzyme for 5-HT synthesis, were determined by measuring accumulation of the transient intermediate 5-hydoxytryptophan (5-HTP) following in vivo administration of the amino acid decarboxylase inhibitor, NSD 1015 (100mg/kg). L-NA (5-20mg/kg) dose dependently increased 5-HTP accumulation, particularly in the amygdaloid cortex, following exposure to the FST. L-NA also provoked an increase in regional brain 5-HIAA concentrations and in the 5-HIAA:5-HT metabolism ratio. Co-treatment with NSD-1015 failed to consistently modify the antidepressant-like effects of L-NA in the FST. Sub-active doses of L-NA (1mg/kg) and the 5-HT re-uptake inhibitor fluoxetine (2.5mg/kg) acted synergistically to increase swimming in the test. Co-treatment with the non-selective 5-HT receptor antagonist metergoline (1, 2 and 4mg/kg), attenuated the L-NA (20mg/kg)-induced reduction in immobility and increase in swimming behaviours. Metergoline alone however provoked an increase in immobility and reduction in swimming behaviours in the test. A similar response was obtained following co-treatment with the preferential 5-HT(2A) receptor antagonist ketanserin (5mg/kg) and the 5-HT(2C) receptor antagonist RO-430440 (5mg/kg). Co-treatment with the 5-HT(1A) receptor antagonist WAY 100635 (0.3mg/kg) or the 5-HT(1B) receptor antagonist GR 127935 (4mg/kg) failed to influence the antidepressant-like activity of L-NA. Taken together these data provide further support for a role for 5-HT in the antidepressant-like properties of NOS inhibitors. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Identification of an antagonist that selectively blocks the activity of prostamides (prostaglandin-ethanolamides) in the feline iris.

    PubMed

    Woodward, D F; Krauss, A H; Wang, J W; Protzman, C E; Nieves, A L; Liang, Y; Donde, Y; Burk, R M; Landsverk, K; Struble, C

    2007-02-01

    The prostamides (prostaglandin-ethanolamides) and prostaglandin (PG) glyceryl esters are biosynthesized by COX-2 from the respective endocannabinoids anandamide and 2-arachidonyl glycerol. Agonist studies suggest that their pharmacologies are unique and unrelated to prostanoid receptors. This concept was further investigated using antagonists. The isolated feline iris was used as a key preparation, where prostanoid FP receptors and prostamide activity co-exist. Activity at human recombinant FP and other prostanoid receptors was determined using stable transfectants. In the feline iris, AGN 204396 produced a rightward shift of the dose-response curves for prostamide F2alpha and the prostamide F2alpha analog bimatoprost but did not block the effects of PGF2alpha and synthetic FP receptor agonists. Studies on human recombinant prostanoid receptors confirmed that AGN 204396 did not behave as a prostanoid FP receptor antagonist. AGN 204396 exhibited no antagonism at DP and EP1-4, but was a highly effective TP receptor antagonist. Contrary to expectation, the FP receptor antagonist AL-8810 efficaciously contracted the cat iris. AGN 204396 did not affect AL-8810 induced contractions, demonstrating that AL-8810 and AGN 204396 are pharmacologically distinct. Unlike AL-8810, the ethylamide derivate of AL-8810 was not an agonist. Al-8810 did not block prostamide F2alpha activity. Finally, AGN 204396 did not block PGE2-glyceryl ester activity. The ability of AGN 204396 to selectively block prostamide responses suggests the existence of prostamide sensitive receptors as entities distinct from receptors recognizing PGF2alpha and PGE2-glyceryl ester.

  4. Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range.

    PubMed

    Baba, Satoko; Enomoto, Takeshi; Horisawa, Tomoko; Hashimoto, Takashi; Ono, Michiko

    2015-03-01

    Antagonism of the dopamine D3 receptor has been hypothesized to be beneficial for schizophrenia cognitive deficits, negative symptoms and extrapyramidal symptoms. However, recent animal and human studies have shown that most antipsychotics do not occupy D3 receptors in vivo, despite their considerable binding affinity for this receptor in vitro. In the present study, we investigated the D3 receptor binding of blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptors antagonist, in vitro and in vivo. Blonanserin showed the most potent binding affinity for human D3 receptors among the tested atypical antipsychotics (risperidone, olanzapine and aripiprazole). Our GTPγS-binding assay demonstrated that blonanserin acts as a potent full antagonist for human D3 receptors. All test-drugs exhibited antipsychotic-like efficacy in methamphetamine-induced hyperactivity in rats. Treatment with blonanserin at its effective dose blocked the binding of [(3)H]-(+)-PHNO, a D2/D3 receptor radiotracer, both in the D2 receptor-rich region (striatum) and the D3 receptor-rich region (cerebellum lobes 9 and 10). On the other hand, the occupancies of other test-drugs for D3 receptors were relatively low. In conclusion, we have shown that blonanserin, but not other tested antipsychotics, extensively occupies D3 receptors in vivo in rats. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  5. Role of ventral pallidal D2 dopamine receptors in the consolidation of spatial memory.

    PubMed

    Péczely, László; Ollmann, Tamás; László, Kristóf; Kovács, Anita; Gálosi, Rita; Kertes, Erika; Zagorácz, Olga; Kállai, Veronika; Karádi, Zoltán; Lénárd, László

    2016-10-15

    The role of dopamine (DA) receptors in spatial memory consolidation has been demonstrated in numerous brain regions, among others in the nucleus accumbens which innervates the ventral pallidum (VP). The VP contains both D1 and D2 DA receptors. We have recently shown that the VP D1 DA receptor activation facilitates consolidation of spatial memory in Morris water maze test. In the present study, the role of VP D2 DA receptors was investigated in the same paradigm. In the first experiment, the D2 DA receptor agonist quinpirole was administered into the VP of male Wistar rats in three doses (0.1, 1.0 or 5.0μg, respectively in 0.4μl physiological saline). In the second experiment, the D2 DA receptor antagonist sulpiride was applied to elucidate whether it can antagonise the effects of quinpirole. The antagonist (4.0μg, dissolved in 0.4μl physiological saline) was microinjected into the VP either by itself or prior to 1.0μg agonist treatment. Control animals received saline in both experiments. The two higher doses (1.0 and 5.0μg) of the agonist accelerated memory consolidation relative to controls and increased the stability of the consolidated memory against extinction. Sulpiride pretreatment antagonised the effects of quinpirole. In addition, the antagonist microinjected into the VP immediately after the second conditioning trial impaired learning functions. The present data provide evidences for the important role of VP D2 DA receptors in the consolidation and stabilization of spatial memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development.

    PubMed

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Cilleros, Victor; Tomàs, Josep

    2017-01-01

    The development of the nervous system involves the overproduction of synapses but connectivity is refined by Hebbian activity-dependent axonal competition. The newborn skeletal muscle fibers are polyinnervated but, at the end of the competition process, some days later, become innervated by a single axon. We used quantitative confocal imaging of the autofluorescent axons from transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice to investigate the possible cooperation of the muscarinic autoreceptors (mAChR, M 1 -, M 2 - and M 4 -subtypes) and the tyrosine kinase B (TrkB) receptor in the control of axonal elimination after the mice Levator auris longus (LAL) muscle had been exposed to several selective antagonist of the corresponding receptor pathways in vivo . Our previous results show that M 1 , M 2 and TrkB signaling individually increase axonal loss rate around P9. Here we show that although the M 1 and TrkB receptors cooperate and add their respective individual effects to increase axonal elimination rate even more, the effect of the M 2 receptor is largely independent of both M 1 and TrkB receptors. Thus both, cooperative and non-cooperative signaling mechanisms contribute to developmental synapse elimination.

  7. Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development

    PubMed Central

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A.; Cilleros, Victor; Tomàs, Josep

    2017-01-01

    The development of the nervous system involves the overproduction of synapses but connectivity is refined by Hebbian activity-dependent axonal competition. The newborn skeletal muscle fibers are polyinnervated but, at the end of the competition process, some days later, become innervated by a single axon. We used quantitative confocal imaging of the autofluorescent axons from transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice to investigate the possible cooperation of the muscarinic autoreceptors (mAChR, M1-, M2- and M4-subtypes) and the tyrosine kinase B (TrkB) receptor in the control of axonal elimination after the mice Levator auris longus (LAL) muscle had been exposed to several selective antagonist of the corresponding receptor pathways in vivo. Our previous results show that M1, M2 and TrkB signaling individually increase axonal loss rate around P9. Here we show that although the M1 and TrkB receptors cooperate and add their respective individual effects to increase axonal elimination rate even more, the effect of the M2 receptor is largely independent of both M1 and TrkB receptors. Thus both, cooperative and non-cooperative signaling mechanisms contribute to developmental synapse elimination. PMID:28228723

  8. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.

    PubMed

    Adamczyk, Przemysław; Miszkiel, Joanna; McCreary, Andrew C; Filip, Małgorzata; Papp, Mariusz; Przegaliński, Edmund

    2012-03-20

    There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor TRPV1 receptors play a role in cue-induced reinstatement of cocaine-seeking behavior. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Painful purinergic receptors.

    PubMed

    Donnelly-Roberts, Diana; McGaraughty, Steve; Shieh, Char-Chang; Honore, Prisca; Jarvis, Michael F

    2008-02-01

    Multiple P2 receptor-mediated mechanisms exist by which ATP can alter nociceptive sensitivity following tissue injury. Evidence from a variety of experimental strategies, including genetic disruption studies and the development of selective antagonists, has indicated that the activation of P2X receptor subtypes, including P2X(3), P2X(2/3), P2X(4) and P2X(7), and P2Y (e.g., P2Y(2)) receptors, can modulate pain. For example, administration of a selective P2X(3) antagonist, A-317491, has been shown to effectively block both hyperalgesia and allodynia in different animal models of pathological pain. Intrathecally delivered antisense oligonucleotides targeting P2X(4) receptors decrease tactile allodynia following nerve injury. Selective antagonists for the P2X(7) receptor also reduce sensitization in animal models of inflammatory and neuropathic pain, providing evidence that purinergic glial-neural interactions are important modulators of noxious sensory neurotransmission. Furthermore, activation of P2Y(2) receptors leads to sensitization of polymodal transient receptor potential-1 receptors. Thus, ATP acting at multiple purinergic receptors, either directly on neurons (e.g., P2X(3), P2X(2/3), and P2Y receptors) or indirectly through neural-glial cell interactions (P2X(4) and P2X(7) receptors), alters nociceptive sensitivity. The development of selective antagonists for some of these P2 receptors has greatly aided investigations into the nociceptive role of ATP. This perspective highlights some of the recent advances to identify selective P2 receptor ligands, which has enhanced the investigation of ATP-related modulation of pain sensitivity.

  10. Discovery of a new class of ionotropic glutamate receptor antagonists by the rational design of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid.

    PubMed

    Larsen, Ann M; Venskutonytė, Raminta; Valadés, Elena Antón; Nielsen, Birgitte; Pickering, Darryl S; Bunch, Lennart

    2011-02-16

    The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1-5. In this article, we present the discovery of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid (1) based on a rational design process. Target compound 1 was synthesized by a stereoselective strategy in 10 steps from commercially available starting materials. Binding affinities of 1 at native ionotropic Glu receptors were determined to be in the micromolar range (AMPA, 51 μM; KA, 22 μM; NMDA 6 μM), with the highest affinity for cloned homomeric KA receptor subtypes GluK1,3 (3.0 and 8.1 μM, respectively). Functional characterization of 1 by two electrode voltage clamp (TEVC) electrophysiology at a nondesensitizing mutant of GluK1 showed full competitive antagonistic behavior with a K(b) of 11.4 μM.

  11. Tachykinins mediate contraction of the human lower esophageal sphincter in vitro via activation of NK2 receptors.

    PubMed

    Huber, O; Bertrand, C; Bunnett, N W; Pellegrini, C A; Nadel, J A; Nakazato, P; Debas, H T; Geppetti, P

    1993-08-03

    The contractile response to natural tachykinins and selective peptide agonists for tachykinin receptors was studied in strips of circular smooth muscle of human lower esophageal sphincter in vitro. The effects of phosphoramidon, which inhibits neutral endopeptidase (EC.3.4.24.11) and of the non-peptide compounds, SR 48968 and CP-96,345, which selectively block NK1 and NK2 receptors, respectively, were also investigated. Substance P, neurokinin A and neurokinin B produced a concentration-dependent contractile response. The rank order of potency was neurokinin A > neurokinin B > substance P. Phosphoramidon (1 microM) potentiated the response to substance P without changing the order of potency of natural tachykinins. The NK2-selective agonist, ([ beta Ala8]neurokinin A-(4-10)), produced a concentration-dependent contraction. The NK1 ([Sar9,Met(O2)11]substance P, 1 microM) and NK3 ([MePhe7]neurokinin B, 1 microM) selective agonists, however, did not exert any contractile effect. The selective NK2 antagonist, SR 48968, potently inhibited in a concentration-dependent (10 nM-1 microM) manner the response to neurokinin A, without affecting the response to carbachol. The selective NK1 antagonist, CP-96,345 (1 microM), did not affect the response to neurokinin A. These results indicate that tachykinins contract the circular muscle of human lower esophageal sphincter, and that this effect is mediated by NK2 receptor stimulation. Moreover, a phosphoramidon-sensitive mechanism plays a role in the regulation of the response to substance P.

