Science.gov

Sample records for a2b receptor subtype

  1. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Gessi, Stefania

    2015-09-01

    Over the last two decades, diabetes mellitus has become one of the most challenging health problems worldwide. Diabetes mellitus, classified as type I and II, is a pathology concerning blood glucose level in the body. The nucleoside adenosine has long been known to affect insulin secretion, glucose homeostasis and lipid metabolism, through activation of four G protein coupled adenosine receptors (ARs), named A1, A2A, A2B and A3. Currently, the novel promising subtype to develop new drugs for diabetes treatment is the A2BAR subtype. The use of selective agonists and antagonists for A2BAR subtype in various diabetic animal models allowed us to identify several effects of A2BAR signaling in cell metabolism. In particular, the focus of this review is to summarize the studies on purinergic signaling associated with diabetes through A2BARs modulation.

  2. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    PubMed

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  3. Role of adenosine A2b receptor overexpression in tumor progression.

    PubMed

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  4. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2008-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  5. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2009-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  6. Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor.

    PubMed

    Bedford, Simon T; Benwell, Karen R; Brooks, Teresa; Chen, Ijen; Comer, Mike; Dugdale, Sarah; Haymes, Tim; Jordan, Allan M; Kennett, Guy A; Knight, Anthony R; Klenke, Burkhard; LeStrat, Loic; Merrett, Angela; Misra, Anil; Lightowler, Sean; Padfield, Anthony; Poullennec, Karine; Reece, Mark; Simmonite, Heather; Wong, Melanie; Yule, Ian A

    2009-10-15

    We herein report the discovery of a novel class of antagonists of the human adenosine A2B receptor. This low molecular weight scaffold has been optimized to offer derivatives with potential utility for the alleviation of conditions associated with this receptor subtype, such as nociception, diabetes, asthma and COPD. Furthermore, preliminary pharmacokinetic analysis has revealed compounds with profiles suitable for either inhaled or systemic routes of administration.

  7. The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity

    PubMed Central

    Koupenova, Milka; Carroll, Shannon; Ravid, Katya

    2014-01-01

    High fat diet (HFD)-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR), an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice. PMID:24892847

  8. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  9. Contribution of Adenosine A2B Receptors in Clostridium difficile Intoxication and Infection

    PubMed Central

    Li, Yuesheng; Calabrese, Gina M.; Freire, Rosemayre S.; Zaja-Milatovic, Snjezana; van Opstal, Edward; Figler, Robert A.; Linden, Joel; Guerrant, Richard L.

    2012-01-01

    Clostridium difficile toxins A (TcdA) and B (TcdB) induce a pronounced systemic and intestinal inflammatory response. A2B adenosine receptors (A2BARs) are the predominant adenosine receptors in the intestinal epithelium. We investigated whether A2BARs are upregulated in human intestinal cells by TcdA or TcdB and whether blockade of A2BARs can ameliorate C. difficile TcdA-induced enteritis and alter the outcome of C. difficile infection (CDI). Adenosine receptor subtype (A1, A2A, A2B, and A3) mRNAs were assayed in HCT-8 cells. Ileal loops from wild-type rabbits and mice and A2BAR−/− mice were treated with TcdA, with or without the selective A2BAR antagonist ATL692 or PSB1115. A murine model of CDI was used to determine the effect of A2BAR deletion or blockade with the orally available agent ATL801, on clinical outcome, histopathology and intestinal interleukin-6 (IL-6) expression from infection. TcdA and TcdB upregulated A2BAR gene expression in HCT-8 cells. ATL692 decreased TcdA-induced secretion and epithelial injury in rabbit ileum. Deletion of A2BARs reduced secretion and histopathology in TcdA-challenged mouse ileum. Deletion or blockade of A2BARs reduced histopathology, IL-6 expression, weight loss, diarrhea, and mortality in C. difficile-infected mice. A2BARs mediate C. difficile toxin-induced enteritis and disease. Inhibition of A2BAR activation may be a potential strategy to limit morbidity and mortality from CDI. PMID:23045479

  10. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  11. Adenosine A2B receptor blockade slows growth of bladder and breast tumors.

    PubMed

    Cekic, Caglar; Sag, Duygu; Li, Yuesheng; Theodorescu, Dan; Strieter, Robert M; Linden, Joel

    2012-01-01

    The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.

  12. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    PubMed

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  13. Probing biased/partial agonism at the G protein-coupled A(2B) adenosine receptor.

    PubMed

    Gao, Zhan-Guo; Balasubramanian, Ramachandran; Kiselev, Evgeny; Wei, Qiang; Jacobson, Kenneth A

    2014-08-01

    G protein-coupled A(2B) adenosine receptor (AR) regulates numerous important physiological functions, but its activation by diverse A(2B)AR agonists is poorly profiled. We probed potential partial and/or biased agonism in cell lines expressing variable levels of endogenous or recombinant A(2B)AR. In cAMP accumulation assays, both 5'-substituted NECA and C2-substituted MRS3997 are full agonists. However, only 5'-substituted adenosine analogs are full agonists in calcium mobilization, ERK1/2 phosphorylation and β-arrestin translocation. A(2B)AR overexpression in HEK293 cells markedly increased the agonist potency and maximum effect in cAMP accumulation, but less in calcium and ERK1/2. A(2B)AR siRNA silencing was more effective in reducing the maximum cAMP effect of non-nucleoside agonist BAY60-6583 than NECA's. A quantitative 'operational model' characterized C2-substituted MRS3997 as either balanced (cAMP accumulation, ERK1/2) or strongly biased agonist (against calcium, β-arrestin). N⁶-substitution biased against ERK1/2 (weakly) and calcium and β-arrestin (strongly) pathways. BAY60-6583 is ERK1/2-biased, suggesting a mechanism distinct from adenosine derivatives. BAY60-6583, as A(2B)AR antagonist in MIN-6 mouse pancreatic β cells expressing low A(2B)AR levels, induced insulin release. This is the first relatively systematic study of structure-efficacy relationships of this emerging drug target. Published by Elsevier Inc.

  14. The impact of adenosine and A(2B) receptors on glucose homoeostasis.

    PubMed

    Rüsing, D; Müller, C E; Verspohl, E J

    2006-12-01

    Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.

  15. Adenosine A2B receptor: from cell biology to human diseases

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  16. Adenosine A2B Receptor: From Cell Biology to Human Diseases

    PubMed Central

    Sun, Ying; Huang, Pingbo

    2016-01-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases. PMID:27606311

  17. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  18. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1994-01-01

    1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor

  19. Adenosine A2B Receptor Deficiency Promotes Host Defenses against Gram-Negative Bacterial Pneumonia

    PubMed Central

    Barletta, Kathryn E.; Cagnina, R. Elaine; Burdick, Marie D.; Linden, Joel

    2012-01-01

    Rationale: Activation of the adenosine A2B receptor (A2BR) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. Objectives: To test the hypothesis that absence of adenosine A2B receptor signaling promotes host defense against bacterial pneumonia. Methods: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A2BR. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. Measurements and Main Results: A2BR–/– mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow–derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A2BR–/– and wild-type mice, but A2BR–/– neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A2BR–/– mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. Conclusions: These data suggest that the absence of A2BR signaling enhances antimicrobial activity in gram-negative bacterial pneumonia. PMID:22997203

  20. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats.

    PubMed

    Wen, Jiaming; Wang, Bohan; Du, Chuanjun; Xu, Gang; Zhang, Zhewei; Li, Yi; Zhang, Nan

    2015-10-01

    Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED.

  1. NMDA receptor surface mobility depends on NR2A-2B subunits

    PubMed Central

    Groc, Laurent; Heine, Martin; Cousins, Sarah L.; Stephenson, F. Anne; Lounis, Brahim; Cognet, Laurent; Choquet, Daniel

    2006-01-01

    The NR2 subunit composition of NMDA receptors (NMDARs) varies during development, and this change is important in NMDAR-dependent signaling. In particular, synaptic NMDAR switch from containing mostly NR2B subunit to a mixture of NR2B and NR2A subunits. The pathways by which neurons differentially traffic NR2A- and NR2B-containing NMDARs are poorly understood. Using single-particle and -molecule approaches and specific antibodies directed against NR2A and NR2B extracellular epitopes, we investigated the surface mobility of native NR2A and NR2B subunits at the surface of cultured neurons. The surface mobility of NMDARs depends on the NR2 subunit subtype, with NR2A-containing NMDARs being more stable than NR2B-containing ones, and NR2A subunit overexpression stabilizes surface NR2B-containing NMDARs. The developmental change in the synaptic surface content of NR2A and NR2B subunits was correlated with a developmental change in the time spent by the subunits within synapses. This suggests that the switch in synaptic NMDAR subtypes depends on the regulation of the receptor surface trafficking. PMID:17124177

  2. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion

    PubMed Central

    Yang, Dan; Zhang, Ying; Nguyen, Hao G.; Koupenova, Milka; Chauhan, Anil K.; Makitalo, Maria; Jones, Matthew R.; Hilaire, Cynthia St.; Seldin, David C.; Toselli, Paul; Lamperti, Edward; Schreiber, Barbara M.; Gavras, Haralambos; Wagner, Denisa D.; Ravid, Katya

    2006-01-01

    Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target. PMID:16823489

  3. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D.; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K.; Blackwell, Timothy S.; Xia, Yang; Johnston, Richard A.; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R.

    2012-01-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A2BR) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A2BR or treatment with the A2BR antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A2BR attenuated vascular remodeling and hypertension in our model. Furthermore, direct A2BR activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A2BR antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.—Karmouty-Quintana, H., Zhong, H., Acero, L., Weng, T., Melicoff, E., West, J. D., Hemnes, A., Grenz, A., Eltzschig, H. K., Blackwell, T. S., Xia, Y., Johnston, R. A., Zeng, D., Belardinelli, L., Blackburn, M. R. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. PMID:22415303

  4. Adenosine A2A and A2B Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis.

    PubMed

    Andrés, Rosa M; Terencio, María Carmen; Arasa, Jorge; Payá, Miguel; Valcuende-Cavero, Francisca; Navalón, Pedro; Montesinos, María Carmen

    2017-01-01

    Adenosine is a potent regulator of inflammation and immunity, but the role of adenosine receptors in keratinocytes remains controversial. We determined that in addition to A2B receptors, human epidermal keratinocytes also express A2A receptors, although to a lower extent. Through the use of selective adenosine receptor agonists and antagonists, we showed that physiological concentrations of adenosine activate A2B receptors in normal human keratinocytes, inducing cell cycle arrest through the increase of intracellular calcium but not through cAMP signaling. In contrast, the selective activation of A2A receptors by CGS-21680 induces keratinocyte proliferation via p38-mitogen-activated protein kinase activation. Adenosine and selective A2A and A2B agonists presented anti-inflammatory profiles independent of adenosine receptors but mediated by membrane phosphatase activation. Finally, keratinocyte exposure to diverse inflammatory cytokines altered adenosine receptor expression by reducing A2B and increasing A2A, a pattern also observed in psoriatic epidermis. Because increased epidermal turnover and inflammatory response are characteristics of psoriatic disease, further studies are needed to assess the role and consequences of the altered adenosine receptor expression in lesional and nonlesional psoriatic keratinocytes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury

    PubMed Central

    Sun, Chun-Xiao; Zhong, Hongyan; Mohsenin, Amir; Morschl, Eva; Chunn, Janci L.; Molina, Jose G.; Belardinelli, Luiz; Zeng, Dewan; Blackburn, Michael R.

    2006-01-01

    Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase–deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883–treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy. PMID:16841096

  6. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6.

    PubMed

    Wilson, Jeffrey M; Kurtz, Courtney C; Black, Steven G; Ross, William G; Alam, Mohammed S; Linden, Joel; Ernst, Peter B

    2011-06-15

    Adenosine is an endogenous metabolite produced during hypoxia or inflammation. Previously implicated as an anti-inflammatory mediator in CD4(+) T cell regulation, we report that adenosine acts via dendritic cell (DC) A(2B) adenosine receptor (A(2B)AR) to promote the development of Th17 cells. Mouse naive CD4(+) T cells cocultured with DCs in the presence of adenosine or the stable adenosine mimetic 5'-(N-ethylcarboximado) adenosine resulted in the differentiation of IL-17- and IL-22-secreting cells and elevation of mRNA that encode signature Th17-associated molecules, such as IL-23R and RORγt. The observed response was similar when DCs were generated from bone marrow or isolated from small intestine lamina propria. Experiments using adenosine receptor antagonists and cells from A(2B)AR(-/-) or A(2A)AR(-/-)/A(2B)AR(-/-) mice indicated that the DC A(2B)AR promoted the effect. IL-6, stimulated in a cAMP-independent manner, is an important mediator in this pathway. Hence, in addition to previously noted direct effects of adenosine receptors on regulatory T cell development and function, these data indicated that adenosine also acts indirectly to modulate CD4(+) T cell differentiation and suggested a mechanism for putative proinflammatory effects of A(2B)AR.

  7. Comparison of human recombinant adenosine A2B receptor function assessed by Fluo-3-AM fluorometry and microphysiometry.

    PubMed

    Patel, H; Porter, R H P; Palmer, A M; Croucher, M J

    2003-02-01

    1. The aim of this study was to establish the utility of a fluorometric imaging plate reader (FLIPR) assay to assess human adenosine A(2B) receptor function by characterizing its receptor pharmacology and comparing this profile to that obtained using a microphysiometer. 2. FLIPR was used, in conjunction with a Ca(2+)-sensitive dye (Fluo-3-AM), to measure rapid rises in intracellular calcium in a Chinese Hamster Ovary (CHO-K1) cell line stably transfected with both the human A(2B) receptor and a promiscuous G(alpha16) protein. Microphysiometry was used to measure rapid changes in the rate of extracellular acidification in a Human Embryonic Kidney (HEK-293) cell line also stably transfected with human A(2B) receptor. 3. Activation of A(2B) receptors by various ligands caused a concentration-dependent increase in both the intracellular calcium concentration and the extracellular acidification rate in the cells tested, with a similar rank order of potency for agonists: NECA > N(6)-Benzyl NECA > adenosine > or = R-PIA > CPA > S-PIA > CHA > CGS 21680. No comparable effects were observed in the non-transfected control cell lines. 4. The rank order of potency of the agonists examined was the same in all studies, whereas absolute potency and efficacy varied. Thus, all compounds exhibited greater potency in FLIPR than the microphysiometer and the efficacies obtained with CHO-K1 + G(alpha16) + A(2B) cell line and FLIPR were greater than those obtained with HEK-293 + A(2B) cell line in the microphysiometer. 5. ZM-241385 was the most potent of a range of adenosine antagonists tested with a pA(2) of 8.0 in both the FLIPR and microphysiometer assays. 6. In conclusion, the profile of the responses to both A(2B) receptor agonists and antagonists in FLIPR were similar to those obtained by the microphysiometer, although both potency and efficacy values were higher in the FLIPR assay. With this caveat in mind, this study shows that FLIPR coupled with a cell line transfected with both

  8. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

    PubMed Central

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions. PMID:24966910

  9. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system.

    PubMed

    Popoli, Patrizia; Pepponi, Rita

    2012-09-01

    Adenosine A2B and, much more importantly, adenosine A2A receptors modulate many physiological and pathological processes in the brain. In this review, the most recent evidence concerning the role of such receptors and their potential therapeutic relevance is discussed. The low affinity of A2B receptors for adenosine implies that they might represent a good therapeutic target, since they are activated only under pathological conditions (when adenosine levels raise up to micromolar concentrations). The availability of selective ligands for A2B receptors would allow exploration of such an hypothesis. Since adenosine A2A receptors mediate both potentially neuroprotective and potentially neurotoxic effects, their role in neurodegenerative diseases is highly controversial. Nevertheless, A2A receptor antagonists have shown clear antiparkinsonian effects, and a great interest exists on the role of A2A receptors in Alzheimer's disease, brain ischaemia, spinal cord injury, drug addiction and other conditions. In order to establish whether such receptors represent a target for CNS diseases, at least two conditions are needed: the full comprehension of A2A-dependent mechanisms and the availability of ligands capable of discriminating among the different receptor populations.

  10. A2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway.

    PubMed

    Merighi, Stefania; Bencivenni, Serena; Vincenzi, Fabrizio; Varani, Katia; Borea, Pier Andrea; Gessi, Stefania

    2017-03-01

    The hallmark of neuroinflammation is the activation of microglia, the immunocompetent cells of the CNS, releasing a number of proinflammatory mediators implicated in the pathogenesis of neuronal diseases. Adenosine is an ubiquitous autacoid regulating several microglia functions through four receptor subtypes named A1, A2A, A2B and A3 (ARs), that represent good targets to suppress inflammation occurring in CNS. Here we investigated the potential role of ARs in the modulation of IL-6 secretion and cell proliferation in primary microglial cells. The A2BAR agonist 2-[[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (BAY60-6583) stimulated IL-6 increase under normoxia and hypoxia, in a dose- and time-dependent way. In cells incubated with the blockers of phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and PKC delta (PKC-δ) the IL-6 increase due to A2BAR activation was strongly reduced, whilst it was not affected by the inhibitor of adenylyl cyclase (AC). Investigation of cellular signalling involved in the A2BAR effect revealed that only the inhibitor of p38 mitogen activated protein kinase (MAPK) was able to block the agonist's effect on IL-6 secretion, whilst inhibitors of pERK1/2, JNK1/2 MAPKs and Akt were not. Stimulation of p38 by BAY60-6583 was A2BAR-dependent, through a pathway affecting PLC, PKC-ε and PKC-δ but not AC, in both normoxia and hypoxia. Finally, BAY60-6583 increased microglial cell proliferation involving A2BAR, PLC, PKC-ε, PKC-δ and p38 signalling. In conclusion, A2BARs activation increased IL-6 secretion and cell proliferation in murine primary microglial cells, through PLC, PKC-ε, PKC-δ and p38 pathways, thus suggesting their involvement in microglial activation and neuroinflammation.

  11. A2B and A3 Adenosine Receptors Modulate Vascular Endothelial Growth Factor and Interleukin-8 Expression in Human Melanoma Cells Treated with Etoposide and Doxorubicin

    PubMed Central

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Mirandola, Prisco; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2009-01-01

    Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often have abnormal growth factor and cytokine profiles. Thus, serum levels of interleukin-8 (IL-8) are elevated in patients with malignant melanoma. In addition to IL-8, aggressive melanoma cells secrete, through its transcriptional regulator hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), which promotes angiogenesis and metastasis of human cancerous cells. Whether these responses are related to adenosine, a ubiquitous mediator expressed at high concentrations in cancer and implicated in numerous inflammatory processes, is not known and is the focus of this study. We have examined whether the DNA-damaging agents etoposide (VP-16) and doxorubicin can affect IL-8, VEGF, and HIF-1 expressions in human melanoma cancer cells. In particular, we have investigated whether these responses are related to the modulation of the adenosine receptor subtypes, namely, A1, A2A, A2B, and A3. We have demonstrated that A2B receptor blockade can impair IL-8 production, whereas blocking A3 receptors, it is possible to further decrease VEGF secretion in melanoma cells treated with VP-16 and doxorubicin. This understanding may present the possibility of using adenosine antagonists to reduce chemotherapy-induced inflammatory cytokine production and to improve the ability of chemotherapeutic drugs to block angiogenesis. Consequently, we conclude that adenosine receptor modulation may be useful for refining the use of chemotherapeutic drugs to treat human cancer more effectively. PMID:19794965

  12. IFN-γ prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response

    PubMed Central

    Cohen, Heather B.; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M.

    2015-01-01

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. Here, we demonstrate that following TLR stimulation, macrophages up regulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This up-regulation of A2bR leads to the induction of a macrophage with an immunoregulatory phenotype and the down regulation of inflammation. IFN-γ priming of macrophages, selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNFα and IL-12 in response to TLR ligation. The pharmacological inhibition or the genetic deletion of the A2bR results in a hyper-inflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense, by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the anti-microbial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  13. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells.

    PubMed

    Marquardt, D L; Walker, L L; Heinemann, S

    1994-05-01

    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  14. GABAA receptor subtype involvement in addictive behaviour.

    PubMed

    Stephens, D N; King, S L; Lambert, J J; Belelli, D; Duka, T

    2017-01-01

    GABAA receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarize the evidence that variations in genes encoding GABAA receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABAA receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarize the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABAA receptor subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    PubMed

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  16. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor.

    PubMed

    Ben Addi, Abduelhakem; Lefort, Anne; Hua, Xiaoyang; Libert, Frédérick; Communi, Didier; Ledent, Catherine; Macours, Pascale; Tilley, Stephen L; Boeynaems, Jean-Marie; Robaye, Bernard

    2008-06-01

    Adenosine triphosphate has previously been shown to induce semi-mature human monocyte-derived dendritic cells (DC). These are characterized by the up-regulation of co-stimulatory molecules, the inhibition of IL-12 and the up-regulation of some genes involved in immune tolerance, such as thrombospondin-1 and indoleamine 2,3-dioxygenase. The actions of adenosine triphosphate are mediated by the P2Y(11) receptor; since there is no functional P2Y(11) gene in the murine genome, we investigated the action of adenine nucleotides on murine DC. Adenosine 5'-(3-thiotriphosphate) and adenosine inhibited the production of IL-12p70 by bone marrow-derived DC (BMDC). These inhibitions were relieved by 8-p-sulfophenyltheophylline, an adenosine receptor antagonist. The use of selective ligands and A(2B) (-/-) BMDC indicated the involvement of the A(2B) receptor. A microarray experiment, confirmed by quantitative PCR, showed that, in presence of LPS, 5'-(N-ethylcarboxamido) adenosine (NECA, the most potent A(2B) receptor agonist) regulated the expression of several genes: arginase I and II, thrombospondin-1 and vascular endothelial growth factor were up-regulated whereas CCL2 and CCL12 were down-regulated. We further showed that NECA, in combination with LPS, increased the arginase I enzymatic activity. In conclusion, the described actions of adenine nucleotides on BMDC are mediated by their degradation product, adenosine, acting on the A(2B) receptor, and will possibly lead to an impairment of Th1 response or tolerance.

  17. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A1, A2A, A2B, and A3 receptor antagonists

    NASA Astrophysics Data System (ADS)

    Sirci, Francesco; Goracci, Laura; Rodríguez, David; van Muijlwijk-Koezen, Jacqueline; Gutiérrez-de-Terán, Hugo; Mannhold, Raimund

    2012-11-01

    FLAP fingerprints are applied in the ligand-, structure- and pharmacophore-based mode in a case study on antagonists of all four adenosine receptor (AR) subtypes. Structurally diverse antagonist collections with respect to the different ARs were constructed by including binding data to human species only. FLAP models well discriminate "active" (=highly potent) from "inactive" (=weakly potent) AR antagonists, as indicated by enrichment curves, numbers of false positives, and AUC values. For all FLAP modes, model predictivity slightly decreases as follows: A2BR > A2AR > A3R > A1R antagonists. General performance of FLAP modes in this study is: ligand- > structure- > pharmacophore- based mode. We also compared the FLAP performance with other common ligand- and structure-based fingerprints. Concerning the ligand-based mode, FLAP model performance is superior to ECFP4 and ROCS for all AR subtypes. Although focusing on the early first part of the A2A, A2B and A3 enrichment curves, ECFP4 and ROCS still retain a satisfactory retrieval of actives. FLAP is also superior when comparing the structure-based mode with PLANTS and GOLD. In this study we applied for the first time the novel FLAPPharm tool for pharmacophore generation. Pharmacophore hypotheses, generated with this tool, convincingly match with formerly published data. Finally, we could demonstrate the capability of FLAP models to uncover selectivity aspects although single AR subtype models were not trained for this purpose.

  18. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  19. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  20. Identification of angiotensin II receptor subtypes

    SciTech Connect

    Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; )

    1989-11-30

    We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.

  1. Leishmania amazonensis impairs DC function by inhibiting CD40 expression via A2B adenosine receptor activation.

    PubMed

    Figueiredo, Amanda B; Serafim, Tiago D; Marques-da-Silva, Eduardo A; Meyer-Fernandes, José R; Afonso, Luís C C

    2012-05-01

    Dendritic cells (DCs) play an essential role in the modulation of immune responses and several studies have evaluated the interactions between Leishmania parasites and DCs. While extracellular ATP exhibits proinflammatory properties, adenosine is an important anti-inflammatory mediator. Here we investigated the effects of Leishmania infection on DC responses and the participation of purinergic signalling in this process. Bone marrow-derived dendritic cells (BMDCs) from C57BL/6J mice infected with Leishmania amazonensis, Leishmania braziliensis or Leishmania major metacyclic promastigotes showed decreased major histocompatibility complex (MHC) class II and CD86 expression and increased ectonucleotidase expression as compared with uninfected cells. In addition, L. amazonensis-infected DCs, which had lower CD40 expression, exhibited a decreased ability to induce T-cell proliferation. The presence of MRS1754, a highly selective A(2B) adenosine receptor antagonist at the time of infection increased MHC class II, CD86 and CD40 expression in L. amazonensis-infected DCs and restored the ability of the infected DCs to induce T-cell proliferation. Similar results were obtained through the inhibition of extracellular ATP hydrolysis using suramin. In conclusion, we propose that A(2B) receptor activation may be used by L. amazonensis to inhibit DC function and evade the immune response. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Seventh Symposium on Subtypes of Musccarinic Receptors.

    DTIC Science & Technology

    1997-01-01

    grants GM07270, HL07312, GM07750 and NS07332. References 1. N.M. NATHANSON, The Muscarinic Receptors, J.A. Brown (ed), 419-454, The Humana Press...R.A., MALENKAR.C. and KAUTERJ.A. Physiol.Revs. 70 514-565 (1990). 6. NORTHR.A. Muscarinic receptor subtypes, J.H.Brown (ed), 341-373, Humana , Clifton...Giannella Dipartimento di Scienze Chimiche, and *Istituto di Farmacologia, Sezione di Anatomia Umana, Universita di Camerino, 62032 Camerino, Italy

  3. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis

    PubMed Central

    Aherne, CM; Saeedi, B; Collins, CB; Masterson, JC; McNamee, EN; Perrenoud, L; Rapp, CR; Curtis, VF; Bayless, A; Fletcher, A; Glover, LE; Evans, CM; Jedlicka, P; Furuta, GT; de Zoeten, EF; Colgan, SP; Eltzschig, HK

    2015-01-01

    Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b−/− mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre+) or intestinal epithelia (Adora2bfl/flVillinCre+) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses. PMID:25850656

  4. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S; Molina, Jose G; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-03-05

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.

  5. Nicotinic acid receptor subtypes and their ligands.

    PubMed

    Soudijn, Willem; van Wijngaarden, Ineke; Ijzerman, Adriaan P

    2007-05-01

    Half a century ago, nicotinic acid (niacin) was introduced into the clinic as the first orally available drug to treat high cholesterol levels and to improve the balance between (V)low density lipoproteins (LDL) and high density lipoproteins (HDL). Remarkably, its putative mechanism of action has only been recently elucidated, particularly because of the cloning of a G protein-coupled receptor (HM74A or GPR109A). This receptor responds to both nicotinic acid and the ketone body beta-hydroxybutyrate, the latter thought to be the more probable endogenous ligand for HM74A. In this review, we will discuss the pharmacology and medicinal chemistry of this receptor subtype and a related one (HM74 or GPR109B). Although still in its infancy, the ligand repertoire is developing, and a number of compound classes have now been described, among which are both full and partial agonists. Antagonists, however, are still lacking, thus compromising thorough pharmacological studies. Mutagenesis experiments have provided clues regarding the ligand binding site; in particular, an arginine residue in transmembrane domain 3 of the receptor seems to recognize the acidic moiety present in nicotinic acid and related substances. HM74A has also been linked to one of the major side effects of nicotinic acid, that is, flushing, since this receptor subtype also occurs in skin immune cells. It is not known yet whether HM74 is also present on these cells. Since nicotinic acid is one of the few available medicines that raise HDL ("good cholesterol") levels, HM74A and HM74 appear promising targets for future pharmacotherapy. (c) 2006 Wiley Periodicals, Inc.

  6. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    SciTech Connect

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  7. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration.

    PubMed

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B; van der Hoorn, Frans A

    2016-07-15

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration*

    PubMed Central

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B.; van der Hoorn, Frans A.

    2016-01-01

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. PMID:27226580

  9. Acetylcholine nicotinic receptor subtypes in chromaffin cells.

    PubMed

    Criado, Manuel

    2017-08-08

    In the adrenal gland, acetylcholine released on stimulation of the sympathetic splanchnic nerve activates neuronal-type nicotinic receptors (nAChRs) in chromaffin cells and triggers catecholamine secretion. At least two subtypes of nAChRs have been described in bovine chromaffin cells. The main subtype, a heteromeric assembly of α3, β4 and perhaps α5 subunits, is involved in the activation step of the catecholamine secretion process and is not blocked by the snake toxin α-bungarotoxin. The other is α-bungarotoxin-sensitive, and its functional role has not yet been well defined. The α7 subunit conforms the homomeric structure of this subtype. All nAChR subunits share the same molecular organization and structural data at atomic resolution level are now available for some homomeric and heteromeric ensembles. The α3, β4 and α5 subunits are clustered in genomes of different species, with the transcription factor Sp1 playing a co-ordinating role in the transcriptional regulation of these three subunits. The transcription factor Egr-1 controls the differential expression of α7 nAChR in adrenergic chromaffin cells, as happens with the enzyme phenylethanolamine N-methyl transferase. For unknown reasons, whole cell currents observed in bovine chromaffin cells clearly differ of the ones observed when different combinations of subunit RNAs are injected in oocytes. In addition to the typical nicotinic ligands, a variety of unrelated substances with clinical relevance can target nAChRs in chromaffin cells and, therefore, affect catecholamine secretion. They can act as agonists, antagonists or allosteric modulators.

  10. Human monocytes respond to extracellular cAMP through A2A and A2B adenosine receptors

    PubMed Central

    Sciaraffia, Ester; Riccomi, Antonella; Lindstedt, Ragnar; Gesa, Valentina; Cirelli, Elisa; Patrizio, Mario; De Magistris, Maria Teresa; Vendetti, Silvia

    2014-01-01

    In this study, we test the hypothesis that cAMP, acting as an extracellular mediator, affects the physiology and function of human myeloid cells. The cAMP is a second messenger recognized as a universal regulator of several cellular functions in different organisms. Many studies have shown that extracellular cAMP exerts regulatory functions, acting as first mediator in multiple tissues. However, the impact of extracellular cAMP on cells of the immune system has not been fully investigated. We found that human monocytes exposed to extracellular cAMP exhibit higher expression of CD14 and lower amount of MHC class I and class II molecules. When cAMP-treated monocytes are exposed to proinflammatory stimuli, they exhibit an increased production of IL-6 and IL-10 and a lower amount of TNF-α and IL-12 compared with control cells, resembling the features of the alternative-activated macrophages or M2 macrophages. In addition, we show that extracellular cAMP affects monocyte differentiation into DCs, promoting the induction of cells displaying an activated, macrophage-like phenotype with reduced capacity of polarized, naive CD4+ T cells into IFN-γ-producing lymphocytes compared with control cells. The effects of extracellular cAMP on monocytes are mediated by CD73 ecto-5′-nucleotidase and A2A and A2B adenosine receptors, as selective antagonists could reverse its effects. Of note, the expression of CD73 molecules has been found on the membrane of a small population of CD14+CD16+ monocytes. These findings suggest that an extracellular cAMP-adenosine pathway is active in cells of the immune systems. PMID:24652540

  11. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice.

    PubMed

    Belikoff, Bryan G; Hatfield, Stephen; Georgiev, Peter; Ohta, Akio; Lukashev, Dmitriy; Buras, Jon A; Remick, Daniel G; Sitkovsky, Michail

    2011-02-15

    Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.

  12. Expression of Receptors for Tetanus Toxin and Monoclonal Antibody A2B5 by Pancreatic Islet Cells

    NASA Astrophysics Data System (ADS)

    Eisenbarth, G. S.; Shimizu, K.; Bowring, M. A.; Wells, S.

    1982-08-01

    Studies of the reaction of antibody A2B5 and tetanus toxin with pancreatic islet cells, islet cell tumors, and other human amine precursor uptake and decarboxylation (APUD) tumors are described. By indirect immunofluorescence, antibody A2B5 and tetanus toxin were shown to specifically bind to the plasma membrane of human, rat, chicken, and mouse islet cells. The binding of antibody A2B5 to the cell surface of living islet cells has allowed isolation of these cells from a suspension of pancreatic cells by using a fluorescence-activated cell sorter. In studies designed to determine whether tetanus toxin and antibody A2B5 bound to the same surface antigen, A2B5 and tetanus toxin did not compete for binding to normal islet cells, a human islet cell tumor, or a rat islet cell tumor. In addition to binding to islet cell tumors, antibody A2B5 reacts with frozen sections, isolated cells, and cell lines of neural, neural crest, and APUD origin.

  13. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy.

    PubMed

    Patel, Leena; Thaker, Aswin

    2014-07-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. The pathophysiologic mechanisms of diabetic nephropathy are incompletely understood but include overproduction of various growth factors and cytokines. Upregulation of vascular endothelial growth factor (VEGF) is a pathogenic event occurring in most forms of podocytopathy; however, the mechanisms that regulate this growth factor induction are not clearly identified. A2B receptors have been found to regulate VEGF expression under hypoxic environment in different tissues. One proposed hypothesis in mediating diabetic nephropathy is the modulation of VEGF-NO balance in renal tissue. We determined the role of adenosine A2B receptor in mediating VEGF overproduction and nitrite in diabetic nephropathy. The renal content of A2B receptors and VEGF was increased after 8 weeks of diabetes induction. The renal and plasma nitrite levels were also reduced in these animals. In vivo administration of A2B adenosine receptor antagonist (MRS1754) inhibited the renal over expression of VEGF and adverse renal function parameters. The antagonist administration also improved the kidney tissue nitrite levels. In conclusion, we demonstrated that VEGF induction via adenosine signaling might be the critical event in regulating VEGF-NO axis in diabetic nephropathy.

  14. Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the β2-adrenergic receptor and the human adenosine A2A receptor

    NASA Astrophysics Data System (ADS)

    Sherbiny, Farag F.; Schiedel, Anke C.; Maaß, Astrid; Müller, Christa E.

    2009-11-01

    A three-dimensional model of the human adenosine A2B receptor was generated by means of homology modelling, using the crystal structures of bovine rhodopsin, the β2-adrenergic receptor, and the human adenosine A2A receptor as templates. In order to compare the three resulting models, the binding modes of the adenosine A2B receptor antagonists theophylline, ZM241385, MRS1706, and PSB601 were investigated. The A2A-based model was much better able to stabilize the ligands in the binding site than the other models reflecting the high degree of similarity between A2A and A2B receptors: while the A2B receptor shares about 21% of the residues with rhodopsin, and 31% with the β2-adrenergic receptor, it is 56% identical to the adenosine A2A receptor. The A2A-based model was used for further studies. The model included the transmembrane domains, the extracellular and the intracellular hydrophilic loops as well as the terminal domains. In order to validate the usefulness of this model, a docking analysis of several selective and nonselective agonists and antagonists was carried out including a study of binding affinities and selectivities of these ligands with respect to the adenosine A2A and A2B receptors. A common binding site is proposed for antagonists and agonists based on homology modelling combined with site-directed mutagenesis and a comparison between experimental and calculated affinity data. The new, validated A2B receptor model may serve as a basis for developing more potent and selective drugs.

  15. Subtype-selective N-methyl-D-aspartate receptor antagonists: synthesis and biological evaluation of 1-(arylalkynyl)-4-benzylpiperidines.

    PubMed

    Wright, J L; Gregory, T F; Bigge, C F; Boxer, P A; Serpa, K; Meltzer, L T; Wise, L D; Cai, S X; Hawkinson, J E; Konkoy, C S; Whittemore, E R; Woodward, R M; Zhou, Z L

    1999-07-01

    A search of our compound library for compounds with structural similarity to ifenprodil (5) and haloperidol (7) followed by in vitro screening revealed that 4-benzyl-1-(4-phenyl-3-butynyl)piperidine (8) was a moderately potent and selective antagonist of the NR1A/2B subtype of NMDA receptors. Substitution on the benzyl group of 8 did not significantly affect NR1A/2B potency, while addition of hydrogen bond donors in the para position of the phenyl group enhanced NR1A/2B potency. Addition of a hydroxyl moiety to the 4-position of the piperidine group slightly reduced NR1A/2B potency while reducing alpha-1 adrenergic and dopamine D2 receptor binding affinities substantially, resulting in improved overall selectivity for NR1A/2B receptors. Finally, the butynyl linker was replaced with propynyl or pentynyl. When the phenyl was para substituted with amine or acetamide groups, the NR1A/2B potency order was butynyl > pentynyl > propynyl. For the para methanesulfonamide or hydroxyl groups, the order was butynyl approximately propynyl > pentynyl. The hydroxyl propyne (48) and butyne (23) were among the most potent NR1A/2B antagonists from this study. They both potentiated the effects of L-DOPA in the 6-hydroxydopamine-lesioned rat, a model of Parkinson's disease, dosed at 10 mg/kg ip, but 48 was not active at 30 mg/kg po.

  16. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  17. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    SciTech Connect

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P. )

    1991-07-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 (11-2-((2-(diethylaminomethyl)- 1-piperidinyl)acetyl)-5,11-dihydro-6H- pyrido(2,3-b)(1,4)benzodiazepine-6-one), hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of (3H)quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of (3H)-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated.

  18. Dual A1/A2B Receptor Blockade Improves Cardiac and Renal Outcomes in a Rat Model of Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Tofovic, Stevan P.; Salah, Eman M.; Smits, Glenn J.; Whalley, Eric T.; Ticho, Barry; Deykin, Aaron

    2016-01-01

    Heart failure with preserved ejection fraction (HFpEF) is prevalent and often accompanied by metabolic syndrome. Current treatment options are limited. Here, we test the hypothesis that combined A1/A2B adenosine receptor blockade is beneficial in obese ZSF1 rats, an animal model of HFpEF with metabolic syndrome. The combined A1/A2B receptor antagonist 3-[4-(2,6-dioxo-1,3-dipropyl-7H-purin-8-yl)-1-bicyclo[2.2.2]octanyl]propanoic acid (BG9928) was administered orally (10 mg/kg/day) to obese ZSF1 rats (n = 10) for 24 weeks (from 20 to 44 weeks of age). Untreated ZSF1 rats (n = 9) served as controls. After 24 weeks of administration, BG9928 significantly lowered plasma triglycerides (in mg/dl: control group, 4351 ± 550; BG9928 group, 2900 ± 551) without adversely affecting plasma cholesterol or activating renin release. BG9928 significantly decreased 24-hour urinary glucose excretion (in mg/kg/day: control group, 823 ± 179; BG9928 group, 196 ± 80) and improved oral glucose tolerance, polydipsia, and polyuria. BG9928 significantly augmented left ventricular diastolic function in association with a reduction in cardiac vasculitis and cardiac necrosis. BG9928 significantly reduced 24-hour urinary protein excretion (in mg/kg/day: control group, 1702 ± 263; BG9928 group, 1076 ± 238), and this was associated with a reduction in focal segmental glomerulosclerosis, tubular atrophy, tubular dilation, and deposition of proteinaceous material in the tubules. These findings show that, in a model of HFpEF with metabolic syndrome, A1/A2B receptor inhibition improves hyperlipidemia, exerts antidiabetic actions, reduces HFpEF, improves cardiac histopathology, and affords renal protection. We conclude that chronic administration of combined A1/A2B receptor antagonists could be beneficial in patients with HFpEF, in particular those with comorbidities such as obesity, diabetes, and dyslipidemias. PMID:26585572

  19. Concurrent agonism of adenosine A2B and glucocorticoid receptors in human airway epithelial cells cooperatively induces genes with anti-inflammatory potential: a novel approach to treat chronic obstructive pulmonary disease.

    PubMed

    Greer, Stephanie; Page, Cara W; Joshi, Taruna; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-09-01

    Chronic obstructive pulmonary disease (COPD) is a neutrophilic inflammatory disorder that is weakly responsive to glucocorticoids. Identification of ways to enhance the anti-inflammatory activity of glucocorticoids is, therefore, a major research objective. Adenosine receptor agonists that target the A2B-receptor subtype are efficacious in several cell-based assays and preclinical models of inflammation. Accordingly, the present study was designed to determine if a selective A2B-receptor agonist, 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulphanyl]acetamide (Bay 60-6583), and a glucocorticoid, dexamethasone, in combination display putative anti-inflammatory activity that is superior to either drug alone. In BEAS-2B human airway epithelial cells stably transfected with cAMP-response element (CRE) and glucocorticoid response element (GRE) reporter constructs, Bay 60-6583 promoted CRE-dependent transcription and enhanced GRE-dependent transcription by an adenosine A2B-receptor-mediated mechanism that was associated with cAMP formation and abolished by an inhibitor of cAMP-dependent protein kinase. Analysis of the concentration-response relationship that described the enhancement of GRE-dependent transcription showed that Bay 60-6583 increased the magnitude of response without affecting the potency of dexamethasone. Bay 60-6583 and dexamethasone also induced a panel of genes that, collectively, could have benefit in COPD. These were categorized into genes that were induced in a positive cooperative manner (RGS2, p57(kip2)), an additive manner (TTP, BRL-1), or by Bay 60-6583 (CD200, CRISPLD2, SOCS3) or dexamethasone (GILZ) only. Thus, the gene induction "fingerprints" produced by Bay 60-6583 and dexamethasone, alone and in combination, were distinct. Collectively, through their actions on gene expression, an adenosine A2B-receptor agonist and a glucocorticoid administered together may have utility in the treatment of inflammatory disorders that

  20. Myometrial angiotensin II receptor subtypes change during ovine pregnancy.

    PubMed Central

    Cox, B E; Ipson, M A; Shaul, P W; Kamm, K E; Rosenfeld, C R

    1993-01-01

    Although regulation of angiotensin II receptor (AT) binding in vascular and uterine smooth muscle is similar in nonpregnant animals, studies suggest it may differ during pregnancy. We, therefore, examined binding characteristics of myometrial AT receptors in nulliparous (n = 7), pregnant (n = 24, 110-139 d of gestation), and postpartum (n = 21, 5 to > or = 130 d) sheep and compared this to vascular receptor binding. We also determined if changes in myometrial binding reflect alterations in receptor subtype. By using plasma membrane preparations from myometrium and medial layer of abdominal aorta, we determined receptor density and affinity employing radioligand binding; myometrial AT receptor subtypes were assessed by inhibiting [125I]-ANG II binding with subtype-specific antagonists. Compared to nulliparous ewes, myometrial AT receptor density fell approximately 90% during pregnancy (1,486 +/- 167 vs. 130 +/- 16 fmol/mg protein) and returned to nulliparous values > or = 4 wk postpartum; vascular binding was unchanged. Nulliparous myometrium expressed predominantly AT2 receptors (AT1/AT2 congruent to 15%/85%), whereas AT1 receptors predominated during pregnancy (AT1/AT2 congruent to 80%/20%). By 5 d postpartum AT1/AT2 congruent to 40%/60%, and > 4 wk postpartum AT2 receptors again predominated (AT1/AT2 congruent to 15%/85%). In studies of ANG II-induced force generation, myometrium from pregnant ewes (n = 10) demonstrated dose-dependent increases in force (P < 0.001), which were inhibited with an AT1 receptor antagonist. Postpartum myometrial responses were less at doses > or = 10(-9) M (P < 0.05) and unaffected by AT2 receptor antagonists. Vascular and myometrial AT receptor binding are differentially regulated during ovine pregnancy, the latter primarily reflecting decreases in AT2 receptor expression. This is the first description of reversible changes in AT receptor subtype in adult mammals. PMID:8227339

  1. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  2. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  3. Leishmania amazonensis-Induced cAMP Triggered by Adenosine A2B Receptor Is Important to Inhibit Dendritic Cell Activation and Evade Immune Response in Infected Mice.

    PubMed

    Figueiredo, Amanda Braga; Souza-Testasicca, Míriam Conceição; Mineo, Tiago Wilson Patriarca; Afonso, Luís Carlos Crocco

    2017-01-01

    Differently from others Leishmania species, infection by the protozoan parasite L. amazonensis is associated with a lack of antigen-specific T-cell responses. Dendritic cells (DC) are essential for the innate immune response and for directing the differentiation of T-helper lymphocytes. Previously, we showed that L. amazonensis infection impairs DC activation through the activation of adenosine A2B receptor, and here, we evaluated the intracellular events triggered by this receptor in infected cells. To this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Our results show, for the first time, that L. amazonensis increases the production of cAMP and the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in infected DC by a mechanism dependent on the A2B receptor. Furthermore, L. amazonensis impairs CD40 expression and IL-12 production by DC, and the inhibition of adenylate cyclase, phosphoinositide 3-kinase (PI3K), and ERK1/2 prevent these effects. The increase of ERK1/2 phosphorylation and the inhibition of DC activation by L. amazonensis are independent of protein kinase A (PKA). In addition, C57BL/6J mice were inoculated in the ears with metacyclic promastigotes, in the presence of PSB1115, an A2B receptor antagonist. PSB1115 treatment increases the percentage of CD40(+) DC on ears and draining lymph nodes. Furthermore, this treatment reduces lesion size and tissue parasitism. Lymph node cells from treated mice produce higher levels of IFN-γ than control mice, without altering the production of IL-10. In conclusion, we suggest a new pathway used by the parasite (A2B receptor → cAMP → PI3K → ERK1/2) to suppress DC activation, which may contribute to the decrease of IFN-γ production following by the deficiency in immune response characteristic of L. amazonensis infection.

  4. Acromegaly: molecular expression of somatostatin receptor subtypes and treatment outcome.

    PubMed

    Bronstein, Marcello D

    2006-01-01

    About a third of acromegalic patients are resistant to the currently commercially available somatostatin analogs (SA) octreotide and lanreotide. Such resistance is related to an overall reduction of somatostatin receptor (SSTR) density or to a differentiated expression of SSTR subtypes. There are five known SSTR subtypes. SSTR2 and SSTR5 are usually expressed in GH-secreting pituitary tumors, and both octreotide and lanreotide bind preferentially to SSTR2 and, to a lesser extent, to SSTR5. SA inhibitory effects on GH secretion and tumor cell proliferation can occur together or be dissociated events, depending on the tumor expression of SSTR subtypes involved in each mechanism. The development of specific somatostatin subtypes analogs, mainly for SSTR5, of a SSTR2-SSTR5 bispecific compound, and of a "universal" analog with high affinity to SSTR1, 2, 3, and 5 showed preliminary, albeit promising results for the treatment of resistant somatotropic adenomas.

  5. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor

    PubMed Central

    Watson, Michael J.; Lee, Shernita L.; Marklew, Abigail J.; Gilmore, Rodney C.; Gentzsch, Martina; Sassano, Maria F.; Gray, Michael A.; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR’s function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR’s PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  6. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    PubMed

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  7. Downregulation of A(1) and A(2B) adenosine receptors in human trisomy 21 mesenchymal cells from first-trimester chorionic villi.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Mirandola, Prisco; Bonfatti, Alessandra; Fini, Sergio; Sensi, Alberto; Marci, Roberto; Varani, Katia; Borea, Pier Andrea; Vesce, Fortunato

    2012-11-01

    Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A(1) and A(2B) expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A(1)AR and A(2A)AR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A(2B). In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A(2B) and A(1)ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A(1) and A(2B)ARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.

  8. Beyond classical benzodiazepines: Novel therapeutic potential of GABAA receptor subtypes

    PubMed Central

    Rudolph, Uwe; Knoflach, Frédéric

    2012-01-01

    GABAA receptors are a family of ligand-gated ion channels which are essential for the regulation of central nervous system function. Benzodiazepines – which target GABAA receptors containing the α1, α2, α3, or α5 subunits non-selectively – have been in clinical use for decades and are still among the most widely prescribed drugs for the treatment of insomnia and anxiety disorders. However, their use is limited by side effects and the risk of drug dependence. In the past decade, the identification of separable key functions of GABAA receptor subtypes suggests that receptor subtype-selective compounds could overcome the limitations of classical benzodiazepines and, furthermore, might be valuable for novel indications, such as analgesia, depression, schizophrenia, cognitive enhancement and stroke. PMID:21799515

  9. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart.

    PubMed

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP),velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk.

  10. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression

    PubMed Central

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K.; Blackburn, Michael R.; Kellems, Rodney E.; Xia, Yang

    2014-01-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A2B adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA−/− and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.—Ning, C., Wen, J., Zhang, Y., Dai, Y., Wang, W., Zhang, W., Qi, L., Grenz, A., Eltzschig, H. K., Blackburn, M. R., Kellems, R. E., Xia, Y. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression. PMID:24614760

  11. Prognostic Value of Somatostatin Receptor Subtypes in Pancreatic Neuroendocrine Tumors.

    PubMed

    Song, Ki Byung; Kim, Song Cheol; Kim, Ji Hun; Seo, Dong-Wan; Hong, Seung-Mo; Park, Kwang-Min; Hwang, Dae Wook; Lee, Jae Hoon; Lee, Young-Joo

    2016-02-01

    Studies on the expression of somatostatin receptor (SSTR) subtypes in pancreatic neuroendocrine tumors (PNETs) are rare. The aim of this study was to determine the expression of the SSTR subtypes via immunohistochemistry analyses and assess the correlation between SSTR subtype expression and prognosis. We examined 199 patients with PNET who underwent surgical resection between January 1995 and December 2010 at the Asan Medical Center. For all cases, medical records, including demographic data, clinical symptoms, radiological findings, postoperative treatment outcomes, and expression of SSTR subtypes, were carefully reviewed. In total, 162 (81.4%) PNETs expressed more than 1 SSTR subtype. Functioning PNET expressed significantly more SSTR subtypes, compared to nonfunctioning PNET. The SSTR2(+) and SSTR5(+) groups had better prognosis than the SSTR2(-) (P = 0.009) and SSTR5(-) groups (P = 0.03), respectively. In the grade 2 PNET of 2010 World Health Organization classification, the SSTR(+) group had better prognosis than SSTR(-) group. The expression of SSTR 2 and 5 were related with good prognosis of PNET. In World Health Organization grade 2 PNET, the SSTR(+) group had better prognosis than SSTR(-) group. The SSTR expression(+) by immunohistochemistry might be related with good prognosis of the patients with surgically resected PNET.

  12. Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors

    PubMed Central

    Jakubík, Jan; Janíčková, Helena; Randáková, Alena; El-Fakahany, Esam E.; Doležal, Vladimír

    2011-01-01

    Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex “collides” with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to Gq/11, while even-numbered receptors prefer coupling to Gi/o. We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M1 and M3 receptors also pre-couple with non-preferential Gi/o G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype

  13. Multiple Estrogen Receptor Subtypes Influence Ingestive Behavior in Female Rodents

    PubMed Central

    Santollo, Jessica; Daniels, Derek

    2015-01-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles specific estrogen receptor subtypes play in mediating estradiol’s anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions. PMID:26037634

  14. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions.

  15. Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype.

    PubMed

    Lanier, S M; Downing, S; Duzic, E; Homcy, C J

    1991-06-05

    alpha 2-Adrenergic receptors (alpha 2-AR) exist as subtypes that are expressed in a tissue-specific manner and differ in 1) their ligand recognition properties, 2) their extent of receptor protein glycosylation, and possible 3) their mechanism of signal transduction. Genomic or cDNA clones encoding three receptor subtypes have been characterized; however, both functional and radioligand binding studies in rodents suggest the existence of a fourth receptor subtype. To isolate the rat genes encoding receptor subtypes we screened a rat genomic library with an oligonucleotide probe encompassing the third membrane span of the human C-4 alpha 2-AR. Two intronless rat genes were isolated that encode distinct receptor subtypes (RG10, RG20). RG10 and RG20 encode proteins of 458 and 450 amino acids, respectively, that are 56% homologous and possess the structural features expected of this class of membrane-bound receptors. RG10 identifies a mRNA species of approximately 2500 nucleotides that is found primarily in brain, whereas RG20 identifies a larger mRNA species (approximately 4000 nucleotides) that is found in several tissues including brain, kidney, and salivary gland. RG10 is 88% homologous to the human C-4 alpha 2-AR and exhibits similar binding properties ( [3H]rauwolscine KD = 0.7 +/- 0.3 nM) as determined following transient expression of the receptor in COS-1 cells. RG20 exhibits ligand binding properties distinct from the three receptor subtypes identified by molecular cloning. Saturation binding studies indicate an affinity constant of 15 +/- 1.2 nM for the alpha 2-AR antagonist [3H]rauwolscine, a value 6-20 times higher than that observed for the three cloned receptor subtypes. In competition binding studies the potency order of competing ligands for RG20 is phentolamine greater than idazoxan greater than yohimbine greater than rauwolscine greater than prazosin. Of the three previously cloned alpha 2-AR, RG20 is most closely related to the human C-10 alpha 2-AR

  16. Structural basis of kainate subtype glutamate receptor desensitization

    PubMed Central

    Meyerson, Joel R.; Chittori, Sagar; Merk, Alan; Rao, Prashant; Han, Tae Hee; Serpe, Mihaela; Mayer, Mark L.; Subramaniam, Sriram

    2016-01-01

    Glutamate receptors are ligand gated tetrameric ion channels that mediate synaptic transmission in the central nervous system. They are instrumental in vertebrate cognition and their dysfunction underlies diverse diseases1,2. In both the resting and desensitized states of AMPA and kainate subtype glutamate receptors the ion channels are closed while the ligand binding domain, which is physically coupled to the channel, adopts dramatically different conformations3–6. Without an atomic model for the desensitized state, it is not possible to address a central question in receptor gating: how the resting and desensitized receptor states both display closed ion channels, even though they have major differences in quaternary structure of the ligand binding domain. By determining the cryo-EM structure of the kainate receptor GluK2 subtype in its desensitized state at 3.8 Å resolution, we show that desensitization is characterized by establishment of a ring-like structure in the ligand binding domain layer of the receptor. Formation of this “desensitization ring” is mediated by staggered helix contacts between adjacent subunits, which leads to a pseudo four-fold symmetric arrangement of the ligand binding domains, illustrating subtle changes in symmetry that are at the heart of the gating mechanism. Disruption of the desensitization ring is likely the key switch that enables restoration of the receptor to its resting state, thereby completing the gating cycle. PMID:27580033

  17. MicroRNA signatures predict dysregulated vitamin D receptor and calcium pathways status in limb girdle muscle dystrophies (LGMD) 2A/2B.

    PubMed

    Aguennouz, M; Lo Giudice, C; Licata, N; Rodolico, C; Musumeci, O; Fanin, M; Migliorato, A; Ragusa, M; Macaione, V; Di Giorgio, R M; Angelini, C; Toscano, A

    2016-08-01

    miRNA expression profile and predicted pathways involved in selected limb-girdle muscular dystrophy (LGMD)2A/2B patients were investigated. A total of 187 miRNAs were dysregulated in all patients, with six miRNAs showing opposite regulation in LGMD2A versus LGMD2B patients. Silico analysis evidence: (1) a cluster of the dysregulated miRNAs resulted primarily involved in inflammation and calcium metabolism, and (2) two genes predicted as controlled by calcium-assigned miRNAs (Vitamin D Receptor gene and Guanine Nucleotide Binding protein beta polypeptide 1gene) showed an evident upregulation in LGMD2B patients, in accordance with miRNA levels. Our data support alterations in calcium pathway status in LGMD 2A/B, suggesting myofibre calcium imbalance as a potential therapeutic target. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Characterization of muscarinic receptor subtypes in human tissues

    SciTech Connect

    Giraldo, E.; Martos, F.; Gomez, A.; Garcia, A.; Vigano, M.A.; Ladinsky, H.; Sanchez de La Cuesta, F.

    1988-01-01

    The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with (/sup 3/H)Pirenzepine and (/sup 3/H)N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M/sub 1/ neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M/sub 1/, the cardiac M/sub 2/ and the glandular M/sub 3/.

  19. Pharmacophore development for antagonists at α1 adrenergic receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bremner, J. B.; Coban, B.; Griffith, R.

    1996-12-01

    Many receptors, including α1 adrenergic receptors, have a range of subtypes. This offers possibilities for the development of highly selective antagonists with potentially fewer detrimental effects. Antagonists developed for α1A receptors, for example, would have potential in the treatment of benign prostatic hyperplasia. As part of the molecular design process, structural features necessary for the selective affinity for α1A and α1B adrenergic receptors have been investigated. The molecular modelling software (particularly the Apex module) of Molecular Simulations, Inc. was used to develop pharmacophore models for these two subtypes. Low-energy conformations of a set of known antagonists were used as input, together with a classification of the receptor affinity data. The biophores proposed by the program were evaluated and pharmacophores were proposed. The pharmacophore models were validated by testing the fit of known antagonists, not included in the training set. The critical structural feature for selectivity between the α1A and α1B adrenergic receptor sites is the distance between the basic nitrogen atom and the centre of an aromatic ring system. This will be exploited in the design and synthesis of structurally new selective antagonists for these sites.

  20. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    SciTech Connect

    Baumgold, J.; Cohen, V.I.; Paek, R.; Reba, R.C. )

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.

  1. An A2B Adenosine Receptor Agonist Promotes Th17 Autoimmune Responses in Experimental Autoimmune Uveitis (EAU) via Dendritic Cell Activation.

