Science.gov

Sample records for a2b receptor subtype

  1. Adenosine A2B and A3 receptor location at the mouse neuromuscular junction.

    PubMed

    Garcia, Neus; Priego, Mercedes; Hurtado, Erica; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Lanuza, Maria Angel; Tomàs, Josep

    2014-07-01

    To date, four subtypes of adenosine receptors have been cloned (A(1)R, A(2A)R, A(2B)R, and A(3)R). In a previous study we used confocal immunocytochemistry to identify A(1)R and A(2A)R receptors at mouse neuromuscular junctions (NMJs). The data shows that these receptors are localized differently in the three cells (muscle, nerve and glia) that configure the NMJs. A(1)R localizes in the terminal teloglial Schwann cell and nerve terminal, whereas A(2A)R localizes in the postsynaptic muscle and in the axon and nerve terminal. Here, we use Western blotting to investigate the presence of A(2B)R and A(3)R receptors in striated muscle and immunohistochemistry to localize them in the three cells of the adult neuromuscular synapse. The data show that A(2B)R and A(3)R receptors are present in the nerve terminal and muscle cells at the NMJs. Neither A(2B)R nor A(3)R receptors are localized in the Schwann cells. Thus, the four subtypes of adenosine receptors are present in the motor endings. The presence of these receptors in the neuromuscular synapse allows the receptors to be involved in the modulation of transmitter release. © 2014 Anatomical Society.

  2. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists.

    PubMed

    Bonet, Isis; Franco-Montero, Pedro; Rivero, Virginia; Teijeira, Marta; Borges, Fernanda; Uriarte, Eugenio; Morales Helguera, Aliuska

    2013-12-23

    A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.

  3. Adenosine A2B receptor: from cell biology to human diseases

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  4. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  5. Adenosine A2B Receptor Deficiency Promotes Host Defenses against Gram-Negative Bacterial Pneumonia

    PubMed Central

    Barletta, Kathryn E.; Cagnina, R. Elaine; Burdick, Marie D.; Linden, Joel

    2012-01-01

    Rationale: Activation of the adenosine A2B receptor (A2BR) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. Objectives: To test the hypothesis that absence of adenosine A2B receptor signaling promotes host defense against bacterial pneumonia. Methods: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A2BR. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. Measurements and Main Results: A2BR–/– mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow–derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A2BR–/– and wild-type mice, but A2BR–/– neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A2BR–/– mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. Conclusions: These data suggest that the absence of A2BR signaling enhances antimicrobial activity in gram-negative bacterial pneumonia. PMID:22997203

  6. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats.

    PubMed

    Wen, Jiaming; Wang, Bohan; Du, Chuanjun; Xu, Gang; Zhang, Zhewei; Li, Yi; Zhang, Nan

    2015-10-01

    Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED.

  7. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions.

    PubMed

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.

  8. GABAA receptor subtype involvement in addictive behaviour.

    PubMed

    Stephens, D N; King, S L; Lambert, J J; Belelli, D; Duka, T

    2017-01-01

    GABA A receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarize the evidence that variations in genes encoding GABA A receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABA A receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarize the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABA A receptor subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  10. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  11. Impact and benefit of A(2B)-adenosine receptor agonists for the respiratory tract: mucociliary clearance, ciliary beat frequency, trachea muscle tonus and cytokine release.

    PubMed

    Walaschewski, Robin; Begrow, Frank; Verspohl, Eugen J

    2013-01-01

    Adenosine is known to induce a bronchospasm in asthma- and COPD patients. The role of A(2B) receptors was investigated with respect to several parameters of the respiratory tract: tonus of smooth muscle, ciliary beat frequency as measured by high-speed video camera connected to a microscope (both in rats) and mucociliary clearance (MCC; transport of a fluorescent dye using a microdialysis procedure) in mice.  NECA (5'-N-ethylcarboxamidoadenosine) (a non-selective adenosine receptor agonist) was able to acutely induce a contraction, which was reversed to a relaxation after repeated dosing. This relaxation was completely abolished by PSB-1115, an A(2B) receptor antagonist. IL-13 (cytokine) was not involved mediating acute contractility effects. MCC was increased by BAY 60-6583 (A(2B) receptor agonist) and NECA (counteracted by the A(2B) receptor antagonist PSB-1115). Activation of A(2B) adenosine receptors by BAY 60-6583 induced an increase of the ciliary beat frequency, which could be reduced by administration of PSB-1115. Several cytokines were increased by NECA although only some are relevant because they are not blocked by A(2B) receptor antagonism. The A(2B) receptors are involved in airway relaxation, MCC improvement and ciliary beat frequency. A(2B) receptor agonists may be of therapeutic value and should be developed. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  12. Opioid receptor subtypes: fact or artifact?

    PubMed

    Dietis, N; Rowbotham, D J; Lambert, D G

    2011-07-01

    There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.

  13. Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells.

    PubMed

    Kaji, Wakako; Tanaka, Satomi; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-04-01

    Regulatory T cells (Treg) play a role in suppression of immune response, including anti-tumor immunity. We have recently reported that treatment of naïve CD4 T cells with adenosine A(2B) receptor antagonist PSB603 under Treg-skewing conditions inhibits expression of Foxp3, a marker of differentiation to Treg, without blocking IL-2 production or CD25 expression, which are activation markers, in CD4 T cells. We hypothesized that PSB603 suppresses cancer growth and metastasis by inhibiting induction of Treg, thereby facilitating anti-tumor immunity. In this study, we first examined the effect of PSB603 on tumor growth in B16 melanoma-bearing C57BL/6 mice. Administration of PSB603 significantly suppressed the increase of tumor volume as well as the increase of Treg population in these mice. The populations of CD4 and CD8 T cells were higher and splenic lymphocyte-mediated cytotoxicity towards B16 melanoma was significantly increased in PSB603-treated mice. We confirmed that PSB603 did not reduce the viability of B16 melanoma cells in vitro. Moreover, we also examined the effect of PSB603 on tumor metastasis in pulmonary metastasis model mice intravenously injected with B16 melanoma cells. The metastasis was also suppressed in PSB603-treated mice, in which the population of Treg was significantly lower. Overall, our results suggest that A(2B) receptor antagonist PSB603 enhances anti-tumor immunity by inhibiting differentiation to Treg, resulting in a delay of tumor growth and a suppression of metastasis.

  14. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism.

    PubMed

    Mølck, Christina; Ryall, James; Failla, Laura M; Coates, Janine L; Pascussi, Jean-Marc; Heath, Joan K; Stewart, Gregory; Hollande, Frédéric

    2016-12-01

    Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A 2b adenosine receptor (A 2b -AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A 2b -AR to the behavior of colorectal cancer cells. The A 2b -AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A 2b -AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling.

    PubMed

    Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E

    2010-02-01

    We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.

  16. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis

    PubMed Central

    Aherne, CM; Saeedi, B; Collins, CB; Masterson, JC; McNamee, EN; Perrenoud, L; Rapp, CR; Curtis, VF; Bayless, A; Fletcher, A; Glover, LE; Evans, CM; Jedlicka, P; Furuta, GT; de Zoeten, EF; Colgan, SP; Eltzschig, HK

    2015-01-01

    Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b−/− mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre+) or intestinal epithelia (Adora2bfl/flVillinCre+) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses. PMID:25850656

  17. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors.

    PubMed

    Antonioli, Luca; Pellegrini, Carolina; Fornai, Matteo; Tirotta, Erika; Gentile, Daniela; Benvenuti, Laura; Giron, Maria Cecilia; Caputi, Valentina; Marsilio, Ilaria; Orso, Genny; Bernardini, Nunzia; Segnani, Cristina; Ippolito, Chiara; Csóka, Balázs; Németh, Zoltán H; Haskó, György; Scarpignato, Carmelo; Blandizzi, Corrado; Colucci, Rocchina

    2017-12-01

    Adenosine A 2B receptors (A 2B R) regulate several enteric functions. However, their implication in the pathophysiology of intestinal dysmotility associated with high-fat diet (HFD)-induced obesity has not been elucidated. We investigated the expression of A 2B R in mouse colon and their role in the mechanisms underlying the development of enteric dysmotility associated with obesity. Wild-type C57BL/6J mice were fed with HFD (60% kcal from fat) or normocaloric diet (NCD; 18% kcal from fat) for 8 weeks. Colonic A 2B R localization was examined by immunofluorescence. The role of A 2B R in the control of colonic motility was examined in functional experiments on longitudinal muscle preparations (LMPs). In NCD mice, A 2B R were predominantly located in myenteric neurons; in HFD animals, their expression increased throughout the neuromuscular layer. Functionally, the A 2B R antagonist MRS1754 enhanced electrically induced NK 1 -mediated tachykininergic contractions in LMPs from HFD mice, while it was less effective in tissues from NCD mice. The A 2B receptor agonist BAY 60-6583 decreased colonic tachykininergic contractions in LMPs, with higher efficacy in preparations from obese mice. Both A 2B R ligands did not affect contractions elicited by exogenous substance P. Obesity is related with a condition of colonic inflammation, leading to an increase of A 2B R expression. A 2B R, modulating the activity of excitatory tachykininergic nerves, participate to the enteric dysmotility associated with obesity.

  18. The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling.

    PubMed

    Vecchio, Elizabeth A; Chuo, Chung Hui; Baltos, Jo-Anne; Ford, Leigh; Scammells, Peter J; Wang, Bing H; Christopoulos, Arthur; White, Paul J; May, Lauren T

    2016-10-01

    We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR). The binding and function of VCP746 at the A2BAR was rigorously characterised in a heterologous expression system, in addition to examination of its anti-fibrotic signalling in cardiac- and renal-derived cells. In FlpInCHO cells stably expressing the human A2BAR, VCP746 was a high affinity, high potency A2BAR agonist that stimulated Gs- and Gq-mediated signal transduction, with an apparent lack of system bias relative to prototypical A2BAR agonists. The distinct agonist profile may result from an atypical binding mode of VCP746 at the A2BAR, which was consistent with a bivalent mechanism of receptor interaction. In isolated neonatal rat cardiac fibroblasts (NCF), VCP746 stimulated potent inhibition of both TGF-β1- and angiotensin II-mediated collagen synthesis. Similar attenuation of TGF-β1-mediated collagen synthesis was observed in renal mesangial cells (RMC). The anti-fibrotic signalling mediated by VCP746 in NCF and RMC was selectively reversed in the presence of an A2BAR antagonist. Thus, we believe, VCP746 represents an important tool to further investigate the role of the A2BAR in cardiac (patho)physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration.

    PubMed

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B; van der Hoorn, Frans A

    2016-07-15

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration*

    PubMed Central

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B.; van der Hoorn, Frans A.

    2016-01-01

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. PMID:27226580

  1. Expression of Receptors for Tetanus Toxin and Monoclonal Antibody A2B5 by Pancreatic Islet Cells

    NASA Astrophysics Data System (ADS)

    Eisenbarth, G. S.; Shimizu, K.; Bowring, M. A.; Wells, S.

    1982-08-01

    Studies of the reaction of antibody A2B5 and tetanus toxin with pancreatic islet cells, islet cell tumors, and other human amine precursor uptake and decarboxylation (APUD) tumors are described. By indirect immunofluorescence, antibody A2B5 and tetanus toxin were shown to specifically bind to the plasma membrane of human, rat, chicken, and mouse islet cells. The binding of antibody A2B5 to the cell surface of living islet cells has allowed isolation of these cells from a suspension of pancreatic cells by using a fluorescence-activated cell sorter. In studies designed to determine whether tetanus toxin and antibody A2B5 bound to the same surface antigen, A2B5 and tetanus toxin did not compete for binding to normal islet cells, a human islet cell tumor, or a rat islet cell tumor. In addition to binding to islet cell tumors, antibody A2B5 reacts with frozen sections, isolated cells, and cell lines of neural, neural crest, and APUD origin.

  2. Coupling to protein kinases A and C of adenosine A2B receptors involved in the facilitation of noradrenaline release in the prostatic portion of rat vas deferens.

    PubMed

    Queiroz, Glória; Quintas, Clara; Talaia, Carlos; Gonçalves, Jorge

    2004-08-01

    In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.

  3. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  4. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    PubMed Central

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  5. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  6. The adrenergic receptor subtypes present in frog (Rana esculenta) skin.

    PubMed

    Bellantuono, Vito; Cassano, Giuseppe; Lippe, Claudio

    2008-08-01

    Frog skin transports ions and water under hormonal control. In spite of the fundamental role played by adrenergic stimulation in maintaining the water balance of the organism, the receptor subtype(s) present in the skin have not been identified yet. We measured the increase in short-circuit current (ISC, an estimate of ion transport) induced by cirazoline, clonidine, xamoterol, formoterol, or BRL 37344, in order to verify the presence of alpha1, alpha2, beta1, beta2, or beta3 receptor subtypes, respectively. Only after treatment with formoterol, BRL 37344 and, to a lesser extent, cirazoline was measured a significant increase in ISC (57%, 33.2%, and 4.7%, respectively). The formoterol and BRL 37344 concentrations producing half-maximal effect (EC50) were 1.12 and 70.1 nM, respectively. Moreover, the formoterol effect was inhibited by treatment with ICI 118551 (antagonist of beta2 receptors) while SR 59230A (antagonist of beta3 receptors) had no effect; opposite findings were obtained when the BRL 37344 stimulation was investigated. Finally, by measuring the transepithelial fluxes of 22Na+ and 36Cl-, we demonstrated that Na+ absorption is increased by activation of beta2 and beta3 and is cAMP-sensitive, whereas the Cl- secretion is only increased by activation of beta2 receptors and is cAMP- and calmodulin-sensitive.

  7. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    PubMed

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  8. Seventh Symposium on Subtypes of Musccarinic Receptors.

    DTIC Science & Technology

    1997-01-01

    promises fewer and less severe side effects because of its favourable receptor profile and pharmacokinetic properties (2, 3). This compound has been...6). Following median laparotomy electromagnetic flow probes were positioned on one or both renal arteries. A cannula was introduced into a femoral...equipment for thermodilution and electromagnetic flow measurement (IFD, Miuhlheim, Germany) was used. Respiratory rate was evaluated from the C0 2

  9. Beneficial Role of Erythrocyte Adenosine A2B Receptor-Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia.

    PubMed

    Liu, Hong; Zhang, Yujin; Wu, Hongyu; D'Alessandro, Angelo; Yegutkin, Gennady G; Song, Anren; Sun, Kaiqi; Li, Jessica; Cheng, Ning-Yuan; Huang, Aji; Edward Wen, Yuan; Weng, Ting Ting; Luo, Fayong; Nemkov, Travis; Sun, Hong; Kellems, Rodney E; Karmouty-Quintana, Harry; Hansen, Kirk C; Zhao, Bihong; Subudhi, Andrew W; Jameson-Van Houten, Sonja; Julian, Colleen G; Lovering, Andrew T; Eltzschig, Holger K; Blackburn, Michael R; Roach, Robert C; Xia, Yang

    2016-08-02

    High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. Together, human and mouse studies reveal novel

  10. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    SciTech Connect

    Baumgold, J.; Cohen, V.I.; Paek, R.

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potencymore » at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.« less

  11. Selective regulation of nuclear orphan receptors 4A by adenosine receptor subtypes in human mast cells

    PubMed Central

    Zhang, Li; Paine, Catherine

    2010-01-01

    Nuclear orphan receptors 4A (NR4A) are early responsive genes that belong to the superfamily of hormone receptors and comprise NR4A1, NR4A2 and NR4A3. They have been associated to transcriptional activation of multiple genes involved in inflammation, apoptosis and cell cycle control. Here, we establish a link between NR4As and adenosine, a paradoxical inflammatory molecule that can contribute to persistence of inflammation or mediate inflammatory shutdown. Transcriptomics screening of the human mast cell-line HMC-1 revealed a sharp induction of transcriptionally active NR4A2 and NR4A3 by the adenosine analogue NECA. The concomitant treatment of NECA and the adenosine receptor A2A (A2AAR) selective antagonist SCH-58261 exaggerated this effect, suggesting that upregulation of these factors in mast cells is mediated by other AR subtypes (A2B and A3) and that A2AAR activation counteracts NR4A2 and NR4A3 induction. In agreement with this, A2AAR-silencing amplified NR4A induction by NECA. Interestingly, a similar A2AAR modulatory effect was observed on ERK1/2 phosphorylation because A2AAR blockage exacerbated NECA-mediated phosphorylation of ERK1/2. In addition, PKC or MEK1/2 inhibition prevented ERK1/2 phosphorylation and antagonized AR-mediated induction of NR4A2 and NR4A3, suggesting the involvement of these kinases in AR to NR4A signaling. Finally, we observed that selective A2AAR activation with CGS-21680 blocked PMA-induced ERK1/2 phosphorylation and modulated the overexpression of functional nuclear orphan receptors 4A. Taken together, these results establish a novel PKC/ERK/nuclear orphan receptors 4A axis for adenosinergic signaling in mast cells, which can be modulated by A2AAR activation, not only in the context of adenosine but of other mast cell activating stimuli as well. PMID:21234122

  12. Characterisation of endogenous A2A and A2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor™ biosensor: Evidence for an allosteric mechanism of action for the A2B-selective antagonist PSB 603.

    PubMed

    Goulding, Joelle; May, Lauren T; Hill, Stephen J

    2018-01-01

    Endogenous adenosine A 2B receptors (A 2B AR) mediate cAMP accumulation in HEK 293 cells. Here we have used a biosensor to investigate the mechanism of action of the A 2B AR antagonist PSB 603 in HEK 293 cells. The A 2A agonist CGS 21680 elicited a small response in these cells (circa 20% of that obtained with NECA), suggesting that they also contain a small population of A 2A receptors. The responses to NECA and adenosine were antagonised by PSB 603, but not by the selective A 2A AR antagonist SCH 58261. In contrast, CGS 21680 responses were not antagonised by high concentrations of PSB 603, but were sensitive to inhibition by SCH 58261. Analysis of the effect of increasing concentrations of PSB 603 on the response to NECA indicated a non-competitive mode of action yielding a marked reduction in the NECA E MAX with no significant effect on EC 50 values. Kinetics analysis of the effect of PSB 603 on the A 2B AR-mediated NECA responses confirmed a saturable effect that was consistent with an allosteric mode of antagonism. The possibility that PSB 603 acts as a negative allosteric modulator of A 2B AR suggests new approaches to the development of therapeutic agents to treat conditions where adenosine levels are high. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Reversal of pathological pain through specific spinal GABAA receptor subtypes.

    PubMed

    Knabl, Julia; Witschi, Robert; Hösl, Katharina; Reinold, Heiko; Zeilhofer, Ulrike B; Ahmadi, Seifollah; Brockhaus, Johannes; Sergejeva, Marina; Hess, Andreas; Brune, Kay; Fritschy, Jean-Marc; Rudolph, Uwe; Möhler, Hanns; Zeilhofer, Hanns Ulrich

    2008-01-17

    Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.

  14. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells.

    PubMed

    Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P

    2011-05-01

    Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.

  15. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    PubMed Central

    Giacomelli, Chiara; Daniele, Simona; Romei, Chiara; Tavanti, Laura; Neri, Tommaso; Piano, Ilaria; Celi, Alessandro; Martini, Claudia; Trincavelli, Maria L.

    2018-01-01

    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different

  16. Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation

    PubMed Central

    Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.

    1998-01-01

    During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120

  17. Identification of two H3-histamine receptor subtypes

    SciTech Connect

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less

  18. Temporal Profiling of Orexin Receptor-Arrestin-Ubiquitin Complexes Reveals Differences between Receptor Subtypes*

    PubMed Central

    Dalrymple, Matthew B.; Jaeger, Werner C.; Eidne, Karin A.; Pfleger, Kevin D. G.

    2011-01-01

    Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors. PMID:21378163

  19. Temporal profiling of orexin receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes.

    PubMed

    Dalrymple, Matthew B; Jaeger, Werner C; Eidne, Karin A; Pfleger, Kevin D G

    2011-05-13

    Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors.

  20. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. U.S. Government work not protected by U

  1. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  2. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs.

    PubMed

    Meltzer, Herbert Y; Roth, Bryan L

    2013-12-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype-selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson's disease psychosis, respectively.