  12. In vivo dopamine agonist properties of rotigotine: Role of D1 and D2 receptors.

    PubMed

    Fenu, Sandro; Espa, Elena; Pisanu, Augusta; Di Chiara, Gaetano

    2016-10-05

    Rotigotine acts in vitro as a full agonist of dopamine D1 receptors at concentrations almost superimposable to those at which it acts on D2 receptors. However in vivo evidence of the differences between the agonist activity of rotigotine at D1 receptors from that on the D2 receptors has not been provided yet. In order to test the ability of rotigotine to stimulate dopamine D1 and D2 receptors in vivo, we studied the effect of SCH39166 and eticlopride, selective dopamine D1 and D2/D3 receptor antagonists respectively, on rotigotine-induced contralateral turning behavior in 6-hydroxydopamine lesioned rats. Furthermore, the expression of the immediate-early gene c-fos in the caudate-putamen, was evaluated. As a comparison, we tested the D2/D3 agonist pramipexole. In primed rats, rotigotine (0.035, 0.1 and 0.35mg/kg) induced dose-dependent contralateral turning. Turning induced by 0.1mg/kg of rotigotine was reduced by pretreatment with the D1 antagonist SCH39166 and the D2 antagonist eticlopride. In drug-naive rats, rotigotine was less effective in eliciting turning but SCH39166 still reduced turning induced by rotigotine (0.35mg/kg). Pramipexole induced contralateral turning only in primed rats. SCH39166 potentiated and eticlopride abolished pramipexole-induced turning. Rotigotine induced Fos expression in the caudate-putamen and SCH39166 completely blocked it. Pramipexole failed to induce Fos. These results indicate that rotigotine acts in vivo as an agonist of D1 and D2 receptors while pramipexole is devoid of D1 activity in vivo. Given their differing DA receptor profiles, rotigotine and pramipexole might differ in their spectrum of application to the therapy of Parkinson's disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Studies on the interaction of NMDA receptor antagonist memantine with cell membranes: A mini-review.

    PubMed

    Zambrano, Pablo; Suwalsky, Mario; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2018-03-01

    Memantine is an NMDA receptor antagonist clinically used for the treatment of moderate to severe Alzheimer's disease. Currently, it is the only NMDA receptor antagonist drug marketed against this disease. Despite the large number of publications regarding its clinical and therapeutic use, studies related to its mechanism of action are still inconclusive. Knowledge of drug interactions with cell membranes may lead to the development of novel drugs for neurodegenerative diseases. The present mini-review aims to give an overview of the latest findings regarding the interaction of memantine with cell membranes, specifically with that of the human erythrocyte. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  15. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing effect of adenosine A2A agonists is most probably mediated in the periphery.

  16. Molecular Mechanisms of Antidiuretic Effect of Oxytocin

    PubMed Central

    Li, Chunling; Wang, Weidong; Summer, Sandra N.; Westfall, Timothy D.; Brooks, David P.; Falk, Sandor; Schrier, Robert W.

    2008-01-01

    Oxytocin is known to have an antidiuretic effect, but the mechanisms underlying this effect are not completely understood. We infused oxytocin by osmotic minipump into vasopressin-deficient Brattleboro rats for five days and observed marked antidiuresis, increased urine osmolality, and increased solute-free water reabsorption. Administration of oxytocin also significantly increased the protein levels of aquaporin-2 (AQP2), phosphorylated AQP2 (p-AQP2), and AQP3 in the inner medulla and in the outer medulla plus cortex. Immunohistochemistry demonstrated increased AQP2 and p-AQP2 expression and trafficking to the apical plasma membrane of principal cells in the collecting duct, and increased AQP3 expression in the basolateral membrane. These oxytocin-induced effects were blocked by treatment with the vasopressin V2 receptor antagonist SR121463B, but not by treatment with the oxytocin receptor antagonist GW796679X. We conclude that vasopressin V2 receptors mediate the antidiuretic effects of oxytocin, including increased expression and apical trafficking of AQP2, p-AQP2, and increased AQP3 protein expression. PMID:18057218

  17. Histamine Promotes the Release of Interleukin-6 via the H1R/p38 and NF-κB Pathways in Nasal Fibroblasts.

    PubMed

    Park, Il-Ho; Um, Ji-Young; Cho, Jung-Sun; Lee, Seung Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-11-01

    Based on the close relationship between histamine and interleukin 6 (IL-6), we hypothesized that histamine may regulate the production of cytokines, such as IL-6, during allergic inflammation. Here, we examined the role of histamine in IL-6 production and histamine receptor activity in nasal fibroblasts, along with the mechanisms underlying these effects. Experiments were performed using nasal fibroblasts from 8 normal patients. RT-PCR was used to identify the major histamine receptors expressed in nasal fibroblasts. Fibroblasts were then treated with histamine with or without histamine-receptor antagonists, and monitored for IL-6 production using an ELISA. Four potential downstream signaling molecules, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB, were evaluated by Western blot, and a luciferase reporter assay. Elevated expression was seen for all histamine receptors, with IL-6 protein levels increasing significantly following histamine stimulation. Among the histamine-receptor specific antagonists, only the H1R antagonist significantly decreased IL-6 production in histamine-stimulated nasal fibroblasts. Histamine increased the expression level of phosphorylated p38 (pp38), pERK, and pJNK, as well as NF-κB induction. The H1R antagonist actively suppressed pp38 and NF-κB expression in histamine-induced nasal fibroblasts, but not pERK and pJNK. The p38 inhibitor strongly attenuated IL-6 production in histamine-stimulated nasal fibroblasts. The data presented here suggest that antihistamines may be involved in the regulation of cytokines, such as IL-6, due to the role of histamine as an inflammatory mediator in nasal fibroblasts.

  18. Secretion pathway of liver IGF-1 via JAK2/STAT3 in chick embryo under the monochromatic light.

    PubMed

    Wang, Tuanjie; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2016-02-01

    This study reveals mechanism of monochromatic light on the IGF-1 secretion of chick embryo liver. The chick embryos were incubated and exposed to continuous red, green, blue light or a dark environment. Compared to other light-treated groups, green light increased IGF-1 and melatonin concentrations both in plasma and liver, and Mel1a, Mel1b and Mel1c receptors expressions in liver but decreased p-JAK2, p-STAT3 and ROS in liver. IGF-1 had a positive correlation with melatonin, but a negative relevance with p-JAK2 and p-STAT3. In vitro, the IGF-1 level in the hepatocyte supernatant was enhanced by melatonin with lower p-JAK2/p-STAT3 and ROS levels, which was suppressed by Mel1c antagonist but not Mel1a/Mel1b or Mel1b antagonists. AG490 (JAK/STAT inhibitor) promoted role of melatonin-Mel1c modulated IGF-1 secretion. These results suggest the antioxidant effect of melatonin mediated the green light-enhanced IGF-1 secretion of chick embryo liver through Mel1c receptor to inhibit the JAK2/STAT3 pathway.

  19. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  20. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    PubMed

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sigma1 receptor antagonists determine the behavioral pattern of the methamphetamine-induced stereotypy in mice

    PubMed Central

    Kitanaka, J.; Kitanaka, N.; Tatsuta, T.; Hall, F.S.; Uhl, G.R.; Tanaka, K.; Nishiyama, N.; Morita, Y.; Takemura, M.

    2011-01-01

    Objective The effects of sigma receptor antagonists on methamphetamine (METH)-induced stereotypy have not been examined. We examined the effects of sigma antagonists on METH-induced stereotypy in mice. Results The administration of METH (10 mg/kg) to male ddY mice induced stereotyped behavior consisting of biting (90.1%), sniffing (4.2%), head bobbing (4.1%), and circling (1.7%) during an observation period of 1 h. Pretreatment of the mice with BMY 14802 (α-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol; 1, 5, and 10 mg/kg), a non-specific sigma receptor antagonist, significantly increased METH-induced sniffing (19.2, 30.5, and 43.8% of total stereotypical behavior) but decreased biting (76.6, 66.9, and 49.3% of total stereotypical behavior) in a dose-dependent manner. This response was completely abolished by (+)-SKF 10,047 ([2S-(2α,6α,11R)]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol; 4 and 10 mg/kg), a putative sigma1 receptor agonist, and partially by PB 28 (1-cyclohexyl-4-[3-(1,2,3,4-tetrahydro-5-methoxy-1-naphthalen-1-yl)-n-propyl]piperazine; 1 and 10 mg/kg), a putative sigma2 receptor agonist. The BMY 14802 action on METH-induced stereotypy was mimicked by BD 1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine; 10 mg/kg), a putative sigma1 receptor antagonist, but not by SM-21 ((±)-tropanyl 2-(4-chlorophenoxy)butanoate; 1 mg/kg), a putative sigma2 receptor antagonist. The BD 1047 effect on METH-induced stereotypy was also abolished completely by (+)-SKF 10,047 and partially by PB 28. The overall frequency of METH-induced stereotypical behavior was unchanged with these sigma receptor ligands, despite the alteration in particular behavioral patterns. The BMY 14802 action on METH-induced stereotypy was unaffected by pretreatment with centrally acting histamine H1 receptor antagonists (pyrilamine or ketotifen, 10 mg/kg), suggesting that these effects are independent of histamine H1 receptor signaling systems. Conclusion In summary, modulation of central sigma1 receptors alters the pattern of METH-induced stereotypy, producing a shift from stereotypical biting to stereotypical sniffing, without affecting the overall frequency of stereotypical behavior. PMID:19052726

  2. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors.

    PubMed

    Kobayashi, Soushi; Toyooka, Naoki; Zhou, Dejun; Tsuneki, Hiroshi; Wada, Tsutomu; Sasaoka, Toshiyasu; Sakai, Hideki; Nemoto, Hideo; Garraffo, H Martin; Spande, Thomas F; Daly, John W

    2007-01-01

    The 5,8-disubstituted indolizidines constitute the largest class of poison-frog alkaloids. Some alkaloids have been shown to act as noncompetitive blockers at nicotinic acetylcholine receptors but the proposed structures and the biological activities of most of the 5,8-disubstituted indolizidines have not been determined because of limited supplies of the natural products. We have therefore conducted experiments to confirm proposed structures and determine biological activities using synthetic compounds. Recently, we reported that one of this class of alkaloids, (-)-235B', acts as a noncompetitive antagonist for α4β2 nicotinic receptors, and its sensitivity is comparable to that of the classical competitive antagonist for this receptor, dihydro-β-erythroidine. The enantioselective syntheses of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and what proved to be an epimer of natural 193E, starting from common chiral lactams have been achieved. When we performed electrophysiological recordings to examine the effects of the synthetic alkaloids on two major subtypes of nicotinic receptors (α4β2 and α7) expressed in Xenopus laevis oocytes, (-)-231C effectively blocked α4β2 receptor responses (IC(50 )value, 1.5 μM) with a 7.0-fold higher potency than for blockade of α7 receptor responses. In contrast, synthetic (-)-221I and (-)-epi-193E were more potent in blocking α7 receptor responses (IC(50 )value, 4.4 μM and 9.1 μM, respectively) than α4β2 receptor responses (5.3-fold and 2.0-fold, respectively). We achieved the total synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E starting from common chiral lactams, and the absolute stereochemistry of natural (-)-233D was determined. Furthermore, the relative stereochemistry of (-)-231C and (-)-221I was also determined. The present asymmetric synthesis of the proposed structure for 193E revealed that the C-8 configuration of natural 193E should be revised. The selectivity for α4β2 and α7 nicotinic receptors differed markedly for the 5,8-disubstituted indolizidines tested, and thus it appears that the nature of the side chains in these indolizidines is crucial with regard to subtype-selectivity.

  3. The Neurogenesis Actuator and NR2B/NMDA Receptor Antagonist Ro25-6981 Consistently Improves Spatial Memory Retraining Via Brain Region-Specific Gene Expression.

    PubMed

    Gruden, Marina A; Ratmirov, Alexander M; Storozheva, Zinaida I; Solovieva, Olga A; Sherstnev, Vladimir V; Sewell, Robert D E

    2018-05-22

    NR2B-containing NMDA (NR2B/NMDA) receptors are important in controlling neurogenesis and are involved in generating spatial memory. Ro25-6981 is a selective antagonist at these receptors and actuates neurogenesis and spatial memory. Inter-structural neuroanatomical profiles of gene expression regulating adult neurogenesis and neuroapoptosis require examination in the context of memory retrieval and reversal learning. The aim was to investigate spatial memory retrieval and reversal learning in relation to gene expression-linked neurogenetic processes following blockade of NR2B/NMDA receptors by Ro25-6981. Rats were trained in Morris water maze (MWM) platform location for 5 days. Ro25-6981 was administered (protocol days 6-7) followed by retraining (days 15-18 or 29-32). Platform location was tested (on days 19 or 33) then post-mortem brain tissue sampling (on days 20 or 34). The expression of three genes known to regulate cell proliferation (S100a6), differentiation (Ascl1), and apoptosis (Casp-3) were concomitantly evaluated in the hippocampus, prefrontal cortex, and cerebellum in relation to the MWM performance protocol. Following initial training, Ro25-6981 enhanced visuospatial memory retrieval performance during further retraining (protocol days 29-32) but did not influence visuospatial reversal learning (day 33). Hippocampal Ascl1 and Casp-3 expressions were correspondingly increased and decreased while cerebellar S100a6 and Casp-3 activities were decreased and increased respectively 27 days after Ro25-6981 treatment. Chronological analysis indicated a possible involvement of new mature neurons in the reconfiguration of memory processes. This was attended by behavioral/gene correlations which revealed direct links between spatial memory retrieval enhancement and modified gene activity induced by NR2B/NMDA receptor blockade and upregulation.

  4. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  6. Impact of pioglitazone and bradykinin type 1 receptor antagonist on type 2 diabetes in high-fat diet-fed C57BL/6J mice.

    PubMed

    El Akoum, S; Haddad, Y; Couture, R

    2017-09-01

    Type 2 diabetes (T2D) is a major complication of obesity and a leading cause of morbidity and mortality. Antagonizing bradykinin type 1 receptor (B1R) improved body and tissue fat mass and reversed vascular and adipose tissue inflammation in a rat model of insulin resistance. This study aimed at evaluating further the role of B1R in a mouse model of T2D by comparing the antidiabetic and anti-inflammatory effects of the B1R antagonist SSR240612 (SSR) in adipose tissue with those of pioglitazone (TZD), an activator of peroxisome proliferator-activated receptor gamma. C57BL/6J mice were fed with high-fat diet (HFD) or standard diet (control) for 20 weeks. Yet, during the last 4 weeks, HFD-fed mice were administered SSR and TZD (10 mg kg -1  d -1 each) as monotherapy or combined therapy subcutaneously. The impact of treatments was measured on metabolic hormones levels (ELISA), adipose tissue inflammatory status and the expression of candidate genes involved in T2D (quantitative real-time polymerase chain reaction and western blot). SSR240612 and TZD treatments improved hyperglycaemia, hyperinsulinaemia, insulin resistance, adipose tissue inflammation (expression of B1R, chemokine ligand 2, F4/80 and tumour necrosis factor) and modulated adipogenesis (peroxisome proliferator-activated receptor gamma, adipocytes' protein 2 and CD40 expressions) in HFD-fed mice. Yet, SSR was more effective than TZD to reduce visceral fat mass and resistin. TZD/SSR combined treatment had an additive effect to improve insulin sensitivity and glucose intolerance. Bradykinin type 1 receptor antagonism could represent a promising therapeutic tool in combination with TZD for the treatment of T2D, obesity and insulin resistance.