    PubMed

    Chen, Mingjiazi; Liang, Dongchun; Zuo, Aijun; Shao, Hui; Kaplan, Henry J; Sun, Deming

    2015-01-01

    We have recently reported that, although adenosine receptor (AR) agonists have a suppressive effect on Th1 autoreactive T cells, their effect on Th17 autoreactive T cells and γδ T cells is stimulatory and this effect is mainly mediated via A2A adenosine receptors (A2ARs). In this study, we further demonstrate that treatment of C57BL/6 (B6) mice with a selective A2B adenosine receptor (A2BR) agonist greatly enhanced the development of experimental autoimmune uveitis (EAU), whereas treatment with an A2BR antagonist significantly ameliorated severity of EAU. The A2BR agonist-treated mice showed augmented Th17, but not Th1, responses. Mechanistic studies showed that the A2BR agonist-induced enhancement of the Th17 response was significantly lower when TCR-δ-/- mice received the same treatment and that transfer of γδ T cells into TCR-δ-/- mice partially restored this effect. We also showed that dendritic cells (DCs) from A2BR agonist-treated mice showed a significantly increased ability to activate γδ T cells and Th17 autoreactive T cells. Thus, our previous studies have shown that, in EAU, activated γδ T cells possess greatly increased ability to enhance Th17 autoimmune responses. In the present study, we showed that exposure of DCs to A2BR agonist facilitated γδ T cell activation, leading to augmented Th17 responses and progressive EAU development. Our results further support our previous finding that AR agonists have distinct effects on Th1 and Th17 autoimmune responses.

  2. An A2B Adenosine Receptor Agonist Promotes Th17 Autoimmune Responses in Experimental Autoimmune Uveitis (EAU) via Dendritic Cell Activation

    PubMed Central

    Chen, Mingjiazi; Liang, Dongchun; Zuo, Aijun; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2015-01-01

    We have recently reported that, although adenosine receptor (AR) agonists have a suppressive effect on Th1 autoreactive T cells, their effect on Th17 autoreactive T cells and γδ T cells is stimulatory and this effect is mainly mediated via A2A adenosine receptors (A2ARs). In this study, we further demonstrate that treatment of C57BL/6 (B6) mice with a selective A2B adenosine receptor (A2BR) agonist greatly enhanced the development of experimental autoimmune uveitis (EAU), whereas treatment with an A2BR antagonist significantly ameliorated severity of EAU. The A2BR agonist-treated mice showed augmented Th17, but not Th1, responses. Mechanistic studies showed that the A2BR agonist-induced enhancement of the Th17 response was significantly lower when TCR-δ-/- mice received the same treatment and that transfer of γδ T cells into TCR-δ-/- mice partially restored this effect. We also showed that dendritic cells (DCs) from A2BR agonist-treated mice showed a significantly increased ability to activate γδ T cells and Th17 autoreactive T cells. Thus, our previous studies have shown that, in EAU, activated γδ T cells possess greatly increased ability to enhance Th17 autoimmune responses. In the present study, we showed that exposure of DCs to A2BR agonist facilitated γδ T cell activation, leading to augmented Th17 responses and progressive EAU development. Our results further support our previous finding that AR agonists have distinct effects on Th1 and Th17 autoimmune responses. PMID:26147733

  3. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation

    PubMed Central

    Wen, Jiaming; Grenz, Almut; Zhang, Yujin; Dai, Yingbo; Kellems, Rodney E.; Blackburn, Michael R.; Eltzschig, Holger K.; Xia, Yang

    2011-01-01

    Normal penile erection is under the control of multiple factors and signaling pathways. Although adenosine signaling is implicated in normal and abnormal penile erection, the exact role and the underlying mechanism for adenosine signaling in penile physiology remain elusive. Here we report that shear stress leads to increased adenosine release from endothelial cells. Subsequently, we determined that ecto-5′-nucleotidase (CD73) is a key enzyme required for the production of elevated adenosine from ATP released by shear-stressed endothelial cells. Mechanistically, we demonstrate that shear stress-mediated elevated adenosine functions through the adenosine A2B receptor (A2BR) to activate the PI3K/AKT signaling cascade and subsequent increased endothelial nitric oxide synthase (eNOS) phosphorylation. These in vitro studies led us to discover further that adenosine was induced during sustained penile erection and contributes to PI3K/AKT activation and subsequent eNOS phosphorylation via A2BR signaling in intact animal. Finally, we demonstrate that lowering adenosine in wild-type mice or genetic deletion of A2BR in mutant mice significantly attenuated PI3K/AKT activation, eNOS phosphorylation, and subsequent impaired penile erection featured with the reduction of ratio of maximal intracavernosal pressure to systemic arterial pressure from 0.49 ± 0.03 to 0.41 ± 0.05 and 0.38 ± 0.04, respectively (both P<0.05). Overall, using biochemical, cellular, genetic, and physiological approaches, our findings reveal that adenosine is a novel molecule signaling via A2BR activation, contributing to penile erection via PI3K/AKT-dependent eNOS activation. These studies suggest that this signaling pathway may be a novel therapeutic target for erectile disorders.—Wen, J., Grenz, A., Zhang, Y., Dai, Y., Kellems, R. E., Blackburn, M. R., Eltzschig, H. K., Xia, Y. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. PMID

  4. Low dose acute alcohol effects on GABAA receptor subtypes

    PubMed Central

    Wallner, Martin; Hanchar, H. Jacob; Olsen, Richard W.

    2010-01-01

    GABAA receptors (GABAARs) are the main inhibitory neurotransmitter receptors and have long been implicated in mediating at least part of the acute actions of ethanol. For example, ethanol and GABAergic drugs including barbiturates and benzodiazepines share many pharmacological properties. Besides the prototypical synaptic GABAAR subtypes, nonsynaptic GABAARs have recently emerged as important regulators of neuronal excitability. While high doses (≥100 mM) of ethanol have been reported to enhance activity of most GABAAR subtypes, most abundant synaptic GABAARs are essentially insensitive to ethanol concentrations that occur during social ethanol consumption (<30 mM). However, extrasynaptic δ and β3 subunit-containing GABAARs, associated in the brain with α4or α6 subunits, are sensitive to low millimolar ethanol concentrations, as produced by drinking half a glass of wine. Additionally, we found that a mutation in the cerebellar α6 subunit (α6R100Q), initially reported in rats selectively bred for increased alcohol sensitivity, is sufficient to produce increased alcohol-induced motor impairment and further increases of alcohol sensitivity in recombinant α6β3δ receptors. Furthermore, the behavioral alcohol antagonist Ro15-4513 blocks the low dose alcohol enhancement on α4/6/β3δ receptors, without reducing GABA-induced currents. In binding assays α4β3δ GABAARs bind [3H] Ro15-4513 with high affinity, and this binding is inhibited, in an apparently competitive fashion, by low ethanol concentrations, as well as analogs of Ro15-4513 that are active to antagonize ethanol or Ro15-4513’s block of ethanol. We conclude that most low to moderate dose alcohol effects are mediated by alcohol actions on alcohol/Ro15-4513 binding sites on GABAAR subtypes. PMID:16814864

  5. Muscarinic receptor subtypes in human and rat colon smooth muscle.

    PubMed

    Gómez, A; Martos, F; Bellido, I; Marquez, E; Garcia, A J; Pavia, J; Sanchez de la Cuesta, F

    1992-06-09

    Muscarinic receptor subtypes in human and rat colon smooth muscle homogenates were characterized with [3H]N-methylscopolamine ([3H]NMS) by ligand binding studies. [3H]NMS saturation experiments show the existence of a homogeneous population of non-interacting binding sites with similar affinity (KD values of 1.38 +/- 0.20 nM in human colon smooth muscle and 1.48 +/- 0.47 nM in rat colon smooth muscle) and with Hill slopes close to unity in both samples of tissue. However, a significant (P less than 0.01) increase in muscarinic receptor density (Bmax) is found in human colon (29.9 +/- 2.9 fmol/mg protein) compared with rat colon (17.2 +/- 1.5 fmol/mg protein). Inhibition of [3H]NMS binding by non-labelled compounds shows the following order in human colon: atropine greater than AF-DX 116 greater than pirenzepine. Whereas in rat colon the rank order obtained is atropine greater than pirenzepine greater than AF-DX 116. Atropine and pirenzepine bind to a homogeneous population of binding sites, although pirenzepine shows higher affinity to bind to the sites present in rat colon (Ki = 1.08 +/- 0.08 microM) than those in human colon (Ki = 1.74 +/- 0.02 microM) (P less than 0.05). Similarly, IC50 values obtained in AF-DX 116 competition experiments were significantly different (P less than 0.01) in human colon (IC50 = 1.69 +/- 0.37 microM) than in rat colon (IC50 = 3.78 +/- 0.75 microM). Unlike atropine and pirenzepine, the inhibition of [3H]NMS binding by AF-DX 116 did not yield a simple mass-action binding curve (nH less than 1, P less than 0.01) suggesting the presence of more than one subtype of muscarinic receptor in both species. Computer analysis of these curves with a two binding site model suggests the presence of two populations of receptor. The apparent Ki1 value for the high affinity binding site is 0.49 +/- 0.07 microM for human colon smooth muscle and 0.33 +/- 0.05 microM for rat colon smooth muscle. The apparent Ki2 for the low affinity binding site is 8

  6. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression.

    PubMed

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2014-06-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A(2B) adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA(-/-) and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.

  7. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression

    PubMed Central

    Sorrentino, Claudia; Miele, Lucio; Porta, Amalia; Pinto, Aldo; Morello, Silvana

    2016-01-01

    The A2B receptor (A2BR) can mediate adenosine-induced tumor proliferation, immunosuppression and angiogenesis. Targeting the A2BR has proved to be therapeutically effective in some murine tumor models, but the mechanisms of these effects are still incompletely understood. Here, we report that pharmacologic inhibition of A2BR with PSB1115, which inhibits tumor growth, decreased the number of fibroblast activation protein (FAP)-expressing cells in tumors in a mouse model of melanoma. This effect was associated with reduced expression of fibroblast growth factor (FGF)-2. Treatment of melanoma-associated fibroblasts with the A2BR agonist Bay60-6583 enhanced CXCL12 and FGF2 expression. This effect was abrogated by PSB1115. The A2AR agonist CGS21680 did not induce CXCL12 or FGF2 expression in tumor associated fibroblasts. Similar results were obtained under hypoxic conditions in skin-derived fibroblasts, which responded to Bay60-6583 in an A2BR-dependent manner, by stimulating pERK1/2. FGF2 produced by Bay60-6583-treated fibroblasts directly enhanced the proliferation of melanoma cells. This effect could be reversed by PSB1115 or an anti-FGF2 antibody. Interestingly, melanoma growth in mice receiving Bay60-6583 was attenuated by inhibition of the CXCL12/CXCR4 pathway with AMD3100. CXCL12 and its receptor CXCR4 are involved in angiogenesis and immune-suppression. Treatment of mice with AMD3100 reduced the number of CD31+ cells induced by Bay60-6583. Conversely, CXCR4 blockade did not affect the accumulation of tumor-infiltrating MDSCs or Tregs. Together, our data reveal an important role for A2BR in stimulating FGF2 and CXCL12 expression in melanoma-associated fibroblasts. These factors contribute to create a tumor-promoting microenvironment. Our findings support the therapeutic potential of PSB1115 for melanoma. PMID:27590504

  8. Defining breast cancer intrinsic subtypes by quantitative receptor expression.

    PubMed

    Cheang, Maggie C U; Martin, Miguel; Nielsen, Torsten O; Prat, Aleix; Voduc, David; Rodriguez-Lescure, Alvaro; Ruiz, Amparo; Chia, Stephen; Shepherd, Lois; Ruiz-Borrego, Manuel; Calvo, Lourdes; Alba, Emilio; Carrasco, Eva; Caballero, Rosalia; Tu, Dongsheng; Pritchard, Kathleen I; Levine, Mark N; Bramwell, Vivien H; Parker, Joel; Bernard, Philip S; Ellis, Matthew J; Perou, Charles M; Di Leo, Angelo; Carey, Lisa A

    2015-05-01

    To determine intrinsic breast cancer subtypes represented within categories defined by quantitative hormone receptor (HR) and HER2 expression. We merged 1,557 cases from three randomized phase III trials into a single data set. These breast tumors were centrally reviewed in each trial for quantitative ER, PR, and HER2 expression by immunohistochemistry (IHC) stain and by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), with intrinsic subtyping by research-based PAM50 RT-qPCR assay. Among 283 HER2-negative tumors with <1% HR expression by IHC, 207 (73%) were basal-like; other subtypes, particularly HER2-enriched (48, 17%), were present. Among the 1,298 HER2-negative tumors, borderline HR (1%-9% staining) was uncommon (n = 39), and these tumors were heterogeneous: 17 (44%) luminal A/B, 12 (31%) HER2-enriched, and only 7 (18%) basal-like. Including them in the definition of triple-negative breast cancer significantly diminished enrichment for basal-like cancer (p < .05). Among 106 HER2-positive tumors with <1% HR expression by IHC, the HER2-enriched subtype was the most frequent (87, 82%), whereas among 127 HER2-positive tumors with strong HR (>10%) expression, only 69 (54%) were HER2-enriched and 55 (43%) were luminal (39 luminal B, 16 luminal A). Quantitative HR expression by RT-qPCR gave similar results. Regardless of methodology, basal-like cases seldom expressed ER/ESR1 or PR/PGR and were associated with the lowest expression level of HER2/ERBB2 relative to other subtypes. Significant discordance remains between clinical assay-defined subsets and intrinsic subtype. For identifying basal-like breast cancer, the optimal HR IHC cut point was <1%, matching the American Society of Clinical Oncology and College of American Pathologists guidelines. Tumors with borderline HR staining are molecularly diverse and may require additional assays to clarify underlying biology. ©AlphaMed Press.

  9. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity.

    PubMed

    Xin, D; Wang, H; Yang, J; Su, Y-F; Fan, G-W; Wang, Y-F; Zhu, Y; Gao, X-M

    2010-02-01

    The seed of Psoralea corylifolia L. (PCL), a well-known traditional Chinese medicine, has been applied as a tonic or an aphrodisiac agent and commonly used as a remedy for bone fracture, osteomalacia and osteoporosis in China. In our study, the estrogen receptor subtype-selective activities of the extracts and compounds derived from PCL were analyzed using the HeLa cell assay. The different fractions including petroleum ether, CH(2)Cl(2) and EtOAc fractions of the EtOH extract of PCL showed significant activity in activating either ERalpha or ERbeta whereas the n-BuOH fraction showed no estrogenic activity. Further chromatographic purification of the active fractions yielded seven compounds including the two coumarins isopsoralen and psoralen, the four flavonoids isobavachalcone, bavachin, corylifol A and neobavaisoflavone, and the meroterpene phenol, bakuchiol. In reporter gene assay, the two coumarins (10(-8)-10(-5)M) acted as ERalpha-selective agonists while the other compounds (10(-9)-10(-6)M) activated both ERalpha and ERbeta. The estrogenic activities of all compounds could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ER. Only psoralen and isopsoralen as ERalpha agonists promoted MCF-7 cell proliferation significantly. Although all the compounds have estrogenic activity, they may exert different biological effects. In conclusion, both ER subtype-selective and nonselective activities in compounds derived from PCL suggested that PCL could be a new source for selective estrogen-receptor modulators.

  10. Muscarinic M3 receptor subtype gene expression in the human heart.

    PubMed

    Hellgren, I; Mustafa, A; Riazi, M; Suliman, I; Sylvén, C; Adem, A

    2000-01-20

    The heart is an important target organ for cholinergic function. In this study, muscarinic receptor subtype(s) in the human heart were determined using reverse transcription-polymerase chain reaction. Our results demonstrated muscarinic receptor M2 and M3 subtype RNA in left/right atria/ventricles of donor hearts. Receptor autoradiography analysis using selective muscarinic ligands indicated an absence of M1 receptor subtype in the human heart. The level of muscarinic receptor binding in atria was two to three times greater than in ventricles. Our results suggest that muscarinic receptors in the human heart are of the M2 and M3 subtypes. This is the first report of M3 receptors in the human myocardium.

  11. Identification of two H3-histamine receptor subtypes

    SciTech Connect

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.; Siegel, M.I.; Egan, R.W.; Clark, M.A. )

    1990-11-01

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealed two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.

  12. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    SciTech Connect

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  13. Genotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C

    PubMed Central

    Riemenschneider, Mona; Cashin, Kieran Y.; Budeus, Bettina; Sierra, Saleta; Shirvani-Dastgerdi, Elham; Bayanolhagh, Saeed; Kaiser, Rolf; Gorry, Paul R.; Heider, Dominik

    2016-01-01

    Antiretroviral treatment of Human Immunodeficiency Virus type-1 (HIV-1) infections with CCR5-antagonists requires the co-receptor usage prediction of viral strains. Currently available tools are mostly designed based on subtype B strains and thus are in general not applicable to non-B subtypes. However, HIV-1 infections caused by subtype B only account for approximately 11% of infections worldwide. We evaluated the performance of several sequence-based algorithms for co-receptor usage prediction employed on subtype A V3 sequences including circulating recombinant forms (CRFs) and subtype C strains. We further analysed sequence profiles of gp120 regions of subtype A, B and C to explore functional relationships to entry phenotypes. Our analyses clearly demonstrate that state-of-the-art algorithms are not useful for predicting co-receptor tropism of subtype A and its CRFs. Sequence profile analysis of gp120 revealed molecular variability in subtype A viruses. Especially, the V2 loop region could be associated with co-receptor tropism, which might indicate a unique pattern that determines co-receptor tropism in subtype A strains compared to subtype B and C strains. Thus, our study demonstrates that there is a need for the development of novel algorithms facilitating tropism prediction of HIV-1 subtype A to improve effective antiretroviral treatment in patients. PMID:27126912

  14. Genotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C.

    PubMed

    Riemenschneider, Mona; Cashin, Kieran Y; Budeus, Bettina; Sierra, Saleta; Shirvani-Dastgerdi, Elham; Bayanolhagh, Saeed; Kaiser, Rolf; Gorry, Paul R; Heider, Dominik

    2016-04-29

    Antiretroviral treatment of Human Immunodeficiency Virus type-1 (HIV-1) infections with CCR5-antagonists requires the co-receptor usage prediction of viral strains. Currently available tools are mostly designed based on subtype B strains and thus are in general not applicable to non-B subtypes. However, HIV-1 infections caused by subtype B only account for approximately 11% of infections worldwide. We evaluated the performance of several sequence-based algorithms for co-receptor usage prediction employed on subtype A V3 sequences including circulating recombinant forms (CRFs) and subtype C strains. We further analysed sequence profiles of gp120 regions of subtype A, B and C to explore functional relationships to entry phenotypes. Our analyses clearly demonstrate that state-of-the-art algorithms are not useful for predicting co-receptor tropism of subtype A and its CRFs. Sequence profile analysis of gp120 revealed molecular variability in subtype A viruses. Especially, the V2 loop region could be associated with co-receptor tropism, which might indicate a unique pattern that determines co-receptor tropism in subtype A strains compared to subtype B and C strains. Thus, our study demonstrates that there is a need for the development of novel algorithms facilitating tropism prediction of HIV-1 subtype A to improve effective antiretroviral treatment in patients.

  15. Molecular and cellular analysis of human histamine receptor subtypes

    PubMed Central

    Seifert, Roland; Strasser, Andrea; Schneider, Erich H.; Neumann, Detlef; Dove, Stefan; Buschauer, Armin

    2013-01-01

    The human histamine receptors hH1R and hH2R constitute important drug targets, and hH3R and hH4R have substantial potential in this area. Considering the species-specificity of pharmacology of HxR orthologs, it is important to analyze hHxRs. Here,we summarize current knowledge of hHxRs endogenously expressed in human cells and hHxRs recombinantly expressed in mammalian and insect cells. We present the advantages and disadvantages of the various systems. We also discuss problems associated with the use of hHxR antibodies, an issue of general relevance for G-protein-coupled receptors (GPCRs). There is much greater overlap in activity of ‘selective’ ligands for other hHxRs than the cognate receptor subtype than generally appreciated. Studies with native and recombinant systems support the concept of ligand-specific receptor conformations, encompassing agonists and antagonists. It is emerging that for characterization of hHxR ligands, one cannot rely on a single test system and a single parameter. Rather, multiple systems and parameters have to be studied. Although such studies are time-consuming and expensive, ultimately, they will increase drug safety and efficacy. PMID:23254267

  16. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    SciTech Connect

    Wagerle, L.C.; Delivoria-Papadopoulos, M.

    1987-06-01

    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  17. [Subtype-specific clinically important effects of alpha 2-adrenergic receptors].

    PubMed

    Shishkina, G T; Dygalo, N N

    2002-01-01

    A- B- and C-subtypes of alpha 2-adrenoreceptors present in all mammals are involved in responses to currently existing subtype-nonselective ligands of these receptors widely used in medicine. Each of the subtypes has its own specific distribution in tissue and cells, onthogenetic pattern, specific regulation of activity and expression, and, as result, specific physiological functions. The latter suggests opportunities of using the subtype-specific for correction of the functions depending on this receptor. The article reviews the role of individual subtypes of alpha 2-adrenoreceptors in regulation of neurochemical transmission of cardiovascular system, psychoemotional state and development of psychic disorders, and also male sexual behaviour.

  18. Lungs donated after circulatory death and prolonged warm ischemia are transplanted successfully after enhanced ex vivo lung perfusion using adenosine A2B receptor antagonism.

    PubMed

    Charles, Eric J; Mehaffey, J Hunter; Sharma, Ashish K; Zhao, Yunge; Stoler, Mark H; Isbell, James M; Lau, Christine L; Tribble, Curtis G; Laubach, Victor E; Kron, Irving L

    2017-04-12

    The current supply of acceptable donor lungs is not sufficient for the number of patients awaiting transplantation. We hypothesized that ex vivo lung perfusion (EVLP) with targeted drug therapy would allow successful rehabilitation and transplantation of donation after circulatory death lungs exposed to 2 hours of warm ischemia. Donor porcine lungs were procured after 2 hours of warm ischemia postcardiac arrest and subjected to 4 hours of cold preservation or EVLP. ATL802, an adenosine A2B receptor antagonist, was administered to select groups. Four groups (n = 4/group) were randomized: cold preservation (Cold), cold preservation with ATL802 during reperfusion (Cold + ATL802), EVLP (EVLP), and EVLP with ATL802 during ex vivo perfusion (EVLP + ATL802). Lungs subsequently were transplanted, reperfused, and assessed by measuring dynamic lung compliance and oxygenation capacity. EVLP + ATL802 significantly improved dynamic lung compliance compared with EVLP (25.0 ± 1.8 vs 17.0 ± 2.4 mL/cmH2O, P = .04), and compared with cold preservation (Cold: 12.2 ± 1.3, P = .004; Cold + ATL802: 10.6 ± 2.0 mL/cmH2O, P = .002). Oxygenation capacity was highest in EVLP (440.4 ± 37.0 vs Cold: 174.0 ± 61.3 mm Hg, P = .037). No differences in oxygenation or pulmonary edema were observed between EVLP and EVLP + ATL802. A significant decrease in interleukin-12 expression in tissue and bronchoalveolar lavage was identified between groups EVLP and EVLP + ATL802, along with less neutrophil infiltration. Severely injured donation after circulatory death lungs subjected to 2 hours of warm ischemia are transplanted successfully after enhanced EVLP with targeted drug therapy. Increased use of lungs after uncontrolled donor cardiac death and prolonged warm ischemia may be possible and may improve transplant wait list times and mortality. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  19. Growing vascular endothelial cells express somatostatin subtype 2 receptors

    PubMed Central

    Watson, J C; Balster, D A; Gebhardt, B M; O'Dorisio, T M; O'Dorisio, M S; Espenan, G D; Drouant, G J; Woltering, E A

    2001-01-01

    We hypothesized that non-proliferating (quiescent) human vascular endothelial cells would not express somatostatin receptor subtype 2 (sst 2) and that this receptor would be expressed when the endothelial cells begin to grow. To test this hypothesis, placental veins were harvested from 6 human placentas and 2 mm vein disks were cultured in 0.3% fibrin gels. Morphometric analysis confirmed that 50–75% of cultured vein disks developed radial capillary growth within 15 days. Sst 2 gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) analysis of the RNA from veins before culture and from tissue-matched vein disks that exhibited an angiogenic response. The sst 2 gene was expressed in the proliferating angiogenic sprouts of human vascular endothelium. The presence of sst 2 receptors on proliferating angiogenic vessels was confirmed by immunohistochemical staining and in vivo scintigraphy. These results suggest that sst 2 may be a unique target for antiangiogenic therapy with sst 2 preferring somatostatin analogues conjugated to radioisotopes or cytotoxic agents. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461088

  20. Hooked on benzodiazepines: GABAA receptor subtypes and addiction

    PubMed Central

    Tan, Kelly R.; Rudolph, Uwe; Lüscher, Christian

    2011-01-01

    Benzodiazepines are widely used clinically to treat anxiety and insomnia. They also induce muscle relaxation, control epileptic seizures, and can provoke amnesia. Moreover, benzodiazepines are often abused after chronic clinical treatment but also for recreational purposes. Within weeks, tolerance to the pharmacological effects can develop, in addition to dependence and even addiction in vulnerable individuals. Here, we review recent observations from animal models regarding the cellular and molecular basis that may underlie the addictive properties of benzodiazepines. These data reveal how benzodiazepines, acting through specific GABAA receptor subtypes, activate midbrain dopamine neurons and how this may hijack the mesolimbic reward system. Such findings have important implications for the future design of benzodiazepines with reduced or even absent addiction liability. PMID:21353710

  1. Hypocretin (orexin) receptor subtypes differentially enhance acetylcholine release and activate g protein subtypes in rat pontine reticular formation.

    PubMed

    Bernard, René; Lydic, Ralph; Baghdoyan, Helen A

    2006-04-01

    The hypothalamic peptides hypocretin-1 (orexin A) and -2 (orexin B) promote wakefulness by mechanisms that are not well understood. Defects in hypocretinergic neurotransmission underlie the human sleep disorder narcolepsy. Hypocretins alter cell excitability via two receptor subtypes, hypocretin receptor subtype 1 (hcrt-r1) and hypocretin receptor subtype 2 (hcrt-r2). This study aimed to identify G protein subtypes activated by hypocretin in rat pontine reticular nucleus oral part (PnO) and the hypocretin receptor subtype modulating acetylcholine (ACh) release in the PnO. G protein activation was quantified using in vitro [(35)S]guanylyl-5'-O-(gamma-thio)triphosphate autoradiography. ACh release was measured using in vivo microdialysis and high-performance liquid chromatography. Hypocretin-1-stimulated G protein activation was significantly decreased by pertussis toxin, demonstrating that some hypocretin receptors in rat PnO activate inhibitory G proteins. Hypocretin-1-stimulated ACh release was not blocked by pertussis toxin, supporting the conclusion that the hypocretin receptors modulating ACh release in rat PnO activate stimulatory G proteins. Hypocretin-1 and -2 each caused a concentration-dependent increase in ACh release with similar potencies, indicating that hcrt-r2 modulates ACh release in PnO. Hypocretin-1 caused a significantly greater increase in ACh release than hypocretin-2, suggesting a role for hcrt-r1 in the modulation of PnO ACh release. Taken together, these data provide the first evidence that hypocretin receptors in rat PnO signal via inhibitory and stimulatory G proteins and that ACh release in rat PnO is modulated by hcrt-r2 and hcrt-r1. One mechanism by which hypocretin promotes arousal may be to increase ACh release in the pontine reticular formation.

  2. Characterization of muscarinic cholinergic receptor subtypes in human peripheral lung

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Yamamura, H.I.

    1988-02-01

    The authors have characterized the muscarinic cholinergic receptor subtypes in human peripheral lung membranes using the selective muscarinic antagonist (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and the classical muscarinic antagonist (/sup 3/H)(-)-quinuclidinyl benzilate. High-affinity binding with pharmacologic specificity was demonstrated for both radioligands. The high affinity Kd for (/sup 3/H)PZ binding determined from saturation isotherms was 5.6 nM, and the Kd for (/sup 3/H)(-)-quinuclidinyl benzilate binding was 14.3 pM. Approximately 62% of the total muscarinic binding sites in human peripheral lung bind (/sup 3/H)PZ with high affinity. There was no significant effect of the guanine nucleotide, guanyl-5'-yl imidodiphosphate, on the inhibition of (/sup 3/H)(-)-quinyclidinyl benzilate binding by the muscarinic agonist carbachol in peripheral lung membranes. If the muscarinic receptor with high affinity for PZ has an important role in bronchoconstriction, its characterization could result in the development of more selective bronchodilators.

  3. Functional role of adenosine receptor subtypes in the regulation of blood-brain barrier permeability: possible implications for the design of synthetic adenosine derivatives.

    PubMed

    Schaddelee, Marloes P; Voorwinden, Heleen L; van Tilburg, Erica W; Pateman, Tony J; Ijzerman, Adriaan P; Danhof, Meindert; de Boer, Albertus G

    2003-05-01

    The objective of this investigation was to determine the functional role of adenosine receptor subtypes in the regulation of blood-brain barrier (BBB) permeability. The presence of the equilibrative es and ei nucleoside transporters at the BBB was also determined. Studies were conducted in an experimental in vitro BBB model comprising bovine brain capillary endothelial cells (BCECs) and rat astrocytes (RAs). The presence of the receptors and transporters was investigated by a combination of RT-PCR and radioligand binding assays. Changes in paracellular permeability were investigated on basis of changes in trans-endothelial-electrical-resistance (TEER) and transport of paracellular markers. In BCECs the presence of A(2A) and A(3) receptors and the es nucleoside transporter was demonstrated. The A(1) receptor was absent, while the presence of the A(2B) receptor and the ei nucleoside transporter remained uncertain. In RAs the presence of all four receptor subtypes and the es and ei nucleoside transporters was demonstrated. Upon application of selective agonists no significant changes in TEER or the transport of the paracellular markers were observed. The functional role of adenosine receptor subtypes in regulating the paracellular permeability of the BBB is probably small. It is unlikely therefore that the BBB transport of synthetic adenosine analogues is modified by permeability changes. The es nucleoside transporter might play a role in the BBB transport of synthetic adenosine analogues.

  4. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. U.S. Government work not protected by U

  5. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  6. Angiotensin II AT2 receptor subtype: an uprising frontier in cardiovascular disease?

    PubMed

    Volpe, Massimo; Musumeci, Beatrice; De Paolis, Paola; Savoia, Carmine; Morganti, Alberto

    2003-08-01

    The renin-angiotensin system (RAS) plays a pivotal role in the regulation of fluid, electrolyte balance and blood pressure, and is a modulator of cellular growth and proliferation. Biological actions of RAS are linked to the binding of the effector molecule, angiotensin II (AngII), to specific membrane receptors, mostly the AT1 subtype and, to a lesser extent, other subtypes. Following the identification and characterization of the AT2 subtype receptor, it has been proposed that a complex interaction between AngII and its receptors may play an important role in the effects of RAS. In this paper current information on AngII subtype receptors--their structure, regulation and intracellular signalling--are reviewed, with a particular emphasis on the potential relevance for cardiovascular pathophysiology. In addition, we discuss modulation of expression of the AT2 receptor and its interaction with the AT1 receptor subtype, as well as the potential effects of this receptor on blood pressure regulation. A better understanding of the integrated effects of the AngII subtype receptors may help to elucidate the function of the RAS, as well as their participation in the mechanisms of cardiovascular disease and attendant therapeutic implications.

  7. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    PubMed

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates.

  8. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating.

    PubMed

    Milstein, Aaron D; Zhou, Wei; Karimzadegan, Siavash; Bredt, David S; Nicoll, Roger A

    2007-09-20

    A family of transmembrane AMPA receptor regulatory proteins (TARPs) profoundly affects the trafficking and gating of AMPA receptors (AMPARs). Although TARP subtypes are differentially expressed throughout the CNS, it is unclear whether this imparts functional diversity to AMPARs in distinct neuronal populations. Here, we examine the effects of each TARP subtype on the kinetics of AMPAR gating in heterologous cells and in neurons. We report a striking heterogeneity in the effects of TARP subtypes on AMPAR deactivation and desensitization, which we demonstrate controls the time course of synaptic transmission. In addition, we find that some TARP subtypes dramatically slow AMPAR activation kinetics. Synaptic AMPAR kinetics also depend on TARP expression level, suggesting a variable TARP/AMPAR stoichiometry. Analysis of quantal synaptic transmission in a TARP gamma-4 knockout (KO) mouse corroborates our expression data and demonstrates that TARP subtype-specific gating of AMPARs contributes to the kinetics of native AMPARs at central synapses.

  9. [11C]Carfentanil Binds Preferentially to μ-Opioid Receptor Subtype 1 Compared to Subtype 2.

    PubMed

    Eriksson, Olof; Antoni, Gunnar

    2015-01-01

    The positron emission tomography (PET) ligand [(11)C]carfentanil is a selective agonist for μ-opioid receptors and has been used for studying μ-opioid receptors in the human brain. However, it is unknown if [(11)C]carfentanil binding differentiates between subtype receptors μ1 and μ2. In this study, we investigated whether μ1 and μ2 can be studied separately through receptor subtype-selective inhibition of [(11)C]carfentanil by pharmacologic intervention. [(11)C]Carfentanil binding characteristics on rat brain sections were assessed either alone or in the presence of the μ-receptor inhibitor cyprodime or the μ1-specific inhibitor naloxonazine. [(11)C]Carfentanil binding in the living rat brain was similarly studied by small animal PET/computed tomography during baseline conditions or following displacement by cyprodime or naloxonazine. Autoradiography binding studies on rat brain sections demonstrated that [(11)C]carfentanil has higher affinity and binding potential for μ1 than for μ2. [(11)C]Carfentanil binding to μ2 in vivo could not be detected following specific blocking of μ1, as predicted from the low binding potential for μ2 as measured in vitro. [(11)C]Carfentanil binding is preferential for μ1 compared to μ2 in vitro and in vivo. Clinical studies employing [(11)C]carfentanil are therefore likely biased to measure μ1 rather than μ2.

  10. [(11)C]Carfentanil Binds Preferentially to μ-Opioid Receptor Subtype 1 Compared to Subtype 2.

    PubMed

    Eriksson, Olof; Antoni, Gunnar

    2015-09-01

    The positron emission tomography (PET) ligand [(11)C]carfentanil is a selective agonist for μ-opioid receptors and has been used for studying μ-opioid receptors in the human brain. However, it is unknown if [(11)C]carfentanil binding differentiates between subtype receptors μ1 and μ2. In this study, we investigated whether μ1 and μ2 can be studied separately through receptor subtype-selective inhibition of [(11)C]carfentanil by pharmacologic intervention. [(11)C]Carfentanil binding characteristics on rat brain sections were assessed either alone or in the presence of the μ-receptor inhibitor cyprodime or the μ1-specific inhibitor naloxonazine. [(11)C]Carfentanil binding in the living rat brain was similarly studied by small animal PET/computed tomography during baseline conditions or following displacement by cyprodime or naloxonazine. Autoradiography binding studies on rat brain sections demonstrated that [(11)C]carfentanil has higher affinity and binding potential for μ1 than for μ2. [(11)C]Carfentanil binding to μ2 in vivo could not be detected following specific blocking of μ1, as predicted from the low binding potential for μ2 as measured in vitro. [(11)C]Carfentanil binding is preferential for μ1 compared to μ2 in vitro and in vivo. Clinical studies employing [(11)C]carfentanil are therefore likely biased to measure μ1 rather than μ2.

  11. Differential alterations in muscarinic receptor subtypes in Alzheimer's disease: implications for cholinergic-based therapies.

    PubMed

    Flynn, D D; Ferrari-DiLeo, G; Levey, A I; Mash, D C

    1995-01-01

    Molecular subtypes of muscarinic receptors (m1-m5) are novel targets for cholinergic replacement therapies in Alzheimer's disease (AD). However, knowledge concerning the relative distribution, abundance and functional status of these receptors in human brain and AD is incomplete. Recent data from our laboratory have demonstrated a defect in the ability of the M1 receptor subtype to form a high affinity agonist-receptor-G protein complex in AD frontal cortex. This defect is manifested by decreased M1 receptor-stimulated GTPgammaS binding and GTPase activity and by a loss in receptor-stimulated phospholipase C activity. Normal levels of G proteins suggest that the aberrant receptor-G protein interaction may result from an altered form of the m1 receptor in AD. The combined use of radioligand binding and receptor-domain specific antibodies has permitted the re-examination of the status of muscarinic receptor subtypes in the human brain. In AD, normal levels of m1 receptor [3H]-pirenzepine binding contrasted with diminished m1 immunoreactivity, further suggesting that there is an altered form of the m1 receptor in the disease. Reduced m2 immunoreactivity was consistent with decreased numbers of m2 binding sites. Increased levels of m4 receptors were observed in both binding and immunoreactivity measurements. These findings suggest one possible explanation for the relative ineffectiveness of cholinergic replacement therapies used to date and suggest potential new directions for development of effective therapeutic strategies for AD.

  12. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors.

    PubMed

    Seibt, Benjamin F; Schiedel, Anke C; Thimm, Dominik; Hinz, Sonja; Sherbiny, Farag F; Müller, Christa E

    2013-05-01

    The second extracellular loop (EL2) of G protein-coupled receptors (GPCRs), which represent important drug targets, may be involved in ligand recognition and receptor activation. We studied the closely related adenosine receptor (AR) subtypes A2A and A2B by exchanging the complete EL2 of the human A2BAR for the EL2 of the A2AAR. Furthermore, single amino acid residues (Asp148(45.27), Ser149(45.28), Thr151(45.30), Glu164(45.43), Ser165(45.44), and Val169(45.48)) in the EL2 of the A2BAR were exchanged for alanine. The single mutations did not lead to any major effects, except for the T151A mutant, at which NECA showed considerably increased efficacy. The loop exchange entailed significant effects: The A2A-selective agonist CGS21680, while being completely inactive at A2BARs, showed high affinity for the mutant A2B(EL2-A2A)AR, and was able to fully activate the receptor. Most strikingly, all agonists investigated (adenosine, NECA, BAY60-6583, CGS21680) showed strongly increased efficacies at the mutant A2B(EL2-A2A) as compared to the wt AR. Thus, the EL2 of the A2BAR appears to have multiple functions: besides its involvement in ligand binding and subtype selectivity it modulates agonist-bound receptor conformations thereby controlling signalling efficacy. This role of the EL2 is likely to extend to other members of the GPCR family, and the EL2 of GPCRs appears to be an attractive target structure for drugs.

  13. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    SciTech Connect

    Mak, J.C.; Barnes, P.J. )

    1990-06-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using (3H)(-)quinuclidinyl benzilate (( 3H)QNB) and selective muscarinic antagonists. (3H)QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with (3H)pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies.

  14. GABA A/Bz receptor subtypes as targets for selective drugs.

    PubMed

    Da Settimo, F; Taliani, S; Trincavelli, M L; Montali, M; Martini, C

    2007-01-01

    The gamma-aminobutyric acid type A (GABA(A)) receptors are the major inhibitory neuronal receptors in the mammalian brain. Their activation by GABA opens the intrinsic ion channel, enabling chloride flux into the cell with subsequent hyperpolarization. Several GABA(A) receptor subunit isoforms have been cloned, the major isoform containing alpha, beta, and gamma subunits, and a regional heterogeneity associated with distinct physiological effects has been suggested. As a variety of allosteric ligands can modulate GABA-gated conductance changes through binding to distinct sites, the development of subtype-selective ligands may lead to the selective treatment of GABA system-associated pathology. In particular, the best characterized binding site is the benzodiazepine site (BzR), localized at the alpha/gamma subunit interface, in which the alpha subunit is the main determinant of BzR ligand action selectivity. The alpha1-containing BzR have been proposed to be responsible for the sedative action; the alpha2 and/or the alpha3 subtypes have been suggested to mediate the anxiolytic activity and the myorelaxation effects, and the alpha5 subtype has been associated with cognition processes. The discovery of alpha-selective subtype ligands may help in the specific treatment of anxiety, sleep disorders, convulsions and memory deficits with fewer side effects. Selectivity may be achieved by two approaches: selective affinity or selective efficacy. Selective affinity needs a compound to bind with a higher affinity to one receptor subtype compared with another, whereas subtype-selective efficacy relies on a compound binding to all subtypes, but having different efficacies at various subtypes. The status of BzR ligands, subdivided on the basis of their main chemical structural features, is reviewed in relation to structure-activity relationships which determine their affinity or efficacy selectivity for a certain BzR subtype.

  15. Angiotensin receptor subtype mediated physiologies and behaviors: New discoveries and clinical targets

    PubMed Central

    Wright, John W.; Yamamoto, Brent J.; Harding, Joseph W.

    2008-01-01

    The renin–angiotensin system (RAS) mediates several classic physiologies including body water and electrolyte homeostasis, blood pressure, cyclicity of reproductive hormones and sexual behaviors, and the regulation of pituitary gland hormones. These functions appear to be mediated by the angiotensin II (AngII)/AT1 receptor subtype system. More recently, the angiotensin IV (AngIV)/AT4 receptor subtype system has been implicated in cognitive processing, cerebroprotection, local blood flow, stress, anxiety and depression. There is accumulating evidence to suggest an inhibitory influence by AngII acting at the AT1 subtype, and a facilitory role by AngIV acting at the AT4 subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning, and memory. This review initially describes the biochemical pathways that permit synthesis and degradation of active angiotensin peptides and three receptor subtypes (AT1, AT2 and AT4) thus far characterized. There is vigorous debate concerning the identity of the most recently discovered receptor subtype, AT4. Descriptions of classic and novel physiologies and behaviors controlled by the RAS are presented. This review concludes with a consideration of the emerging therapeutic applications suggested by these newly discovered functions of the RAS. PMID:18160199

  16. Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2.

    PubMed Central

    John, M; Meyerhof, W; Richter, D; Waser, B; Schaer, J C; Scherübl, H; Boese-Landgraf, J; Neuhaus, P; Ziske, C; Mölling, K; Riecken, E O; Reubi, J C; Wiedenmann, B

    1996-01-01

    Somatostatin receptor scintigraphy (SRS) is positive in approximately 75% of all patients with neuroendocrine gastroenteropancreatic tumours. This study aimed to identify specific somatostatin receptor (sstr) subtypes, which are responsible for the in vivo binding of the widely used somatostatin analogue, octreotide in human neuroendocrine gastroenteropancreatic tumours. Twelve patients underwent SRS with radiolabelled octreotide. After surgical resection, tumour tissues were analysed in vitro for somatostatin and octreotide binding sites by autoradiography. In addition, for the first time, sstr subtype mRNA expression was examined by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Tumour tissues from all SRS positive patients were positive by autoradiography. Semiquantitative RT-PCR revealed most prominently sstr2 expression in scintigraphically positive tumours. Two SRS negative tumours contained in vitro octreotide binding sites as well as high levels of sstr1 and sstr2 mRNAs. Positive SRS is mainly due to sstr2. sstr1, 3, 4, and probably 5 are less important for in vivo octreotide binding. False negative scintigraphic results seem to be influenced by factors independent of the expression of specific sstr. Images Figure 4 PMID:8566856

  17. Muscarinic receptor-stimulated phosphatidylinositol turnover in the rat corpus striatum: role of muscarinic receptor subtypes and regulation

    SciTech Connect

    Monsma, F.J.

    1987-01-01

    The coupling between the M1 and M2 muscarinic receptor subtypes and phosphatidylinositol (Pl) hydrolysis has been examined in the corpus striatum and cerebral cortex of the rat brain. Receptor binding by the various muscarinic ligands was assessed using a preparation of intact brain cell aggregates, under similar conditions as the assay of Pl hydrolysis. In striatal cell aggregates, (/sup 3/H)-quinuclidinyl benzilate ((/sup 3/H)-QNB) bound to a single class of muscarinic sites with high affinity, inhibition of (/sup 3/H)-QNB binding by muscarinic receptor ligands which exhibit selectivity for subtypes of the muscarinic receptor revealed the presence of both the M1 and M2 subtypes in approximately equal numbers.

  18. Prognosis of metastatic breast cancer subtypes: the hormone receptor/HER2-positive subtype is associated with the most favorable outcome.

    PubMed

    Lobbezoo, Dorien J A; van Kampen, Roel J W; Voogd, Adri C; Dercksen, M Wouter; van den Berkmortel, Franchette; Smilde, Tineke J; van de Wouw, Agnes J; Peters, Frank P J; van Riel, Johanna M G H; Peters, Natascha A J B; de Boer, Maaike; Borm, George F; Tjan-Heijnen, Vivianne C G

    2013-10-01

    Contrary to the situation in early breast cancer, little is known about the prognostic relevance of the hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) in metastatic breast cancer. The objectives of this study were to present survival estimates and to determine the prognostic impact of breast cancer subtypes based on HR and HER2 status in a recent cohort of metastatic breast cancer patients, which is representative of current clinical practice. Patients diagnosed with metastatic breast cancer between 2007 and 2009 were included. Information regarding patient and tumor characteristics and treatment was collected. Patients were categorized in four subtypes based on the HR and HER2 status of the primary tumor: HR positive (+)/HER2 negative (-), HR+/HER2+, HR-/HER2+ and triple negative (TN). Survival was estimated using the Kaplan-Meier method. Cox proportional hazards model was used to determine the prognostic impact of breast cancer subtype, adjusted for possible confounders. Median follow-up was 21.8 months for the 815 metastatic breast cancer patients included; 66 % of patients had the HR+/HER2- subtype, 8 % the HR-/HER2+ subtype, 15 % the TN subtype and 11 % the HR+/HER2+ subtype. The longest survival was observed for the HR+/HER2+ subtype (median 34.4 months), compared to 24.8 months for the HR+/HER2- subtype, 19.8 months for the HR-/HER2+ subtype and 8.8 months for the TN subtype (P < 0.0001). In the multivariate analysis, subtype was an independent prognostic factor, as were initial site of metastases and metastatic-free interval. The HR+/HER2+ subtype was associated with the longest survival after diagnosis of distant metastases.

  19. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex

    SciTech Connect

    Goldman-Rakic, P.S.; Lidow, M.S.; Gallager, D.W. )

    1990-07-01

    Quantitative in vitro autoradiography was used to determine and compare the areal and laminar distribution of the major dopaminergic, adrenergic, and serotonergic neurotransmitter receptors in 4 cytoarchitectonic regions of the prefrontal cortex in adult rhesus monkeys. The selective ligands, 3H-SCH-23390, 3H-raclopride, 3H-prazosin, and 3H-clonidine were used to label the D1 and D2 dopamine receptor subtypes and the alpha 1- and alpha 2-adrenergic receptors, respectively, while 125I-iodopindolol was used to detect beta-adrenergic receptors. The radioligands, 3H-5-hydroxytryptamine and 3H-ketanserin labeled, respectively, the 5-HT1 and 5-HT2 receptors. Densitometry was performed on all cortical layers and sublayers for each of the 7 ligands to allow quantitative as well as qualitative comparison among them in each cytoarchitectonic area. Although each monoamine receptor was distributed in a distinctive laminar-specific pattern that was remarkably similar from area to area, there was considerable overlap among the dopaminergic, adrenergic, and serotoninergic receptors, while subtypes of the same receptor class tended to have complementary laminar profiles and different concentrations. Thus, the D1 dopamine, the alpha 1- and alpha 2-adrenergic, and the 5-HT1 receptors were present in highest relative concentration in superficial layers I, II, and IIIa (the S group). In contrast, the beta 1- and beta 2-adrenergic subtypes and the 5-HT2 receptor had their highest concentrations in the intermediate layers, IIIb and IV (the I group), while the D2 receptor was distinguished by relatively high concentrations in the deep layer V compared to all other layers (the D class). Thus, clear laminar differences were observed in the D1 vs D2 dopaminergic, the alpha- vs beta-adrenergic, and the 5-HT1 vs 5-HT2 serotoninergic receptor subtypes in all 4 areas examined.

  20. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.

    PubMed

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D

    2010-12-29

    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  1. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes

    PubMed Central

    Stengel, Andreas; Rivier, Jean; Taché, Yvette

    2013-01-01

    Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst1–5) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-CRF related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. PMID:23287111

  2. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    PubMed Central

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  3. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    SciTech Connect

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and the remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.

  4. Selectivity of dobutamine for adrenergic receptor subtypes: in vitro analysis by radioligand binding.

    PubMed

    Williams, R S; Bishop, T

    1981-06-01

    The cardiovascular responses elicited by dobutamine are distinctly different from those produced by other adrenergic or dopaminergic agonists. To test the hypothesis that dobutamine could have differential affinities for adrenergic receptor subtypes, and that such subtype selectivity could be related to its relatively unique pharmacologic properties, we assessed the ability of dobutamine to displace adrenergic radioligands from membrane receptors in a number of tissues of previously characterized adrenergic receptor subtype. For beta adrenergic receptors identified by (-) [(3)H]dihydroalprenolol (DHA), dobutamine had significantly greater affinity for the beta(1) subtype (K(D) = 2.5 muM in rat heart and 2.6 muM in turkey erythrocyte) than for the beta(2) subtype (K(D) = 14.8 muM in frog heart and 25.4 muM in rat lung) (P < 0.001). For alpha adrenergic receptors, dobutamine had markedly greater affinity for the alpha(1)-subtype identified by [(3)H]prazosin (K(D) = 0.09 muM in rat heart and 0.14 muM in rabbit uterus) than for the alpha(2)-subtype identified by [(3)H]dihydroergocryptine (DHE) (K(D) = 9.3 muM in human platelet) or by [(3)H]yohimbine (K(D) = 5.7 muM in rabbit uterus) (P < 0.001). Like other beta(1)-agonists, in the absence of guanine nucleotide, dobutamine competition curves for DHA binding in rat heart demonstrated two classes of binding sites, with one site of significantly higher affinity (K(D) = 0.5 muM, P = 0.008) than the single class of binding sites (K(D) = 5.2 muM) identified in the presence of guanine nucleotide. However, unlike beta(2)- or alpha(2)-agonists, dobutamine displacement of DHA binding in rat lung or of DHE binding in human platelets demonstrated only a single class of binding sites, and guanine nucleotide had only minimal effects. We conclude that dobutamine is selective for beta(1) as opposed to beta(2), and for alpha(1) as opposed to alpha(2) adrenergic receptors. Furthermore, guanine nucleotide effects on dobutamine binding

  5. Estrogen receptor subtype- and promoter-specific modulation of aryl hydrocarbon receptor-dependent transcription.

    PubMed

    Wihlén, Björn; Ahmed, Shaimaa; Inzunza, José; Matthews, Jason

    2009-06-01

    In this study, we examined the role of estrogen receptors (ER) in aryl hydrocarbon receptor (AHR)-dependent transactivation. Chromatin immunoprecipitation assays showed that AHR agonists differentially induced recruitment of ERalpha to the AHR target genes CYP1A1 and CYP1B1. Cotreatment with 17beta-estradiol significantly increased beta-naphthoflavone (BNF)- and 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced recruitment of ERalpha to CYP1A1, whereas 3,3'-diindolylmethane induced promoter occupancy of ERalpha at CYP1A1 that was unaffected by cotreatment with 17beta-estradiol. Cyclical recruitment of AHR and ERalpha to CYP1A1 was only observed in cells treated with BNF. Stable and subtype-specific knockdown of ERalpha or ERbeta using shRNA showed that suppression of ERalpha significantly reduced, whereas knockdown of ERbeta significantly enhanced, AHR agonist-induced Cyp1a1 expression in HC11 mouse mammary epithelial cells. AHR agonist-induced Cyp1b1 expression was reduced by ERbeta knockdown but unaffected by ERalpha knockdown. The siRNA-mediated knockdown of ERalpha in MCF-7 human breast cancer cells did not affect 2,3,7,8-tetrachlorodibenzo-p-dioxin-dependent regulation of CYP1A1 and CYP1B1 mRNA expression. In agreement with our in vitro findings in the HC11 cells, ERalpha knockout mice exhibit reduced BNF-dependent induction of Cyp1a1 mRNA. These results establish ligand- and promoter-specific influences on the cyclical recruitment patterns for AHR and show ER species-, subtype-, and promoter-specific modulation of AHR-dependent transcription.

  6. Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor subtypes.

    PubMed Central

    Waelbroeck, M.; Camus, J.; Tastenoy, M.; Feifel, R.; Mutschler, E.; Tacke, R.; Strohmann, C.; Rafeiner, K.; Rodrigues de Miranda, J. F.; Lambrecht, G.

    1994-01-01

    1. We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic M1 receptors (in rat brain, human neuroblastoma (NB-OK 1) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (M1/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2. Sila-substitution (C/Si exchange) of hexocyclium (-->sila-hexocyclium) and demethyl-hexocyclium (-->demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of o-methoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3. The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4. In binding studies, o-methoxy-sila-hexocyclium (M1 = M4 > or = M3 > or = M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (M1 = M3 > M4 > M2). This is in marked contrast with the very clear selectivity of o-methoxy-sila-hexocyclium for the prejunctional M1/M4-like heteroreceptors in rabbit vas deferens. 5. The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-sila-hexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives. PMID:8075869

  7. Expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in equine laminitis.

    PubMed

    Zamboulis, Danae E; Senior, Mark; Clegg, Peter D; Milner, Peter I

    2013-11-01

    Tissue sensitisation and chronic pain have been described in chronic-active laminitis in the horse, making treatment of such cases difficult. Purinergic P2X receptors are linked to chronic pain and inflammation. The aim of this study was to examine the expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in the hoof, palmar digital vessels and nerve, dorsal root ganglia and spinal cord in horses with chronic-active laminitis (n=5) compared to non-laminitic horses (n=5). Immunohistochemical analysis was performed on tissue sections using antibodies against P2X receptor subtypes 1-3 and 7. In horses with laminitis, there was a reduction in the thickness of the tunica media layer of the palmar digital vein as a proportion of the whole vessel diameter (0.48±0.05) compared to the non-laminitic group (0.57±0.04; P=0.02). P2X receptor subtype 3 was expressed in the smooth muscle layer (tunica media) of the palmar digital artery of horses with laminitis, but was absent in horses without laminitis. There was strong expression of P2X receptor subtype 7 in the proliferating, partially keratinised, epidermal cells of the secondary epidermal lamellae in the hooves of horses with laminitis, but no immunopositivity in horses without laminitis.

  8. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution.

    PubMed

    Blankenburg, S; Balfanz, S; Hayashi, Y; Shigenobu, S; Miura, T; Baumann, O; Baumann, A; Blenau, W

    2015-01-01

    γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron.

  9. Effects of absolute configuration of IQNP on muscarinic receptor subtype selectivity in vitro and in vivo

    SciTech Connect

    McPherson, D.W.; Lambert, C.R.; Knapp, F.F.

    1994-05-01

    IQNP, a high affinity muscarinic ligand with high cerebral uptake and long retention, contains two chiral centers in addition to vinyl iodide sterochemistry. The various diastereomers, in which the 3-quinuclidinyl moiety has the R configuration, have been prepared and evaluated in vitro and in vivo. These data show that muscarinic receptor subtype selectivity is dramatically affected by the configuration of the acetate center and vinyl iodide. In vitro studies show that E-(R,R)-IQNP is 100 times more selective for ml than m2 subtype as compared to E-(R,S), which was confirmed by in vivo results. In contrast, in vivo, Z-(R,R) has high uptake in m2 rich tissues (heart and cerebellum). In vitro studies are being performed on the Z isomers. Blocking studies with subtype-specific ligands confirm these data which illustrate the importance of molecular configuration on receptor subtype selectivity. These combined studies demonstrate that these isomers of IQNP are good candidates for future studies of receptor subtypes.

  10. Evidence that human Fc gamma receptor IIA (CD32) subtypes are not receptors for oxidized LDL.

    PubMed

    Morganelli, P M; Groveman, D S; Pfeiffer, J R

    1997-11-01

    Several lines of evidence suggest that clearance of oxidized LDL (oxLDL) immune complexes by macrophage IgG Fc receptors (Fc gamma Rs) plays a role in atherogenesis. Ox-LDL may also be cleared directly by Fc gamma Rs, as shown for murine Fc gamma RII-B2. In humans, the homologous Fc gamma R is Fc gamma RIIA (CD32), which is abundantly expressed on monocytes and macrophages and shares 60% sequence identity with murine Fc gamma RII-B2. As murine Fc gamma RII-B2 and human Fc gamma RIIA also share similar IgG ligand-binding properties, the purpose of this study was to test the hypothesis that human CD32 is a receptor for oxLDL. For these studies we used transfected Chinese hamster ovary (CHO) cells, monocytes, and cell lines that functionally express either of two Fc gamma RIIA subtypes (R131 or H131) and assayed binding or degradation of several preparations of oxLDL. The integrity of all oxLDL preparations was checked by studying their ability to react with CHO cells expressing human type I scavenger receptors and by other characteristics of lipoprotein oxidation. Although we showed that each preparation of oxLDL could recognize class A or class B scavenger receptors, we did not detect any differences in the binding or degradation of any type of oxLDL preparation among control versus CHO cell transfectants. Using monocytes that express Fc gamma RIIA and CD36, we showed that the binding of oxLDL was inhibited by antibodies to CD36, but not by Fc gamma RIIA antibodies. Thus, the data do not support the hypothesis that human Fc gamma RIIA is by itself a receptor for oxLDL. We conclude that human CD32 can mediate uptake of lipoprotein immune complexes, but does not mediate uptake of oxLDL in the absence of anti-oxLDL antibodies. OxLDL may interact with human mononuclear phagocytes directly via other types of receptors, such as class A and class B scavenger receptors or CD68.

  11. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  12. Cloning of a novel G protein-coupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor.