  3. Pharmacological characterization of recombinant human and rat P2X receptor subtypes.

    PubMed

    Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T

    1999-07-02

    ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.

  4. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABAA Receptor Subtypes

    PubMed Central

    Smith, Kiersten S.; Rudolph, Uwe

    2012-01-01

    GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433

  5. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    PubMed Central

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  6. Bidirectional modulation of visual plasticity by cholinergic receptor subtypes in the frog optic tectum

    PubMed Central

    Yu, Chuan-Jiang; Butt, Christopher M.; Debski, Elizabeth A.

    2008-01-01

    Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both α-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of α-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either α-bungarotoxin insensitive, α-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while α-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels. PMID:12670313

  7. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle.

    PubMed

    Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G

    2000-12-01

    Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.

  8. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  9. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes.

    PubMed

    Stengel, Andreas; Rivier, Jean; Taché, Yvette

    2013-04-01

    Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. Published by Elsevier Inc.

  10. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    SciTech Connect

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  11. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  12. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution.

    PubMed

    Blankenburg, S; Balfanz, S; Hayashi, Y; Shigenobu, S; Miura, T; Baumann, O; Baumann, A; Blenau, W

    2015-01-01

    γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Kappa2 opioid receptor subtype binding requires the presence of the DOR-1 gene.

    PubMed

    Ansonoff, Michael A; Wen, Ting; Pintar, John E

    2010-01-01

    Over the past several years substantial evidence has documented that opioid receptor homo- and heterodimers form in cell lines expressing one or more of the opioid receptors. We used opioid receptor knockout mice to determine whether in vivo pharmacological characteristics of kappa1 and kappa2 opioid receptors changed following knockout of specific opioid receptors. Using displacement of the general opioid ligand diprenorphine, we observed that occupancy or knockout of the DOR-1 gene increases the binding density of kappa1 receptors and eliminates kappa2 receptors in crude membrane preparations while the total density of kappa opioid binding sites is unchanged. Further, the analgesic potency of U69,593 in cumulative dose response curves is enhanced in mice lacking the DOR-1 gene. These results demonstrate that the DOR-1 gene is required for the expression of the kappa2 opioid receptor subtype and are consistent with the possibility that a KOR-1/DOR-1 heterodimer mediates kappa2 pharmacology.

  14. Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes.

    PubMed

    Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang

    2006-06-01

    The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.

  15. The N-terminal domain of GluR6-subtype glutamate receptor ion channels

    SciTech Connect

    Kumar, Janesh; Schuck, Peter; Jin, Rongsheng

    2009-09-25

    The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs.more » This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.« less

  16. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed

    Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A

    1990-07-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor

  17. Existence of three subtypes of bradykinin B2 receptors in guinea pig.

    PubMed

    Seguin, L; Widdowson, P S; Giesen-Crouse, E

    1992-12-01

    We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Selective targeting of G-protein-coupled receptor subtypes with venom peptides.

    PubMed

    Näreoja, K; Näsman, J

    2012-02-01

    The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  19. Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location.

    PubMed

    Faisal, Farzana A; Sundi, Debasish; Tosoian, Jeffrey J; Choeurng, Voleak; Alshalalfa, Mohammed; Ross, Ashley E; Klein, Eric; Den, Robert; Dicker, Adam; Erho, Nicholas; Davicioni, Elai; Lotan, Tamara L; Schaeffer, Edward M

    2016-07-01

    Prostate cancer (PCa) subtypes based on ETS gene expression have been described. Recent studies suggest there are racial differences in tumor location, with PCa located anteriorly more often among African-American (AA) compared to Caucasian-American (CA) men. In this retrospective analysis of a multi-institutional cohort treated by radical prostatectomy (179 CA, 121 AA), we evaluated associations among molecular subtype, race, anatomic tumor location, and androgen receptor (AR) signaling. Subtype (m-ERG(+), m-ETS(+), m-SPINK1(+), or triple-negative) was determined using distribution-based outlier analysis. AR signaling was investigated using gene expression profiling of canonical AR targets. m-ERG(+) was more common in CA than AA men (47% vs 22%, p<0.001). AA men were more likely to be m-SPINK1(+) (13% vs 7%; p=0.069) and triple-negative (50% vs 37%; p=0.043). Racial differences in molecular subtypes did not persist when tumors were analyzed by location, suggesting a biologically important relationship between tumor location and subtype. Accordingly, anterior tumor location was associated with higher Decipher scores and lower global AR signaling. This study demonstrates associations among patient race, prostate cancer molecular subtypes, and tumor location. Location-specific differences in androgen regulation may further underlie these relationships. Copyright © 2015. Published by Elsevier B.V.

  20. NK2 tachykinin receptors and contraction of circular muscle of the human colon: characterization of the NK2 receptor subtype.

    PubMed

    Giuliani, S; Barbanti, G; Turini, D; Quartara, L; Rovero, P; Giachetti, A; Maggi, C A

    1991-10-22

    The contractile effect of substance P, neurokinin A, receptor selective agonists for tachykinin receptors and NK2 tachykinin receptor antagonists was investigated in mucosa-free circular strips of the human isolated colon. Neurokinin A and substance P produced concentration-dependent contractions which approached 80-90% of the maximal response to carbachol. Neurokinin A was about 370 times more potent than substance P. The action of neurokinin A and substance P was not modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The NK2 receptor selective agonist, [beta-Ala8]neurokinin A-(4-10) closely mimicked the response to neurokinin A while NK1 and NK3 receptor selective agonists were active only at microM concentrations. The pseudopeptide, MDL 28,564, which is one of the most selective NK2 ligands available, behaved as a full agonist. Responses to [beta-Ala8]neurokinin A were antagonized by NK2 receptor selective antagonists, with the rank order of potency MEN 10,376 greater than L 659,877 much greater than R 396. These data indicate that NK2 tachykinin receptors play a dominant role in determining the contraction of the circular muscle of the human colon to peptides of this family. The NK2 receptor subtype responsible for this effect belongs to the same subtype (NK2A) previously identified in the rabbit pulmonary artery and guinea-pig bronchi.

  1. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2016-11-01

    IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.

  2. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes

    PubMed Central

    Xue, Ava Yuan; Di Pizio, Antonella; Levit, Anat; Yarnitzky, Tali; Penn, Osnat; Pupko, Tal; Niv, Masha Y.

    2018-01-01

    The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity. PMID:29552563

  3. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes.

    PubMed

    Xue, Ava Yuan; Di Pizio, Antonella; Levit, Anat; Yarnitzky, Tali; Penn, Osnat; Pupko, Tal; Niv, Masha Y

    2018-01-01

    The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.

  4. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Giuliani, S.; Rovero, P.; Dion, S.; Regoli, D.; Giachetti, A.; Meli, A.

    1990-01-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167737

  5. Effect of neonatal handling on serotonin 1A sub-type receptors in the rat hippocampus.

    PubMed

    Stamatakis, A; Mantelas, A; Papaioannou, A; Pondiki, S; Fameli, M; Stylianopoulou, F

    2006-06-19

    Serotonin 1A sub-type receptors play an important role in the etiopathogenesis of depression, which is known to occur more often in females than males. Early experiences can be a predisposing factor for depression; however, the underlying cellular processes remain unknown. In an effort to address such issues, we employed neonatal handling, an experimental model of early experience, which has been previously shown to render females more vulnerable to display enhanced depression-like behavior in response to chronic stress, while it increases the ability of males to cope. In rat pre-pubertal (30 days of age) and adult (90 days) hippocampus, of both males and females, the effect of neonatal handling on serotonin 1A sub-type receptor mRNA and protein levels was determined by in situ hybridization and immunohistochemistry, respectively, while the number of binding sites was determined by in vitro autoradiography using [(3)H]8-hydroxy-2(di-n-propylamino)tetralin as the ligand. Our results revealed a significant sex difference in serotonin 1A sub-type receptor mRNA, protein and binding sites, with females having higher levels than males. Handling resulted in statistically significant decreased numbers of cells positive for serotonin 1A sub-type receptor mRNA or protein, as well as [(3)H]8-hydroxy-2(di-n-propylamino)tetralin binding sites in the area 4 of Ammon's horn and dentate gyrus of both pre-pubertal males and females. In adult animals the number of serotonin 1A sub-type receptor mRNA positive cells was increased as a result of handling in the area 1 of Ammon's horn, area 4 of Ammon's horn and dentate gyrus of males, while it was decreased only in the area 4 of Ammon's horn of females. Furthermore, the number of serotonin sub-type 1A receptor immunopositive cells, as well as [(3)H]8-hydroxy-2(di-n-propylamino)tetralin binding sites was increased in the area 1 of Ammon's horn, area 4 of Ammon's horn and dentate gyrus of handled males, whereas it was decreased in these

  6. Differential expression of muscarinic acetylcholine receptor subtypes in Jurkat cells and their signaling.

    PubMed

    Alea, Mileidys Perez; Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Fuxe, Kjell; Garriga, Pere

    2011-08-15

    Muscarinic acetylcholine receptors expression and signaling in the human Jurkat T cell line were investigated. Semiquantitative real-time PCR and radioligand binding studies, using a wide set of antagonist compounds, showed the co-existence of M(3), M(4), and M(5) subtypes. Stimulation of these subpopulations caused a concentration and time- dependent activation of second messengers and ERK signaling pathways, with a major contribution of the M(3) subtype in a G(q/11)-mediated response. In addition, we found that T-cell stimulation leads to increased expression of M(3) and M(5) both at transcriptional and protein levels in a PLC/PKCθ dependent manner. Our data clarifies the functional role of AChR subtypes in Jurkat cells and pave the way to future studies on the potential cross-talk among these subpopulations and their regulation of T lymphocytes immune function. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Novel oxotremorine-related heterocyclic derivatives: Synthesis and in vitro pharmacology at the muscarinic receptor subtypes.

    PubMed

    Dallanoce, Clelia; De Amici, Marco; Barocelli, Elisabetta; Bertoni, Simona; Roth, Bryan L; Ernsberger, Paul; De Micheli, Carlo

    2007-12-15

    A set of novel heterocyclic ligands (6-27) structurally related to Oxotremorine 2 was designed, synthesized and tested at muscarinic receptor subtypes (mAChRs). In the binding experiments at cloned human receptors (hm1-5), compounds 7 and 15 evidenced a remarkable affinity and selectivity for the hm2 subtype. The in vitro functional assays, performed on a selected group of derivatives at M(1), M(2), and M(3) tissue preparations, singled out the 3-butynyloxy-5-methylisoxazole trimethylammonium salt 7 as a potent unselective muscarinic agonist [pEC(50): 7.40 (M(1)), 8.18 (M(2)), and 8.14 (M(3))], whereas its 5-phenyl analogue 12 behaved as a muscarinic antagonist, slightly selective for the M(1) subtype [pK(B): 6.88 (M(1)), 5.95 (M(2)), 5.53 (M(3))]. Moreover, the functional data put in evidence that the presence of the piperidine ring may generate a functional selectivity, e.g., an M(1) antagonist/M(2) partial agonist/M(3) full agonist profile (compound 21), at variance with the corresponding quaternary ammonium salt (compound 22) which behaved as a muscarinic agonist at all M(1-3) receptors, with an appreciable selectivity for the cardiac M(2) receptors.

  8. An Inotropic Action Caused by Muscarinic Receptor Subtype 3 in Canine Cardiac Purkinje Fibers

    PubMed Central

    Urushidani, Tetsuro; Tachibana, Shigehiro

    2013-01-01

    Objective. The objective of this study was to investigate the inotropic mechanisms and the related muscarinic receptor subtype of acetylcholine (ACh) in canine cardiac Purkinje fibers. Materials and Methods. Isolated Purkinje fiber bundles were used for the measurement of contraction. The receptor subtype was determined using PCR and real-time PCR methods. Results. ACh evoked a biphasic response with a transient negative inotropic effect followed by a positive inotropic effect in a concentration-dependent manner. The biphasic inotropic actions of ACh were inhibited by the pretreatment with atropine. Caffeine inhibited the positive inotropic effect of ACh. ACh increased inositol-1,4,5-trisphosphate content in the Purkinje fibers, which was abolished by atropine. Muscarinic subtypes 2 (M2) and 3 (M3) mRNAs were detected in the canine Purkinje fibers albeit the amount of M3 mRNA was smaller than M2 mRNA. M1 mRNA was not detected. Conclusion. These results suggest that the positive inotropic action of ACh may be mediated by the activation of IP3 receptors through the stimulation of M3 receptors in the canine cardiac Purkinje fibers. PMID:24260719

  9. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+.

    PubMed

    Li, Mufeng; Silberberg, Shai D; Swartz, Kenton J

    2013-09-03

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.

  10. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+

    PubMed Central

    Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.

    2013-01-01

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888

  11. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    NASA Astrophysics Data System (ADS)

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-11-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.

  12. The three subtypes of atrial natriuretic peptide (ANP) receptors are expressed in the rat adrenal gland.

    PubMed

    Grandclément, B; Ronsin, B; Morel, G

    1997-03-01

    Atrial natriuretic peptide (ANP) actions are mediated by highly selective and specific receptors. Three subtypes have been characterized and cloned: ANP receptor-A (or GC-A), -B (or GC-B) and -C (the so-called clearance receptor). In rat adrenal gland, the mRNA for each subtype was detected using 35S-dUTP or digoxigenin-11-dUTP specific labeled probes, and in situ hybridization at light and electron microscopic levels respectively. The three subtypes were expressed the most abundantly in the zona glomerulosa. The amount of GC-A mRNA expression, quantified using macro-autoradiography and densitometry, was higher than the amounts of GC-B mRNA and ANPR-C mRNA both in zona glomerulosa and medullary of adrenal gland. At electron microscopic level, the three subtypes of ANPR were revealed in glomerulosa cells. A noticeable signal was also present in the medullary area, especially for GC-A mRNA, in adrenaline-containing chromaffin cells. No signal was detected in noradrenaline-containing chromaffin cells. The subcellular localization of the three mRNAs is similar: in the cytoplasmic matrix and in the euchromatin of the nucleus in each cell of glomerulosa, and in the same compartments of the adrenaline-containing chromaffin cells. These data indicate that the adrenal gland is an important target tissue for ANP action both in glomerulosa cells and adrenaline-containing chromaffin cells. The mRNA expression levels were different for each ANPR subtype.

  13. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias

    PubMed Central

    Sengmany, K

    2015-01-01

    The metabotropic glutamate receptor subtype 5 (mGlu5) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR‐based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine‐tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus‐bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein‐Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc PMID:26276909

  14. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    PubMed

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Improvements in the Methodology for Analyzing Receptor Subtypes and Neuronal Populations Affected by Anticholinesterase Exposure.

    DTIC Science & Technology

    1984-11-14

    Slide-mounted tissue sections can be treated with [ H]forskolin (a diterpene plant derivative which is a potent activator of adenylate cyclase) to...protein activities are altered in response to the chronic presence of anticholinesterase agents. Significant progress and improvement has been made in...359 FILE COPY IMPROVEMENTS IN THE METHODOLOGY FOR ANALYZING RECEPTOR SUBTYPES AND NEURONAL POPULATIONS AFFECTED BY ANTICHOLINESTERASE EXPOSURE Annual

  16. Valium without dependence? Individual GABAA receptor subtype contribution toward benzodiazepine addiction, tolerance, and therapeutic effects.

    PubMed

    Cheng, Tianze; Wallace, Dominique Marie; Ponteri, Benjamin; Tuli, Mahir

    2018-01-01

    Benzodiazepines are one of the most prescribed medications as first-line treatment of anxiety, insomnia, and epilepsy around the world. Over the past two decades, advances in the neuropharmacological understanding of gamma aminobutyric acid (GABA) A receptors revealed distinct contributions from each subtype and produced effects. Recent findings have highlighted the importance of α 1 containing GABA A receptors in the mechanisms of addiction and tolerance in benzodiazepine treatments. This has shown promise in the development of tranquilizers with minimal side effects such as cognitive impairment, dependence, and tolerance. A valium-like drug without its side effects, as repeatedly demonstrated in animals, is achievable.

  17. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status.

    PubMed

    Howlader, Nadia; Altekruse, Sean F; Li, Christopher I; Chen, Vivien W; Clarke, Christina A; Ries, Lynn A G; Cronin, Kathleen A

    2014-04-28

    In 2010, Surveillance, Epidemiology, and End Results (SEER) registries began collecting human epidermal growth factor 2 (HER2) receptor status for breast cancer cases. Breast cancer subtypes defined by joint hormone receptor (HR; estrogen receptor [ER] and progesterone receptor [PR]) and HER2 status were assessed across the 28% of the US population that is covered by SEER registries. Age-specific incidence rates by subtype were calculated for non-Hispanic (NH) white, NH black, NH Asian Pacific Islander (API), and Hispanic women. Joint HR/HER2 status distributions by age, race/ethnicity, county-level poverty, registry, stage, Bloom-Richardson grade, tumor size, and nodal status were evaluated using multivariable adjusted polytomous logistic regression. All statistical tests were two-sided. Among case patients with known HR/HER2 status, 36810 (72.7%) were found to be HR(+)/HER2(-), 6193 (12.2%) were triple-negative (HR(-)/HER2(-)), 5240 (10.3%) were HR(+)/HER2(+), and 2328 (4.6%) were HR(-)/HER2(+); 6912 (12%) had unknown HR/HER2 status. NH white women had the highest incidence rate of the HR(+)/HER2(-) subtype, and NH black women had the highest rate of the triple-negative subtype. Compared with women with the HR(+)/HER2(-) subtype, triple-negative patients were more likely to be NH black and Hispanic; HR(+)/HER2(+) patients were more likely to be NH API; and HR(-)/HER2(+) patients were more likely to be NH black, NH API, and Hispanic. Patients with triple-negative, HR(+)/HER2(+), and HR(-)/HER2(+) breast cancer were 10% to 30% less likely to be diagnosed at older ages compared with HR(+)/HER2(-) patients and 6.4-fold to 20.0-fold more likely to present with high-grade disease. In the future, SEER data can be used to monitor clinical outcomes in women diagnosed with different molecular subtypes of breast cancer for a large portion (approximately 28%) of the US population. Published by Oxford University Press 2014.

  18. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  19. Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes.

    PubMed

    Gonzalez-Cabrera, Pedro J; Shi, Ting; Yun, June; McCune, Dan F; Rorabaugh, Boyd R; Perez, Dianne M

    2004-11-01

    Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce

  20. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells.

    PubMed

    Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J

    2007-04-25

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.

  1. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  2. Pharmacological characterization of the cloned kappa opioid receptor as a kappa 1b subtype.

    PubMed

    Lai, J; Ma, S W; Zhu, R H; Rothman, R B; Lentes, K U; Porreca, F

    1994-10-27

    Substantial pharmacological evidence in vitro and in vivo has suggested the existence of subtypes of the kappa opioid receptor. Quantitative radioligand binding techniques resolved the presence of two high affinity binding sites for the kappa 1 ligand [3H]U69,593 in mouse brain membranes, termed kappa 1a and kappa 1b, respectively. Whereas the kappa 1a site has high affinity for fedotozine and oxymorphindole and low affinity for bremazocine and alpha-neoendorphin, site kappa 1b has high affinity for bremazocine and alpha-neoendorphin and low affinity for fedotozine and oxymorphindole. CI-977 and U69,593 bind equally well at both sites. To determine the relationship between these kappa 1 receptor subtypes and the recently cloned mouse kappa 1 receptor (KOR), we examined [3H]U69,593 binding to the KOR in stably transfected cells (KORCHN-8). Competition of [3H]U69,593 binding to the KOR by bremazocine, alpha-neoendorphin, fedotozine and oxymorphindole resolved a single class of binding sites at which these agents had binding affinities similar to that of the kappa 1b site present in mouse brain. These results suggest that the cloned KOR corresponds to the kappa 1 site in mouse brain defined as kappa 1b.

  3. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes.