  7. Both endothelin-A and endothelin-B receptors are present on adult rat cardiac ventricular myocytes.

    PubMed

    Allen, Bruce G; Phuong, Luu Lien; Farhat, Hala; Chevalier, Dominique

    2003-02-01

    Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.

  8. Activation of particulate guanylyl cyclase by endothelins in cultured SV-40 transformed cat iris sphincter smooth muscle cells.

    PubMed

    Ding, K H; Latimer, A J; Abdel-Latif, A A

    1999-01-01

    We investigated the effects of endothelins (ETs) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ET-3 increased cGMP formation in a concentration-dependent manner (EC50 = 98nM), which was 2.5 times higher than that of ET-1. The ET(B)receptor agonists sarafotoxin-S6c and IRL 1620 also increased cGMP production, mimicking the effects of the ETs. The ET(B) receptor antagonist BQ 788, but not the ET(A) receptor antagonist BQ610, dose-dependently blocked ET-3-stimulated cGMP formation (IC50=10nM). The phorbol ester, Phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylyl cyclase in smooth muscle, dose-dependently inhibited ET-3-stimulated cGMP accumulation (IC50=66nM). LY83583 and ODQ, inhibitors of soluble guanylyl cyclases, as well as inhibitors of the nitric oxide cascade and of intracellular Ca2+ elevation had no appreciable effect on ET-3-induced cGMP production. ET-3 markedly inhibited carbachol-induced intracellular Ca2+ mobilization. We conclude that ET-3 increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ET(B) receptor subtype and subsequent stimulation of the membrane-bound guanylyl cyclase. Elevation of cGMP by ET and the subsequent inhibition of muscarinic stimulation of intracellular Ca2+ mobilization by the cyclic nucleotide could serve to modulate the contractile effects of Ca2+-mobilizing agonists in the iris sphincter smooth muscle.

  9. Effects of GABA(B) receptor agents on cocaine priming, discrete contextual cue and food induced relapses.

    PubMed

    Filip, Małgorzata; Frankowska, Małgorzata

    2007-10-01

    In the present study we investigated the effects of the GABA(B) receptor antagonist (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), the agonists baclofen and 3-aminopropyl(methyl)phosphinic acid (SKF 97541), and the allosteric positive modulator 3,5-bis(1,1-dimethylethyl)-4-hydroxy-beta,beta-dimethylbenzenepropanol (CGP 7930) on cocaine seeking behavior. The effects of the above drugs on the reinstatement of responding induced by natural reinforcer (food) were also studied. Male Wistar rats were trained to self-administer either cocaine (0.5 mg/kg/infusion) or food (sweet milk) and responding on the reinforcer-paired lever was extinguished. Reinstatement of responding was induced by a noncontingent presentation of the self-administered reinforcer (10 mg/kg cocaine, i.p.), a discrete contextual cue, or a contingent presentation of food. SCH 50911 (3-10 mg/kg) dose-dependently attenuated responding on the previously cocaine-paired lever during both reinstatement conditions, with slightly greater efficacy at reducing conditioned cue reinstatement. At the same time, it failed to alter reinstatement of food-seeking behavior. Baclofen (1.25-5 mg/kg) and SKF 97541 (0.03-0.3 mg/kg) attenuated cocaine- or food-seeking behavior; the effect of the drug appeared more effective for cocaine-seeking than food-seeking. CGP 7930 (10-30 mg/kg) reduced cocaine seeking without affecting food-induced reinstatement on reward seeking. Our results indicate that tonic activation of GABA(B) receptors is required for cocaine seeking behavior in rats. Moreover, the GABA(B) receptor antagonist SCH 50911 was effective in reducing relapse to cocaine at doses that failed to alter reinstatement of food-seeking behavior (present study), basal locomotor activity, cocaine and food self-administration (Filip et al., submitted for publication), suggesting its selective effects on motivated drug-seeking behavior. The potent inhibitory responses on cocaine seeking behavior were also seen following the GABA(B) receptor agonists or the allosteric positive modulator, however, doses of baclofen and SKF 97541 that inhibited cocaine-seeking were only threefold lower of those that inhibited food-seeking. In addition, the direct GABA(B) receptor agonists and the allosteric positive modulator cause decreases in cocaine or food self-administration (Filip et al., submitted for publication), indicating their nonspecific effects on relapse to drug-seeking and drug-taking behavior. In conclusion, the GABA(B) receptor antagonist SCH 50911 seems to be viable treatment for reducing cocaine craving and preventing relapse, while the GABA(B) receptor allosteric positive modulator CGP 7930 may hold the highest promise for attenuating cue-evoked relapses to cocaine as well as the direct rewarding properties of cocaine.

  10. Adenosine triphosphate induces P2Y2 activation and interleukin-8 release in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2017-07-01

    Immune-mediated mucosal inflammation characterized by the release of interleukin (IL)-8 is associated with gastroesophageal reflux disease. ATP released by human esophageal epithelial cells (HEECs) mediates the release of cytokines through P2 nucleotide receptors that are present on various cells, including HEECs. This study characterized and identified human esophageal epithelial P2 receptors that are responsible for ATP-mediated release of IL-8 by using a human esophageal stratified squamous epithelial model. Primary HEECs were cultured with the use of an air-liquid interface (ALI) system. The ATP analogue adenosine 5'-O-3-thiotriphosphate (ATP-γ-S) was added to the basolateral compartment, and IL-8 release was measured. Involvement of the P2Y2 receptor was assessed with the use of selective and non-selective receptor antagonists and a P2Y2 receptor agonist. Expression of the P2Y2 receptor was assessed using western blotting and immunohistochemistry. Adenosine triphosphate-γ-S induced IL-8 release through the P2Y2 receptor. A P2Y2 receptor antagonist but not a P2X3 receptor antagonist or a P2Y1 receptor antagonist blocked ATP-γ-S-mediated IL-8 release. Conversely, a P2Y2 receptor agonist induced IL-8 release. Western blotting and immunohistochemistry of the P2Y2 receptor showed strong expression of the P2Y2 receptor on ALI-cultured HEECs and in human esophagus. Inhibition of extracellular signal-regulated kinase but not of protein kinase C blocked the ATP-mediated release of IL-8. ATP-γ-S induced phosphorylation of extracellular signal-regulated kinase, and a P2Y2 receptor antagonist blocked this phosphorylation. Interleukin-8 release after purinergic stimulation in ALI-cultured HEECs is mediated through P2Y2 receptor activation. ATP-induced IL-8 release maybe involved in the pathogenesis of refractory gastroesophageal reflux disease. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  11. Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide

    NASA Astrophysics Data System (ADS)

    di Giglio, Maria Giulia; Muttenthaler, Markus; Harpsøe, Kasper; Liutkeviciute, Zita; Keov, Peter; Eder, Thomas; Rattei, Thomas; Arrowsmith, Sarah; Wray, Susan; Marek, Ales; Elbert, Tomas; Alewood, Paul F.; Gloriam, David E.; Gruber, Christian W.

    2017-02-01

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  12. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries.

    PubMed

    Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako

    2016-01-01

    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  13. Activation of lumbosacral 5-HT2C receptors induces bursts of rhythmic activity in sympathetic nerves to the vas deferens in male rats

    PubMed Central

    Stafford, Stuart A; Tang, Kim; Coote, John H

    2006-01-01

    We previously demonstrated that p-chloroamphetamine (PCA) intravenously (i.v.) evokes a specific patterned bursting response in the vas deferens nerve (VDN) of anaesthetised male rats that is associated with contraction of the vas deferens, and ejaculation and contraction of the bulbospongiosus muscles. The present study used selective 5-HT agonists to induce similar rhythmic bursting responses in the VDN in order to reveal the 5-HT receptor subtypes involved. The 5-HT2C receptor agonist (1.0 mg kg−1 Ro600175 i.v.) evoked the characteristic bursting pattern responses in the VDN. The 5-HT1A receptor agonist (1.0 mg kg−1 8-OH-DPAT i.v.) failed to elicit any responses. However, 8-OH-DPAT coadministered in combination with Ro600175 induced a potentiation of the responses. Responses were also evoked in rats with a mid-thoracic spinalisation, with a more predictable response being observed following the combination of agonists. This suggests an action of both agonists in the lumbosacral spinal cord. Responses were blocked by 0.5 mg kg−1 SB206553 i.v. (5-HT2B/C receptor antagonist) or 0.5 mg kg−1 WAY100635 i.v. (5-HT1A receptor antagonist), but not 0.1 or 1.0 mg kg−1 SB269970 i.v. (5-HT7 receptor antagonist). We suggest that activation of 5-HT2C and 5-HT1A receptor subtypes synergistically elicits contraction of the vas deferens through the activation of sympathetic preganglionic neurones in the spinal cord. These data support the idea of a proejaculatory action of 5-HT2C receptors in the lumbosacral spinal cord, suggesting a descending 5-HT excitatory pathway in addition to a 5-HT inhibitory pathway. An excitatory action of 8-OH-DPAT at lumbosacral sites is also evident. PMID:16799648

  14. The Arrestin-selective Angiotensin AT1 Receptor Agonist [Sar1,Ile4,Ile8]-AngII Negatively Regulates Bradykinin B2 Receptor Signaling via AT1-B2 Receptor Heterodimers*

    PubMed Central

    Wilson, Parker C.; Lee, Mi-Hye; Appleton, Kathryn M.; El-Shewy, Hesham M.; Morinelli, Thomas A.; Peterson, Yuri K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2013-01-01

    The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar1,Ile4,Ile8]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar1,Ile4, Ile8]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar1,Ile4,Ile8]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar1,Ile4,Ile8]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar1,Ile4,Ile8]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar1,Ile4,Ile8]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions. PMID:23661707

  15. The arrestin-selective angiotensin AT1 receptor agonist [Sar1,Ile4,Ile8]-AngII negatively regulates bradykinin B2 receptor signaling via AT1-B2 receptor heterodimers.

    PubMed

    Wilson, Parker C; Lee, Mi-Hye; Appleton, Kathryn M; El-Shewy, Hesham M; Morinelli, Thomas A; Peterson, Yuri K; Luttrell, Louis M; Jaffa, Ayad A

    2013-06-28

    The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar(1),Ile(4),Ile(8)]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar(1),Ile(4), Ile(8)]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar(1),Ile(4),Ile(8)]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar(1),Ile(4),Ile(8)]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar(1),Ile(4),Ile(8)]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar(1),Ile(4),Ile(8)]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions.

  16. Regulation of Fear Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered GluR1, GluR1-Ser845 and NR2B Levels.

    PubMed

    Shi, Yan-Wei; Fan, Bu-Fang; Xue, Li; Wen, Jia-Ling; Zhao, Hu

    2017-01-01

    The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N -methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.

  17. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats.

    PubMed

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-02-15

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6mg/kg BU224 or 32mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned>80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned>80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT)2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  19. Receptor stimulated formation of inositol phosphates in cultures of bovine adrenal medullary cells: the effects of bradykinin, bombesin and neurotensin.

    PubMed

    Bunn, S J; Marley, P D; Livett, B G

    1990-04-01

    The ability of a number of drugs and neuropeptides to stimulate phosphoinositide metabolism in cultured bovine adrenal medullary cells has been assessed. Low concentrations (10 nM) of angiotensin II, bradykinin, histamine, arginine-vasopressin, and bombesin, and high (10 microM) concentrations of oxytocin, prostaglandins E1, and E2, beta-endorphin, and neurotensin stimulated significant accumulation of [3H]inositol phosphates in adrenal medullary cells preloaded with [3H)]inositol. Bradykinin stimulated a significant response at concentration as low as 10pM, with an EC50 of approximately 0.5 nM. The response was markedly inhibited by the bradykinin B2 antagonist [Thi5,8,D-Phe7] bradykinin but not the B1 antagonist [Des-Arg9,Leu8] bradykinin. Higher concentrations of bombesin and neurotensin were required to elicit a response (10 nM and 10 microM respectively). The bombesin response was sensitive to inhibition by the bombesin antagonist [D-Arg1,D-Pro2,D-Trp7,9Leu11]-substance P. In contrast, the neurotensin response was not reduced by the NT1 antagonist [D-Trp11]-neurotensin. These results indicate there are a number of agents that can stimulate phosphatidylinositide hydrolysis in the adrenal medullary cells by acting on different classes of receptors. Such a range of diverse agonists that stimulate inositol phosphate formation will facilitate further analysis of the phosphatidylinositide breakdown in chromaffin cell function.

  20. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  1. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1.

    PubMed

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-28

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr(6.63) forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr(6.63) to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr356(6.63) allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  2. Synthesis and characterization of potent and selective mu-opioid receptor antagonists, [Dmt(1), D-2-Nal(4)]endomorphin-1 (Antanal-1) and [Dmt(1), D-2-Nal(4)]endomorphin-2 (Antanal-2).

    PubMed

    Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Lemieux, Carole; Schiller, Peter W; Poels, Jeroen; Broeck, Jozef Vanden; Costentin, Jean; Janecka, Anna

    2007-02-08

    To synthesize potent antagonists of the mu-opioid receptor, we prepared a series of endomorphin-1 and endomorphin-2 analogues with 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal) in position 4. Some of these analogues displayed weak antagonist properties. We tried to strengthen these properties by introducing the structurally modified tyrosine residue 2,6-dimethyltyrosine (Dmt) in place of Tyr1. Among the synthesized compounds, [Dmt1, d-2-Nal4]endomorphin-1, designated antanal-1, and [Dmt1, d-2-Nal4]endomorphin-2, designated antanal-2, turned out to be highly potent and selective mu-opioid receptor antagonists, as judged on the basis of two functional assays, the receptor binding assay and the hot plate test of analgesia. Interestingly, another analogue of this series, [Dmt1, d-1-Nal4]endomorphin-1, turned out to be a moderately potent mixed mu-agonist/delta-antagonist.