    PubMed

    Mori, M; Harada, M; Terao, Y; Sugo, T; Watanabe, T; Shimomura, Y; Abe, M; Shintani, Y; Onda, H; Nishimura, O; Fujino, M

    2001-05-25

    A DNA fragment encoding an amino acid sequence possessing common features to the G protein-coupled receptor (GPCR) superfamily was found in the human genomic sequence, and from this information, the full-length cDNA of a novel GPCR, designated SLT, was cloned from the human hippocampus cDNA library. SLT showed the highest homology to the melanin-concentrating hormone (MCH) receptor, SLC-1 (31.5% identity), and to a lesser extent, to the somatostatin (SST) receptor subtypes. MCH exhibited agonistic behavior when applied to the SLT-expressing CHO cells at subnanomolar doses whereas more than 200 known peptides, including SST and cortistatin, did not. These results indicated that MCH is the cognate ligand of the SLT receptor and that this newly cloned GPCR is the second subtype of the MCH receptor. Quantitative polymerase chain reaction analysis of the SLT gene expression in human tissues showed that the SLT receptor is expressed mainly in brain areas including the cerebral cortex, amygdala, hippocampus, and corpus callosum, as well as in a limited number of peripheral tissues. The distribution of the SLT nearly overlapped that of SLC-1, suggesting that some of the neural functions of MCH may be mediated by both of these receptor subtypes.

  13. LTD expression is independent of glutamate receptor subtype.

    PubMed

    Granger, Adam J; Nicoll, Roger A

    2014-01-01

    Long-term depression (LTD) is a form of synaptic plasticity that plays a major role in the activity-dependent reshaping of synaptic transmission. LTD is expressed as a decrease in synaptic AMPA receptor number, though the exact mechanism remains controversial. Several lines of evidence have suggested necessary roles for both the GluA1 and GluA2 subunits, and specifically certain interactions with their cytoplasmic tails. However, it is unclear if either GluA1 or GluA2 are absolutely required for LTD. We tested this hypothesis using constitutive knock-outs and single-cell molecular replacement of AMPA receptor subunits in mouse hippocampus. We found that neither GluA1 or GluA2 are required for normal expression of LTD, and indeed a normal decrease in synaptic transmission was observed in cells in which all endogenous AMPA receptors have been replaced by kainate receptors. Thus, LTD does not require removal of specific AMPA receptor subunits, but likely involves a more general modification of the synapse and its ability to anchor a broad range of receptor proteins.

  14. Oestrogen and progesterone receptor expression in subtypes of canine mammary tumours in intact and ovariectomised dogs.

    PubMed

    Mainenti, M; Rasotto, R; Carnier, P; Zappulli, V

    2014-10-01

    The objective of this study was to investigate as a potential prognostic indicator the relationship between histological subtype of canine mammary tumours (CMTs) and oestrogen-α (ORα) and progesterone (PR) receptor expression. Using immunohistochemistry, receptor expression in neoplastic epithelial cells was assessed in 12 different subtypes in 113 CMTs (34 benign, 79 malignant) and 101 surrounding normal tissues. Sixty-eight and 45 CMTs were from intact and ovariectomised bitches, respectively. Histological subtype strongly influenced ORα/PR expression: simple and complex adenomas as well as simple tubular carcinomas exhibited the greatest expression, whereas immunohistochemical labelling for these receptors was weakest in carcinoma and malignant myoepitheliomas, as well as in solid/anaplastic carcinomas and comedocarcinomas. Receptor expression was generally higher in benign relative to malignant neoplasms, and in the latter it was significantly lower in ovariectomised vs. intact bitches. Lymphatic invasion, mitotic index, nodule diameter, and tumour grade were significantly associated with ORα/PR expression. Although not found to be an independent prognostic indicator, tumours from dogs with <10% cells with ORα/PR expression had a poorer prognosis. Lymphatic invasion, the state of the margins of excision, and mitotic index were found to be independent prognostic indicators. Overall, the results suggest that differences in histological subtype and whether or not a bitch has been ovariectomised should be considered when evaluating the significance of ORα and PR expression in CMTs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Molecular and Chemical Perspective in Defining Melatonin Receptor Subtype Selectivity

    PubMed Central

    Chan, King Hang; Wong, Yung Hou

    2013-01-01

    Melatonin is primarily synthesized and secreted by the pineal gland during darkness in a normal diurnal cycle. In addition to its intrinsic antioxidant property, the neurohormone has renowned regulatory roles in the control of circadian rhythm and exerts its physiological actions primarily by interacting with the G protein-coupled MT1 and MT2 transmembrane receptors. The two melatonin receptor subtypes display identical ligand binding characteristics and mediate a myriad of signaling pathways, including adenylyl cyclase inhibition, phospholipase C stimulation and the regulation of other effector molecules. Both MT1 and MT2 receptors are widely expressed in the central nervous system as well as many peripheral tissues, but each receptor subtype can be linked to specific functional responses at the target tissue. Given the broad therapeutic implications of melatonin receptors in chronobiology, immunomodulation, endocrine regulation, reproductive functions and cancer development, drug discovery and development programs have been directed at identifying chemical molecules that bind to the two melatonin receptor subtypes. However, all of the melatoninergics in the market act on both subtypes of melatonin receptors without significant selectivity. To facilitate the design and development of novel therapeutic agents, it is necessary to understand the intrinsic differences between MT1 and MT2 that determine ligand binding, functional efficacy, and signaling specificity. This review summarizes our current knowledge in differentiating MT1 and MT2 receptors and their signaling capacities. The use of homology modeling in the mapping of the ligand-binding pocket will be described. Identification of conserved and distinct residues will be tremendously useful in the design of highly selective ligands. PMID:24018885

  16. Role of the M3 Muscarinic Acetylcholine Receptor Subtype in Murine Ophthalmic Arteries After Endothelial Removal

    PubMed Central

    Gericke, Adrian; Steege, Andreas; Manicam, Caroline; Böhmer, Tobias; Wess, Jürgen; Pfeiffer, Norbert

    2014-01-01

    Purpose. We tested the hypothesis that the M3 muscarinic acetylcholine receptor subtype mediates cholinergic responses in murine ophthalmic arteries after endothelial removal. Methods. Muscarinic receptor gene expression was determined in ophthalmic arteries with intact and with removed endothelium using real-time PCR. To examine the role of the M3 receptor in mediating vascular responses, ophthalmic arteries from M3 receptor-deficient mice (M3R−/−) and respective wild-type controls were studied in vitro. Functional studies were performed in nonpreconstricted arteries with either intact or removed endothelium using video microscopy. Results. In endothelium-intact ophthalmic arteries, mRNA for all five muscarinic receptor subtypes was detected, but M3 receptor mRNA was most abundant. In endothelium-removed ophthalmic arteries, M1, M2, and M3 receptors displayed similar mRNA expression levels, which were higher than those for M4 and M5 receptors. In functional studies, acetylcholine evoked vasoconstriction in endothelium-removed arteries from wild-type mice that was virtually abolished after incubation with the muscarinic receptor blocker atropine, indicative of the involvement of muscarinic receptors. In concentration-response experiments, acetylcholine and carbachol concentration-dependently constricted endothelium-removed ophthalmic arteries from wild-type mice, but produced only negligible responses in arteries from M3R−/− mice. In contrast, acetylcholine concentration-dependently dilated ophthalmic arteries with intact endothelium from wild-type mice, but not from M3R−/− mice. Responses to the nitric oxide donor nitroprusside and to KCl did not differ between ophthalmic arteries from wild-type and M3R−/− mice, neither in endothelium-intact nor in endothelium-removed arteries. Conclusions. These findings provide evidence that in murine ophthalmic arteries the muscarinic M3 receptor subtype mediates cholinergic endothelium-dependent vasodilation

  17. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype.

    PubMed

    Honda, A; Sugimoto, Y; Namba, T; Watabe, A; Irie, A; Negishi, M; Narumiya, S; Ichikawa, A

    1993-04-15

    A functional cDNA clone encoding mouse EP2 subtype of prostaglandin (PG) E receptor was isolated from a mouse cDNA library by cross-hybridization with the mouse EP3 subtype PGE receptor cDNA. The mouse EP2 receptor consists of 513 amino acid residues with putative seven-transmembrane domains. In contrast to EP3 receptor, this receptor possesses long third intracellular loop and carboxyl-terminal tail. [3H] PGE2 specifically bound to the membrane of mammalian COS cells transfected with the cDNA. The binding to the membrane was displaced with unlabeled PG in the order of PGE2 = PGE1 > iloprost > or = PGF2 alpha > or = PGD2. The binding was also inhibited by misoprostol, an EP2 and EP3 agonist, but not by sulprostone, an EP1 and EP3 agonist, and SC-19220, an EP1 antagonist. PGE2 markedly increased cAMP level in COS cells transfected with the cDNA. These results suggest that this receptor is EP2 subtype. Northern blot analysis demonstrated that the EP2 mRNA is widely expressed in various tissues, the abundant expression being observed in ileum, thymus, and mastocytoma P-815 cells.

  18. GABA(A) receptor subtype-selectivity of novel bicuculline derivatives.

    PubMed

    Ramerstorfer, Joachim; Foppa, Verena; Thiery, Hanna; Hermange, Philippe; Janody, Simon; Berger, Michael L; Dodd, Robert H; Sieghart, Werner

    2015-01-01

    GABA(A) receptors are the major inhibitory neurotransmitter receptors in the central nervous system and are targets of clinically important drugs modulating GABA induced ion flux by interacting with distinct allosteric binding sites. ROD 185 is a previously investigated structural analogue of the GABA site antagonist bicuculline, and a positive allosteric modulator acting via the benzodiazepine binding site. Here, we investigated 13 newly synthesized structural analogues of ROD 185 for their interaction with rat GABA(A) receptors. Using [(3)H]flunitrazepam binding assays, we identified four compounds exhibiting a higher affinity for the benzodiazepine binding site than ROD 185. Two electrode voltage clamp electrophysiology at recombinant GABA(A) receptors indicated that most of these compounds positively modulated GABA-induced currents at these receptors. Additionally, these experiments revealed that this compound class not only interacts with the benzodiazepine binding site at αβγ receptors but also with a novel, so far unidentified binding site present in αβ receptors. Compounds with a high affinity for the benzodiazepine binding site stimulated GABA-induced currents stronger at αβγ than at αβ receptors and preferred α3β3γ2 receptors. Compounds showing equal or smaller effects at αβγ compared to αβ receptors differentially interacted with various αβ or αβγ receptor subtypes. Surprisingly, five of these compounds interacting with αβ receptors showed a strong stimulation at α6β3γ2 receptors. The absence of any direct effects at GABA(A) receptors, as well as their potential selectivity for receptor subtypes not being addressed by benzodiazepines, make this compound class to a starting point for the development of drugs with a possible clinical importance.

  19. Long-term effects of aripiprazole exposure on monoaminergic and glutamatergic receptor subtypes: comparison with cariprazine.

    PubMed

    Choi, Yong Kee; Adham, Nika; Kiss, Béla; Gyertyán, István; Tarazi, Frank I

    2017-01-06

    This study examined the chronic effects of aripiprazole and cariprazine on serotonin (5-HT1A and 5-HT2A) and glutamate (NMDA and AMPA) receptor subtypes. In addition, the effects of aripiprazole on D2 and D3 receptors were tested and compared with previously reported cariprazine data. Rats received vehicle, aripiprazole (2, 5, or 15 mg/kg), or cariprazine (0.06, 0.2, or 0.6 mg/kg) for 28 days. Receptor levels were quantified using autoradiographic assays on brain sections from the medial prefrontal cortex (MPC), dorsolateral frontal cortex (DFC), nucleus accumbens (NAc), caudate-putamen medial (CPu-M), caudate-putamen lateral (CPu-L), hippocampal CA1 (HIPP-CA1) and CA3 (HIPP-CA3) regions, and the entorhinal cortex (EC). Similar to previous findings with cariprazine, aripiprazole upregulated D2 receptor levels in various regions; D3 receptor changes were less than those reported with cariprazine. All aripiprazole doses and higher cariprazine doses increased 5-HT1A receptors in the MPC and DFC. Higher aripiprazole and all cariprazine doses increased 5-HT1A receptors in HIPP-CA1 and HIPP-CA3. Aripiprazole decreased 5-HT2A receptors in the MPC, DFC, HIPP-CA1, and HIPP-CA3 regions. Both compounds decreased NMDA receptors and increased AMPA receptors in select brain regions. Long-term administration of aripiprazole and cariprazine had similar effects on 5-HT1A, NMDA, and AMPA receptors. However, cariprazine more profoundly increased D3 receptors while aripiprazole selectively reduced 5-HT2A receptors. These results suggest that the unique actions of cariprazine on dopamine D3 receptors, combined with its effects on serotonin and glutamate receptor subtypes, may confer the clinical benefits, safety, and tolerability of this novel compound in schizophrenia and bipolar mania.

  20. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons.

    PubMed

    Centonze, Diego; Grande, Cristina; Usiello, Alessandro; Gubellini, Paolo; Erbs, Eric; Martin, Ana B; Pisani, Antonio; Tognazzi, Nadia; Bernardi, Giorgio; Moratalla, Rosario; Borrelli, Emiliana; Calabresi, Paolo

    2003-07-16

    By stimulating distinct receptor subtypes, dopamine (DA) exerts presynaptic and postsynaptic actions on both large aspiny (LA) cholinergic and fast-spiking (FS) parvalbumin-positive interneurons of the striatum. Lack of receptor- and isoform-specific pharmacological agents, however, has hampered the progress toward a detailed identification of the specific DA receptors involved in these actions. To overcome this issue, in the present study we used four different mutant mice in which the expression of specific DA receptors was ablated. In D1 receptor null mice, D1R-/-, DA dose-dependently depolarized both LA and FS interneurons. Interestingly, SCH 233390 (10 microm), a D1-like (D1 and D5) receptor antagonist, but not l-sulpiride (3-10 microm), a D2-like (D2, D3, D4) receptor blocker, prevented this effect, implying D5 receptors in this action. Accordingly, immunohistochemical analyses in both wild-type and D1R-/- mice confirmed the expression of D5 receptors in both cholinergic and parvalbumin-positive interneurons of the striatum. In mice lacking D2 receptors, D2R-/-, the DA-dependent inhibition of GABA transmission was lost in both interneuron populations. Both isoforms of D2 receptor, D2L and D2S, were very likely involved in this inhibitory action, as revealed by the electrophysiological analysis of the effect of the DA D2-like receptor agonist quinpirole in two distinct mutants lacking D2L receptors and expressing variable contents of D2S receptors. The identification of the receptor subtypes involved in the actions of DA on different populations of striatal cells is essential to understand the circuitry of the basal ganglia and to develop pharmacological strategies able to interfere selectively with specific neuronal functions.

  1. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  2. Binding characteristics of the muscarinic receptor subtype in rabbit pancreas

    SciTech Connect

    van Zwam, A.J.; Willems, P.H.; Rodrigues de Miranda, J.F.; de Pont, J.J.; van Ginneken, C.A. )

    1990-01-01

    The muscarinic receptor in the rabbit pancreas was characterized with the use of the labeled ligand ({sup 3}H)-(-)-quinuclidinyl-benzylate (({sup 3}H)-(-)-QNB). Specific binding of ({sup 3}H)-(-)-QNB to pancreatic acini was found to be reversible and of high affinity, with an equilibrium dissociation constant (KD) of 68 pmol/l and a receptor density (RT) of 170 fmol/mg protein. Agonist binding behaviour was investigated by displacement of ({sup 3}H)-(-)-QNB binding by eight agonists like arecoline, arecadine-propargylester (APE) and carbachol, yielding only low affinity binding sites. The inhibition of ({sup 3}H)-(-)-QNB binding by the selective antagonists pirenzepine, hexahydrosiladifenidol (HHSiD) and (11-(2-(diethyl-amino)-methyl-1-piperidinyl)acetyl)-5,11-dihydro-6H-pyr ido (2,3-b) (1,4) benzodiazepin-6-one (AF-DX 116) confirmed the M3 nature of the rabbit pancreatic receptor.

  3. Existence of three subtypes of bradykinin B2 receptors in guinea pig.

    PubMed

    Seguin, L; Widdowson, P S; Giesen-Crouse, E

    1992-12-01

    We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location.

    PubMed

    Faisal, Farzana A; Sundi, Debasish; Tosoian, Jeffrey J; Choeurng, Voleak; Alshalalfa, Mohammed; Ross, Ashley E; Klein, Eric; Den, Robert; Dicker, Adam; Erho, Nicholas; Davicioni, Elai; Lotan, Tamara L; Schaeffer, Edward M

    2016-07-01

    Prostate cancer (PCa) subtypes based on ETS gene expression have been described. Recent studies suggest there are racial differences in tumor location, with PCa located anteriorly more often among African-American (AA) compared to Caucasian-American (CA) men. In this retrospective analysis of a multi-institutional cohort treated by radical prostatectomy (179 CA, 121 AA), we evaluated associations among molecular subtype, race, anatomic tumor location, and androgen receptor (AR) signaling. Subtype (m-ERG(+), m-ETS(+), m-SPINK1(+), or triple-negative) was determined using distribution-based outlier analysis. AR signaling was investigated using gene expression profiling of canonical AR targets. m-ERG(+) was more common in CA than AA men (47% vs 22%, p<0.001). AA men were more likely to be m-SPINK1(+) (13% vs 7%; p=0.069) and triple-negative (50% vs 37%; p=0.043). Racial differences in molecular subtypes did not persist when tumors were analyzed by location, suggesting a biologically important relationship between tumor location and subtype. Accordingly, anterior tumor location was associated with higher Decipher scores and lower global AR signaling. This study demonstrates associations among patient race, prostate cancer molecular subtypes, and tumor location. Location-specific differences in androgen regulation may further underlie these relationships. Copyright © 2015. Published by Elsevier B.V.

  5. Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location

    PubMed Central

    Faisal, Farzana A.; Sundi, Debasish; Tosoian, Jeffrey J.; Choeurng, Voleak; Alshalalfa, Mohammed; Ross, Ashley E.; Klein, Eric; Den, Robert; Dicker, Adam; Erho, Nicholas; Davicioni, Elai; Lotan, Tamara L.; Schaeffer, Edward M.

    2016-01-01

    Prostate cancer (PCa) subtypes based on ETS gene expression have been described. Recent studies suggest there are racial differences in tumor location, with PCa located anteriorly more often among African-American (AA) compared to Caucasian-American (CA) men. In this retrospective analysis of a multi-institutional cohort treated by radical prostatectomy (179 CA, 121 AA), we evaluated associations among molecular subtype, race, anatomic tumor location, and androgen receptor (AR) signaling. Subtype (m-ERG+, m-ETS+, m-SPINK1+, or triple-negative) was determined using distribution-based outlier analysis. AR signaling was investigated using gene expression profiling of canonical AR targets. m-ERG+ was more common in CA than AA men (47% vs 22%, p < 0.001). AA men were more likely to be m-SPINK1+ (13% vs 7%; p = 0.069) and triple-negative (50% vs 37%; p = 0.043). Racial differences in molecular subtypes did not persist when tumors were analyzed by location, suggesting a biologically important relationship between tumor location and subtype. Accordingly, anterior tumor location was associated with higher Decipher scores and lower global AR signaling. Patient summary This study demonstrates associations among patient race, prostate cancer molecular subtypes, and tumor location. Location-specific differences in androgen regulation may further underlie these relationships. PMID:26443432

  6. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function.

    PubMed

    Eglen, R M

    2006-07-01

    1 Muscarinic M1-M5 receptors mediate the metabotropic actions of acetylcholine in the nervous system. A growing body of data indicate they also mediate autocrine functions of the molecule. The availability of novel and selective muscarinic agonists and antagonists, as well as in vivo gene disruption techniques, has clarified the roles of muscarinic receptors in mediating both functions of acetylcholine. 2 Selective M1 agonists or mixed M1 agonists/M2 antagonists may provide an approach to the treatment of cognitive disorders, while M3 antagonism, or mixed M2/M3 antagonists, are approved for the treatment of contractility disorders including overactive bladder and chronic obstructive pulmonary disease. Preclinical data suggest that selective agonism of the M4 receptor will provide novel anti-nociceptive agents, while therapeutics-based upon agonism or antagonism of the muscarinic M5 receptor have yet to be reported. 3 The autocrine functions of muscarinic receptors broadly fall into two areas - control of cell growth or proliferation and mediation of the release of chemical mediators from epithelial cells, ultimately causing muscle relaxation. The former particularly are involved in embryological development, oncogenesis, keratinocyte function and immune responsiveness. The latter regulate contractility of smooth muscle in the vasculature, airways and urinary bladder. 4 Most attention has focused on muscarinic M1 or M3 receptors which mediate lymphocyte immunoresponsiveness, cell migration and release of smooth muscle relaxant factors. Muscarinic M4 receptors are implicated in the regulation of keratinocyte adhesion and M2 receptors in stem cell proliferation and development. Little data are available concerning the M5 receptor, partly due to the difficulties in defining the subtype pharmacologically. 5 The autocrine functions of acetylcholine, like those in the nervous system, involve activation of several muscarinic receptor subtypes. Consequently, the role of

  7. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  8. Evaluation of 1,2,5-thiadiazoles as modulators of M₁/M₅ muscarinic receptor subtypes.

    PubMed

    Maheshwari, Aditya; Rao, P S S; Messer, William S

    2014-03-15

    Studies have demonstrated the presence of allosteric binding sites on each of the muscarinic acetylcholine receptor (mAChR) subtypes. Since most drugs targeting muscarinic receptors bind to the highly conserved orthosteric binding site, they fail to achieve appreciable subtype selectivity. Targeting non-conserved allosteric sites may provide a new way of enhancing selectivity for individual subtypes of muscarinic receptor. Tetra(ethyleneglycol)(3-methoxy-1,2,5-thiadiazol-4-yl)[3-(1-methyl-1,2,5,6-tetrahydropyrid-3-yl)-1,2,5-thiadiazol-4-yl] ether, CDD-0304 (10), was found to be a M₁/₂/₄ selective muscarinic agonist and might prove useful in treating the symptoms associated with schizophrenia (J. Med. Chem.2003, 46, 4273). It was hypothesized that the observed subtype selectivity demonstrated by 10 may be due to its ability to function as a bitopic ligand (J. Med. Chem.2006, 49, 7518). To further investigate this possibility, a novel series of compounds was synthesized using a 1,2,5-thiadiazole moiety along with varying lengths of a polyethylene glycol linker and terminal groups, for evaluation as potential allosteric modulators of muscarinic receptors. Preliminary biological studies were performed using carbachol to stimulate M₁ and M₅ receptors. No significant agonist activity was observed at either M₁ or M₅ receptors for any of the compounds. Compound 18, 2-(4-methoxy-1,2,5-thiadiazol-3-yloxy)-N,N-dimethylethanamine fumarate (CDD-0361F) was found to block the effects of carbachol at M5 muscarinic receptors.

  9. Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners?

    PubMed

    Hague, Chris; Chen, Zhongjian; Uberti, Michelle; Minneman, Kenneth P

    2003-12-12

    Alpha(1)-adrenergic receptors are one of the three subfamilies of G protein coupled receptors activated by epinephrine and norepinephrine to control important functions in many target organs. Three human subtypes (alpha(1A), alpha(1B), alpha(1D)) are derived from separate genes and are highly homologous in their transmembrane domains but not in their amino or carboxyl termini. Recent advances in our understanding of these "non-identical triplets" include development of knockout mice lacking single or multiple subtypes, new insights into subcellular localization and trafficking, identification of allosteric modulators, and increasing evidence for an important role in brain function. Although all three subtypes activate the same G(q/11) signaling pathway, they also appear to interact with different protein binding partners. Recent evidence suggests they may also form dimers, and may initiate independent signals through pathways yet to be clearly elucidated. Thus, this subfamily represents a common phenomenon of a group of similar but non-identical receptor subtypes activated by the same neurotransmitter, whose individual functional roles remain to be clearly established.

  10. The structure of the third intracellular loop of the muscarinic acetylcholine receptor M2 subtype.

    PubMed

    Ichiyama, Susumu; Oka, Yoshiaki; Haga, Kazuko; Kojima, Shuichi; Tateishi, Yukihiro; Shirakawa, Masahiro; Haga, Tatsuya

    2006-01-09

    We have examined whether the long third intracellular loop (i3) of the muscarinic acetylcholine receptor M2 subtype has a rigid structure. Circular dichroism (CD) and nuclear magnetic resonance spectra of M2i3 expressed in and purified from Escherichia coli indicated that M2i3 consists mostly of random coil. In addition, the differential CD spectrum between the M2 and M2deltai3 receptors, the latter of which lacks most of i3 except N- and C-terminal ends, gave no indication of secondary structure. These results suggest that the central part of i3 of the M2 receptor has a flexible structure.

  11. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    NASA Astrophysics Data System (ADS)

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-11-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.

  12. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    PubMed Central

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-01-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction. PMID:27812030

  13. Identification of M(1) muscarinic receptor subtype in rat stomach using a tissue segment binding method, and the effects of immobilization stress on the muscarinic receptors.

    PubMed

    Anisuzzaman, Abu Syed Md; Morishima, Shigeru; Suzuki, Fumiko; Tanaka, Takashi; Muramatsu, Ikunobu

    2008-12-03

    Distinct muscarinic acetylcholine receptor subtypes widely distribute in stomach tissues and are involved in many physiological functions. Although mRNA of M(1) subtype was found in gastric mucosa, the M(1) subtype has not been detected by conventional membrane binding assays. In the present study, muscarinic receptor subtypes in the rat stomach were reevaluated by using the tissue segment binding technique recently developed to recognize the inherent/native profiles of receptors without receptor environment perturbation. [(3)H]-N-methylscopolamine (NMS) bound to muscarinic receptors in the intact segments of rat gastric mucosa and muscle layers. The muscarinic receptors in the mucosal segments were composed of M(1), M(2) and M(3) subtypes, among which the M(1) subtype selectively showed high affinity for pirenzepine. However, in the membrane preparations, binding sites with high affinity for pirenzepine could not be detected. In the muscle layer, M(2) and M(3) subtypes, but not M(1), were identified in tissue segment and conventional membrane binding assays. Western blotting analysis recognized the M(1) subtype in the membrane preparations of mucosal but not muscle layers. Chronic immobilization stress increased the M(3) subtype in mucosal and muscle layers and decreased the M(2) subtype in the muscle layer, whereas M(1) and M(2) subtypes in mucosal layer did not change after the stress. The current study shows that M(1) subtype occurs as a pirenzepine-high affinity entity in intact segments of rat gastric mucosa, but that it loses the affinity for pirenzepine upon homogenization. Careful identification of native in vivo muscarinic receptors may further elucidate their functions in stomach.

  14. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2016-11-01

    IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.

  15. Does pirenzepine distinguish between 'subtypes' of muscarinic receptors?

    PubMed Central

    Szelenyi, I.

    1982-01-01

    Pharmacological studies with pirenzepine were carried out on the isolated ileum and atrium of the guinea-pig and on the acid secretion from the isolated stomach of the mouse. Pirenzepine inhibited the bethanechol-evoked changes in all three organs in a dose-dependent manner. The slopes of the Schild-plots confirmed the competitive nature of the antagonism by pirenzepine. The estimated pA2-values were very similar. Based on these data, it might be concluded that pirenzepine is an anticholinoceptor compound without specific affinity for gastric muscarinic receptors. PMID:6897522

  16. Characterization of NPY receptor subtypes Y2 and Y7 in rainbow trout Oncorhynchus mykiss.

    PubMed

    Larsson, Tomas A; Larson, Earl T; Fredriksson, Robert; Conlon, J Michael; Larhammar, Dan

    2006-06-01

    We report the cloning and pharmacological characterization of two neuropeptide Y (NPY) receptor subtypes, Y2 and Y7, in rainbow trout (Oncorhynchus mykiss). These subtypes are approximately 50% identical to each other and belong to the Y2 subfamily of NPY receptors. The binding properties of the receptors were investigated after expression in human HEK-293 EBNA cells. Both receptors bound the three zebrafish peptides NPY, PYYa, and PYYb, as well as porcine NPY and PYY, with affinities in the nanomolar range that are similar to mammalian Y2. The affinity of the truncated porcine NPY fragments, NPY 13-36 and NPY 18-36 was markedly lower compared to mammalian and chicken Y2. This suggests that mammalian and chicken Y2 are unique among NPY receptors in their ability to bind truncated peptide fragments. The antagonist BIIE0246, developed for mammalian Y2, did not bind either of the two rainbow trout receptors. Our results support the proposed expansion of this gene family by duplications before the gnathostome radiation. They also reveal appreciable differences in the repertoire and characteristics of NPY receptors between fish and tetrapods stressing the importance of lineage-specific gene loss as well as sequence divergence after duplication.

  17. Involvement of NMDA receptor subtypes in cortical spreading depression in rats assessed by fMRI.

    PubMed

    Shatillo, Artem; Salo, Raimo A; Giniatullin, Rashid; Gröhn, Olli H

    2015-06-01

    Cortical spreading depression (CSD) is a phenomenon implicated in migraine with aura and associated with other neurological disorders (e.g. stroke, brain trauma). Current evidence points to the essential role of NMDA receptors in CSD mechanisms. However, the roles of multiple subunits of NMDA receptors expressed in neurons, glia and blood vessels in vivo, are little explored. Using BOLD fMRI of urethane anesthetized rats as an integrative CSD readout, we tested the involvement of different NMDA receptor subtypes in CSD induction and propagation. Rats were treated with a non-selective NMDA blocker (MK-801), NR2B antagonist (ifenprodil) or a NR2A selective antagonist (TCN-201). CSD was induced during fMRI scanning by application of KCl onto the cerebral cortex and fMRI data were collected by 9.4 T MRI. The non-specific NMDA antagonist MK-801 completely blocked CSD, which was not observed in the NR2A group where TCN-201 did not alter the CSD features. Unexpectedly, the NR2B specific antagonist ifenprodil largely promoted the initial negative phase of the BOLD CSD response, likely due to altered neurovascular coupling. Our data suggest key roles and differential involvement of NMDA receptor subtypes in CSD generation and propagation, highlighting an important role for the NR2B subtype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Pharmacology, Distribution and Development of Muscarinic Acetylcholine Receptor Subtypes in the Optic Tectum of Rana Pipiens

    PubMed Central

    Butt, C. M.; Pauly, J. R.; Wilkins, L. H.; Dwoskin, L. P.; Debski, E. A.

    2008-01-01

    Visually evoked behaviors mediated by the frog optic tectum require cholinergic activity, but the receptor subtypes through which acetylcholine acts are not yet identified. Using quantitative autoradiography and scintillation spectrometry, we examined the binding of [3H]pirenzepine and [3H]AF-DX 384 in the laminated optic tectum of the frog. In mammalian systems, these substances bind excitatory (m1 and m3 subtypes) and inhibitory (m2 and m4 subtypes) muscarinic acetylcholine receptors, respectively. Pharmacological analyses, including the use of specific muscarinic toxins, confirmed the subtype selectivity of the radioligands in the frog brain. Binding sites for [3H]pirenzepine were distinct from those for [3H]AF-DX 384. In the adult tectum, [3H]pirenzepine demonstrated specific binding in tectal layers 5–9. [3H]Pirenzepine binding was also present in tadpoles as young as stage V, but all sampled stages of tadpole tectum had significantly less binding when compared to adults. Lesioning of the optic nerve had no effect on [3H]pirenzepine binding. Specific [3H]AF-DX 384 binding was found in all layers of the adult tectum. All sampled tadpole stages exhibited binding sites for [3H]AF-DX 384, but the densities of these sites were also significantly higher in adults than they were in developing stages. Short-term lesions of the optic nerve reduced [3H]AF-DX 384 binding in all tectal layers of the deafferented lobe when compared to the afferented one. Long-term lesions decreased [3H]AF-DX 384 sites in both lobes. These results indicate that multiple muscarinic acetylcholine receptor binding sites reside in the frog optic tectum at all stages of development, and their pharmacology resembles that of mammalian m1/m3, m2 and m4 subtypes. Our data indicate that few, if any, of these receptors are likely to be located on retinal ganglion cell terminals. Furthermore, the expression of inhibitory muscarinic subtypes seems to be regulated by different mechanisms than that for

  19. Selective anxiolytics: are the actions related to partial "agonist" activity or a preferential affinity for benzodiazepine receptor subtypes?

    PubMed

    Gee, K W; Yamamura, H I

    1983-01-01

    Both pharmacological and biochemical evidence support the existence of BZ receptor subtypes. Determination of the molecular basis of BZ receptor heterogeneity requires additional research. The physiological significance of BZ receptor subtypes is not currently understood. One hypothesis presented to explain the unique pharmacological effects of CL 218872 suggests that CL 218872 has preferential affinity for a BZ receptor subtype (i.e., type I sites) that mediates the anxiolytic effects of the clinically active BZs. An alternative hypothesis has been proposed to account for these observations and is based upon the possibility that CL 218872 may act as a partial agonist at the BZ receptor. The partial agonist theory is supported by behavioral evidence and the relatively small differences in affinity of the BZ receptor subtypes discriminated by CL 218872 at physiological temperatures. In addition, in vivo binding studies suggest that occupancy of type II BZ receptor subtypes (i.e., those with low affinity for CL 218872) is necessary for CL 218872 to produce minimal anticonflict activity (4). Unlike certain other neurotransmitter systems, it is difficult to correlate the heterogeneous binding properties of BZ receptor ligands with their agonist/antagonist potential at BZ receptor. For example, CL 218872 discriminates BZ receptor subtypes and acts as an agonist at the BZ receptor. Beta-carbolines such as PCC also discriminate receptor subtypes, yet they act as antagonists at the BZ receptor. Compounding the complexity, neither the nature nor the existence of an endogenous ligand is known. So, the designation of agonist or antagonist effects is made on a purely functional basis.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors.

    PubMed

    Kino, Tomoshige; Ichijo, Takamasa; Chrousos, George P

    2004-12-01

    We previously reported that tumor necrosis factor alpha receptor- and Fas-associated FLASH interacts with one of the p160 nuclear receptor coactivators, glucocorticoid receptor-interacting protein (GRIP) 1, at its nuclear receptor-binding (NRB) domain, and that inhibits the transcriptional activity of the glucocorticoid receptor (GR) by interfering with association of GR and GRIP1. Here, we further examined the specificity of FLASH suppressive effect and the physical/functional interactions between this protein and two other p160 family subtypes. The suppressive effect of FLASH on GR transactivation was observed in several cell lines and on the chromatin-integrated mouse mammary tumor virus (MMTV) promoter. FLASH strongly interacted with the NRB domain of the thyroid hormone receptor activator molecule (TRAM) 1, a member of the steroid hormone receptor coactivator (SRC) 3/nuclear receptor coactivator (N-CoA) 3 subtypes, as well as with SRC2/N-CoA2 p160 coactivator GRIP1, while its interaction with SRC1a, one of the SRC1/N-CoA1 proteins, was faint in yeast two-hybrid assays. Accordingly, FLASH strongly suppressed TRAM1- and GRIP1-induced enhancement of GR-stimulated transactivation of the MMTV promoter in HCT116 cells, while it did not affect SRC1a-induced potentiation of transcription. Furthermore, FLASH suppressed androgen- and progesterone receptor-induced transcriptional activity, but did not influence estrogen receptor-induced transactivation, possibly due to their preferential use of p160 coactivators in HCT116 and HeLa cells. Thus, FLASH differentially suppresses steroid hormone receptor-induced transcriptional activity by interfering with their association with SRC2/N-CoA2 and SRC3/N-CoA3 but not with SRC1/N-CoA1.

  1. Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor

    PubMed Central

    Saleem, Huma; Tovey, Stephen C; Molinski, Tedeusz F; Taylor, Colin W

    2014-01-01

    BACKGROUND AND PURPOSE Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood. EXPERIMENTAL APPROACH IP3-evoked Ca2+ release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca2+ indicator. The effects of commonly used antagonists on IP3-evoked Ca2+ release and 3H-IP3 binding were characterized. KEY RESULTS Functional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3 > IP3R1 ≥ IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca2+ release via any IP3R subtype. CONCLUSIONS AND IMPLICATIONS Heparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs. PMID:24628114

  2. Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development

    PubMed Central

    Klein, Maike K.; Haberberger, Rainer V.; Hartmann, Petra; Faulhammer, Petra; Lips, Katrin S.; Krain, Benjamin; Wess, Jürgen; Kummer, Wolfgang; König, Peter

    2014-01-01

    Ciliary beating of airway epithelial cells drives the removal of mucus and particles from the airways. Mucociliary transport and possibly airway epithelial development are governed by muscarinic acetylcholine receptors but the precise roles of the subtypes involved are unknown. This issue was addressed by determining cilia-driven particle transport, ciliary beat frequency, and the composition and ultrastructural morphology of the tracheal epithelium in M1–M5 muscarinic receptor gene-deficient mice. Knockout of M3 muscarinic receptors prevented an increase in particle transport speed and ciliary beat frequency in response to muscarine. Furthermore, the ATP response after application of muscarine was blunted. Pretreatment with atropine before application of muscarine restored the response to ATP. Additional knockout of the M2 receptor in these mice partially restored the muscarine effect most likely through the M1 receptor and normalized the ATP response. M1, M4, and M5 receptor deficient mice exhibited normal responses to muscarine. None of the investigated mutant mouse strains had any impairment of epithelial cellular structure or composition. In conclusion, M3 receptors stimulate whereas M2 receptors inhibit cilia-driven particle transport. The M1 receptor increases cilia-driven particle transport if the M3 and M2 receptor are missing. None of the receptors is necessary for epithelial development. PMID:19213795

  3. Cannabinoid Modulation of Memory Consolidation in Rats: Beyond the Role of Cannabinoid Receptor Subtype 1.

    PubMed

    Ratano, Patrizia; Palmery, Maura; Trezza, Viviana; Campolongo, Patrizia

    2017-01-01

    The effects induced by exogenous manipulation of endocannabinoid neurotransmission on emotion and memory are often contradictory. Among the different factors involved, of particular interest is the binding affinity of endocannabinoids, and their analogs, for other receptor families beyond cannabinoid receptors, such as the peroxisome proliferator-activated receptors (PPARs), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). The aim of this study was to investigate which receptor subtype mediates cannabinoid effects on memory consolidation for emotionally arousing experiences. We tested two cannabinoid compounds with different pharmacological properties in the inhibitory avoidance task, and evaluated whether the observed effects are mediated by cannabinoid, PPARα or TRPV1 receptor activation. We found that the synthetic cannabinoid agonist WIN55,212-2 and the FAAH inhibitor URB597 both enhanced memory consolidation for inhibitory avoidance training. WIN55,212-22 effects on memory consolidation were predominantly mediated by CB1 receptor activation but CB2 receptors were involved as well. The URB597-induced memory enhancement was dependent on the activation not only of CB1 and CB2 receptors but, notwithstanding, PPAR-α and TRPV1 receptors were involved as well. Our findings drive beyond the classical hypothesis centered on the unique role of CB1 receptor activation for cannabinoid effects on memory, and reveal new insights in the neural mechanisms of memory consolidation.

  4. Cannabinoid Modulation of Memory Consolidation in Rats: Beyond the Role of Cannabinoid Receptor Subtype 1

    PubMed Central

    Ratano, Patrizia; Palmery, Maura; Trezza, Viviana; Campolongo, Patrizia

    2017-01-01

    The effects induced by exogenous manipulation of endocannabinoid neurotransmission on emotion and memory are often contradictory. Among the different factors involved, of particular interest is the binding affinity of endocannabinoids, and their analogs, for other receptor families beyond cannabinoid receptors, such as the peroxisome proliferator-activated receptors (PPARs), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). The aim of this study was to investigate which receptor subtype mediates cannabinoid effects on memory consolidation for emotionally arousing experiences. We tested two cannabinoid compounds with different pharmacological properties in the inhibitory avoidance task, and evaluated whether the observed effects are mediated by cannabinoid, PPARα or TRPV1 receptor activation. We found that the synthetic cannabinoid agonist WIN55,212-2 and the FAAH inhibitor URB597 both enhanced memory consolidation for inhibitory avoidance training. WIN55,212-22 effects on memory consolidation were predominantly mediated by CB1 receptor activation but CB2 receptors were involved as well. The URB597-induced memory enhancement was dependent on the activation not only of CB1 and CB2 receptors but, notwithstanding, PPAR-α and TRPV1 receptors were involved as well. Our findings drive beyond the classical hypothesis centered on the unique role of CB1 receptor activation for cannabinoid effects on memory, and reveal new insights in the neural mechanisms of memory consolidation. PMID:28446875

  5. Role of angiotensin II receptor subtype activation in cognitive function and ischaemic brain damage.

    PubMed

    Horiuchi, Masatsugu; Mogi, Masaki

    2011-07-01

    Recent clinical studies have demonstrated that angiotensin II type 1 (AT(1) ) receptor blockers (ARBs) reduce the onset of stroke, stroke severity and the incidence and progression of Alzheimer's disease and dementia. We can expect that ARBs exert these effects by both AT(1) receptor blockade and angiotensin II type 2 (AT(2) ) receptor stimulation. Moreover, recent experimental results support the notion that AT(2) receptor stimulation with AT(1) receptor blockade could contribute to protection against ischaemic brain damage at least partly due to an increase in cerebral blood flow and decrease in oxidative stress, and prevent cognitive decline. Cellular therapy has been focused on as a new therapeutic approach to restore injured neurons. In this context, it has been reported that AT(2) receptor stimulation enhances neurite outgrowth and decreases neural damage, thereby enhancing neurogenesis. Moreover, additional beneficial effects of ARBs with an AT(1) receptor blocking action with a partial peroxisome proliferator-activated receptor (PPAR)-γ agonistic effect have been reported, and interaction of AT(2) receptor activation and PPAR-γ might be involved in these ARBs' effects. This article reviews the effects of regulation of activation of angiotensin II receptor subtypes on ischaemic brain damage and cognitive function, focusing on the effects of AT(2) receptor stimulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Role of supraspinal and spinal alpha1-adrenergic receptor subtypes in micturition reflex in conscious rats.

    PubMed

    Yoshizumi, Masaru; Matsumoto-Miyai, Kazumasa; Yonezawa, Akihiko; Kawatani, Masahito

    2010-10-01

    α(1)-Adrenergic receptor subtypes are widely distributed in the central nervous system and are involved in autonomic functions such as micturition. We investigated the presence and the role of supraspinal and/or spinal α(1)-adrenergic receptors in modulating the micturition reflex in conscious female Wistar rats. The expression of α(1)-adrenergic receptor subtypes in rat brain and lumbosacral spinal cord was studied using RT-PCR. Continuous-infusion cystometrograms were obtained in conscious rats, and α(1)-adrenergic receptor antagonists were administered via intracerebroventricular or intrathecal routes. The mRNA expression of α(1A)-, α(1B)-, and α(1D)-adrenergic receptors was detected in rat brain (midbrain and pons) and lumbosacral spinal cord (dorsal and ventral parts of spinal cord). In addition, intracerebroventricular injection of the α(1)-adrenergic receptor antagonist tamsulosin (1-10 μg), the selective α(1A)-adrenergic receptor antagonist silodosin (1-10 μg), and the selective α(1D)-adrenergic receptor antagonist BMY 7378 (1-10 μg) significantly prolonged the intercontraction interval (ICI) but did not alter maximum voiding pressure (MVP). Although intrathecal injection of BMY 7378 (0.0001-10 μg) did not affect ICI, tamsulosin and silodosin prolonged ICI in a dose-dependent manner. MVP was significantly reduced by intrathecal injection of tamsulosin (10 μg) but not by silodosin or BMY 7378 (0.0001-10 μg). Supraspinal α(1A)- and α(1D)-adrenergic receptors are apparently important for the regulation of reflex-bladder activity in conscious rats. Noradrenergic projection from the brain stem to the lumbosacral spinal cord may promote the afferent limb rather than the efferent limb of the micturition reflex pathway via α(1A)-adrenergic receptors.

  7. US Incidence of Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status

    PubMed Central

    Altekruse, Sean F.; Li, Christopher I.; Chen, Vivien W.; Clarke, Christina A.; Ries, Lynn A. G.; Cronin, Kathleen A.

    2014-01-01

    Background In 2010, Surveillance, Epidemiology, and End Results (SEER) registries began collecting human epidermal growth factor 2 (HER2) receptor status for breast cancer cases. Methods Breast cancer subtypes defined by joint hormone receptor (HR; estrogen receptor [ER] and progesterone receptor [PR]) and HER2 status were assessed across the 28% of the US population that is covered by SEER registries. Age-specific incidence rates by subtype were calculated for non-Hispanic (NH) white, NH black, NH Asian Pacific Islander (API), and Hispanic women. Joint HR/HER2 status distributions by age, race/ethnicity, county-level poverty, registry, stage, Bloom–Richardson grade, tumor size, and nodal status were evaluated using multivariable adjusted polytomous logistic regression. All statistical tests were two-sided. Results Among case patients with known HR/HER2 status, 36810 (72.7%) were found to be HR+/HER2−, 6193 (12.2%) were triple-negative (HR−/HER2−), 5240 (10.3%) were HR+/HER2+, and 2328 (4.6%) were HR−/HER2+; 6912 (12%) had unknown HR/HER2 status. NH white women had the highest incidence rate of the HR+/HER2− subtype, and NH black women had the highest rate of the triple-negative subtype. Compared with women with the HR+/HER2− subtype, triple-negative patients were more likely to be NH black and Hispanic; HR+/HER2+ patients were more likely to be NH API; and HR−/HER2+ patients were more likely to be NH black, NH API, and Hispanic. Patients with triple-negative, HR+/HER2+, and HR−/HER2+ breast cancer were 10% to 30% less likely to be diagnosed at older ages compared with HR+/HER2− patients and 6.4-fold to 20.0-fold more likely to present with high-grade disease. Conclusions In the future, SEER data can be used to monitor clinical outcomes in women diagnosed with different molecular subtypes of breast cancer for a large portion (approximately 28%) of the US population. PMID:24777111

  8. Pharmacologic study of muscarinic receptor subtypes and arteriolar dilations: a comparison of conducted and local responses.

    PubMed

    Rivers, R J

    1999-03-01

    Arteriolar relaxation caused by the application of muscarinic agonists is mediated by multiple factors. One factor causes dilation only at the point of drug microapplication (local response), and a second factor causes responses remote (500 microm away) from the site of application (conducted response). This study was performed to determine if different muscarinic subtypes mediate the two responses. Arterioles of anesthetized hamster cheek pouch were studied with videomicroscopy. Muscarinic antagonists methscopolamine, scopolamine, pirenzepine, 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide), and AFDX-116 [(11-2[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepin-6-one)] were cumulatively applied, and the K(B) for each antagonist was determined for the local and conducted responses caused by methacholine microapplication (10(-4) M, 5 s). The pK(B) (local, conducted) were not significantly different for the two responses when using scopolamine (10.5, 10.4). When the antagonist AFDX-116 (5.6, 6.3), selective for muscarinic receptor (m2) subtype was applied, the K(B) was greater for the conducted response. The pK(B) was greater, however, for the local response when the m1 subtype-selective pirenzepine (7.7, 6.9) or m3 subtype-selective 4-DAMP (10.1, 9.8) was applied. Thus the antagonist pK(B) ratio for on the local and conducted responses depends on the subtype selectivity of the antagonist. These data strongly suggest that different receptors are involved in the two responses.

  9. Coexpression of striatal dopamine receptor subtypes and excitatory amino acid subunits.

    PubMed

    Ariano, M A; Larson, E R; Noblett, K L; Sibley, D R; Levine, M S

    1997-08-01

    The striatal cellular coexpression patterns for the D(1A) and D2 dopamine (DA) receptor subtypes and the ionotropic excitatory amino acid (EAA) subunits of the N-methyl-D-aspartate (NMDA-R1) and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) (GluR1 and GluR2/3) receptor subunits were examined morphologically. Their coincidence was assessed by visualization of mRNA transcripts, localization of encoded receptor proteins, and binding analysis using concurrently paired methods of fluorescence detection. The findings indicated that 1) mRNA transcripts for both receptor systems were detected in the medium-sized neuron population, and the distribution of receptor message closely reflected protein and binding patterns, with the exception of the GluR1 subunit; 2) both DA receptor mRNA transcripts were coexpressed with each ionotropic EAA receptor subunit examined and with each other, and NMDA and AMPA receptor subunits also showed coincident expression; 3) D(1A) DA receptor protein was detected in neurons which coexpressed EAA subunit proteins; and 4) GluR2/3 and NMDA-R1 subunit proteins were coexpressed in medium-sized neurons which also demonstrated D2 DA receptor binding sites. These findings suggest morphological receptor "promiscuity" since the coexpression patterns between DA and EAA receptors were found in all permutations. The results provide a spatial framework for physiological findings describing functional interactions between the two DA receptor types and between specific DA and EAA receptors in the striatum.

  10. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  11. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  12. Desensitization of human muscarinic acetylcholine receptor m2 subtypes is caused by their sequestration/internalization.

    PubMed

    Tsuga, H; Kameyama, K; Haga, T

    1998-10-01

    Desensitization of human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) stably expressed in chinese hamster ovary cells was measured as decreases in the carbamylcholine-stimulated [35S]GTPgammaS binding activity in membrane preparations after pre-treatment of cells with carbamylcholine. The extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity was found to decrease to 64% following pretreatment of cells with 10 microM carbamylcholine for 30 min, and under the same conditions 51-59% of hm2 receptors were sequestered/internalized as assessed by decreases in the [3H]N-methylscopolamine binding activity on the cell surface. A similar reduction in the carbamylcholine-stimulated [35S]GTPgammaS binding activity was observed by pretreatment of cells with 5 nM propylbenzylylcholine mustard, which irreversibly bound to and inactivated 58% of the hm2 receptors. When the cells were pretreated with 10 microM carbamylcholine in the presence of 0.32 M sucrose, which is known to inhibit clathrin-mediated endocytosis, no sequestration/internalization of hm2 receptors was observed, and the extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity did not change. These results indicate that desensitization of hm2 receptors may be caused by reduction of receptor number on the cell surface through sequestration/internalization rather than by loss of the function of receptors.

  13. Pressure-selective modulation of NMDA receptor subtypes may reflect 3D structural differences.

    PubMed

    Mor, Amir; Kuttner, Yosef Y; Levy, Shiri; Mor, Merav; Hollmann, Michael; Grossman, Yoram

    2012-01-01

    Professional deep-water divers exposed to high pressure (HP) above 1.1 MPa suffer from High Pressure Neurological Syndrome (HPNS), which is associated with CNS hyperexcitability. We have previously reported that HP augments N-methyl-D-aspartate receptor (NMDAR) synaptic responses, increases neuronal excitability, and potentially causes irreversible neuronal damage. We now report that HP (10.1 MPa) differentially affects eight specific NMDAR subtypes. GluN1(1a or 1b) was co-expressed with one of the four GluN2(A-D) subunits in Xenopus laevis oocytes. HP increased ionic currents (measured by two electrode voltage clamps) of one subtype, reduced the current in four others, and did not affect the current in the remaining three. 3D theoretical modeling was aimed at revealing specific receptor domains involved with HP selectivity. In light of the information on the CNS spatial distribution of the different NMDAR subtypes, we conclude that the NMDAR's diverse responses to HP may lead to selective HP effects on different brain regions. These discoveries call for further and more specific investigation of deleterious HP effects and suggest the need for a re-evaluation of deep-diving safety guidelines.

  14. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration

    PubMed Central

    Marks, MJ; Grady, SR; Salminen, O; Paley, MA; Wageman, CR; McIntosh, JM; Whiteaker, P

    2014-01-01

    Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where * indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*-nAChR are downregulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose-responses and quantitative ligand-binding autoradiography were used to define nicotine sensitivity of changes in α4β2*-nAChR and α6β2*-nAChR expression. α6β2*-nAChR downregulation by chronic nicotine exposure in dopaminergic and optic-tract nuclei was ≈three-fold more sensitive than upregulation of α4β2*-nAChR. In contrast, nAChR-mediated [3H]-dopamine release from dopamine-terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, while dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR-mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]-DA release are primarily due to changes in nAChR, rather than in dopaminergic, function. PMID:24661093

  15. Inhibition of RNA synthesis by bradykinin involves both the B1 and B2 receptor subtypes.

    PubMed

    Yau, L; Pinsk, M; Zahradka, P

    1996-04-01

    The efficacy of angiotensin converting enzyme inhibitors in the treatment of heart disease is due in part to the accumulation of bradykinin (BK). Since BK can exert its effect by influencing cell proliferation, we chose to study the effect of BK on the growth of A10 vascular smooth muscle cells. Ligand binding studies to determine which BK receptor subtypes are present on A10 cells showed that both B1 and B2 receptors were present in approximately equal numbers. Examination of RNA synthesis demonstrated that BK inhibits uridine incorporation in a dose-dependent manner. This decrease in RNA synthesis was blocked by both B1 and B2 receptor antagonists, as well as by addition of indomethacin, a cyclooxygenase inhibitor. The latter result suggested that prostaglandins mediate the biological actions of BK. Consequently, we examined the direct effect of two prostaglandins, PGE2 and PGI2 (prostacyclin), on A10 cells. PGE2 caused a decrease in RNA synthesis, thus mimicking the effect of BK, while PGI2 did not. Therefore, the inhibition of RNA synthesis in A10 vascular smooth muscle cells by BK requires both B1 and B2 receptor subtypes and this action of BK is apparently mediated by de novo synthesis of prostaglandins.

  16. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes.

    PubMed

    Hevers, W; Lüddens, H

    1998-08-01

    The amino acid gamma-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotransmitter that mediates most of its effects through fast GABA-gated Cl(-)-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes alpha, beta, gamma, delta, sigma and epsilon, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of alpha, beta, and gamma subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular alpha and gamma subunit variants. Little is known about the functional properties of the beta, delta, and epsilon subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.

  17. Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception.

    PubMed

    Girard, Philippe; Coppé, Marie-Claude; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie

    2006-09-01

    The non-opiate analgesic nefopam has been shown to inhibit monoamines uptake, but little is known about receptor subtypes effectively involved in its analgesic effect. In vitro binding assays yielded the following measures of affinity (IC(50)): serotonergic 5-HT(2C) (1.4 microM), 5-HT(2A) (5.1 microM), 5-HT(3) (22.3 microM), 5-HT(1B) (41.7 microM), 5-HT(1A) (64.9 microM), adrenergic alpha(1) (15.0 microM) and dopaminergic D(1) (100 microM). Subcutaneous nefopam administration dose-dependently inhibited pain in acetic acid-induced writhing (1-30 mg kg(-1)) and formalin (1-10 mg kg(-1)) tests in the mouse. Pretreatments with adrenergic alpha(1) (prazosin) and alpha(2) (yohimbine), and serotonergic 5-HT(1B) (GR127935) receptor antagonists significantly increased the nefopam ED(50) in the writhing test. The serotonergic 5-HT(2C) (RS102221) and the dopaminergic D(2) (sulpiride) receptor antagonists inhibited nefopam antinociception in the formalin test. However, in both tests, nefopam analgesic activity was not modified by the following receptor antagonists: dopaminergic D(1) (SCH23390), serotonergic 5-HT(1A) (NAN-190, WAY100635), 5-HT(2A) (R96544, ketanserin), 5-HT(3) (tropisetron), and 5-HT(4) (SDZ205557). In conclusion, nefopam analgesic activity could be modulated by the adrenergic alpha(1) and alpha(2) receptors, the dopaminergic D(2) receptors, and the serotonergic 5-HT(1B) and 5-HT(2C) receptor subtypes.

  18. Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla.

    PubMed

    Israel, A; Strömberg, C; Tsutsumi, K; Garrido, M R; Torres, M; Saavedra, J M

    1995-01-01

    Angiotensin II (ANG) receptor subtypes were characterized by quantitative autoradiography after incubation with the ANG agonist [124I]Sar1-ANG in rat adrenal medulla. ANG receptors are highly localized in adrenal medulla. Specific binding was displaced by 4% and by 95% with the AT, receptor blocker losartan and the AT2 receptor competitor CGP 42112A, respectively. Analysis of competition curves indicated relative binding potencies for the AT2 population of CGP 42112A>PD 123319> PD 123177. ANG stimulated +-nositol phosphate formation in a dose-dependent manner in rat adrenal medulla. Losartan at concentrations of 10(-9) to 10(-5) M antagonized the effect of ANG, whereas PD 123177 or PD 123319 had no antagonistic action. However, at a higher concentration (10(-5) M) PD 123177 or PD 123319 potentiated the effect of ANG on InsP1-accumulation. In the presence of PD 123319 (10(-5) M) ANG dose-response curve was shifted to the left with no change in the maximal effect. This affect was blocked by the addition of losartan (10(-5) M). On the contrary, the addition of CGP 42112A (10(-6) M) inhibited ANG-induced increase in InsP1-accumulation. On the other hand, ANG and CGP 42112A reduced basal cyclic GMP formation, this effect was partially reverted by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor. Our results further demonstrate the presence of two ANG receptor subtypes in adrenal medulla: ANG binding to AT, receptor stimulates inositol phospholipid metabolism, whereas ANG binding to AT2 receptors decreases both inositol phosphate production and cGMP formation.

  19. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine

    PubMed Central

    Kotermanski, Shawn E.; Johnson, Jon W.