    PubMed

    von Kügelgen, Ivar

    2006-06-01

    Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors (GPCRs). So far, the P2Y family is composed out of 8 human subtypes that have been cloned and functionally defined; species orthologues have been found in many vertebrates. P2Y1-, P2Y2-, P2Y4-, P2Y6-, and P2Y11-receptors all couple to stimulation of phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase. In contrast, activation of the P2Y12-, P2Y13-, and P2Y14-receptors causes an inhibition of adenylate cyclase activity. The expression of P2Y1-receptors is widespread. The receptor is involved in blood platelet aggregation, vasodilatation and neuromodulation. It is activated by ADP and ADP analogues including 2-methylthio-ADP (2-MeSADP). 2'-Deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS2179) and 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2279) are potent and selective antagonists. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y2-receptor is activated by UTP and ATP and blocked by suramin. The P2Y2-agonist diquafosol is used for the treatment of the dry eye disease. P2Y4-receptors are expressed in the placenta and in epithelia. The human P2Y4-receptor has a strong preference for UTP as agonist, whereas the rat P2Y4-receptor is activated about equally by UTP and ATP. The P2Y4-receptor is not blocked by suramin. The P2Y6-receptor has a widespread distribution including heart, blood vessels, and brain. The receptor prefers UDP as agonist and is selectively blocked by 1,2-di-(4-isothiocyanatophenyl)ethane (MRS2567). The P2Y11-receptor may play a role in the differentiation of immunocytes. The human P2Y11-receptor is activated by ATP as naturally occurring agonist and

  4. Angiotensin II and its different receptor subtypes in placenta and fetal membranes.

    PubMed

    Kalenga, M K; de Gasparo, M; Thomas, K; de Hertogh, R

    1996-01-01

    The recent discovery of a local renin-angiotensin system in trophoblastic tissues has raised many questions regarding its role in the physiology of normal gestation and its implications in the pathophysiology of hypertension during pregnancy. In this article, the authors first review the most interesting aspects of the chorioplacental renin-angiotensin system, dwelling on the tissue distribution of angiotensin II and its receptor subtypes in the placenta and fetal membranes of different species. The relationship between angiotensin II and other locally synthesized chorioplacental substances is also analysed and the therapeutic implications of phenomena observed in pregnancy-associated hypertension are discussed.

  5. NK-2 is the predominant tachykinin receptor subtype in the swine ureter.

    PubMed

    Jerde, T J; Saban, R; Bjorling, D E; Nakada, S Y

    1999-02-01

    To determine which of the known tachykinin receptor subtypes is predominant in the swine ureter. Ureters from adult pigs were harvested, cut into longitudinal strips and placed in 10 mL tissue baths containing Krebs buffer, under 4 g of initial tension. The magnitude and frequency of contractions were recorded. Tissues were incubated with 1 micromol/L solutions of peptidase inhibitors (phosphoramidon and captopril) for 1 h to inhibit degradation of peptides and treated with either CP 96,345 (NK-1 receptor antagonist), SR 48,968 (NK-2 receptor antagonist) or saline (control). Concentration-response curves to the tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) were determined. Ureteric segments showed a concentration-dependent response to all tachykinins; NKA stimulated increased contractions at a lower concentration than either SP or NKB (P<0.05). This was reflected by the difference in the effective concentration required to obtain half the maximal response (EC50 ) for each of the peptides. The mean (sd) EC50 values were (micromol/L): NKA, 0.2 (0.02); SP, 3.5 (0.7); and NKB, 4.5 (1.7). In addition, the selective NK-2 antagonist (SR 48,968) significantly reduced contractile responses to all peptides, as indicated by a 10-fold rightward shift of the concentration-response curves (P<0. 05), whereas the NK-1 antagonist (CP 96,345) had no significant effect. These results indicate that NK-2 is the predominant tachykinin receptor subtype responsible for contraction of ureteric smooth muscle. The use of mediators which act on NK-2 receptors may have clinical applications for the treatment of ureteric disease.

  6. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors.

    PubMed

    Alsaloum, Matthew; Kazi, Rashek; Gan, Quan; Amin, Johansen; Wollmuth, Lonnie P

    2016-03-02

    AMPA and NMDA receptors are glutamate-gated ion channels that mediate fast excitatory synaptic transmission throughout the nervous system. In the continual presence of glutamate, AMPA and NMDA receptors containing the GluN2A or GluN2B subunit enter into a nonconducting, desensitized state that can impact synaptic responses and glutamate-mediated excitotoxicity. The process of desensitization is dramatically different between subtypes, but the basis for these differences is unknown. We generated an extensive sequence alignment of ionotropic glutamate receptors (iGluRs) from diverse animal phyla and identified a highly conserved motif, which we termed the "hydrophobic box," located at the extracellular interface of transmembrane helices. A single position in the hydrophobic box differed between mammalian AMPA and NMDA receptors. Surprisingly, we find that an NMDAR-to-AMPAR exchange mutation at this position in the rat GluN2A or GluN2B subunit had a dramatic and highly specific effect on NMDAR desensitization, making it AMPAR-like. In contrast, a reverse exchange mutation in AMPARs had minimal effects on desensitization. These experiments highlight differences in desensitization between iGluR subtypes and the highly specific contribution of the GluN2 subunit to this process. Rapid communication between cells in the nervous system depends on ion channels that are directly activated by neurotransmitter molecules. Here, we studied ionotropic glutamate receptors (iGluRs), which are ion channels activated by the neurotransmitter glutamate. By comparing the sequences of a vast number of iGluR proteins from diverse animal species, assisted by available structural information, we identified a highly conserved motif. We showed that a single amino acid difference in this motif between mammalian iGluR subtypes has dramatic effects on receptor function. These results have implications in both the evolution of synaptic function, as well as the role of iGluRs in health and disease

  7. The distribution of the orphan bombesin receptor subtype-3 in the rat CNS.

    PubMed

    Jennings, C A; Harrison, D C; Maycox, P R; Crook, B; Smart, D; Hervieu, G J

    2003-01-01

    Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor that shares between 47 and 51% homology with other known bombesin receptors. The natural ligand for BRS-3 is currently unknown and little is known about the mechanisms regulating BRS-3 gene expression. Unlike other mammalian bombesin receptors that have been shown to be predominantly expressed in the CNS and gastrointestinal tract, expression of the BRS-3 receptor in the rat brain has previously not been observed. To gain further understanding of the biology of BRS-3, we have studied the distribution of BRS-3 mRNA and protein in the rat CNS. The mRNA expression pattern was studied using reverse transcription followed by quantitative polymerase chain reaction. Using immunohistological techniques, the distribution of BRS-3 protein in the rat brain was investigated using a rabbit affinity-purified polyclonal antiserum raised against an N-terminal peptide. The BRS-3 receptor was found to be widely expressed in the rat brain at both mRNA and protein levels. Particularly strong immunosignals were observed in the cerebral cortex, hippocampal formation, hypothalamus and thalamus. Other regions of the brain such as the basal ganglia, midbrain and reticular formation were also immunopositive for BRS-3. In conclusion, our neuroanatomical data provide evidence that BRS-3 is as widely expressed in the rat brain as other bombesin-like peptide receptors and suggest that this receptor may also have important roles in the CNS, mediating the functions of a so far unidentified ligand.

  8. Stereocontrolled dopamine receptor binding and subtype selectivity of clebopride analogues synthesized from aspartic acid.

    PubMed

    Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter

    2003-10-06

    Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.

  9. Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism

    PubMed Central

    Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.

    2013-01-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004

  10. Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism.

    PubMed

    Oblak, Adrian; Gibbs, Terrell T; Blatt, Gene J

    2013-12-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of 3. Abnormalities in social-emotional behaviors are a core deficit in autism, and are characterized by impaired reciprocal-social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5-HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5-HT systems have been implicated in several psychiatric disorders, including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5-HT in autism, there is emerging evidence that 5-HT systems in the central nervous system, including various 5-HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5-HT1A receptor-binding density in superficial and deep layers of the PCC and FG, and in the density of 5-HT(2A) receptors in superficial layers of the PCC and FG. A significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. This study provides potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  11. Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder.

    PubMed

    Andersson, M; Aronsson, P; Doufish, D; Lampert, A; Tobin, G

    2012-09-25

    Functional studies have shown altered cholinergic mechanisms in the inflamed bladder, which partly depend on muscarinic receptor-induced release of nitric oxide (NO). The current study aimed to characterize which muscarinic receptor subtypes that are involved in the regulation of the nitrergic effects in the bladder cholinergic response during cystitis. For this purpose, in vitro examinations of carbachol-evoked contractions of inflamed and normal bladder preparations were performed. The effects of antagonists with different selectivity for the receptor subtypes were assessed on intact and urothelium-denuded bladder preparations. In preparations from cyclophosphamide (CYP; in order to induce cystitis) pre-treated rats, the response to carbachol was about 75% of that of normal preparations. Removal of the urothelium or administration of a nitric oxide synthase inhibitor re-established the responses in the inflamed preparations. Administration of 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) inhibited the carbachol-induced contractile responses of preparations from CYP pre-treated rats less potently than controls. Pirenzepine and p-fluoro-hexahydro-sila-diphenidol (pFHHSiD) affected the carbachol-induced contractile responses to similar extents in preparations of CYP pre-treated and control rats. However, the Schild slopes for the three antagonists were all significantly different from unity in the preparations from CYP pre-treated rats. Again, L-NNA or removal of the urothelium eliminated any difference compared to normal preparations. This study confirms that muscarinic receptor stimulation in the inflamed rat urinary bladder induces urothelial release of NO, which counteracts detrusor contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    SciTech Connect

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memorymore » task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.« less

  13. Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.

    PubMed

    Harizi, Hedi; Grosset, Christophe; Gualde, Norbert

    2003-06-01

    We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.

  14. ROLES OF OPIOID RECEPTOR SUBTYPES IN MEDIATING ALCOHOL SEEKING INDUCED BY DISCRETE CUES AND CONTEXT

    PubMed Central

    Marinelli, Peter W.; Funk, Douglas; Harding, Stephen; Li, Zhaoxia; Juzytsch, Walter; Lê, A.D.

    2009-01-01

    The aim of this study was to assess the effects of selective blockade of the delta (DOP) or mu opioid (MOP) receptors on alcohol seeking induced by discrete cues and context. In Experiment 1, rats were trained to self-administer alcohol in an environment with distinct sensory properties. After extinction in a different context with separate sensory properties, rats were tested for context-induced renewal in the original context following treatment with the DOP receptor antagonist naltrindole (0 – 15-mg/kg, IP) or the MOP receptor antagonist CTOP (0 – 3-µg/kg ICV). In a separate set of experiments, reinstatement was tested with the presentation of a discrete light+tone cue previously associated with alcohol delivery, following extinction without the cue. In Experiment 2, the effects of naltrindole (0 – 5-mg/kg, IP) or CTOP (0 – 3-µg/kg µg ICV) were assessed. For context-induced renewal, 7.5-mg/kg naltrindole reduced responding without affecting locomotor activity. Both doses of CTOP attenuated responding in the first 15 min of the renewal test session; however, total responses did not differ at the end of the session. For discrete cue-induced reinstatement, 1 and 5-mg/kg naltrindole attenuated responding, but CTOP had no effect. We conclude that while DOP receptors mediate alcohol seeking induced by discrete cues and context, MOP receptors may play a modest role only in context-induced renewal. These findings point to a differential involvement of opioid receptor subtypes in the effects of different kinds of conditioned stimuli on alcohol seeking, and support a more prominent role for DOP receptors. PMID:19686472

  15. What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?

    PubMed Central

    Michino, Mayako; Beuming, Thijs; Donthamsetti, Prashant; Newman, Amy Hauck; Javitch, Jonathan A.

    2015-01-01

    G protein–coupled receptors (GPCRs) are integral membrane proteins that represent an important class of drug targets. In particular, aminergic GPCRs interact with a significant portion of drugs currently on the market. However, most drugs that target these receptors are associated with undesirable side effects, which are due in part to promiscuous interactions with close homologs of the intended target receptors. Here, based on a systematic analysis of all 37 of the currently available high-resolution crystal structures of aminergic GPCRs, we review structural elements that contribute to and can be exploited for designing subtype-selective compounds. We describe the roles of secondary binding pockets (SBPs), as well as differences in ligand entry pathways to the orthosteric binding site, in determining selectivity. In addition, using the available crystal structures, we have identified conformational changes in the SBPs that are associated with receptor activation and explore the implications of these changes for the rational development of selective ligands with tailored efficacy. PMID:25527701

  16. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  17. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization.

    PubMed

    Elhusseiny, A; Cohen, Z; Olivier, A; Stanimirović, D B; Hamel, E

    1999-07-01

    Acetylcholine is an important regulator of local cerebral blood flow. There is, however, limited information available on the possible sites of action of this neurotransmitter on brain intraparenchymal microvessels. In this study, a combination of molecular and functional approaches was used to identify which of the five muscarinic acetylcholine receptors (mAChR) are present in human brain microvessels and their intimately associated astroglial cells. Microvessel and capillary fractions isolated from human cerebral cortex were found by reverse transcriptase-polymerase chain reaction to express m2, m3, and, occasionally, m1 and m5 receptor subtypes. To localize these receptors to a specific cellular compartment of the vessel wall, cultures of human brain microvascular endothelial and smooth muscle cells were used, together with cultured human brain astrocytes. Endothelial cells invariably expressed m2 and m5 receptors, and occasionally the m1 receptor; smooth muscle cells exhibited messages for all except the m4 mAChR subtypes, whereas messages for all five muscarinic receptors were identified in astrocytes. In all three cell types studied, acetylcholine induced a pirenzepine-sensitive increase (62% to 176%, P<0.05 to 0.01) in inositol trisphosphate, suggesting functional coupling of m1, m3, or m5 mAChR to a phospholipase C signaling cascade. Similarly, coupling of m2 or m4 mAChR to adenylate cyclase inhibition in endothelial cells and astrocytes, but not in smooth muscle cells, was demonstrated by the ability of carbachol to significantly reduce (44% to 50%, P<0.05 to 0.01) the forskolin-stimulated increase in cAMP levels. This effect was reversed by the mAChR antagonist AFDX 384. The results indicate that microvessels are able to respond to neurally released acetylcholine and that mAChR, distributed in different vascular and astroglial compartments, could regulate cortical perfusion and, possibly, blood-brain barrier permeability, functions that could become

  18. Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats.

    PubMed

    Wang, Xiu-Li; Zhang, Hong-Mei; Li, De-Pei; Chen, Shao-Rui; Pan, Hui-Lin

    2006-03-01

    Activation of spinal muscarinic acetylcholine receptors (mAChRs) inhibits nociception. However, the cellular mechanisms of this action are not fully known. In this study, we determined the role of mAChR subtypes in regulation of synaptic glycine release in the spinal cord. Whole-cell voltage-clamp recordings were performed on lamina II neurones in the rat spinal cord slices. The mAChR agonist oxotremorine-M significantly increased the frequency of glycinergic sIPSCs but not mIPSCs. Surprisingly, the effect of oxotremorine-M on sIPSCs was largely attenuated at a higher concentration. On the other hand, 1-10 microm oxotremorine-M dose-dependently increased the frequency of sIPSCs in rats pretreated with intrathecal pertussis toxin. Furthermore, oxotremorine-M also dose-dependently increased the frequency of sIPSCs in the presence of himbacine (an M2/M4 mAChR antagonist) or AF-DX116 (an M2 mAChR antagonist). The M3 mAChR antagonist 4-DAMP abolished the stimulatory effect of oxotremorine-M on sIPSCs. Interestingly, the GABA(B) receptor antagonist CGP55845 potentiated the stimulatory effect of oxotremorine-M on sIPSCs. In the presence of CGP55845, both himbacine and AF-DX116 similarly reduced the potentiating effect of oxotremorine-M on sIPSCs. Collectively, these data suggest that the M3 subtype is present on the somatodendritic site of glycinergic neurones and is mainly responsible for muscarinic potentiation of glycinergic input to spinal dorsal horn neurones. Concurrent stimulation of mAChRs on adjacent GABAergic interneurones attenuates synaptic glycine release through presynaptic GABA(B) receptors on glycinergic interneurones. This study illustrates a complex dynamic interaction between GABAergic and glycinergic synapses in the spinal cord dorsal horn.

  19. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  20. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons.

    PubMed

    Scrogin, K E; Johnson, A K; Schmid, H A

    1998-12-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  1. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.

    PubMed

    Samaradivakara, Saroopa; Kankanamge, Dinesh; Senarath, Kanishka; Ratnayake, Kasun; Karunarathne, Ajith

    2018-06-11

    Interactions of cytosolic G protein coupled receptor kinase 2 (GRK2) with activated G protein coupled receptors (GPCRs) induce receptor phosphorylation and desensitization. GRK2 is recruited to active M3-muscarinic receptors (M3R) with the participation of the receptor, Gαq and Gβγ. Since we have shown that signaling efficacy of Gβγ is governed by its Gγ subtype identity, the present study examined whether recruitment of GRK2 to M3R is also Gγ subtype dependent. To capture the dynamics of GRK2-recruitment concurrently with GPCR-G protein activation, we employed live cell confocal imaging and a novel assay based on Gβγ translocation. Data show that M3R activation-induced GRK2 recruitment is Gγ subtype dependent in which Gβγ dimers with low PM-affinity Gγ9 exhibited a two-fold higher GRK2-recruitment compared to high PM affinity Gγ3 expressing cells. Since 12-mammalian Gγ types exhibit a cell and tissue specific expressions and the PM-affinity of a Gγ is linked to its subtype identity, our results indicate a mechanism by which Gγ profile of a cell controls GRK2 signaling and GPCR desensitization. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Neuromedin B receptor in esophagus: evidence for subtypes of bombesin receptors

    SciTech Connect

    Von Schrenck, T.; Heinz-Erian, P.; Moran, T.

    1989-04-01

    To identify receptors for bombesin-related peptides in the rat esophagus, we measured binding of 125I-Bolton-Hunter neuromedin B (125I-BH-neuromedin B) and 125I-(Tyr4)bombesin to tissue sections from the rat esophagus and compared the results with those for rat pancreas. Esophagus bound both tracers, whereas pancreas bound only 125I-(Tyr4)bombesin. In each tissue binding was saturable, dependent on pH, on time, and on temperature, reversible, and specific. Autoradiography demonstrated binding of both tracers only to the muscularis mucosae of the esophagus and binding of 125I-(Tyr4)bombesin diffusely over pancreatic acini. In the esophagus, the relative potencies for inhibition of binding of both tracers were asmore » follows: neuromedin B greater than bombesin greater than GRP = neuromedin C; similar relative potencies were found for causing contraction of muscle strips from whole esophagus and from the isolated muscularis mucosae. In pancreas tissue sections and dispersed acini, the relative potencies for inhibition of binding of 125I-(Tyr4)bombesin were as follows: bombesin greater than GRP = neuromedin C much greater than neuromedin B. Similar relative potencies were found for stimulation of enzyme secretion from dispersed pancreatic acini. Computer analysis in both tissues demonstrated only a single binding site. The present study demonstrates that rat esophagus muscle possesses specific receptors for bombesin-related peptides. Furthermore, this study shows that the esophageal bombesin receptors represent a previously unidentified class of bombesin receptors in that they have a higher affinity for neuromedin B than for bombesin. In contrast, the pancreatic bombesin receptors have, like all other bombesin receptors described to date, a high affinity for bombesin, but low affinity for neuromedin B.« less

  3. Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery

    PubMed Central

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324

  4. The SOL-2/Neto Auxiliary Protein Modulates the Function of AMPA-Subtype Ionotropic Glutamate Receptors

    PubMed Central

    Wang, Rui; Mellem, Jerry E.; Jensen, Michael; Brockie, Penelope J.; Walker, Craig S.; Hoerndli, Frédéric J.; Madsen, David M.; Maricq, Andres V.

    2012-01-01

    Summary The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. PMID:22958824

  5. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    PubMed

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-06

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  7. Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species

    PubMed Central

    Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter

    2012-01-01

    Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462

  8. Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice.