  3. Novel oxotremorine-related heterocyclic derivatives: Synthesis and in vitro pharmacology at the muscarinic receptor subtypes.

    PubMed

    Dallanoce, Clelia; De Amici, Marco; Barocelli, Elisabetta; Bertoni, Simona; Roth, Bryan L; Ernsberger, Paul; De Micheli, Carlo

    2007-12-15

    A set of novel heterocyclic ligands (6-27) structurally related to Oxotremorine 2 was designed, synthesized and tested at muscarinic receptor subtypes (mAChRs). In the binding experiments at cloned human receptors (hm1-5), compounds 7 and 15 evidenced a remarkable affinity and selectivity for the hm2 subtype. The in vitro functional assays, performed on a selected group of derivatives at M(1), M(2), and M(3) tissue preparations, singled out the 3-butynyloxy-5-methylisoxazole trimethylammonium salt 7 as a potent unselective muscarinic agonist [pEC(50): 7.40 (M(1)), 8.18 (M(2)), and 8.14 (M(3))], whereas its 5-phenyl analogue 12 behaved as a muscarinic antagonist, slightly selective for the M(1) subtype [pK(B): 6.88 (M(1)), 5.95 (M(2)), 5.53 (M(3))]. Moreover, the functional data put in evidence that the presence of the piperidine ring may generate a functional selectivity, e.g., an M(1) antagonist/M(2) partial agonist/M(3) full agonist profile (compound 21), at variance with the corresponding quaternary ammonium salt (compound 22) which behaved as a muscarinic agonist at all M(1-3) receptors, with an appreciable selectivity for the cardiac M(2) receptors.

  4. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  5. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    PubMed Central

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent

    2015-01-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  6. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  7. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-08-01

    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage mechanism in early PD.

  8. Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking.

    PubMed

    Bäckström, Pia; Hyytiä, Petri

    2006-04-01

    Neuroanatomical and pharmacological evidence implicates glutamate transmission in drug-environment conditioning that partly controls drug seeking and relapse. Glutamate receptors could be targets for pharmacological attenuation of the motivational properties of drug-paired cues and for relapse prevention. The purpose of the present study was therefore to investigate the involvement of ionotropic and metabotropic glutamate receptor subtypes in cue-induced reinstatement of cocaine-seeking behavior. Rats were trained to self-administer cocaine using a second-order schedule of reinforcement (FR4(FR5:S)) under which a compound stimulus (light and tone) associated with cocaine infusions was presented contingently. Following extinction, the effects of the competitive NMDA receptor antagonist CGP 39551 (0, 2.5, 5, 10 mg/kg intraperitoneally (i.p.)), two competitive AMPA/kainate antagonists, CNQX (0, 0.75, 1.5, 3 mg/kg i.p.) and NBQX (0, 1.25, 2.5, 5 mg/kg i.p.), the NMDA/glycine site antagonist L-701,324 (0, 0.63, 1.25, 2.5 mg/kg i.p.), and the mGluR5 antagonist MPEP (0, 1.25, 2.5, 5 mg/kg i.p.) on cue-induced reinstatement of cocaine seeking were examined. The AMPA/kainate receptor antagonists CNQX and NBQX, the NMDA/glycine site antagonist L-701,324, and the mGluR5 antagonist MPEP attenuated significantly cue-induced reinstatement. The NMDA antagonist CGP 39551 failed to affect reinstatement. Additional control experiments indicated that attenuation of cue-induced reinstatement by CNQX, NBQX, L-701,324, and MPEP was not accompanied by significant suppression of spontaneous locomotor activity. These results suggest that conditioned influences on cocaine seeking depend on glutamate transmission. Accordingly, drugs with antagonist properties at various glutamate receptor subtypes could be useful in prevention of relapse induced by conditioned stimuli.

  9. Antidepressant and anxiolytic properties of the methanolic extract of Momordica charantia Linn (Cucurbitaceae) and its mechanism of action.

    PubMed

    Ishola, I O; Akinyede, A A; Sholarin, A M

    2014-07-01

    The whole plant of Momordica charantia Linn (Cucurbitaceae) is used in traditional African medicine in the management of depressive illness. Momordica charantia (MC) (50-400 mg/kg, p.o.) was administered 1 h before behavioural studies using the forced swimming test (FST) and tail suspension test (TST) to investigate antidepressant-like effect while the anxiolytic-like effect was evaluated with elevated plus maze test (EPM), hole-board test (HBT), and light-dark test (LDT). Acute treatment with MC (50-400 mg/kg) significantly increased swimming time (86.51%) and reduced the duration of immobility (52.35%) in FST and TST with peak effects observed at 200 mg/kg, respectively, in comparison to control. The pretreatment of mice with either sulpiride (dopamine D2 receptor antagonist), or metergoline (5-HT2 receptor antagonist), or cyproheptadine (5-HT2 receptor antagonist), or prazosin (α1-adrenoceptor antagonist), or yohimbine (α2-adrenoceptor antagonist), and atropine (muscarinic cholinergic receptor antagonist) 15 min before oral administration of MC (200 mg/kg) significantly blocked its anti-immobility effect. Similarly, MC (200 mg/kg) significantly reduced anxiety by increasing the open arm exploration (64.27%) in EPM, number of head-dips in HBT (34.38%), and time spent in light compartment (29.38%) in the LDT. However, pretreatment with flumazenil (GABAA receptor antagonist) 15 min before MC (200 mg/kg) significantly blocked (54.76%) its anxiolytic effect. The findings in this study showed that MC possesses antidepressant-like effect that is dependent on the serotonergic (5-HT2 receptor), noradrenergic (α1- and α2-adrenoceptors), dopaminergic (D2 receptor), and muscarinic cholinergic systems and an anxiolytic-like effect that might involve an action on benzodiazepine-type receptor. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Characterization of alpha(4)beta(1) (CD49d/CD29) on equine leukocytes: potential utility of a potent alpha(4)beta(1) (CD49d/CD29) receptor antagonist in the treatment of equine heaves (recurrent airway obstruction).

    PubMed

    Treonze, Kelly M; Alves, Kenneth; Fischer, Paul; Hagmann, William K; Hora, Donald; Kulick, Alison; Vakerich, Ken; Smith, Nicholas D; Lingham, Russell B; Maniar, Salony; Reger, Thomas S; Zunic, Jasmine; Munoz, Benito; Prasit, Peppi; Nicholson, Donald; Si, Qian; Judd, Keith; Nicolich, Susan; Kellerhouse, Patricia; Thompson, Donald; Mumford, Richard A

    2009-07-15

    The purpose of this study was to characterize the alpha(4)beta(1) receptor (CD49d/CD29, very late antigen-4, VLA-4) on circulating equine leukocytes and to evaluate the intrinsic potency of an alpha(4)beta(1) receptor antagonist (Compound B) in the horse. Ultimately, these studies would allow us to determine the suitability of treating recurrent airway obstruction (RAO; heaves) affected horses by blocking the cellular recruitment of lymphocytes and neutrophils into the lung. The data demonstrates the alpha(4)beta(1) integrin is present on horse lymphocytes and neutrophils (fluorescence-assisted cell sorter, FACS) and can bind low molecular weight alpha(4)beta(1) antagonists (Compounds A and B) with high affinity. K(D) values for the binding of Compound A to non-activated alpha(4)beta(1) on isolated horse PBMCs (peripheral blood mononuclear cells) and activated neutrophils were 17 pM and 27 pM, respectively. Compound B was identified as a suitable antagonist for performing a series of in vivo experiments. Compound B was found to possess excellent potency in horse whole blood, possessing IC(50) and IC(90) values of 39 pM and 172 pM, respectively. This represents a 3.9-fold molar excess of drug over the alpha(4)beta(1) concentration in blood. Following oral administration of Compound B (5 mg/kg) to beagle dogs and rhesus monkeys, rapid and sustained alpha(4)beta(1) receptor occupancy (>80%) was achieved and maintained for a period of 24 h. When Compound B was administered intravenously to the horse, by either a slow or rapid infusion at a dose of 0.3 mg/kg, receptor blockade of >80% was observed out to 24 h with a concomitant leukocytosis. We believe that Compound B possesses suitable intrinsic and pharmacological properties to be evaluated clinically in horses affected by RAO.

  11. Characterization of the tachykinin neurokinin-2 receptor in the human urinary bladder by means of selective receptor antagonists and peptidase inhibitors.

    PubMed

    Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A

    1993-11-01

    The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.

  12. Molecular modeling of interactions of the non-peptide antagonist YM087 with the human vasopressin V1a, V2 receptors and with oxytocin receptors.

    NASA Astrophysics Data System (ADS)

    Giełdoń, Artur; Kaźmierkiewicz, Rajmund; Ślusarz, Rafał; Ciarkowski, Jerzy

    2001-12-01

    The nonapeptide hormones arginine vasopressin (CYFQNCPRG-NH2, AVP) and oxytocin (CYIQNCPLG-NH2, OT), control many essential functions in mammals. Their main activities include the urine concentration (via stimulation of AVP V2 receptors, V2R, in the kidneys), blood pressure regulation (via stimulation of vascular V1a AVP receptors, V1aR), ACTH control (via stimulation of V1b receptors, V1bR, in the pituitary) and labor and lactation control (via stimulation of OT receptors, OTR, in the uterus and nipples, respectively). All four receptor subtypes belong to the GTP-binding (G) protein-coupled receptor (GPCR) family. This work consists of docking of YM087, a potent non-peptide V1aR and V2R - but not OTR - antagonist, into the receptor models based on relatively new theoretical templates of rhodopsin (RD) and opiate receptors, proposed by Mosberg et al. (Univ. of Michigan, Ann Arbor, USA). It is simultaneously demonstrated that this RD template satisfactorily compares with the first historical GPCR structure of bovine rhodopsin (Palczewski et al., 2000) and that homology-modeling of V2R, V1aR and OTR using opiate receptors as templates is rational, based on relatively high (20-60%) sequence homology among the set of 4 neurophyseal and 4 opiate receptors. YM087 was computer-docked to V1aR, V2R and OTR using the AutoDock (Olson et al., Scripps Research Institute, La Jolla, USA) and subsequently relaxed using restrained simulated annealing and molecular dynamics, as implemented in AMBER program (Kollman et al., University of California, San Francisco, USA). From about 80 diverse configurations, sampled for each of the three ligand/receptor systems, 3 best energy-relaxed complexes were selected for mutual comparisons. Similar docking modes were found for the YM087/V1aR and YM087/V2R complexes, diverse from those of the YM087/OTR complexes, in agreement with the molecular affinity data.

  13. SSR126768A (4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor.

    PubMed

    Serradeil-Le Gal, Claudine; Valette, Gérard; Foulon, Loïc; Germain, Guy; Advenier, Charles; Naline, Emmanuel; Bardou, Marc; Martinolle, Jean-Pierre; Pouzet, Brigitte; Raufaste, Danielle; Garcia, Corinne; Double-Cazanave, Eléonore; Pauly, Maxime; Pascal, Marc; Barbier, Alain; Scatton, Bernard; Maffrand, Jean-Pierre; Le Fur, Gérard

    2004-04-01

    4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)benzamide, hydrochloride (SSR126768A), a new potent and selective, orally active oxytocin (OT) receptor antagonist was characterized in several biochemical and pharmacological models. In binding studies, SSR126768A showed nanomolar affinity for rat and human recombinant and native OT receptors (K(i) = 0.44 nM) and exhibited much lower affinity for V(1a), V(1b), and V(2) receptors. In addition, it did not interact with a large number of other receptors, enzymes, and ion channels (1 microM). In autoradiographic experiments performed on at-term human pregnant uterus sections, SSR126768A dose dependently displaced [I(125)]d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8) (125)I-Tyr-NH(2)(9)]VT in situ labeling to OT receptors highly expressed in these tissues. In functional studies, SSR126768A behaved as a full antagonist and potently antagonized OT-induced intracellular Ca(2+) increase (K(i) = 0.50 nM) and prostaglandin release (K(i) = 0.45 nM) in human uterine smooth muscle cells. In rat isolated myometrium, OT-induced uterine contractions were competitively antagonized by SSR126768A (pA(2) = 8.47). Similarly, in human pregnant myometrial strips, SSR126768A inhibited the contractile uterine response to OT. In conscious telemetrated rats, oral administration of SSR126768A (1-10 mg/kg) produced a competitive inhibition of the dose response to OT on uterine contractions up to 24 h at 3 mg/kg p.o.; no tachyphylaxis was observed after 4-day repeated treatment. Finally, SSR126768A (30 mg/kg p.o.) significantly delayed parturition in pregnant rats in labor similar to ritodrine (10 mg/kg p.o.). Thus, SSR126768A is a potent, highly selective, orally active OT receptor antagonist with a long duration of action. This molecule could find therapeutic application as a tocolytic agent for acute and chronic oral management of preterm labor.

  14. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine

    PubMed Central

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. Results: In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did. Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Conclusion: These results suggest that DKT depolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT4 and M3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. SUMMARY Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) didMethoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-DAMP (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarizationGinseng radix and Zingiberis rhizomes depolarized PPswhereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Abbreviation used: DKT: Daikenchuto, GI: Gastrointestinal, ICCs: Interstitial cells of Cajal, PPs: Pacemaker Potentials. PMID:28216898

  15. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine.

    PubMed

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) did. Methoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca 2+ -free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. These results suggest that DKT depolarizes ICC PPs in an internal or external Ca 2+ -dependent manner by stimulating 5-HT 4 and M 3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) didMethoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-DAMP (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarizationGinseng radix and Zingiberis rhizomes depolarized PPswhereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Abbreviation used: DKT: Daikenchuto, GI: Gastrointestinal, ICCs: Interstitial cells of Cajal, PPs: Pacemaker Potentials.