    2009-01-01

    N-methyl-d-aspartate receptors (NMDARs) mediate interneuronal communication and are broadly involved in nervous system physiology and pathology (Dingledine et al., 1999). Memantine, a drug that blocks the ion channel formed by NMDARs, is a widely-prescribed treatment of Alzheimers's disease (Schmitt, 2005; Lipton, 2006; Parsons et al., 2007). Research on memantine's mechanism of action has focused on the NMDAR subtypes most highly expressed in adult cerebral cortex, NR1/2A and NR1/2B receptors (Cull-Candy and Leszkiewicz, 2004), and has largely ignored interactions with extracellular Mg2+ (Mg2+o). Mg2+o is an endogenous NMDAR channel blocker that binds near memantine's binding site (Kashiwagi et al., 2002; Chen and Lipton, 2005). We report that a physiological concentration (1 mM) of Mg2+o decreased memantine inhibition of NR1/2A and NR1/2B receptors nearly 20-fold at a membrane voltage near rest. In contrast, memantine inhibition of the other principal NMDAR subtypes, NR1/2C and NR1/2D receptors, was decreased only ∼3-fold. As a result, therapeutic memantine concentrations should have negligible effects on NR1/2A or NR1/2B receptor activity but pronounced effects on NR1/2C and NR1/2D receptors. Quantitative modeling showed that the voltage dependence of memantine inhibition also is altered by 1 mM Mg2+o. We report similar results with the NMDAR channel blocker ketamine, a drug used to model schizophrenia (Krystal et al., 2003). These results suggest that currently hypothesized mechanisms of memantine and ketamine action should be reconsidered, and that NR1/2C and/or NR1/2D receptors play a more important role in cortical physiology and pathology than previously appreciated. PMID:19261873

  20. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    SciTech Connect

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E. )

    1991-04-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation.

  1. Somatostatin receptor subtypes, octreotide scintigraphy, and clinical response to octreotide treatment in patients with neuroendocrine tumors.

    PubMed

    Kölby, L; Wängberg, B; Ahlman, H; Tisell, L E; Fjälling, M; Forssell-Aronsson, E; Nilsson, O

    1998-07-01

    Several types of neuroendocrine tumor express high numbers of somatostatin receptors (sstr). We have compared the expression of sstr subtypes with the outcome of octreotide scintigraphy in patients with carcinoids and medullary thyroid carcinoma (MTC) in comparison with Hürthle cell tumors. The effect of sstr activation (octreotide treatment) on tumor markers was also studied in patients with disseminated carcinoid tumors. Six patients with carcinoid tumors (four midgut and two foregut), and three patients with thyroid tumors (one MTC, one Hürthle cell carcinoma, and one Hürthle cell adenoma) were studied. Octreotide scintigraphy visualized tumor sites in all nine patients. Macroscopic tumor was verified at these sites at subsequent surgical exploration. Using Northern blotting and subtype-specific riboprobes, sstr could be detected in all tumors examined. All five sstr subtypes were detected in most of the carcinoid tumors. All six carcinoids expressed sstr2. This was in contrast to the findings for the thyroid tumors analyzed, which also expressed several sstr subtypes but in some cases lacked expression of sstr2. This was also the case for normal thyroid tissue. Clinically, octreotide treatment of the patients with midgut carcinoid tumors resulted in palliation of hormonal symptoms accompanied by a significant reduction of urinary 5-HIAA levels (28-71%). These results indicate that carcinoid tumors frequently express all five sstr subtypes. The thyroid tumors also expressed multiple sstr but could lack expression of sstr2. Nevertheless, these tumors were visualized by octreotide scintigraphy, indicating that sstr2 expression is not a prerequisite for tumor imaging.

  2. Common genetic variation in adiponectin, leptin, and leptin receptor and association with breast cancer subtypes.

    PubMed

    Nyante, Sarah J; Gammon, Marilie D; Kaufman, Jay S; Bensen, Jeannette T; Lin, Dan Yu; Barnholtz-Sloan, Jill S; Hu, Yijuan; He, Qianchuan; Luo, Jingchun; Millikan, Robert C

    2011-09-01

    Adipocytokines are produced by visceral fat, and levels may be associated with breast cancer risk. We investigated whether single nucleotide polymorphisms (SNPs) in adipocytokine genes adiponectin (ADIPOQ), leptin (LEP), and the leptin receptor (LEPR) were associated with basal-like or luminal A breast cancer subtypes. 104 candidate and tag SNPs were genotyped in 1776 of 2022 controls and 1972 (200 basal-like, 679 luminal A) of 2311 cases from the Carolina Breast Cancer Study (CBCS), a population-based case-control study of whites and African Americans. Breast cancer molecular subtypes were determined by immunohistochemistry. Genotype odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. Haplotype ORs and 95% CIs were estimated using Hapstat. Interactions with waist-hip ratio were evaluated using a multiplicative interaction term. Ancestry was estimated from 144 ancestry informative markers (AIMs), and included in models to control for population stratification. Candidate SNPs LEPR K109R (rs1137100) and LEPR Q223R (rs1137101) were positively associated with luminal A breast cancer, whereas ADIPOQ +45 T/G (rs2241766), ADIPOQ +276 G/T (rs1501299), and LEPR K656N (rs8129183) were not associated with either subtype. Few patterns were observed among tag SNPs, with the exception of 3 LEPR SNPs (rs17412175, rs9436746, and rs9436748) that were in moderate LD and inversely associated with basal-like breast cancer. However, no SNP associations were statistically significant after adjustment for multiple comparisons. Haplotypes in LEP and LEPR were associated with both basal-like and luminal A subtypes. There was no evidence of interaction with waist-hip ratio. Data suggest associations between LEPR candidate SNPs and luminal A breast cancer in the CBCS and LEPR intron 2 tag SNPs and basal-like breast cancer. Replication in additional studies where breast cancer subtypes have been defined is necessary to confirm these

  3. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    PubMed

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  4. Common genetic variation in adiponectin, leptin, and leptin receptor and association with breast cancer subtypes

    PubMed Central

    Nyante, Sarah J.; Gammon, Marilie D.; Kaufman, Jay S.; Bensen, Jeannette T.; Lin, Dan Yu; Barnholtz-Sloan, Jill S.; Hu, Yijuan; He, Qianchuan; Luo, Jingchun; Millikan, Robert C.

    2012-01-01

    Adipocytokines are produced by visceral fat, and levels may be associated with breast cancer risk. We investigated whether single nucleotide polymorphisms (SNPs) in adipocytokine genes adiponectin (ADIPOQ), leptin (LEP), and the leptin receptor (LEPR) were associated with basal-like or luminal A breast cancer subtypes. 104 candidate and tag SNPs were genotyped in 1776 of 2022 controls and 1972 (200 basal-like, 679 luminal A) of 2311 cases from the Carolina Breast Cancer Study (CBCS), a population-based case–control study of whites and African Americans. Breast cancer molecular subtypes were determined by immunohistochemistry. Genotype odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. Haplotype ORs and 95% CIs were estimated using Hapstat. Interactions with waist-hip ratio were evaluated using a multiplicative interaction term. Ancestry was estimated from 144 ancestry informative markers (AIMs), and included in models to control for population stratification. Candidate SNPs LEPR K109R (rs1137100) and LEPR Q223R (rs1137101) were positively associated with luminal A breast cancer, whereas ADIPOQ +45 T/G (rs2241766), ADIPOQ +276 G/T (rs1501299), and LEPR K656N (rs8129183) were not associated with either subtype. Few patterns were observed among tag SNPs, with the exception of 3 LEPR SNPs (rs17412175, rs9436746, and rs9436748) that were in moderate LD and inversely associated with basal-like breast cancer. However, no SNP associations were statistically significant after adjustment for multiple comparisons. Haplotypes in LEP and LEPR were associated with both basal-like and luminal A subtypes. There was no evidence of interaction with waist-hip ratio. Data suggest associations between LEPR candidate SNPs and luminal A breast cancer in the CBCS and LEPR intron 2 tag SNPs and basal-like breast cancer. Replication in additional studies where breast cancer subtypes have been defined is necessary to confirm these

  5. Alterations of muscarinic receptor subtypes in pathways relating to memory: Effects of lesions and transplants

    SciTech Connect

    Dawson, V.L.

    1989-01-01

    Muscarinic cholinergic receptors have been classified pharmacologically into two distinct populations designated muscarinic type-one (M-1) and mscarinic type-two (M-2). The semiquantitative technique of receptor autoradiography was used to examine the anatomical and cellular distribution, and densities of M-1 and M-2 receptors in the rate brain. Muscarinic receptors were labeled with the classical antagonist ({sup 3}H)quinuclidinyl benzilate (QNB). Differentiation of the muscarinic subtypes was accomplished by competition studies of ({sup 3}H)QNB against the relatively selective M-1 antagonist pirenzepine (PZ), and the relatively selective M-2 antagonist, AFDX-116. In addition, M-1 and M-2 receptors were directly labeled with ({sup 3}H)PZ and ({sup 3}H)AFDX-116, respectively. Cholinergic pathways from the large cholinergic neurons in the nucleus basalis magnocellularis (NBM) to the cortex and from the medial septum (MS) to the hippocampus were examined by lesioning with the selective cholinergic neurotoxin, AF64A. Bilateral cerebral cortical infarction was performed in order to analyze potential changes in muscarinic receptor populations in subcortical structures that are sensitive to cortical infarction. Finally, the response of muscarinic receptors to fetal septodiagonal band transplants in the deafferentated hippocampus was examined.

  6. Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes.

    PubMed

    Konger, R L; Malaviya, R; Pentland, A P

    1998-02-04

    We examined the contribution of specific EP receptors in regulating cell growth. By RT-PCR and northern hybridization, adult human keratinocytes express mRNA for three PGE2 receptor subtypes associated with cAMP signaling (EP2, EP3, and small amounts of EP4). In actively growing, non-confluent primary keratinocyte cultures, the EP2 and EP4 selective agonists, 11-deoxy PGE1 and 1-OH PGE1, caused complete reversal of indomethacin-induced growth inhibition. The EP3/EP2 agonist (misoprostol), and the EP1/EP2 agonist (17-phenyl trinor PGE2), showed less activity. Similar results were obtained with agonist-induced cAMP formation. The ability of exogenous dibutyryl cAMP to completely reverse indomethacin-induced growth inhibition support the conclusion that growth stimulation occurs via an EP2 and/or EP4 receptor-adenylyl cyclase coupled response. In contrast, activation of EP3 receptors by sulprostone, which is virtually devoid of agonist activity at EP2 or EP4 receptors, inhibited bromodeoxyuridine uptake in indomethacin-treated cells up to 30%. Although human EP3 receptor variants have been shown in other cell types to markedly inhibit cAMP formation via a pertussis toxin sensitive mechanisms, EP3 receptor activation and presumably growth inhibition was independent of adenylyl cyclase, suggesting activation of other signaling pathways.

  7. PET imaging of metabotropic glutamate receptor subtype 5 (mGluR5)

    PubMed Central

    Li, Dan; Shan, Hong; Conti, Peter; Li, Zibo

    2012-01-01

    Metabotropic glutamate receptors (mGluRs) belong to a family of G-protein coupled receptors involved in the modulation of fast excitatory transmission. In particular, the subtype-5 receptor (mGluR5) was found to be an attractive target for the treatment and diagnosis of variety of psychiatric and neurological disease including anxiety, depression, epilepsy, drug addiction, and Parkinson's disease. Positron emission tomography (PET) is a highly sensitive imaging technique that holds great potential for the diagnosis of a brain disorder. In the study published in the American Journal of Nuclear Medicine and Molecular Imaging, a 18F labelled PET probe was developed targeting mGluR5. This paper represents the efforts and challenges on the design and development of novel PET tracers for mGluR5 imaging. PMID:23133800

  8. Pharmacological characterization of muscarinic receptor subtypes mediating vasoconstriction of human umbilical vein

    PubMed Central

    Pujol Lereis, Virginia Andrea; Hita, Francisco Javier; Gobbi, Mauro Darío; Verdi, Marcela Gomez; Rodriguez, María Cecilia; Rothlin, Rodolfo Pedro

    2006-01-01

    The present study attempted to pharmacologically characterize the muscarinic receptor subtypes mediating contraction of human umbilical vein (HUV). HUV rings were mounted in organ baths and concentration–response curves were constructed for acetylcholine (ACh) (pEC50: 6.16±0.04; maximum response 80.00±1.98% of the responses induced by serotonin 10 μM). The absence of endothelium did not modify the contractile responses of ACh in this tissue. The role of cholinesterases was evaluated: neither neostigmine (acetylcholinesterase inhibitor) nor iso-OMPA (butyrylcholinesterase inhibitor) modified ACh responses. When both enzymes were simultaneously inhibited, a significantly but little potentiation was observed (control: pEC50 6.33±0.03; double inhibition: pEC50 6.57±0.05). Atropine, nonselective muscarinic receptors antagonist, inhibited ACh-induced contraction (pKB 9.67). The muscarinic receptors antagonists pirenzepine (M1), methoctramine (M2) and pFHHSiD (M3) also antagonized responses to ACh. The affinity values estimated for these antagonists against responses evoked by ACh were 7.58, 6.78 and 7.94, respectively. On the other hand, PD 102807 (M4 selective muscarinic receptors antagonist) was ineffective against ACh-induced contraction. In presence of a blocking concentration of pirenzepine, pFHHSiFD produced an additional antagonism activity on ACh-induced responses. The M1 muscarinic receptors agonist McN-A-343 produced similar maximum but less potent responses than ACh in HUV. The calculated pA2 for pirenzepine against McN-A-343 induced responses was 8.54. In conclusion, the data obtained in this study demonstrate the role of M1 muscarinic receptor subtypes and suggest the involvement of M3 muscarinic receptor subtypes in ACh-induced vasoconstriction in HUV rings. In addition, the vasomotor activity evoked by ACh does not seem to be modulated by endothelial factors, and their enzymatic degradation appears to have little functional relevance in this

  9. Direct analysis of beta-adrenergic receptor subtypes on intact adult ventricular myocytes of the rat

    SciTech Connect

    Buxton, I.L.; Brunton, L.L.

    1985-01-01

    beta 1- and beta 2-Adrenergic receptors co-exist in the adult rat ventricle. Radioligand binding and cell purification techniques have been employed to determine the cellular origin of these receptors. The beta-adrenergic antagonist ligand (+/-)-(/sup 125/I) iodocyanopindolol binds to 2 X 10(5) receptors per purified adult rat cardiomyocyte, with a dissociation constant of 70 pM. The subtype-selective antagonists betaxolol (beta 1), practolol (beta 1), and zinterol (beta 2) compete for (/sup 125/I)iodocyanopindolol-binding sites on intact myocytes in monophasic manners with dissociation constants of 46, 845, and 923 nM, respectively. (/sup 125/I)iodocyanopindolol binding to membranes prepared from nonmyocyte elements of rat ventricle occurs with a dissociation constant of 43 pM and a capacity of 88 fmol/mg membrane protein. Computer analysis of competition of (/sup 125/I)iodocyanopindolol binding by betaxolol, practolol, and zinterol in nonmyocyte membranes demonstrates biphasic curves that comprise binding to both beta 1- and beta 2-receptors. These data demonstrate that purified adult ventricular myocytes possess only beta 1-receptors, and that the beta 2-receptors found in rat ventricle are located on nonmyocyte cell types.

  10. Guanylpirenzepine distinguishes between neuronal ml and m4 muscarinic receptor subtypes

    SciTech Connect

    Monferini, E.; Cereda, E.; Ladinsky, H.; Donetti, A.; Giraldo, E. )

    1990-01-01

    Guanylpirenzepine, a polar, non-quaternary analog of pirenzepine, exhibited a novel binding behavior in rat brain regions: in competition binding experiments against (3H)pirenzepine labeling the M1 receptor in membranes from cerebral cortex, hippocampus and striatum, the compound, differently from pirenzepine, displayed heterogeneous binding curves. Computer assisted analysis of these curves, evidenced the existence of two populations of binding sites: a large proportion (84-89%) of high affinity receptors (KH = 64-92 nM) and a remainder with very low affinity (KL = 19-28 microM). Like pirenzepine, guanylpirenzepine showed low affinity for the glandular M3 and the cardiac M2 receptors when (3H)N-methylscopolamine was used to label the receptors in membranes from these two tissues; affinity values for guanylpirenzepine were 1336 and 5790 nM respectively, vs 323 and 683 nM for pirenzepine. We conclude that guanylpirenzepine is able to discriminate between m1 and m4 receptor subtypes and may represent a new tool for deeper studies on muscarinic receptors classification.

  11. Cloning, functional expression, and characterization of the human prostaglandin E2 receptor EP2 subtype.

    PubMed

    Bastien, L; Sawyer, N; Grygorczyk, R; Metters, K M; Adam, M

    1994-04-22

    A cDNA clone encoding the human prostaglandin (PG) E2 receptor EP2 subtype has been isolated from a human lung cDNA library. The 1.9-kilobase pair cDNA, hEP2, encodes for a 488-amino acid protein with a predicted molecular mass of 53,115 and has the seven putative transmembrane domains characteristic of G protein-coupled receptors. The specific binding of [3H]PGE2 to COS cell membranes transfected with the hEP2 cDNA was of high affinity with an equilibrium dissociation constant (Kd) of 1 nM and the rank order of potency for prostaglandins in competition for [3H]PGE2 specific binding was PGE1 = PGE2 > iloprost > PGF2 alpha > PGD2. In competition studies using more selective prostanoid-receptor agonist and antagonists, the [3H]PGE2 specific binding was competed by MB28767, an EP3 agonist, but not by the EP1-preferring antagonists AH6809 and SC19220, or by the EP2 agonist butaprost. Electrophysiological studies of Xenopus oocytes co-injected with hEP2 and cystic fibrosis transmembrane conductance regulator (cAMP-activated Cl- channel) cDNAs detected PGE2-specific inward Cl- currents, demonstrating that the hEP2 cDNA encoded a functional receptor which produced an increase in cAMP levels. Thus, we have cloned the human EP2 receptor subtype which is functionally coupled to increase in cAMP. Northern blot analysis showed that hEP2 is expressed as a 3.8-kilobase mRNA in a number of human tissues with the highest expression levels present in the small intestine.

  12. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors

    PubMed Central

    Alsaloum, Matthew; Kazi, Rashek; Gan, Quan; Amin, Johansen

    2016-01-01

    AMPA and NMDA receptors are glutamate-gated ion channels that mediate fast excitatory synaptic transmission throughout the nervous system. In the continual presence of glutamate, AMPA and NMDA receptors containing the GluN2A or GluN2B subunit enter into a nonconducting, desensitized state that can impact synaptic responses and glutamate-mediated excitotoxicity. The process of desensitization is dramatically different between subtypes, but the basis for these differences is unknown. We generated an extensive sequence alignment of ionotropic glutamate receptors (iGluRs) from diverse animal phyla and identified a highly conserved motif, which we termed the “hydrophobic box,” located at the extracellular interface of transmembrane helices. A single position in the hydrophobic box differed between mammalian AMPA and NMDA receptors. Surprisingly, we find that an NMDAR-to-AMPAR exchange mutation at this position in the rat GluN2A or GluN2B subunit had a dramatic and highly specific effect on NMDAR desensitization, making it AMPAR-like. In contrast, a reverse exchange mutation in AMPARs had minimal effects on desensitization. These experiments highlight differences in desensitization between iGluR subtypes and the highly specific contribution of the GluN2 subunit to this process. SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by neurotransmitter molecules. Here, we studied ionotropic glutamate receptors (iGluRs), which are ion channels activated by the neurotransmitter glutamate. By comparing the sequences of a vast number of iGluR proteins from diverse animal species, assisted by available structural information, we identified a highly conserved motif. We showed that a single amino acid difference in this motif between mammalian iGluR subtypes has dramatic effects on receptor function. These results have implications in both the evolution of synaptic function, as well as the role of i

  13. Quantification of beta adrenergic receptor subtypes in beta-arrestin knockout mouse airways.

    PubMed

    Hegde, Akhil; Strachan, Ryan T; Walker, Julia K L

    2015-01-01

    In allergic asthma Beta 2 adrenergic receptors (β2ARs) are important mediators of bronchorelaxation and, paradoxically, asthma development. This contradiction is likely due to the activation of dual signaling pathways that are downstream of G proteins or β-arrestins. Our group has recently shown that β-arrestin-2 acts in its classical role to desensitize and constrain β2AR-induced relaxation of both human and murine airway smooth muscle. To assess the role of β-arrestins in regulating β2AR function in asthma, we and others have utilized β-arrestin-1 and -2 knockout mice. However, it is unknown if genetic deletion of β-arrestins in these mice influences β2AR expression in the airways. Furthermore, there is lack of data on compensatory expression of βAR subtypes when either of the β-arrestins is genetically deleted, thus necessitating a detailed βAR subtype expression study in these β-arrestin knockout mice. Here we standardized a radioligand binding methodology to characterize and quantitate βAR subtype distribution in the airway smooth muscle of wild-type C57BL/6J and β-arrestin-1 and β-arrestin-2 knockout mice. Using complementary competition and single-point saturation binding assays we found that β2ARs predominate over β1ARs in the whole lung and epithelium-denuded tracheobronchial smooth muscle of C57BL/6J mice. Quantification of βAR subtypes in β-arrestin-1 and β-arrestin-2 knockout mouse lung and epithelium-denuded tracheobronchial tissue showed that, similar to the C57BL/6J mice, both knockouts display a predominance of β2AR expression. These data provide further evidence that β2ARs are expressed in greater abundance than β1ARs in the tracheobronchial smooth muscle and that loss of either β-arrestin does not significantly affect the expression or relative proportions of βAR subtypes. As β-arrestins are known to modulate β2AR function, our analysis of βAR subtype expression in β-arrestin knockout mice airways sets a reference

  14. GABAA receptor subtypes in the mouse brain: Regional mapping and diazepam receptor occupancy by in vivo [(18)F]flumazenil PET.

    PubMed

    Müller Herde, Adrienne; Benke, Dietmar; Ralvenius, William T; Mu, Linjing; Schibli, Roger; Zeilhofer, Hanns Ulrich; Krämer, Stefanie D

    2017-04-15

    Classical benzodiazepines, which are widely used as sedatives, anxiolytics and anticonvulsants, exert their therapeutic effects through interactions with heteropentameric GABAA receptors composed of two α, two β and one γ2 subunit. Their high affinity binding site is located at the interface between the γ2 and the adjacent α subunit. The α-subunit gene family consists of six members and receptors can be homomeric or mixed with respect to the α-subunits. Previous work has suggested that benzodiazepine binding site ligands with selectivity for individual GABAA receptor subtypes, as defined by the benzodiazepine-binding α subunit, may have fewer side effects and may even be effective in diseases, such as schizophrenia, autism or chronic pain, that do not respond well to classical benzodiazepines. The distributions of the individual α subunits across the CNS have been extensively characterized. However, as GABAA receptors may contain two different α subunits, the distribution of the subunits does not necessarily reflect the distribution of receptor subtypes with respect to benzodiazepine pharmacology. In the present study, we have used in vivo [(18)F]flumazenil PET and in vitro [(3)H]flumazenil autoradiography in combination with GABAA receptor point-mutated mice to characterize the distribution of the two most prevalent GABAA receptor subtypes (α1 and α2) throughout the mouse brain. The results were in agreement with published in vitro data. High levels of α2-containing receptors were found in brain regions of the neuronal network of anxiety. The α1/α2 subunit combinations were predictable from the individual subunit levels. In additional experiments, we explored in vivo [(18)F]flumazenil PET to determine the degree of receptor occupancy at GABAA receptor subtypes following oral administration of diazepam. The dose to occupy 50% of sensitive receptors, independent of the receptor subtype(s), was 1-2mg/kg, in agreement with published data from ex vivo

  15. Sphingosine-1-Phosphate Receptor Subtypes Differentially Regulate Smooth Muscle Cell Phenotype

    PubMed Central

    Wamhoff, Brian R.; Lynch, Kevin R.; Macdonald, Timothy L.; Owens, Gary K.

    2008-01-01

    Objective The role of sphingosine-1-phosphate (S1P) receptors in acute vascular injury and smooth muscle cell (SMC) phenotypic modulation is not completely resolved. Methods and Results S1P receptor antagonists were used to test the hypothesis that specific S1P receptor subtypes differentially regulate SMC phenotypic modulation. In response to acute balloon injury of the rat carotid artery, S1P1/S1P3 receptor mRNA levels were transiently increased at 48 hours whereas S1P2 receptor expression was decreased. S1P2 expression was reinduced and increased at 7 to 10 days postinjury. Daily intraperitoneal injection of the S1P1/S1P3 antagonist VPC44116 decreased neointimal hyperplasia by ≈50%. In vitro, pharmacological inhibition of S1P1/S1P3 receptors with VPC25239 attenuated S1P-induced proliferation of rat aortic SMCs. Conversely, inhibition of S1P2 with JTE013 potentiated S1P-induced proliferation. Inhibition of S1P1/S1P3 resulted in S1P-induced activation of the SMC differentiation marker genes SMα-actin and SMMHC, whereas inhibition of S1P2 attenuated this response. S1P2-dependent activation of SMα-actin and SMMHC was shown to be mediated by L-type voltage-gated Ca2+ channels and subsequent RhoA/Rho kinase– dependent SRF enrichment of CArG box promoter regions. Conclusion Results provide evidence that S1P1/S1P3 receptors promote, whereas S1P2 receptors antagonize, SMC proliferation and phenotypic modulation in vitro in response to S1P, or in vivo after vascular injury. PMID:18535287

  16. Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice.

    PubMed

    Moneta, D; Richichi, C; Aliprandi, M; Dournaud, P; Dutar, P; Billard, J M; Carlo, A S; Viollet, C; Hannon, J P; Fehlmann, D; Nunn, C; Hoyer, D; Epelbaum, J; Vezzani, A

    2002-09-01

    We have investigated the role of somatostatin receptor subtypes sst2 and sst4 in limbic seizures and glutamate-mediated neurotransmission in mouse hippocampus. As compared to wild-type littermates, homozygous mice lacking sst2 receptors showed a 52% reduction in EEG ictal activity induced by intrahippocampal injection of 30 ng kainic acid (P < 0.05). The number of behavioural tonic-clonic seizures was reduced by 50% (P < 0.01) and the time to onset of seizures was doubled on average (P < 0.05). Seizure-associated neurodegeneration was found in the injected hippocampus (CA1, CA3 and hilar interneurons) and sporadically in the ipsilateral latero-dorsal thalamus. This occurred to a similar extent in wild-type and sst2 knock-out mice. Intrahippocampal injection of three selective sst2 receptor agonists in wild-type mice (Octreotide, BIM 23120 and L-779976, 1.5-6.0 nmol) did not affect kainate seizures while the same compounds significantly reduced seizures in rats. L-803087 (5 nmol), a selective sst4 receptor agonist, doubled seizure activity in wild-type mice on average. Interestingly, this effect was blocked by 3 nmol octreotide. It was determined, in both radioligand binding and cAMP accumulation, that octreotide had no direct agonist or antagonist action at mouse sst4 receptors expressed in CCl39 cells, up to micromolar concentrations. In hippocampal slices from wild-type mice, octreotide (2 micro m) did not modify AMPA-mediated synaptic responses while facilitation occurred with L-803087 (2 micro m). Similarly to what was observed in seizures, the effect of L-803087 was reduced by octreotide. In hippocampal slices from sst2 knock-out mice, both octreotide and L-803087 were ineffective on synaptic responses. Our findings show that, unlike in rats, sst2 receptors in mice do not mediate anticonvulsant effects. Moreover, stimulation of sst4 receptors in the hippocampus of wild-type mice induced excitatory effects which appeared to depend on the presence of sst2

  17. Positron-labeled dopamine agonists for probing the high affinity states of dopamine subtype 2 receptors.

    PubMed

    Hwang, Dah-Ren; Narendran, Raj; Laruelle, Marc

    2005-01-01

    It is well documented that guanidine nucleotide-coupled dopamine subtype 2 receptors (D2) are configured in high and low affinity states for the dopamine agonist in vitro. However, it is still unclear whether these functional states exist in vivo. We hypothesized that positron-labeled D2 agonist and Positron Emission Tomography can be used to probe these functional states noninvasively. Recently, we demonstrated in nonhuman primates that N-[11C]propyl-norapomorphine (NPA), a full D2 agonist, is a suitable tracer for imaging the high affinity states of D2 receptors in vivo. We also developed kinetic modeling method to derive receptor parameters, such as binding potential (BP) and specific uptake ratios (V3''). When coupled with a dopamine releasing drug, amphetamine, NPA was found to be more sensitive than antagonist tracers, such as [11C]raclopride (RAC), to endogenous dopamine concentration changes (by about 42%). This finding suggests that NPA is a superior tracer for reporting endogenous DA concentration. In addition, the difference of the BP or V3'' of NPA and RAC under control and amphetamine challenge conditions could be used to estimate the functional states of D2 receptors in vivo. On the basis of our findings and the assumptions that NPA binds only to the high affinity states and RAC binds equally to both affinity states, we proposed that about 70% of the D2 receptors are configured in the high affinity states in vivo.

  18. Selective blockade of the endothelin subtype A receptor decreases early atherosclerosis in hamsters fed cholesterol.

    PubMed Central

    Kowala, M. C.; Rose, P. M.; Stein, P. D.; Goller, N.; Recce, R.; Beyer, S.; Valentine, M.; Barton, D.; Durham, S. K.

    1995-01-01

    Recent studies suggest that endothelin and its receptors may be involved in atherogenesis. To test this hypothesis, cholesterol-fed hamsters were treated with a selective endothelin subtype A (ETA) receptor antagonist BMS-182874. Characterization of hamster atherosclerotic plaques indicated that they contained a fibrous cap of smooth muscle cells, large macrophage-foam cells, and epitopes of oxidized low density lipoprotein. Messenger RNA for both ETA and ETB receptors was detected in aortic endothelial cells, in medial smooth muscle cells, and in macrophage-foam cells and smooth muscle cells of the fibro-fatty plaques. BMS-182874 inhibited the endothelin-1-induced pressor response whereas the depressor effect was unaltered, suggesting that vascular ETA receptors were selectively blocked in vivo. In hyperlipidemic hamsters, BMS-182874 decreased the area of the fatty streak by reducing the number and size of macrophage-foam cells. The results indicated that ETA receptors and thus endothelin promoted the early inflammatory phase of atherosclerosis. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7717449

  19. Expression of the Somatostatin Receptor Subtype 4 in Intact and Inflamed Pulmonary Tissues

    PubMed Central

    Varecza, Zoltán; Elekes, Krisztián; László, Terézia; Perkecz, Anikó; Pintér, Erika; Sándor, Zoltán; Szolcsányi, János; Keszthelyi, Dániel; Szabó, Árpád; Sándor, Katalin; Molnár, Tamás F.; Szántó, Zalán; Pongrácz, Judit E.; Helyes, Zsuzsanna

    2009-01-01

    Somatostatin released from capsaicin-sensitive sensory nerves of the lung during endotoxin-induced murine pneumonitis inhibits inflammation and hyperresponsiveness, presumably via somatostatin receptor subtype 4 (sst4). The goal of the present study was to identify sst4 receptors in mouse and human lungs and to reveal its inflammation-induced alterations with real-time quantitative PCR, Western blot, and immunohistochemistry. In non-inflamed mouse and human lungs, mRNA expression and immunolocalization of sst4 are very similar. They are present on bronchial epithelial, vascular endothelial, and smooth-muscle cells. The sst4 receptor protein in the mouse lung significantly increases 24 hr after intranasal endotoxin administration as well as in response to 3 months of whole-body cigarette smoke exposure, owing to the infiltrating sst4-positivite mononuclear cells and neutrophils. In the chronically inflamed human lung, the large number of activated macrophages markedly elevate sst4 mRNA levels, although there is no change in acute purulent pneumonia, in which granulocytes accumulate. Despite mouse granulocytes, human neutrophils do not show sst4 immunopositivity. We provide the first evidence for the expression, localization, and inflammation-induced alterations of sst4 receptors in murine and human lungs. Inasmuch as tissue distribution of this receptor is highly similar, extrapolation of murine experimental results to human conditions might be possible. (J Histochem Cytochem 57:1127–1137, 2009) PMID:19687471

  20. Distribution of muscarinic acetylcholine receptor subtypes in the murine small intestine.

    PubMed

    Muise, Eleanor D; Gandotra, Neeru; Tackett, John J; Bamdad, Michaela C; Cowles, Robert A

    2017-01-15

    Serotonin stimulates enterocyte turnover in the small intestine and studies suggest this is mediated by neuronal signaling via a cholinergic pathway. Distribution of the five known muscarinic receptor subtypes (mAChRs) in the small intestine has not been fully studied, and their role in intestinal growth is unknown. We hypothesized that mAChRs have distinct anatomic distributions within the bowel, and that mAChRs present within intestinal crypts mediate the effects of acetylcholine on the small intestinal mucosa. Small intestine from male C57BL/6 mice ages 2, 4, 6, and 8weeks were harvested. RNA was isolated and cDNA synthesized for PCR-amplification of subtype specific mAChRs. Ileum was fixed with Nakane, embedded in epon, and immunofluorescence microscopy performed using polyclonal antibodies specific to each mAChR1-5. All five mAChR subtypes were present in the mouse duodenum, jejunum, and ileum at all ages by RT-PCR. Immunofluorescence microscopy suggested the presence of mAChR1-5 in association with mature enterocytes along the villus and within the myenteric plexus. Only mAChR2 clearly localized to the crypt stem cell compartment, specifically co-localizing with Paneth cells at crypt bases. Muscarinic receptors are widely distributed along the entire alimentary tract. mAChR2 appears to localize to the crypt stem cell compartment, suggesting it is a plausible regulator of stem cell activity. The location of mAChR2 to the crypt makes it a potential therapeutic target for treatment of intestinal disease such as short bowel syndrome. The exact cellular location and action of each mAChR requires further study. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A novel somatostatin conjugate with a high affinity to all five somatostatin receptor subtypes.

    PubMed

    Wulbrand, Ulrich; Feldman, Martin; Pfestroff, Andreas; Fehman, Hans-Cristophe; Du, Jin; Hiltunen, Jukka; Marquez, Marcela; Arnold, Rudolf; Westlin, Jan-Erik; Nilsson, Sten; Holmberg, Anders R

    2002-02-15

    Somatostatin receptors (SRS, five subtypes) are expressed in a variety of human tumors, including most tumors of neuroendocrine origin, breast tumors, certain brain tumors, renal cell tumors, lymphomas, and prostate cancer. Somatostatin (SMS) triggers cytostatic and cytotoxic effects and has a general inhibitory effect on secretion mediated through its interaction with SRS. That is the basis for its use in the treatment of SRS-positive tumors. Radiolabeled SMS analogs can also be used for systemic radiotherapy and for diagnostic investigations. Sms-14 was conjugated to a periodate-activated dextran70 (mean molecular weight, 70 kD) by reductive amination. The human tumor cell line LCC-18, from a neuroendocrine colonic tumor, was used for stable transfection with each SRS gene separately; transfection was achieved with the expression system TETon (Clontech, Palo Alto, CA). Clones were selected by culturing with G418 and hygromycin B, and positive clones were identified by reverse transcriptase-polymerase chain reaction and binding of iodine-125-labeled SMS-14. The binding affinity for each SRS subtype was then determined for the SMS-dextran conjugate (with SMS-14 used as a positive control). Sms-dextran70 showed high affinity binding to all five receptor subtypes. The IC50 values were between 3 and 80 nM. This conjugate has a long circulation half-life (i.e., approximately 27 hours after subcutaneous administration in mice) and, with high SRS pan-affinity demonstrated in this study, it has potential in the therapy of SRS-positive tumors. Currently, the clinical significance of SMS-dextran70 is being explored in a clinical Phase I-II study of patients with hormone-refractory prostate cancer. The outcome of this study will be reported when it is available. Copyright 2002 American Cancer Society.

  2. Analysis of γ-aminobutyric acid (GABA) type A receptor subtypes using isosteric and allosteric ligands.

    PubMed

    Olsen, Richard W

    2014-10-01

    The GABAA receptors (GABAARs) play an important role in inhibitory transmission in the brain. The GABAARs could be identified using a medicinal chemistry approach to characterize with a series of chemical structural analogues, some identified in nature, some synthesized, to control the structural conformational rigidity/flexibility so as to define the 'receptor-specific' GABA agonist ligand structure. In addition to the isosteric site ligands, these ligand-gated chloride ion channel proteins exhibited modulation by several chemotypes of allosteric ligands, that help define structure and function. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABAARs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Also in the trans-membrane domain are allosteric modulatory ligand sites, mostly positive, for diverse chemotypes with general anesthetic efficacy, namely, the volatile and intravenous agents: barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are apparent endogenous positive allosteric modulators of GABAARs. These binding sites depend on the GABAAR heteropentameric subunit composition, i.e., subtypes. Two classes of pharmacologically very important allosteric modulatory ligand binding site reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site, and the low-dose ethanol site. The benzodiazepine site is specific for certain subunit combination subtypes, mainly synaptically localized. In contrast, the low-dose (high affinity) ethanol site(s) is found at a modified benzodiazepine site on different, extrasynaptic, subtypes.

  3. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    SciTech Connect

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memory task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.

  4. Oestradiol-induced synapse formation in the female hippocampus: roles of oestrogen receptor subtypes.

    PubMed

    Zhou, L; Fester, L; Haghshenas, S; de Vrese, X; von Hacht, R; Gloger, S; Brandt, N; Bader, M; Vollmer, G; Rune, G M

    2014-07-01

    During the oestrus cycle, varying spine synapse density correlates positively with varying local synthesis of oestradiol in the hippocampus. In this context, the roles of the oestrogen receptor (ER) subtypes ERα and β are not fully understood. In the present study, we used neonatal hippocampal slice cultures from female rats because these cultures synthesise oestradiol and express both receptor subtypes, and inhibition of oestradiol synthesis in these cultures results in spine synapse loss. Using electron microscopy, we tested the effects on spine synapse density in response to agonists of both ERα and ERβ. Application of agonists to the cultures had no effect. After inhibition of oestradiol synthesis, however, agonists of ERα induced spine synapse formation, whereas ERβ agonists led to a reduction in spine synapse density in the CA1 region of these cultures. Consistently, up-regulation of ERβ in the hippocampus of adult female aromatase-deficient mice is paralleled by hippocampus-specific spine synapse loss in this mutant. Finally, we found an increase in spine synapses in the adult female ERβ knockout mouse, but no effect in the adult female ERα knockout mouse. Our data suggest antagonistic roles of ERβ and ERα in spine synapse formation in the female hippocampus, which may contribute to oestrus cyclicity of spine synapse density in the hippocampus. © 2014 British Society for Neuroendocrinology.

  5. Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism.

    PubMed

    Oblak, Adrian; Gibbs, Terrell T; Blatt, Gene J

    2013-12-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of 3. Abnormalities in social-emotional behaviors are a core deficit in autism, and are characterized by impaired reciprocal-social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5-HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5-HT systems have been implicated in several psychiatric disorders, including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5-HT in autism, there is emerging evidence that 5-HT systems in the central nervous system, including various 5-HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5-HT1A receptor-binding density in superficial and deep layers of the PCC and FG, and in the density of 5-HT(2A) receptors in superficial layers of the PCC and FG. A significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. This study provides potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  6. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype.

    PubMed

    Hernandez, Susan C; Vicini, Stefano; Xiao, Yingxian; Dávila-García, Martha I; Yasuda, Robert P; Wolfe, Barry B; Kellar, Kenneth J

    2004-10-01

    The rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex. The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at alpha3beta4 nAChRs heterologously expressed in human embryonic kidney 293 cells. In functional studies, the potencies and efficacies of nicotinic drugs to activate or block whole-cell currents in dissociated pinealocytes match closely their potencies and efficacies to activate or block 86Rb+ efflux in the cells expressing heterologous alpha3beta4 nAChRs. Measurements of mRNA indicated the presence of transcripts for alpha3, beta2, and beta4 nAChR subunits but not those for alpha2, alpha4, alpha5, alpha6, alpha7, or beta3 subunits. Immunoprecipitation with subunit-specific antibodies showed that virtually all [3H]EB-labeled nAChRs contained alpha3 and beta4 subunits associated in one complex. The beta2 subunit was not associated with this complex. Taken together, these results indicate that virtually all of the nAChRs in the rat pineal gland are the alpha3beta4 nAChR subtype and that the pineal gland can therefore serve as an excellent and convenient model in which to study the pharmacology and function of these receptors in a native tissue.

  7. Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism

    PubMed Central

    Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.

    2013-01-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004

  8. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype.

    PubMed

    Tiberi, M; Caron, M G

    1994-11-11

    Dopamine D1A and D1B receptor subtypes belong to the superfamily of G protein-coupled receptors. Both receptors are coupled to the activation of adenylyl cyclase and exhibit distinct brain distribution. To identify functional differences, binding and stimulation of adenylyl cyclase were assessed in 293 cells expressing transiently either dopamine D1A or D1B receptors. Membranes expressing D1B receptors displayed higher affinities for agonists than those expressing D1A receptors, whereas antagonist affinities were lower at the D1B than at the D1A receptor. Basal activity of adenylyl cyclase in whole 293 cells expressing various levels of D1B receptors was significantly higher than the basal activity measured in cells expressing D1A receptors. Maximal activation of adenylyl cyclase resulting from stimulation of the D1B receptor was less than that obtained following agonist activation of the D1A receptor. In cells expressing D1B receptors, agonists displayed an increased potency for stimulating adenylyl cyclase in comparison with the potencies determined for the D1A receptor. On the other hand, certain antagonists displayed "negative efficacy" at both receptor subtypes but had a more profound inhibition on the agonist-independent signaling activity of the D1B receptor. The properties described here are reminiscent of those of constitutively active G protein-coupled receptors obtained by site-directed mutations. Thus, the D1B receptor may represent a naturally occurring receptor subtype with properties akin to those of constitutively active G protein-coupled receptors. The different anatomical distribution and biochemical properties of these D1 receptors strengthen the functional distinctions between the two subtypes and could account for the basis of heterogeneity within a given class of neurotransmitter or hormone receptors. In addition, if these properties are recapitulated in cells expressing the D1B receptors, they may underlie important role in the regulation of

  9. Identification of the central imidazoline receptor subtype involved in modulation of halothane-epinephrine arrhythmias in rats.

    PubMed

    Kagawa, Kiyokazu; Hayashi, Yukio; Itoh, Isao; Iwasaki, Mitsuo; Takada, Koji; Kamibayashi, Takahiko; Yamatodani, Atsushi; Mashimo, Takashi

    2005-12-01

    We previously reported that imidazoline receptors in the central nervous system are involved in modulation of halothane-epinephrine arrhythmias. These receptors have been subclassified as I1 and I2 subtypes, but it is not known which receptor subtype is involved in halothane-epinephrine-induced arrhythmias. We designed the present study to clarify the involvement of central imidazoline receptor subtype in the modulation of halothane-epinephrine-induced arrhythmias. Rats were anesthetized with halothane and monitored continuously for systemic arterial blood pressure and premature ventricular contractions. The arrhythmogenic dose of epinephrine was defined as the smallest dose that produces three or more premature ventricular contractions within a 15-s period. Intracisternal moxonidine dose-dependently inhibited the epinephrine-induced arrhythmias during halothane anesthesia. Intracisternal efaroxan, a selective I1 antagonist with little affinity for I2 subtype, but not rauwolscine, an alpha2 antagonist without affinity for imidazoline receptors, blocked the antiarrhythmic effect of moxonidine. Intracisternal BU 224 and 2-BFI, selective I2 ligands, also inhibited the epinephrine-induced arrhythmias dose-dependently; however, these effects were abolished by efaroxan. We conclude that central I1, but not I2, receptors play an important role in inhibition of halothane-epinephrine arrhythmia.

  10. Distribution of muscarinic receptor subtypes in rat brain as determined in binding studies with AF-DX 116 and pirenzepine

    SciTech Connect

    Giraldo, E.; Hammer, R.; Ladinsky, H.

    1987-03-02

    In vitro competition binding experiments with the selective muscarinic antagonists AF-DX 116 and pirenzepine (PZ) vs /sup 3/H-N-methylscopolamine as radioligand revealed a characteristic distribution of muscarinic receptor subtypes in different regions of rat brain. Based on nonlinear least squares analysis, the binding data were compatible with the presence of three different subtypes: the M/sub 1/ receptor (high affinity for PZ), the cardiac M/sub 2/ receptor (high affinity for AF-DX 116) and the glandular M/sub 2/ receptor (low affinity for PZ and AF-DX 116). The highest proportion of M/sub 1/ receptors was found in the hippocampus, while the cerebellum and the hypothalamus were the regions with the largest fraction of the cardiac M/sub 2/ and glandular M/sub 2/ receptors, respectively. In certain brain areas, depending on the relative proportions of the subtypes, flat binding curves were seen for AF-DX 116 and PZ. Based on these data, an approximate distribution pattern of the subtypes in the various brain regions is presented. 19 references, 1 figure, 2 tables.

  11. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  12. Cinical Significance of Androgen Receptor, CK-5/6, KI-67 and Molecular Subtypes in Breast Cancer

    PubMed Central

    Kayahan, Münire; İdiz, Ufuk Oğuz; Gucin, Zuhal; Erözgen, Fazilet; Memmi, Naim; Müslümanoğlu, Mahmut

    2014-01-01

    Objective To detect the relationship between molecular subtypes of breast cancer with expressions of androgen receptor, cytokeratin 5/6 (CK5/6)and Ki-67. Materials and Methods Expressions of androgen receptor, CK-5/6 and Ki-67 were determined by immunohistochemistry in paraffin-embedded sections obtained from 86 invasive breast cancer cases of stages I/IIa/IIb in 4 molecular subtypes. Patients treated for recurrent disease and locally advanced disease were excluded. Results Forty one luminal A cases, ie. positive estrogen receptor(ER) and/or progesteron receptor (PR) with negative epidermal growth factor receptor (HER2), 14 luminal B, ie. positive ER and/or PR and positive HER2, 14 HER2-enriched (HER2+), ie. negative ER and PR with positive HER2, and 17 triple negative (negative ER and PR and HER2) invasive breast cancers were included. Mean follow-up was 17.46±11.70 mo. Androgen receptor-negativity and CK5/6-positivity were significantly more common in HER2+ and triple negative groups. Ki-67 and histological grade were higher in HER2+ group, significantly. Two deaths were triple negative (P=0.04). Androgen receptor-negativity, CK5/6 and Ki-67 status did not affect survival or systemic metastases, significantly. All groups had local recurrences. Local recurrence was significantly associated with androgen receptor-negativity in luminal A and high Ki-67 value in HER2+ groups. Systemic metastases were significantly more common in triple negative and HER2+ groups. Conclusion Molecular subtypes of breast cancer are prognostic and predictive. Androgen receptor is expressed more commonly in luminal subtypes with better prognosis and androgen receptor negativity is associated with development of local recurrence in luminal A cancers.

  13. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors

    PubMed Central

    Yao, Yongneng; Harrison, Chris B; Freddolino, Peter L; Schulten, Klaus; Mayer, Mark L

    2008-01-01

    NR3 subtype glutamate receptors have a unique developmental expression profile, but are the least well-characterized members of the NMDA receptor gene family, which have key roles in synaptic plasticity and brain development. Using ligand binding assays, crystallographic analysis, and all atom MD simulations, we investigate mechanisms underlying the binding by NR3A and NR3B of glycine and D-serine, which are candidate neurotransmitters for NMDA receptors containing NR3 subunits. The ligand binding domains of both NR3 subunits adopt a similar extent of domain closure as found in the corresponding NR1 complexes, but have a unique loop 1 structure distinct from that in all other glutamate receptor ion channels. Within their ligand binding pockets, NR3A and NR3B have strikingly different hydrogen bonding networks and solvent structures from those found in NR1, and fail to undergo a conformational rearrangement observed in NR1 upon binding the partial agonist ACPC. MD simulations revealed numerous interdomain contacts, which stabilize the agonist-bound closed-cleft conformation, and a novel twisting motion for the loop 1 helix that is unique in NR3 subunits. PMID:18636091

  14. CoMFA and docking study of novel estrogen receptor subtype selective ligands

    NASA Astrophysics Data System (ADS)

    Wolohan, Peter; Reichert, David E.

    2003-05-01

    We present the results from a Comparative Molecular Field Analysis (CoMFA) and docking study of a diverse set of 36 estrogen receptor ligands whose relative binding affinities (RBA) with respect to 17β-Estradiol were available in both isoforms of the nuclear estrogen receptors (ERα, ERβ). Initial CoMFA models exhibited a correlation between the experimental relative binding affinities and the molecular steric and electrostatic fields; ERα: r2=0.79, q2=0.44 ERβ: r2=0.93, q2=0.63. Addition of the solvation energy of the isolated ligand improved the predictive nature of the ERβ model initially; r2=0.96, q2=0.70 but upon rescrambling of the data-set and reselecting the training set at random, inclusion of the ligand solvation energy was found to have little effect on the predictive nature of the CoMFA models. The ligands were then docked inside the ligand binding domain (LBD) of both ERα and ERβ utilizing the docking program Gold, after-which the program CScore was used to rank the resulting poses. Inclusion of both the Gold and CScore scoring parameters failed to improve the predictive ability of the original CoMFA models. The subtype selectivity expressed as RBA(ERα/ERβ) of the test sets was predicted using the most predictive CoMFA models, as illustrated by the cross-validated r2. In each case the most selective ligands were ranked correctly illustrating the utility of this method as a prescreening tool in the development of novel estrogen receptor subtype selective ligands.

  15. Endothelin receptor subtypes and their functional relevance in human small coronary arteries

    PubMed Central

    Pierre, Lisa N; Davenport, Anthony P

    1998-01-01

    The potent constrictor peptide endothelin (ET) has been implicated in various cardiovascular disorders including myocardial infarction and atherosclerosis. We have investigated the nature of ET receptor subtypes present on human small coronary arteries.Small coronary arteries were mounted in a wire-myograph for in vitro pharmacology. To investigate the ET receptor subtypes present in different segments of the coronary vascular tree, arteries were grouped according to internal diameter. Responses in arteries with small internal diameters (mean 316.7±7.9 μm; Group B) were compared to those in larger arteries (mean 586.2±23.1 μm; Group A).ET-1 consistently and potently contracted arteries from Group A and B, with EC50 values of 1.7 (0.9–3.2) nM (n=15) and 2.3 (1.4–4.2) nM (n=14), respectively. No correlation was observed between ET-1 potency and internal diameter. The response to ET-1 was potently antagonized by the selective ETA receptor antagonist PD156707 in both Group A and Group B, yielding pA2 values of 8.60±0.12 (n=4–6) and 8.38±0.17 (n=4–6), respectively. Slopes from Schild regression were not significantly different from unity.In contrast to ET-1, individual responses to ET-3 were variable. While all arteries from Group A responded to ET-3 (EC50∼69 (23–210) nM) (n=12), no response was obtained in 5 of the 14 tested in Group B. Of those responding, many failed to reach a maximum at concentrations up to 1 μM. ET-1 was more potent than ET-3 in all arteries tested. A biphasic ET-3 response was observed in 8 arteries suggesting that a small ETB population was also present in some patients. The selective ETB receptor agonist sarafotoxin S6c had little or no effect up to 10 nM (n=4–6).Responses to ET-1 and ET-3 were unaffected by removal of the endothelium in arteries from both groups suggesting a lack of functional, relaxant ETB receptors on endothelial cells (n=5).Using autoradiography, specific high density binding of the non

  16. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  17. Central muscarinic receptor subtypes involved in pilocarpine-induced salivation, hypertension and water intake.

    PubMed

    Borella, T L; De Luca, L A; Colombari, D S A; Menani, J V

    2008-12-01

    Recent evidence has suggested that pilocarpine (ACh receptor agonist) injected peripherally may act centrally producing salivation and hypertension. In this study, we investigated the effects of specific M(1) (pirenzepine), M(2)/M(4) (methoctramine), M(1)/M(3) (4-DAMP) and M(4) (tropicamide) muscarinic receptor subtype antagonists injected into the lateral cerebral ventricle (LV) on salivation, water intake and pressor responses to peripheral pilocarpine. Male Holtzman rats with stainless steel cannulae implanted in the LV were used. Salivation was measured in rats anaesthetized with ketamine (100 mg per kg body weight) and arterial pressure was recorded in unanaesthetized rats. Salivation induced by i.p. pilocarpine (4 micromol per kg body weight) was reduced only by 4-DAMP (25-250 nmol) injected into the LV, not by pirenzepine, methoctramine or tropicamide at the dose of 500 nmol. Pirenzepine (0.1 and 1 nmol) and 4-DAMP (5 and 10 nmol) injected into the LV reduced i.p. pilocarpine-induced water intake, whereas metoctramine (50 nmol) produced nonspecific effects on ingestive behaviours. Injection of pirenzepine (100 nmol) or 4-DAMP (25 and 50 nmol) into the LV reduced i.v. pilocarpine-induced pressor responses. Tropicamide (500 nmol) injected into the LV had no effect on pilocarpine-induced salivation, pressor responses or water intake. The results suggest that central M(3) receptors are involved in peripheral pilocarpine-induced salivation and M(1) receptors in water intake and pressor responses. The involvement of M(3) receptors in water intake and pressor responses is not clear because 4-DAMP blocks both M(1) and M(3) receptors.

  18. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  19. Intermolecular cross-talk between the prostaglandin E2 receptor (EP)3 of subtype and thromboxane A(2) receptor signalling in human erythroleukaemic cells.

    PubMed

    Reid, Helen M; Kinsella, B Therese

    2009-10-01

    In previous studies investigating cross-talk of signalling between prostaglandin (PG)E(2) receptor (EP) and the TPalpha and TPbeta isoforms of the human thromboxane (TX)A(2) receptor (TP), 17-phenyl trinor PGE(2)-induced desensitization of TP receptor signalling through activation of the AH6809 and SC19220-sensitive EP(1) subtype of the EP receptor family, in a cell-specific manner. Here, we sought to further investigate that cross-talk in human erythroleukaemic (HEL) 92.1.7 cells. Specificity of 17-phenyl trinor PGE(2) signalling and its possible cross-talk with signalling by TPalpha/TPbeta receptors endogenously expressed in HEL cells was examined through assessment of agonist-induced inositol 1,4,5-trisphosphate (IP)(3) generation and intracellular calcium ([Ca(2+)](i)) mobilization. While 17-Phenyl trinor PGE(2) led to activation of phospholipase (PL)Cbeta to yield increases in IP(3) generation and [Ca(2+)](i), it did not desensitize but rather augmented that signalling in response to subsequent stimulation with the TXA(2) mimetic U46619. Furthermore, the augmentation was reciprocal. Signalling by 17-phenyl trinor PGE(2) was found to occur through AH6809- and SC19920-insensitive, Pertussis toxin-sensitive, G(i)/G(betagamma)-dependent activation of PLCbeta. Further pharmacological investigation using selective EP receptor subtype agonists and antagonists confirmed that 17-phenyl trinor PGE(2)-mediated signalling and reciprocal cross-talk with the TP receptors occurred through the EP(3), rather than the EP(1), EP(2) or EP(4) receptor subtype in HEL cells. The EP(1) and EP(3) subtypes of the EP receptor family mediated intermolecular cross-talk to differentially regulate TP receptor-mediated signalling whereby activation of EP(1) receptors impaired or desensitized, while that of EP(3) receptors augmented signalling through TPalpha/TPbeta receptors, in a cell type-specific manner.

  20. Profiling of somatostatin receptor subtype expression by quantitative PCR and correlation with clinicopathological features in pancreatic endocrine tumors.

    PubMed

    Nakayama, Yoshihito; Wada, Ryuichi; Yajima, Nobuhisa; Hakamada, Ken-ichi; Yagihashi, Soroku

    2010-11-01

    Pancreatic endocrine tumor (PET) presents variable clinical features. Five subtypes of somatostatin receptor (SSTR) are involved in hormone secretion and cell proliferation. In this paper, we explore the correlation between the SSTR subtype messenger RNA (mRNA) expression and clinicopathological features of PET. Twenty-one cases of PET and 5 cases of pancreatic adenocarcinomas (AC) were studied. Using total RNA extracted from paraffin sections and fresh tissues, SSTR subtype mRNA was quantified by real-time polymerase chain reaction. The hormones and MIB1 index were examined using immunohistochemical techniques. The mRNA levels of SSTR1, SSTR2, SSTR3, and SSTR5 were high in PET compared with AC, whereas the expression of SSTR4 was low in PET and AC. Levels of each subtype did not vary with histological grades. Somatostatin receptor 2 levels in functioning tumors were slightly low compared with nonfunctioning tumors. Four distinct groups of PET were identified by hierarchical cluster analysis, and two of these groups showed reduced SSTR5 with elevation of MIB1 index. The study showed a heterogeneous expression profile of SSTR subtype mRNA and the association of reduction in SSTR5 with high proliferative activity. Such profiling of SSTR subtypes may provide useful information on tumor biology and treatment of PET.

  1. Some environmental contaminants influence motor and feeding behaviors in the ornate wrasse (Thalassoma pavo) via distinct cerebral histamine receptor subtypes.