    PubMed

    Zhang, Hong-Mei; Zhou, Hong-Yi; Chen, Shao-Rui; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin

    2007-12-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the tonic regulation of nociceptive transmission in the spinal cord. However, how mAChR subtypes contribute to the regulation of synaptic glycine release is unknown. To determine their role, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in lamina II neurons by using whole-cell recordings in spinal cord slices of wild-type (WT) and mAChR subtype knockout (KO) mice. In WT mice, the mAChR agonist oxotremorine-M dose-dependently decreased the frequency of sIPSCs in most neurons, but it had variable effects in other neurons. In contrast, in M3-KO mice, oxotremorine-M consistently decreased the glycinergic sIPSC frequency in all neurons tested, and in M2/M4 double-KO mice, it always increased the sIPSC frequency. In M2/M4 double-KO mice, the potentiating effect of oxotremorine-M was attenuated by higher concentrations in some neurons through activation of GABA(B) receptors. In pertussis toxin-treated WT mice, oxotremorine-M also consistently increased the sIPSC frequency. In M2-KO and M4-KO mice, the effect of oxotremorine-M on sIPSCs was divergent because of the opposing functions of the M3 subtype and the M2 and M4 subtypes. This study demonstrates that stimulation of the M2 and M4 subtypes inhibits glycinergic inputs to spinal dorsal horn neurons of mice, whereas stimulation of the M3 subtype potentiates synaptic glycine release. Furthermore, GABA(B) receptors are involved in the feedback regulation of glycinergic synaptic transmission in the spinal cord. This study revealed distinct functions of mAChR subtypes in controlling glycinergic input to spinal dorsal horn neurons.

  9. Regulation of ocular surface inflammation by prostaglandin E receptor subtype EP3.

    PubMed

    Ueta, Mayumi

    2010-11-01

    We first investigated whether the prostaglandin (PG) E2-PGE receptor subtype EP3 axis regulates the development of murine experimental allergic conjunctivitis because it has been reported that this pathway negatively regulates allergic reactions in a murine allergic asthma model. We observed that EP3 is constitutively expressed in mice conjunctival epithelium. EP3 knockout mice demonstrated significantly increased eosinophil infiltration in conjunctiva after ragweed challenge compared with wild-type mice. Consistently, significantly higher expression of eotaxin-1 messenger RNA was observed in Ptger3-/- mice. Conversely, treatment of wild-type mice with an EP3-selective agonist significantly decreased eosinophil infiltration, which was blunted in Ptger3-/- mice. Expression of cyclooxygenase-2 and PGE synthases was upregulated and PGE2 content increased in the eyelids after ragweed challenge. These data suggest that PGE2 acts on EP3 in the conjunctival epithelium and downregulates the progression of experimental allergic conjunctivitis. We next examined and compared the expression of EP3 in human conjunctival epithelium in various ocular surface diseases. Human conjunctival epithelium expressed EP3-specific messenger RNA and EP3 protein. Although we could clearly find positive signals in the conjunctival epithelium from patients with noninflammatory ocular surface diseases such as conjunctivochalasis and pterygium, we could not find positive signals in that from those with inflammatory disorders such as Stevens-Johnson syndrome and ocular cicatricial pemphigoid. Likewise, expression of the PGE receptor subtype EP4 was clearly found in the conjunctival epithelium from patients with conjunctivochalasis and pterygium but not from patients with Stevens-Johnson syndrome and ocular cicatricial pemphigoid.

  10. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes.

    PubMed

    Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J

    1999-03-01

    Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.

  11. FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target

    PubMed Central

    Horton, Janet K.; Siamakpour-Reihani, Sharareh; Lee, Chen-Ting; Zhou, Ying; Chen, Wei; Geradts, Joseph; Fels, Diane R.; Hoang, Peter; Ashcraft, Kathleen A.; Groth, Jeff; Kung, Hsiu-Ni; Dewhirst, Mark W.; Chi, Jen-Tsan A.

    2015-01-01

    Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in

  12. New analogues of oxotremorine and oxotremorine-M: estimation of their in vitro affinity and efficacy at muscarinic receptor subtypes.

    PubMed

    Barocelli, E; Ballabeni, V; Bertoni, S; Dallanoce, C; De Amici, M; De Micheli, C; Impicciatore, M

    2000-06-30

    Two subsets of tertiary amines (1a-6a) and methiodides (1b-6b) with a structural resemblance to oxotremorine and oxotremorine-M were tested at rabbit vas deferens (M1), guinea pig left atrium (M2), guinea pig ileum and urinary bladder (M3) muscarinic receptor subtypes. The pharmacological profile of the derivatives under study has been discussed by evaluating their potency, affinity and efficacy as well as the regional differences in muscarinic receptor occupancy.

  13. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney.

    PubMed

    Gwathmey, TanYa M; Shaltout, Hossam A; Rose, James C; Diz, Debra I; Chappell, Mark C

    2011-03-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; P<0.01) in BMX compared with CON. In contrast, the proportion of AT(2) sites was only one third that of controls (BMX, 25 ± 11% vs CON, 78 ± 4%; P<0.01), with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala7-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than in CON sheep (16 ± 3% vs 6 ± 4%; P<0.05); however, NO production to Ang II was attenuated in BMX (26 ± 7% vs 82 ± 14%; P<0.05). BMX exposure was also associated with a reduction in the Ang-(1-7) NO response (75 ± 8% vs 131 ± 26%; P<0.05). We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming.

  14. Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality.

    PubMed

    Prévôt, Thomas D; Gastambide, François; Viollet, Cécile; Henkous, Nadia; Martel, Guillaume; Epelbaum, Jacques; Béracochéa, Daniel; Guillou, Jean-Louis

    2017-07-01

    Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst 2 or sst 4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst 2 or sst 4, but not sst 1 or sst 3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst 2 agonists selectively produced anxiolytic-like behaviors whereas both sst 2 and sst 4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst 2 KO mice and depressive-like behaviors observed in both sst 2 KO and sst 4 KO strains. Both hippocampal sst 2 and sst 4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.

  15. Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes.

    PubMed

    Seguin, L; Widdowson, P S

    1993-02-01

    We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 microM) and the nonmetabolized analogue of GTP, guanyl-5'-yl-imidodiphosphate (GppNHp; 100 microM). Competition studies with bradykinin and with [Hyp3]bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 microM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 microM) and GDP (100 microM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 microM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes.

    PubMed

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte; Bräuner-Osborne, Hans

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies, and the series of 4-alkyl-HIBO analogues have been extended in this paper in the search for versatile agents. Pharmacological characterization of five new analogues, branched and unbranched 4-alkyl-HIBO analogues, have been carried out. The present compounds are all weak antagonists at Group I mGluRs (mGluR1 and 5) presenting only small differences in potencies (Ki values ranging from 89 to 670 microM). Affinities were studied at native and cloned iGluRs, and the compounds described show preference for the AMPA receptor subtypes GluR1 and 2 over GluR3 and 4. However, compared to previous 4-alkyl-HIBO analogues, these compounds show a remarkably high affinity for the Kain preferring subtype GluR5. The observed GluR5 affinities were either similar or higher compared to their GluR1 and 2 affinity. Isopropyl-HIBO showed the highest affinity for GluR5 (Ki=0.16 microM), and represents a unique compound with high affinity towards the three subtypes GluR1, 2 and 5. In general, these compounds represent new selectivity profiles compared to previously reported Glu receptor analogues.

  17. Receptor subtypes involved in callosally-induced postsynaptic potentials in rat frontal agranular cortex in vitro.

    PubMed

    Kawaguchi, Y

    1992-01-01

    A slice preparation of rat frontal agranular cortex preserving commissural inputs has been used for intracellular recording from layer V pyramidal cells, in order to characterize the synaptic potentials induced by stimulation of the corpus callosum and to reveal the subtypes of amino acid receptors involved. Stimulation of the corpus callosum induced EPSPs followed by early IPSPs with a peak latency of 30 +/- 2 ms and late IPSPs with a peak latency of 185 +/- 18 ms. Reversal potentials for early and late IPSPs were -75 +/- 5 mV (early) and -96 +/- 5 mV (late). Late IPSPs were more dependent on extracellular K+ concentration. The early IPSPs were blocked by GABAA antagonists, bicuculline and picrotoxin, whereas the late IPSPs were reduced by the GABAB antagonist, phaclofen. CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), an antagonist of non-NMDA (N-methyl-D-aspartate) receptors, suppressed both EPSPs and late IPSPs at 5 microM. Early IPSPs remained at this concentration but were suppressed by 20 microM CNQX. In Mg(2+)-free solution, EPSPs were larger and more prolonged than in control solution. These enhanced EPSPs persisted after 5 to 20 microM CNQX, but were reduced in amplitude, and their onset was delayed by 3.6 +/- 0.8 ms. The remaining EPSPs were suppressed by 50 microM APV (DL-2-amino-5-phosphono-valeric acid), an antagonist of NMDA receptors. In Mg(2+)-free solution containing 5 to 20 microM CNQX, the late IPSPs were not diminished. The remaining late IPSPs were suppressed by APV or by phaclofen.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Opioid-receptor subtype agonist-induced enhancements of sucrose intake are dependent upon sucrose concentration.

    PubMed

    Ruegg, H; Yu, W Z; Bodnar, R J

    1997-07-01

    Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.

  19. Dynamic control of glutamatergic synaptic input in the spinal cord by muscarinic receptor subtypes defined using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2010-12-24

    Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.

  20. Dynamic Control of Glutamatergic Synaptic Input in the Spinal Cord by Muscarinic Receptor Subtypes Defined Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2010-01-01

    Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M2, M3, and M4) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M3-single KO and M1/M3 double-KO mice. In addition, the M3 antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M5-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M2/M4 double-KO mice, but not M2- or M4-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M2/M4 antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M2 and M4 receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M5 is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord. PMID:20940295

  1. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice

    PubMed Central

    Smith, Kiersten S.; Engin, Elif; Meloni, Edward G.; Rudolph, Uwe

    2012-01-01

    GABAA receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABAA receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABAA receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABAA receptors are necessary for BZs to exert their effects on conditioned fear responses.. Our findings illustrate both an overlap and a divergence between the GABAA receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABAA receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABAA receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored. PMID:22465203

  2. Role of the nicotinic acetylcholine receptor α3 subtype in vascular inflammation.

    PubMed

    Yang, Cui; Li, Zhengtao; Yan, Saimei; He, Yonghui; Dai, Rong; Leung, George Pek-Heng; Pan, Shitian; Yang, Jinyan; Yan, Rong; Du, Guanhua

    2016-11-01

    Vascular inflammation is a major factor contributing to the development of vascular diseases. The aim of this study was to investigate the role of the nicotinic acetylcholine receptor α3 subtype (α3-nAChR) in vascular inflammation. Vascular inflammation was studied in apolipoprotein E knockout (ApoE -/- ) mice fed a high-fat diet. Inflammatory markers were measured in mouse aortic endothelial cells (MAECs) and macrophages after α3-nAChRs were antagonized pharmacologically, or after the gene of α3-nAChRs was silenced. Treatment with α-conotoxin MII (MII; an α3-nAChR antagonist) increased the number of inflammatory cells infiltrating the aortic walls and further impaired the endothelium-dependent vasodilatations in the aorta of ApoE -/- mice. MII also increased the plasma levels of inflammatory cytokines. Furthermore, the infiltration of classical activated macrophages into the arterial wall of ApoE -/- mice was markedly elevated by MII but that of alternative activated macrophages was reduced. In MAECs, the lipopolysaccharide-stimulated secretion of adhesion molecules and inflammatory cytokines was enhanced by MII, or by silencing the gene of α3-nAChRs. This effect was reversed by inhibitors of the PI3K-Akt-IκKα/β-IκBα-NFκB pathways. In macrophages, the classical activation was enhanced, but the alternative activation was reduced when the gene of α3-nACh receptors was silenced. These effects were prevented by inhibitors of the IκKα/β-IκBα-NFκB and JAK2-STAT6-PPARγ pathways respectively. α3-nAChRs play a pivotal role in regulating the inflammatory responses in endothelial cells and macrophages. The mechanisms involve the modulations of multiple cell signalling pathways. © 2016 The British Pharmacological Society.

  3. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3

    PubMed Central

    Lateef, Dalya M.; Abreu-Vieira, Gustavo; Xiao, Cuiying

    2014-01-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3−/y) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3−/y metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3−/y mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3−/y mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3−/y mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3−/y mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue. PMID:24452453

  4. The analgesic effect of clonixine is not mediated by 5-HT3 subtype receptors.

    PubMed

    Paeile, C; Bustamante, S E; Sierralta, F; Bustamante, D; Miranda, H F

    1995-10-01

    1. The analgesic effect of clonixinate of L-lysine (Clx) in the nociceptive C-fiber reflex in rat and in the writhing test in mice is reported. 2. Clx was administered by three routes, i.v., i.t. and i.c.v., inducing a dose-dependent antinociception. 3. The antinociceptive effect of Clx was 40-45% with respect to the control integration values in the nociceptive C-fiber reflex method. 4. The writhing test yielded ED50 values (mg/kg) of 12.0 +/- 1.3 (i.p.), 1.8 +/- 0.2 (i.t.) and 0.9 +/- 0.1 (i.c.v.) for Clx administration. 5. Ondansetron was not able to antagonize the antinociception response of Clx in the algesiometric tests used. 6. Chlorophenilbiguanide did not produce any significative change in the analgesic effect of Clx in the nociceptive C-fiber reflex method. 7. It is suggested that the mechanism of action of the central analgesia of Clx is not mediated by 5-HT3 subtype receptors.

  5. The α3β4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies.

    PubMed

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-08-01

    Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. © 2014 The British Pharmacological Society.

  6. The α3β4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies

    PubMed Central

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-01-01

    BACKGROUND AND PURPOSE Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. EXPERIMENTAL APPROACHES To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. KEY RESULTS BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. CONCLUSION AND IMPLICATIONS Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. PMID:24750073

  7. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder.

    PubMed

    Svennersten, Karl; Hallén-Grufman, Katarina; de Verdier, Petra J; Wiklund, N Peter; Poljakovic, Mirjana

    2015-08-08

    Voiding dysfunctions are a common problem that has a severe negative impact on the quality of life. Today there is a need for new drug targets for these conditions. The role of ATP receptors in bladder physiology has been studied for some time, primarily in animal models. The aim of this work is to investigate the localization of the ATP receptors P2X2, P2X3 and P2X7 and their colocalization with vimentin and actin in the human urinary bladder. Immunohistochemical analysis was conducted on full-thickness bladder tissues from fundus and trigonum collected from 15 patients undergoing open radical cystectomy due to chronic cystitis, bladder cancer or locally advanced prostate cancer. Colocalization analyses were performed between the three different P2X subtypes and the structural proteins vimentin and actin. Specimens were examined using epifluorescence microscopy and correlation coefficients were calculated for each costaining as well as the mean distance from the laminin positive basal side of the urothelium to the vimentin positive cells located in the suburothelium. P2X2 was expressed in vimentin positive cells located in the suburothelium. Less distinct labelling of P2X2 was also observed in actin positive smooth muscle cells and in the urothelium. P2X3 was expressed in vimentin positive cells surrounding the smooth muscle, and in vimentin positive cells located in the suburothelium. Weaker P2X3 labelling was seen in the urothelium. P2X7 was expressed in the smooth muscle cells and the urothelium. In the suburothelium, cells double positive for P2X2 and vimentin where located closer to the urothelium while cells double positive for P2X3 and vimentin where located further from the urothelium. The results from this study demonstrate that there is a significant difference in the expression of the purinergic P2X2, P2X3 and P2X7 receptors in the different histological layers of the human urinary bladder.

  8. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    SciTech Connect

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhancedmore » avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.« less

  9. Receptor-Defined Subtypes of Breast Cancer in Indigenous Populations in Africa: A Systematic Review and Meta-Analysis

    PubMed Central

    Eng, Amanda; McCormack, Valerie; dos-Santos-Silva, Isabel

    2014-01-01

    Background Breast cancer is the most common female cancer in Africa. Receptor-defined subtypes are a major determinant of treatment options and disease outcomes but there is considerable uncertainty regarding the frequency of poor prognosis estrogen receptor (ER) negative subtypes in Africa. We systematically reviewed publications reporting on the frequency of breast cancer receptor-defined subtypes in indigenous populations in Africa. Methods and Findings Medline, Embase, and Global Health were searched for studies published between 1st January 1980 and 15th April 2014. Reported proportions of ER positive (ER+), progesterone receptor positive (PR+), and human epidermal growth factor receptor-2 positive (HER2+) disease were extracted and 95% CI calculated. Random effects meta-analyses were used to pool estimates. Fifty-four studies from North Africa (n = 12,284 women with breast cancer) and 26 from sub-Saharan Africa (n = 4,737) were eligible. There was marked between-study heterogeneity in the ER+ estimates in both regions (I2>90%), with the majority reporting proportions between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Similarly, large between-study heterogeneity was observed for PR+ and HER2+ estimates (I2>80%, in all instances). Meta-regression analyses showed that the proportion of ER+ disease was 10% (4%–17%) lower for studies based on archived tumor blocks rather than prospectively collected specimens, and 9% (2%–17%) lower for those with ≥40% versus those with <40% grade 3 tumors. For prospectively collected samples, the pooled proportions for ER+ and triple negative tumors were 0.59 (0.56–0.62) and 0.21 (0.17–0.25), respectively, regardless of region. Limitations of the study include the lack of standardized procedures across the various studies; the low methodological quality of many studies in terms of the representativeness of their case series and the quality of the procedures for collection

  10. Morphine 6 glucuronide stimulates nitric oxide release in mussel neural tissues: evidence for a morphine 6 glucuronide opiate receptor subtype.

    PubMed

    Mantione, K; Zhu, W; Rialas, C; Casares, F; Cadet, P; Franklin, A L; Tonnesen, J; Stefano, G B

    2002-03-01

    We have previously demonstrated that Mytilus edulis pedal ganglia contain opiate alkaloids, i.e., morphine and morphine 6 glucuronide (M6G), as well as mu opiate receptor subtype fragments exhibiting high sequence similarity to those found in mammals. Now we demonstrate that M6G stimulates pedal ganglia constitutive nitric oxide (NO) synthase (cNOS)-derived NO release at identical concentrations and to similar peak levels as morphine. However, the classic opiate antagonist, naloxone, only blocked the ability of morphine to stimulate cNOS-derived NO release and not that of M6G. CTOP, a mu-specific antagonist, blocked the ability of M6G to induce cNOS-derived NO release as well as that of morphine, suggesting that a novel mu opiate receptor was present and selective toward M6G. In examining a receptor displacement analysis, both opiate alkaloids displaced [3H]-dihydromorphine binding to the mu opiate receptor subtype. However, morphine exhibited a twofold higher affinity, again suggesting that a novel mu opiate receptor may be present.

  11. Somatostatin, acting at receptor subtype 1, inhibits Rho activity, the assembly of actin stress fibers, and cell migration.

    PubMed

    Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L

    2002-08-09

    Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.

  12. Differential Regulation of Cell Proliferation and Apoptosis by Melatonin Receptor Subtype-Signaling in the Adult Murine Brain.

    PubMed

    Fredrich, Michaela; Christ, Elmar; Korf, Horst-Werner

    2018-06-27


    Background/Aims: Zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis are regulated by melatonin receptor (MT)-mediated signaling in the adult hippocampus and hypothalamic-hypophyseal system. There are two G-protein-coupled MT-subtypes, MT1 and MT2. Therefore, the present study examined which MT-subtype is required for regulation of ZT-dependent changes in cell proliferation and/or apoptosis in the adult murine brain and pituitary. Adult melatonin-proficient (C3H) mice with targeted deletion of MT1 (MT1 KO) or MT2 (MT2 KO) were adapted to a 12-hour light, 12-hour dark photoperiod and sacrificed at ZT00, ZT06, ZT12, and ZT18. Immunohistochemistry for Ki67 or activated caspase-3 served to quantify proliferating and apoptotic cells in the hippocampal subgranular zone (SGZ) and granule cell layer, the hypothalamic median eminence (ME), and the hypophyseal pars tuberalis. ZT-dependent changes in cell proliferation were found exclusively in the SGZ and ME of MT1 KO mice, while apoptosis showed no ZT-dependent changes in the regions analyzed, neither in MT1 nor in MT2 KO mice. Comparison with our previous studies in C3H mice with functional MTs and MT1/2 KO mice revealed that MT2-mediated signaling is required and sufficient for ZT-dependent changes in cell proliferation in the SGZ and ME, while ZT-dependent changes in apoptosis require signaling from both MT-subtypes. Our results indicate that generation and timing of ZT-dependent changes in cell proliferation and apoptosis by melatonin require different MT-subtype-constellations and emphasize the importance to shed light on the specific function of each receptor-subtype in different tissues and physiological conditions.
    . ©2018S. Karger AG, Basel.