  16. Identification of an antagonist that selectively blocks the activity of prostamides (prostaglandin-ethanolamides) in the feline iris

    PubMed Central

    Woodward, D F; Krauss, A H; Wang, J W; Protzman, C E; Nieves, A L; Liang, Y; Donde, Y; Burk, R M; Landsverk, K; Struble, C

    2006-01-01

    Background and Purpose: The prostamides (prostaglandin-ethanolamides) and prostaglandin (PG) glyceryl esters are biosynthesized by COX-2 from the respective endocannabinoids anandamide and 2-arachidonyl glycerol. Agonist studies suggest that their pharmacologies are unique and unrelated to prostanoid receptors. This concept was further investigated using antagonists. Experimental Approach: The isolated feline iris was used as a key preparation, where prostanoid FP receptors and prostamide activity co-exist. Activity at human recombinant FP and other prostanoid receptors was determined using stable transfectants. Key Results: In the feline iris, AGN 204396 produced a rightward shift of the dose-response curves for prostamide F2α and the prostamide F2α analog bimatoprost but did not block the effects of PGF2α and synthetic FP receptor agonists. Studies on human recombinant prostanoid receptors confirmed that AGN 204396 did not behave as a prostanoid FP receptor antagonist. AGN 204396 exhibited no antagonism at DP and EP1-4, but was a highly effective TP receptor antagonist. Contrary to expectation, the FP receptor antagonist AL-8810 efficaciously contracted the cat iris. AGN 204396 did not affect AL-8810 induced contractions, demonstrating that AL-8810 and AGN 204396 are pharmacologically distinct. Unlike AL-8810, the ethylamide derivate of AL-8810 was not an agonist. Al-8810 did not block prostamide F2α activity. Finally, AGN 204396 did not block PGE2-glyceryl ester activity. Conclusions and Implications: The ability of AGN 204396 to selectively block prostamide responses suggests the existence of prostamide sensitive receptors as entities distinct from receptors recognizing PGF2α and PGE2-glyceryl ester. PMID:17179945

  17. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells.

    PubMed

    Jiang, Jun-xia; Zhang, Shui-juan; Xiong, Yao-kang; Jia, Yong-liang; Sun, Yan-hong; Lin, Xi-xi; Shen, Hui-juan; Xie, Qiang-min; Yan, Xiao-feng

    2015-01-01

    Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.

  18. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells

    PubMed Central

    Xiong, Yao-kang; Jia, Yong-liang; Sun, Yan-hong; Lin, Xi-xi; Shen, Hui-juan; Xie, Qiang-min; Yan, Xiao-feng

    2015-01-01

    Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells. PMID:26035589

  19. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold.

    PubMed

    Rempel, Viktor; Volz, Nicole; Gläser, Franziska; Nieger, Martin; Bräse, Stefan; Müller, Christa E

    2013-06-13

    The orphan G-protein-coupled receptor GPR55, which is activated by 1-lysophosphatidylinositol and interacts with cannabinoid (CB) receptor ligands, has been proposed as a new potential drug target for the treatment of diabetes, Parkinson's disease, neuropathic pain, and cancer. We applied β-arrestin assays to identify 3-substituted coumarins as a novel class of antagonists and performed an extensive structure-activity relationship study for GPR55. Selectivity versus the related receptors CB1, CB2, and GPR18 was assessed. Among the 7-unsubstituted coumarins selective, competitive GPR55 antagonists were identified, such as 3-(2-hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (12, PSB-SB-489, IC50 = 1.77 μM, pA2 = 0.547 μM). Derivatives with long alkyl chains in position 7 were potent, possibly allosteric GPR55 antagonists which showed ancillary CB receptor affinity. 7-(1,1-Dimethyloctyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (69, PSB-SB-487, IC50 = 0.113 μM, KB = 0.561 μM) and 7-(1,1-dimethylheptyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (67, PSB-SB-1203, IC50 = 0.261 μM) were the most potent GPR55 antagonists of the present series.

  20. Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone.

    PubMed

    Shortall, Sinead E; Spicer, Clare H; Ebling, Francis J P; Green, A Richard; Fone, Kevin C F; King, Madeleine V

    2016-11-01

    The psychoactive effects of mephedrone are commonly compared with those of 3,4-methylenedioxymethamphetamine, but because of a shorter duration of action, users often employ repeated administration to maintain its psychoactive effects. This study examined the effects of repeated mephedrone administration on locomotor activity, body temperature and striatal dopamine and 5-hydroxytryptamine (5-HT) levels and the role of dopaminergic and serotonergic neurons in these responses. Adult male Lister hooded rats received three injections of vehicle (1 ml/kg, i.p.) or mephedrone HCl (10 mg/kg) at 2 h intervals for radiotelemetry (temperature and activity) or microdialysis (dopamine and 5-HT) measurements. Intracerebroventricular pre-treatment (21 to 28 days earlier) with 5,7-dihydroxytryptamine (150 µg) or 6-hydroxydopamine (300 µg) was used to examine the impact of 5-HT or dopamine depletion on mephedrone-induced changes in temperature and activity. A final study examined the influence of i.p. pre-treatment (-30 min) with the 5-HT 1A receptor antagonist WAY-100635 (0.5 mg/kg), 5-HT 1B receptor antagonist GR 127935 (3 mg/kg) or the 5-HT 7 receptor antagonist SB-258719 (10 mg/kg) on mephedrone-induced changes in locomotor activity and rectal temperature. Mephedrone caused rapid-onset hyperactivity, hypothermia (attenuated on repeat dosing) and increased striatal dopamine and 5-HT release following each injection. Mephedrone-induced hyperactivity was attenuated by 5-HT depletion and 5-HT 1B receptor antagonism, whereas the hypothermia was completely abolished by 5-HT depletion and lessened by 5-HT 1A receptor antagonism. These findings suggest that stimulation of central 5-HT release and/or inhibition of 5-HT reuptake play a pivotal role in both the hyperlocomotor and hypothermic effects of mephedrone, which are mediated in part via 5-HT 1B and 5-HT 1A receptors. © 2015 Society for the Study of Addiction.

  1. Basic mechanisms of migraine and its acute treatment.

    PubMed

    Edvinsson, Lars; Villalón, Carlos M; MaassenVanDenBrink, Antoinette

    2012-12-01

    Migraine is a neurovascular disorder characterized by recurrent unilateral headaches accompanied by nausea, vomiting, photophobia and phonophobia. Current theories suggest that the initiation of a migraine attack involves a primary event in the central nervous system (CNS), probably involving a combination of genetic changes in ion channels and environmental changes, which renders the individual more sensitive to environmental factors; this may, in turn, result in a wave of cortical spreading depression (CSD) when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Early PET studies have suggested the involvement of a migraine active region in the brainstem. Migraine headache is associated with trigeminal nerve activation and calcitonin gene-related peptide (CGRP) release from the trigeminovascular system. Administration of triptans (5-HT(1B/1D) receptor agonists) causes the headache to subside and the levels of CGRP to normalize. Moreover, administration of CGRP receptor antagonists aborts the headache. Recent immunohistochemical and pharmacological results suggest that the trigeminal system has receptors for CGRP; further, 5-HT(1B/1D) receptors, which inhibit the action of CGRP in pain transmission when activated, have been demonstrated. This offers an explanation for the treatment response. The present review provides an updated analysis of the basic mechanisms involved in the pathophysiology of migraine and the various pharmacological approaches (including 5-HT(1B/1D) receptor agonists, CGRP receptor antagonists and glutamate receptor antagonists) that have shown efficacy for the acute treatment of this disorder. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors.

    PubMed

    Joseph, Elizabeth K; Green, Paul G; Bogen, Oliver; Alvarez, Pedro; Levine, Jon D

    2013-02-13

    Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.

  4. Existence of three subtypes of bradykinin B2 receptors in guinea pig.

    PubMed

    Seguin, L; Widdowson, P S; Giesen-Crouse, E

    1992-12-01

    We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. 17β-Estradiol regulates cyclin A1 and cyclin B1 gene expression in adult rat seminiferous tubules.

    PubMed

    Bois, Camille; Delalande, Christelle; Bouraïma-Lelong, Hélène; Durand, Philippe; Carreau, Serge

    2012-04-01

    Spermatogenesis, which is the fundamental mechanism allowing male gamete production, is controlled by several factors, and among them, estrogens are likely concerned. In order to enlighten the potential role of estrogen in rat spermatogenesis, seminiferous tubules (ST) from two groups of seminiferous epithelium stages (II-VIII and IX-I) were treated with either 17β-estradiol (E(2)) agonists or antagonists for estrogen receptors (ESRs). In this study, we show that cyclin A1 and cyclin B1 gene expression is controlled by E(2) at a concentration of 10(-9) M only in stages IX-I. This effect is mimicked by a treatment with the G-protein coupled estrogen receptor (GPER) agonist G1 and is abolished by treatment with the ESR antagonist ICI 182 780. Moreover, using letrozole, a drug that blocks estrogen synthesis, we demonstrate that these genes are under the control of E(2) within rat ST. Thus, germ cell differentiation may be regulated by E(2) which acts through ESRs and GPER, expressed in adult rat ST.

  6. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    PubMed

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest that the attenuation of PTH stimulation of cAMP production in treated bone cells may be, at least in part, due to receptor-mediated endocytosis of the hormone.

  7. Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: involvement of β-endorphin.

    PubMed

    Tamura, Yutaka; Shintani, Mitsuteru; Inoue, Hirofumi; Monden, Mayuko; Shiomi, Hirohito

    2012-04-11

    We have shown previously that intracerebroventricular (icv) injection of naloxone (a non-selective opioid receptor antagonist) or naloxonazine (a selective μ1-opioid receptor antagonist) at the maintenance phase of hibernation arouses Syrian hamsters from hibernation. This study was designed to clarify the role of β-endorphin (an endogenous μ-opioid receptor ligand) on regulation of body temperature (T(b)) during the maintenance phase of hibernation. The number of c-Fos-positive cells and β-endorphin-like immunoreactivity increased in the arcuate nucleus (ARC) after hibernation onset. In contrast, endomorphin-1 (an endogenous μ-opioid receptor ligand)-like immunoreactivity observed on the anterior hypothalamus decreased after hibernation onset. In addition, hibernation was interrupted by icv injection of anti-β-endorphin antiserum at the maintenance phase of hibernation. The mRNA expression level of proopiomelanocortin (a precursor of β-endorphin) on ARC did not change throughout the hibernation phase. However, the mRNA expression level of prohormone convertase-1 increased after hibernation onset. [D-Ala2,N-MePhe4,Gly-ol5] enkephalin (DAMGO, a selective μ-opioid receptor agonist) microinjection into the dorsomedial hypothalamus (DMH) elicited the most marked T(b) decrease than other sites such as the preoptic area (PO), anterior hypothalamus (AH), lateral hypothalamus (LH), ventromedial hypothalamus and posterior hypothalamus (PH). However, microinjected DAMGO into the medial septum indicated negligible changes in T(b). These results suggest that β-endorphin which synthesizes in ARC neurons regulates T(b) during the maintenance phase of hibernation by activating μ-opioid receptors in PO, AH, VMH, DMH and PH. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Effects of histamine and 5-hydroxytryptamine on the growth rate of xenografted human bronchogenic carcinomas.

    PubMed

    Sheehan, P F; Baker, T; Tutton, P J; Barkla, D H

    1996-01-01

    1. The influence of histamine and 5-hydroxytryptamine (5-HT) antagonists and agonists on the volume doubling times (Td) of human bronchogenic carcinomas propagated as s.c. xenografts in immunosuppressed mice was examined. 2. The H2-receptor antagonists, cimetidine and ranitidine, increased Td. 3. Treatment with the H2-receptor agonist, 4-methyl histamine, had no effect on Td. 4. Co-administration of 4-methyl histamine and cimetidine abolished the effects of cimetidine. 5. The 5-HT2-receptor antagonists, cinanserin and ketanserin, both increased Td. 6. Treatment with the 5-HT1/2-receptor agonist quipazine (0.1 mg/kg, reflecting 5-HT2 agonist activity) decreased Td, while a higher dose (10.0 mg/kg) had no effect. 7. The 5-HT1/2-receptor antagonist, methiothepin, decreased Td. 8. The 5-HT uptake inhibitor, fluoxetine, increased Td in one tumour line but not in another, while the 5-HT releaser/depletor, fenfluramine, increased Td. 9. Histamine may stimulate tumour growth through the histamine H2-receptor, while the dominant effect of 5-HT is 5-HT1-receptor inhibition. 10. Tumour growth in some bronchogenic carcinomas may involve 5-HT uptake mechanisms.

  9. Evidence for respiratory neuromodulator interdependence after cholinergic disruption in the ventral respiratory column.

    PubMed

    Muere, Clarissa; Neumueller, Suzanne; Miller, Justin; Olesiak, Samantha; Hodges, Matthew R; Pan, Lawrence; Forster, Hubert V

    2015-01-01

    Reverse dialysis of the muscarinic receptor antagonist, atropine (ATR, 50 mM), into the pre-Bötzinger Complex region of the ventral respiratory column (VRC) of awake and sleeping goats increases breathing frequency and serotonin (5-HT), substance P (SP), glycine, and GABA concentrations in the effluent dialysate. Herein, we report data from goats in which we reverse dialyzed 5 mM ATR or specific antagonists of M2 or M3 muscarinic receptors into the VRC. The effects on frequency of all three antagonists were not significantly different from time control studies. 5 mM ATR and the M3 antagonist increased SP sevenfold less than 50 mM ATR. The antagonists had no effect on 5-HT, glycine, and/or GABA, suggesting that the increases in glycine and GABA with 50 mM ATR were secondary to the larger increases in 5-HT and/or SP. These data are suggestive of neuromodulator interdependence, whereby attenuation of one neuromodulator is compensated for by local changes in other neuromodulators to stabilize breathing. Copyright © 2014. Published by Elsevier B.V.

  10. In vitro histamine H/sub 2/-antagonist activity of the novel compound HUK 978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coombes, J.D.; Norris, D.B.; Rising, T.J.