    PubMed

    Giusi, Giuseppina; Facciolo, Rosa Maria; Alò, Raffaella; Carelli, Antonio; Madeo, Maria; Brandmayr, Pietro; Canonaco, Marcello

    2005-11-01

    Common environmental contaminants such as heavy metals and pesticides pose serious risks to behavioral and neuroendocrine functions of many aquatic organisms. In the present study, we show that the heavy metal cadmium and the pesticide endosulfan produce such effects through an interaction of specific cerebral histamine receptor subtypes in the teleost ornate wrasse (Thalassoma pavo). Treatment of this teleost with toxic cadmium levels for 1 week was sufficient to induce abnormal swimming movements, whereas reduced feeding behaviors were provoked predominantly by elevated endosulfan concentrations. In the brain, these environmental contaminants caused neuronal degeneration in cerebral targets such as the mesencephalon and hypothalamus, damage that appeared to correlate with altered binding levels of the three major histamine receptors (subtypes 1, 2, and 3). Although cadmium accounted for reduced binding activity of all three subtypes in most brain regions, it was subtype 2 that seemed to be its main target, as shown by a very great (p < 0.001) down-regulation in mesencephalic areas such as the stratum griseum central layer. Conversely, endosulfan provided very great and great (p < 0.01) up-regulating effects of subtype 3 and 1 levels, respectively, in preoptic-hypothalamic areas such as the medial part of the lateral tuberal nucleus, and in the suprachiasmatic nucleus. These results suggest that the neurotoxicant-dependent abnormal motor and feeding behaviors may well be tightly linked to binding activities of distinct histamine subtypes in localized brain regions of the Thalassoma pavo.

  2. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  3. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes.

    PubMed

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M; Shulepko, Mikhail A; Dolgikh, Dmitry A; Pinborg, Lars H; Härtig, Wolfgang; Lyukmanova, Ekaterina N; Mikkelsen, Jens D

    2016-10-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1-42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1-42-induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting receptors?

    PubMed Central

    Bergren, D R; Peterson, D F

    1993-01-01

    1. We studied the characteristics of pulmonary sensory receptors whose afferent fibres are in the left vagus nerve of opened-chest rats. The activity of these receptors was recorded during mechanical ventilation approximating eupnoea, as well as during deflation, stepwise inflations and constant-pressure inflations of the lungs. Data were also collected from closed-chest rats and analysed separately. 2. Ninety-four per cent of receptors were located in the ipsilateral lung or airways with the remainder in the contralateral lung. 3. Not only were slowly adapting receptors (SARs) the most abundant pulmonary receptors but 21% of them were either exclusively or predominantly active during the deflationary phase of the ventilatory cycle. Deflationary units were found in opened- and closed-chest rats. The average conduction velocity for all fibres innervating SARs averaged 29.7 m s-1. 4. We found rapidly adapting receptors (RARs) to be extremely rare in the rat. Their activity was sparse and irregular. The conduction velocities of fibres innervating RARs averaged 12.3 m s-1. 5. Far more abundant than RARs in the remaining population of pulmonary fibres were C fibres. They were observed to have an average conduction velocity of 2.1 m s-1, base-level activity which was irregular and a high pressure threshold of activation and were stimulated by intravenous capsaicin injection. 6. Notable differences exist between pulmonary receptors in rats and those reported in other species. The variations include the abundant existence of intrapulmonary SARs with exclusively deflationary modulation and the rarity of RARs. We also encountered C fibres which have not previously been described systematically in the rat. PMID:8229824

  5. Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery.

    PubMed

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G; Mandrup, Susanne

    2006-08-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARgamma2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARgamma2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (alpha, gamma, and beta/delta), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci.

  6. Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery

    PubMed Central

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324

  7. CaMKII phosphorylation of the GABAA receptor: receptor subtype- and synapse-specific modulation

    PubMed Central

    Houston, Catriona M; He, Qionger; Smart, Trevor G

    2009-01-01

    As a major inhibitory neurotransmitter, GABA plays a vital role in the brain by controlling the extent of neuronal excitation. This widespread role is reflected by the ubiquitous distribution of GABAA receptors throughout the central nervous system. To regulate the level of neuronal inhibition requires some endogenous control over the release of GABA and/or its postsynaptic response. In this context, Ca2+ ions are often used as primary or secondary messengers frequently resulting in the activation of protein kinases and phosphatases. One such kinase, Ca2+/calmodulin-dependent protein kinase II (CaMKII), can target the GABAA receptor to cause its phosphorylation. Evidence is now emerging, which is reviewed here, that GABAA receptors are indeed substrates for CaMKII and that this covalent modification alters the expression of cell surface receptors and their function. This type of regulation can also feature at inhibitory synapses leading to long-term inhibitory synaptic plasticity. Most recently, CaMKII has now been proposed to differentially phosphorylate particular isoforms of GABAA receptors in a synapse-specific context. PMID:19332484

  8. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    PubMed

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-06

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The SOL-2/Neto Auxiliary Protein Modulates the Function of AMPA-Subtype Ionotropic Glutamate Receptors

    PubMed Central

    Wang, Rui; Mellem, Jerry E.; Jensen, Michael; Brockie, Penelope J.; Walker, Craig S.; Hoerndli, Frédéric J.; Madsen, David M.; Maricq, Andres V.

    2012-01-01

    Summary The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. PMID:22958824

  10. Molecular cloning and characterization of the canine prostaglandin E receptor EP2 subtype.

    PubMed

    Hibbs, T A; Lu, B; Smock, S L; Vestergaard, P; Pan, L C; Owen, T A

    1999-05-01

    Prostaglandin E2 (PGE2) binds to four G-protein coupled cell surface receptors (EP1-EP4) and has been implicated as a local mediator of bone anabolism via a cyclic AMP mediated pathway following activation of the EP2 and/or EP4 receptor subtype. A canine kidney cDNA library was screened using a human EP2 probe, and a clone with an open reading frame of 1083 bp, potentially encoding a protein of 361 amino acids, was characterized. This open reading frame has 89% identity to the human EP2 cDNA at the nucleotide level and 87% identity at the predicted protein level. Scatchard analysis of a CHO cell line stably transfected with canine EP2 yielded a dissociation constant of 22 nM for PGE2. Competition binding studies, using 3H-PGE2 as ligand, demonstrated specific displacement by PGE2, Prostaglandin E1, Prostaglandin A3, and butaprost (an EP2 selective ligand), but not by ligands with selectivity for the related DP, FP, IP, or TP receptors. Specific ligand binding also resulted in increased levels of cAMP in EP2 transfected cells with no evidence of short-term, ligand-induced desensitization. Northern blot analysis revealed two transcripts of 3300 and 2400 bp in canine lung, and reverse-transcription polymerase chain reaction showed expression in all tissues examined. Southern blot analysis suggests the presence of a single-copy gene for EP2 in the dog.

  11. The mouse prostaglandin E receptor EP2 subtype: cloning, expression, and northern blot analysis.

    PubMed

    Katsuyama, M; Nishigaki, N; Sugimoto, Y; Morimoto, K; Negishi, M; Narumiya, S; Ichikawa, A

    1995-09-25

    A functional cDNA clone for the mouse prostaglandin (PG) E receptor EP2 subtype was isolated from a mouse cDNA library. The mouse EP2 receptor consists of 362 amino acid residues with seven putative transmembrane domains. [3H]PGE2 bound specifically to the membrane of Chinese hamster ovary cells stably expressing the cloned receptor. This binding was displaced by unlabeled prostanoids in the order of PGE2 = PGE1 > iloprost, a stable PGI2 agonist > PGF2 alpha > PGD2. Binding was also inhibited by butaprost (an EP2 agonist) and to a lesser extent by M&B 28767 (an EP3 agonist), but not by sulprostone (an EP1 and EP3 agonist) or SC-19220 (an EP1 antagonist). PGE2 and butaprost increased the cAMP level in the Chinese hamster ovary cells in a concentration-dependent manner. Northern blot analysis revealed that EP2 mRNA is expressed most abundantly in the uterus, followed by the spleen, lung, thymus, ileum, liver, and stomach.

  12. Rabies virus selectively alters 5-HT1 receptor subtypes in rat brain.

    PubMed

    Ceccaldi, P E; Fillion, M P; Ermine, A; Tsiang, H; Fillion, G

    1993-04-15

    Rabies virus infection in man induces a series of clinical symptoms, some suggesting involvement of the central serotonergic system. The results of the present study show that, 5 days after rabies virus infection in rat, the total reversible high-affinity binding of [3H]5-HT in the hippocampus is not affected, suggesting that 5-HT1A binding is not altered. 5-HT1B sites identified by [125I]cyanopindolol binding are not affected in the cortex 3 and 5 days after the infection. Accordingly, the cellular inhibitory effect of trifluoromethylphenylpiperazine (TFMPP) on the [3H]acetylcholine-evoked release, presumably related to 5-HT1B receptor activity, is not modified 3 days after infection. In contrast, [3H]5-HT binding determined in the presence of drugs masking 5-HT1A, 5-HT1B and 5-HT1C receptors, is markedly (50%) reduced 3 days after the viral infection. These results suggest that 5-HT1D-like receptor subtypes may be affected specifically and at an early stage after rabies viral infection.

  13. Wound repair and proliferation of bronchial epithelial cells enhanced by bombesin receptor subtype 3 activation.

    PubMed

    Tan, Yu-Rong; Qi, Ming-Ming; Qin, Xiao-Qun; Xiang, Yang; Li, Xiang; Wang, Yue; Qu, Fei; Liu, Hui-Jun; Zhang, Jian-Song

    2006-07-01

    The present study was designed to investigate the role of bombesin receptor subtype 3 (BRS-3) in airway wound repair. The results showed that: (1) There was few expression of BRS-3 mRNA in the control group. In contrast, the expression of BRS-3 mRNA was gradually increased in the early 2 days, and peaked on the fourth day, and then decreased in the ozone-stressed AHR animal. BRS-3 mRNA was distributed in the ciliated columnar epithelium, monolayer columnar epithelium cells, scattered mesenchymal cells and Type II alveolar cells; (2) The wound repair and proliferation of bronchial epithelial cells (BECs) were accelerated in a concentration-dependent manner by BRS-3 activation with P3513, which could be inhibited by PKA inhibitor H89. The study demostrated that activation of BRS-3 may play an important role in wound repair of AHR.

  14. Molecular cloning and expression of rat prostaglandin E receptor EP2 subtype.

    PubMed

    Sando, T; Usui, T; Tanaka, I; Mori, K; Sasaki, Y; Fukuda, Y; Namba, T; Sugimoto, Y; Ichikawa, A; Narumiya, S

    1994-05-16

    A cDNA clone encoding the rat prostaglandin (PG) E receptor EP2 subtype was cloned from a rat lung cDNA library. It encodes 488 amino acid residues with putative seven-transmembrane domains. Specific binding of [3H]PGE2 was found in COS-7 cells transfected with the cDNA and was displaced with unlabeled prostaglandins in the order of PGE2 = PGE1 > iloprost > or = PGF2 alpha > or = PGD2. The binding was also inhibited by misoprostol, an EP2 and EP3 agonist, but not by sulprostone, an EP1 and EP3 agonist. Northern blot analysis demonstrated that the EP2 mRNA is widely expressed in various tissues, the significant expression being observed in the thymus, lung, spleen, heart stomach, and pancreas.

  15. FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target

    PubMed Central

    Horton, Janet K.; Siamakpour-Reihani, Sharareh; Lee, Chen-Ting; Zhou, Ying; Chen, Wei; Geradts, Joseph; Fels, Diane R.; Hoang, Peter; Ashcraft, Kathleen A.; Groth, Jeff; Kung, Hsiu-Ni; Dewhirst, Mark W.; Chi, Jen-Tsan A.

    2015-01-01

    Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in

  16. Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system.

    PubMed

    Obaid, A L; Nelson, M E; Lindstrom, J; Salzberg, B M

    2005-08-01

    Nicotinic transmission in the enteric nervous system (ENS) is extensive, but the role of individual nicotinic acetylcholine receptor (nAChR) subtypes in the functional connectivity of its plexuses has been elusive. Using monoclonal antibodies (mAbs) against neuronal alpha3-, alpha4-, alpha3/alpha5-, beta2-, beta4- and alpha7-subunits, combined with radioimmunoassays and immunocytochemistry, we demonstrate that guinea-pig enteric ganglia contain all of these nAChR-subunits with the exception of alpha4, and so, differ from mammalian brain. This information alone, however, is insufficient to establish the functional role of the identified nAChR-subtypes within the enteric networks and, ultimately, their specific contributions to gastrointestinal physiology. We have used voltage-sensitive dyes and a high-speed CCD camera, in conjunction with specific antagonists to various nAChRs, to elucidate some of the distinct contributions of the individual subtypes to the behaviour of enteric networks. In the guinea-pig, the submucous plexus has the extraordinary advantage that it is virtually two-dimensional, permitting optical recording, with single cell resolution, of the electrical activity of all of its neurones. In this plexus, the block of alpha3beta2-, alpha3beta4- and/or alpha7-nAChRs always results in a decrease in the magnitude of the synaptic response. However, the magnitude of the fast excitatory post-synaptic potentials (epsps) evoked by electrical stimulation of a neighbouring ganglion varies from cell to cell, reflecting the differential expression of subunits already observed using mAbs, as well as the strengths of the activated synaptic inputs. At the same time, we observe that submucous neurones have a substantial mecamylamine (Mec)-insensitive (non-nicotinic) component to their fast epsps, which may point to the presence of purinergic or serotonergic fast epsps in this system. In the myenteric plexus, on the other hand, the antagonist-induced changes in the

  17. FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.

    PubMed

    Horton, Janet K; Siamakpour-Reihani, Sharareh; Lee, Chen-Ting; Zhou, Ying; Chen, Wei; Geradts, Joseph; Fels, Diane R; Hoang, Peter; Ashcraft, Kathleen A; Groth, Jeff; Kung, Hsiu-Ni; Dewhirst, Mark W; Chi, Jen-Tsan A

    2015-11-01

    Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in

  18. Alteration of catecholamine phenotype in transgenic mice influences expression of adrenergic receptor subtypes.

    PubMed

    Kobayashi, K; Ota, A; Togari, A; Morita, S; Mizuguchi, T; Sawada, H; Yamada, K; Nagatsu, I; Matsumoto, S; Fujita, K

    1995-08-01

    Agonist-induced regulation of adrenergic receptors (ARs) has an important role in controlling physiological functions in response to changes in catecholamine stimulation. We previously generated transgenic mice expressing phenylethanolamine N-methyltransferase (PNMT) under the control of a human dopamine beta-hydroxylase gene promoter to switch catecholamine specificity from the norepinephrine phenotype to the epinephrine phenotype. In the present study, we first examined changes in catecholamine metabolism in peripheral tissues innervated by sympathetic neurons of the transgenic mice. In the transgenic target tissues, a high-level expression of PNMT led to a dramatic increase in the epinephrine levels, whereas the norepinephrine levels were decreased to 48.6-87.9% of the nontransgenic control levels. Analysis of plasma catecholamines in adrenalectomized mice showed large amounts of epinephrine derived from sympathetic neurons in the transgenic mice. Subsequently, we performed radioligand binding assays with (-)-[125I]iodocyanopindolol to determine changes in binding sites of beta-AR subtypes. In transgenic mice, the number of beta 2-AR binding sites was 56.4-74.9% of their nontransgenic values in the lung, spleen, submaxillary gland, and kidney, whereas the beta 1-AR binding sites were regulated in a different fashion among these tissues. Moreover, northern blot analysis of total RNA from the lung tissues showed that down-regulation of beta 2 binding sites was accompanied by a significant decrease in steady-state levels of the receptor mRNA. These results strongly suggest that alteration of catecholamine specificity in the transgenic sympathetic neurons leads to regulated expression of the beta-AR subtypes in their target tissues.

  19. Pharmacology of GABAC receptors: responses to agonists and antagonists distinguish A- and B-subtypes of homomeric rho receptors expressed in Xenopus oocytes.

    PubMed

    Pan, Yi; Khalili, Parham; Ripps, Harris; Qian, Haohua

    2005-03-07

    GABA(C) receptors, expressed predominantly in vertebrate retina, are thought to be formed mainly by GABA rho subunits. Five GABA rho subunits have been cloned from white perch retina, four of which form functional homooligomeric receptors when expressed in Xenopus oocytes. These rho subtypes, classified as rho1A, rho1B, rho2A and rho2B receptors based on amino acid sequence alignment, exhibit distinct temporal and pharmacological properties. To examine further the pharmacological properties associated with the various rho receptor subtypes, we investigated the effects of a selective GABA(C) receptor antagonist, TPMPA, on the GABA-mediated activity of receptors formed in Xenopus oocytes by the four GABA rho subunits. In addition, we recorded the activation profiles of beta-alanine, taurine, and glycine, three amino acids that modulate neuronal activity in various parts of the CNS and are purported to be rho receptor agonists. TPMPA effectively inhibited GABA-elicited responses on A-type receptors, whereas B-type receptors exhibited a relatively low sensitivity to the drug. A-type and B-type receptors also displayed distinctly different reactions to agonists. Both taurine and glycine-activated the B-type receptors, whereas these agents had no detectable effect on A-type receptors. Similarly, beta-alanine evoked large responses from B-type receptors, but was far less effective on A-type receptors. These results indicate that, in addition to the characteristic response properties identified previously, there is a pattern of pharmacological reactions that further distinguishes the A- and B-subtypes of GABA rho receptor.

  20. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  1. Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species

    PubMed Central

    Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter

    2012-01-01

    Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462

  2. Pharmacological evidence for a novel cysteinyl-leukotriene receptor subtype in human pulmonary artery smooth muscle

    PubMed Central

    Walch, Laurence; Norel, Xavier; Bäck, Magnus; Gascard, Jean-Pierre; Dahlén, Sven-Erik; Brink, Charles

    2002-01-01

    To characterize the cysteinyl-leukotriene receptors (CysLT receptors) in isolated human pulmonary arteries, ring preparations were contracted with leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in either the absence or presence of the selective CysLT1 receptor antagonists, ICI 198615, MK 571 or the dual CysLT1/CysLT2 receptor antagonist, BAY u9773. Since the contractions induced by the cysteinyl-leukotrienes (cysLTs) in intact preparations failed to attain a plateau response over the concentration range studied, the endothelium was removed and the tissue treated continuously with indomethacin (Rubbed+INDO). In these latter preparations, the pEC50 for LTC4 and LTD4 were not significantly different (7.61±0.07, n=20 and 7.96±0.09, n=22, respectively). However, the LTC4 and LTD4 contractions were markedly potentiated when compared with data from intact tissues. Leukotriene E4 (LTE4) did not contract human isolated pulmonary arterial preparations. In addition, treatment of preparations with LTE4 (1 μM; 30 min) did not modify either the LTC4 or LTD4 contractions. Treatment of preparations with the S-conjugated glutathione (S-hexyl-GSH; 100 μM, 30 min), an inhibitor of the metabolism of LTC4 to LTD4, did not modify LTC4 contractions. The pEC50 values for LTC4 were significantly reduced by treatment of the preparations with either ICI 198615, MK 571 or BAY u9773 and the pKB values were: 7.20, 7.02 and 6.26, respectively. In contrast, these antagonists did not modify the LTD4 pEC50 values. These findings suggest the presence of two CysLT receptors on human pulmonary arterial vascular smooth muscle. A CysLT1 receptor with a low affinity for CysLT1 antagonists and a novel CysLT receptor subtype, both responsible for vasoconstriction. Activation of this latter receptor by LTC4 and LTD4 induced a contractile response which was resistant to the selective CysLT1 antagonists (ICI 198615 and MK 571) as well as the non-selective (CysLT1/CysLT2) antagonist, BAY u9773. PMID

  3. Immunohistochemical expression and localization of somatostatin receptor subtypes in prostate cancer with neuroendocrine differentiation.

    PubMed

    Morichetti, D; Mazzucchelli, R; Santinelli, A; Stramazzotti, D; Lopez-Beltran, A; Scarpelli, M; Bono, A V; Cheng, L; Montironi, R

    2010-01-01

    The aim of the study is to examine the tissue expression and localization of the somatostatin receptors (SSTRs) in prostate cancer (PCa) with neuroendocrine (NE) differentiation. The five SSTR subtypes (SSTR1 to 5) were evaluated immunohistochemically in the secretory cells of normal-looking epithelium (Nep), high-grade prostatic intraepithelial neoplasia (HGPIN) and PCa in 20 radical prostatectomies (RPs) with Gleason score 3+3=6 acinar PCa; 20 RPs with GS 4+4=8 and 4+5=9 PCa; and 20 RPs with PCa with NE differentiation. The basal cells were evaluated in Nep and HGPIN. In all groups the stromal smooth muscle and endothelial cells were also analyzed. Concerning the secretory cells, (i) the greatest mean proportions of cells with strong cytoplasmic staining in PCa were seen for SSTR2, mainly in the group of RP with NE differentiation, and for SSTR4 in all three groups; the mean values in HGPIN were intermediate between Nep and PCa; (ii) Membrane staining was seen for SSTR3 and SSTR4; the mean percentages of positive cells, higher in SSTR3 than in SSTR4, decreased from Nep to HGPIN and PCa in all three RP groups; in the latter two, the mean percentages were similar; and (iii) Nuclear staining was seen with SSTR4 and SSTR5; for SSTR4, the mean percentages in the PCa of the three groups were higher than in HGPIN and Nep, the highest proportion being with PCa with NE differentiation. Concerning the basal cells, in Nep the mean proportions of cells with strong staining intensity were greater for SSTR1 and SSTR3 than for the other subtypes, the lowest being with SSTR2; in HGPIN the highest mean propositions of positive cells was with SSTR3, the proportions in the three RP groups being similar. Concerning the stromal smooth muscle and endothelial cells, the highest mean values being in SSTR1 and the lowest in SSTR5; for the former subtype the highest proportion of endothelial cells with strong intensity was seen in the RP NE group. In conclusion, this immunohistochemical

  4. Classification of M/sub 1/ and M/sub 2/ receptor subtypes in vivo by autoradiography using (/sup 125/I) (R,R) 4IQNB: Implications for imaging receptor subtypes

    SciTech Connect

    Gibson, R.E.; Moody, T.; Kzeszotarski, W.J.; Schneidau, T.S.; Jagoda, E.M.; Reba, R.C.

    1985-05-01

    (/sup 125/I) (R,R) 3-Quinuclidinyl 4-Iodobenzilate (4IQNB) is a high affinity radiotracer for the muscarinic acetylcholine receptor which exhibits differential kinetics of dissociation from the receptor subtypes, M/sub 1/ and M/sub 2/. The authors have determined the relative percentages of M/sub 1/ to M/sub 2/-receptor subtype in six structures of rat brain by equilibrium competition using the selective antagonist, QNX, and by analysis of the off-rate profiles for 4IQNB. The results are comparable and provide: (% M/sub 1/) caudate nucleus - 100%, hippocampus - 92%, cortex - 82%, thalamus - 6%, superior + inferior colliculi - 41%, and pons - 23%. To determine the relative proportions of M/sub 1/ to M/sub 2/ receptors in vivo we examined the distribution of 4IQNB at 2 h and 24 h by autoradiography. At 2 h, both M/sub 1/ and M/sub 2/ receptors will be labeled but at 24 h only the M/sub 1/ receptor will retain radiotracer. At 2 h, all structures of the brain are variably labeled with the cortex, hippocampus, caudate nucleus, olfactory nuclei, nucleus accumbens, pontine nuclei, and anteroventral thalamic nucleus (AV) most heavily labeled. At 24 h, both the pontine and AV, as well as the less heavily labeled hypothalamus, superior colliculus and mesencephalic nuclei, are devoid of radiotracer thus indicating predominantly M/sub 2/ receptor. Quantitation is necessary to determine possible washout of activity from the M/sub 2/ receptors in cortex. Similar time studies in man should provide distinctions between the M/sub 1/ and M/sub 2/ receptor rich structures and the preferential loss of a subtype of receptor due to disease.

  5. Structure-activity relationships and sub-type selectivity in an oxabicyclic estrogen receptor alpha/beta agonist scaffold.

    PubMed

    Hamann, Lawrence G; Meyer, J Hoyt; Ruppar, Daniel A; Marschke, Keith B; Lopez, Francisco J; Allegretto, Elizabeth A; Karanewsky, Donald S

    2005-03-01

    An oxabicyclic template for estrogen receptor alpha and beta agonists has been identified which can be tuned to provide moderate levels of selectivity for either receptor sub-type. Structure-activity relationships within this phenol-substituted oxabicyclo[3.3.1]nonene series are described. Select compounds from the present series showed activity in vivo after oral dosing in rodent models of uterine proliferation.

  6. Differential distribution of AT sub 1 and AT sub 2 angiotensin II receptor subtypes in the rat brain during development

    SciTech Connect

    Millan, M.A.; Catt, K.J.; Aghuilera, G. ); Jacobowitz, D.M. )

    1991-12-15

    Angiotensin II (AII) receptor subtypes were analyzed in the brains of adult and 2-week-old rats by in vitro autoradiography with {sup 125}I-labeled (Sar{sup 1},Ile{sup 8}) AII and competition studies with three AII antagonists: the nonpeptide antagonist, DuP 753, which is specific for AT{sub 1}receptors that mediate the calcium-inositol phospholipid signaling actions of AII; and nonpeptide (PD 123177) and peptide (CGP 42112A) antagonists that are selective for AT{sub 2} receptors of yet unknown function. In the adult rat brain, DuP 753 inhibited radioligand binding to the circumventricular organs and paraventricular nucleus but not to the lateral septum, subthalamic nucleus, and inferior olive. However, binding of {sup 125}I-labeled (Sar{sup 1}, Ile{sup 8}) AII in the latter regions was inhibited by the AT{sub 2} receptor antagonists PD 123177 and CGP 42112A. These areas showed similar displacement by the AT{sub 2} receptor subtype-specific antagonists in 2-week-old rats. These studies have demonstrated that presence of two AII receptor subtypes in the brain, one (AT{sub 1}) in areas related to regulation of blood pressure, water intake, and pituitary hormone secretion, and one (AT{sub 2}) whose function is not yet defined. The abundance and location of brain AT{sub 2} receptors in young animals, and the age-related changes in relative expression of the receptor subtypes, suggest that AII exerts specific actions according to the developmental stage of the central nervous system.

  7. Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes.

    PubMed

    Seguin, L; Widdowson, P S

    1993-02-01

    We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 microM) and the nonmetabolized analogue of GTP, guanyl-5'-yl-imidodiphosphate (GppNHp; 100 microM). Competition studies with bradykinin and with [Hyp3]bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 microM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 microM) and GDP (100 microM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 microM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties.

    PubMed

    Charpentier, S; Jarvie, K R; Severynse, D M; Caron, M G; Tiberi, M

    1996-11-08

    Recently, we have shown that the dopamine D1B/D5 receptor displays binding and coupling properties that are reminiscent of those of the constitutively activated G protein-coupled receptors when compared with the related D1A/D1 receptor subtype (Tiberi, M., and Caron, M. G. (1994) J. Biol. Chem. 269, 27925-27931). The carboxyl-terminal region of the third cytoplasmic loop of several G protein-coupled receptors has been demonstrated to be important for the regulation of the equilibrium between inactive and active receptor conformations. In this cytoplasmic region, the primary structure of dopamine D1A and D1B receptors differs by only two residues: Phe264/Arg266 are present in D1A receptor compared with Ile288/Lys290 in the D1B receptor. To investigate whether these structural differences could account for the distinct binding and coupling properties of these dopamine receptor subtypes, we swapped the variant residues located in the carboxyl-terminal region by site-directed mutagenesis. The exchange of the D1A receptor residue Phe264 by the D1B receptor counterpart isoleucine led to a D1A receptor mutant exhibiting D1B-like constitutive properties. In contrast, substitution of D1B receptor Ile288 by the D1A receptor counterpart phenylalanine resulted in a loss of constitutive activation of the D1B receptor with binding and coupling properties similar to the D1A receptor. The Arg/Lys substitution had no effect on the function of either receptor. These results demonstrate that the carboxyl-terminal region, and in particular residue Ile288, is a major determinant of the constitutive activity of the dopamine D1B receptor. Moreover, these results establish that not only can agonist-independent activity of a receptor be induced, but when given the appropriate mutation, it can be reversed or silenced.

  9. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  10. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes.

    PubMed

    Blough, Bruce E; Landavazo, Antonio; Decker, Ann M; Partilla, John S; Baumann, Michael H; Rothman, Richard B

    2014-10-01

    Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the USA. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin 2A (5-HT₂A) receptors. This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT₂A, serotonin 1A (5-HT₁A), and 5-HT₂A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT₂A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT₂A activation. All psychoactive tryptamines are 5-HT₂A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines.

  11. Bradykinin receptor subtypes in rat lung: effect of interleukin-1 beta.

    PubMed

    Tsukagoshi, H; Haddad, E B; Barnes, P J; Chung, K F

    1995-06-01

    We have characterized bradykinin (BK) receptors in the rat lung and studied the effect of recombinant human interleukin-1 beta (IL-1 beta) on BK receptors in vitro and in vivo. In lung membranes, saturation studies with [3]BK revealed a single class of specific and saturable binding sites. The BK B1 antagonist des-Arg9[Leu8]-BK was less effective in displacing [3H]BK binding sites from lung membranes. In contrast, the selective BK B2 antagonists, Hoe 140 (D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-BK) and NPC 567 (D-Arg-[Hyp3,D-Phe7]-BK) fully inhibited the binding of [3H]BK to lung membranes with Ki values of 96.7 +/- 17.8 pM and 9.0 +/- 2.5 nM, respectively. Intratracheal administration of 500 U of IL-1 beta induced airway hyper-responsiveness to inhaled BK and neutrophilia in bronchoalveolar lavage fluid 18 to 24 hr later. Compared to naive or saline-treated animals, IL-1 beta had no effect on [3H]BK binding characteristics at 4, 12 or 24 hr after IL-1 beta administration. Twenty-four hours after IL-1 beta instillation, there was no change in the affinity of the selective BK B1 or B2 antagonists when compared to control animals. In vivo, the selective BK B2 receptor antagonists, NPC 567 (3 mumol kg-1 i.v.) and Hoe 140 (100 nmol kg-1 i.v.), inhibited BK-induced increase in lung resistance, whereas the selective BK B1 antagonist, des-Arg9[Leu8]-BK (10 mumol kg-1 i.v.), was without effect. These data suggest that the action of BK in the rat lung is dependent mainly on the activation of the BK B2 receptor subtype.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney.

    PubMed

    Gwathmey, TanYa M; Shaltout, Hossam A; Rose, James C; Diz, Debra I; Chappell, Mark C

    2011-03-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; P<0.01) in BMX compared with CON. In contrast, the proportion of AT(2) sites was only one third that of controls (BMX, 25 ± 11% vs CON, 78 ± 4%; P<0.01), with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala7-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than in CON sheep (16 ± 3% vs 6 ± 4%; P<0.05); however, NO production to Ang II was attenuated in BMX (26 ± 7% vs 82 ± 14%; P<0.05). BMX exposure was also associated with a reduction in the Ang-(1-7) NO response (75 ± 8% vs 131 ± 26%; P<0.05). We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming.

  13. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC.

    PubMed

    Li, Rongsong; Mouillesseaux, Kevin P; Montoya, Dennis; Cruz, Daniel; Gharavi, Navid; Dun, Martin; Koroniak, Lukasz; Berliner, Judith A

    2006-03-17

    Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.

  14. Ryanodine receptor subtype 2 encodes Ca2+ oscillations activated by acetylcholine via the M2 muscarinic receptor/cADP-ribose signalling pathway in duodenum myocytes.

    PubMed

    Fritz, Nicolas; Macrez, Nathalie; Mironneau, Jean; Jeyakumar, Loice H; Fleischer, Sidney; Morel, Jean-Luc

    2005-05-15

    In this study, we characterized the signalling pathway activated by acetylcholine that encodes Ca2+ oscillations in rat duodenum myocytes. These oscillations were observed in intact myocytes after removal of external Ca2+, in permeabilized cells after abolition of the membrane potential and in the presence of heparin (an inhibitor of inositol 1,4,5-trisphosphate receptors) but were inhibited by ryanodine, indicating that they are dependent on Ca2+ release from intracellular stores through ryanodine receptors. Ca2+ oscillations were selectively inhibited by methoctramine (a M2 muscarinic receptor antagonist). The M2 muscarinic receptor-activated Ca2+ oscillations were inhibited by 8-bromo cyclic adenosine diphosphoribose and inhibitors of adenosine diphosphoribosyl cyclase (ZnCl2 and anti-CD38 antibody). Stimulation of ADP-ribosyl cyclase activity by acetylcholine was evaluated in permeabilized cells by measuring the production of cyclic guanosine diphosphoribose (a fluorescent compound), which resulted from the cyclization of nicotinamide guanine dinucleotide. As duodenum myocytes expressed the three subtypes of ryanodine receptors, an antisense strategy revealed that the ryanodine receptor subtype 2 alone was required to initiate the Ca2+ oscillations induced by acetylcholine and also by cyclic adenosine diphosphoribose and rapamycin (a compound that induced uncoupling between 12/12.6 kDa FK506-binding proteins and ryanodine receptors). Inhibition of cyclic adenosine diphosphoribose-induced Ca2+ oscillations, after rapamycin treatment, confirmed that both compounds interacted with the ryanodine receptor subtype 2. Our findings show for the first time that the M2 muscarinic receptor activation triggered Ca2+ oscillations in duodenum myocytes by activation of the cyclic adenosine diphosphoribose/FK506-binding protein/ryanodine receptor subtype 2 signalling pathway.

  15. Comparison of the Binding and Functional Properties of Two Structurally Different D2 Dopamine Receptor Subtype Selective Compounds

    PubMed Central

    2012-01-01

    We previously reported on the synthesis of substituted phenyl-4-hydroxy-1-piperidyl indole analogues with nanomolar affinity at D2 dopamine receptors, ranging from 10- to 100-fold selective for D2 compared to the D3 dopamine receptor subtype. More recently, we evaluated a panel of aripiprazole analogues, identifying several analogues that also exhibit D2 vs D3 dopamine receptor binding selectivity. These studies further characterize the intrinsic efficacy of the compound with the greatest binding selectivity from each chemical class, 1-((5-methoxy-1H-indol-3-yl)methyl)-4-(4-(methylthio)phenyl)piperidin-4-ol (SV 293) and 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one (SV-III-130s), using an adenylyl cyclase inhibition assay, a G-protein-coupled inward-rectifying potassium (GIRK) channel activation assay, and a cell based phospho-MAPK (pERK1/2) assay. SV 293 was found to be a neutral antagonist at D2 dopamine receptors using all three assays. SV-III-130s is a partial agonist using an adenylyl cyclase inhibition assay but an antagonist in the GIRK and phospho ERK1/2 assays. To define the molecular basis for the binding selectivity, the affinity of these two compounds was evaluated using (a) wild type human D2 and D3 receptors and (b) a panel of chimeric D2/D3 dopamine receptors. Computer-assisted modeling techniques were used to dock these compounds to the human D2 and D3 dopamine receptor subtypes. It is hoped that these studies on D2 receptor selective ligands will be useful in the future design of (a) receptor selective ligands used to define the function of D2-like receptor subtypes, (b) novel pharmacotherapeutic agents, and/or (c) in vitro and in vivo imaging agents. PMID:23259040

  16. Characterization of U-97775 as a GABAA receptor ligand of dual functionality in cloned rat GABAA receptor subtypes.

    PubMed Central

    Im, H. K.; Im, W. B.; Pregenzer, J. F.; Carter, D. B.; Jacobsen, E. J.; Hamilton, B. J.

    1995-01-01

    1. U-97775 (tert-butyl 7-chloro-4,5-dihydro-5-[(1-(3,4,5-trimethyl)piperazino)carbonyl]- imidazo[1,5-a])quinoxaline-3-carboxylate) is a novel GABAA receptor ligand of dual functionality and was characterized for its interactions with cloned rat GABAA receptors expressed in human embryonic kidney cells. 2. The drug produced a bell-shaped dose-response profile in the alpha 1 beta 2 gamma 2 receptor subtype as monitored with GABA-induced Cl- currents in the whole cell patch-clamp technique. At low concentrations (< 0.5 microM), U-97775 enhanced the currents with a maximal increase of 120% as normalized to 5 microM GABA response (control). An agonist interaction of U-97775 with the benzodiazepine site is suggested, because Ro 15-1788 (an antagonist at the benzodiazepine site) abolished the current increase and [3H]-flunitrazepam binding was inhibited by U-97775 with a Ki of 1.2 nM. 3. The enhancement of GABA currents progressively disappeared as the U-97775 concentration was raised above 1 microM, and the current amplitude was reduced to 40% below the control at 10 microM U-97775. The current inhibition by U-97775 (10 microM) was not affected by Ro 15-1788. It appears that U-97775 interacts with a second site on GABA receptors, distinct from the benzodiazepine site, to reverse its agonistic activity on the benzodiazepine site and also to inhibit GABA currents. 4. U-97775 at low concentrations reduced and at high concentrations enhanced [35S]-TBPS binding. Ro 15-1788 selectively blocked the effect of U-97775 at low concentrations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647975

  17. Muscarinic receptor subtypes involved in regulation of colonic motility in mice: functional studies using muscarinic receptor-deficient mice.

    PubMed

    Kondo, Takaji; Nakajima, Miwa; Teraoka, Hiroki; Unno, Toshihiro; Komori, Sei-ichi; Yamada, Masahisa; Kitazawa, Takio

    2011-11-16

    Although muscarinic M(2) and M(3) receptors are known to be important for regulation of gastric and small intestinal motility, muscarinic receptor subtypes regulating colonic function remain to be investigated. The aim of this study was to characterize muscarinic receptors involved in regulation of colonic contractility. M(2) and/or M(3) receptor knockout (KO) and wild-type mice were used in in vivo (defecation, colonic propulsion) and in vitro (contraction) experiments. Amount of feces was significantly decreased in M(3)R-KO and M(2)/M(3)R-KO mice but not in M(2)R-KO mice. Ranking of colonic propulsion was wild-type=M(2)R-KO>M(3)R-KO>M(2)/M(3)R-KO. In vitro, the amplitude of migrating motor complexes in M(2)R-KO, M(3)R-KO and M(2)/M(3)R-KO mice was significantly lower than that in wild-type mice. Carbachol caused concentration-dependent contraction of the proximal colon and distal colon from wild-type mice. In M(2)R-KO mice, the concentration-contraction curves shifted to the right and downward. In contrast, carbachol caused non-sustained contraction and relaxation in M(3)R-KO mice depending on its concentration. Carbachol did not cause contraction but instead caused relaxation of colonic strips from M(2)/M(3)R-KO mice. 4-[[[(3-chlorophenyl)amino]carbonyl]oxy]-N,N,N-trimethyl-2-butyn-1-aminium chloride (McN-A-343) caused a non-sustained contraction of colonic strips from wild-type mice, and this contraction was changed to a sustained contraction by tetrodotoxin, pirenzepine and L-nitroarginine methylester (L-NAME). In the colon of M(2)/M(3)R-KO mice, McN-A-343 caused only relaxation, which was decreased by tetrodotoxin, pirenzepine and L-NAME. In conclusion, M(1), M(2) and M(3) receptors regulate colonic motility of the mouse. M(2) and M(3) receptors mediate cholinergic contraction, but M(1) receptors on inhibitory nitrergic nerves counteract muscarinic contraction.

  18. Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline.

    PubMed

    Appel, J B; Callahan, P M

    1989-01-02

    In order to further evaluate the extent to which particular 5-HT receptor subtypes (5-HT1, 5-HT2) might be involved in the behavioral effects of hallucinogenic drugs, rats were trained to discriminate mescaline (10 mg/kg i.p.) from saline and were given substitution (generalization) and combination (antagonism) tests with putatively selective serotonergic and related neuroactive compounds. The mescaline cue generalized to relatively high doses of the 5-HT2 agonists, 2,5-dimethoxy-4-methylamphetamine (DOM), LSD and psilocybin; the extent of generalization to 5-HT1 agonists (8-hydroxy-2-[diethylamino]tetralin (8-OHDPAT), RU-24969 and 8-hydroxy-2-[di-n-propylamino]tetralin (TFMPP] was unclear. Combinations of the training drug and sufficiently high doses of 5-HT2 antagonists (ketanserin, LY-53857, pirenperone) were followed by saline-lever responding; less selective central 5-HT (metergoline), and DA (SCH-23390, haloperidol) antagonists, did not block the mescaline cue. These data suggest that 5-HT2 receptors are involved in the stimulus properties of mescaline.

  19. Cloning and expression of prostaglandin E2 receptor subtype 1 (ep 1 ) in Bostrichthys sinensis.

    PubMed

    Lai, Xiao Jian; Hong, Wan Shu; Liu, Fang; Zhang, Yu Ting; Chen, Shi Xi

    2014-08-01

    Our previous studies suggested that prostaglandin E2 (PGE2) is a putative sex pheromone in Chinese black sleeper Bostrichthys sinensis, a fish species that inhabits intertidal zones and mates and spawns inside a muddy burrow. We found immunoreactivities of PGE2 receptor subtypes (Ep1-3) expressed in the olfactory sac, but only Ep1 presented higher density of immunoreactivity in mature fish than that in immature fish in both sexes. To gain a better understanding of the underlying molecular mechanism for the detection of PGE2 in the olfactory system, we cloned an ep 1 cDNA from the adult olfactory sac. The open-reading frame of the ep 1 consisted of 1,134-bp nucleotides that encoded a 378-amino acid-long protein with a seven-transmembrane domain, typical for the G protein-coupled receptors superfamily. Expression of ep 1 mRNA was observed in all tissues examined, with higher levels obtained in the olfactory sacs and testes. The expression of ep 1 mRNA in the olfactory sacs and gonads was significantly higher in both sexes of mature fish than in those of immature ones. Taken together, our results suggested that Ep1, which is highly expressed in the olfactory sacs and gonads of mature fish, is important for the control of reproduction and may be involved in PGE2-initiated spawning behavior in B. sinensis.

  20. Systemic and renal effects of an ETA receptor subtype-specific antagonist in healthy subjects

    PubMed Central

    Schmetterer, Leopold; Dallinger, Susanne; Bobr, Barbara; Selenko, Nicole; Eichler, Hans-Georg; Wolzt, Michael

    1998-01-01

    Endothelins (ETs) might play a pathophysiological role in a variety of vascular diseases. The aim of the present study was to characterize the effects of BQ-123, a specific ETA receptor antagonist on systemic and renal haemodynamics in healthy subjects. This was done at baseline and during infusion of exogenous ET-1.The study was performed in a balanced, randomized, placebo-controlled, double blind 4 way cross-over design in 10 healthy male subjects. Subjects received co-infusions of ET-1 (2.5 ng kg−1 min−1 for 120 min) or placebo and BQ-123 (15 μg min−1 for 60 min and subsequently 60 μg min−1 for 60 min) or placebo. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were assessed by the para-aminohippurate (PAH) and the inulin plasma clearance method, respectively.BQ-123 alone had no renal or systemic haemodynamic effect. ET-1 significantly reduced RPF (−24%, P<0.001) and GFR (−12%, P=0.034). These effects were abolished by co-infusion of either dose of BQ-123 (RPF: P=0.0012; GFR: P=0.020).BQ-123 reversed the renal haemodynamic effects induced by exogenous ET-1 in vivo. This indicates that vasoconstriction in the kidney provoked by ET-1 is predominantly mediated by the ETA receptor subtype. PMID:9692778

  1. Contribution of valine 7' of TMD2 to gating of neuronal alpha3 receptor subtypes.

    PubMed

    Nieves-Cintrón, Madeline; Caballero-Rivera, Daniel; Navedo, Manuel F; Lasalde-Dominicci, José A

    2006-12-01

    The second transmembrane domain (TMD2) of the Cys-loop family of ligand-gated ion channels forms the channel pore. The functional role of the amino acid residues contributing to the channel pore in neuronal nicotinic alpha3 receptors is not well understood. We characterized the contribution of TMD2 position V7' to channel gating in neuronal nicotinic alpha3 receptors. Site-directed mutagenesis was used to substitute position alpha3 (V7') with four different amino acids (A, F, S, or Y) and coexpressed each mutant subunit with wild-type (WT) beta2 or beta4 subunits in Xenopus oocytes. Whole-cell voltage clamp experiments show that substitution for an alanine, serine, or phenylalanine decreased by 2.3-6.2-fold the ACh-EC(50) for alpha3beta2 and alpha3beta4 receptor subtypes. Interestingly, mutation V7'Y did not produce a significant change in ACh-EC(50) when coexpressed with the beta2 subunit but showed a significant approximately two-fold increase with beta4. Similar responses were obtained with nicotine as the agonist. The antagonist sensitivity of the mutant channels was assessed by using dihydro-beta-erythroidine (DHbetaE) and methyllycaconitine (MLA). The apparent potency of DHbetaE as an antagonist increased by approximately 3.7- and 11-fold for the alpha3beta2 V7'S and V7'F mutants, respectively, whereas no evident changes in antagonist potency were observed for the V7'A and V7'Y mutants. The V7'S and V7'F mutations increase MLA antagonist potency for the alpha3beta4 receptor by approximately 6.2- and approximately 9.3-fold, respectively. The V7'A mutation selectively increases the MLA antagonist potency for the alpha3beta4 receptor by approximately 18.7-fold. These results indicate that position V7' contributes to channel gating kinetics and pharmacology of the neuronal nicotinic alpha3 receptors.

  2. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes.

    PubMed

    Hong, Su Jin; Kim, Tae Jung; Choi, Yo Won; Park, Jeong-Soo; Chung, Jin-Haeng; Lee, Kyung Won

    2016-10-01

    To correlate imaging features of resected lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutation and the IASLC/ATS/ERS classification histological subtypes. In 250 consecutive patients with resected lung adenocarcinoma, EGFR mutation status was correlated with demographics, imaging features including ground-glass opacity (GGO) proportion and the IASLC/ATS/ERS classification histological subtypes. EGFR mutations were significantly more frequent in women (54.5 % vs. 38.1 %, p = 0.011) and in never-smokers (54.7 % vs. 35.3 %, p = 0.003). GGO proportion was significantly higher in tumours with EGFR mutation than in those without (30.3 ± 33.8 % vs. 19.0 ± 29.3 %, p = 0.005). EGFR mutation was significantly more frequent in tumours with GGO ≥ 50 % and tumours with any GGO (p = 0.026 and 0.008, respectively). Adenocarcinomas with exon 19 or 21 mutation showed significantly higher GGO proportion than that in EGFR wild-type tumours (p = 0.009 and 0.029, respectively). Absence of GGO was an independent predictor of negative EGFR mutation (odds ratio, 1.81; 95 % confidence interval, 1.16-3.04; p = 0.018). GGO proportion in adenocarcinomas with EGFR mutation was significantly higher than that in EGFR wild-type tumours, and the absence of GGO on CT was an independent predictor of negative EGFR mutation. • Ground-glass opacity (GGO) proportion is significantly higher in EGFR-mutated adenocarcinomas • Exon 19 or 21 mutated adenocarcinomas shows significantly higher GGO proportion • GGO absence is an independent predictor of negative EGFR mutation in lung adenocarcinomas.

  3. Nicotinic acetylcholine receptors in dorsal root ganglion neurons include the α6β4* subtype.

    PubMed

    Hone, Arik J; Meyer, Erin L; McIntyre, Melissa; McIntosh, J Michael

    2012-02-01

    The α6-containing nicotinic acetylcholine receptors (nAChRs) have recently been implicated in diseases of the central nervous system (CNS), including Parkinson's disease and substance abuse. In contrast, little is known about the role of α6* nAChRs in the peripheral nervous system (where the asterisk denotes the possible presence of additional subunits). Dorsal root ganglia (DRG) neurons are known to express nAChRs with a pharmacology consistent with an α7, α3β4*, and α4β2* composition. Here we present evidence that DRG neurons also express α6* nAChRs. We used RT-PCR to show the presence of α6 subunit transcripts and patch-clamp electrophysiology together with subtype-selective α-conotoxins to pharmacologically characterize the nAChRs in rat DRG neurons. α-Conotoxin BuIA (500 nM) blocked acetylcholine-gated currents (I(ACh)) by 90.3 ± 3.0%; the recovery from blockade was very slow, indicating a predominance of α(x)β4* nAChRs. Perfusion with either 300 nM BuIA[T5A;P6O] or 200 nM MII[E11A], α-conotoxins that target the α6β4* subtype, blocked I(ACh) by 49.3 ± 5 and 46.7 ± 8%, respectively. In these neurons, I(ACh) was relatively insensitive to 200 nM ArIB[V11L;V16D] (9.4±2.0% blockade) or 500 nM PnIA (23.0±4% blockade), α-conotoxins that target α7 and α3β2*/α6β2* nAChRs, respectively. We conclude that α6β4* nAChRs are among the subtypes expressed by DRG, and to our knowledge, this is the first demonstration of α6β4* in neurons outside the CNS.

  4. Quantitative and functional expression of somatostatin receptor subtypes in human prolactinomas.

    PubMed

    Jaquet, P; Ouafik, L; Saveanu, A; Gunz, G; Fina, F; Dufour, H; Culler, M D; Moreau, J P; Enjalbert, A

    1999-09-01

    Recently, it was demonstrated that somatostatin analogs preferential for the SSTR5 subtype suppress PRL release from prolactinoma cell cultures by 30-40%. These data supported the idea of somatostatin receptor subtype-specific control of PRL secretion in such tumors. The present study examines the quantitative profile of SSTRs messenger ribonucleic acid (mRNA) in 10 PRL-secreting tumors and correlates the expression with the ability of native somatostatins (SS14 and SS28), SSTR2 preferential analogs (octreotide and BIM-23197), and the SSTR5 preferential analog BIM-23268 to suppress PRL secretion. RT-PCR quantitative analysis showed a large predominance of SSTR5 mRNA [5648 +/- 1918 pg/pg glyceraldehyde-3-phosphate dehydrogenase (GAPDH)] vs. SSTR2 mRNA (148 +/- 83 pg/pg GAPDH). The SSTR1 transcript was also highly expressed in prolactinomas (1296 +/- 669 pg/pg GAPDH). SSTR5 mRNA expression correlated with PRL inhibition induced by both SRIF14 and SRIF28. Among the different analogs tested, only BIM-23268 produced inhibition of PRL release similar to that achieved with the native peptides. Its EC50 for PRL suppression was 0.28 +/- 0.10 nmol/L. No additive effects on PRL suppression were achieved by cotreatment of the tumor cells with SSTR2 and SSTR5 preferential analogs. In the same tumor cell cultures, quinagolide, a potent dopamine agonist, produced a dose-dependent inhibition of PRL with an EC50 at least 10 times lower than that of BIM-23268. Coincubation of quinagolide and BIM-23268, particularly in tumor cells resistant to dopamine agonist treatment, did not produce additive effects on PRL suppression. In conclusion, prolactinomas have a specific pattern of SSTR subtype mRNA expression (SSTR5 and SSTR1). SSTR5 expression is correlated to PRL regulation. These inhibitory effects are superimposable, at a higher concentration, to those of the dopamine agonists, but are not additive, particularly in the adenomas resistant to dopaminergic suppression of PRL release.

  5. Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain

    SciTech Connect

    Sumners, C.; Wei Tang; Zelezna, B.; Raizada, M.K. )

    1991-09-01

    Both neurons and astrocytes contain specific receptors for angiotensin II (AII). The authors used selective ligands for the AT{sub 1} and AT{sub 2} types of AII receptors to investigate the expression of functional receptor subtypes in astrocyte cultures and neuron cultures from 1-day-old (neonatal) rat brain. In astrocyte cultures, competition of {sup 125}I-labeled AII ({sup 125}I-AII) specific binding with AT{sub 1} (DuP753) or AT{sub 2} {l brace}PD123177, CGP42112A, (Phe(p-NH{sub 2}){sup 6})AII{r brace} selective receptor ligands revealed a potency series of AII > DuP753 > > > CGP42112A > (Phe(p-NH{sub 2}){sup 6})AII > PD123177. These results suggest a predominance of the AT{sub 1} receptor subtype in neonatal astrocytes. {sup 125}I-AII specific binding to neonate neuronal cultures was reduced 73-84% by 1 {mu} MPD123177, and the residual {sup 125}I-AII specific binding was eliminated by DuP753. The results suggest that astrocyte cultures from neonatal rat brains contain predominantly AT{sub 1} receptors that are coupled to a stimulation of inositophospholipid hydrolysis. In contrast, neuron cultures from neonatal rat brain contain mostly AT{sub 2} receptors that are coupled to a reduction in basal cGMP levels, but a smaller population of AT{sub 1} receptors is also present in these neurons.

  6. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Miyata, Hironori; Matsui, Minoru; Inoue, Masumi

    2015-01-01

    Background and Purpose Activation of muscarinic receptors results in catecholamine secretion in adrenal chromaffin cells in many mammals, and muscarinic receptors partly mediate synaptic transmission from the splanchnic nerve, at least in guinea pigs. To elucidate the physiological functions of muscarinic receptors in chromaffin cells, it is necessary to identify the muscarinic receptor subtypes involved in excitation. Experimental Approach To identify muscarinic receptors, pharmacological tools and strains of mice where one or several muscarinic receptor subtypes were genetically deleted were used. Cellular responses to muscarinic stimulation in isolated chromaffin cells were studied with the patch clamp technique and amperometry. Key Results Muscarinic M1, M4 and M5 receptors were immunologically detected in mouse chromaffin cells, and these receptors disappeared after the appropriate gene deletion. Mouse cells secreted catecholamines in response to muscarinic agonists, angiotensin II and a decrease in external pH. Genetic deletion of M1, but not M3, M4 or M5, receptors in mice abolished secretion in response to muscarine, but not to other stimuli. The muscarine-induced secretion was suppressed by MT7, a snake peptide toxin specific for M1 receptors. Similarly, muscarine failed to induce an inward current in the presence of MT7 in mouse and rat chromaffin cells. The binding affinity of VU0255035 for the inhibition of muscarine-induced currents agreed with that for the M1 receptor. Conclusions and Implications Based upon the effects of genetic deletion of muscarinic receptors and MT7, it is concluded that the M1 receptor alone is responsible for muscarine-induced catecholamine secretion. PMID:25393049

  7. M1 and m2 muscarinic receptor subtypes regulate antidepressant-like effects of the rapidly acting antidepressant scopolamine.

    PubMed

    Witkin, J M; Overshiner, C; Li, X; Catlow, J T; Wishart, G N; Schober, D A; Heinz, B A; Nikolayev, A; Tolstikov, V V; Anderson, W H; Higgs, R E; Kuo, M-S; Felder, C C

    2014-11-01

    Scopolamine produces rapid and significant symptom improvement in patients with depression, and most notably in patients who do not respond to current antidepressant treatments. Scopolamine is a nonselective muscarinic acetylcholine receptor antagonist, and it is not known which one or more of the five receptor subtypes in the muscarinic family are mediating these therapeutic effects. We used the mouse forced-swim test, an antidepressant detecting assay, in wild-type and transgenic mice in which each muscarinic receptor subtype had been genetically deleted to define the relevant receptor subtypes. Only the M1 and M2 knockout (KO) mice had a blunted response to scopolamine in the forced-swim assay. In contrast, the effects of the tricyclic antidepressant imipramine were not significantly altered by gene deletion of any of the five muscarinic receptors. The muscarinic antagonists biperiden, pirenzepine, and VU0255035 (N-[3-oxo-3-[4-(4-pyridinyl)-1-piper azinyl]propyl]-2,1,3-benzothiadiazole-4-sulfonamide) with selectivity for M1 over M2 receptors also demonstrated activity in the forced-swim test, which was attenuated in M1 but not M2 receptor KO mice. An antagonist with selectivity of M2 over M1 receptors (SCH226206 [(2-amino-3-methyl-phenyl)-[4-[4-[[4-(3 chlorophenyl)sulfonylphenyl]methyl]-1-piperidyl]-1-piperidyl]methanone]) was also active in the forced-swim assay, and the effects were deleted in M2 (-/-) mice. Brain exposure and locomotor activity in the KO mice demonstrated that these behavioral effects of scopolamine are pharmacodynamic in nature. These data establish muscarinic M1 and M2 receptors as sufficient to generate behavioral effects consistent with an antidepressant phenotype and therefore as potential targets in the antidepressant effects of scopolamine.