  13. Molecular cloning and characterization of chicken prostaglandin E receptor subtypes 2 and 4 (EP2 and EP4).

    PubMed

    Kwok, Amy Ho Yan; Wang, Yajun; Wang, Crystal Ying; Leung, Frederick C

    2008-06-01

    Prostaglandin E(2) (PGE(2)) is an important chemical mediator responsible for regulation of many vital physiological processes. Four receptor subtypes have been identified to mediate its biological actions. Among these subtypes, prostaglandin E receptor subtypes 2 and 4 (EP(2) and EP(4)), both coupled to cAMP-protein kinase A (cAMP-PKA) signaling pathway, are proposed to play crucial roles under both physiological and pathological conditions. Though both receptors were extensively studied in mammals, little is known about their functionality and expression in non-mammalian species including chicken. In present study, the full-length cDNAs for chicken EP(2) and EP(4) receptors were first cloned from adult chicken ovary and testis, respectively. Chicken EP(2) is 356 amino acids in length and shows high amino acid identity to that of human (61%), mouse (63%), and rat (61%). On the other hand, the full-length cDNA of EP(4) gene encodes a precursor of 475 amino acids with a high degree of amino acid identity to that of mammals, including human (87%), mouse (86%), rat (84%), dog (85%), and cattle (83%), and a comparatively lower sequence identity to zebrafish (52%). RT-PCR assays revealed that EP(2) mRNA was expressed in all tissues examined including the oviduct, while EP(4) expression was detected only in a few tissues. Using the pGL3-CRE-luciferase reporter system, we also demonstrated that PGE(2) could induce luciferase activity in DF-1 cells expressing EP(2) and EP(4) in dose-dependent manners (EC(50): <1 nM), confirming that both receptors could be activated by PGE(2) and functionally coupled to the cAMP-PKA signaling pathway. Together, our study establishes a molecular basis to understand the physiological roles of PGE(2) in target tissues of chicken.

  14. High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors.

    PubMed

    Grossrubatscher, Erika; Veronese, Silvio; Ciaramella, Paolo Dalino; Pugliese, Raffaele; Boniardi, Marco; De Carlis, Luciano; Torre, Massimo; Ravini, Mario; Gambacorta, Marcello; Loli, Paola

    2008-12-01

    To evaluate by immumohistochemistry the presence of DR subtype 2 (D2R) in well differentiated NETs of different sites and in normal islet cells. Recent data in vitro and in vivo support that dopaminergic drugs might exert an inhibitory effect on hormone secretion and, possibly, on tumor growth in neuroendocrine tumors (NET)s. Their potential therapeutic role needs the demonstration of dopamine receptors (DR) in tumor cells. Little is known on the expression of DR in NETs. 85% of samples (100% of bronchial carcinoids and 93% of islet cell tumors) showed positivity for D2R; intensity of immunoreaction in NETs was similar or higher than in pituitary (54% and respectively 31% of cases). D2R positivity in more than 70% of tumor cells was observed in 46% of samples. Same intensity of D2R-immunoreactivity was found in pituitary and normal islet cells. No differences in D2R expression were recorded on considering tumor grading, size, proliferative activity, presence of metastases, endocrine activity and gender. A significant difference (62.5% vs 96.4%, p = 0.039) was observed in the prevalence of D2R expression between patients with more aggressive tumors and patients without recurrence/progression of disease during follow-up. 46 NET samples from 44 patients and normal endocrine pancreatic tissue were studied. D2R-staining was performed on NETs and compared with six non-secreting pituitary adenomas and related to clinical-pathological data. The present data demonstrate a high expression of D2R in NETs; this finding is of clinical relevance in view of the potential role of dopaminergic drugs in inhibiting secretion and/or cell proliferation in NETs.

  15. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes.

    PubMed

    Fontaine, Romain; Affaticati, Pierre; Yamamoto, Kei; Jolly, Cécile; Bureau, Charlotte; Baloche, Sylvie; Gonnet, Françoise; Vernier, Philippe; Dufour, Sylvie; Pasqualini, Catherine

    2013-02-01

    In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.

  16. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    PubMed

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  17. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window

    PubMed Central

    2016-01-01

    Background: Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. Methods: Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. Results: MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. Conclusion: Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders. PMID:26802568

  18. Effects of lead exposure on hippocampal metabotropic glutamate receptor subtype 3 and 7 in developmental rats.

    PubMed

    Xu, Jian; Yan, Huai C; Yang, Bo; Tong, Lu S; Zou, Yu X; Tian, Ying

    2009-04-20

    A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Exposure to lead before and after birth can damage short-term and long

  19. Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials.

    PubMed

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A

    2011-12-27

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases, such as schizophrenia, psychosis, depression, migraine, allergies, asthma, ulcers, and hypertension. Among them, the human H(3) histamine receptor (hH(3)HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity. However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments, it would be useful to have the three-dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H(1), H(2), H(3), and H(4)) using the GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo protocol, sampling ∼35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these 10 best protein structures with the DarwinDock Monte Carlo protocol to sample ∼50 000 × 10(20) poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E206(5.46) contributes most in binding H(3) selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/S5.43 in both of hH(3)HR and hH(4)HR are involved in H(3)/ H(4) subtype selectivity. In addition, we find that M378(6.55) in hH(3)HR provides additional hydrophobic interactions different from hH(4)HR (the corresponding amino acid of T323(6.55) in hH(4)HR) to provide additional subtype bias. From these studies, we developed a pharmacophore model based on our predictions for known hH(3)HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton

  20. Effects of norepinephrine on alpha-subtype receptors in the feline pulmonary vascular bed.

    PubMed

    Kaye, Alan D; Hoover, Jason M; Baber, Syed R; Ibrahim, Ikhlass N; Fields, Aaron M

    2004-11-01

    To test the hypothesis that norepinephrine induces a pressor response in the pulmonary vascular bed of the cat and identify the alpha-(1)adrenoceptor subtypes involved in the mediation or modulation of these effects. Prospective vehicle controlled study. University research laboratory. Intact chest preparation, adult mongrel cats. In separate experiments, the effects of 5-methyl-urapidil, a selective alpha-(1)A-subtype adrenoceptor antagonist, chloroethylclonidine, an alpha-(1)B-subtype and -(1)D-subtype adrenoceptor antagonist, and BMY 7378, the selective alpha-(1)D-subtype adrenoceptor antagonist, were investigated on pulmonary arterial responses to norepinephrine and other agonists in the pulmonary vascular bed of the cat. The systemic pressure and lobar arterial perfusion pressure were continuously monitored, electronically averaged, and permanently recorded. In the feline pulmonary vascular bed of the isolated left lower lobe, norepinephrine induced a dose-dependent vasoconstrictor response that was not significantly altered after administration of BMY 7378. However, the responses to norepinephrine were significantly attenuated following administration of 5-methyl-urapidil and chloroethylclonidine. The results of the present study suggest that norepinephrine has potent vasopressor activity in the pulmonary vascular bed of the cat and that this response may be mediated or modulated by both alpha-(1)A-subtype and -(1)B-subtype adrenoceptor sensitive pathways.

  1. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABAA Receptor Modulators?

    PubMed Central

    Vinkers, Christiaan H.; Olivier, Berend

    2012-01-01

    Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226

  2. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases. The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms. Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes. Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF. PMID:28415591

  3. Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    PubMed Central

    Premer, Courtney; Lamondin, Courtney; Mitzey, Ann; Speth, Robert C.; Brownfield, Mark S.

    2013-01-01

    Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors. PMID:23573410

  4. Identification of Critical Residues Involved in Ligand Binding and G Protein Signaling in Human Somatostatin Receptor Subtype 2

    PubMed Central

    Parry, Jesse J.; Chen, Ronald; Andrews, Rebecca; Lears, Kimberly A.

    2012-01-01

    G protein signaling through human somatostatin receptor subtype 2 (SSTR2) is well known, but the amino acids involved in stimulation of intracellular responses upon ligand binding have not been characterized. We constructed a series of point mutants in SSTR2 at amino acid positions 89, 139, and 140 in attempts to disrupt G protein signaling upon ligand binding. The aspartic acid changes at position 89 to either Ala, Leu, or Arg generated mutant receptors with varying expression profiles and a complete inability to bind somatostatin-14 (SST). Mutations to Asp 139 and Arg 140 also led to varying expression profiles with some mutants maintaining their affinity for SST. Mutation of Arg 140 to Ala resulted in a mutated receptor that had a Bmax and dissociation constant (Kd) similar to wild-type receptor but was still coupled to the G protein as determined in both a cAMP assay and a calcium-release assay. In contrast, mutation of Asp 139 to Asn resulted in a mutated receptor with Bmax and Kd values that were similar to wild type but was uncoupled from G protein-mediated cAMP signaling, but not calcium release. Thus, we identified mutations in SSTR2 that result in either receptor expression levels that are similar to wild type but is completely ablated for ligand binding or a receptor that maintains affinity for SST and is uncoupled from G protein-mediated cAMP signaling. PMID:22495673

  5. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    PubMed

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  6. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells

    PubMed Central

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A.; Yang, Jay; Emala, Charles W.

    2013-01-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [β-Ala8]-neurokinin A(4–10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase. PMID:18203813

  7. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells.

    PubMed

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A; Yang, Jay; Emala, Charles W

    2008-03-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [beta-Ala8]-neurokinin A(4-10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase.

  8. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688.

    PubMed

    Ametamey, Simon M; Treyer, Valerie; Streffer, Johannes; Wyss, Matthias T; Schmidt, Mark; Blagoev, Milen; Hintermann, Samuel; Auberson, Yves; Gasparini, Fabrizio; Fischer, Uta C; Buck, Alfred

    2007-02-01

    3-(6-Methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime (11C-ABP688), a noncompetitive and highly selective antagonist for the metabotropic glutamate receptor subtype 5 (mGluR5), was evaluated for its potential as a PET agent. Six healthy male volunteers (mean age, 25 y; range, 21-33 y) were studied. Brain perfusion (15O-H2O) was measured immediately before each 11C-ABP688 PET scan. For anatomic coregistration, T1-weighted MRI was performed on each subject. Arterial blood samples for the determination of the arterial input curve were obtained at predefined time points, and 11C-ABP688 uptake was assessed quantitatively using a 2-tissue-compartment model. An initial rapid uptake of radioactivity followed by a gradual clearance from all examined brain regions was observed. Relatively high radioactivity concentrations were observed in mGluR5-rich brain regions such as the anterior cingulate, medial temporal lobe, amygdala, caudate, and putamen, whereas radioactivity uptake in the cerebellum and white matter, regions known to contain low densities of mGluR5, was low. Specific distribution volume as an outcome measure of mGluR5 density in the various brain regions ranged from 5.45 +/- 1.47 (anterior cingulate) to 1.91 +/- 0.32 (cerebellum), and the rank order of the corresponding specific distribution volumes of 11C-ABP688 in cortical regions was temporal > frontal > occipital > parietal. The metabolism of 11C-ABP688 in plasma was rapid; at 60 min after injection, 25% +/- 0.03% of radioactivity measured in the plasma of healthy volunteers was intact parent compound. The results of these studies indicate that 11C-ABP688 has suitable characteristics and is a promising PET ligand for imaging mGluR5 distribution in humans. Furthermore, it could be of great value for the selection of appropriate doses of clinically relevant candidate drugs that bind to mGluR5 and for PET studies of patients with psychiatric and neurologic disorders.

  9. Differential responsiveness in VEGF receptor subtypes to hypoxic stress in various tissues of plateau animals.

    PubMed

    Xie, Hui-Chun; Li, Jin-Gang; He, Jian-Ping

    2017-05-04

    With hypoxic stress, hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) are elevated and their responses are altered in skeletal muscles of plateau animals [China Qinghai-Tibetan plateau pikas (Ochotona curzoniae)] as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. The results indicate that HIF-1alpha and VEGF are engaged in physiological functions under hypoxic environment. The purpose of the current study was to examine the protein levels of VEGF receptor subtypes (VEGFRs: VEGFR-1, VEGFR-2 and VEGFR-3) in the end organs, namely skeletal muscle, heart and lung in response to hypoxic stress. ELISA and Western blot analysis were employed to determine HIF-1alpha and the protein expression of VEGFRs in control animals and plateau pikas. We further blocked HIF-1alpha signal to determine if HIF-1alpha regulates alternations in VEGFRs in those tissues. We hypothesized that responsiveness of VEGFRs in the major end organs of plateau animals is differential with insult of hypoxic stress and is modulated by low oxygen sensitive HIF-1alpha. Our results show that hypoxic stress induced by exposure of lower O(2) for 6 h significantly increased the levels of VEGFR-2 in skeletal muscle, heart and lung and the increases were amplified in plateau pikas. Our results also demonstrate that hypoxic stress enhanced VEGFR-3 in lungs of plateau animals. Nonetheless, no significant alternations in VEGFR-1 were observed in those tissues with hypoxic stress. Moreover, we observed decreases of VEGFR-2 in skeletal muscle, heart and lung; and decreases of VEGFR-3 in lung following HIF-1alpha inhibition. Overall, our findings suggest that in plateau animals 1) responsiveness of VEGFRs is different under hypoxic environment; 2) amplified VEGFR-2 response appears in skeletal muscle, heart and lung, and enhanced VEGFR-3 response is mainly observed in lung; 3) HIF-1alpha plays a regulatory role in the levels of VEGFRs. Our results

  10. Yangambin, a lignan obtained from Ocotea duckei, differentiates putative PAF receptor subtypes in the gastrointestinal tract of rats.

    PubMed

    Jesus-Morais, C M; Assis, E F; Cordeiro, R S; Barbosa-Filho, J M; Lima, W T; Silva, Z L; Bozza, P T; Castro-Faria-Neto, H C

    2000-04-01

    We investigated the presence of PAF receptor subtypes in the tissues of the gastrointestinal tract, airways, blood vessels and in murine macrophages. For this purpose we have used a competitive PAF receptor antagonist, yangambin (YAN), extracted from the Brazilian plant "louro de cheiro" (Ocotea duckei Vattimo). Rat duodenum, jejunum, ileum, colon, stomach fundus, trachea and bronchia were removed and 1.5-2 cm muscle segments from those regions were mounted in a 10 ml organ bath with aerated physiological solution at 37 degrees C. PAF evoked a contraction of the rat jejunum, ileum, colon and stomach fundus. The contraction was slow and resistant to wash and was followed by desensitization to further doses of PAF. Contractions induced by PAF (10(-6) M) were inhibited by YAN (10(-7) to M-2 x 10(-5) M) and WEB 2086 (10(-6) m to M-5 M) in rat jejunum, ileum and colon but not in the stomach fundus. In the rat stomach fundus only WEB 2086 (5 x 10(-6) M) was able to block PAF-induced contraction. The contractions induced by acetylcholine, histamine, 5-hydroxytryptamine and vasopressin were not inhibited by prior administration of YAN. Yangambin also significantly inhibited PAF-induced vascular permeability in rat duodenum, jejunum, ileum, colon, and mesentery. Yangambin significantly inhibited PAF-induced lipid body formation in mice peritoneal macrophages. We suggest that YAN is a selective PAF antagonist which is able to discriminate putative PAF receptors subtypes present in the stomach fundus.

  11. Pharmacological interference with metabotropic glutamate receptor subtype 7 but not subtype 5 differentially affects within- and between-session extinction of Pavlovian conditioned fear.

    PubMed

    Toth, Iulia; Dietz, Monika; Peterlik, Daniel; Huber, Sabine E; Fendt, Markus; Neumann, Inga D; Flor, Peter J; Slattery, David A

    2012-03-01

    Fear extinction is defined as the attenuation of a conditioned-fear memory by re-exposing animals to the conditioned stimulus without the aversive stimulus. This process is known to be effectively enhanced via administration of D-cycloserine (DCS), a partial NMDA-receptor agonist. However, other glutamatergic mechanisms, such as interference with metabotropic glutamate receptor (mGluR) subtypes 5 and 7 in the extinction of aversive memories are insufficiently understood. Using the allosteric mGluR5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), the mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082), and DCS for comparison, we aimed to study how pharmacological blockade of mGluR5 and activation of mGluR7 influenced within- and between-session conditioned-fear extinction training and extinction retention in rats. We show that when injected before extinction training, mGluR7 activation with AMN082 enhanced freezing and thereby attenuated within-session fear extinction, whereas both DCS and the mGluR5 receptor antagonist MPEP had no effect on this process. However, these differential drug effects were not long lasting, as no difference in extinction retention were observed 24 h later. Therefore, we assessed whether the compounds affect 24 h consolidation of extinction training following incomplete extinction training (between-session extinction). Similar to DCS, AMN082- but not MPEP-treated rats showed facilitated extinction retention, as exhibited by decreased freezing. Finally, using fluoxetine, we provide evidence that the effect of AMN082 on between-session extinction retention is most likely not via increasing 5-HT transmission. These findings demonstrate that mGluR7 activation differentially modulates conditioned-fear extinction, in dependence on the protocol employed, and suggests drugs with AMN082-like mechanisms as potential add-on drugs following exposure-based psychotherapy for fear-related human

  12. EEG sleep activities react topographically different to GABAergic sleep modulation by flunitrazepam: relationship to regional distribution of benzodiazepine receptor subtypes?

    PubMed

    Scheuler, W

    Spectral analysis was performed to study the response of various EEG sleep activities to a modification of GABAergic sleep regulation by flunitrazepam. We observed sleep stage- and sleep cycle-dependent differences in the topographic distribution of the reactions. An increase in power density was found in the frontal regions for the alpha 2 and sigma 1 frequency band whereas a decrease in power density was emphasized in the posterior regions for the delta and alpha 1 frequency band. These topographic differences might be related to the regional distribution of benzodiazepine receptor subtypes.

  13. The relaxant 5-HT receptor in the dog coronary artery smooth muscle: pharmacological resemblance to the cloned 5-ht7 receptor subtype.

    PubMed Central

    Terrón, J. A.

    1996-01-01

    1. The relaxant effect of 5-hydroxytryptamine (5-HT) in the dog isolated coronary artery deprived of endothelium is mediated by a receptor unrelated to the 5-HT1, 5-HT2, 5-HT3 or 5-HT4 types. Based upon the pharmacological characteristics of this relaxant 5-HT receptor and those reported for the new members of the 5-HT receptor family, the present study explored the possibility that the relaxant 5-HT receptor referred to above, corresponds to the cloned 5-ht7 subtype. Thus, the relaxing and/or blocking effects of several 5-HT receptor drugs as well as some typical and atypical antipsychotic drugs with high affinity for the cloned 5-ht7 receptor in precontracted ring segments were analyzed. 2. 5-HT, 5-carboxamidotryptamine (5-CT) and 5-methoxytryptamine, but not 8-OH-DPAT or sumatriptan, produced concentration-dependent relaxations in endothelium-denuded canine coronary artery rings precontracted with prostaglandin F2a (2 microM). Clozapine (1 microM) produced in some cases a small relaxing effect and antagonized 5-HT- and 5-CT-induced relaxation suggesting a partial agonist effect. In the presence of the 5-HT1D receptor antagonist, GR127935 (100 nM), the rank order of agonist potency was 5-CT > 5-HT > clozapine > or = 5-methoxytryptamine. 8-OH-DPAT and sumatriptan remained inactive as agonists. 3. In GR127935-treated preparations, methiothepin (3 nM) and mianserin (1 microM), as well as the antipsychotics, clozapine (1 microM), pimozide (300 nM), risperidone (3 nM) and spiperone (1 microM), failed to induce a significant relaxation in prostaglandin F2x-precontracted vessels, but produced significant rightward displacements of the concentration-response curves to 5-HT and 5-CT without significantly reducing the Emax. In a final set of experiments with 5-CT, metergoline (100 nM) and mesulergine (300 nM) behaved as competitive antagonists. In contrast, lisuride (3 nM) noncompetitively antagonized 5-CT-induced relaxation. The estimated affinity (apparent pKa values) of

  14. Stimulation of Inositol 1,4,5-Trisphosphate (IP3) Receptor Subtypes by Adenophostin A and Its Analogues

    PubMed Central

    Saleem, Huma; Tovey, Stephen C.; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.