    1985-11-04

    Histamine stimulated adenylate cyclase from guinea-pig fundic mucosa and /sup 3/H-tiotidine binding in guinea-pig cerebral cortex were used to assess the in-vitro histamine H/sub 2/-activity of the novel H/sub 2/-antagonist HUK 978. The results showed that HUK 978 was a more potent H/sub 2/-antagonist than either cimetidine or ranitidine. HUK 978 was also shown to be devoid of activity at the histamine H-/sub 1/-receptor, the muscarinic receptor and the ..cap alpha.. and ..beta..-adrenergic receptors.

  11. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats

    PubMed Central

    McDougall, Sanders A.; Rudberg, Krista N.; Veliz, Ana; Dhargalkar, Janhavi M.; Garcia, Aleesha S.; Romero, Loveth C.; Gonzalez, Ashley E.; Mohd-Yusof, Alena; Crawford, Cynthia A.

    2017-01-01

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. PMID:28284952

  12. The effects of an acute challenge with the NMDA receptor antagonists, MK-801, PEAQX, and ifenprodil, on social inhibition in adolescent and adult male rats

    PubMed Central

    Spear, Linda P.

    2013-01-01

    Rationale NMDA antagonists consistently produce social inhibition in adult animals, although effects of these manipulations on social behavior of adolescents are relatively unknown. Objectives The aim of this study was to assess potential age differences in the socially inhibitory effects of the non-competitive NMDA antagonist, MK-801, as well as NR2 subunit selective effects, given the regional and developmental differences that exist for the NR2 subunit during ontogeny. Methods In separate experiments, adolescent and adult male Sprague–Dawley rats were treated acutely with MK-801 (0, 0.05, 0.1, 0.2 mg/kg, i.p.), the NR2A antagonist, PEAQX (2.5, 5, 10, 20 mg/kg, s.c.), or the NR2B antagonist, ifenprodil (1.5, 3, 6, 12 mg/kg, i.p.), 10 min prior to a social interaction test. Results Adolescents required higher doses of MK-801 (0.1 and 0.2 mg/kg) to induce social suppression, whereas adults demonstrated reductions in social activity after all doses. Likewise, adolescents required higher doses of ifenprodil (6 and 12 mg/kg) to produce social inhibitory effects relative to adults (all doses). In contrast, adults were less sensitive to PEAQX than adolescents, with adults showing social inhibition after 20 mg/kg whereas adolescents showed this effect following 10 and 20 mg/kg. Although locomotor activity was generally reduced at both ages by all drugs tested, ANCOVAs using locomotor activity as a covariate revealed similar patterns of social inhibitory effects. Conclusions Adolescents are less sensitive than adults to the disruption of social behavior by NMDA and NR2B-selective receptor antagonism, but not by an NR2A antagonist—age differences that may be related to different subunit expression patterns during development. PMID:24043344

  13. Antidepressant potential of novel flavonoids derivatives from sweet violet (Viola odorata L): Pharmacological, biochemical and computational evidences for possible involvement of serotonergic mechanism.

    PubMed

    Karim, Nasiara; Khan, Imran; Abdelhalim, Abeer; Khan, Ajmal; Halim, Sobia Ahsan

    2018-05-22

    Plant-derived natural constituents are of great interest in modern drug discovery due to their natural diversity. Viola odorata L has been traditionally used for the treatment of neuropsychiatric disorders. The present study was undertaken to isolate phytoconstituents including three flavonoids 5,7-Dihydroxy-3,6-dimethoxyflavone[1] 5,7,4'-trihydroxy-3',5'dimethoxyflavone [2] and 5,7,4'-trihydroxy-3'-methoxyflavone [3] from the whole plant of Viola odorata L and to investigate the antidepressant-like effects of these compounds and their possible mechanism of action using antagonists of the serotonergic, dopaminergic and adrenergic system. Classical animal models of depression including tail suspension test (TST) and forced swimming test (FST) using mice were used to evaluate the antidepressant-like effects. Mice were divided into various groups and were administered with either vehicle control, fluoxetine (FLX), or test compounds 1-3 intraperitoneally (i.p.). For experiments involving mechanism determination, mice were pretreated with 5-HT, dopamine and adrenergic antagonists. The brain 5-HT levels were determined following FST. Molecular docking studies were carried out to determine the binding affinity of compounds 1-3 to serotonergic receptors. The results indicated that compounds 1-3 at the dose of 1-30 mg/kg, i.p significantly decreased the immobility time in the FST and TST in mice. The reduction in immobility time was reversed by pre-treating the mice with pCPA (5-HT synthesis inhibitor) 100 mg/kg, i.p. and 5-HT receptor antagonists including WAY100635 (5-HT1a antagonist), ketanserin (a 5-HT2a antagonist) and ondansetron (5-HT3 antagonist) but not with prazosin (α1-adrenergic antagonist) and SCH23390 (D1 dopaminergic antagonist) or haloperidol (D2 dopaminergic antagonist). Moreover, in neurochemical assays, compounds 1-3 caused a significant increase in the 5-HT level in the brain tissue as compared to vehicle. These increases were reversed in the mice groups pretreated with pCPA. Furthermore, molecular docking results also depict that compounds 1-3 can interact with 5HT1A, 5HT2A, and 5HT3 receptors, and are more specific to the 5HT3 receptor subtype. In conclusion, the findings of this study clearly suggest that compounds 1-3 possess antidepressant-like effects which might be mediated via the serotonergic system. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands.

    PubMed

    Bedini, Annalida; Spadoni, Gilberto; Gatti, Giuseppe; Lucarini, Simone; Tarzia, Giorgio; Rivara, Silvia; Lorenzi, Simone; Lodola, Alessio; Mor, Marco; Lucini, Valeria; Pannacci, Marilou; Scaglione, Francesco

    2006-12-14

    A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o- or [(m-benzyl)phenyl]ethyl-alkanamides were synthesized and tested on MT(1) and MT(2) receptors. The class of 3,3-diphenyl-propenyl-alkanamides was the most interesting one, with compounds having MT(2) receptor affinity similar to that of MLT, remarkable MT(2) selectivity, and partial agonist or antagonist behavior. In particular, the (E)-m-methoxy cyclobutanecarboxamido derivative 18f and the di-(m-methoxy) acetamido one, 18g, have sub-nM affinity for the MT(2) subtype, with more than 100-fold selectivity over MT(1), 18f being an antagonist and 18g a partial agonist on GTPgammaS test. Docking of 18g into a previously developed MT(2) receptor model showed a binding scheme consistent with that of other antagonists. The MT(2) expected binding affinities of the new compounds were calculated by a previously developed 3D-QSAR CoMFA model, giving satisfactory predictions.

  15. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wen-Zhu; Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853; Miao, Yu-Liang

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation ofmore » hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.« less

  16. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats.

    PubMed

    Backes, E N; Hemby, S E

    2008-03-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 microg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n = 7; 68 ng/side, n = 8), GABA-A agonist muscimol (14 ng/side, n = 8), GABA-B agonist baclofen (56 ng/side, n = 7; 100 ng/side, n = 6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n = 7; 2 microg/side, n = 8) or artificial cerebrospinal fluid (aCSF, n = 6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n = 6) nor baclofen (n = 8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction.

  17. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats

    PubMed Central

    Backes, E.N.; Hemby, S.E.

    2008-01-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 µg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n=7; 68 ng/side, n=8), GABA-A agonist muscimol (14 ng/side, n=8), GABA-B agonist baclofen (56 ng/side, n=7; 100 ng/side, n=6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n=7; 2 µg/side, n=8) or artificial cerebrospinal fluid (aCSF, n=6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n=6) nor baclofen (n=8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction. PMID:17943439

  18. Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells

    NASA Astrophysics Data System (ADS)

    Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are found in ambient aerosols and particulate matter. Experimental studies have shown that PAHs and related chemicals can induce toxicological effects. The present study aimed to investigate the effects of PAHs and their derivatives on the respiratory and immune systems and the underlying mechanisms. The human bronchial epithelial cell line BEAS-2B was exposed to PAHs and their derivatives, and the cytotoxicity and proinflammatory protein expression were then investigated. A cytotoxic effect was observed in BEAS-2B exposed to PAH derivatives such as naphthoquinone (NQ), phenanthrenequinone (PQ), 1-nitropyrene (1-NP), and 1-aminopyrene (1-AP). In addition, 1,2-NQ and 9,10-PQ showed more effective cytotoxicity than 1,4-NQ and 1,4-PQ, respectively. Pyrene showed a weak cytotoxic effect. On the other hand, naphthalene and phenanthrene showed no significant effects. Pyrene, 1-NP, and 1-AP also increased intercellular adhesion molecule-1 expression and interleukin-6 production in BEAS-2B. The increase was partly suppressed by protein kinase inhibitors such as the epidermal growth factor receptor-selective tyrosine kinase inhibitor and nuclear receptor antagonists such as the thyroid hormone receptor antagonist. The present study suggests that the toxicological effects of chemicals may be related to the different activities resulting from their structures, such as numbers of benzene rings and functional groups. Furthermore, the chemical-induced increase in proinflammatory protein expression in bronchial epithelial cells was possibly a result of the activation of protein kinase pathways and nuclear receptors. The increase may partly contribute to the adverse health effects of atmospheric PAHs.

  19. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  20. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but notmore » by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.« less

  1. Selection of Protease Inhibitors to Prevent or Attenuate Inflammatory Processes

    DTIC Science & Technology

    2007-08-01

    selective kinin BI-receptor antagonists would not produce undesirable side effects [Campos et al., 2006]. The constitutive expression of B2-receptors on...This metabolic fragment of bradykinin prevents the deleterious effects of endotoxin (LPS) in both anesthetized rats and in isolated rat aortic...bacterial pathogens, such as Pseudomonas aeruginosa, Vibrio cholerae and Neisseria gonorrhoeae. These bacteria all produce type IV pili (Tfp) composed

  2. Purinergic Signalling: Therapeutic Developments

    PubMed Central

    Burnstock, Geoffrey

    2017-01-01

    Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer. PMID:28993732

  3. Safety and efficacy of silodosin for the treatment of benign prostatic hyperplasia

    PubMed Central

    Yoshida, Masaki; Kudoh, Junzo; Homma, Yukio; Kawabe, Kazuki

    2011-01-01

    Lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH) are highly prevalent in older men. Medical therapy is the first-line treatment for LUTS associated with BPH. Mainstays in the treatment of male LUTS and clinical BPH are the α1-adrenergic receptor antagonists. Silodosin is a new α1-adrenergic receptor antagonist that is selective for the α1A-adrenergic receptor. By antagonizing α1A-adrenergic receptors in the prostate and urethra, silodosin causes smooth muscle relaxation in the lower urinary tract. Since silodosin has greater affinity for the α1A-adrenergic receptor than for the α1B-adrenergic receptor, it minimizes the propensity for blood pressure-related adverse effects caused by α1B-adrenergic receptor blockade. In the clinical studies, patients receiving silodosin at a total daily dose of 8 mg exhibited significant improvements in the International Prostate Symptom Score and maximum urinary flow rate compared with those receiving placebo. Silodosin showed early onset of efficacy for both voiding and storage symptoms. Furthermore, long-term safety of silodosin was also demonstrated. Retrograde or abnormal ejaculation was the most commonly reported adverse effect. The incidence of orthostatic hypotension was low. In conclusion, silodosin, a novel selective α1A-adrenergic receptor antagonist, was effective in general and without obtrusive side effects. This review provides clear evidence in support of the clinical usefulness of silodosin in the treatment of LUTS associated with BPH. PMID:21753871

  4. Contractile effect of tachykinins on Suncus murinus (house musk shrew) isolated ileum.

    PubMed

    Cheng, Frankie H M; Chan, Sze Wa; Rudd, John A

    2008-01-01

    Recent studies used Suncus murinus to investigate the anti-emetic potential of NK(1) tachykinin receptor antagonists. However, the pharmacology of tachykinin receptors in this species has not been fully characterized. In the present studies, therefore, we examined a range of tachykinin receptor agonists for a capacity to induce contractions of the isolated ileum. The tachykinin NK1 receptor preferring agonists substance P, septide and [Sar9Met(O2)11] substance P, and the tachykinin NK2 preferring agonists neurokinin A and GR 64349 (Lys-Asp-Ser-Phe-Val-Gly-R-gamma-lactam-Leu-Met-NH2) caused concentration dependent contractions with EC50 values in the nanomolar range. However, the tachykinin NK3 preferring agonists neurokinin B and senktide (1nM-1microM) induced only weak contractions. The action of senktide, but not [Sar9Met(O2)11] substance P, septide, or GR 64349, was antagonized significantly by atropine (P<0.05); tetrodotoxin and hexamethonium were inactive. The tachykinin NK1 receptor antagonist CP-99,994 ((+)-[(2S,3S)-3-(2-methoxy-benzyl-amino)-2-phenylpiperidine]) (10-100nM) inhibited substance P- and septide-induced contractions non-competitively. The pA2 value estimated for CP-99,994 against septide was 7.3+/-0.1. It also non-competitively antagonized the contractile responses induced by [Sar9Met(O2)11] substance P with a pA2 of 7.4+/-0.1. CP-99,994 also had a slight inhibitory action on neurokinin A-induced contractions, but did not modify the action of GR 64349. Conversely, the tachykinin NK2 receptor antagonist, saredutant, competitively antagonized GR 64349-induced contractions with a pA2 of 7.34+/-0.02. On the other hand, the presence of both CP-99,994 and saredutant competitively antagonized substance P-induced contraction. The present studies indicate that tachykininNK1 and NK2 receptors exist in the ileum of S. murinus and are involved in mediating contractions directly on smooth muscle, whereas tachykinin NK3 receptors may play a minor role involving a release of acetylcholine.

  5. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties.

    PubMed

    Rauly-Lestienne, Isabelle; Boutet-Robinet, Elisa; Ailhaud, Marie-Christine; Newman-Tancredi, Adrian; Cussac, Didier

    2007-10-01

    5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.

  6. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    PubMed Central

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R. PMID:25628267

  7. Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: studies using medium to high doses in animal models.