  8. Receptor Subtype-Dependent Galanin Actions on GABAergic Neurotransmission and Ethanol Responses in the Central Amygdala

    PubMed Central

    Bajo, Michal; Madamba, Samuel G.; Lu, Xiaoying; Sharkey, Lisa M.; Bartfai, Tamas; Siggins, George Robert

    2011-01-01

    The neuropeptide galanin and its three receptor subtypes (GalR1–3) are expressed in the central amygdala (CeA), a brain region involved in stress- and anxiety-related behaviors, as well as alcohol dependence. Galanin also has been suggested to play a role in alcohol intake and alcohol dependence. We examined the effects of galanin in CeA slices from wild type (WT) and knockout (KO) mice deficient of GalR2 and both GalR1 and GalR2 receptors. Galanin had dual effects on GABAergic transmission, decreasing the amplitudes of pharmacologically-isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in over half of CeA neurons but augmenting IPSPs in the others. The increase in IPSP size was absent after superfusion of the GalR3 antagonist SNAP 37889, whereas the IPSP depression was absent in CeA neurons of GalR1 × GalR2 double KO and GalR2 KO mice. Paired-pulse facilitation studies showed weak or infrequent effects of galanin on GABA release. Thus, galanin may act postsynaptically through GalR3 to augment GABAergic transmission in some CeA neurons, whereas GalR2 receptors likely are involved in the depression of IPSPs. Co-superfusion of ethanol, which augments IPSPs presynaptically, together with galanin caused summated effects of ethanol and galanin in those CeA neurons showing galanin-augmented IPSPs, suggesting the two agents act via different mechanisms in this population. However, in neurons showing IPSP-diminishing galanin effects, galanin blunted the ethanol effects, suggesting a preemptive effect of galanin. These findings may increase understanding of the complex cellular mechanisms that underlie the anxiety-related behavioral effects of galanin and ethanol in CeA. PMID:21955024

  9. Receptor subtypes Y1 and Y5 are involved in the renal effects of neuropeptide Y

    PubMed Central

    Bischoff, Angela; Avramidis, Prodromos; Erdbrügger, Wilhelm; Münter, Klaus; Michel, Martin C

    1997-01-01

    Systemic infusion of neuropeptide Y (NPY) reduces renal blood flow and can concomitantly increase diuresis, natriuresis and calciuresis in anaesthetized rats. The present study was designed to investigate whether the apparently contradictory NPY effects on renal blood flow and urine formation and composition are mediated by distinct NPY receptor subtypes.NPY and its analogues, peptide YY (PYY), [Leu31, Pro34]NPY and NPY1336, were infused in incremental doses of 0.3, 1 and 3 μg kg−1 min−1 for 45 min each and the results compared to those obtained in vehicle-infused rats. Renal blood flow was monitored in 15 min intervals, while urine excretion and composition were determined in 15 min collection periods. Plasma renin activity and aldosterone concentrations were measured at the end of the final infusion period.Relative to vehicle NPY, PYY and [Leu31, Pro34]NPY dose-dependently reduced renal blood flow and increased diuresis, natriuresis and calciuresis with roughly similar potency; NPY1336 slightly but significantly increased renal blood flow but had no effect on diuresis, natriuresis and calciuresis. None of the peptides significantly affected endogenous creatinine clearance or kaliuresis.Plasma renin activity was significantly reduced by PYY. Quantitatively similar reductions were observed with NPY and [Leu31, Pro34]NPY but failed to reach statistical significance with the given number of experiments. NPY1336 did not reduce plasma renin activity. None of the peptides significantly affected plasma aldosterone concentrations.In another series of experiments infusion of PYY336 (2 μg kg−1 min−1 for 120 min) did not reduce renal blood flow but significantly enhancd diuresis and natriuresis to a similar extent as the NPY 2 μg kg−1 min−1.In a final series of experiments the Y1-selective antagonist, BIBP 3226 (1 or 10 μg kg−1 min−1) dose-dependently antagonized reductions of renal blood flow elicited by bolus injections

  10. Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus.

    PubMed

    Morais, J S; Souza, M M; Campanha, T M N; Muller, C J T; Bittencourt, A S; Bortoli, V C; Schenberg, L C; Beijamini, V

    2016-11-01

    About 40% of the dorsal raphe nucleus (DRN) neurons co-express serotonin (5-HT) and galanin. Serotonergic pathways from the DRN to the amygdala facilitate learned anxiety, while those from the DRN to the dorsal periaqueductal grey matter (DPAG) impair innate anxiety. Previously, we showed that galanin infusion in the DRN of rats induces anxiolytic effect by impairing inhibitory avoidance without changing escape behaviour in the elevated T-maze (ETM). Here, we evaluated: (1) which galanin receptors would be involved in the anxiolytic effect of galanin in the DRN of rats tested in the ETM; (2) the effects of galanin intra-DRN on panic-like behaviours evoked by electrical stimulation of the DPAG. The activation of DRN GAL1 receptors by M617 (1.0 and 3.0nmol) facilitated inhibitory avoidance, whereas the activation of GAL2 receptors by AR-M1896 (3.0nmol) impaired the inhibitory avoidance in the ETM, suggesting an anxiogenic and an anxiolytic-like effect respectively. Both agonists did not change escape behaviour in the ETM or locomotor activity in the open field. The anxiolytic effect of AR-M1896 was attenuated by the prior administration of WAY100635 (0.18nmol), a 5-HT1A antagonist. Galanin (0.3nmol) administered in the DRN increased discreetly flight behaviours induced by electrical stimulation of the DPAG, suggesting a panicolytic effect. Together, our results showed that galanin mediates opposite anxiety responses in the DRN by activation of GAL1 and GAL2 receptors. The anxiolytic effect induced by activation of Gal2 receptors may depend on serotonergic tone. Finally, the role of galanin in panic related behaviours remains uncertain. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Prostaglandin E2 Receptor Subtype 2 Regulation of Scavenger Receptor CD36 Modulates Microglial Aβ42 Phagocytosis

    PubMed Central

    Li, Xianwu; Melief, Erica; Postupna, Nadia; Montine, Kathleen S.; Keene, C. Dirk; Montine, Thomas J.

    2016-01-01

    Recent studies underline the potential relevance of microglial innate immune activation in Alzheimer disease. Primary mouse microglia that lack prostaglandin E2 receptor subtype 2 (EP2) show decreased innate immune-mediated neurotoxicity and increased amyloid β (Aβ) peptide phagocytosis, features that were replicated in vivo. Here, we tested the hypothesis that scavenger receptor CD36 is an effector of EP2-regulated Aβ phagocytosis. CD36 expression was 143-fold greater in mouse primary microglia than in primary astrocytes. Three different means of suppressing EP2 signaling increased and an agonist of EP2 decreased CD36 expression in primary wild-type microglia. Activation of Toll-like receptor (TLR) 3, TLR4, and TLR7, but not TLR2 or TLR9, reduced primary microglial CD36 transcription and cell surface CD36 protein and reduced Aβ42 phagocytosis as well. At each step, the effects of innate immune activation on CD36 were reversed by at least 50% by an EP2 antagonist, and this partial rescue of microglia Aβ42 phagocytosis was largely mediated by CD36 activity. Finally, we showed in hippocampus of wild-type mice that innate immune activation suppressed CD36 expression by an EP2-dependent mechanism. Taken together with results of others that found brain clearance of Aβ peptides and behavioral improvements mediated by CD36 in mice, regulation of CD36-mediated Aβ phagocytosis by suppression of EP2 signaling may provide a new approach to suppressing some aspects of Alzheimer disease pathogenesis. PMID:25452117

  12. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype.

    PubMed

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Van Loy, Tom; Vanden Broeck, Jozef

    2012-03-01

    Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.

  13. Early cerebral activities of the environmental estrogen bisphenol A appear to act via the somatostatin receptor subtype sst(2).

    PubMed

    Facciolo, Rosa Maria; Alò, Raffaella; Madeo, Maria; Canonaco, Marcello; Dessì-Fulgheri, Francesco

    2002-06-01

    Recently, considerable interest has been aroused by the specific actions of bisphenol A (BPA). The present investigation represents a first study dealing with the interaction of BPA with the biologically more active somatostatin receptor subtype (sst(2)) in the rat limbic circuit. After treating pregnant female Sprague-Dawley rats with two doses (400 microg/kg/day; 40 microg/kg/day) of BPA, the binding activity of the above receptor subtype was evaluated in some limbic regions of the offspring. The higher dose proved to be the more effective one, as demonstrated by the elevated affinity of sst(2) with its specific radioligand, [(125)I]-Tyr(0)somatostatin-14. The most dramatic effects of BPA on sst(2) levels occurred at the low-affinity states of such a subtype in some telencephalic limbic areas of postnatal rats (10 days of age; postnatal day [PND] 10). These included lower (p < 0.05) sst(2) levels in the gyrus dentate of the hippocampus and basomedial nucleus of the amygdala; significantly higher (p < 0.01) levels were observed only for the high-affinity states of the periventricular nucleus of the hypothalamus. A similar trend was maintained in PND 23 rats with the exception of much lower levels of the high-affinity sst(2) receptor subtype in the amygdala nucleus and ventromedial hypothalamic nucleus. However, greater changes produced by this environmental estrogen were reported when the binding activity of sst(2) was checked in the presence of the two more important selective agonists (zolpidem and Ro 15-4513) specific for the alpha-containing Gamma-aminobutyric acid (GABA) type A receptor complex. In this case, an even greater potentiating effect (p < 0.001) was mainly obtained for the low-affinity sst(2) receptor subtype in PND 10 animals, with the exception of the high-affinity type in the ventromedial hypothalamic nucleus and gyrus dentate. These results support the contention that an sst(2) subtype alpha-containing GABA type A receptor system might

  14. The effects of progesterone on the alpha2-adrenergic receptor subtypes in late-pregnant uterine contractions in vitro.

    PubMed

    Hajagos-Tóth, Judit; Bóta, Judit; Ducza, Eszter; Samavati, Reza; Borsodi, Anna; Benyhe, Sándor; Gáspár, Róbert

    2016-06-14

    The adrenergic system and progesterone play major roles in the control of the uterine function. Our aims were to clarify the changes in function and expression of the α2-adrenergic receptor (AR) subtypes after progesterone pretreatment in late pregnancy. Sprague Dawley rats from pregnancy day 15 were treated with progesterone for 7 days. The myometrial expressions of the α2-AR subtypes were determined by RT-PCR and Western blot analysis. In vitro contractions were stimulated with (-)-noradrenaline, and its effect was modified with the selective antagonists BRL 44408 (α2A), ARC 239 (α2B/C) and spiroxatrine (α2A). The accumulation of myometrial cAMP was also measured. The activated G-protein level was investigated via GTPγS binding assays. Progesterone pretreatment decreased the contractile effect of (-)-noradrenaline through the α2-ARs. The most significant reduction was found through the α2B-ARs. The mRNA of all of the α2-AR subtypes was increased. Progesterone pretreatment increased the myometrial cAMP level in the presence of BRL 44408 (p < 0.001), spiroxatrine (p < 0.001) or the spiroxatrine + BRL 44408 combination (p < 0.05). Progesterone pretreatment increased the G-protein-activating effect of (-)-noradrenaline in the presence of the spiroxatrine + BRL 44408 combination. The expression of the α2-AR subtypes is progesterone-sensitive. It decreases the contractile response of (-)-noradrenaline through the α2B-AR subtype, blocks the function of α2A-AR subtype and alters the G protein coupling of these receptors, promoting a Gs-dependent pathway. A combination of α2C-AR agonists and α2B-AR antagonists with progesterone could be considered for the treatment or prevention of preterm birth.

  15. Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype.

    PubMed

    Ralvenius, William T; Benke, Dietmar; Acuña, Mario A; Rudolph, Uwe; Zeilhofer, Hanns Ulrich

    2015-04-13

    Agonists at the benzodiazepine-binding site of GABAA receptors (BDZs) enhance synaptic inhibition through four subtypes (α1, α2, α3 and α5) of GABAA receptors (GABAAR). When applied to the spinal cord, they alleviate pathological pain; however, insufficient efficacy after systemic administration and undesired effects preclude their use in routine pain therapy. Previous work suggested that subtype-selective drugs might allow separating desired antihyperalgesia from unwanted effects, but the lack of selective agents has hitherto prevented systematic analyses. Here we use four lines of triple GABAAR point-mutated mice, which express only one benzodiazepine-sensitive GABAAR subtype at a time, to show that targeting only α2GABAARs achieves strong antihyperalgesia and reduced side effects (that is, no sedation, motor impairment and tolerance development). Additional pharmacokinetic and pharmacodynamic analyses in these mice explain why clinically relevant antihyperalgesia cannot be achieved with nonselective BDZs. These findings should foster the development of innovative subtype-selective BDZs for novel indications such as chronic pain.

  16. Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes.

    PubMed

    Landel, Véréna; Stephan, Delphine; Cui, Xiaoying; Eyles, Darryl; Feron, François

    2017-09-08

    Accumulating evidence indicates that the active form of vitamin D, 1,25(OH)2D3, can be considered as a neurosteroid. However, the cerebral expression of vitamin D-associated enzymes and receptors remains controversial. With the idea of carrying out a comparative study in mind, we compared the transcript expression of Cyp27a1, Cyp27b1, Cyp24a1, Vdr and Pdia3 in purified cultures of astrocytes, endothelial cells, microglia, neurons and oligodendrocytes. We observed that endothelial cells and neurons can possibly transform the inactive cholecalciferol into 25(OH)D3. It can then be metabolised into 1,25(OH)2D3, by neurons or microglia, before being transferred to astrocytes where it can bind to VDR and initiate gene transcription or be inactivated when in excess. Alternatively, 1,25(OH)2D3 can induce autocrine or paracrine rapid non-genomic actions via PDIA3 whose transcript is abundantly expressed in all cerebral cell types. Noticeably, brain endothelial cells appear as a singular subtype as they are potentially able to transform cholecalciferol into 25(OH)D3 and exhibit a variable expression of Pdia3, according to 1,25(OH)2D3 level. Altogether, our data indicate that, within the brain, vitamin D may trigger major auto-/paracrine non genomic actions, in addition to its well documented activities as a steroid hormone. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Antagonists at metabotropic glutamate receptor subtype 5: structure activity relationships and therapeutic potential for addiction.

    PubMed

    Carroll, F Ivy

    2008-10-01

    As a result of intensive investigation, particularly in the pharmaceutical industry, a number of potent and selective metabotropic glutamate receptor subtype 5 (mGluR5) antagonists have been discovered. The structure activity relationship studies that led to the discovery of these mGluR5 antagonists are presented in this review. Results from studies on selected mGluR5 antagonists in animal models that simulate drug reward, reinforcement, and relapse appear promising. The comorbidity between drug abuse and anxiety and depression make drugs active in these disorders of great interest. Clinical studies showed that the mGluR5 antagonist fenobam was an active anxiolytic drug. Several new mGluR5 antagonists produced anxiolytic and antidepressant-like effects in animal models of these disorders. The results from the clinical and animal studies provide information for new approaches to finding mechanistically distinct pharmacotherapies to help patients achieve and maintain abstinence from cocaine, methamphetamine, opiates, ethanol, and nicotine (smoking).

  18. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3.

    PubMed

    Lateef, Dalya M; Abreu-Vieira, Gustavo; Xiao, Cuiying; Reitman, Marc L

    2014-03-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.

  19. Acromegaly: correlation between expression of somatostatin receptor subtypes and response to octreotide-lar treatment.

    PubMed

    Casarini, Ana Paula M; Jallad, Raquel S; Pinto, Emília M; Soares, Iberê C; Nonogaki, Suely; Giannella-Neto, Daniel; Musolino, Nina R; Alves, Venâncio A F; Bronstein, Marcello D

    2009-01-01

    About one-third of acromegalics are resistant to the clinically available somatostatin analogs (SA). The resistance is related to density reduction or different expression of somatostatin receptor subtypes (SSTR). This study analyzes SSTR's expression in somatotrophinomas, comparing to SA response, hormonal levels, and tumor volume. We analyzed 39 somatotrophinomas; 49% were treated with SA. The most expressed SSTR was SSTR5, SSTR3, SSTR2, SSTR1, and SSTR4, respectively. SSTR1 and SSTR2 had higher expression in patients that had normalized GH and IGF-I. SSTR3 was more expressed in patients with tumor reduction. There was a positive correlation between the percentage of tumor reduction and SSTR1, SSTR2 and SSTR3 expression. Also, a positive correlation between SSTR2 mRNA expression and the immunohistochemical reactivity of SSTR2 was found. Our study confirmed the association between the SA response to GH and IGF-I and the SSTR2. Additionally, this finding was also demonstrated in relation to SSTR1.

  20. Somatostatin receptor subtype 2 (sst₂) is a potential prognostic marker and a therapeutic target in medulloblastoma.

    PubMed

    Remke, Marc; Hering, Esther; Gerber, Nicolas U; Kool, Marcel; Sturm, Dominik; Rickert, Christian H; Gerß, Joachim; Schulz, Stefan; Hielscher, Thomas; Hasselblatt, Martin; Jeibmann, Astrid; Hans, Volkmar; Ramaswamy, Vijay; Taylor, Michael D; Pietsch, Torsten; Rutkowski, Stefan; Korshunov, Andrey; Monoranu, Carmelia-Maria; Frühwald, Michael C

    2013-08-01

    Neuroectodermal tumors in general demonstrate high and dense expression of the somatostatin receptor subtype 2 (sst₂). It controls proliferation of both normal and neoplastic cells. sst₂ has thus been suggested as a therapeutic target and prognostic marker for certain malignancies. To assess global expression patterns of sst 2 mRNA, we evaluated normal (n = 353) and tumor tissues (n = 340) derived from previously published gene expression profiling studies. These analyses demonstrated specific upregulation of sst 2 mRNA in medulloblastoma (p < 0.001). sst₂ protein was investigated by immunohistochemistry in two independent cohorts. Correlation of sst₂ protein expression with clinicopathological variables revealed significantly higher levels in medulloblastoma (p < 0.05) compared with CNS-PNET, ependymoma, or pilocytic astrocytoma. The non-SHH medulloblastoma subgroup tumors showed particularly high expression of sst₂, when compared to other tumors and normal tissues. Furthermore, we detected a significant survival benefit in children with tumors exhibiting high sst₂ expression (p = 0.02) in this screening set. A similar trend was observed in a validation cohort including 240 independent medulloblastoma samples. sst₂ is highly expressed in medulloblastoma and deserves further evaluation in the setting of prospective trials, given its potential utility as a prognostic marker and a therapeutic target.

  1. Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats.

    PubMed

    Zou, Dan; Huang, Juan; Wu, Xihong; Li, Liang

    2007-02-01

    Non-startling acoustic events presented shortly before an intense startling sound can inhibit the acoustic startle reflex. This phenomenon is called prepulse inhibition (PPI), and is widely used as a model of sensorimotor gating. The present study investigated whether PPI can be modulated by fear conditioning, whose acquisition can be blocked by the specific antagonist of metabotropic glutamate receptors subtype 5 (mGluR5), 2-methyl-6-(phenylethynyl)-pyridine (MPEP). The results show that a gap embedded in otherwise continuous noise sounds, which were delivered by two spatially separated loudspeakers, could inhibit the startle reflex induced by an intense sound that was presented 50 ms after the gap. The inhibitory effect depended on the duration of the gap, and was enhanced by fear conditioning that was introduced by temporally pairing the gap with footshock. Intraperitoneal injection of MPEP (0.5 or 5mg/kg) 30 min before fear conditioning blocked the enhancing effect of fear conditioning on PPI, but did not affect either the baseline startle magnitude or PPI if no fear conditioning was introduced. These results indicate that PPI is enhanced when the prepulse signifies an aversive event after fear conditioning. Also, mGlu5Rs play a role in preserving the fear-conditioning-induced enhancement of PPI.

  2. Identification of Metabotropic Glutamate Receptor Subtype 5 Potentiators Using Virtual High-Throughput Screening

    PubMed Central

    2010-01-01

    Selective potentiators of glutamate response at metabotropic glutamate receptor subtype 5 (mGluR5) have exciting potential for the development of novel treatment strategies for schizophrenia. A total of 1,382 compounds with positive allosteric modulation (PAM) of the mGluR5 glutamate response were identified through high-throughput screening (HTS) of a diverse library of 144,475 substances utilizing a functional assay measuring receptor-induced intracellular release of calcium. Primary hits were tested for concentration-dependent activity, and potency data (EC50 values) were used for training artificial neural network (ANN) quantitative structure−activity relationship (QSAR) models that predict biological potency from the chemical structure. While all models were trained to predict EC50, the quality of the models was assessed by using both continuous measures and binary classification. Numerical descriptors of chemical structure were used as input for the machine learning procedure and optimized in an iterative protocol. The ANN models achieved theoretical enrichment ratios of up to 38 for an independent data set not used in training the model. A database of ∼450,000 commercially available drug-like compounds was targeted in a virtual screen. A set of 824 compounds was obtained for testing based on the highest predicted potency values. Biological testing found 28.2% (232/824) of these compounds with various activities at mGluR5 including 177 pure potentiators and 55 partial agonists. These results represent an enrichment factor of 23 for pure potentiation of the mGluR5 glutamate response and 30 for overall mGluR5 modulation activity when compared with those of the original mGluR5 experimental screening data (0.94% hit rate). The active compounds identified contained 72% close derivatives of previously identified PAMs as well as 28% nontrivial derivatives of known active compounds. PMID:20414370

  3. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice.

    PubMed

    Smith, Kiersten S; Engin, Elif; Meloni, Edward G; Rudolph, Uwe

    2012-08-01

    GABA(A) receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABA(A) receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABA(A) receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABA(A) receptors are necessary for BZs to exert their effects on conditioned fear responses. Our findings illustrate both an overlap and a divergence between the GABA(A) receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABA(A) receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABA(A) receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  5. The muscarinic acetylcholine receptor agonist BuTAC mediates antipsychotic-like effects via the M4 subtype.

    PubMed

    Watt, Marla L; Rorick-Kehn, Linda; Shaw, David B; Knitowski, Karen M; Quets, Anne T; Chesterfield, Amy K; McKinzie, David L; Felder, Christian C

    2013-12-01

    The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist 'BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2(-/-), M4(-/-), and M2/M4 (M2/M4(-/-)) mice found that the effects of BuTAC were near completely lost in M2/M4(-/-) double-knockout mice and potency of BuTAC was right-shifted in M4(-/-) as compared with wild-type and M2(-/-) mice. The M2/M4(-/-) mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms associated with

  6. The Muscarinic Acetylcholine Receptor Agonist BuTAC Mediates Antipsychotic-Like Effects via the M4 Subtype

    PubMed Central

    Watt, Marla L; Rorick-Kehn, Linda; Shaw, David B; Knitowski, Karen M; Quets, Anne T; Chesterfield, Amy K; McKinzie, David L; Felder, Christian C

    2013-01-01

    The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist ‘BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2−/−, M4−/−, and M2/M4 (M2/M4−/−) mice found that the effects of BuTAC were near completely lost in M2/M4−/− double-knockout mice and potency of BuTAC was right-shifted in M4−/− as compared with wild-type and M2−/− mice. The M2/M4−/− mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms

  7. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity.

    PubMed

    Bymaster, Frank P; Carter, Petra A; Yamada, Masahisa; Gomeza, Jesus; Wess, Jürgen; Hamilton, Susan E; Nathanson, Neil M; McKinzie, David L; Felder, Christian C

    2003-04-01

    Muscarinic agonist-induced parasympathomimetic effects, in vivo phosphoinositide hydrolysis and seizures were evaluated in wild-type and muscarinic M1-M5 receptor knockout mice. The muscarinic agonist oxotremorine induced marked hypothermia in all the knockout mice, but the hypothermia was reduced in M2 and to a lesser extent in M3 knockout mice. Oxotremorine-induced tremor was abolished only in the M2 knockout mice. Muscarinic agonist-induced salivation was reduced to the greatest extent in M3 knockout mice, to a lesser degree in M1 and M4 knockout mice, and was not altered in M2 and M5 knockout mice. Pupil diameter under basal conditions was increased only in the M3 knockout mice. Pilocarpine-induced increases in in vivo phosphoinositide hydrolysis were completely absent in hippocampus and cortex of M1 knockout mice, but in vivo phosphoinositide hydrolysis was unaltered in the M2-M5 knockout mice. A high dose of pilocarpine (300 mg/kg) caused seizures and lethality in wild-type and M2-M5 knockout mice, but produced neither effect in the M1 knockout mice. These data demonstrate a major role for M2 and M3 muscarinic receptor subtypes in mediating parasympathomimetic effects. Muscarinic M1 receptors activate phosphoinositide hydrolysis in cortex and hippocampus of mice, consistent with the role of M1 receptors in cognition. Muscarinic M1 receptors appear to be the only muscarinic receptor subtype mediating seizures.

  8. Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats.

    PubMed

    McGuire, Michelle; Zhang, Yi; White, David P; Ling, Liming

    2004-02-01

    Respiratory long-term facilitation (LTF), a serotonin-dependent, persistent augmentation of respiratory activity after episodic hypoxia, is enhanced by pretreatment of chronic intermittent hypoxia (CIH; 5 min 11-12% O2-5 min air, 12 h/night for 7 nights). The present study examined the effects of methysergide (serotonin 5-HT1,2,5,6,7 receptor antagonist), ketanserin (5-HT2 antagonist), or clozapine (5-HT2,6,7 antagonist) on both ventilatory LTF and the CIH effect on ventilatory LTF in conscious male adult rats to determine which specific receptor subtype(s) is involved. In untreated rats (i.e., animals not exposed to CIH), LTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O2) separated by 5-min normoxic intervals, was measured twice by plethysmography. Thus the measurement was conducted 1-2 days before (as control) and approximately 1 h after systemic injection of methysergide (1 mg/kg ip), ketanserin (1 mg/kg), or clozapine (1.5 mg/kg). Resting ventilation, metabolic rate, and hypoxic ventilatory response (HVR) were unchanged, but LTF ( approximately 18% above baseline) was eliminated by each drug. In CIH-treated rats, LTF was also measured twice, before and approximately 8 h after CIH. Vehicle, methysergide, ketanserin, or clozapine was injected approximately 1 h before the second measurement. Neither resting ventilation nor metabolic rate was changed after CIH and/or any drug. HVR was unchanged after methysergide and ketanserin but reduced in four of seven clozapine rats. The CIH-enhanced LTF ( approximately 28%) was abolished by methysergide and clozapine but only attenuated by ketanserin (to approximately 10%). Collectively, these data suggest that ventilatory LTF requires 5-HT2 receptors and that the CIH effect on LTF requires non-5-HT2 serotonin receptors, probably 5-HT6 and/or 5-HT7 subtype(s).

  9. Butyrate modulates the expression of. beta. -adrenergic receptor subtype in 3T3-L1 cells

    SciTech Connect

    Poksay, K.S.; Nakada, M.T.; Crooke, S.T.; Stadel, J.M.

    1986-03-05

    In mouse 3T3-L1 fibroblasts, the glucocorticoid dexamethasone (dex) affects a switch in ..beta..-adrenergic receptor (..beta..AR) subtype expression from ..beta../sub 1/AR to ..beta../sub 2/AR and increases total ..beta..AR number. They now demonstrate a similar effect by sodium butyrate (B) and find that the combined effect of these two gene-activating agents is greater than additive suggesting different mechanisms of action on the ..beta..AR. ..beta..AR are assayed in membranes prepared from 3T3-L1 cells using the radiolabeled ..beta..AR-specific antagonist (/sup 125/I)-cyanopindolol. ..beta..AR subtype is determined by competition binding of the ..beta../sub 2/AR-selective antagonist ICI 118.551 for the radioligand. B (2-10mM) causes a dose-dependent increase in total ..beta..AR number (up to 2-fold over control) and the proportion of ..beta../sub 2/AR. B (5mM) causes a time-dependent increase in total ..beta..AR number (2-fold) and the proportion of ..beta../sub 2/AR up to 24 hr. Dex maximally increases total ..beta..AR number (2-fold) when treated for 48 hr at concentrations greater than or equal to 100nM. B (2 or 5mM) together with dex (250nM) have a greater than additive effect on total ..beta..AR number at 24 hr (1.7-fold) and at 48 hr (1.4-2.4-fold, using 5 or 10mM B and dex greater than or equal to 10nM). The proportion of ..beta../sub 2/AR is also greater when both compounds are added together. In comparison with proprionate and valerate, B increases total ..beta..AR number and the proportion of ..beta../sub 2/AR to a greater extent and at lower concentrations. To determine a functional correlate to these findings, cells were pre-treated for 48 hr with B and/or dex, intracellular ATP labeled with /sup 3/H-adenine, followed by treatment with forskolin (10..mu..M) and ..beta..AR agonists. B caused a dramatic increase in /sup 3/H-cAMP produced compared to control and dex treatments and a greater than additive effect was again achieved when B and dex were

  10. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs*

    PubMed Central

    Pediani, John D.; Ward, Richard J.; Godin, Antoine G.; Marsango, Sara

    2016-01-01

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  11. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs.

    PubMed

    Pediani, John D; Ward, Richard J; Godin, Antoine G; Marsango, Sara; Milligan, Graeme

    2016-06-17

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm(-2) human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior.

  12. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    SciTech Connect

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.; Yu, Wenli; Iba, Yoshitaka; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Wilson, Ian A.

    2014-04-10

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhanced avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.

  13. Receptor-defined subtypes of breast cancer in indigenous populations in Africa: a systematic review and meta-analysis.

    PubMed

    Eng, Amanda; McCormack, Valerie; dos-Santos-Silva, Isabel

    2014-09-01

    Breast cancer is the most common female cancer in Africa. Receptor-defined subtypes are a major determinant of treatment options and disease outcomes but there is considerable uncertainty regarding the frequency of poor prognosis estrogen receptor (ER) negative subtypes in Africa. We systematically reviewed publications reporting on the frequency of breast cancer receptor-defined subtypes in indigenous populations in Africa. Medline, Embase, and Global Health were searched for studies published between 1st January 1980 and 15th April 2014. Reported proportions of ER positive (ER+), progesterone receptor positive (PR+), and human epidermal growth factor receptor-2 positive (HER2+) disease were extracted and 95% CI calculated. Random effects meta-analyses were used to pool estimates. Fifty-four studies from North Africa (n=12,284 women with breast cancer) and 26 from sub-Saharan Africa (n=4,737) were eligible. There was marked between-study heterogeneity in the ER+ estimates in both regions (I2>90%), with the majority reporting proportions between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Similarly, large between-study heterogeneity was observed for PR+ and HER2+ estimates (I2>80%, in all instances). Meta-regression analyses showed that the proportion of ER+ disease was 10% (4%-17%) lower for studies based on archived tumor blocks rather than prospectively collected specimens, and 9% (2%-17%) lower for those with ≥ 40% versus those with <40% grade 3 tumors. For prospectively collected samples, the pooled proportions for ER+ and triple negative tumors were 0.59 (0.56-0.62) and 0.21 (0.17-0.25), respectively, regardless of region. Limitations of the study include the lack of standardized procedures across the various studies; the low methodological quality of many studies in terms of the representativeness of their case series and the quality of the procedures for collection, fixation, and receptor testing; and the possibility

  14. Receptor-Defined Subtypes of Breast Cancer in Indigenous Populations in Africa: A Systematic Review and Meta-Analysis

    PubMed Central

    Eng, Amanda; McCormack, Valerie; dos-Santos-Silva, Isabel

    2014-01-01

    Background Breast cancer is the most common female cancer in Africa. Receptor-defined subtypes are a major determinant of treatment options and disease outcomes but there is considerable uncertainty regarding the frequency of poor prognosis estrogen receptor (ER) negative subtypes in Africa. We systematically reviewed publications reporting on the frequency of breast cancer receptor-defined subtypes in indigenous populations in Africa. Methods and Findings Medline, Embase, and Global Health were searched for studies published between 1st January 1980 and 15th April 2014. Reported proportions of ER positive (ER+), progesterone receptor positive (PR+), and human epidermal growth factor receptor-2 positive (HER2+) disease were extracted and 95% CI calculated. Random effects meta-analyses were used to pool estimates. Fifty-four studies from North Africa (n = 12,284 women with breast cancer) and 26 from sub-Saharan Africa (n = 4,737) were eligible. There was marked between-study heterogeneity in the ER+ estimates in both regions (I2>90%), with the majority reporting proportions between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Similarly, large between-study heterogeneity was observed for PR+ and HER2+ estimates (I2>80%, in all instances). Meta-regression analyses showed that the proportion of ER+ disease was 10% (4%–17%) lower for studies based on archived tumor blocks rather than prospectively collected specimens, and 9% (2%–17%) lower for those with ≥40% versus those with <40% grade 3 tumors. For prospectively collected samples, the pooled proportions for ER+ and triple negative tumors were 0.59 (0.56–0.62) and 0.21 (0.17–0.25), respectively, regardless of region. Limitations of the study include the lack of standardized procedures across the various studies; the low methodological quality of many studies in terms of the representativeness of their case series and the quality of the procedures for collection

  15. Expression of calretinin in high-grade hormone receptor-negative invasive breast carcinomas: correlation with histological and molecular subtypes.

    PubMed

    Micello, Donata; Bossi, Alberto; Marando, Alessandro; Dainese, Emanuele; Sessa, Fausto; Capella, Carlo

    2017-07-01

    Calretinin expression has been reported in neoplasms arising in various organs, including the breast. We investigated the relationship of calretinin expression with different histological and molecular subtypes of invasive breast carcinomas (IBCs) and its prognostic significance in high-grade female hormone receptor-negative IBCs. A total of 196 cases of IBCs of different histological subtypes were analyzed for immunohistochemical expression of calretinin, human epidermal growth factor receptor 2 (HER2), basal-like (BL), apocrine, and proliferative markers and grouped in different molecular subtypes. We found significant morphological differences in the group of formally classified invasive ductal carcinoma of no special type (IDC-NST), which we further subdivided into two types (type I IDC-NST and type II IDC-NST) according to their morphology. Calretinin expression was found in 55.1% of the IBCs and was strongly associated with carcinoma with medullary features (P = 0.014) and type II IDC-NST (P < 0.001), while type I IDC-NST correlated (P < 0.001) with a lack of calretinin expression. Among the molecular subtypes of IBC, calretinin expression was identified in a significant portion of BL breast cancers (BLBCs), while expression was poor in HER2-overexpressing and molecular-apocrine (MA) HER2-negative subtypes and even less in MA/HER2+ ones. Calretinin expression was significantly associated with high (≥50) Ki-67 (P = 0.02), but not with parameters like age, tumor size, lymph node status, overall survival (OS), and disease-free survival. Calretinin expression is most common in high-grade IBCs with histological medullary features, type II IDC-NST and BL phenotype, and is associated with high neoplastic proliferative index.

  16. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update

    PubMed Central

    Olsen, Richard W.; Sieghart, Werner

    2010-01-01

    In this review we attempt to summarize experimental evidence on the existence of defined native GABAA receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge. This will serve to update the most recent classification of GABAA receptors (Pharmacol Rev 50:291–313, 1998) approved by the Nomenclature Committee of the International Union of Pharmacology. GABAA receptors are chloride channels that mediate the major form of fast inhibitory neurotransmission in the central nervous system. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. GABAA receptors are assembled from a family of 19 homologous subunit gene products and form numerous, mostly hetero-oligomeric, pentamers. Such receptor subtypes with properties that depend on subunit composition vary in topography and ontogeny, in cellular and subcellular localization, in their role in brain circuits and behaviors, in their mechanisms of regulation, and in their pharmacology. We propose several criteria, which can be applied to all the members of the LGIC superfamily, for including a receptor subtype on a list of native hetero-oligomeric subtypes. With these criteria, we develop a working GABAA receptor list, which currently includes 26 members, but will undoubtedly be modified and grow as information expands. The list is divided into three categories of native receptor subtypes: “identified,” “existence with high probability,” and “tentative.” PMID:18790874

  17. Receptor subtype-dependent positive and negative modulation of GABA(A) receptor function by niflumic acid, a nonsteroidal anti-inflammatory drug.

    PubMed

    Sinkkonen, Saku T; Mansikkamäki, Salla; Möykkynen, Tommi; Lüddens, Hartmut; Uusi-Oukari, Mikko; Korpi, Esa R

    2003-09-01

    In addition to blocking cyclooxygenases, members of the fenamate group of nonsteroidal anti-inflammatory drugs have been proposed to affect brain GABAA receptors. Using quantitative autoradiography with GABAA receptor-associated ionophore ligand [35S]t-butylbicyclophosphorothionate (TBPS) on rat brain sections, one of the fenamates, niflumate, at micromolar concentration was found to potentiate GABA actions in most brain areas, whereas being in the cerebellar granule cell layer an efficient antagonist similar to furosemide. With recombinant GABAA receptors expressed in Xenopus laevis oocytes, we found that niflumate potentiated 3 microM GABA responses up to 160% and shifted the GABA concentration-response curve to the left in alpha1beta2gamma2 receptors, the predominant GABAA receptor subtype in the brain. This effect needed the gamma2 subunit, because on alpha1beta2 receptors, niflumate exhibited solely an antagonistic effect at high concentrations. The potentiation was not abolished by the specific benzodiazepine site antagonist flumazenil. Niflumate acted as a potent antagonist of alpha6beta2 receptors (with or without gamma2 subunit) and of alphaXbeta2gamma2 receptors containing a chimeric alpha1 to alpha6 subunit, which suggests that niflumate antagonism is dependent on the same transmembrane domain 1- and 2-including fragment of the alpha6 subunit as furosemide antagonism. This antagonism was noncompetitive because the maximal GABA response, but not the potency, was reduced by niflumate. These data show receptor subtype-dependent positive and negative modulatory actions of niflumate on GABAA receptors at clinically relevant concentrations, and they suggest the existence of a novel positive modulatory site on alpha1beta2gamma2 receptors that is dependent on the gamma2 subunit but not associated with the benzodiazepine binding site.

  18. Expression of prostaglandin E₂ receptor subtypes in the canine lower urinary tract varies according to the gonadal status and gender.

    PubMed

    Ponglowhapan, S; Church, D B; Khalid, M

    2010-11-01

    Locally-synthesised prostaglandin E₂ (PGE₂) is pivotal for the function of the lower urinary tract (LUT). This study aimed at investigating the expression and distribution pattern of the four PGE₂ receptor (EP) subtypes in the LUT of intact and gonadectomised male and female dogs. Expression for EP1, EP2, EP3, and EP4 and their mRNA (EP2, EP3, and EP4) was investigated. Twenty clinically healthy dogs were allotted into 4 groups based on their gonadal status and gender including 5 intact males, 5 anoestrous females, 4 castrated males, and 6 spayed females. In situ hybridization and immunohistochemistry showed variation in the expression of mRNA and protein for the EP subtypes among tissue layers (epithelium, sub-epithelial stroma, and muscle), regions (body and neck of the bladder as well as proximal and distal urethra) and between gonadal statuses and genders. The expression for the four EPs was intense in the luminal epithelium, intermediate to low in the muscle and the sub-epithelial stroma regardless of gonadal status or gender. Higher expression of all EPs and their mRNAs was observed in the proximal urethra compared to other regions in intact dogs. However, in gonadectomised dogs, the expression did not differ among different regions and was generally lower than in intact dogs particularly in the proximal urethra. Differences in the expression between genders were found and depended on EP subtypes. In conclusion, the results have shown that four subtypes of EP receptors and their mRNAs are present in the canine LUT and their expression was affected by the gonadal status and the gender. The results lead to suggest that an impaired LUT function post-neutering may partly be associated with differences in PGE₂ receptor expression between intact and gonadectomised dogs. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Both overlapping and distinct signaling pathways for somatostatin receptor subtypes SSTR1 and SSTR2 in pituitary cells.

    PubMed

    Chen, L; Fitzpatrick, V D; Vandlen, R L; Tashjian, A H

    1997-07-25

    To elucidate the signaling events mediated by specific somatostatin receptor (SSTR) subtypes, we expressed SSTR1 and SSTR2 individually in rat pituitary GH12C1 and F4C1 cells, which lack endogenous somatostatin receptors. In transfected GH12C1 cells, both SSTR1 and SSTR2 coupled to inhibition of Ca2+ influx and hyperpolarization of membrane potential via a pertussis toxin (PTx)-sensitive mechanism. These effects reflected modulation of ion channel activities which are important for regulation of hormone secretion. Somatostatin analogs MK678 and CH275 acted as subtype selective agonists as expected. In transfected F4C1 cells, both SSTR1 and SSTR2 mediated somatostatin-induced inhibition of adenylyl cyclase via a PTx-sensitive pathway. In addition, activation of SSTR2 in F4C1 cells, but not SSTR1, stimulated phospholipase C (PLC) activity and an increase in [Ca2+]i due to release of Ca2+ from intracellular stores. Unlike adenylyl cyclase inhibition, the PLC-mediated response was only partially sensitive to PTx. To determine the structural determinants in SSTR2 necessary for activation of PLC, we constructed chimeric receptors in which domains of SSTR2 were introduced into SSTR1. Chimeric receptors containing only the third intracellular loop, or all three intracellular loops from SSTR2, mediated inhibition of adenylyl cyclase, but failed to stimulate PLC activity as did wild-type SSTR2. Furthermore, the C-terminal tail of SSTR2 was not required for coupling to PLC. Thus, by expressing individual somatostatin receptor subtypes in pituitary cells, we have identified both overlapping and distinct signaling pathways for SSTR1 and SSTR2, and have shown that sequences other than simply the intracellular domains are required for SSTR2 to couple to the PLC signaling pathway.

  20. Galanin-neuropeptide Y (NPY) interactions in central cardiovascular control: involvement of the NPY Y receptor subtype.

    PubMed

    Díaz-Cabiale, Zaida; Parrado, Concepción; Rivera, Alicia; de la Calle, Adelaida; Agnati, Luigi; Fuxe, Kjell; Narváez, José A

    2006-07-01

    The interactions between neuropeptide Y (NPY), specifically through NPY Y(1) and Y(2) receptor subtypes, and galanin [GAL(1-29)] have been analysed at the cardiovascular level. The cardiovascular effects of intracisternal coinjections of GAL(1-29) with NPY or NPY Y(1) or Y(2) agonists, as well as quantitative receptor autoradiography of the binding characteristics of NPY Y(1) and Y(2) receptor subtypes in the nucleus of the solitary tract (NTS), in the presence or absence of GAL(1-29), have been investigated. The effects of coinjections of GAL(1-29) and the NPY Y(1) agonist on the expression of c-FOS immunoreactivity in the NTS were also studied. The coinjection of NPY with GAL(1-29) induced a significant vasopressor and tachycardic action with a maximum 40% increase (P < 0.001). The coinjection of the NPY Y(1) agonist and GAL(1-29) induced a similar increase in mean arterial pressure and heart rate as did NPY plus GAL(1-29), actions that were not observed with the NPY Y(2) agonist plus GAL(1-29). GAL(1-29), 3 nm, significantly and substantially (by approximately 40%) decreased NPY Y(1) agonist binding in the NTS. This effect was significantly blocked (P < 0.01) in the presence of the specific galanin antagonist M35. The NPY Y(2) agonist binding was not modified in the presence of GAL(1-29). At the c-FOS level, the coinjection of NPY Y(1) and GAL(1-29) significantly reduced the c-FOS-immunoreactive response induced by either of the two peptides. The present findings suggest the existence of a modulatory antagonistic effect of GAL(1-29) mediated via galanin receptors on the NPY Y(1) receptor subtype and its signalling within the NTS.

  1. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window

    PubMed Central

    2016-01-01

    Background: Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. Methods: Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. Results: MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. Conclusion: Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders. PMID:26802568

  2. Emergence of functional sensory subtypes as defined by transient receptor potential channel expression.

    PubMed

    Hjerling-Leffler, Jens; Alqatari, Mona; Ernfors, Patrik; Koltzenburg, Martin

    2007-03-07

    The existence of heterogeneous populations of dorsal root ganglion (DRG) neurons conveying different somatosensory information is the basis for the perception of touch, temperature, and pain. A differential expression of transient receptor potential (TRP) cation channels contributes to this functional heterogeneity. However, little is known about the development of functionally diverse neuronal subpopulations. Here, we use calcium imaging of acutely dissociated mouse sensory neurons and quantitative reverse transcription PCR to show that TRP cation channels emerge in waves, with the diversification of functional groups starting at embryonic day 12.5 (E12.5) and extending well into the postnatal life. Functional responses of voltage-gated calcium channels were present in DRG neurons at E11.5 and reached adult levels by E14.5. Responses to capsaicin, menthol, and cinnamaldehyde were first seen at E12.5, E16.5, and postnatal day 0 (P0), when the mRNA for TRP cation channel, subfamily V, member 1 (TRPV1), TRP cation channel, subfamily M, member 8 (TRPM8), and TRP cation channel, subfamily A, member 1 (TRPA1), respectively, was first detected. Cold-sensitive neurons were present before the expression or functional responses of TRPM8 or TRPA1. Our data support a lineage relationship in which TRPM8- and TRPA1-expressing sensory neurons derive from the population of TRPV1-expressing neurons. The TRPA1 subpopulation of neurons emerges independently in two distinct classes of nociceptors: around birth in the peptidergic population and after P14 in the nonpeptidergic class. This indicates that neurons with similar receptive properties can be generated in different sublineages at different developmental stages. This study describes for the first time the emergence of functional subtypes of sensory neurons, providing new insight into the development of nociception and thermoreception.

  3. 111In-labelled octreotide binding by the somatostatin receptor subtype 2 in neuroendocrine tumours.

    PubMed

    Hashemi, S H; Benjegård, S-A; Ahlman, H; Wängberg, B; Forssell-Aronsson, E; Billig, H; Nilsson, O

    2003-05-01

    The aim of this study was to investigate the importance of somatostatin receptor subtype 2 (SSTR2) expression for 111In-labelled diethylenetriamine-pentaacetic acid (DTPA)-D-Phe1-octreotide binding and uptake of 111In in neuroendocrine tumours. 111In activity concentrations in surgical biopsies from neuroendocrine tumours (midgut carcinoid and medullary thyroid carcinoma), breast carcinoma and blood were determined 1-8 days after intravenous injection of 111In-labelled DTPA-D-Phe1-octreotide (140-350 MBq). The ratio of 111In activity concentrations between tumour tissue and blood (T/B value) was calculated. The expression of SSTR2 messenger RNA (mRNA) in tumour biopsies was quantitated by ribonuclease protection assay and SSTR2 protein was localized by immunocytochemistry. T/B values were highest for tumour biopsies from midgut carcinoids (mean 160 (range 4-1200); n = 65) followed by medullary thyroid carcinoma (mean 38 (range 2-350); n = 88) and breast carcinoma (mean 18 (range 4-41); n = 4). The expression of SSTR2 mRNA (relative to the NCI-H69 cell line) was highest in tumour biopsies from midgut carcinoids (mean 2.5 (range 0.83-6.0); n = 40) followed by medullary thyroid carcinoma (mean 1.3 (range 0.20-6.0); n = 7) and breast carcinoma (mean 0.66 (range 0.29-1.0); n = 9). In tumour biopsies SSTR2 protein was localized exclusively to tumour cells. Midgut carcinoid tumours showed a much higher level of SSTR2 expression than medullary thyroid carcinoma in accordance with superior tumour imaging by octreotide scintigraphy. The high SSTR2 mRNA values and T/B values observed in midgut carcinoid tumours were positively correlated. Copyright 2003 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  4. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma.

    PubMed

    Arai, Yasuhito; Totoki, Yasushi; Hosoda, Fumie; Shirota, Tomoki; Hama, Natsuko; Nakamura, Hiromi; Ojima, Hidenori; Furuta, Koh; Shimada, Kazuaki; Okusaka, Takuji; Kosuge, Tomoo; Shibata, Tatsuhiro

    2014-04-01

    Cholangiocarcinoma is an intractable cancer, with limited therapeutic options, in which the molecular mechanisms underlying tumor development remain poorly understood. Identification of a novel driver oncogene and applying it to targeted therapies for molecularly defined cancers might lead to improvements in the outcome of patients. We performed massively parallel whole transcriptome sequencing in eight specimens from cholangiocarcinoma patients without KRAS/BRAF/ROS1 alterations and identified two fusion kinase genes, FGFR2-AHCYL1 and FGFR2-BICC1. In reverse-transcriptase polymerase chain reaction (RT-PCR) screening, the FGFR2 fusion was detected in nine patients with cholangiocarcinoma (9/102), exclusively in the intrahepatic subtype (9/66, 13.6%), rarely in colorectal (1/149) and hepatocellular carcinoma (1/96), and none in gastric cancer (0/212). The rearrangements were mutually exclusive with KRAS/BRAF mutations. Expression of the fusion kinases in NIH3T3 cells activated MAPK and conferred anchorage-independent growth and in vivo tumorigenesis of subcutaneous transplanted cells in immune-compromised mice. This transforming ability was attributable to its kinase activity. Treatment with the fibroblast growth factor receptor (FGFR) kinase inhibitors BGJ398 and PD173074 effectively suppressed transformation. FGFR2 fusions occur in 13.6% of intrahepatic cholangiocarcinoma. The expression pattern of these fusions in association with sensitivity to FGFR inhibitors warrant a new molecular classification of cholangiocarcinoma and suggest a new therapeutic approach to the disease. © 2014 by the American Association for the Study of Liver Diseases.

  5. Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties

    SciTech Connect

    Buck, M.A.; Fraser, C.M. )

    1990-12-14

    The pharmacological and biochemical properties of rat m1 and m3 muscarinic acetylcholine receptors (mAChR) stably transfected into Chinese hamster ovary-K1 (CHO) cells were characterized with ligand binding, affinity labeling and biochemical assays. Both mAChR subtypes display saturable, high affinity binding of (3H)-quinuclidinyl benzilate (QNB) and a rank order of antagonist potency of QNB greater than atropine greater than pirenzepine greater than AF-DX 116. Carbachol displacement of (3H)-QNB binding to the m3 mAChR revealed an approximate 17-fold higher affinity than observed with the m1 mAChR. (3H)-propylbenzilylcholine mustard (PrBCM) labeling of mAChR revealed that m1 and m3 mAChR migrated on SDS-polyacrylamide gels with apparent molecular masses of 80,000 and 94,000 daltons, respectively, consistent with the known differences in their molecular sizes. Both m1 and m3 mAChR elicited dose-dependent increases in the hydrolysis of phosphoinositides; however, the maximal increase in total inositol phosphates elicited with the m1 mAChR was approximately 2-fold greater than that observed in cells expressing similar densities of m3 mAChR. Agonist activation of the m1 mAChR also elicited increases in basal and forskolin-stimulated cAMP, whereas the m3 mAChR had no effect on intracellular cAMP levels. These data suggest that although m1 and m3 mAChR display a considerable degree of structural homology, they exhibit distinct pharmacological and biochemical properties.

  6. High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors.

    PubMed

    Grossrubatscher, Erika; Veronese, Silvio; Ciaramella, Paolo Dalino; Pugliese, Raffaele; Boniardi, Marco; De Carlis, Luciano; Torre, Massimo; Ravini, Mario; Gambacorta, Marcello; Loli, Paola

    2008-12-01

    To evaluate by immumohistochemistry the presence of DR subtype 2 (D2R) in well differentiated NETs of different sites and in normal islet cells. Recent data in vitro and in vivo support that dopaminergic drugs might exert an inhibitory effect on hormone secretion and, possibly, on tumor growth in neuroendocrine tumors (NET)s. Their potential therapeutic role needs the demonstration of dopamine receptors (DR) in tumor cells. Little is known on the expression of DR in NETs. 85% of samples (100% of bronchial carcinoids and 93% of islet cell tumors) showed positivity for D2R; intensity of immunoreaction in NETs was similar or higher than in pituitary (54% and respectively 31% of cases). D2R positivity in more than 70% of tumor cells was observed in 46% of samples. Same intensity of D2R-immunoreactivity was found in pituitary and normal islet cells. No differences in D2R expression were recorded on considering tumor grading, size, proliferative activity, presence of metastases, endocrine activity and gender. A significant difference (62.5% vs 96.4%, p = 0.039) was observed in the prevalence of D2R expression between patients with more aggressive tumors and patients without recurrence/progression of disease during follow-up. 46 NET samples from 44 patients and normal endocrine pancreatic tissue were studied. D2R-staining was performed on NETs and compared with six non-secreting pituitary adenomas and related to clinical-pathological data. The present data demonstrate a high expression of D2R in NETs; this finding is of clinical relevance in view of the potential role of dopaminergic drugs in inhibiting secretion and/or cell proliferation in NETs.

  7. Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences.

    PubMed

    Peterlik, Daniel; Stangl, Christina; Bauer, Amelie; Bludau, Anna; Keller, Jana; Grabski, Dominik; Killian, Tobias; Schmidt, Dominic; Zajicek, Franziska; Jaeschke, Georg; Lindemann, Lothar; Reber, Stefan O; Flor, Peter J; Uschold-Schmidt, Nicole

    2017-01-01

    Etiology and pharmacotherapy of stress-related psychiatric conditions and somatoform disorders are areas of high unmet medical need. Stressors holding chronic plus psychosocial components thereby bear the highest health risk. Although the metabotropic glutamate receptor subtype 5 (mGlu5) is well studied in the context of acute stress-induced behaviors and physiology, virtually nothing is known about its potential involvement in chronic psychosocial stress. Using the mGlu5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4yl]ethynyl]pyridine), a close analogue of the clinically active drug basimglurant - but optimized for rodent studies, as well as mGlu5-deficient mice in combination with a mouse model of male subordination (termed CSC, chronic subordinate colony housing), we demonstrate that mGlu5 mediates multiple physiological, immunological, and behavioral consequences of chronic psychosocial stressor exposure. For instance, CTEP dose-dependently relieved hypothalamo-pituitary-adrenal axis dysfunctions, colonic inflammation as well as the CSC-induced increase in innate anxiety; genetic ablation of mGlu5 in mice largely reproduced the stress-protective effects of CTEP and additionally ameliorated CSC-induced physiological anxiety. Interestingly, CSC also induced an upregulation of mGlu5 in the hippocampus, a stress-regulating brain area. Taken together, our findings provide evidence that mGlu5 is an important mediator for a wide range of chronic psychosocial stress-induced alterations and a potentially valuable drug target for the treatment of chronic stress-related pathologies in man.

  8. Prostaglandin E2 inhibits platelet-derived growth factor-stimulated cell proliferation through a prostaglandin E receptor EP2 subtype in rat hepatic stellate cells.

    PubMed

    Koide, Shigeki; Kobayashi, Yoshimasa; Oki, Yutaka; Nakamura, Hirotoshi

    2004-09-01

    Prostaglandin (PG) E2 inhibits hepatic stellate cell (HSC) mitogenesis. PGE-specific receptors are divided into four subtypes that are coupled either to Ca2+ mobilization (EP1 and EP3) or to the stimulation of adenyl cyclase (EP2 and EP4). The aims of the current study were to identify PGE receptor subtypes in cultured rat HSC and to examine which PGE receptor subtype(s) mediates the inhibitory effect of PGE2 on platelet-derived growth factor (PDGF)-stimulated proliferation. Reverse transcription-polymerase chain reaction analysis was performed to detect PGE receptor subtype mRNA expression. Cell proliferation was determined by measuring [3H]thymidine incorporation, and intracellular cyclic AMP was measured by radioimmunoassay. Cultured rat HSC expressed mRNAs for all four subtypes of PGE receptor. PGE2- and EP2-selective agonist produced dose-dependent inhibitory effects on PDGF-stimulated proliferation. Neither EP1-, EP3-, nor EP4-selective agonists showed any inhibitory effect. An adenylate cyclase inhibitor strongly blunted the inhibition of DNA synthesis elicited by PGE2 and the EP2 agonist. The EP2 agonist generated higher and more prolonged increases in intracellular cyclic AMP than the EP4 agonist. Activation of the PGE EP2 receptor has an antiproliferative effect in HSC that may be mediated by cyclic AMP-related signal transduction pathways.

  9. Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury.

    PubMed

    Shin, Jin A; Yoon, Joo Chun; Kim, Minsuk; Park, Eun-Mi

    2016-03-01

    Ischemic stroke, which induces oxidative stress in the brain, disrupts tight junctions (TJs) between brain endothelial cells, resulting in blood-brain barrier (BBB) breakdown and brain edema. Estrogen reduces oxidative stress and protects brain endothelial cells from ischemic insult. The aim of this study was to determine the protective effects of estrogen on TJ disruption and to examine the roles of classical estrogen receptor (ER) subtypes, ERα- and ERβ, in estrogen effects in brain endothelial cells (bEnd.3) exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Estrogen pretreatment prevented OGD/R-induced decreases in cell viability and TJ protein levels. ERα- and ERβ-specific agonists also reduced TJ disruption. Knockdown of ERα or ERβ expression partially inhibited the effects of estrogen, but completely reversed the effects of corresponding ER subtype-specific agonists on the outcomes of OGD/R. During the early reperfusion period, activation of extracellular signal-regulated kinase1/2 and hypoxia-inducible factor 1α/vascular endothelial growth factor was associated with decreased expression of occludin and claudin-5, respectively, and these changes in TJ protein levels were differentially regulated by ER subtype-specific agonists. Our results suggest that ERα and ERβ activation reduce TJ disruption via inhibition of signaling molecules after ischemic injury and that targeting each ER subtype can be a useful strategy for protecting the BBB from ischemic stroke in postmenopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Structure-based prediction of subtype-selectivity of Histamine H3 receptor selective antagonists in clinical trials

    PubMed Central

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A.

    2011-01-01

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases such as schizophrenia, psychosis, depression, migraine, allergies, asthma ulcers, and hypertension. Among them, the human H3 Histamine receptor (hH3HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity.1 However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments it would be useful to have the three dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H1, H2, H3, and H4) using the GEnSeMBLE (GPCR Ensemble of Structures in Membrane BiLayer Environment) Monte Carlo protocol.2 sampling ~ 35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these best 10 protein structures with the DarwinDock Monte Carlo protocol to sample ~ 50,000*20 poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E2065.46 contributes most in binding H3 selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/ S5.43 in both of hH3HR and hH4HR are involved in H3/ H4 subtype selectivity. In addition, we find that M3786.55 in hH3HR provides additional hydrophobic interactions different from hH4HR (the corresponding amino acid of T3236.55 in hH4HR) to provide additional subtype bias. From these studies we developed a pharmacophore model based on our predictions for known hH3HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (Tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton interacting with D1143.32, the spacer, the aromatic

  11. Effects of lead exposure on hippocampal metabotropic glutamate receptor subtype 3 and 7 in developmental rats

    PubMed Central

    Xu, Jian; Yan, Huai C; Yang, Bo; Tong, Lu S; Zou, Yu X; Tian, Ying

    2009-01-01

    Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after

  12. Expression of β-Adrenergic Receptor Subtypes in Proliferative, Involuted, and Propranolol-Responsive Infantile Hemangiomas.