    2013-01-01

    Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels. Most animal cells express mixtures of the three IP3R subtypes encoded by vertebrate genomes. Adenophostin A (AdA) is the most potent naturally occurring agonist of IP3R and it shares with IP3 the essential features of all IP3R agonists, namely structures equivalent to the 4,5-bisphosphate and 6-hydroxyl of IP3. The two essential phosphate groups contribute to closure of the clam-like IP3-binding core (IBC), and thereby IP3R activation, by binding to each of its sides (the α- and β-domains). Regulation of the three subtypes of IP3R by AdA and its analogues has not been examined in cells expressing defined homogenous populations of IP3R. We measured Ca2+ release evoked by synthetic adenophostin A (AdA) and its analogues in permeabilized DT40 cells devoid of native IP3R and stably expressing single subtypes of mammalian IP3R. The determinants of high-affinity binding of AdA and its analogues were indistinguishable for each IP3R subtype. The results are consistent with a cation-π interaction between the adenine of AdA and a conserved arginine within the IBC α-domain contributing to closure of the IBC. The two complementary contacts between AdA and the α-domain (cation-π interaction and 3″-phosphate) allow activation of IP3R by an analogue of AdA (3″-dephospho-AdA) that lacks a phosphate group equivalent to the essential 5-phosphate of IP3. These data provide the first structure-activity analyses of key AdA analogues using homogenous populations of all mammalian IP3R subtypes. They demonstrate that differences in the Ca2+ signals evoked by AdA analogues are unlikely to be due to selective regulation of IP3R subtypes. PMID:23469136

  15. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes

    PubMed Central

    Zhan, Xuanzhi; Gimenez, Luis E.; Gurevich, Vsevolod V.; Spiller, Benjamin W.

    2011-01-01

    Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. Here we report the first crystal structure of arrestin-3, solved at 3.0Å. Arrestin-3 is an elongated two-domain molecule with the overall fold and key inter-domain interactions that hold free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and -3 we show that the presence of this loose structure correlates with reduced arrestin selectivity for activated receptor, consistent with a conformational change in this β-sheet upon receptor binding. PMID:21215759

  16. Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice.

    PubMed

    Zhang, Hong-Mei; Chen, Shao-Rui; Matsui, Minoru; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin

    2006-03-01

    Spinal muscarinic acetylcholine receptors (mAChRs) play an important role in the regulation of nociception. To determine the role of individual mAChR subtypes in control of synaptic GABA release, spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) were recorded in lamina II neurons using whole-cell recordings in spinal cord slices of wild-type and mAChR subtype knockout (KO) mice. The mAChR agonist oxotremorine-M (3-10 microM) dose-dependently decreased the frequency of GABAergic sIPSCs and mIPSCs in wild-type mice. However, in the presence of the M2 and M4 subtype-preferring antagonist himbacine, oxotremorine-M caused a large increase in the sIPSC frequency. In M3 KO and M1/M3 double-KO mice, oxotremorine-M produced a consistent decrease in the frequency of sIPSCs, and this effect was abolished by himbacine. We were surprised to find that in M2/M4 double-KO mice, oxotremorine-M consistently increased the frequency of sIPSCs and mIPSCs in all neurons tested, and this effect was completely abolished by 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3 subtype-preferring antagonist. In M2 or M4 single-KO mice, oxotremorine-M produced a variable effect on sIPSCs; it increased the frequency of sIPSCs in some cells but decreased the sIPSC frequency in other neurons. Taken together, these data strongly suggest that activation of the M3 subtype increases synaptic GABA release in the spinal dorsal horn of mice. In contrast, stimulation of presynaptic M2 and M4 subtypes predominantly attenuates GABAergic inputs to dorsal horn neurons in mice, an action that is opposite to the role of M2 and M4 subtypes in the spinal cord of rats.

  17. Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats.

    PubMed

    Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J

    2002-03-01

    The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.

  18. Lifetime of muscarinic receptor-G-protein complexes determines coupling efficiency and G-protein subtype selectivity.

    PubMed

    Ilyaskina, Olga S; Lemoine, Horst; Bünemann, Moritz

    2018-05-08

    G-protein-coupled receptors (GPCRs) are essential for the detection of extracellular stimuli by cells and transfer the encoded information via the activation of functionally distinct subsets of heterotrimeric G proteins into intracellular signals. Despite enormous achievements toward understanding GPCR structures, major aspects of the GPCR-G-protein selectivity mechanism remain unresolved. As this can be attributed to the lack of suitable and broadly applicable assays, we set out to develop a quantitative FRET-based assay to study kinetics and affinities of G protein binding to activated GPCRs in membranes of permeabilized cells in the absence of nucleotides. We measured the association and dissociation kinetics of agonist-induced binding of G i/o , G q/11 , G s , and G 12/13 proteins to muscarinic M 1 , M 2 , and M 3 receptors in the absence of nucleotides between fluorescently labeled G proteins and receptors expressed in mammalian cells. Our results show a strong quantitative correlation between not the on-rates of G-protein-M 3 -R interactions but rather the affinities of G q and G o proteins to M 3 -Rs, their GPCR-G-protein lifetime and their coupling efficiencies determined in intact cells, suggesting that the G-protein subtype-specific affinity to the activated receptor in the absence of nucleotides is, in fact, a major determinant of the coupling efficiency. Our broadly applicable FRET-based assay represents a fast and reliable method to quantify the intrinsic affinity and relative coupling selectivity of GPCRs toward all G-protein subtypes.

  19. Dose-dependent EEG effects of zolpidem provide evidence for GABA(A) receptor subtype selectivity in vivo.

    PubMed

    Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M

    2003-03-01

    Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.

  20. Allosteric modulation of nicotinic and GABAA receptor subtypes differentially modify autism-like behaviors in the BTBR mouse model.

    PubMed

    Yoshimura, Ryan F; Tran, Minhtam B; Hogenkamp, Derk J; Ayala, Narielle L; Johnstone, Timothy; Dunnigan, Andrew J; Gee, Timothy K; Gee, Kelvin W

    2017-11-01

    Autism spectrum disorder (ASD) is associated with two core symptoms (social communication deficits and stereotyped repetitive behaviors) in addition to a number of comorbidities. There are no FDA-approved drugs for the core symptoms and the changes that underlie these behaviors are not fully understood. One hypothesis is an imbalance of the excitation (E)/inhibition (I) ratio with excessive E and diminished I occurring in specific neuronal circuits. Data suggests that both gamma-aminobutyric acid A (GABA A ) and α7 nicotinic acetylcholine receptors (nAChRs) significantly impact E/I. BTBR T + tf/J (BTBR) mice are a model that display an autism-like phenotype with impaired social interaction and stereotyped behavior. A β2/3-subunit containing GABA A receptor (GABA A R) subtype selective positive allosteric modulator (PAM), 2-261, and an α7 nAChR subtype selective PAM, AVL-3288, were tested in social approach and repetitive self-grooming paradigms. 2-261 was active in the social approach but not the self-grooming paradigm, whereas AVL-3288 was active in both. Neither compound impaired locomotor activity. Modulating α7 nAChRs alone may be sufficient to correct these behavioral and cognitive deficits. GABAergic and nicotinic compounds are already in various stages of clinical testing for treatment of the core symptoms and comorbidities associated with ASD. Our findings and those of others suggest that compounds that have selective activities at GABA A R subtypes and the α7 nAChR may address not only the core symptoms, but many of the associated comorbidities as well and warrant further investigation in other models of ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    PubMed

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists

  2. Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-05-16

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Differential Regulation of Primary Afferent Input to Spinal Cord by Muscarinic Receptor Subtypes Delineated Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-01-01

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732

  4. Moclobemide attenuates anoxia and glutamate-induced neuronal damage in vitro independently of interaction with glutamate receptor subtypes.

    PubMed

    Verleye, Marc; Steinschneider, Remy; Bernard, François Xavier; Gillardin, Jean-Marie

    2007-03-23

    Recent data suggested the existence of a bidirectional relation between depression and neurodegenerative diseases resulting from cerebral ischemia injury. Glutamate, a major excitatory neurotransmitter, has long been recognised to play a key role in the pathophysiology of anoxia or ischemia, due to its excessive accumulation in the extracellular space and the subsequent activation of its receptors. A characteristic response to glutamate is the increase in cytosolic Na(+) and Ca(2+) levels which is due mainly to influx from the extracellular space, with a consequent cell swelling and oxidative metabolism dysfunction. The present study examined the in vitro effects of the antidepressant and type-A monoamine oxidase inhibitor, moclobemide, in neuronal-astroglial cultures from rat cerebral cortex exposed to anoxia (for 5 and 7 h) or to glutamate (2 mM for 6 h), two in vitro models of brain ischemia. In addition, the affinity of moclobemide for the different glutamate receptor subtypes and an interaction with the cell influx of Na(+) and of Ca(2+) enhanced by veratridine and K(+) excess, respectively, were evaluated. Moclobemide (10-100 microM) included in the culture medium during anoxia or with glutamate significantly increased in a concentration-dependent manner the amount of surviving neurons compared to controls. Moclobemide displayed no binding affinity for the different glutamate receptor subtypes (IC(50)>100 microM) and did not block up to 300 microM the entry of Na(+) and of Ca(2+) activated by veratridine and K(+), respectively. These results suggest that the neuroprotective properties of moclobemide imply neither the glutamate neurotransmission nor the Na(+) and Ca(2+) channels.

  5. A new class of pyrazolo[5,1-c][1,2,4]triazines as γ-aminobutyric type A (GABAA) receptor subtype ligand: synthesis and pharmacological evaluation.

    PubMed

    Guerrini, Gabriella; Ciciani, Giovanna; Daniele, Simona; Martini, Claudia; Costagli, Camilla; Guarino, Chiara; Selleri, Silvia

    2018-05-15

    A comparison between compounds with pyrazolo[1,5-a]pyrimidine structure (series 4-6) and pyrazolo[5,1-c][1,2,4]triazine core (series 9) as ligands at GABA A -receptor subtype, was evaluated. Moreover, for pyrazolotriazine derivatives having binding recognition, the interaction on recombinant rat α(1-3,5) GABA A receptor subtypes, was performed. Among these latter, emerge compounds 9c, 9k, 9l, 9m and 9n as α1-selective and 9h as α2-selective ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Molecular and pharmacological evidence for MT1 melatonin receptor subtype in the tail artery of juvenile Wistar rats

    PubMed Central

    Ting, K N; Blaylock, N A; Sugden, D; Delagrange, P; Scalbert, E; Wilson, V G

    1999-01-01

    In this study reverse transcriptase-polymerase chain reaction (RT–PCR) has been used to identify mt1 and MT2 receptor mRNA expression in the rat tail artery. The contributions of both receptors to the functional response to melatonin were examined with the putative selective MT2 receptor antagonists, 4-phenyl-2-propionamidotetraline (4-P-PDOT) and 2-benzyl-N-pentanoyltryptamine. In addition, the action of melatonin on the second messenger cyclic AMP was investigated.Using RT–PCR, mt1 receptor mRNA was detected in the tail artery from seven rats. In contrast MT2 receptor mRNA was not detected even after nested PCR.At low concentrations of the MT2 selective ligands, neither 10 nM 4-P-PDOT (pEC50=8.70±0.31 (control) vs 8.73±0.16, n=6) nor 60 nM 2-benzyl-N-pentanoyltryptamine (pEC50=8.53±0.20 (control) vs 8.83±0.38, n=6) significantly altered the potency of melatonin in the rat tail artery.At concentrations non-selective for mt1 and MT2 receptors, 4-P-PDOT (3 μM) and 2-benzyl-N-pentanoyltryptamine (5 μM) caused a significant rightward displacement of the vasoconstrictor effect of melatonin. In the case of 4-P-PDOT, the estimated pKB (6.17±0.16, n=8) is similar to the binding affinity for mt1 receptor.Pre-incubation with 1 μM melatonin did not affect the conversion of [3H]-adenine to [3H]-cyclic AMP under basal condition (0.95±0.19% conversion (control) vs 0.92±0.19%, n=4) or following exposure to 30 μM forskolin (5.20±1.30% conversion (control) vs 5.35±0.90%, n=4).Based on the above findings, we conclude that melatonin receptor on the tail artery belongs to the MT1 receptor subtype, and that this receptor is probably independent of the adenylyl cyclase pathway. PMID:10433507

  7. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-05

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  9. Feeding condition and the relative contribution of different dopamine receptor subtypes to the discriminative stimulus effects of cocaine in rats.

    PubMed

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2014-02-01

    The contribution of dopamine receptor subtypes in mediating the discriminative stimulus effects of cocaine is not fully established. Many drug discrimination studies use food to maintain responding, necessitating food restriction, which can alter drug effects. This study established stimulus control with cocaine (10 mg/kg) in free-feeding and food-restricted rats responding under a schedule of stimulus shock termination (SST) and in food-restricted rats responding under a schedule of food presentation to examine whether feeding condition or the reinforcer used to maintain responding impacts the effects of cocaine. Dopamine receptor agonists and antagonists were examined for their ability to mimic or attenuate, respectively, the effects of cocaine. Apomorphine, quinpirole, and lisuride occasioned >90 % responding on the cocaine-associated lever in free-feeding rats responding under a schedule of SST; apomorphine, but not quinpirole or lisuride, occasioned >90 % responding on the cocaine lever in food-restricted rats responding under a schedule of SST. In food-restricted rats responding for food these drugs occasioned little cocaine lever responding and were comparatively more potent in decreasing responding. In free-feeding rats, the effects of cocaine were attenuated by the D2/D3 receptor antagonist raclopride and the D3 receptor-selective antagonist PG01037. In food-restricted rats, raclopride and the D2 receptor-selective antagonist L-741,626 attenuated the effects of cocaine. Raclopride antagonized quinpirole in all groups while PG01037 antagonized quinpirole only in free-feeding rats. These results demonstrate significant differences in the discriminative stimulus of cocaine that are due to feeding conditions and not to the use of different reinforcers across procedures.

  10. Feeding condition and the relative contribution of different dopamine receptor subtypes to the discriminative stimulus effects of cocaine in rats

    PubMed Central

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2013-01-01

    Rationale The contribution of dopamine receptor subtypes in mediating the discriminative stimulus effects of cocaine is not fully established. Many drug discrimination studies use food to maintain responding, necessitating food restriction, which can alter drug effects. Objective This study established stimulus control with cocaine (10 mg/kg) in free-feeding and food-restricted rats responding under a schedule of stimulus shock termination (SST) and in food-restricted rats responding under a schedule of food presentation to examine whether feeding condition or the reinforcer used to maintain responding impacts the effects of cocaine. Method Dopamine receptor agonists and antagonists were examined for their ability to mimic or attenuate, respectively, the effects of cocaine. Result Apomorphine, quinpirole, and lisuride occasioned >90% responding on the cocaine-associated lever in free-feeding rats responding under a schedule of SST; apomorphine, but not quinpirole or lisuride, occasioned >90% responding on the cocaine lever in food-restricted rats responding under a schedule of SST. In food-restricted rats responding for food these drugs occasioned little cocaine lever responding and were comparatively more potent in decreasing responding. In free-feeding rats, the effects of cocaine were attenuated by the D2/D3 receptor antagonist raclopride and the D3 receptor-selective antagonist PG01037. In food-restricted rats, raclopride and the D2 receptor-selective antagonist L-741,626 attenuated the effects of cocaine. Raclopride antagonized quinpirole in all groups while PG01037 antagonized quinpirole only in free-feeding rats. Conclusion These results demonstrate significant differences in the discriminative stimulus of cocaine that are due to feeding conditions and not to the use of different reinforcers across procedures. PMID:24030470

  11. Specificity of arrestin subtypes in regulating airway smooth muscle G protein-coupled receptor signaling and function.

    PubMed

    Pera, Tonio; Hegde, Akhil; Deshpande, Deepak A; Morgan, Sarah J; Tiegs, Brian C; Theriot, Barbara S; Choi, Yeon H; Walker, Julia K L; Penn, Raymond B

    2015-10-01

    Arrestins have been shown to regulate numerous G protein-coupled receptors (GPCRs) in studies employing receptor/arrestin overexpression in artificial cell systems. Which arrestin isoforms regulate which GPCRs in primary cell types is poorly understood. We sought to determine the effect of β-arrestin-1 or β-arrestin-2 inhibition or gene ablation on signaling and function of multiple GPCRs endogenously expressed in airway smooth muscle (ASM). In vitro [second messenger (calcium, cAMP generation)], ex vivo (ASM tension generation in suspended airway), and in vivo (invasive airway resistance) analyses were performed on human ASM cells and murine airways/whole animal subject to β-arrestin-1 or -2 knockdown or knockout (KO). In both human and murine model systems, knockdown or KO of β-arrestin-2 relative to control missense small interfering RNA or wild-type mice selectively increased (40-60%) β2-adrenoceptor signaling and function. β-arrestin-1 knockdown or KO had no effect on signaling and function of β2-adrenoceptor or numerous procontractile GPCRs, but selectively inhibited M3 muscarinic acetylcholine receptor signaling (∼50%) and function (∼25% ex vivo, >50% in vivo) without affecting EC50 values. Arrestin subtypes differentially regulate ASM GPCRs and β-arrestin-1 inhibition represents a novel approach to managing bronchospasm in obstructive lung diseases. © FASEB.

  12. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster.

    PubMed

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster , a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT 1A , Dm5-HT 1B , and Dm5-HT 7 couple to cAMP signaling cascades, the Dm5-HT 2A receptor leads to Ca 2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT 2B receptor. Knowledge about this receptor's pharmacological properties is very limited. This is quite surprising because Dm5-HT 2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT 2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT 2B 's pharmacology, we evaluated the receptor's response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT 2B signaling in vitro and in vivo .

  13. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  14. Somatostatin receptor subtype-4 agonist NNC 26-9100 decreases extracellular and intracellular Aβ₁₋₄₂ trimers.

    PubMed

    Sandoval, Karin E; Farr, Susan A; Banks, William A; Crider, Albert M; Morley, John E; Witt, Ken A

    2012-05-15

    Soluble amyloid β-protein (Aβ) oligomers are primary mediators of synaptic dysfunction associated with the progression of Alzheimer's disease. Such Aβ oligomers exist dependent on their rates of aggregation and metabolism. Use of selective somatostatin receptor-subtype agonists have been identified as a potential means to mitigate Aβ accumulation in the brain, via regulation of the enzyme neprilysin. Herein, we first evaluated the impact of the somatostatin receptor subtype-4 agonist 1-[3-[N-(5-Bromopyridin-2-yl)-N-(3,4-dichlorobenzyl)amino]propyl]-3-[3-(1H-imidazol-4-yl)propyl]thiourea (NNC 26-9100) on learning and memory in 12-month SAMP8 mice (i.c.v. injection). NNC 26-9100 (0.2 μg-dose) was shown to enhance both learning (T-maze) and memory (object recognition) compared to vehicle controls. Cortical and hippocampal tissues were evaluated subsequent to NNC 26-9100 (0.2 μg) or vehicle administration for changes in neprilysin activity, along with protein expression of amyloid-precursor protein (APP), neprilysin, and Aβ₁₋₄₂ oligomers within respective cellular fractions (extracellular, intracellular and membrane). NNC 26-9100 increased neprilysin activity in cortical tissue, with an associated protein expression increase in the extracellular fraction and decreased in the intracellular fraction. A decrease in intracellular APP expression was found with treatment in both cortical and hippocampal tissues. NNC 26-9100 also significantly decreased expression of Aβ₁₋₄₂ trimers within both the extracellular and intracellular cortical fractions. No expression changes were found in membrane fractions for any protein. These finding suggest the potential use of selective SSTR4 agonists to mitigate toxic oligomeric forms of Aβ₁₋₄₂ in critical regions of the brain identified with learning and memory decline. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy.

    PubMed

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-09-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR 1 ), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR 1 ) signaling and miR-155 was investigated. Rat H9C2 (2-1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR 1 , atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR 1 and suppressing the calcium signaling pathways activated by AGTR 1 .