    PubMed

    López-Cruz, Laura; Pardo, Marta; Salamone, John D; Correa, Mercè

    2014-08-15

    Caffeine and theophylline are methylxanthines that are broadly consumed, sometimes at high doses, and act as minor psychostimulants. Both are nonselective adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1 and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions to those of dopamine antagonists. Although the effects of caffeine are widely known, theophylline has been much less well characterized, especially at high doses. Adult male CD1 mice were used to study the effect of a broad range of doses (25.0, 50.0 or 100.0mg/kg) of caffeine and theophylline on measures of spontaneous locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain areas rich in adenosine and dopamine receptors. In addition, we evaluated possible anxiety and stress effects of these doses. Caffeine, at these doses, impaired or suppressed locomotion in several paradigms. However, theophylline was less potent than caffeine at suppressing motor parameters, and even stimulated locomotion. Both drugs induced corticosterone release, however caffeine was more efficacious at intermediate doses. While caffeine showed an anxiogenic profile at all doses, theophylline only did so at the highest dose used (50mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas. Theophylline has fewer disruptive effects than caffeine on motor parameters and produces less stress and anxiety effects. These results are relevant for understanding the potential side effects of methylxanthines when consumed at high doses. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana

    PubMed Central

    Balfanz, Sabine

    2017-01-01

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine. PMID:29084141

  9. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana.

    PubMed

    Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd

    2017-10-30

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.

  10. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.

    PubMed

    Fedele, Laura; Newcombe, Joseph; Topf, Maya; Gibb, Alasdair; Harvey, Robert J; Smart, Trevor G

    2018-03-06

    Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg 2+ block. In addition, we provide new views on Mg 2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B V618G unusually allowed Mg 2+ permeation, whereas nearby N615I reduced Ca 2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.

  12. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    PubMed

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  13. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  14. Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling.

    PubMed

    Corcoran, K A; Leaderbrand, K; Jovasevic, V; Guedea, A L; Kassam, F; Radulovic, J

    2015-10-13

    In patients suffering from post-traumatic stress disorder (PTSD), fear evoked by trauma-related memories lasts long past the traumatic event and it is often complicated by general anxiety and depressed mood. This poses a treatment challenge, as drugs beneficial for some symptoms might exacerbate others. For example, in preclinical studies, antagonists of the NR2B subunit of N-methyl-d-aspartate receptors and activators of cAMP-dependent protein kinase (PKA) act as potent antidepressants and anxiolytics, but they block fear extinction. Using mice, we attempted to overcome this problem by interfering with individual NR2B and PKA signaling complexes organized by scaffolding proteins. We infused cell-permeable Tat peptides that displaced either NR2B from receptor for activated C kinase 1 (RACK1), or PKA from A-kinase anchor proteins (AKAPs) or microtubule-associated proteins (MAPs). The infusions were targeted to the retrosplenial cortex, an area involved in both fear extinction of remotely acquired memories and in mood regulation. Tat-RACK1 and Tat-AKAP enhanced fear extinction, all peptides reduced anxiety and none affected baseline depression-like behavior. However, disruption of PKA complexes distinctively interfered with the rapid antidepressant actions of the N-methyl-D-aspartate receptors antagonist MK-801 in that Tat-MAP2 blocked, whereas Tat-AKAP completely inverted the effect of MK-801 from antidepressant to depressant. These effects were unrelated to the MK-801-induced changes of brain-derived neurotrophic factor messenger RNA levels. Together, the findings suggest that NR2B-RACK1 complexes specifically contribute to fear extinction, and may provide a target for the treatment of PTSD. AKAP-PKA, on the other hand, appears to modulate fear extinction and antidepressant responses in opposite directions.

  15. Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2.

    PubMed

    Sifferlen, Thierry; Boller, Amandine; Chardonneau, Audrey; Cottreel, Emmanuelle; Gatfield, John; Treiber, Alexander; Roch, Catherine; Jenck, Francois; Aissaoui, Hamed; Williams, Jodi T; Brotschi, Christine; Heidmann, Bibia; Siegrist, Romain; Boss, Christoph

    2015-05-01

    Starting from advanced pyrrolidin-2-one lead compounds, this novel series of small-molecule orexin receptor antagonists was further optimized by fine-tuning of the C-3 substitution at the γ-lactam ring. We discuss our design to align in vitro potency with metabolic stability and improved physicochemical/pharmacokinetic properties while avoiding P-glycoprotein-mediated efflux. These investigations led to the identification of the orally active 3-hydroxypyrrolidin-2-one 46, a potent and selective orexin-2 receptor antagonist, that achieved good brain exposure and promoted physiological sleep in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rapid and Sustained Antidepressant Action of the mGlu2/3 Receptor Antagonist MGS0039 in the Social Defeat Stress Model: Comparison with Ketamine.

    PubMed

    Dong, Chao; Zhang, Ji-Chun; Yao, Wei; Ren, Qian; Ma, Min; Yang, Chun; Chaki, Shigeyuki; Hashimoto, Kenji

    2017-03-01

    Similar to the N-methyl-D-aspartate receptor antagonist ketamine, the metabotropic glutamate 2/3 receptor antagonist, MGS0039, shows antidepressant effects. However, there are no reports comparing these 2 compounds in the social defeat stress model of depression. We examined the effects of MGS0039 (1 mg/kg) and ketamine (10 mg/kg) on depression-like behavior in susceptible mice after repeated social defeat stress. Protein levels of brain-derived neurotrophic factor, TrkB, phospho-TrkB, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (GluA1), postsynaptic density protein 95, and dendritic spine density in selected brain regions were measured. In the tail suspension and forced swimming tests, both MGS0039 and ketamine significantly attenuated the increased immobility time observed in susceptible mice, compared with vehicle-treated animals, 1 or 2 days after a single dose of drug. In the sucrose preference test, both compounds significantly improved the reduced preference typically seen in susceptible mice at 3 to 7 days after a single dose of drug. Western-blot analyses showed that similar to ketamine, MGS0039 significantly attenuated the reduced brain-derived neurotrophic factor, phospho-TrkB/TrkB ratio, GluA1 and postsynaptic density protein 95 seen in the prefrontal cortex, dentate gyrus, and CA3 of the hippocampus from susceptible mice, 8 days after a single dose. Again, in a similar manner to ketamine, MGS0039 significantly attenuated the reduction of spine density in the prelimbic regions of the medial prefrontal cortex, dentate gyrus, and CA3 of the hippocampus, but not infralimbic regions of the medial prefrontal cortex and CA1, in susceptible mice 8 days after a single dose. In contrast, neither drug elicited an effect on altered brain-derived neurotrophic factor-TrkB signaling, GluA1, and postsynaptic density protein 95 levels and did not increase spine density observed in the nucleus accumbens of susceptible mice. Similar to ketamine, MGS0039 shows rapid and sustained antidepressant effects in the social defeat stress model. Long-lasting synaptogenesis in the prelimbic regions of medial prefrontal cortex, dentate gyrus, and CA3 might be implicated in this sustained antidepressant effect. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  17. Rapid and Sustained Antidepressant Action of the mGlu2/3 Receptor Antagonist MGS0039 in the Social Defeat Stress Model: Comparison with Ketamine

    PubMed Central

    Dong, Chao; Zhang, Ji-chun; Yao, Wei; Ren, Qian; Ma, Min; Yang, Chun; Chaki, Shigeyuki

    2017-01-01

    Abstract Background: Similar to the N-methyl-D-aspartate receptor antagonist ketamine, the metabotropic glutamate 2/3 receptor antagonist, MGS0039, shows antidepressant effects. However, there are no reports comparing these 2 compounds in the social defeat stress model of depression. Methods: We examined the effects of MGS0039 (1 mg/kg) and ketamine (10 mg/kg) on depression-like behavior in susceptible mice after repeated social defeat stress. Protein levels of brain-derived neurotrophic factor, TrkB, phospho-TrkB, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (GluA1), postsynaptic density protein 95, and dendritic spine density in selected brain regions were measured. Results: In the tail suspension and forced swimming tests, both MGS0039 and ketamine significantly attenuated the increased immobility time observed in susceptible mice, compared with vehicle-treated animals, 1 or 2 days after a single dose of drug. In the sucrose preference test, both compounds significantly improved the reduced preference typically seen in susceptible mice at 3 to 7 days after a single dose of drug. Western-blot analyses showed that similar to ketamine, MGS0039 significantly attenuated the reduced brain-derived neurotrophic factor, phospho-TrkB/TrkB ratio, GluA1 and postsynaptic density protein 95 seen in the prefrontal cortex, dentate gyrus, and CA3 of the hippocampus from susceptible mice, 8 days after a single dose. Again, in a similar manner to ketamine, MGS0039 significantly attenuated the reduction of spine density in the prelimbic regions of the medial prefrontal cortex, dentate gyrus, and CA3 of the hippocampus, but not infralimbic regions of the medial prefrontal cortex and CA1, in susceptible mice 8 days after a single dose. In contrast, neither drug elicited an effect on altered brain-derived neurotrophic factor-TrkB signaling, GluA1, and postsynaptic density protein 95 levels and did not increase spine density observed in the nucleus accumbens of susceptible mice. Conclusions: Similar to ketamine, MGS0039 shows rapid and sustained antidepressant effects in the social defeat stress model. Long-lasting synaptogenesis in the prelimbic regions of medial prefrontal cortex, dentate gyrus, and CA3 might be implicated in this sustained antidepressant effect. PMID:27765808

  18. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization

    PubMed Central

    Mestre-Citrinovitz, Ana C.; Kleff, Veronika; Vallejo, Griselda

    2015-01-01

    Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets. PMID:25897495

  19. A High-Throughput Screening Method to Identify Potential Pesticides for Mosquito Control

    DTIC Science & Technology

    2009-01-01

    receptor agonists 5 Imidacloprid Nicotinic acetylcholine receptor agonist/antagonists 4 Diazinon Acetylcholinesterase inhibitors (organophosphates) 1B...0.84) 1.50 Spinosad 3.9 101 (3.6 101Ð4.1 101) 6.3 101 (5.5 101Ð7.9 101) 7.82 (1.33) 2.95 Imidacloprid 3.7 101 (2.9 101Ð4.5 101...pesticides (pyridaben, hydramethylnon, imidacloprid , diazinon, and indoxacarb) were moder- ately active against Þrst-instar larvae,withLC50 values of

  20. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    PubMed

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  1. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.

  2. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms

    PubMed Central

    Lee, Sang-Min; Hay, Debbie L.; Pioszak, Augen A.

    2016-01-01

    Receptor activity-modifying proteins (RAMP1–3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8–37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962

  3. OREXIN 1 AND 2 RECEPTOR INVOLVEMENT IN CO2-INDUCED PANIC-ASSOCIATED BEHAVIOR AND AUTONOMIC RESPONSES

    PubMed Central

    Johnson, Philip L.; Federici, Lauren M.; Fitz, Stephanie D.; Renger, John J.; Shireman, Brock; Winrow, Christopher J.; Bonaventure, Pascal; Shekhar, Anantha

    2016-01-01

    Background The neuropeptides orexin A and B play a role in reward and feeding and are critical for arousal. However, it was not initially appreciated that most prepro-orexin synthesizing neurons are almost exclusively concentrated in the perifornical hypothalamus, which when stimulated elicits panic-associated behavior and cardiovascular responses in rodents and self-reported “panic attacks” and “fear of dying” in humans. More recent studies support a role for the orexin system in coordinating an integrative stress response. For instance, orexin neurons are highly reactive to anxiogenic stimuli, are hyperactive in anxiety pathology, and have strong projections to anxiety and panic-associated circuitry. Although the two cognate orexin receptors are colocalized in many brain regions, the orexin 2 receptor (OX2R) most robustly maps to the histaminergic wake-promoting region, while the orexin 1 receptor (OX1R) distribution is more exclusive and dense in anxiety and panic circuitry regions, such as the locus ceruleus. Overall, this suggests that OX1Rs play a critical role in mobilizing anxiety and panic responses. Methods Here, we used a CO2-panic provocation model to screen a dual OX1/2R antagonist (DORA-12) to globally inhibit orexin activity, then a highly selective OX1R antagonist (SORA1, Compound 56) or OX2R antagonist (SORA2, JnJ10397049) to assess OX1R and OX2R involvement. Results All compounds except the SORA2 attenuated CO2-induced anxiety-like behaviors, and all but the SORA2 and DORA attenuated CO2-induced cardiovascular responses. Conclusions SORA1s may represent a novel method of treating anxiety disorders, with no apparent sedative effects that were present with a benzodiazepine. PMID:26332431

  4. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  5. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Amato, Antonella; Serio, Rosa

    2016-08-01

    Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2'-deoxy-N 6 -methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is questioned.

  6. Coupling to protein kinases A and C of adenosine A2B receptors involved in the facilitation of noradrenaline release in the prostatic portion of rat vas deferens.

    PubMed

    Queiroz, Glória; Quintas, Clara; Talaia, Carlos; Gonçalves, Jorge

    2004-08-01

    In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.

  7. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice.

    PubMed

    Refsgaard, Louise K; Pickering, Darryl S; Andreasen, Jesper T

    2017-02-01

    Evidence suggests that N-methyl-D-aspartate receptor (NMDAR) antagonists could be efficacious in treating depression and anxiety, but side effects constitute a challenge. This study evaluated the antidepressant-like and anxiolytic-like actions, and cognitive and motor side effects of four NMDAR antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance. The study supports that NMDARs could be a possible therapeutic target for treating depression and anxiety. However, selective antagonism of GluN2B subunit-containing NMDARs showed no effect on anxiety-like behaviours in this study.

  8. Involvement of histaminergic and noradrenergic receptors in the oxytocin-induced food intake in neonatal meat-type chicks.