    PubMed

    Phillips, James D; Zhang, Haihong; Wei, Ting; Richter, Gresham T

    2017-03-01

    Propranolol hydrochloride has become the primary medical treatment for problematic infantile hemangioma; however, the expression of propranolol's target receptors during growth, involution, and treatment of hemangioma remains unclear. To measure and compare the expression of β1-, β2-, and β3-adrenergic receptors (ADBR1, ADBR2, and ADBR3, respectively) in proliferative (n = 10), involuted (n = 11), and propranolol-responsive (n = 12) hemangioma tissue. Infantile hemangioma specimens were harvested for molecular investigation. Messenger RNA (mRNA) expression of the ADBR1, ADBR2, and ADBR3 genes was detected by real-time polymerase chain reaction. Protein level expression was measured by Western blot and standardized with densitometry. A total of 33 specimens were collected from patients in a tertiary pediatric hospital who underwent excision of problematic hemangiomas. This study was conducted from January 18, 2011, to September 24, 2013, and data analysis was performed from February 25, 2015, to June 25, 2016. Of the 33 patients included, 21 were female (64%). The mean (SD) patient age at the time of excision was 7 (2.5) months for the proliferative group lesions, 23.5 (10) months for the involuted group, and 16 (10) months for the propranolol group. The mean level of ADBR1 mRNA expression was significantly higher in proliferative hemangioma than in propranolol-responsive hemangioma (1.05 [0.56] vs 0.52 [0.36]; P = .01; 95% CI, 0.12-0.94). There was no difference in ADBR2 expression among the groups. Protein expression of ADBR3 was significantly higher in involuted (0.64 [0.12] vs 0.26 [0.04]; P < .01; 95% CI, 0.26-0.49) and propranolol-responsive hemangioma (0.66 [0.31] vs 0.26 [0.04]; P = .01; 95% CI, 0.16-0.68) compared with proliferative hemangioma. These data demonstrate the variable expression of ADBR subtypes among infantile hemangiomas during growth, involution, and response to treatment. These findings may have clinical

  13. Sequestration of human muscarinic acetylcholine receptor hm1-hm5 subtypes: effect of G protein-coupled receptor kinases GRK2, GRK4, GRK5 and GRK6.

    PubMed

    Tsuga, H; Okuno, E; Kameyama, K; Haga, T

    1998-03-01

    Sequestration of porcine muscarinic acetylcholine receptor m2 subtypes (m2 receptors) expressed in COS-7 cells is facilitated by coexpression of G protein-coupled receptor kinases 2 (GRK2). We examined the effect of coexpression of GRK2, GRK4 delta, GRK5 and GRK6 on sequestration of human m1-m5 receptors expressed in COS-7 cells, which was assessed as loss of [3H]N-methylscopolamine binding activity from the cell surface. Sequestration of m4 receptors as well as m2 receptors was facilitated by coexpression of GRK2 and attenuated by coexpression of the dominant negative form of GRK2 (DN-GRK2). Sequestration of m3 and m5 receptors also was facilitated by coexpression of GRK2 but not affected by coexpression of DN-GRK2. On the other hand, proportions of sequestered m1 receptors were not significantly different with coexpression of GRK2 and DN-GRK2. GRK4 delta, GRK5 and GRK6 did not facilitate sequestration of m1-m5 receptors in COS-7 cells, except that the sequestration of m2 receptors tended to be facilitated by coexpression of GRK4 delta, GRK5 and GRK6. However, coexpression of GRK4 delta, GRK5, but not GRK6, in BHK-21 cells facilitated sequestration of m2, but not m3, receptors. These results indicate that the effect of GRK2 to facilitate receptor sequestration is not restricted to m2 receptors but is generalized to other muscarinic receptors except m1 receptors and that other kinases, including GRK4 delta, GRK5 and endogenous kinase(s) in COS-7 cells, also contribute to sequestration of m2 and m4 receptors.

  14. Angiotensin II binding sites in the rat fetus: characterization of receptor subtypes and interaction with guanyl nucleotides.

    PubMed

    Feuillan, P P; Millan, M A; Aguilera, G

    1993-03-19

    Angiotensin II (AII) receptor subtypes were studied in the 18-day gestation fetal rat, using two non-peptide AII antagonists: (2-n-butyl-4-chloro-5-hydroxymethyl-1-(2'-(1H-tetrazol-5-yl) biphenyl-4-yl)methyl)imidazol (DuP 753; type 1 (AT1) specific), and 1-(4-amino-3-methylphenyl)methyl-5-diphenacetyl -4,5,6,7-tetrahydro-1-H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD 123177; type 2 (AT2) specific). Autoradiography using 125I(-)[Sar1,Ile8]AII showed that 10 microM PD 123177 decreased binding to near-nonspecific levels in skin, skeletal muscle and adrenal medulla, whereas 10 microM DuP 753 blocked binding in the liver and lung. Studies in skin and liver membranes confirmed the autoradiographic data: AT1 receptors were predominant in the liver (95%), and AT2 in the skin (97%). There was no cross-reactivity between receptor subtype and the heterologous antagonist up to a concentration of 10 microM. In both skin and liver, 2 mM dithiothreitol enhanced the binding of AT2 receptors by increasing receptor affinity, but inhibited binding of AT1 by decreasing the receptor number. In the absence of antagonists, guanyl nucleotides, added at equilibrium, caused marked dissociation of 125I-AII binding in liver membranes, but had minimal effect in skin. However, dissociation occurred in the skin when AT2 sites were blocked with 10 microM PD 123177, and in liver, dissociation was not observed when AT1 sites were blocked with DuP 753. Hence, in contrast to classical AII target tissues, which contain predominantly AT1, most of the sites in fetal skin and skeletal muscle are AT2. The demonstration that the effects of guanyl nucleotides are selective for receptor subtype suggests that the AT1 receptor, but not the AT2, is coupled to cell function via guanyl nucleotide binding proteins. The functional importance of the AT2 receptors and their role in fetal physiology is under current investigation.

  15. Versatility or promiscuity: the estrogen receptors, control of ligand selectivity and an update on subtype selective ligands.

    PubMed

    Ng, Hui Wen; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2014-08-26

    The estrogen receptors (ERs) are a group of versatile receptors. They regulate an enormity of processes starting in early life and continuing through sexual reproduction, development, and end of life. This review provides a background and structural perspective for the ERs as part of the nuclear receptor superfamily and discusses the ER versatility and promiscuity. The wide repertoire of ER actions is mediated mostly through ligand-activated transcription factors and many DNA response elements in most tissues and organs. Their versatility, however, comes with the drawback of promiscuous interactions with structurally diverse exogenous chemicals with potential for a wide range of adverse health outcomes. Even when interacting with endogenous hormones, ER actions can have adverse effects in disease progression. Finally, how nature controls ER specificity and how the subtle differences in receptor subtypes are exploited in pharmaceutical design to achieve binding specificity and subtype selectivity for desired biological response are discussed. The intent of this review is to complement the large body of literature with emphasis on most recent developments in selective ER ligands.

  16. Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats.

    PubMed

    Bodnar, R J; Glass, M J; Koch, J E

    1995-01-01

    Intake of either hypotonic or hypertonic saline solutions is modulated in part by the endogenous opioid system. Morphine and selective mu and delta opioid agonists increase saline intake, while general opioid antagonists reduce saline intake in rats. The present study evaluated whether intracerebroventricular administration of general (naltrexone) and selective mu (beta-funaltrexamine, 5-20 micrograms), mu, (naloxonazine, 50 micrograms), kappa (nor-binaltorphamine, 5-20 micrograms), delta (naltrindole, 20 micrograms), or delta 1 (DALCE, 40 micrograms) opioid receptor subtype antagonists altered water intake and either hypotonic (0.6%) or hypertonic (1.7%) saline intake in water-deprived (24 h) rats over a 3-h time course in a two-bottle choice test. Whereas peripheral naltrexone (0.5-2.5 mg/kg) significantly reduced water intake and hypertonic saline intake, central naltrexone (1-50 micrograms) significantly reduced water intake and hypotonic saline intake. Water intake was significantly reduced following mu and kappa receptor antagonism, but not following mu 1, delta, or delta 1 receptor antagonism. In contrast, neither hypotonic nor hypertonic saline intake was significantly altered by any selective antagonist. These data are discussed in terms of opioid receptor subtype control over saline intake relative to the animal's hydrational state and the roles of palatability and/or salt appetite.

  17. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABAA Receptor Modulators?

    PubMed Central

    Vinkers, Christiaan H.; Olivier, Berend

    2012-01-01

    Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226

  18. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  19. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    PubMed

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.

  20. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases. The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms. Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes. Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF. PMID:28415591

  1. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease.

    PubMed

    Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Blackburn, Michael R; Idzko, Marco

    2017-05-30

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases.The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms.Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes.Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF.

  2. Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P₃.

    PubMed

    Schmitz, Elisabeth I; Potteck, Henrik; Schüppel, Melanie; Manggau, Marianti; Wahydin, Elly; Kleuser, Burkhard

    2012-12-01

    Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NO•) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NO•-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NO•. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NO•. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NO• formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.

  3. Dissociation of β1- and β2-adrenergic receptor subtypes in the retrieval of cocaine-associated memory.

    PubMed

    Fitzgerald, Michael K; Otis, James M; Mueller, Devin

    2016-01-01

    Drug seeking is maintained by encounters with drug-associated cues, and disrupting retrieval of these drug-cue associations would reduce the risk of relapse. Retrieval of cocaine-associated memories is dependent on β-adrenergic receptor (β-AR) activation, and blockade of these receptors induces a persistent retrieval deficit. Whether retrieval of cocaine-associated memory is mediated by a specific β-AR subtype, however, remains unclear. Using a cocaine conditioned place preference (CPP) procedure, we examined whether retrieval of a cocaine CPP memory is mediated collectively by β1- and β2-ARs, or by one of these β-AR subtypes alone. We show that co-blockade of β1- and β2-ARs abolished CPP expression on that and subsequent drug-free CPP tests, resulting in a long-lasting retrieval deficit that prevented subsequent cocaine-induced reinstatement. To dissociate the necessity of either β1- or β2-ARs alone, we administered subtype-specific antagonists prior to retrieval. Administration of a β1-AR antagonist before the initial CPP trial dose-dependently reduced expression of a CPP on that and subsequent drug-free trials as compared to vehicle administration. In contrast, administration of a β2-AR antagonist had no effect on initial CPP expression, although the highest dose reduced subsequent CPP expression. Importantly, either β1- or β2-AR blockade prior to an initial retrieval trial prevented subsequent cocaine-induced reinstatement. Our findings indicate that the β1-AR subtype mediates retrieval of a cocaine CPP, and that acutely blocking either β1- or β2-ARs can prevent subsequent cocaine-induced reinstatement. Thus, β-AR antagonists, particularly β1-ARs antagonists, could serve as adjuncts for addiction therapies to prevent retrieval of drug-associated memories and provide protection against relapse.

  4. Identification of Critical Residues Involved in Ligand Binding and G Protein Signaling in Human Somatostatin Receptor Subtype 2

    PubMed Central

    Parry, Jesse J.; Chen, Ronald; Andrews, Rebecca; Lears, Kimberly A.

    2012-01-01

    G protein signaling through human somatostatin receptor subtype 2 (SSTR2) is well known, but the amino acids involved in stimulation of intracellular responses upon ligand binding have not been characterized. We constructed a series of point mutants in SSTR2 at amino acid positions 89, 139, and 140 in attempts to disrupt G protein signaling upon ligand binding. The aspartic acid changes at position 89 to either Ala, Leu, or Arg generated mutant receptors with varying expression profiles and a complete inability to bind somatostatin-14 (SST). Mutations to Asp 139 and Arg 140 also led to varying expression profiles with some mutants maintaining their affinity for SST. Mutation of Arg 140 to Ala resulted in a mutated receptor that had a Bmax and dissociation constant (Kd) similar to wild-type receptor but was still coupled to the G protein as determined in both a cAMP assay and a calcium-release assay. In contrast, mutation of Asp 139 to Asn resulted in a mutated receptor with Bmax and Kd values that were similar to wild type but was uncoupled from G protein-mediated cAMP signaling, but not calcium release. Thus, we identified mutations in SSTR2 that result in either receptor expression levels that are similar to wild type but is completely ablated for ligand binding or a receptor that maintains affinity for SST and is uncoupled from G protein-mediated cAMP signaling. PMID:22495673

  5. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  6. Attenuation of morphine withdrawal symptoms by subtype-selective metabotropic glutamate receptor antagonists

    PubMed Central

    Fundytus, Marian E; Ritchie, Jennifer; Coderre, Terence J

    1997-01-01

    We have previously shown that chronic antagonism of group I metabotropic glutamate receptors (mGluRs), in the brain, attenuates the precipitated morphine withdrawal syndrome in rats. In the present investigation we assessed the effects of chronic antagonism of group II and III mGluRs on the severity of withdrawal symptoms in rats treated chronically with subcutaneous (s.c.) morphine.Concurrently with s.c. morphine we infused intracerebroventricularly (i.c.v.) one of a series of phenylglycine derivatives selective for specific mGluR subtypes. Group II mGluRs (mGluR2,3), which are negatively coupled to adenosine 3′: 5′-cyclic monophosphate (cyclic AMP) production, were selectively antagonized with 2s, 1′s, 2′s-2-methyl-2-(2′-carboxycyclopropyl) glycine (MCCG). Group III mGluRs (mGluR4,6,7 and 8), which are also negatively linked to cyclic AMP production, were selectively antagonized with α-methyl-L-amino-4-phosphonobutanoate (MAP4). The effects of MCCG and MAP4 were compared with α-methyl-4-carboxyphenylglycine (MCPG), which non-selectively antagonizes group II mGluRs, as well as group I mGluRs (mGluR1,5) which are positively coupled to phosphatidylinositol (PI) hydrolysis.Chronic i.c.v. administration of both MCCG and MAP4 significantly decreased the time spent in withdrawal, MCPG and MCCG reduced the frequency of jumps and wet dog shakes and attenuated the severity of agitation.Acute i.c.v. injection of mGluR antagonists just before the precipitation of withdrawal failed to decrease the severity of abstinence symptoms. Rather, acute i.c.v. injection of MCCG significantly increased the time spent in withdrawal.Our results suggest that the development of opioid dependence is affected by mGluR-mediated PI hydrolysis and mGluR-regulated cyclic AMP production. PMID:9134211

  7. Differential responsiveness in VEGF receptor subtypes to hypoxic stress in various tissues of plateau animals.

    PubMed

    Xie, Hui-Chun; Li, Jin-Gang; He, Jian-Ping

    2017-05-04

    With hypoxic stress, hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) are elevated and their responses are altered in skeletal muscles of plateau animals [China Qinghai-Tibetan plateau pikas (Ochotona curzoniae)] as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. The results indicate that HIF-1alpha and VEGF are engaged in physiological functions under hypoxic environment. The purpose of the current study was to examine the protein levels of VEGF receptor subtypes (VEGFRs: VEGFR-1, VEGFR-2 and VEGFR-3) in the end organs, namely skeletal muscle, heart and lung in response to hypoxic stress. ELISA and Western blot analysis were employed to determine HIF-1alpha and the protein expression of VEGFRs in control animals and plateau pikas. We further blocked HIF-1alpha signal to determine if HIF-1alpha regulates alternations in VEGFRs in those tissues. We hypothesized that responsiveness of VEGFRs in the major end organs of plateau animals is differential with insult of hypoxic stress and is modulated by low oxygen sensitive HIF-1alpha. Our results show that hypoxic stress induced by exposure of lower O(2) for 6 h significantly increased the levels of VEGFR-2 in skeletal muscle, heart and lung and the increases were amplified in plateau pikas. Our results also demonstrate that hypoxic stress enhanced VEGFR-3 in lungs of plateau animals. Nonetheless, no significant alternations in VEGFR-1 were observed in those tissues with hypoxic stress. Moreover, we observed decreases of VEGFR-2 in skeletal muscle, heart and lung; and decreases of VEGFR-3 in lung following HIF-1alpha inhibition. Overall, our findings suggest that in plateau animals 1) responsiveness of VEGFRs is different under hypoxic environment; 2) amplified VEGFR-2 response appears in skeletal muscle, heart and lung, and enhanced VEGFR-3 response is mainly observed in lung; 3) HIF-1alpha plays a regulatory role in the levels of VEGFRs. Our results

  8. Effects of the xenoestrogen bisphenol A in diencephalic regions of the teleost fish Coris julis occur preferentially via distinct somatostatin receptor subtypes.

    PubMed

    Alo', Raffaella; Facciolo, Rosa Maria; Madeo, Maria; Giusi, Giuseppina; Carelli, Antonio; Canonaco, Marcello

    2005-04-15

    The xenoestrogen bisphenol A, a contaminant used in the manufacturing of polymers for many consumer products, has been shown to mimic estrogenic actions. This xenoestrogen regulates secretion and expression of pituitary lactotrophs plus morphological and structural features of estrogen target tissues in rodents. Recently, ecological hazards produced by bisphenol A have drawn interests towards the effects of this environmental chemical on neurobiological functions of aquatic vertebrates of which little is known. In this study, the effects of bisphenol A on the distribution of the biologically more active somatostatin receptor subtypes in diencephalic regions of the teleost fish Coris julis were assessed using nonpeptide agonists (L-779, 976 and L-817, 818) that are highly selective for subtype(2) and subtype(5), respectively. Bisphenol A proved to be responsible for highly significant increased binding levels of subtype(2) in hypothalamic areas, while markedly decreased levels of subtype(5) were found in these diencephalic areas, as well as in the medial preglomerular nucleus. The extensive distribution of somatostatin receptor subtype(2) and subtype(5) in the teleost diencephalic areas suggests that, like in mammals, this receptor system may not only be involved in enhanced hypophysiotropic neurohormonal functions but might also promote neuroplasticity events.

  9. Hyperspectral multiplex single-particle tracking of different receptor subtypes labeled with quantum dots in live neurons

    NASA Astrophysics Data System (ADS)

    Labrecque, Simon; Sylvestre, Jean-Philippe; Marcet, Stephane; Mangiarini, Francesca; Bourgoin, Brice; Verhaegen, Marc; Blais-Ouellette, Sébastien; De Koninck, Paul

    2016-04-01

    The efficacy of existing therapies and the discovery of innovative treatments for central nervous system (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. To improve our capability to investigate complex mechanisms of synaptic signaling and remodeling, we designed a fluorescence hyperspectral imaging platform to simultaneously track different subtypes of individual neurotransmitter receptors trafficking in and out of synapses. This imaging platform allows simultaneous image acquisition of at least five fluorescent markers in living neurons with a high-spatial resolution. We used quantum dots emitting at different wavelengths and functionalized to specifically bind to single receptors on the membrane of living neurons. The hyperspectral imaging platform enabled the simultaneous optical tracking of five different synaptic proteins, including subtypes of glutamate receptors (mGluR and AMPAR) and postsynaptic signaling proteins. It also permitted the quantification of their mobility after treatments with various pharmacological agents. This technique provides an efficient method to monitor several synaptic proteins at the same time, which could accelerate the screening of effective compounds for treatment of CNS disorders.

  10. [Establishment of a reporter gene-based cell screening model for discovering new agonists of estrogen receptor beta subtype].

    PubMed

    Chen, Li-min; Lü, Qiu-jun; Satoshi, Inoue; Bian, Guang-xing; Chen, Zhen-hua; Wen, Li-qing

    2006-08-01

    To establish a sensitive and efficient reporter gene-based screening model for finding agonists of estrogen receptor beta subtype. A recombinant vector pTAL-ERE-SEAP was constructed by inserting a synthetic sequence composed of five estrogen responsive elements in front of promoter of pTAL-SEAP vector. pTAL-ERE-SEAP was then transfected into human embryonic kidney (HEK293) cells. G418 (200 microg x mL(-1)) was added to select positive clones that can be induced by E2 to express reporter gene SEAP. The speciality was tested by several ligands of relative nuclear receptors of the same family. The stability of the model, the time-effect relationship, the dose-response relationship, and the immunocytochemistry staining of ERbeta expression after transfection were observed. 2 622 compounds were screened by using this model. Stably transfected clones were obtained. The expression levels of reporter gene SEAP of positive clones was induced by E2 in a dose-response and time-effect relationship manners. The Z' factor value was 0.7. The expression levels of dexamethasone and other ligands were low. The result of immunocytochemistry staining showed the expression of ERbeta. E2 had no proliferating effects on stably transfected clones. Stably transfected positive clones transfected with recombinant vector pTAL-ERE-SEAP were obtained. The positive clones may be used to screen for agonists of estrogen receptor beta subtype by measurement of luminescent value of expressed SEAP in wells of microlitre plate.

  11. Pharmacological characterization of (4R)-alkyl glutamate analogues at the ionotropic glutamate receptors--focus on subtypes iGlu(5-7).

    PubMed

    Bunch, Lennart; Gefflaut, Thierry; Alaux, Sebastien; Sagot, Emanuelle; Nielsen, Birgitte; Pickering, Darryl S

    2009-05-01

    The kainic acid (kainate, KA) receptors belong to the class of ionotropic glutamate (iGlu) receptors in the central nervous system. Five subtypes have been identified, which have been termed KA(1,2) and iGlu(5-7). In the search for subtype selective ligands, alpha-amino-5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), (4R)-methyl Glu (1a), and E-4-neopentylidene Glu (2f) have all previously been reported as selective agonists for the iGlu(5) receptor subtype. In this paper, we present the pharmacological evaluation of a five-compound series of (4R)-alkyl Glu analogs (1b-e,g) which may be envisaged as conformationally released designs of ATPA and 4-alkylidenes 2a-h. Most notable is the pharmacological profile for (4R)-isopentyl Glu (1g) which shows a 10-fold increase in binding affinity for the iGlu(5) receptor subtype (K(i)=20.5 nM) in comparison with its E-4-alkylidene structural isomer 2g. Furthermore, 1g displays high selectivity over other KA receptor subtypes (KA(1,2) and iGlu(6,7)), AMPA-, and NMDA receptors (2050 and >5000 fold, respectively).

  12. Decahydroisoquinoline derivatives as novel non-peptidic, potent and subtype-selective somatostatin sst(3) receptor antagonists.

    PubMed

    Troxler, Thomas; Hurth, Konstanze; Schuh, Karl-Heinrich; Schoeffter, Philippe; Langenegger, Daniel; Enz, Albert; Hoyer, Daniel

    2010-03-01

    Starting from non-peptidic sst(1)-selective somatostatin receptor antagonists, first compounds with mixed sst(1)/sst(3) affinity were identified by directed structural modifications. Systematic optimization of these initial leads afforded novel, enantiomerically pure, highly potent and sst(3)-subtype selective somatostatin antagonists based on a (4S,4aS,8aR)-decahydroisoquinoline-4-carboxylic acid core moiety. These compounds can efficiently be synthesized and show promising PK properties in rodents. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  14. Bridging the Gap From Screening Assays to Estrogenic Effects in Fish: Potential Roles of Multiple Estrogen Receptor Subtypes

    PubMed Central

    2015-01-01

    This study seeks to delineate the ligand interactions that drive biomarker induction in fish exposed to estrogenic pollutants and provide a case study on the capacity of human (h) estrogen receptor (ER)-based in vitro screening assays to predict estrogenic effects in aquatic species. Adult male Japanese medaka (Oryzias latipes) were exposed to solutions of singular steroidal estrogens or to the estrogenic extract of an anaerobic swine waste lagoon. All exposure concentrations were calibrated to be equipotent based on the yeast estrogen screen (YES), which reports activation of hERα. These exposures elicited significantly different magnitudes of hepatic vitellogenin and choriogenin gene induction in the male medaka. Effects of the same YES-calibrated solutions in the T47D-KBluc assay, which reports activation of hERα and hERβ, generally recapitulated observations in medaka. Using competitive ligand binding assays, it was found that the magnitude of vitellogenin/choriogenin induction by different estrogenic ligands correlated positively with preferential binding affinity for medaka ERβ subtypes, which are highly expressed in male medaka liver prior to estrogen exposure. Results support emerging evidence that ERβ subtypes are critically involved in the teleost estrogenic response, with the ERα:ERβ ratio being of particular importance. Accordingly, incorporation of multiple ER subtypes into estrogen screening protocols may increase predictive value for the risk assessment of aquatic systems, including complex estrogenic mixtures. PMID:24422420

  15. Up-regulation of prostaglandin E receptor EP2 and EP4 subtypes in rat synovial tissues with adjuvant arthritis

    PubMed Central

    Kurihara, Y; Endo, H; Akahoshi, T; Kondo, H

    2001-01-01

    To evaluate the role of the prostaglandin E receptor (EP) subtypes in the development of inflammatory synovitis, we examined EP subtype mRNA distribution in the synovial tissue of rats with adjuvant arthritis and the effect of selective EP agonists on cytokine production by cultured rat synovial cells. We used reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization to measure the level of EP subtype (EP1, EP2, EP3, and EP4) mRNA expression in synovial tissues and cultured synovial cells from the arthritic joints of rats. RT-PCR and ELISA were used to analyse the effects of two selective EP agonists on IL-6 production by cultured rat synovial cells. EP2 and EP4 mRNA expression in inflamed synovial tissues was up-regulated. EP2 and EP4 mRNA were co-expressed in synovial macrophages and fibroblasts in inflamed tissues. EP4 and EP2 agonists both inhibited IL-1-induced IL-6 production. Our results suggest that prostaglandin E2 regulates the functions of synovial macrophages and fibroblasts through EP2 and EP4, which are induced by inflammatory stimuli in rats with adjuvant arthritis. PMID:11207665

  16. Up-regulation of prostaglandin E receptor EP2 and EP4 subtypes in rat synovial tissues with adjuvant arthritis.

    PubMed

    Kurihara, Y; Endo, H; Akahoshi, T; Kondo, H

    2001-02-01

    To evaluate the role of the prostaglandin E receptor (EP) subtypes in the development of inflammatory synovitis, we examined EP subtype mRNA distribution in the synovial tissue of rats with adjuvant arthritis and the effect of selective EP agonists on cytokine production by cultured rat synovial cells. We used reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization to measure the level of EP subtype (EP1, EP2, EP3, and EP4) mRNA expression in synovial tissues and cultured synovial cells from the arthritic joints of rats. RT-PCR and ELISA were used to analyse the effects of two selective EP agonists on IL-6 production by cultured rat synovial cells. EP2 and EP4 mRNA expression in inflamed synovial tissues was up-regulated. EP2 and EP4 mRNA were co-expressed in synovial macrophages and fibroblasts in inflamed tissues. EP4 and EP2 agonists both inhibited IL-1-induced IL-6 production. Our results suggest that prostaglandin E2 regulates the functions of synovial macrophages and fibroblasts through EP2 and EP4, which are induced by inflammatory stimuli in rats with adjuvant arthritis.

  17. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor.

    PubMed

    Säfholm, Jesper; Manson, Martijn L; Bood, Johan; Delin, Ingrid; Orre, Ann-Charlotte; Bergman, Per; Al-Ameri, Mamdoh; Dahlén, Sven-Erik; Adner, Mikael

    2015-11-01

    Inhaled prostaglandin (PG) E2 might inhibit asthmatic responses, but the mechanisms involved remain undefined. We sought to characterize the direct and indirect effects of PGE2 on human small airways with particular reference to the receptors mediating the responses. Contraction and relaxation were studied in isolated human bronchi with an inner diameter of 1 mm or less. Low concentrations of PGE2 (0.01-1 μmol/L) relaxed the bronchi precontracted by histamine. The bronchodilator response was inhibited by the E prostanoid (EP) subtype 4 receptor antagonist ONO-AE3-208 but unaffected by the EP2 receptor antagonist PF-04418948. Higher concentrations of PGE2 (10-100 μmol/L) contracted the small airways. However, the TP receptor agonists U-46,619, PGF2α, and PGD2 were more potent than PGE2. Moreover, the bronchoconstrictor responses to PGE2 and all other tested prostanoids, including the EP1/EP3 receptor agonist 17-phenyl trinor PGE2 and the partial FP receptor agonist AL-8810, were uniformly abolished by the TP receptor antagonist SQ-29,548. In the presence of TP and EP4 antagonists, PGE2 inhibited the mast cell-mediated bronchoconstriction resulting from anti-IgE challenge. Measurement of the release of histamine and cysteinyl leukotrienes documented that this bronchoprotective action of PGE2 was mediated by the EP2 receptor, unrelated to bronchodilation, and increased with time of exposure. The pharmacology of PGE2 in isolated human small airways was different from its profile in animal models. This first demonstration of powerful EP2 receptor-mediated inhibition of IgE-dependent contractions in human airways introduces a new selective target for the treatment of asthma. This EP2 control of mast cell-mediated bronchoconstriction is presumably exaggerated in patients with aspirin-exacerbated respiratory disease. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Dopamine–Glutamate Interplay in the Ventral Striatum Modulates Spatial Learning in a Receptor Subtype-Dependent Manner

    PubMed Central

    Coccurello, Roberto; Oliverio, Alberto; Mele, Andrea

    2012-01-01

    The ventral striatum (VS) is characterized by a distinctive neural architecture in which multiple corticolimbic glutamatergic (GLUergic) and mesolimbic dopaminergic (DAergic) afferents converge on the same output cell type (the medium-sized spiny neuron, MSN). However, despite the gateway function attributed to VS and its involvement in action selection and spatial navigation, as well as the evidence of physical and functional receptor–receptor interaction between different members of ionotropic GLUergic and DAergic receptors, there is no available knowledge that such reciprocal interaction may be critical in shaping the ability to learn novel spatial and non-spatial arrangement of stimuli. In this study, it was evaluated whether intra-VS bilateral infusion of either N-methyl--aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-selective antagonists may suppress the ability to detect spatial or non-spatial novelty in a non-associative behavioral task. In a second set of experiments, we further examined the hypothesis that VS-mediated spatial information processing may be subserved by some preferential receptor–receptor interactions among specific GLUergic and DAergic receptor subtypes. This was assessed by concomitant intra-VS infusion of the combination between subthreshold doses of either NMDA or AMPA receptor antagonists with individual D1 or D2 receptor blockade. The results of this study highlighted the fact that NMDA or AMPA receptors are differentially involved in processing of spatial and non-spatial novelty, and showed for the first time that preferential NMDA/D1 and AMPA/D2 receptor–receptor functional communication, but not NMDA/D2 and AMPA/D1, is required for enabling learning of novel spatial information in the VS. PMID:22218092

  19. Improvements in the Methodology for Analyzing Receptor Subtypes and Neuronal Populations Affected by Anticholinesterase Exposure.

    DTIC Science & Technology

    1984-11-14

    muscarinic receptors. The so-called M receptor population can be labeled with tritiated pirenzepine , while the receptor population labeled with...tritiated quinuclidinyl benzilate (QNB) but not labeled with pirenzepine represents the M2 receptor population. High and low affinity states of the...receptors has been described in several individual brain regions by comparing binding of trit ated pirenzepine ([ H]-PZ) to that of tritiated quinuclidinyl

  20. Muscarinic Receptor Subtypes Differentially Control Synaptic Input and Excitability of Cerebellum-Projecting Medial Vestibular Nucleus Neurons

    PubMed Central

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-01-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it is unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory postsynaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory postsynaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant postsynaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Presynaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. PMID:26823384

  1. Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses.

    PubMed

    Wright, Megan C; Potluri, Srilatha; Wang, Xueyong; Dentcheva, Eva; Gautam, Dinesh; Tessler, Alan; Wess, Jürgen; Rich, Mark M; Son, Young-Jin

    2009-11-25

    Muscarinic acetylcholine receptors (mAChRs) modulate synaptic function, but whether they influence synaptic structure remains unknown. At neuromuscular junctions (NMJs), mAChRs have been implicated in compensatory sprouting of axon terminals in paralyzed or denervated muscles. Here we used pharmacological and genetic inhibition and localization studies of mAChR subtypes at mouse NMJs to demonstrate their roles in synaptic stability and growth but not in compensatory sprouting. M(2) mAChRs were present solely in motor neurons, whereas M(1), M(3), and M(5) mAChRs were associated with Schwann cells and/or muscle fibers. Blockade of all five mAChR subtypes with atropine evoked pronounced effects, including terminal sprouting, terminal withdrawal, and muscle fiber atrophy. In contrast, methoctramine, an M(2/4)-preferring antagonist, induced terminal sprouting and terminal withdrawal, but no muscle fiber atrophy. Consistent with this observation, M(2)(-/-) but no other mAChR mutant mice exhibited spontaneous sprouting accompanied by extensive loss of parental terminal arbors. Terminal sprouting, however, seemed not to be the causative defect because partial loss of terminal branches was common even in the M(2)(-/-) NMJs without sprouting. Moreover, compensatory sprouting after paralysis or partial denervation was normal in mice deficient in M(2) or other mAChR subtypes. We also found that many NMJs of M(5)(-/-) mice were exceptionally small and reduced in proportion to the size of parental muscle fibers. These findings show that axon terminals are unstable without M(2) and that muscle fiber growth is defective without M(5). Subtype-specific muscarinic signaling provides a novel means for coordinating activity-dependent development and maintenance of the tripartite synapse.

  2. Effect of targeted deletions of beta1- and beta2-adrenergic-receptor subtypes on heart rate variability.

    PubMed

    Ecker, Phillip M; Lin, Chu-Chuan; Powers, Jennifer; Kobilka, Brian K; Dubin, Anne M; Bernstein, Daniel

    2006-01-01

    Beta-adrenergic receptors (beta-ARs) play a major role in regulating heart rate (HR) and contractility in the intact cardiovascular system. Three subtypes (beta1, beta2, and beta3) are expressed in heart tissue, and the role of each subtype in regulating cardiac function has previously been determined by using both pharmacological and gene-targeting approaches. However, previous studies have only examined the role of beta-ARs in the macrolevel regulation of HR. We employed three knockout (KO) mouse lines, beta1-KO, beta2-KO, and beta1/beta2 double KO (DL-KO), to examine the role that beta-AR subtypes play in HR variability (HRV) and in the sympathetic and parasympathetic inputs into HR control. Fast Fourier transformation (FFT) in frequency domain methods of ECG spectral analysis was used to resolve HRV into high- and low-frequency (HF and LF) powers. Resting HR (in beats/min) was decreased in beta1-KO [488 (SD 27)] and DL-KO [495 (SD 12)] mice compared with wild-type [WT; 638 (SD 30)] or beta2-KO [656 (SD 51)] (P < 0.0005) mice. Mice lacking beta1-ARs (beta1-KO and DL-KO) had increased HRV (as illustrated by the standard deviation of normal R-R intervals) and increased normalized HF and LF powers compared with mice with intact beta1-ARs (WT and beta2-KO). These results demonstrate the differential role of beta-AR subtypes in regulating autonomic signaling.

  3. Use of an α3β4 nicotinic acetylcholine receptor subunit concatamer to characterize ganglionic receptor subtypes with specific subunit composition reveals species-specific pharmacologic properties.

    PubMed

    Stokes, Clare; Papke, Roger L

    2012-09-01

    Drug development for nicotinic acetylcholine receptors (nAChR) is challenged by subtype diversity arising from variations in subunit composition. On-target activity for neuronal heteromeric receptors is typically associated with CNS receptors that contain α4 and other subunits, while off-target activity could be associated with ganglionic-type receptors containing α3β4 binding sites and other subunits, including β4, β2, α5, or α3 as a structural subunit in the pentamer. Additional interest in α3 β4 α5-containing receptors arises from genome-wide association studies linking these genes, and a single nucleotide polymorphism (SNP) in α5 in particular, to lung cancer and heavy smoking. While α3 and β4 readily form receptors in expression system such as the Xenopus oocyte, since α5 is not required for function, simple co-expression approaches may under-represent α5-containing receptors. We used a concatamer of human α3 and β4 subunits to form ligand-binding domains, and show that we can force the insertions of alternative structural subunits into the functional pentamers. These α3β4 variants differ in sensitivity to ACh, nicotine, varenicline, and cytisine. Our data indicated lower efficacy for varenicline and cytisine than expected for β4-containing receptors, based on previous studies of rodent receptors. We confirm that these therapeutically important α4 receptor partial agonists may present different autonomic-based side-effect profiles in humans than will be seen in rodent models, with varenicline being more potent for human than rat receptors and cytisine less potent. Our initial characterizations failed to find functional effects of the α5 SNP. However, our data validate this approach for further investigations.

  4. The application of the human beta-globin gene locus control region and murine erythroleukemia cell system to the expression and pharmacological characterization of human endothelin receptor subtypes.

    PubMed

    Davies, A; Whiting, E; Bath, C; Tang, E; Brennand, J

    1995-06-01

    The cDNAs encoding both A and B subtypes of the human endothelin receptor have been inserted into mammalian cell expression vectors that utilize the human globin gene, locus control region. These constructs have been introduced into murine erythroleukemia cells and inducible high level expression of the receptors has been achieved (approximately 1.5-pM/mg membrane protein and approximately 13,500 binding sites/cell for both receptor subtypes). Cell lines expressing these receptors were obtained on a rapid time scale (3-4 weeks), facilitated by the need for the analysis of only small numbers of cell clones/receptor (approximately 6). Competitive binding assays with endothelin-1 gave IC50s of 130 +/- 30 pM for endothelin-A receptor and 160 +/- 30 pM for endothelin-B receptor. Similar studies with the different isoforms of endothelin, sarafatoxin-S6b and -S6c, BQ123 and BQ3020, all gave the expected selectivity profiles. The IC50s for all compounds were in close agreement with those reported for native receptors. Thus, this expression system, which has several advantages over other described expression systems, is capable of rapidly providing large quantities of receptor for detailed pharmacological analyses or drug screening. In addition, the expressed receptors display the expected pharmacological profiles in the absence of any complicating, competing interactions from other subtypes or binding sites.

  5. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  6. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  7. Involvement of serotonin receptor subtypes in the antidepressant-like effect of TRIM in the rat forced swimming test.

    PubMed

    Ulak, Güner; Mutlu, Oguz; Tanyeri, Pelin; Komsuoglu, F Ipek; Akar, Füruzan Yildiz; Erden, B Faruk

    2010-05-01

    Depression is a common illness with severe morbidity and mortality. Nitric oxide synthase (NOS) inhibitors are shown to elicit antidepressant-like effect in various animals models. It is widely known that serotonin plays an important role in the antidepressant-like effect of drugs. The aim of this study is to investigate the involvement of 5-HT(1) and 5-HT(2) receptor subtypes in the antidepressant-like effect of TRIM, a nNOS inhibitor, in the rat forced swimming test (FST). TRIM displays an antidepressant-like activity in FST which is blocked by pretreatment with the NOS substrate l-arginine. Depletion of endogenous serotonin using para-chlorophenylalanine (pCPA; 3x150mg/kg, i.p.) partially attenuated TRIM (50mg/kg)-induced reductions in immobility time in FST. Pretreatment with methiothepin (0.1mg/kg, i.p, a non-selective 5-HT receptor antagonist), cyproheptadine (3mg/kg i.p, a 5-HT(2) receptor antagonist) or ketanserin (5mg/kg i.p, a 5HT(2A/2C) receptor antagonist) prevented the effect of TRIM (50mg/kg) in the FST. WAY 100635 (0.1mg/kg i.p, a selective 5-HT(1A) receptor antagonist) and GR 127935 (3mg/kg i.p, a selective 5-HT(1B/1D) receptor antagonist) slightly reversed the immobility-reducing effect of TRIM in the FST, but this failed to reach a statistically significant level. The results of this study demonstrate that antidepressant-like effect of TRIM in the FST seems to be mediated, at least in part, by an interaction with 5-HT(2) receptors while non-significant effects were obtained with 5-HT(1) receptors.

  8. Distribution of opiate receptor subtypes and enkephalin and dynorphin immunoreactivity in the hippocampus of squirrel, guinea pig, rat, and hamster.

    PubMed

    McLean, S; Rothman, R B; Jacobson, A E; Rice, K C; Herkenham, M

    1987-01-22

    The distribution of enkephalin and dynorphin immunoreactivity in the hippocampus of four rodent species (gray squirrel, guinea pig, rat, and hamster) is compared with the pattern of opiate receptor subtypes (mu, delta, and kappa). The distribution of opioid peptides is fairly consistent in the anterior hippocampus of these four species. Intense immunoreactivity for dynorphin and enkephalin is found in the hilus of the dentate gyrus and in the mossy fiber system. Occasional immunoreactive processes are seen in the dentate molecular layer and scattered throughout the CA1 and CA3 fields. In the rat and hamster, an additional plexus of enkephalinergic fibers straddles both sides of the hippocampal fissure. Cells immunoreactive for both opioid peptides are located in and just superficial to the dentate granule cell layer. Opiate receptors are variably distributed in these rodent species. In the squirrel, guinea pig, and hamster, mu and kappa binding is dense in the stratum lucidum of CA3 and the molecular layer of the dentate gyrus. In the rat, dense mu and kappa binding is localized within and adjacent to the pyramidal and granule cell layers. Delta receptor patterns show additional species differences. In the rat, the delta distribution is similar to the mu and kappa patterns. In the other species, the delta binding pattern is generally the inverse of the mu/kappa pattern: most areas of the hippocampus are enriched in delta sites, whereas the stratum lucidum and the pyramidal cell layer are receptor-sparse. Thus, the stratum lucidum--site of dense terminations of mossy fibers containing opioid peptides--is characterized by selectively sparse delta receptors in four species and by selectively dense kappa receptors in three species. The three receptor subtypes, taken either individually or together and compared to the peptides, are more variably and more widely distributed throughout the hippocampus and fail to show a correspondence with opioid

  9. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes

    PubMed Central

    Zhan, Xuanzhi; Gimenez, Luis E.; Gurevich, Vsevolod V.; Spiller, Benjamin W.

    2011-01-01

    Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. Here we report the first crystal structure of arrestin-3, solved at 3.0Å. Arrestin-3 is an elongated two-domain molecule with the overall fold and key inter-domain interactions that hold free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and -3 we show that the presence of this loose structure correlates with reduced arrestin selectivity for activated receptor, consistent with a conformational change in this β-sheet upon receptor binding. PMID:21215759

  10. Food intake, tumor growth, and weight loss in EP2 receptor subtype knockout mice bearing PGE2-producing tumors

    PubMed Central

    Iresjö, Britt-Marie; Wang, Wenhua; Nilsberth, Camilla; Andersson, Marianne; Lönnroth, Christina; Smedh, Ulrika

    2015-01-01

    Previous studies in our laboratory have demonstrated that prostaglandin (PG) E2 is involved in anorexia/cachexia development in MCG 101 tumor-bearing mice. In the present study, we investigate the role of PGE receptor subtype EP2 in the development of anorexia after MCG 101 implantation in wild-type (EP2+/+) or EP2-receptor knockout (EP2−/−) mice. Our results showed that host absence of EP2 receptors attenuated tumor growth and development of anorexia in tumor-bearing EP2 knockout mice compared to tumor-bearing wild-type animals. Microarray profiling of the hypothalamus revealed a relative twofold change in expression of around 35 genes including mRNA transcripts coding for Phospholipase A2 and Prostaglandin D2 synthase (Ptgds) in EP2 receptor knockout mice compared to wild-type mice. Prostaglandin D2 synthase levels were increased significantly in EP2 receptor knockouts, suggesting that improved food intake may depend on altered balance of prostaglandin production in hypothalamus since PGE2 and PGD2 display opposing effects in feeding control. PMID:26197930

  11. The balance of concurrent aggregation and deaggregation processes in platelets is linked to differential occupancy of ADP receptor subtypes.

    PubMed

    Maayani, S; Tagliente, T M; Schwarz, T; Martinelli, G; Martinez, R; Shore-Lesserson, L

    2001-03-01

    Deaggregation, the partial reversal of the initial aggregation of platelets is observed following low, but not higher, micromolar ADP concentrations. This study tested the hypothesis that deaggregation results from a balance between concurrent, opposing, aggregation and deaggregation processes which are ADP (adenosine 5'-diphosphate) receptor occupancy-dependent. Aggregation of human platelet-rich plasma (PRP) prepared in r-hirudin was assayed in a 96-well plate reader over 20 min by measurement of the optical density (OD) at 580 nm. Aggregation and the time to reach peak aggregation were directly proportional to ADP receptor occupancy. The magnitude and time course of the response to ADP were comparable to those previously reported with standard aggregometry. The rate constant of platelet deaggregation, as assessed by a four-compartment kinetic model, was inversely proportional to agonist concentration. The ratio of the rate constants of aggregation and deaggregation was receptor occupancy-dependent and directly proportional to aggregation. Consequently, platelet aggregation was proportional, and deaggregation inversely proportional, to ADP receptor occupancy. We propose that the response of PRP to ADP and to 2-MeS-ADP (2-methylthioadenosine-diphosphate), in vitro, consists of at least two active, concurrent processes, aggregation and deaggregation. Incremental occupancy of the P2T ADP receptor subtype attenuates deaggregation and governs the balance between these two processes.

  12. Allosteric modulation of nicotinic and GABAA receptor subtypes differentially modify autism-like behaviors in the BTBR mouse model.

    PubMed

    Yoshimura, Ryan F; Tran, Minhtam B; Hogenkamp, Derk J; Ayala, Narielle L; Johnstone, Timothy; Dunnigan, Andrew J; Gee, Timothy K; Gee, Kelvin W

    2017-08-24

    Autism spectrum disorder (ASD) is associated with two core symptoms (social communication deficits and stereotyped repetitive behaviors) in addition to a number of comorbidities. There are no FDA-approved drugs for the core symptoms and the changes that underlie these behaviors are not fully understood. One hypothesis is an imbalance of the excitation (E)/inhibition (I) ratio with excessive E and diminished I occurring in specific neuronal circuits. Data suggests that both gamma-aminobutyric acidA (GABAA) and α7 nicotinic acetylcholine receptors (nAChRs) significantly impact E/I. BTBR T(+)tf/J (BTBR) mice are a model that display an autism-like phenotype with impaired social interaction and stereotyped behavior. A β2/3-subunit containing GABAA receptor (GABAAR) subtype selective positive allosteric modulator (PAM), 2-261, and an α7 nAChR subtype selective PAM, AVL-3288, were tested in social approach and repetitive self-grooming paradigms. 2-261 was active in the social approach but not the self-grooming paradigm, whereas AVL-3288 was active in both. Neither compound impaired locomotor activity. Modulating α7 nAChRs alone may be sufficient to correct these behavioral and cognitive deficits. GABAergic and nicotinic compounds are already in various stages of clinical testing for treatment of the core symptoms and comorbidities associated with ASD. Our findings and those of others suggest that compounds that have selective activities at GABAAR subtypes and the α7 nAChR may address not only the core symptoms, but many of the associated comorbidities as well and warrant further investigation in other models of ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [Subtypes of muscarinic receptors--aspects of their physiologic significance for controlling heart rate in the human].

    PubMed

    Pitschner, H F; Schulte, B; Neuzner, J; Wellstein, A; Palm, D; Schlepper, M

    1994-01-01

    The cDNAs for five different muscarinic cholinoceptors have been cloned. The biochemical and physiological relevance of the m1, m2 and m3 receptors is understood in many aspects. The pharmacological defined M1, M2 and M3 related to antagonists binding studies closely correspond with those cloned. We compared effects of atropine and of the subtype selective M-cholinoceptor antagonists pirenzepine and AF-DX 116 in humans. Dose- or time-response curves have been established for heart rate. Plasma samples were drawn in parallel with the effect measurements and analysed for drug concentrations. Subtype-selective radioceptor assays of the samples served to estimate the respective receptor occupancy in vivo. After low dosis of pirenzepine (M1-selective blockade) a negative chronotropic effect on heart rate could be observed. After high doses of pirenzepine or atropine (M-unselective blockade) the wellknown tachycardia appeared in parallel with occupancy of both the M2 and M3 subtypes. AF-DX 116 induced a tachycardia without a decrease of salivary flow in agreement with its selectivity profile (M2 > M1 > M3). Gastric emptying was only slightly inhibited by AF-DX 116 but nearly completely by a very high dose of pirenzepine blocking M1-, M2- and M3-cholinoceptors. The negative chronotropic effect on heart rate of a low dose of pirenzepine (M1 selective) was multi-folded by pretreatment with isoprenaline but disappeared during bicycle exercise. The implications of the functional M cholinoceptor heterogeneity in humans revealed by antagonists are discussed according to its possible importance for the control of autonomous nerve system.

  14. The relaxant 5-HT receptor in the dog coronary artery smooth muscle: pharmacological resemblance to the cloned 5-ht7 receptor subtype.

    PubMed Central

    Terrón, J. A.

    1996-01-01

    1. The relaxant effect of 5-hydroxytryptamine (5-HT) in the dog isolated coronary artery deprived of endothelium is mediated by a receptor unrelated to the 5-HT1, 5-HT2, 5-HT3 or 5-HT4 types. Based upon the pharmacological characteristics of this relaxant 5-HT receptor and those reported for the new members of the 5-HT receptor family, the present study explored the possibility that the relaxant 5-HT receptor referred to above, corresponds to the cloned 5-ht7 subtype. Thus, the relaxing and/or blocking effects of several 5-HT receptor drugs as well as some typical and atypical antipsychotic drugs with high affinity for the cloned 5-ht7 receptor in precontracted ring segments were analyzed. 2. 5-HT, 5-carboxamidotryptamine (5-CT) and 5-methoxytryptamine, but not 8-OH-DPAT or sumatriptan, produced concentration-dependent relaxations in endothelium-denuded canine coronary artery rings precontracted with prostaglandin F2a (2 microM). Clozapine (1 microM) produced in some cases a small relaxing effect and antagonized 5-HT- and 5-CT-induced relaxation suggesting a partial agonist effect. In the presence of the 5-HT1D receptor antagonist, GR127935 (100 nM), the rank order of agonist potency was 5-CT > 5-HT > clozapine > or = 5-methoxytryptamine. 8-OH-DPAT and sumatriptan remained inactive as agonists. 3. In GR127935-treated preparations, methiothepin (3 nM) and mianserin (1 microM), as well as the antipsychotics, clozapine (1 microM), pimozide (300 nM), risperidone (3 nM) and spiperone (1 microM), failed to induce a significant relaxation in prostaglandin F2x-precontracted vessels, but produced significant rightward displacements of the concentration-response curves to 5-HT and 5-CT without significantly reducing the Emax. In a final set of experiments with 5-CT, metergoline (100 nM) and mesulergine (300 nM) behaved as competitive antagonists. In contrast, lisuride (3 nM) noncompetitively antagonized 5-CT-induced relaxation. The estimated affinity (apparent pKa values) of

  15. Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue.

    PubMed

    Ying, Fan; Cai, Yin; Cai, Yu; Wang, Yu; Tang, Eva Hoi Ching

    2017-09-01

    The purpose of this study was to investigate whether genetic ablation of prostaglandin E receptor subtype 4 (EP4) affects white adipose tissue (WAT) remodeling mediated by β3-adrenergic stimulation. The selective β3-adrenergic agonist, CL316243 (1 mg/kg/d, i.p.) caused a greater increase in metabolic rate in EP4-knockout mice. CL316243 fragmented the unilocular lipid droplet into multilocular lipid vacuoles and increased mitochondrial biogenesis and its activity. These changes were amplified in mice with EP4 deficiency and were selectively seen in subcutaneous WAT. The expression of fat-specific protein (FSP)-27, a protein that promotes fusion of triglycerides and formation of unilocular lipid droplets were diminished, whereas the expression of phosphorylated AMPK, the upstream regulator of FSP27, was enhanced in EP4-deficient mice. The present study showed that EP4 acts as a negative regulator of WAT remodeling, it tightly coordinates rates of triglyceride storage in lipid droplets and mitochondrial respiratory function in subcutaneous white adipocytes through the phosphorylated AMPK-FSP27 signaling axis. Thus, deletion of EP4 increases mitochondrial biogenesis and oxidative capacity in WAT, and fat mass loss ensues in mice.-Ying, F., Cai, Y., Cai, Y., Wang, Y., Tang, E. H. C. Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue. © FASEB.

  16. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters.

    PubMed

    Shibasaki, Koji; Ikenaka, Kazuhiro; Tamalu, Fuminobu; Tominaga, Makoto; Ishizaki, Yasuki

    2014-05-23

    Astrocytes play active roles in the regulation of synaptic transmission. Neuronal excitation can evoke Ca(2+) transients in astrocytes, and these Ca(2+) transients can modulate neuronal excitability. Although only a subset of astrocytes appears to communicate with neurons, the types of astrocytes that can regulate neuronal excitability are poorly characterized. We found that ∼30% of astrocytes in the brain express transient receptor potential vanilloid 4 (TRPV4), indicating that astrocytic subtypes can be classified on the basis of their expression patterns. When TRPV4(+) astrocytes are activated by ligands such as arachidonic acid, the activation propagates to neighboring astrocytes through gap junctions and by ATP release from the TRPV4(+) astrocytes. After activation, both TRPV4(+) and TRPV4(-) astrocytes release glutamate, which acts as an excitatory gliotransmitter to increase synaptic transmission through type 1 metabotropic glutamate receptor (mGluR). Our results indicate that TRPV4(+) astrocytes constitute a novel subtype of the population and are solely responsible for initiating excitatory gliotransmitter release to enhance synaptic transmission. We propose that TRPV4(+) astrocytes form a core of excitatory glial assembly in the brain and function to efficiently increase neuronal excitation in response to endogenous TRPV4 ligands. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Cloning, structural characterization, and chromosomal localization of the gene encoding the human prostaglandin E(2) receptor EP2 subtype.

    PubMed

    Smock, S L; Pan, L C; Castleberry, T A; Lu, B; Mather, R J; Owen, T A

    1999-09-17

    Northern blot analysis of human placental RNA using a probe to the 5' end of the human prostaglandin E(2) (PGE(2)) EP2 receptor subtype coding region revealed the existence of a high abundance, low molecular weight transcript. To investigate the origin of this transcript, and its possible relationship to the human EP2 mRNA, we have cloned and characterized the gene encoding the human PGE(2) EP2 receptor subtype, identified transcriptional initiation and termination sites in two tissues (spleen and thymus), and determined its chromosomal localization. The human EP2 gene consists of two exons separated by a large intron, utilizes a common initiation site in both spleen and thymus at 1113 bp upstream of the translation initiation site, and has 3' transcript termini at 1140 bp and 1149 bp downstream of the translation stop site in spleen and thymus respectively. Southern and fluorescence in situ hybridization analysis demonstrated the human EP2 gene to be a single copy gene located in band 22 of the long arm of chromosome 14 (14q22). Though our initial interest in this gene was to investigate potential differential splicing of the human EP2 gene in placenta, this work demonstrates that the atypical transcript observed in placenta probably arises from a distinct, yet related, gene. Knowledge of the sequence, structure, and transcription events associated with the human EP2 gene will enable a broader understanding of its regulation and potential role in normal physiology and disease.

  18. Pharmacokinetics of the estrogen receptor subtype-selective ligands, PPT and DPN: quantification using UPLC-ES/MS/MS.

    PubMed

    Sepehr, Estatira; Lebl-Rinnova, Marketa; Mann, Meagan K; Pisani, Samantha L; Churchwell, Mona I; Korol, Donna L; Katzenellenbogen, John A; Doerge, Daniel R

    2012-12-01

    Estrogen receptor (ER) subtype specific agonists, diarylpropionitrile (DPN) for ERβ and propylpyrazoletriol (PPT) for ERα, are pharmacological probes used frequently to define mechanisms for estrogen actions in vitro and in vivo. Quantitative analytical methodology was developed and validated for DPN and PPT, based on synthetic stable labeled analogs (DPN-d(4) and PPT-d(5)) using isotope dilution liquid chromatographic tandem electrospray mass spectrometric detection. The validated method produced high sensitivity, with detection limits of 0.04-0.07ng/ml serum. Serum pharmacokinetics were evaluated in Long-Evans rats following a single subcutaneous injection (2mg/kg bw) of both compounds. The role of Phase II metabolism was evaluated using β-glucuronidase and arylsulfatase hydrolysis to measure total DPN and PPT in addition to the parent compounds. The pharmacokinetic properties of DPN and PPT reported could facilitate experimental designs requiring specified levels of receptor occupancy for quantitative comparisons of ER subtype specificities for natural and synthetic estrogens in vivo. Published by Elsevier B.V.

  19. Pharmacokinetics of the estrogen receptor subtype-selective ligands, PPT and DPN: Quantification using UPLC-ES/MS/MS

    PubMed Central

    Sepehr, Estatira; Lebl-Rinnova, Marketa; Mann, Meagan K.; Pisani, Samantha L.; Churchwell, Mona I.; Korol, Donna L.; Katzenellenbogen, John A.; Doerge, Daniel R.

    2012-01-01

    Estrogen receptor (ER) subtype specific agonists, diarylpropionitrile (DPN) for ERβ and propylpyrazoletriol (PPT) for ERα, are pharmacological probes used frequently to define mechanisms for estrogen actions in vitro and in vivo. Quantitative analytical methodology was developed and validated for DPN and PPT, based on synthetic stable labeled analogs (DPN-d4 and PPT-d5) using isotope dilution liquid chromatographic tandem electrospray mass spectrometric detection. The validated method produced high sensitivity, with detection limits of 0.04–0.07 ng/ml serum. Serum pharmacokinetics were evaluated in Long-Evans rats following a single subcutaneous injection (2 mg/kg bw) of both compounds. The role of Phase II metabolism was evaluated using β-glucuronidase and arylsulfatase hydrolysis to measure total DPN and PPT in addition to the parent compounds. The pharmacokinetic properties of DPN and PPT reported could facilitate experimental designs requiring specified levels of receptor occupancy for quantitative comparisons of ER subtype specificities for natural and synthetic estrogens in vivo. PMID:22981216

  20. Low nanomolar GABA effects at extrasynaptic α4β1/β3δ GABA(A) receptor subtypes indicate a different binding mode for GABA at these receptors.