  16. Impaired Bone Resorption by Lipopolysaccharide In Vivo in Mice Deficient in the Prostaglandin E Receptor EP4 Subtype

    PubMed Central

    Sakuma, Yoko; Tanaka, Kiyoshi; Suda, Michio; Komatsu, Yasato; Yasoda, Akihiro; Miura, Masako; Ozasa, Ami; Narumiya, Shuh; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Nakao, Kazuwa

    2000-01-01

    In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after systemic LPS injection, and urinary excretion of deoxypyridinoline, a sensitive marker for bone resorption, statistically increased 10 days after injection. In EP4 knockout (KO) mice, however, LPS injection caused no significant changes in these parameters throughout the experiment. LPS exposure for 4 h strongly induced osteoclast differentiation factor (ODF) mRNA expression in primary osteoblastic cells (POB) both from WT and EP4 KO mice, and this expression was not inhibited by indomethacin, suggesting prostaglandin (PG) independence. LPS exposure for 24 h further induced ODF expression in WT POB, but not in EP4 KO POB. Indomethacin partially inhibited ODF expression in WT POB, but not in EP4 KO POB. These data suggest that ODF is induced both PG dependently and PG independently. LPS exposure for 24 h induced slightly greater osteoclastgenesis inhibitory factor (OCIF) mRNA expression in EP4 KO than in WT POB. These findings suggest that the reduced ODF expression and apparently increased OCIF expression also are responsible for the markedly reduced LPS-induced osteoclast formation in EP4 KO mice. Our results show that the EP4 subtype of the PGE receptor is involved in LPS-induced bone resorption in vivo also. Since LPS is considered to be largely involved in bacterially induced bone loss, such as in periodontitis and osteomyelitis, our study is expected to help broaden our understanding of the pathophysiology of these conditions. PMID:11083800

  17. Genetic variability of prostaglandin E2 receptor subtype EP4 gene in aspirin-intolerant chronic urticaria.

    PubMed

    Palikhe, Nami Shrestha; Sin, Hye Jung; Kim, Seung Hyun; Sin, Hyun Jung; Hwang, Eui Kyung; Ye, Young Min; Park, Hae-Sim

    2012-08-01

    Prostaglandin E2 receptor subtype EP4 (PTGER4) is one of the four subtypes of receptors for prostaglandin E2 (PGE2). Overproduction of cysteinyl leukotriene in mast cells may be related with suppression of PGE2 in patients with aspirin hypersensitivity. Considering the association of PTGER4 in mast cells, urticaria- and aspirin-related disease, we hypothesized the genetic variability of PTGER4 may be associated with aspirin-intolerant chronic urticaria (AICU). The case-control study was performed in 141 with AICU, 153 with aspirin-tolerant chronic urticaria (ATCU) and 174 with normal controls (NCs). PTGER4 promoter single-nucleotide polymorphism was genotyped using a primer extension method with the SNAPshot ddNTP primer extension kit. The functional variability of PTGER4 promoter polymorphism was carried out by dual-luciferase system and electrophoretic mobility shift assay (EMSA) in human mast cells (HMC-1). Furthermore, the effect of aspirin was performed for PTGER4 mRNA expression using real-time PCR, and PGE2 production was checked in HMC-1 cells using ELISA. AICU patients carrying GG genotype at -1254 G>A showed significantly higher frequency compared with NC (P=0.032). Similarly, the minor allele frequency, G allele was significantly higher in AICU compared with NC (P=0.031). In vitro functional study demonstrated that the -1254 G allele had lower luciferase activity (P<0.001) in HMC-1 cells. EMSA finding showed that PTGER4 -1254 G produced a specific band. Significantly decreased PTGER4 expression (P=0.008) and PGE2 production by aspirin exposure was confirmed in in vitro HMC cell line model (P=0.001). The PTGER4 -1254 G allele demonstrated a higher frequency in AICU patients and lower promoter activity with decreased expression of PTGER4 and contributes to the development of AICU.

  18. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    PubMed Central

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo. PMID:28553207

  19. Identification of four areas each enriched in a unique muscarinic receptor subtype

    SciTech Connect

    Hoss, W.; Ellerbrock, B.R.; Goldman, P.S.

    The affinities of muscarinic agonists and antagonists were determined by autoradiography and image analysis in selected areas of the rat brain. IC{sub 50} values and Hill coefficients for the inhibition of the binding of 0.2 nM ({sup 3}H)-QNB to dentate gyrus, superior colliculus, rhomboid thalamus and substantia nigra were measured in coronal sections. Pirenzepine displayed a high affinity for receptors in the dentate gyrus and AF-DX 116, the superior colliculus. Both pirenzepine and AF-DX 116 had high affinities for the substantia nigra and low affinities for the rhomboid thalamus. Gallamine displayed a 50-fold preference for superior colliculus over dentate gyrusmore » receptors. Amitriptyline was less selective, showing a modest preference for substantia nigra receptors and 4-DAMP was essentially nonselective. Carbachol was the most selective agonist with a 4000-fold preference for superior colliculus over dentate gyrus receptors. Other agonists except RS 86 were also selective for superior colliculus receptors in the order carbachol >> arecoline > bethanechol > McN A343 = oxotremorine = pilocarpine.« less

  20. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    SciTech Connect

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less

  1. Structure-activity studies of RFamide peptides reveal subtype-selective activation of neuropeptide FF1 and FF2 receptors.

    PubMed

    Findeisen, Maria; Rathmann, Daniel; Beck-Sickinger, Annette G

    2011-06-06

    Selectivity is a major issue in closely related multiligand/multireceptor systems. In this study we investigated the RFamide systems of hNPFF₁R and hNPFF₂R that bind the endogenous peptide hormones NPFF, NPAF, NPVF, and NPSF. By use of a systematic approach, we characterized the role of the C-terminal dipeptide with respect to agonistic properties using synthesized [Xaa 7]NPFF and [Xaa 8]NPFF analogues. We were able to identify only slight differences in potency upon changing the position of Arg 7, as all modifications resulted in identical behavior at the NPFF₁R and NPFF₂R. However, the C-terminal Phe 8 was able to be replaced by Trp or His with only a minor loss in potency at the NPFF₂R relative to the NPFF₁R. Analogues with shorter side chains, such as α-amino-4-guanidino butyric acid ([Agb 7]NPFF) or phenylglycine ([Phg 8]NPFF), decreased efficacy for the NPFF₁ R to 25-31 % of the maximal response, suggesting that these agonist-receptor complexes are more susceptible to structural modifications. In contrast, mutations to the conserved Asp 6.59 residue in the third extracellular loop of both receptors revealed a higher sensitivity toward the hNPFF₂R receptor than toward hNPFF₁R. These data provide new insight into the subtype-specific agonistic activation of the NPFF₁ and NPFF(2) receptors that are necessary for the development of selective agonists. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle.

    PubMed

    Kitazawa, Takio; Hirama, Ryuichi; Masunaga, Kozue; Nakamura, Tatsuro; Asakawa, Koichi; Cao, Jinshan; Teraoka, Hiroki; Unno, Toshihiro; Komori, Sei-ichi; Yamada, Masahisa; Wess, Jürgen; Taneike, Tetsuro

    2008-06-01

    Functional muscarinic acetylcholine receptors present in the mouse uterus were characterized by pharmacological and molecular biological studies using control (DDY and wild-type) mice, muscarinic M2 or M3 single receptor knockout (M2KO, M3KO), and M2 and M3 receptor double knockout mice (M2/M3KO). Carbachol (10 nM-100 microM) increased muscle tonus and phasic contractile activity of uterine strips of control mice in a concentration-dependent manner. The maximum carbachol-induced contractions (Emax) differed between cervical and ovarian regions of the uterus. The stage of the estrous cycle had no significant effect on carbachol concentration-response relationships. Tetrodotoxin did not decrease carbachol-induced contractions, but the muscarinic receptor antagonists (11-[[2-[(diethylaminomethyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b[2,3-b][1,4]benzodiazepin6-one (AF-DX116), N-[2-[2-[(dipropylamino)methyl]-1-piperidinyl]ethyl]-5,6-dihydro-6-oxo-11H-pyrido[2,3-b][1,4] benzodiazepine-11-carboxamide (AF-DX384), 4-diphenylacetoxy-N-methyl-piperidine(4-DAMP), para-fluoro-hexa hydro-sila-diphenidol (p-F-HHSiD), himbacine, methoctramine, pirenzepine, and tropicamide) inhibited carbachol-induced contractions in a competitive fashion. The pKb values for these muscarinic receptor antagonists correlated well with the known pKi values of these antagonists for the M3 muscarinic receptor. In uterine strips isolated from mice treated with pertussis toxin (100 microg/kg, i.p. for 96 h), Emax values for carbachol were significantly decreased, but effective concentration that caused 50% of Emax values (EC50) remained unchanged. In uterine strips treated with 4-DAMP mustard (30 nM) and AF-DX116 (1 microM), followed by subsequent washout of AF-DX116, neither carbachol nor N,N,N,-trimethyl-4-(2-oxo-1-pyrolidinyl)-2-butyn-1-ammonium iodide (oxotremorine-M) caused any contractile responses. Both M2 and M3 muscarinic receptor messenger RNAs were detected in the mouse uterus via

  3. Quantification of Estrogen Receptor Expression in Normal Breast Tissue in Postmenopausal Women With Breast Cancer and Association With Tumor Subtypes.

    PubMed

    Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E

    2017-09-01

    Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.

  4. Lack of the Metabotropic Glutamate Receptor Subtype 7 Selectively Modulates Theta Rhythm and Working Memory

    ERIC Educational Resources Information Center

    Holscher, Christian; Schmid, Susanne; Pilz, Peter K. D.; Sansig, Gilles; van der Putten, Herman; Plappert, Claudia F.

    2005-01-01

    Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in…

  5. Multiple P2Y receptor subtypes in the apical membranes of polarized epithelial cells

    PubMed Central

    McAlroy, H L; Ahmed, S; Day, S M; Baines, D L; Wong, H Y; Yip, C Y; Ko, W H; Wilson, S M; Collett, A

    2000-01-01

    Apical ATP, ATP, UTP and UDP evoked transient increases in short circuit current (ISC, a direct measure of transepithelial ion transport) in confluent Caco-2 cells grown on permeable supports. These responses were mediated by a population of at least three pharmacologically distinct receptors. Experiments using cells grown on glass coverslips showed that ATP and UTP consistently increased intracellular free calcium ([Ca2+]i) whilst sensitivity to UDP was variable. Cross desensitization experiments suggested that the responses to UTP and ATP were mediated by a common receptor population. Messenger RNA transcripts corresponding to the P2Y2, P2Y4 and P2Y6 receptors genes were detected in cells grown on Transwell membranes by the reverse transcriptase–polymerase chain reaction. Identical results were obtained for cells grown on glass. Experiments in which ISC and [Ca2+]i were monitored simultaneously in cells on Transwell membranes, confirmed that apical ATP and UTP increased both parameters and showed that the UDP-evoked increase in ISC was accompanied by a [Ca2+]i-signal. Ionomycin consistently increased [Ca2+]i in such polarized cells but caused no discernible change in ISC. However, subsequent application of apical ATP or UTP evoked a small rise in ISC but no rise in [Ca2+]i. UDP evoked no such response. As well as evoking increases in [Ca2+]i, the ATP/UTP-sensitive receptors present in Caco-2 cells thus allow direct control over ion channels in the apical membrane. The UDP-sensitive receptors, however, appear to simply evoke a rise in [Ca2+]i. PMID:11139443

  6. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormone-secreting adrenal phaeochromocytoma: review of the literature and report of a case

    PubMed Central

    Ruggeri, R.M.; Ferraù, F.; Campennì, A.; Simone, A.; Barresi, V.; Giuffrè, G.; Tuccari, G.; Baldari, S.; Trimarchi, F.

    2009-01-01

    Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochromocytoma, causing ectopic Cushing’s syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous, 9-cm mass in the right adrenal gland, and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region, corresponding to the adrenal mass. The patient underwent laparoscopic surgery and formalin-fixed and paraffin-embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed. Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma, which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing’s disease was dependent on CRH overproduction by the pheochromocytoma, in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas, and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas, suggesting that these tumours may represent potential target for octreotide treatment.

  7. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormone- secreting adrenal phaeochromocytoma: review of the literature and report of a case.

    PubMed

    Ruggeri, Rosaria M; Ferraù, F; Campennì, A; Simone, A; Barresi, V; Giuffrè, G; Tuccari, G; Baldari, S; Trimarchi, F

    2009-01-01

    Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochro-mocytoma,causing ectopic Cushing's syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous,9-cm mass in the right adrenal gland,and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region,corresponding to the adrenal mass.The patient underwent laparoscopic surgery and formalin-fixed and paraffin embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed.Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma,which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing's disease was dependent on CRH overproduction by the pheochromocytoma,in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas,and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas,suggesting that these tumours may represent potential target for octreotide treatment.

  8. Insulin oversecretion in MSG-obese rats is related to alterations in cholinergic muscarinic receptor subtypes in pancreatic islets.

    PubMed

    Miranda, Rosiane A; Agostinho, Aryane R; Trevenzoli, Isis H; Barella, Luiz F; Franco, Claudinéia C S; Trombini, Amanda B; Malta, Ananda; Gravena, Clarice; Torrezan, Rosana; Mathias, Paulo C F; de Oliveira, Júlio C

    2014-01-01

    Impaired pancreatic beta cell function and insulin secretion/action are a link between obesity and type 2 diabetes, which are worldwide public health burdens. We aimed to characterize the muscarinic acetylcholine receptor (mAChR) M1-M4 subtypes in isolated pancreatic islets from pre-diabetic obese rats that had been treated neonatally with monosodium L-glutamate (MSG). At 90 days of age, both the MSG and the control groups underwent biometric and biochemical evaluation. Anti-muscarinic drugs were used to study mAChR function either in vivo or in vitro. The results demonstrated that atropine treatment reduced insulin secretion in the MSG-treated and control groups, whereas treatment with an M2mAChR-selective antagonist increased secretion. Moreover, the insulinostatic effect of an M3mAChR-selective antagonist was significantly higher in the MSG-treated group. M1mAChR and M3mAChR expression was increased in the MSG-obese group by 55% and 73%, respectively. In contrast, M2mAChR expression decreased by 25% in the MSG group, whereas M4mAChR expression was unchanged. Functional changes in and altered content of the mAChR (M1-M4) subtypes are pivotal to the demand for high pancreatic beta cell insulin secretion in MSG-obese rats, which is directly associated with vagal hyperactivity and peripheral insulin resistance. © 2014 S. Karger AG, Basel.

  9. Rapid Antidepressant Actions of Scopolamine: Role of Medial Prefrontal Cortex and M1-subtype Muscarinic Acetylcholine Receptors

    PubMed Central

    Navarria, Andrea; Wohleb, Eric S.; Voleti, Bhavya; Ota, Kristie T.; Dutheil, Sophie; Lepack, Ashley E.; Dwyer, Jason M.; Fuchikami, Manabu; Becker, Astrid; Drago, Filippo; Duman, Ronald S.

    2015-01-01

    Clinical studies demonstrate that scopolamine, a nonselective muscarinic acetycholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex (mPFC). The present study extends these findings to determine the role of the mPFC and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. Administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that systemic administration of a selective M1-AChR antagonist, VU0255035 produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions, and found that scopolamine or VU0255035 administration blocked the anhedonic response caused by CUS, an effect that requires chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine, and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants. PMID:26102021

  10. Rapid antidepressant actions of scopolamine: Role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors.

    PubMed

    Navarria, Andrea; Wohleb, Eric S; Voleti, Bhavya; Ota, Kristie T; Dutheil, Sophie; Lepack, Ashley E; Dwyer, Jason M; Fuchikami, Manabu; Becker, Astrid; Drago, Filippo; Duman, Ronald S

    2015-10-01

    Clinical studies demonstrate that scopolamine, a non-selective muscarinic acetylcholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1). The present study extends these findings to determine the role of the medial prefrontal cortex (mPFC) and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. The administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or the PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that the systemic administration of a selective M1-AChR antagonist, VU0255035, produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions and found that a single dose of scopolamine or VU0255035 blocked the anhedonic response caused by CUS, an effect that requires the chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Studies on the role of serotonin receptor subtypes in the effect of sibutramine in various feeding paradigms in rats

    PubMed Central

    Grignaschi, G; Fanelli, E; Scagnol, I; Samanin, R

    1999-01-01

    The effect of the 5-hydroxytryptamine (5-HT) and noradrenaline (NA) reuptake inhibitor sibutramine was studied in food deprived, neuropeptide Y (NPY)- or muscimol-injected rats. Sibutramine dose-dependently reduced feeding caused by food-deprivation (ED50=5.1±0.8 mg kg−1) or by NPY injection into the paraventricular nucleus of the hypothalamus (ED50=6.0±0.5 mg kg−1). The increase in food intake caused by muscimol injected into the dorsal raphe was not modified by sibutramine (1–10 mg kg−1). The hypophagic effect of 5.1 mg kg−1 sibutramine in food-deprived rats was studied in rats pretreated with different serotonin receptor antagonists. Metergoline (non-selective, 0.3 and 1.0 mg kg−1), ritanserin (5-HT2A/2C, 0.5 and 1.0 mg kg−1) and GR127935 (5-HT1B/1D, 0.5 and 1.0 mg kg−1) did not modify the hypophagic effect of sibutramine, while SB206553 (5-HT2B/2C, 5 and 10 mg kg−1) slightly but significantly reduced it (Fint(2.53)=3.4; P<0.05). The reduction in food intake caused by 6.0 mg kg−1 sibutramine in NPY-injected rats was not modified by GR127935 (1.0 mg kg−1). The results suggest that, with the possible exception of a partial involvement of 5-HT2B/2C receptors in sibutramine's hypophagia in food-deprived rats, 5-HT1 and 5-HT2 receptor subtypes do not play an important role in the hypophagic effect of sibutramine, at least in the first 2 h after injection. PMID:10455265

  12. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation.

    PubMed

    Gregorio-Teruel, Lucia; Valente, Pierluigi; González-Ros, José Manuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2014-03-01

    The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.

  13. Neurokinin subtype receptors mediating substance P contraction in immature rabbit airways.

    PubMed

    Kazem, E; John, C; Tanaka, D T

    1996-01-01

    Two-week-old rabbit tracheal smooth muscle (TSM) and bronchial smooth muscle (BSM) segments were placed in organ baths, and isometric contractions to substance P (SP) were obtained. In the presence of phosphoramidon (PHOS), a neutral endopeptidase inhibitor, BSM segments were significantly more reactive and sensitive to SP than TSM segments. Neither neostigmine (NEO) nor atropine (ATR) eliminated these regional differences. Airway contractile responses to: 1) Senktide (NK-3 agonist); 2) neurokinin A (NKA, a NK-2 agonist); and 3) Septide (a highly selective NK-1 agonist) were separately obtained. In the presence of PHOS and NEO, Senktide was virtually inactive in both BSM and TSM. In the presence of PHOS, NEO, and ATR, NKA was equipotent in all airway segments; in contrast, the Septide response was significantly more reactive in BSM than in TSM segments. After inhibition of NK-1 activity with GR 82334, a competitive NK-1 receptor antagonist, the regional differences in SP reactivity were greatly diminished. This latter indication of a NK-1 contribution was confirmed using Septide-mediated inactivation of NK-1 receptors whereby the regional differences in airway sensitivity to SP were eliminated. These findings indicate that both endogenous neutral endopeptidase activity as well as NK-1 and NK-2 receptor influences may modulate the contractile responses to SP in immature rabbit airways.

  14. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome

  15. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats

    PubMed Central

    Shukla, Charu; Koch, Lauren G.; Britton, Steven L.; Cai, Minying; Hruby, Victor J.; Bednarek, Maria; Novak, Colleen M.