    PubMed

    Mirnaghizadeh, Seyed Vahid; Zendehdel, Morteza; Babapour, Vahab

    2017-03-01

    Oxytocin neurons have a physiological role in food intake and energy balance. Several studies have shown that central histaminergic and adrenergic systems synapse on oxytocin neurons but there is no information for their interaction on food intake regulation in birds. The purpose of this study was to examine the effects of intracerebroventricular (ICV) injection of α-fluoromethylhistidine (α-FMH, histidine decarboxylase inhibitor), chlorpheniramine (histamine H1 receptors antagonist), famotidine (histamine H2 receptors antagonist), thioperamide (histamine H3 receptors antagonist), prazosin (α1 receptor antagonist), yohimbine (α2 receptor antagonist), metoprolol (β1 adrenergic receptor antagonist), ICI 118,551 (β2 adrenergic receptor antagonist) and SR59230R (β3 adrenergic receptor antagonist) on oxytocin-induced hypophagia in 3-h food-deprived (FD 3 ) neonatal broiler chicken. In Experiment 1, 3 h-fasted chicks were given an ICV injection of saline, α-FMH (250 nmol), oxytocin (10 μg) and co-injection of α-FMH + oxytocin. Experiments 2-9 were similar to experiment 1 except birds were injected with chlorpheniramine (300 nmol), famotidine (82 nmol), thioperamide (300 nmol), prazosin (10 nmol), yohimbine (13 nmol), metoprolol (24 nmol), ICI 118,551(5 nmol) and SR59230R (20 nmol) instead of α-FMH, respectively. After injection cumulative food intake was measured until 120 min post injection. According to the results, ICV injection of oxytocin significantly decreased food intake in broiler chickens (P < 0.001). ICV injection of α-FMH significantly attenuated hypophagic effect of oxytocin (P < 0.001). Also, co-injection of chlorpheniramine plus oxytocin significantly decreased the effect of oxytocin on food intake (P < 0.001). Co-administration of thioperamide and oxytocin significantly amplified hypophagic effect of oxytocin in chickens (P < 0.001). In addition, ICI 118,551 attenuated hypophagic effect of oxytocin (P < 0.001); while famotidine, prazosin, yohimbine, metoprolol and SR59230R had no effect on oxytocin- induced food intake in FD3 broiler chickens. These results suggest that the effect of oxytocin on food intake is probably mediated by histaminergic (via H1 and H3 receptors) and noradrenergic (via β2 receptors) systems in broiler chickens.

  9. Melanocortin Antagonist Tetrapeptides with Minimal Agonist Activity at the Mouse Melanocortin-3 Receptor

    PubMed Central

    2014-01-01

    The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure–activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors. PMID:25699138

  10. "Hyperglutamatergic cortico-striato-thalamo-cortical circuit" breaker drugs alleviate tics in a transgenic circuit model of Tourette׳s syndrome.

    PubMed

    Nordstrom, Eric J; Bittner, Katie C; McGrath, Michael J; Parks, Clinton R; Burton, Frank H

    2015-12-10

    The brain circuits underlying tics in Tourette׳s syndrome (TS) are unknown but thought to involve cortico/amygdalo-striato-thalamo-cortical (CSTC) loop hyperactivity. We previously engineered a transgenic mouse "circuit model" of TS by expressing an artificial neuropotentiating transgene (encoding the cAMP-elevating, intracellular A1 subunit of cholera toxin) within a small population of dopamine D1 receptor-expressing somatosensory cortical and limbic neurons that hyperactivate cortico/amygdalostriatal glutamatergic output circuits thought to be hyperactive in TS and comorbid obsessive-compulsive (OC) disorders. As in TS, these D1CT-7 ("Ticcy") transgenic mice׳s tics were alleviated by the TS drugs clonidine and dopamine D2 receptor antagonists; and their chronic glutamate-excited striatal motor output was unbalanced toward hyperactivity of the motoric direct pathway and inactivity of the cataleptic indirect pathway. Here we have examined whether these mice׳s tics are countered by drugs that "break" sequential elements of their hyperactive cortical/amygdalar glutamatergic and efferent striatal circuit: anti-serotonoceptive and anti-noradrenoceptive corticostriatal glutamate output blockers (the serotonin 5-HT2a,c receptor antagonist ritanserin and the NE alpha-1 receptor antagonist prazosin); agmatinergic striatothalamic GABA output blockers (the presynaptic agmatine/imidazoline I1 receptor agonist moxonidine); and nigrostriatal dopamine output blockers (the presynaptic D2 receptor agonist bromocriptine). Each drug class alleviates tics in the Ticcy mice, suggesting a hyperglutamatergic CSTC "tic circuit" could exist in TS wherein cortical/amygdalar pyramidal projection neurons׳ glutamatergic overexcitation of both striatal output neurons and nigrostriatal dopaminergic modulatory neurons unbalances their circuit integration to excite striatothalamic output and create tics, and illuminating new TS drug strategies. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Neurokinin-neurotrophin interactions in airway smooth muscle

    PubMed Central

    Meuchel, Lucas W.; Stewart, Alecia; Smelter, Dan F.; Abcejo, Amard J.; Thompson, Michael A.; Zaidi, Syed I. A.; Martin, Richard J.

    2011-01-01

    Neurally derived tachykinins such as substance P (SP) play a key role in modulating airway contractility (especially with inflammation). Separately, the neurotrophin brain-derived neurotrophic factor (BDNF; potentially derived from nerves as well as airway smooth muscle; ASM) and its tropomyosin-related kinase receptor, TrkB, are involved in enhanced airway contractility. In this study, we hypothesized that neurokinins and neurotrophins are linked in enhancing intracellular Ca2+ concentration ([Ca2+]i) regulation in ASM. In rat ASM cells, 24 h exposure to 10 nM SP significantly increased BDNF and TrkB expression (P < 0.05). Furthermore, [Ca2+]i responses to 1 μM ACh as well as BDNF (30 min) effects on [Ca2+]i regulation were enhanced by prior SP exposure, largely via increased Ca2+ influx (P < 0.05). The enhancing effect of SP on BDNF signaling was blunted by the neurokinin-2 receptor antagonist MEN-10376 (1 μM, P < 0.05) to a greater extent than the neurokinin-1 receptor antagonist RP-67580 (5 nM). Chelation of extracellular BDNF (chimeric TrkB-Fc; 1 μg/ml), as well as tyrosine kinase inhibition (100 nM K252a), substantially blunted SP effects (P < 0.05). Overnight (24 h) exposure of ASM cells to 50% oxygen increased BDNF and TrkB expression and potentiated both SP- and BDNF-induced enhancement of [Ca2+]i (P < 0.05). These results suggest a novel interaction between SP and BDNF in regulating agonist-induced [Ca2+]i regulation in ASM. The autocrine mechanism we present here represents a new area in the development of bronchoconstrictive reflex response and airway hyperreactive disorders. PMID:21515660

  12. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice

    PubMed Central

    Alessandri, Ana Letícia; Pinho, Vanessa; Souza, Danielle G; Castro, Maria Salete de A; Klein, André; Teixeira, Mauro M

    2003-01-01

    The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10–50 nmol per pleural cavity) or systemic (100–300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4. PMID:14585802

  13. P2X purinergic receptor ligands: recently patented compounds.

    PubMed

    Gunosewoyo, Hendra; Kassiou, Michael

    2010-05-01

    P2X channels are ionotropic purinergic receptors that are currently under scrutiny as attractive targets for novel therapeutics in areas including chronic inflammation, pain and depression. Their wide expression in the CNS, recent advances in the biochemical and pharmacological properties as well as increasing numbers of patents published in this research domain demand a review in this field. The patent literature covering novel drug-like antagonists for each P2X receptor subtype (P2X1R to P2X7R) up to December 2009 is described in this review article together with their recent highlights in pharmacology. Readers will gain an up-to-date overview of patents covering drug-like antagonists for seven P2X receptor subtypes within the last 4 years. P2X7R antagonists and other P2X inhibitors will probably be on the market for combating rheumatoid arthritis and other diseases. Some P2X7R antagonists are already in Phase I and II clinical trials.

  14. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery

    PubMed Central

    Bouchelet, Isabelle; Case, Bruce; Olivier, André; Hamel, Edith

    2000-01-01

    Using subtype-selective 5-HT1 receptor agonists and/or the 5-HT1 receptor antagonist GR127935, we characterized in vitro the 5-HT receptor that mediates the contraction of human and bovine cerebral arteries. Further, we investigated which sumatriptan-sensitive receptors are present in human coronary artery by reverse-transcriptase polymerase chain reaction (RT–PCR). Agonists with affinity at the 5-HT1B receptor, such as sumatriptan, alniditan and/or IS-159, elicited dose-dependent contraction in both human and bovine cerebral arteries. They behaved as full agonists at the sumatriptan-sensitive 5-HT1 receptors in both species. In contrast, PNU-109291 and LY344864, selective agonists at 5-HT1D and 5-HT1F receptors, respectively, were devoid of any significant vasocontractile activity in cerebral arteries, or did not affect the sumatriptan-induced vasocontraction. The rank order of agonist potency was similar in both species and could be summarized as 5-HT=alniditan>sumatriptan=IS-159>>>PNU-109291=LY344864. In bovine cerebral arteries, the 5-HT1 receptor antagonist GR127935 dose-dependently inhibited the vasoconstrictions elicited by both 5-HT and sumatriptan, with respective pA2 values of 8.0 and 8.6. RT–PCR studies in human coronary arteries showed a strong signal for the 5-HT1B receptor while message for the 5-HT1F receptor was weak and less frequently detected. Expression of 5-HT1D receptor mRNA was not detected in any sample. The present results demonstrate that the triptan-induced contraction in brain vessels is mediated exclusively by the 5-HT1B receptor, which is also present in a majority of human coronary arteries. These results suggest that selective 5-HT1D and 5-HT1F receptor agonists might represent new antimigraine drugs devoid of cerebro- and cardiovascular effects. PMID:10711348

  15. Use of Chimeras, Point Mutants, and Molecular Modeling to Map the Antagonist-binding Site of 4,4′,4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic Acid (NF449) at P2X1 Receptors for ATP*

    PubMed Central

    Farmer, Louise K.; Schmid, Ralf; Evans, Richard J.

    2015-01-01

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. PMID:25425641

  16. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.

    PubMed

    Farmer, Louise K; Schmid, Ralf; Evans, Richard J

    2015-01-16

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

    PubMed

    Jenkinson, K M; Southwell, B R; Furness, J B

    1999-01-01

    1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.

  18. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A; Emala, Charles W

    2011-12-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells. Both the GABA(B)-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABA(A) receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i) were blocked by CGP35348 and CGP55845 (selective GABA(B) antagonists), pertussis toxin (PTX, which inactivates the G(i) protein), gallein (a G(βγ) signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i), which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P-induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABA(B) receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca(2+) stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by G(βγ) protein liberated from G(i) proteins coupled to GABA(B) receptors. Furthermore, crosstalk between GABA(B) receptors and G(q)-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca(2+)](i), and smooth muscle contraction through G(i) proteins.

  19. Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles.

    PubMed

    Volkov, Eugeny M; Nurullin, Leniz F; Volkov, Michael E; Nikolsky, Eugeny E; Vyskočil, Frantisek

    2011-04-01

    This work was aimed to identify the action of several ion channel and pump inhibitors as well as nicotinic, GABAergic, purinergic and serotoninergic drugs on the resting membrane potential (RMP) and assess the role of cholinergic and GABAergic sensitivity in earthworm muscle electrogenesis. The nicotinic agonists acetylcholine (ACh), carbacholine (CCh) and nicotine depolarize the RMP at concentrations of 5 μM and higher. The nicotinic antagonists (+)tubocurarine, α-bungarotoxin, muscarinic antagonists atropine and hexamethonium do not remove or prevent the CCh-induced depolarization. Verapamil, tetrodotoxin, removal of Cl(-) and Ca(2+) from the solution also cannot prevent the depolarization by CCh. In a Na(+)-free medium, however, CCh lost this depolarization ability and this indicates that the drug opens the sodium permeable pathway. Serotonin, glutamate, glycine, adenosine triphosphate (ATP) and cis-4-aminocrotonic acid (GABA(C) receptor antagonist) had no effect on the RMP. On the other hand, isoguvacin, γ-aminobutyric acid (GABA) and baclofen (GABA(B) receptor agonist) hyperpolarized the RMP. Ouabain, bicucullin (GABA(A) antagonist) and phaclofen (GABA(B) antagonist), as well as the removal of Cl(-), suppressed the effect of GABA and baclofen. CCh did not enhance the depolarization generated by ouabain but, on the other hand, hindered the hyperpolarizing activity of baclofen both in the absence and presence of atropine and (+)tubocurarine. The long-term application of CCh depolarizes the RMP primarily by inhibiting the Na(+)/K(+)-ATPase. The muscle membrane also contains A and B type GABA binding sites, the activation of which increases the RMP at the expense of increasing the action of ouabain- and Cl(-) -sensitive electrogenic pumps. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Effects of Adrenergic Blockade on Postpartum Adaptive Responses Induced by Labor Contractions

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Mills, N. A.; Lam, K. P.; Hayes, L. E.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Prenatal exposure to labor contractions augments the expression of postnatal adaptive responses in newborn rats. Near-term rat fetuses exposed prenatally to simulated labor contractions and delivered by cesarean section breath and attach to nipples at greater frequencies than non-stimulated fetuses. Plasma NE (norepinephrine) and EPI (epinephrine) was significantly elevated in newborn rats exposed to vaginal birth or simulated labor contractions (compressions) with cesarean delivery as compared to non-compressed fetuses. In the present study, we investigated adrenergic mechanisms underlying labor-induced postnatal adaptive responses. Following spinal transection of late pregnant rat dams, fetuses were administered neurogenic or non-neurogenic adrenergic blockade: 1) bretylium (10 mg/kg sc) to prevent sympathetic neuronal release, 2) hexamethonium (30 mg/kg) to produce ganglionic blockade, 3) phenoxybenzanune (10mg/kg sc), an a- adrenergic receptor antagonist, 4) ICI-118551, 10 mg/kg sc), a b receptor antagonist, or 5) vehicle alone. Fetuses were either compressed (C) or non-compressed (NC) prior to cesarean delivery. a- and b- adrenergic antagonists reduced respiration and nipple attachment rates while sympathetic and vehicle alone did not. These results provide additional support for the hypothesis that adaptive neonatal effects of labor contractions are mediated by adrenal and extra-adrenal catecholamines.

Top