    PubMed

    Karim, Nasiara; Wellendorph, Petrine; Absalom, Nathan; Bang, Line Haunstrup; Jensen, Marianne Lerbech; Hansen, Maja Michelle; Lee, Ho Joon; Johnston, Graham A R; Hanrahan, Jane R; Chebib, Mary

    2012-08-15

    Ionotropic GABA(A) receptors are a highly heterogenous population of receptors assembled from a combination of multiple subunits. The aims of this study were to characterize the potency of GABA at human recombinant δ-containing extrasynaptic GABA(A) receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique, and to investigate, using site-directed mutagenesis, the molecular determinants for GABA potency at α4β3δ GABA(A) receptors. α4/δ-Containing GABA(A) receptors displayed high sensitivity to GABA, with mid-nanomolar concentrations activating α4β1δ (EC₅₀=24 nM) and α4β3δ (EC₅₀=12 nM) receptors. In the majority of oocytes expressing α4β3δ subtypes, GABA produced a biphasic concentration-response curve, and activated the receptor with low and high concentrations (EC₅₀(1)=16 nM; EC₅₀(2)=1.2 μM). At α4β2δ, GABA had low micromolar activity (EC₅₀=1 μM). An analysis of 10 N-terminal singly mutated α4β3δ receptors shows that GABA interacts with amino acids different to those reported for α1β2γ2 GABA(A) receptors. Residues Y205 and R207 of the β3-subunit significantly affected GABA potency, while the residue F71 of the α4- and the residue Y97 of the β3-subunit did not significantly affect GABA potency. Mutating the residue R218 of the δ-subunit, equivalent to the GABA binding residue R207 of the β2-subunit, reduced the potency of GABA by 670-fold, suggesting a novel GABA binding site at the δ-subunit interface. Taken together, GABA may have different binding modes for extrasynaptic δ-containing GABA(A) receptors compared to their synaptic counterparts.

  1. Characterization of the neuropeptide Y system in the frog Silurana tropicalis (Pipidae): three peptides and six receptor subtypes.

    PubMed

    Sundström, G; Xu, B; Larsson, T A; Heldin, J; Bergqvist, C A; Fredriksson, R; Conlon, J M; Lundell, I; Denver, R J; Larhammar, D

    2012-07-01

    Neuropeptide Y and its related peptides PYY and PP (pancreatic polypeptide) are involved in feeding behavior, regulation of the pituitary and the gastrointestinal tract, and numerous other functions. The peptides act on a family of G-protein coupled receptors with 4-7 members in jawed vertebrates. We describe here the NPY system of the Western clawed frog Silurana (Xenopus) tropicalis. Three peptides, NPY, PYY and PP, were identified together with six receptors, namely subtypes Y1, Y2, Y4, Y5, Y7 and Y8. Thus, this frog has all but one of the ancestral seven gnathostome NPY-family receptors, in contrast to mammals which have lost 2-3 of the receptors. Expression levels of mRNA for the peptide and receptor genes were analyzed in a panel of 19 frog tissues using reverse transcriptase quantitative PCR. The peptide mRNAs had broad distribution with highest expression in skin, blood and small intestine. NPY mRNA was present in the three brain regions investigated, but PYY and PP mRNAs were not detectable in any of these. All receptor mRNAs had similar expression profiles with high expression in skin, blood, muscle and heart. Three of the receptors, Y5, Y7 and Y8, could be functionally expressed in HEK-293 cells and characterized with binding studies using the three frog peptides. PYY had the highest affinity for all three receptors (K(i) 0.042-0.34 nM). Also NPY and PP bound to the Y8 receptor with high affinity (0.14 and 0.50 nM). The low affinity of NPY for the Y5 receptor (100-fold lower than PYY) differs from mammals and chicken. This may suggest a less important role of NPY on Y5 in appetite stimulation in the frog compared with amniotes. In conclusion, our characterization of the NPY system in S. tropicalis with its six receptors demonstrates not only greater complexity than in mammals but also some interesting differences in ligand-receptor preferences.

  2. New ligands with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors. Synthesis, receptor binding, and 3D-QSAR modeling.

    PubMed

    Audouze, Karine; Nielsen, Elsebet Østergaard; Olsen, Gunnar M; Ahring, Philip; Jørgensen, Tino Dyhring; Peters, Dan; Liljefors, Tommy; Balle, Thomas

    2006-06-01

    A new series of piperazines, diazepanes, diazocanes, diazabicyclononanes, and diazabicyclodecanes with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors were synthesized on the basis of results from a previous computational study. A predictive 3D-QSAR model was developed using the GRID/GOLPE approach (R2 = 0.94, Q2 = 0.83, SDEP = 0.34). The SAR was interpreted in terms of contour maps of the PLS coefficients and in terms of a homology model of the alpha4beta2 subtype of the nicotinic acetylcholine receptors. The results reveal that hydrogen bonding from both hydrogens on the protonated amine and from the pyridine nitrogen to a water molecule as well as van der Waals interactions between the substituent bearing the protonated amine and the receptor is of importance for ligand affinity. The combination of 3D-QSAR and homology modeling proved successful for the interpretation of structure-affinity relationships as well as the validation of the individual modeling approaches.

  3. Molecular Basis for Binding and Subtype Selectivity of 1,4-Benzodiazepine Antagonist Ligands of the Cholecystokinin Receptor*

    PubMed Central

    Cawston, Erin E.; Lam, Polo C. H.; Harikumar, Kaleeckal G.; Dong, Maoqing; Ball, Alicja M.; Augustine, Mary Lou; Akgün, Eyup; Portoghese, Philip S.; Orry, Andrew; Abagyan, Ruben; Sexton, Patrick M.; Miller, Laurence J.

    2012-01-01

    Allosteric binding pockets in peptide-binding G protein-coupled receptors create opportunities for the development of small molecule drugs with substantial benefits over orthosteric ligands. To gain insights into molecular determinants for this pocket within type 1 and 2 cholecystokinin receptors (CCK1R and CCK2R), we prepared a series of receptor constructs in which six distinct residues in TM2, -3, -6, and -7 were reversed. Two novel iodinated CCK1R- and CCK2R-selective 1,4-benzodiazepine antagonists, differing only in stereochemistry at C3, were used. When all six residues within CCK1R were mutated to corresponding CCK2R residues, benzodiazepine selectivity was reversed, yet peptide binding selectivity was unaffected. Detailed analysis, including observations of gain of function, demonstrated that residues 6.51, 6.52, and 7.39 were most important for binding the CCK1R-selective ligand, whereas residues 2.61 and 7.39 were most important for binding CCK2R-selective ligand, although the effect of substitution of residue 2.61 was likely indirect. Ligand-guided homology modeling was applied to wild type receptors and those reversing benzodiazepine binding selectivity. The models had high predictive power in enriching known receptor-selective ligands from related decoys, indicating a high degree of precision in pocket definition. The benzodiazepines docked in similar poses in both receptors, with C3 urea substituents pointing upward, whereas different stereochemistry at C3 directed the C5 phenyl rings and N1 methyl groups into opposite orientations. The geometry of the binding pockets and specific interactions predicted for ligand docking in these models provide a molecular framework for understanding ligand selectivity at these receptor subtypes. Furthermore, the strong predictive power of these models suggests their usefulness in the discovery of lead compounds and in drug development programs. PMID:22467877

  4. Design and synthesis of a piperazinylalkylisoxazole library for subtype selective dopamine receptor ligands.

    PubMed

    Cha, Mi Young; Choi, Byung Chul; Kang, Kyung Ho; Pae, Ae Nim; Choi, Kung Il; Cho, Yong Seo; Koh, Hun Yeong; Lee, Hee-Yoon; Jung, Daeyoung; Kong, Jae Yang

    2002-05-20

    A piperazinylbutylisoxazole libary was designed, synthesized and screened for the binding affinities to dopamine D2, D3, and D4 receptors. Several ligands were identified to possess high binding affinity and selectivity for the D3 and D4 receptors over the D2 receptor. Compounds 6s and 6t showed K(i) values of 2.6 nM and 3.9 nM for the D3 receptor with 46- and 50-fold selectivity over the D2 receptor, respectively.

  5. Long-term effects of cariprazine exposure on dopamine receptor subtypes.

    PubMed

    Choi, Yong Kee; Adham, Nika; Kiss, Béla; Gyertyán, István; Tarazi, Frank I

    2014-06-01

    All clinically effective antipsychotics are known to act on the dopaminergic system, and previous studies have demonstrated that repeated treatment with antipsychotics produced region-specific changes in dopamine receptor levels. Cariprazine is a dopamine D₃ and D₂ receptor partial agonist with preferential binding to D₃ receptors. We examined the effects of chronic cariprazine administration on dopamine receptor levels. Rats were administered either vehicle or cariprazine (0.06, 0.2, or 0.6 mg/kg) for 28 days. Dopamine receptor levels were quantitated using autoradiographic assays on brain tissue sections from the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), caudate putamen (CPu), hippocampus (HIPP), olfactory tubercle (OT), and islands of Calleja (ICj). Chronic treatment with cariprazine did not alter D₁ receptor levels in any brain region tested. Cariprazine increased D₂ receptor levels in mPFC (27%-43%), NAc (40%-45%), medial (41%-53%) and lateral (52%-63%) CPu, and HIPP (38%). Cariprazine dose-dependently upregulated D₃ receptor levels in ICj (32%-57%), OT (27%-67%), and NAc shell (31%-48%). Repeated cariprazine treatment increased D₄ receptor in NAc (53%-82%), medial (54%-98%) and lateral (58%-74%) CPu, and HIPP (38%-98%). Similar to other antipsychotics, cariprazine upregulated D₂ and D₄ receptor levels in various brain regions. Cariprazine was unique among antipsychotics in increasing D₃ receptor levels, which may support its unique psychopharmacologic properties.

  6. Expression profiles of prostaglandin E2 receptor subtypes in aspirin tolerant adult Chinese with chronic rhinosinusitis.

    PubMed

    Xie, Li; Liu, Ai-Guo; Cui, Yong-Hua; Zhang, Yin-Ping; Liao, Bo; Li, Ni-Ni; Wang, Xian-Song

    2015-01-01

    Several studies have indicated that prostaglandin E2 and E-prostanoid (EP) receptors play a role in the pathogenesis of chronic rhinosinusitis (CRS) in white populations. However, until now there was no report about EP receptor expression and its role in the pathophysiology of CRS in Chinese patients. To investigate the expression profiles of EP receptors, including EP1, EP2, EP3, and EP4 receptors in different Chinese patients with CRS with aspirin tolerance. Nasal biopsy specimens were obtained from 12 controls, 12 patients with CRS without nasal polyps (CRSsNP), 12 with eosinophilic CRS with nasal polyps (CRSwNP), and 16 with noneosinophilic CRSwNP. Histopathologic characteristics were observed under a light microscope. Immunostaining was used to examine tissue localization of EP receptors. Messenger RNA and protein expression of EP receptors were examined by means of quantitative RT-polymerase chain reaction and Western blot, respectively. Different types of CRS presented different histopathologic hallmarks. EP receptors were expressed mainly on epithelium, glands, and infiltrating inflammatory cells in nasal tissue. In controls, patients with CRSsNP, and those with noneosinophilic CRSwNP, EP4 mRNA levels were higher than EP1, EP2, and EP3 receptors. EP2 was downexpressed, and EP1 was upexpressed in patients with eosinophilic CRSwNP. When comparing EP receptor expression among different groups, Messenger RNA and protein of EP1 receptor were significantly enhanced in eosinophilic CRSwNP, but EP2, EP3, and EP4 receptors did not show significant differences. EP receptor expressions present different features in healthy subjects and patients with CRS. The upregulated EP1 receptor in eosinophilic CRSwNP might be associated with excessive infiltrations of eosinophils and other inflammatory cells. The accurate role of the four EP receptors in the pathogenesis of different CRS remains to be further explored.

  7. Affinity of cyamemazine metabolites for serotonin, histamine and dopamine receptor subtypes.

    PubMed

    Benyamina, Amine; Arbus, Christophe; Nuss, Philippe; Garay, Ricardo P; Neliat, Gervais; Hameg, Ahcène

    2008-01-14

    Animal and human pharmacological studies indicate that the antipsychotic action of cyamemazine results from blockade of dopamine D(2) receptors, its anxiolytic properties from serotonin 5-HT(2C) receptor antagonism and the low incidence of extrapyramidal side effects from a potent 5-HT(2A) receptor antagonistic action. Cyamemazine is metabolized in monodesmethyl cyamemazine and cyamemazine sulfoxide, which are not known for their affinities for serotonin, dopamine and other brain receptor types considered to mediate central nervous systems effects of drugs. Hence, metabolite affinities were determined in human recombinant receptors expressed in CHO cells (hD(2) and hD4.4 receptors, h5-HT(1A), h5-HT(2A), h5-HT(2C) and h5-HT(7) receptors and hM(1), hM(2) and hM(3) receptors) and HEK-293 cells (h5-HT(3) receptors) or natively present in rat cerebral cortex (non-specific alpha(1)- and alpha(2)-adrenoceptors, GABA(A) and GABA(B) receptors) and guinea pig cerebellum (H(1) central histamine receptors) membranes. Monodesmethyl cyamemazine showed a neurotransmitter receptor profile similar to that of its parent compound cyamemazine, i.e.: high affinity for h5-HT(2A) receptors (K(i)=1.5 nM), h5-HT(2C) receptors (K(i)=12 nM) and hD(2) receptors (K(i)=12 nM). Cyamemazine sulfoxide showed high affinity for h5-HT(2A) receptors (K(i)=39 nM) and histamine H(1) receptors (K(i)=15 nM) and a reduced affinity for D(2) and 5-HT(2C) receptors. Therefore, monodesmethyl cyamemazine can contribute to enhance and prolong the therapeutic actions of cyamemazine. Further investigation is required to see if the high affinities of cyamemazine sulfoxide for H(1) and 5-HT(2A) receptors are of therapeutic benefit against sleep onset insomnia and/or sleep maintenance insomnia respectively.

  8. The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype

    PubMed Central

    Centurión, David; Ortiz, Mario I; Saxena, Pramod R; Villalón, Carlos M

    2002-01-01

    In pithed rats, 5-HT mediates tachycardia both directly (by 5-HT2 receptors) and indirectly (by a tyramine-like effect). The receptor mediating tachycardia directly has been classified as an ‘atypical' 5-HT2 receptor since it was ‘weakly' blocked by ketanserin. Moreover, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 agonist, failed to mimic 5-HT-induced tachycardia. Since 5-HT2 receptors consist of 5-HT2A, 5-HT2B and 5-HT2C subtypes, this study investigated if these subtypes mediate the above response. In pithed rats, intraperitoneally (i.p.) pre-treated with reserpine (5 mg kg−1), intravenous (i.v.) administration of 5-HT, 5-methoxytryptamine (5-MeO-T), 1-(3-chlorophenyl) piperazine (mCPP) and 5-carboxamidotryptamine (5-CT) (10, 30, 100 and 300 μg kg−1 each), produced dose-dependent tachycardic responses. Interestingly, DOI (10 – 1000 μg kg−1, i.v.) induced only slight, dose-unrelated, tachycardic responses, whilst the 5-HT2C agonist, Ro 60-0175 (10 – 1000 μg kg−1, i.v.), produced a slight tachycardia only at 300 and 1000 μg kg−1. In contrast, sumatriptan and 1-(m-trifluoromethylphenyl)- piperazine (TFMPP) were inactive. The rank order of potency was: 5-HT⩾5-MeO-T> mCPP⩾5-CT⩾DOI>Ro 60-0175. The tachycardic responses to 5-HT, which remained unaffected after i.v. saline (0.3 and 1 ml kg−1) or propranolol (3 mg kg−1), were selectively blocked by the 5-HT2A antagonists ketanserin (30 and 100 μg kg−1) or spiperone (10 and 30 μg kg−1) as well as by the non-selective 5-HT2 antagonists, ritanserin (10 and 30 μg kg−1) or mesulergine (100 μg kg−1). Remarkably, these responses were unaffected by the antagonists rauwolscine (5-HT2B), SB204741 (5-HT2B/2C) or Ro 04-6790 (5-ht6) (300 and 1000 μg kg−1 each). These results suggest that the ‘atypical' 5-HT2 receptors mediating tachycardia in reserpinized pithed rats are pharmacologically similar to the 5-HT2A

  9. Co-Expression of Two Subtypes of Melatonin Receptor on Rat M1-Type Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Sheng, Wen-Long; Chen, Wei-Yi; Yang, Xiong-Li; Zhong, Yong-Mei; Weng, Shi-Jun

    2015-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions. PMID:25714375

  10. Hepatitis C Virus Induced Endothelial Inflammatory Response Depends on the Functional Expression of TNFα Receptor Subtype 2

    PubMed Central

    Mannell, Hanna; Krötz, Florian; Ribeiro, Andrea; Vielhauer, Volker; Nadjiri, Jonathan; Gaitzsch, Erik; Niemeyer, Markus; Porubsky, Stefan; Gröne, Hermann-Josef; Wörnle, Markus

    2014-01-01

    In hepatitis C virus (HCV) infection, morbidity and mortality often result from extrahepatic disease manifestations. We provide evidence for a role of receptors of the innate immune system in virally induced inflammation of the endothelium in vitro and in vivo. Corresponding to the in vitro finding of an HCV-dependent induction of proinflammatory mediators in endothelial cells, mice treated with poly (I:C) exhibit a significant reduction in leukocyte rolling velocity, an increase in leukocyte adhesion to the vessel wall and an increased extravasation of leukocytes. HCV directly promotes activation, adhesion and infiltration of inflammatory cells into the vessel wall by activation of endothelial viral receptors. Poly (I:C) induces the expression of TLR3 in vivo and hereby allows for amplification of all of the aforementioned responses upon viral infection. Proinflammatory effects of viral RNA are specifically mediated by TLR3 and significantly enhanced by tumor necrosis factor alpha (TNFα). HCV-RNA induces the endothelial expression of TNFα and TNFα receptor subtype 2 and we provide evidence that leucocyte adhesion and transmigration in response to activation of viral RNA receptors seem to depend on expression of functional TNFR2. Our results demonstrate that endothelial cells actively participate in immune mediated vascular inflammation caused by viral infections. PMID:25419735

  11. Hepatitis C virus induced endothelial inflammatory response depends on the functional expression of TNFα receptor subtype 2.

    PubMed

    Pircher, Joachim; Czermak, Thomas; Merkle, Monika; Mannell, Hanna; Krötz, Florian; Ribeiro, Andrea; Vielhauer, Volker; Nadjiri, Jonathan; Gaitzsch, Erik; Niemeyer, Markus; Porubsky, Stefan; Gröne, Hermann-Josef; Wörnle, Markus

    2014-01-01

    In hepatitis C virus (HCV) infection, morbidity and mortality often result from extrahepatic disease manifestations. We provide evidence for a role of receptors of the innate immune system in virally induced inflammation of the endothelium in vitro and in vivo. Corresponding to the in vitro finding of an HCV-dependent induction of proinflammatory mediators in endothelial cells, mice treated with poly (I:C) exhibit a significant reduction in leukocyte rolling velocity, an increase in leukocyte adhesion to the vessel wall and an increased extravasation of leukocytes. HCV directly promotes activation, adhesion and infiltration of inflammatory cells into the vessel wall by activation of endothelial viral receptors. Poly (I:C) induces the expression of TLR3 in vivo and hereby allows for amplification of all of the aforementioned responses upon viral infection. Proinflammatory effects of viral RNA are specifically mediated by TLR3 and significantly enhanced by tumor necrosis factor alpha (TNFα). HCV-RNA induces the endothelial expression of TNFα and TNFα receptor subtype 2 and we provide evidence that leucocyte adhesion and transmigration in response to activation of viral RNA receptors seem to depend on expression of functional TNFR2. Our results demonstrate that endothelial cells actively participate in immune mediated vascular inflammation caused by viral infections.

  12. Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents

    PubMed Central

    Wieland, H A; Engel, W; Eberlein, W; Rudolf, K; Doods, H N

    1998-01-01

    The novel Y1-selective argininamide derivative BIBO 3304 ((R)-N-[[4-(aminocarbonylaminomethyl)phenyl]methyl]-N2-(diphenylacetyl)-argininamide trifluoroacetate) has been synthesized and was examined for its subtype selectivity, its in vitro antagonistic properties and its food intake inhibitory properties.BIBO 3304 displayed subnanomolar affinity for both the human and the rat Y1 receptor (IC50 values 0.38±0.06 nM and 0.72±0.42 nM, respectively). The inactive enantiomer of BIBO 3304 (BIBO 3457) had low affinity for both the human and rat Y1 receptor subtype (IC50>1000 nM). BIBO 3304 showed low affinity for the human Y2 receptor, human and rat Y4 receptor as well as for the human and rat Y5 receptor (IC50 values >1000 nM).30 μg BIBO 3304 administered into the paraventricular nucleus inhibited the feeding response induced by 1 μg NPY as well as the hyperphagia induced by a 24 h fast implying a role for Y1 receptors in NPY mediated feeding. The inactive enantiomer had no effect.BIBO 3304 inhibits neither the galanin nor the noradrenaline induced orexigenic response, but it blocked feeding behaviour elicited by both [Leu31, Pro34]NPY and NPY (3–36) suggesting an interplay between different NPY receptor subtypes in feeding behavior.The present study reveals that BIBO 3304 is a subtype selective nonpeptide antagonist with subnanomolar affinity for the Y1 receptor subtype that significantly inhibits food intake induced by application of NPY or by fasting. PMID:9806339

  13. Primary cultures of corticostriatal cells from newborn rats: a model to study muscarinic receptor subtypes regulation and function.

    PubMed

    Eva, C; Bovolin, P; Balzac, F; Botta, C; Gamalero, S R; Vaccarino, F M

    1990-01-01

    In the present work we characterized both the presynaptic and postsynaptic components of cholinergic transmission in a primary culture of corticostriatal neurons prepared from newborn rat brain. This culture preparation contains a small population of choline acetyltransferase (ChAT) immunoreactive neurons, corresponding to approximately 3% of the total cell number, and synthesizes increasing amounts of acetylcholine (ACh) from the third day in vitro (DIV), which reaches a plateau around the 10 day of culture. Muscarinic cholinergic receptors (mAChR), measured by the binding of the muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB), are detectable from the fifth DIV and increase linearly during the time of culture. At the twelfth DIV, the density of mAChRs (approximately 600 fmol/mg protein) is comparable to the density of mAChR in adult rat cortex. These receptors are coupled to second messenger systems, since muscarinic agonists inhibit adenylate cyclase activity and stimulate phosphoinositide breakdown with efficacies and potencies similar to those found in adult rat cortex. Moreover, by using the reverse transcriptase-polymerase chain reaction (RT-PCR) technique, we were able to demonstrate the presence of the m1, m3, and m4 mAChR subtype mRNAs in this neuronal culture at 12 DIV. Our data suggest that corticostriatal neuronal cultures develop in vitro ACh-synthesizing neurons and functionally active cholinergic receptors. This therefore makes them ideally suited to study the development and properties of brain mAChR subtypes.

  14. Heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex demonstrated by the selective antagonist AF-DX 116

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Seaver, N.A.; Yamamura, H.I.

    1987-07-27

    Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting (TH)(-)quinuclidinyl benzilate or (TH)pirenzepine, the authors found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This results demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex. 20 references, 1 figure, 2 tables.

  15. Structure-activity relationships of new analogues of arecaidine propargyl ester at muscarinic M1 and M2 receptor subtypes.

    PubMed

    Moser, U; Lambrecht, G; Wagner, M; Wess, J; Mutschler, E

    1989-02-01

    1. The potency of arecaidine propargyl ester (APE) and of several analogues containing a modified ester side chain has been assessed at M1 and M2 muscarinic receptor subtypes. APE was shown to act as a potent agonist at ganglionic M1 receptors in the pithed rat, at M2 receptors in guinea-pig isolated atria (-log EC50 = 8.22) and ileum (-log EC50 = 7.77). 2. The arecaidine 2-butynyl and 2-pentynyl esters were approximately equipotent with APE at M1 and M2 receptors, whereas the 2-hexynyl derivative was found to be less potent than APE in atria (-log EC50 = 6.80) and ileum (-log EC50 = 6.70) by about one order of magnitude. The 2-heptynyl and 3-phenyl propargyl esters exhibited no agonist actions in atria and ileum. 3. Shifting the triple bond from the 2 to the 3 position and introducing a bulky group at position 1 of the ester side chain of APE and analogues resulted in competitive antagonists (pA2 ranging from 4.9 to 7.3). 4. APE and its 2-butynyl analogue showed some agonistic selectivity for cardiac M2 receptors (potency ratio, ileum/atria = 2.8 and 4.6 respectively). All antagonists in this series of compounds were not selective in terms of affinity since their pA2 values at cardiac and ileal M2 receptors were similar (potency ratios, ileum/atria = 0.4 to 1.2).

  16. Structure-activity relationships of new analogues of arecaidine propargyl ester at muscarinic M1 and M2 receptor subtypes.

    PubMed Central

    Moser, U.; Lambrecht, G.; Wagner, M.; Wess, J.; Mutschler, E.

    1989-01-01

    1. The potency of arecaidine propargyl ester (APE) and of several analogues containing a modified ester side chain has been assessed at M1 and M2 muscarinic receptor subtypes. APE was shown to act as a potent agonist at ganglionic M1 receptors in the pithed rat, at M2 receptors in guinea-pig isolated atria (-log EC50 = 8.22) and ileum (-log EC50 = 7.77). 2. The arecaidine 2-butynyl and 2-pentynyl esters were approximately equipotent with APE at M1 and M2 receptors, whereas the 2-hexynyl derivative was found to be less potent than APE in atria (-log EC50 = 6.80) and ileum (-log EC50 = 6.70) by about one order of magnitude. The 2-heptynyl and 3-phenyl propargyl esters exhibited no agonist actions in atria and ileum. 3. Shifting the triple bond from the 2 to the 3 position and introducing a bulky group at position 1 of the ester side chain of APE and analogues resulted in competitive antagonists (pA2 ranging from 4.9 to 7.3). 4. APE and its 2-butynyl analogue showed some agonistic selectivity for cardiac M2 receptors (potency ratio, ileum/atria = 2.8 and 4.6 respectively). All antagonists in this series of compounds were not selective in terms of affinity since their pA2 values at cardiac and ileal M2 receptors were similar (potency ratios, ileum/atria = 0.4 to 1.2). PMID:2924082

  17. Contribution of ryanodine receptor subtype 3 to ca2+ responses in Ca2+-overloaded cultured rat portal vein myocytes.

    PubMed

    Mironneau, J; Coussin, F; Jeyakumar, L H; Fleischer, S; Mironneau, C; Macrez, N

    2001-04-06

    Using an antisense strategy, we have previously shown that in vascular myocytes, subtypes 1 and 2 of ryanodine receptors (RYRs) are required for Ca(2+) release during Ca(2+) sparks and global Ca(2+) responses, evoked by activation of voltage-gated Ca(2+) channels, whereas RYR subtype 3 (RYR3) has no contribution. Here, we investigated the effects of increased Ca(2+) loading of the sarcoplasmic reticulum (SR) on the RYR-mediated Ca(2+) responses and the role of the RYR3 by injecting antisense oligonucleotides targeting the RYR subtypes. RYR3 expression was demonstrated by immunodetection in both freshly dissociated and cultured rat portal vein myocytes. Confocal Ca(2+) measurements revealed that the number of cells showing spontaneous Ca(2+) sparks was strongly increased by superfusing the vascular myocytes in 10 mm Ca(2+)-containing solution. These Ca(2+) sparks were blocked after inhibition of RYR1 or RYR2 by treatment with antisense oligolucleotides but not after inhibition of RYR3. In contrast, inhibition of RYR3 reduced the global Ca(2+) responses induced by caffeine and phenylephrine, indicating that RYR3 participated together with RYR1 and RYR2 to these Ca(2+) responses in Ca(2+)-overloaded myocytes. Ca(2+) transients evoked by photolysis of caged Ca(2+) with increasing flash intensities were also reduced after inhibition of RYR3 and revealed that the [Ca(2+)](i) sensitivity of RYR3 would be similar to that of RYR1 and RYR2. Our results show that, under conditions of increased SR Ca(2+) loading, the RYR3 becomes activable by caffeine and local increases in [Ca(2+)](i).

  18. Contribution of α2 receptor subtypes to nerve injury-induced pain and its regulation by dexmedetomidine

    PubMed Central

    Malmberg, Annika B; Hedley, Linda R; Jasper, Jeffrey R; Hunter, John C; Basbaum, Allan I

    2001-01-01

    There is evidence that noradrenaline contributes to the development and maintenance of neuropathic pain produced by trauma to a peripheral nerve. It is, however, unclear which subtype(s) of α adrenergic receptors (AR) may be involved. In addition to pro-nociceptive actions of AR stimulation, α2 AR agonists produce antinociceptive effects.Here we studied the contribution of the α2 AR subtypes, α2A, α2B and α2C to the development of neuropathic pain. We also examined the antinociceptive effect produced by the α2 AR agonist dexmedetomidine in nerve-injured mice.The studies were performed in mice that carry either a point (α2A) or a null (α2B and α2C) mutation in the gene encoding the α2 AR. To induce a neuropathic pain condition, we partially ligated the sciatic nerve and measured changes in thermal and mechanical sensitivity.Baseline mechanical and thermal withdrawal thresholds were similar in all mutant and wild-type mice; and, after peripheral nerve injury, all mice developed comparable hypersensitivity (allodynia) to thermal and mechanical stimulation.Dexmedetomidine reversed the allodynia at a low dose (3 μg kg−1, s.c.) and produced antinociceptive effects at higher doses (10 – 30 μg kg−1) in all groups except in α2A AR mutant mice. The effect of dexmedetomidine was reversed by intrathecal, but not systemic, injection of the α2 AR antagonist RS 42206.These results suggest that neither α2A, α2B nor α2C AR is required for the development of neuropathic pain after peripheral nerve injury, however, the spinal α2A AR is essential for the antinociceptive effects of dexmedetomidine. PMID:11309255

  19. Deregulation of Adenosine Receptors in Psoriatic Epidermis: An Option for Therapeutic Treatment.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Varani, Katia; Gessi, Stefania

    2017-01-01

    Purinergic signaling is involved in psoriasis, a chronic skin disease characterized by increased epidermis cell growth. In particular, Andrés et al. focus on the keratinocyte biology modulated by adenosine receptors providing evidence that the A2B subtype plays a prominent role in the reduction of keratinocyte proliferation whereas A2A and A2B agonists have antiinflammatory effects independent of adenosine receptors. The authors report that psoriatic epidermis presents a deregulated adenosine receptor expression profile with reduced A2B and increased A2A.

  20. A fourth subtype of retinoic acid receptor-related orphan receptors is activated by oxidized all-trans retinoic acid in medaka (Oryzias latipes).

    PubMed

    Sakai, Kotowa; Fukushima, Haruka; Yamamoto, Yuya; Ikeuchi, Toshitaka

    2017-01-01

    The three known subtypes of the retinoic acid receptor-related orphan receptor (ROR) have been implicated in the control of immunity, brain function, and circadian rhythm in mammals. Here, we demonstrate by phylogenetic analysis that there were originally four subtypes of RORs in vertebrates. One of the novel ror paralogs, rord1 (rorca in the Ensembl database), is conserved among teleosts, but absent in mammals. Using medaka (Oryzias latipes) as a model teleost, we evaluated the expression pattern of this gene, its transactivational properties for endogenic chemicals, and its ability to activate the promoters of putative target genes. In eyes, the transcript of rord1 was expressed at higher levels during the day than at night. Interestingly, cholesterol derivatives, which are well-known ligands for mammalian RORs, did not efficiently promote transcriptional activity via RORd1. Thus we sought to identify the ligands that regulate the transcriptional activity of RORd1 using a luciferase reporter cell-based screening system. Using this system, we identified two metabolites of all-trans retinoic acid (ATRA), 4OH-ATRA and 4-keto ATRA, as potential ligands of RORd1. Moreover, RORd1 activated the promoter of cyp26a1 in a 4OH-ATRA -dependent manner. A novel ror subtype, rord has two paralogs, rord1 and rord2, in teleost. Rord1 mRNA is highly abundant in the eyes of medaka during light periods, suggesting that rord1 expression is involved in the regulation of circadian rhythm. We identified two ATRA metabolites, 4OH-ATRA and 4 K-ATRA, as endogenous candidate ligands of RORd1. We also show that 4-oxygenated ATRA metabolites have the potential to activate cyp26a1, the metabolic enzyme of ATRA. Our results support the notion that RORd1 is involved in the metabolism of ATRA in medaka.

  1. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes.

    PubMed

    Gimenez, Luis E; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G; Gurevich, Vsevolod V

    2014-07-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor.

  2. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes

    PubMed Central

    Gimenez, Luis E.; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G.; Gurevich, Vsevolod V.

    2014-01-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor. PMID:24686081

  3. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons.

    PubMed

    Tóth, K; McBain, C J

    1998-11-01

    Using the polyamine toxin philanthotoxin, which selectively blocks calcium-permeable AMPA receptors, we show that synaptic transmission onto single hippocampal interneurons occurs by afferent-specific activation of philanthotoxin-sensitive and -insensitive AMPA receptors. Calcium-permeable AMPA receptors are found exclusively at synapses from mossy fibers. In contrast, synaptic responses evoked by stimulation of CA3 pyramidal neurons are mediated by calcium-impermeable AMPA receptors. Both pathways converge onto single interneurons and can be discriminated with Group II mGluR agonists. Thus, single interneurons target AMPA receptors of different subunit composition to specific postsynaptic sites, providing a mechanism to increase the synapse-specific computational properties of hippocampal interneurons.

  4. Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas.

    PubMed Central

    Bertrand, G.; Gross, R.; Puech, R.; Loubatières-Mariani, M. M.; Bockaert, J.

    1992-01-01

    1. The effect of L-glutamate has been studied on insulin secretion by the isolated perfused pancreas of the rat. The glutamate receptor subtype involved has been characterized. 2. In the presence of a slightly stimulating glucose concentration (8.3 mM), L-glutamate (5 x 10(-5)-4 x 10(-3) M) induced an immediate, transient and concentration-dependent insulin response. On the other hand, in the presence of a non stimulating glucose concentration (2.8 mM), L-glutamate (10(-3) M) did not modify the basal insulin secretion. 3. The three non-NMDA receptor agonists, kainate (10(-4)-10(-3) M), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA, 5 x 10(-5)-10(-4) M) and quisqualate (5 x 10(-6)-5 x 10(-5) M) all provoked a transient and concentration-dependent insulin response from pancreas perfused with 8.3 mM glucose. Compared with glutamate, kainate exhibited a similar efficacy, whereas AMPA and quisqualate elicited only a 3 fold lower maximal insulin response. In contrast, NMDA (10(-4)-10(-3) M) was ineffective. 4. An antagonist of non-NMDA receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 5 x 10(-5) M) totally prevented the stimulatory effect of L-glutamate (4 x 10(-4) M) and kainate (2 x 10(-4) M). In contrast, the NMDA receptor antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+) MK801) was without effect. 5. The insulin secretory effect of glutamate (4 x 10(-4) M) was not affected by atropine (3 x 10(-7) M) or tetrodotoxin (3 x 10(-6) M). 6. Quisqualate at a high maximally effective concentration (4 x 10(-4) M) inhibited glutamate (10(-3) M) or kainate (4 x 10(-4) M)-induced insulin release. 7. This study shows that L-glutamate stimulates insulin secretion in rat pancreas, by acting on an excitatory amino acid receptor of the AMPA subtype. PMID:1382779

  5. Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells

    PubMed Central

    Cvoro, Aleksandra; Bajic, Aleksandar; Zhang, Aijun; Simon, Marisa; Golic, Igor; Sieglaff, Douglas H.; Maletic-Savatic, Mirjana; Korac, Aleksandra; Webb, Paul

    2016-01-01

    Thyroid hormone (TH) receptors (TRs α and β) are homologous ligand-dependent transcription factors (TFs). While the TRs display distinct actions in development, metabolic regulation and other processes, comparisons of TRα and TRβ dependent gene regulation mostly reveal similar mechanisms of action and few TR subtype specific genes. Here, we show that TRα predominates in multipotent human adipose derived stem cells (hADSC) whereas TRβ is expressed at lower levels and is upregulated during hADSC differentiation. The TRs display several unusual properties in parental hADSC. First, TRs display predominantly cytoplasmic intracellular distribution and major TRα variants TRα1 and TRα2 colocalize with mitochondria. Second, knockdown experiments reveal that endogenous TRs influence hADSC cell morphology and expression of hundreds of genes in the absence of hormone, but do not respond to exogenous TH. Third, TRα and TRβ affect hADSC in completely distinct ways; TRα regulates cell cycle associated processes while TRβ may repress aspects of differentiation. TRα splice variant specific knockdown reveals that TRα1 and TRα2 both contribute to TRα-dependent gene expression in a gene specific manner. We propose that TRs work in a non-canonical and hormone independent manner in hADSC and that prominent subtype-specific activities emerge in the context of these unusual actions. PMID:27732649

  6. Inhibition of hormone secretion in GH-secreting pituitary adenomas by receptor-subtype specific somatostatin analogues in vitro.

    PubMed

    Cap, J; Marekova, M; Cerman, J; Malirova, E; Suba, P; Netuka, D; Hana, V; Marek, J

    2003-06-01

    The aim of the study was to determine the inhibitory effects of somatostatin analogues with relative specificity to somatostatin receptor subtype 2 (SSTR2) (BIM-23197), subtype 5 (SSTR5) (BIM-23268), and their combination on GH and PRL secretion in acromegalic adenomas in vitro. Three types of answer were observed: 1. In one resistant adenoma no inhibition was achieved. 2. The GH secretion in six adenomas was suppressed significantly more (p < 0.01 or p < 0.001 using Mann-Whitney U-test in concentration range of 10(-12) to 10(-8) mol/l) with SSTR2 specific analogue BIM-23197 with no additive effect of compounds combination. 3. In three adenomas the potency of BIM-23197 and BIM-23268 was almost equal and the combination of these SSTR2 and SSTR5 specific compounds had statistically significant additive effect (p < 0.05 or p < 0.01 in concentration range of 10(-12) to 10(-8) mol/l). PRL secretion of five adenomas was more suppressed with SSTR5 specific BIM-23268 (statistically significant in concentrations 10(-10) to 10(-8) mol/l). In conclusion the somatostatin analogue BIM-23268 had an additive effect on suppression of GH secretion in a subset of adenomas, where both SSTR2 and SSTR5 were involved. This effect was not observed in the majority of tumours, where the inhibitory effect seems to be mediated via SSTR2 only.

  7. Modulation of calcium signalling by dominant negative splice variant of ryanodine receptor subtype 3 in native smooth muscle cells.

    PubMed

    Dabertrand, Fabrice; Morel, Jean-Luc; Sorrentino, Vincenzo; Mironneau, Jean; Mironneau, Chantal; Macrez, Nathalie

    2006-07-01

    The ryanodine receptor subtype 3 (RYR3) is expressed ubiquitously but its physiological function varies from cell to cell. Here, we investigated the role of a dominant negative RYR3 isoform in Ca2+ signalling in native smooth muscle cells. We used intranuclear injection of antisense oligonucleotides to specifically inhibit endogenous RYR3 isoform expression. In mouse duodenum myocytes expressing RYR2 subtype and both spliced and non-spliced RYR3 isoforms, RYR2 and non-spliced RYR3 were activated by caffeine whereas the spliced RYR3 was not. Only RYR2 was responsible for the Ca2+-induced Ca2+ release mechanism that amplified Ca2+ influx- or inositol 1,4,5-trisphosphate-induced Ca2+ signals. However, the spliced RYR3 negatively regulated RYR2 leading to the decrease of amplitude and upstroke velocity of Ca2+ signals. Immunostaining in injected cells showed that the spliced RYR3 was principally expressed near the plasma membrane whilst the non-spliced isoform was revealed around the nucleus. This study shows for the first time that the short isoform of RYR3 controls Ca2+ release through RYR2 in native smooth muscle cells.

  8. Prostaglandin E2 receptor subtype EP-2 is not involved in the induction of non-pregnant guinea pig uterine contractions associated with terminal pregnancy.

    PubMed

    Lebel, Wes; Riccardi, Keith; Grasser, W A; Terry, Ketti; Thompson, David; Paralkar, V M

    2004-12-01

    Prostaglandin E2 (PGE2) exerts its biological effects through 4 different receptor subtypes, EP-1, EP-2, EP-3, and EP-4. Recently we have demonstrated the importance of the prostaglandin E2 receptor subtype EP-2 in the healing of bone defects and fractures. This discovery led to the identification of CP-533,536, an EP-2 selective agonist, a promising therapeutic alternative for the enhancement of bone healing and the treatment of fractures (J Bone Miner Res 18 (2003) 2033). PGE2 has a myriad of effects throughout the body including the induction of uterine contractions, which results in termination of pregnancies. Our objective in this study was to determine the role of the EP-2 receptor and specifically that of CP-533,536, an EP-2 specific agonist, to induce uterine contractions and terminate pregnancy in guinea pigs, an animal model of human pregnancy. Preliminary experiments confirmed earlier reports that the guinea pig uterus was more sensitive than that of the rat. The guinea pig uterus contains the four PGE2 receptor subtypes, and ex vivo treatment of the uterus with PGE2 as expected causes profound uterine contractions. However, using receptor selective prostaglandin agonists including CP-533,536 we showed that the EP-1 and 3 receptors not the EP-2 receptor is responsible for the induction of uterine contractions of PGE2. Further, CP-533,536 did not antagonize the ability of PGE2 to induce uterine contractions in this model.

  9. Ligand-binding properties of an unusual nicotinic acetylcholine receptor subtype on isolated outer hair cells from guinea pig cochlea.

    PubMed

    Lawoko, G; Järlebark, L; Heilbronn, E

    1995-07-28

    Acetylcholine receptors on isolated guinea pig cochlear outer hair cells (OHC) were characterized by radioligand binding. Equilibrium binding of [125I]alpha-bungarotoxin revealed a KD of 62 +/- 2 nM, Bmax = 7.2 +/- 1.8 x 10(7) binding sites/OHC, and a slowly reversible dissociation rate constant, kappa-1 = 2.2 +/- 0.01 x 10(-4) min-1. L-[3H]Nicotine bound reversibly (estimated KD approximately 230 nM and Bmax approximately 5 x 10(7)) with kinetic rate constants of association kappa-1 = 6.2 +/- 0.06 x 10(4) min-1 nM-1 and dissociation kappa-1 = 0.23 +/- 0.003 min-1. [3H]Strychnine bound to OHC with a KD of 35 +/- 6 nM and Bmax = 2.6 +/- 0.5 x 10(7), and binding increased 3-4 fold after membrane depolarization with 56.2 mM [K+], suggesting additional binding sites. Binding, seen only at > nM concentrations, of [3H]3-quinuclidinyl benzilate (KD = 11.5 +/- 5 nM; Bmax = 2.5 +/- 0.6 x 10(6)) was competitively inhibited by the muscarinic antagonists atropine and 4-DAMP (IC50 of 6.1 +/- 0.5 and 6.5 +/- 0.4 nM). The OHC receptor is thus an atypical nicotinic acetylcholine receptor subtype with unusual pharmacological properties.

  10. Identification of three muscarinic receptor subtypes in rat lung using binding studies with selective antagonists

    SciTech Connect

    Fryer, A.D.; El-Fakahany, E.E. )

    1990-01-01

    Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against ({sup 3}H)quinuclidinyl benzilate (({sup 3}H)QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced ({sup 3}H)QNB with low affinity from preparations of central airways indicating the absence of M{sub 1} receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M{sub 2} and M{sub 3} receptors since AF-DX 116, an M{sub 2}-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M{sub 3}-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M{sub 1} receptors in the peripheral airways but not in the central airways was confirmed using ({sup 3}H)telenzepine, an M{sub 1} receptor ligand. ({sup 3}H)Telenzepine showed specific saturable binding to 8% of ({sup 3}H)QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart.

  11. Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction

    PubMed Central

    BRAVERMAN, ALAN S.; TALLARIDA, RONALD J.; RUGGIERI, MICHAEL R.

    2012-01-01

    M3 muscarinic receptors mediate cholinergic-induced contraction in most smooth muscles. However, in the denervated rat bladder, M2 receptors participate in contraction because M3-selective antagonists [para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and 4-DAMP] have low affinities. However, the affinity of the M2-selective antagonist methoctramine in the denervated bladder is consistent with M3 receptor mediating contraction. It is possible that two pathways interact to mediate contraction: one mediated by the M2 receptor and one by the M3 receptor. To determine whether an interaction exists, the inhibitory potencies of combinations of methoctramine and p-F-HHSiD for reversing cholinergic contractions were measured. In normal bladders, all combinations gave additive effects. In denervated bladders, synergistic effects were seen with the 10:1 and 1:1 (methoctramine:p-F-HHSiD wt/wt) combinations. After application of the sarcoplasmic reticulum ATPase inhibitor thapsigargin to normal tissue, the 10:1 and 1:1 ratios became synergistic, mimicking denervated tissue. Thus in normal bladders both M2 and M3 receptors can induce contraction. In the denervated bladder, the M2 and the M3 receptors interact in a facilitatory manner to mediate contraction. PMID:12185001

  12. Biological characteristics and epidermal growth factor receptor tyrosine kinase inhibitors efficacy of EGFR mutation and its subtypes in lung adenocarcinoma.

    PubMed

    Lu, Rong-Li; Hu, Cheng-Ping; Yang, Hua-Ping; Li, Yuan-Yuan; Gu, Qi-Hua; Wu, Lielin

    2014-04-01

    Mutation of epidermal growth factor receptor (EGFR) gene has been reported to be present in lung adenocarcinoma (LAC). In this study, we extensively investigated the impact of patients' biological characteristics on EGFR mutation and the impact of EGFR mutation subtypes on targeted therapy of advanced LAC. We examined EGFR exons18to21status in169 LAC patients by direct sequencing to study the impact of patients' biological characteristics on the EGFR mutational spectrum. And then, 59 patients with advanced LAC harboring EGFR exon 19 deletions(del 19) or exon 21 point mutation(L858R) mutations received first-line treatment of gefitinib or erlotinib, the efficacy of treatment, and the progression-free survival (PFS) of these patients were recorded. The frequency of the EGFR mutation and its subtypes and the variables associated with the EGFR mutation after removing the confound factors were investigated by the logistic analysis using all samples (n = 169). The EGFR mutation was significantly associated with well-differentiated tumor and excessive household cooking fumes(P < 0.05). The deletions in exon 19 were more frequently associated with well-differentiated tumor (P < 0.05). The overall frequency of the EGFR mutation was 49 %. Then the impact of EGFR mutation subtypes on targeted therapy were investigated by the retrospective analysis on 59 advanced LAC patients with del 19 or L858R mutations and treated first-line with erlotinib or gefitinib. The deletions in exon 19 got longer PFS (P < 0.05). But there were no differences in PFS between erlotinib therapy and gefitinib therapy. EGFR mutations were more frequently in high tumor differentiation and excessive household cooking fumes LAC. The del 19 mutation rate is relatively high with a high differentiation degree in advanced lung adenocarcinoma. The deletions in exon 19 may benefit more from first-line targeted therapy of advanced LAC compared with exon 21 point mutation L858R. There was no

  13. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor.

    PubMed Central

    Tiberi, M; Jarvie, K R; Silvia, C; Falardeau, P; Gingrich, J A; Godinot, N; Bertrand, L; Yang-Feng, T L; Fremeau, R T; Caron, M G

    1991-01-01

    Multiple D1 dopaminergic receptor subtypes have been postulated on the basis of pharmacological, biochemical, and genetic studies. We describe the isolation and characterization of a rat gene encoding a dopamine receptor that is structurally and functionally similar to the D1 dopamine receptor. The coding region, which is intronless, encodes a protein of 475 amino acids (Mr 52,834) with structural features that are consistent with receptors coupled to guanine nucleotide-binding regulatory proteins. The expressed protein binds dopaminergic ligands and mediates stimulation of adenylyl cyclase with pharmacological properties similar to those of the D1 dopamine receptor. The gene encoding the human homologue of this receptor subtype is located to the short arm of chromosome 4 (4p16.3), the same region as the Huntington disease gene. In striking contrast to the previously cloned D1 receptor, little or no mRNA for the receptor described here was observed in striatum, nucleus accumbens, olfactory tubercle, and frontal cortex. High levels of mRNA for this receptor were found in distinct layers of the hippocampus, the mammillary nuclei, and the anterior pretectal nuclei, brain regions that have been shown to exhibit little or no D1 dopamine receptor binding. On the basis of its properties we propose that this dopamine receptor subtype be called D1B. Images PMID:1831904

  14. Design and Investigation of a [(18)F]-Labeled Benzamide Derivative as a High Affinity Dual Sigma Receptor Subtype Radioligand for Prostate Tumor Imaging.

    PubMed

    Yang, Dongzhi; Comeau, Anthony; Bowen, Wayne D; Mach, Robert H; Ross, Brian D; Hong, Hao; Van Dort, Marcian E

    2017-03-06

    High overexpression of sigma (σ) receptors (σ1 and σ2 subtypes) in a variety of human solid tumors has prompted the development of σ receptor-targeting radioligands, as imaging agents for tumor detection. A majority of these radioligands to date target the σ2 receptor, a potential marker of tumor proliferative status. The identification of approximately equal proportions of both σ receptor subtypes in prostate tumors suggests that a high affinity, dual σ receptor-targeting radioligand could potentially provide enhanced tumor targeting efficacy in prostate cancer. To accomplish this goal, we designed a series of ligands which bind to both σ receptor subtypes with high affinity. Ligand 3a in this series, displaying optimal dual σ receptor subtype affinity (σ1, 6.3 nM; σ2, 10.2 nM) was radiolabeled with fluorine-18 ((18)F) to give [(18)F]3a and evaluated as a σ receptor-targeting radioligand in the mouse PC-3 prostate tumor model. Cellular assays with PC-3 cells demonstrated that a major proportion of [(18)F]3a was localized to cell surface σ receptors, while ∼10% of [(18)F]3a was internalized within cells after incubation for 3.5 h. Serial PET imaging in mice bearing PC-3 tumors revealed that uptake of [(18)F]3a was 1.6 ± 0.8, 4.4 ± 0.3, and 3.6 ± 0.6% ID/g (% injection dose per gram) in σ receptor-positive prostate tumors at 15 min, 1.5 h, and 3.5 h postinjection, respectively (n = 3) resulting in clear tumor visualization. Blocking studies conducted with haloperidol (a nonselective inhibitor for both σ receptor subtypes) confirmed that the uptake of [(18)F]3a was σ receptor-mediated. Histology analysis confirmed similar expression of σ1 and σ2 in PC-3 tumors which was significantly greater than its expression in normal organs/tissues such as liver, kidney, and muscle. Metabolite studies revealed that >50% of radioactivity in PC-3 tumors at 30 min postinjection represented intact [(18)F]3a. Prominent σ receptor-specific uptake of [(18)F]3a in

  15. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy.

    PubMed

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-09-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2-1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1.

  16. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy

    PubMed Central

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-01-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2–1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1. PMID:27588076

  17. Commercially available antibodies directed against α-adrenergic receptor subtypes and other G protein-coupled receptors with acceptable selectivity in flow cytometry experiments.

    PubMed

    Tripathi, Abhishek; Gaponenko, Vadim; Majetschak, Matthias

    2016-02-01

    Several previous reports suggested that many commercially available antibodies directed against G protein-coupled receptors (GPCR) lack sufficient selectivity. Accordingly, it has been proposed that receptor antibodies should be validated by at least one of several criteria, such as testing tissues or cells after knockout or silencing of the corresponding gene. Here, we tested whether 12 commercially available antibodies directed against α-adrenergic receptor (AR) subtypes (α1A/B/D, α2A/B/C), atypical chemokine receptor 3 (ACKR3), and vasopressin receptor 1A (AVPR1A) suffice these criteria. We detected in flow cytometry experiments with human vascular smooth muscle cells that the fluorescence signals from each of these antibodies were reduced by 46 ± 10 %-91 ± 2 % in cells treated with commercially available small interfering RNA (siRNA) specific for each receptor, as compared with cells that were incubated with non-targeting siRNA. The tested antibodies included anti-ACKR3 (R&D Systems, mab42273), for which specificity has previously been demonstrated. Staining with this antibody resulted in 72 ± 5 % reduction of the fluorescence signal after ACKR3 siRNA treatment. Furthermore, staining with anti-α1A-AR (Santa Cruz, sc1477) and anti-ACKR3 (Abcam, ab38089), which have previously been reported to be non-specific, resulted in 70 ± 19 % and 80 ± 4 % loss of the fluorescence signal after α1A-AR and ACKR3 siRNA treatment, respectively. Our findings demonstrate that the tested antibodies show reasonable selectivity for their receptor target under our experimental conditions. Furthermore, our observations suggest that the selectivity of GPCR antibodies depends on the method for which the antibody is employed, the species from which cells/tissues are obtained, and on the type of specimens (cell, tissue/cell homogenate, or section) tested.

  18. Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor complications.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Rajput, Alex; Rajput, Ali H; Di Paolo, Thérèse

    2015-12-01

    L-DOPA-induced dyskinesias (LID) are abnormal involuntary movements limiting the chronic use of L-DOPA, the main pharmacological treatment of Parkinson's disease. Serotonin receptors are implicated in the development of LID and modulation of basal ganglia 5-HT1B receptors is a potential therapeutic alternative in Parkinson's disease. In the present study, we used receptor-binding autoradiography of the 5-HT1B-selective radioligand [3H]GR125743 to investigate possible contributions of changes in ligand binding of this receptor in LID in post-mortem brain specimens from Parkinson's disease patients (n=14) and control subjects (n=11), and from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys treated with saline (n=5), L-DOPA (n=4) or L-DOPA+2-methyl-6-(phenylethynyl)pyridine (MPEP) (n=5), and control monkeys (n=4). MPEP is the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist and has been shown to reduce the development of LID in these monkeys in a chronic treatment of one month. [3H]GR125743 specific binding to striatal and pallidal 5-HT1B receptors respectively were only increased in L-DOPA-treated MPTP monkeys (dyskinetic monkeys) as compared to controls, saline and L-DOPA+MPEP MPTP monkeys; dyskinesias scores correlated positively with this binding. Parkinson's disease patients with motor complications (L-DOPA-induced dyskinesias and wearing-off) had higher [3H]GR125743 specific binding compared to those without motor complications and controls in the basal ganglia. Reduction of motor complications was associated with normal striatal 5-HT1B receptors, suggesting the potential of this receptor for the management of motor complications in Parkinson's disease.

  19. Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract.

    PubMed

    Vegezzi, Gaia; Anselmi, Laura; Huynh, Jennifer; Barocelli, Elisabetta; Rozengurt, Enrique; Raybould, Helen; Sternini, Catia

    2014-01-01

    Bitter taste receptors and signaling molecules, which detect bitter taste in the mouth, are expressed in the gut mucosa. In this study, we tested whether two distinct bitter taste receptors, the bitter taste receptor 138 (T2R138), selectively activated by isothiocyanates, and the broadly tuned bitter taste receptor 108 (T2R108) are regulated by luminal content. Quantitative RT-PCR analysis showed that T2R138 transcript is more abundant in the colon than the small intestine and lowest in the stomach, whereas T2R108 mRNA is more abundant in the stomach compared to the intestine. Both transcripts in the stomach were markedly reduced by fasting and restored to normal levels after 4 hours re-feeding. A cholesterol-lowering diet, mimicking a diet naturally low in cholesterol and rich in bitter substances, increased T2R138 transcript, but not T2R108, in duodenum and jejunum, and not in ileum and colon. Long-term ingestion of high-fat diet increased T2R138 RNA, but not T2R108, in the colon. Similarly, α-gustducin, a bitter taste receptor signaling molecule, was reduced by fasting in the stomach and increased by lowering cholesterol in the small intestine and by high-fat diet in the colon. These data show that both short and long term changes in the luminal contents alter expression of bitter taste receptors and associated signaling molecules in the mucosa, supporting the proposed role of bitter taste receptors in luminal chemosensing in the gastrointestinal tract. Bitter taste receptors might serve as regulatory and defensive mechanism to control gut function and food intake and protect the body from the luminal environment.

  20. The melanocortin receptor subtypes in chicken have high preference to ACTH-derived peptides

    PubMed Central

    Ling, Maria K; Hotta, Eri; Kilianova, Zuzana; Haitina, Tatjana; Ringholm, Aneta; Johansson, Lisa; Gallo-Payet, Nicole; Takeuchi, Sakae; Schiöth, Helgi B

    2004-01-01

    Melanocortin (MC) receptors are widely distributed throughout the body of chicken, like in mammals, and participate in a wide range of physiological functions. To clarify the pharmacological impact of ligands acting in the MC system, we expressed the chicken MC1, MC2, MC3, MC4 and MC5 (cMC1–5) receptors in eukaryotic cells and performed comprehensive pharmacological characterization of the potency of endogenous and synthetic melanocortin peptides. Remarkably, the cMC receptors displayed high affinity for ACTH-derived peptides and in general low affinity for α-MSH. It is evident that not only the cMC2 receptor but also the other cMC receptors interact with ACTH-derived peptide through an epitope beyond the sequence of α-MSH. The synthetic ligand MTII was found to be a potent agonist whereas HS024 was a potent antagonist at the cMC4 receptor, indicating that these ligands are suitable fo