    2015-01-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of melanocortin peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. PMID:26404873

  16. Structural basis for subtype-specific inhibition of the P2X7 receptor

    SciTech Connect

    Karasawa, Akira; Kawate, Toshimitsu

    The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of themore » drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.« less

  17. Evans Blue Attachment Enhances Somatostatin Receptor Subtype-2 Imaging and Radiotherapy.

    PubMed

    Tian, Rui; Jacobson, Orit; Niu, Gang; Kiesewetter, Dale O; Wang, Zhantong; Zhu, Guizhi; Ma, Ying; Liu, Gang; Chen, Xiaoyuan

    2018-01-01

    Purpose: Radionuclide therapy directed against tumors that express somatostatin receptors (SSTRs) has proven effective for the treatment of advanced, low- to intermediate-grade neuroendocrine tumors in the clinic. In clinical usage, somatostatin peptide-based analogs, labeled with therapeutic radionuclides, provide an overall response rate of about 30%, despite the high cumulative activity injected per patient. We set out to improve the effectiveness of somatostatin radiotherapy by preparing a chemical analog that would clear more slowly through the urinary tract and, concomitantly, have increased blood circulation half-life and higher targeted accumulation in the tumors. Experimental Design: We conjugated a common, clinically-used SST peptide derivative, DOTA-octreotate, to an Evans blue analog (EB), which reversibly binds to circulating serum albumin. The resulting molecule was used to chelate 86 Y and 90 Y, a diagnostic and a therapeutic radionuclide, respectively. The imaging capabilities and the radiotherapeutic efficacy of the resulting radioligand was evaluated in HCT116/SSTR2, HCT116, and AR42J cell lines that express differing levels of SST2 receptors. Results: The synthesized radiopharmaceutical retained affinity and specificity to SSTR2. The new molecule also retained the high internalization rate of DOTA-octreotate, and therefore, showed significantly higher accumulation in SSTR2-positive tumors. Labeling of our novel EB-octreotate derivative with the therapeutic, pure beta emitter, 90 Y, resulted in improved tumor response and survival rates of mice bearing SSTR2 xenografts and had long term efficacy when compared to DOTA-octreotate itself. Conclusions: The coupling of a targeted peptide, a therapeutic radionuclide, and the EB‑based albumin binding provides for effective treatment of SSTR2-containing tumors.

  18. 3-Methoxylphenylpropyl amides as novel receptor subtype-selective melatoninergic ligands: characterization of physicochemical and pharmacokinetic properties.

    PubMed

    Zhu, Jing; Hu, Yueqing; Ho, Maurice K C; Wong, Yung H

    2011-01-01

    Developing subtype-selective melatoninergic ligands has been a subject of considerable interest in drug discovery. A series of 3-methoxyphenylpropyl amide derivatives showing selective binding capacity to type 2 melatonin receptor with subnanomolar range of affinities has been identified recently by our laboratory. In the present study, their physicochemical properties, Caco-2 cell and mdr1-MDCK cell permeability, plasma protein binding, and metabolic stability were investigated. The selected compounds are lipophilic in nature, exhibiting aqueous solubility ranging from 40 to 200 microg/mL. Cell permeability studies on Caco-2 and mdr1-MDCK model revealed that they were readily transported through intestinal epithelium and possessed high penetration potential through blood-brain barrier, implying good oral absorption and central nervous system (CNS) distribution potential. They also showed substantial binding to human plasma protein ranging from 78.5% to 92.3%. These compounds were, however, subjected to rapid cytochrome P450-mediated degradation in rat and human liver microsomes with in vitro half-life of 9.5-31.9 min in rat and 5.5-66.7 min in human, which were much shorter than that of melatonin (approximately 73 min). Metabolite profiling unveiled that C6-ether linkage and methoxy substituents were likely the major metabolic soft spots in their structures, which provided important information for further improvement of their structural stability.

  19. Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM.

    PubMed

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Maeda, Jun; Kawamura, Kazunori; Yui, Joji; Hatori, Akiko; Yoshida, Yuichiro; Nagai, Yuji; Tokunaga, Masaki; Higuchi, Makoto; Suhara, Tetsuya; Fukumura, Toshimitsu; Zhang, Ming-Rong

    2012-04-01

    In this study, we evaluate the utility of 4-[(18)F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]FITM) as a positron emission tomography (PET) ligand for imaging of the metabotropic glutamate receptor subtype 1 (mGluR1) in rat and monkey brains. In vivo distribution of [(18)F]FITM in brains was evaluated by PET scans with or without the mGluR1-selective antagonist (JNJ16259685). Kinetic parameters of monkey PET data were obtained using the two-tissue compartment model with arterial blood sampling. In PET studies in rat and monkey brains, the highest uptake of radioactivity was in the cerebellum, followed by moderate uptake in the thalamus, hippocampus and striatum. The lowest uptake of radioactivity was detected in the pons. These uptakes in all brain regions were dramatically decreased by pre-administration of JNJ16259685. In kinetic analysis of monkey PET, the highest volume of distribution (V(T)) was detected in the cerebellum (V(T) = 11.5). [(18)F]FITM has an excellent profile as a PET ligand for mGluR1 imaging. PET with [(18)F]FITM may prove useful for determining the regional distribution and density of mGluR1 and the mGluR1 occupancy of drugs in human brains.

  20. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains

    PubMed Central

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137

  1. Niacin Promotes Cardiac Healing after Myocardial Infarction through Activation of the Myeloid Prostaglandin D2 Receptor Subtype 1

    PubMed Central

    Kong, Deping; Li, Juanjuan; Shen, Yujun; Liu, Guizhu; Zuo, Shengkai; Tao, Bo; Ji, Yong; Lu, Ankang; Lazarus, Michael; Breyer, Richard M.

    2017-01-01

    Niacin is a well established drug used to lower cholesterol and prevent cardiovascular disease events. However, niacin also causes cutaneous flushing side effects due to release of the proresolution mediator prostaglandin D2 (PGD2). Recent randomized clinical trials have demonstrated that addition of niacin with laropiprant [a PGD2 receptor subtype 1 (DP1) blocker] to statin-based therapies does not significantly decrease the risk of cardiovascular disease events, but increases the risk of serious adverse events. Here, we tested whether, and how, niacin beneficial effects on myocardial ischemia require the activation of the PGD2/DP1 axis. Myocardial infarction (MI) was reproduced by ligation of the left anterior descending branch of the coronary artery in mice. We found that niacin increased PGD2 release in macrophages and shifted macrophages to M2 polarization both in vitro and in vivo by activation of DP1 and accelerated inflammation resolution in zymosan-induced peritonitis in mice. Moreover, niacin treatment facilitated wound healing and improved cardiac function after MI through DP1-mediated M2 bias and timely resolution of inflammation in infarcted hearts. In addition, we found that niacin intake also stimulated M2 polarization of peripheral monocytes in humans. Collectively, niacin promoted cardiac functional recovery after ischemic myocardial infarction through DP1-mediated M2 polarization and timely resolution of inflammation in hearts. These results indicated that DP1 inhibition may attenuate the cardiovascular benefits of niacin. PMID:28057839

  2. Antagonism of specific corticotropin-releasing factor receptor subtypes selectively modifies weight loss in restrained rats.

    PubMed

    Chotiwat, Christina; Harris, Ruth B S

    2008-12-01

    Rats exposed to 3 h of restraint stress on each of 3 days (RRS) lose weight on the days of RRS and gain weight at the same rate as controls after stress ends, but do not return to the weight of controls. RRS rats also show an exaggerated endocrine response to subsequent novel stressors. Studies described here tested the effects of corticotropin-releasing factor receptor (CRFR) antagonism on RRS-induced weight loss, hypophagia, and corticosterone release during mild stress in the postrestraint period. Weight loss was not prevented by either peripheral or third-ventricle administration of a CRFR1 antagonist, antalarmin, before each restraint. Antalarmin did, however, allow recovery of body weight in the poststress period. Third-ventricle administration of a CRFR2 antagonist, antisauvagine 30, had no effect in RRS rats but caused sustained weight loss in control animals. Surprisingly, third-ventricle administration of the nonselective CRFR antagonist, astressin, caused hypophagia and reversible weight loss in control rats. It had no effect in RRS rats. None of the antagonists modified the corticosterone response to RRS or to mild stress in the post-RRS period, but antalarmin suppressed corticosterone during the period of restraint in Control rats. These results suggest that CRFR1 activation is required for the initiation of events that lead to a prolonged down-regulation of body weight in RRS rats. The sustained reduction in body weight is independent of the severity of hypophagia on the days of restraint and of RRS-induced corticosterone release.

  3. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease.

    PubMed

    Cortés-Ramírez, Dionisio-Alejandro; Rodríguez-Tojo, María-Jose; Coca-Meneses, Juan-Carlos; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel

    2014-09-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk.

  4. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease

    PubMed Central

    Cortés-Ramírez, Dionisio A.; Rodríguez-Tojo, María J.; Coca-Meneses, Juan C.; Marichalar-Mendia, Xabier

    2014-01-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. Objectives: To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Material and Methods: Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Results: Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk. Key words:Oral lichenoid disease, oral lichen planus, oral lichenoid lesion, oral carcinogenesis, EGFR. PMID:24880441

  5. Aldosterone Induces Renal Fibrosis and Inflammatory M1-Macrophage Subtype via Mineralocorticoid Receptor in Rats

    PubMed Central

    Martín-Fernández, Beatriz; Rubio-Navarro, Alfonso; Cortegano, Isabel; Ballesteros, Sandra; Alía, Mario; Cannata-Ortiz, Pablo; Olivares-Álvaro, Elena; Egido, Jesús; de Andrés, Belén; Gaspar, María Luisa; de las Heras, Natalia; Lahera, Vicente; Moreno, Juan Antonio

    2016-01-01

    We aimed to evaluate macrophages heterogeneity and structural, functional and inflammatory alterations in rat kidney by aldosterone + salt administration. The effects of treatment with spironolactone on above parameters were also analyzed. Male Wistar rats received aldosterone (1 mgkg-1d-1) + 1% NaCl for 3 weeks. Half of the animals were treated with spironolactone (200 mg kg-1d-1). Systolic and diastolic blood pressures were elevated (p<0.05) in aldosterone + salt–treated rats. Relative kidney weight, collagen content, fibronectin, macrophage infiltrate, CTGF, Col I, MMP2, TNF-α, CD68, Arg2, and SGK-1 were increased (p<0.05) in aldosterone + salt–treated rats, being reduced by spironolactone (p<0.05). Increased iNOS and IFN-γ mRNA gene expression (M1 macrophage markers) was observed in aldosterone + salt rats, whereas no significant differences were observed in IL-10 and gene ArgI mRNA expression or ED2 protein content (M2 macrophage markers). All the observed changes were blocked with spironolactone treatment. Macrophage depletion with liposomal clodronate reduced macrophage influx and inflammatory M1 markers (INF-γ or iNOS), whereas interstitial fibrosis was only partially reduced after this intervention, in aldosterone plus salt-treated rats. In conclusion, aldosterone + salt administration mediates inflammatory M1 macrophage phenotype and increased fibrosis throughout mineralocorticoid receptors activation. PMID:26730742

  6. Learning and Memory Impairments in a Congenic C57BL/6 Strain of Mice That Lacks the M2 Muscarinic Acetylcholine Receptor Subtype

    PubMed Central

    Bainbridge, Natalie K.; Koselke, Lisa R.; Jeon, Jongrye; Bailey, Kathleen R.; Wess, Jürgen; Crawley, Jacqueline N.; Wrenn, Craige C.

    2009-01-01

    The neurotransmitter acetylcholine is an important modulator of cognitive functions including attention, learning, and memory. The actions of acetylcholine are mediated by five distinct muscarinic acetylcholine receptor subtypes (M1-M5). The lack of drugs with a high degree of selectivity for these subtypes has impeded the determination of which subtypes mediate which components of cholinergic neurotransmission relevant to cognitive abilities. The present study examined the behavioral functions of the M2 muscarinic receptor subtype by utilizing congenic C57BL/6 mice possessing a null-mutation in the M2 muscarinic receptor gene (M2−/− mice). Comprehensive assessment of general health and neurological function found no major differences between M2−/− and wild-type (M2+/+) mice. In tests of learning and memory, M2−/− mice were impaired in the acquisition (trials to criterion), but not the retention (72 hr) of a passive avoidance task. In a novel open field, M2−/− mice were impaired in between-sessions, but not within-session habituation. In a holeboard test of spatial memory, M2−/− mice committed more errors in working memory than M2+/+ mice. Reference memory did not differ between the genotypes. M2−/− mice showed no impairments in either cued or contextual fear conditioning. These findings replicate and extend earlier findings in a hybrid strain and solidify the interpretation that the M2 receptor plays a critical role in specific components of cognitive abilities. PMID:18346798

  7. Discrimination of putative M1 and M2 muscarinic receptor subtypes in rat brain by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)

    SciTech Connect

    Norman, A.B.; Creese, I.

    1986-03-01

    The EC/sub 50/ of EEDQ for the inhibition of (/sup 3/H)(-)QNB binding in vitro was approximately 3 fold lower for homogenates of hippocampus than brainstem (containing predominantly putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes respectively). Furthermore, the time-dependent loss of (/sup 3/H)(-)QNB binding produced by 100 ..mu..M EEDQ was faster in homogenates of hippocampus than brainstem. Administration of EEDQ (20 mg/kg i.p.) irreversibly reduced the Bmax of (/sup 3/H)(-)QNB binding by 56% and 34% in hippocampus and brainstem respectively. Pirenzepine competition for the remaining (/sup 3/H)(-)QNB binding sites following in vitro and in vivo treatment with EEDQ revealedmore » a significant increase in the proportion of (/sup 3/H)(-)QNB binding sites having low affinity for pirenzepine (M/sub 2/ receptors), indicating that the high affinity pirenzepine binding sites (M/sub 1/ receptors) were selectively and irreversibly lost. Thus, EEDQ discriminates the same putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes that are discriminated by pirenzepine. The reduction of (/sup 3/H)(-)QNB binding could be prevented both in vitro and in vivo by atropine or scopolamine. These data may indicate differences in the accessibility of these putative receptor subtypes to EEDQ or, alternatively, differences in the availability of carboxyl groups able to interact with EEDQ at the ligand recognition site of M/sub 1/ and M/sub 2/ muscarinic receptors.« less

  8. Mechanisms of inhibition of growth of human pancreatic carcinoma implanted in nude mice by somatostatin receptor subtype 2.

    PubMed

    Kumar, Manoj; Liu, Zheng-Ren; Thapa, Laxmi; Wang, Da-Yu; Tian, Rui; Qin, Ren-Yi

    2004-08-01

    Several studies reported that somatostatin receptor subtypes, especially subtype 2 (SSTR2), exerted their cytostatic and/or cytotoxic effects on various types of tumors. The aim of this study was to investigate the antitumor effect of SSTR2 gene transfer to the pancreatic cancer cell line PC-3 and the mechanisms involved in this effect. The full-length human SSTR2 cDNA was introduced into pancreatic cancer cell line PC-3 by lipofectamine-mediated transfection; positive clones were screened by G418, and stable expression of SSTR2 was detected by the immunohistochemical SABC method and RT-PCR. Athymic mice were separately xenografted with SSTR2-expressing cells (experimental group), vector control, and mock control cells. TUNEL assay was used to determine the apoptotic index (AI) in the tumors of these groups. The immunohistochemical SP method was used to determine expression of apoptosis-regulating genes Bcl-2 and Bax and re-expression of SSTR2 and to assess intratumoral microvessel density (MVD). Moreover, tumor volume and weight were compared among these 3 groups. Restoration of SSTR2 was observed in the experimental group both in vitro and in vivo. The AI was significantly higher in the experimental group (3.39 +/- 0.84%) compared with that in the vector control (0.69 +/- 0.08%) and mock control (0.68 +/- 0.09%) (P < 0.05). MVD was significantly lower in the experimental group (6.30 +/- 1.71) than that in the vector control (12.64 +/- 1.69) and mock control (13.50 +/- 1.86) (P < 0.05). Furthermore, a significant decrease in Bcl-2 and increase in Bax protein expression were detected in the experimental group compared with the vector control and mock control (P < 0.05). A significant negative correlation of protein expression between Bcl-2/Bax ratio and SSTR2 was observed in these tumors (P < 0.05). Tumor volume and weight were significantly decreased in the experimental group compared with the vector control and mock control (P < 0.05) groups. However, no

  9. Synthesis and evaluation of [125I]I-TSA as a brain nicotinic acetylcholine receptor alpha7 subtype imaging agent.

    PubMed

    Ogawa, Mikako; Tatsumi, Ryo; Fujio, Masakazu; Katayama, Jiro; Magata, Yasuhiro

    2006-04-01

    Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) alpha7 subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for alpha7 nAChRs. Therefore we synthesized (R)-3'-(5-[125I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one ([125I]I-TSA) and evaluated its potential for the in vivo detection of alpha7 nAChR in brain. In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [(125)I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 mul, i.c.v.) or nonradioactive I-TSA (50 micromol/kg, i.v.). I-TSA exhibited a high affinity and selectivity for the alpha7 nAChR (K(i) for alpha7 nAChR = 0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus (alpha7 nAChR-rich region) and was rather rapid in the cerebellum (alpha7 nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Despite its high affinity and selectivity, [125I]I-TSA does not appear to be a suitable tracer for in vivo alpha7 nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.

  10. Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain.

    PubMed

    Palazzo, Enza; de Novellis, Vito; Rossi, Francesco; Maione, Sabatino

    2014-06-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system and as such controls the majority of synapses. Glutamatergic neurotransmission is mediated via ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). Signaling via mGluRs permits to finely tune, rather than turning on/off, the excitatory neurotransmission as the iGluRs do. Eight mGluRs (mGluR1-8) have been cloned so far, which have been divided into three groups based on sequence homology, pharmacological properties and second messenger signaling. mGluRs are widely expressed both on glia and neurons. On neurons they are located both at postsynaptic (group I) and presynaptic sites (group II and III). Group II and III mGluR stimulation reduces glutamate release, which can prove useful in pathological conditions characterized by elevated glutamatergic neurotransmission which include chronic pain. Indeed, mGluRs are widely distributed on pain neuraxis. The recent development of selective mGluR ligands has permitted investigating the individual role of each mGluR on pain control. The development of (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, has revealed the mGluR8 role in inhibiting pain and its related affective consequences in chronic pain conditions. mGluR8 proved also to be overexpressed in pain controlling areas during pathological pain guaranteeing the availability of a switch for turning off abnormal pain. Thus, mGluR8 corresponds to an ideal target in designing novel analgesics. This review will focus on the novel insights into the mGluR8 role on pain control, with particular emphasis on the supraspinal descending pathway, an antinociceptive endogenous source, whose activation or disinhibition (via mGluR8) induces analgesia.

  11. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography.

    PubMed Central

    Gupta, N; McAllister, R; Drance, S M; Rootman, J; Cynader, M S

    1994-01-01

    Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis. Images PMID:7918268

  12. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.

    PubMed

    Mata, Karina M; Li, Wei; Reslan, Ossama M; Siddiqui, Waleed T; Opsasnick, Lauren A; Khalil, Raouf A

    2015-11-15

    Normal pregnancy is associated with adaptive hemodynamic, hormonal, and vascular changes, and estrogen (E2) may promote vasodilation during pregnancy; however, the specific E2 receptor (ER) subtype, post-ER signaling mechanism, and vascular bed involved are unclear. We tested whether pregnancy-associated vascular adaptations involve changes in the expression/distribution/activity of distinct ER subtypes in a blood vessel-specific manner. Blood pressure (BP) and plasma E2 were measured in virgin and pregnant (day 19) rats, and the thoracic aorta, carotid artery, mesenteric artery, and renal artery were isolated for measurements of ERα, ERβ, and G protein-coupled receptor 30 [G protein-coupled ER (GPER)] expression and tissue distribution in parallel with relaxation responses to E2 (all ERs) and the specific ER agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERα), diarylpropionitrile (DPN; ERβ), and G1 (GPER). BP was slightly lower and plasma E2 was higher in pregnant versus virgin rats. Western blots revealed increased ERα and ERβ in the aorta and mesenteric artery and GPER in the aorta of pregnant versus virgin rats. Immunohistochemistry revealed that the increases in ERs were mainly in the intima and media. In phenylephrine-precontracted vessels, E2 and PPT caused relaxation that was greater in the aorta and mesenteric artery but similar in the carotid and renal artery of pregnant versus virgin rats. DPN- and G1-induced relaxation was greater in the mesenteric and renal artery than in the aorta and carotid artery, and aortic relaxation to G1 was greater in pregnant versus virgin rats. The nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester with or without the cyclooxygenase inhibitor indomethacin with or without the EDHF blocker tetraethylammonium or endothelium removal reduced E2, PPT, and G1-induced relaxation in the aorta of pregnant rats, suggesting an endothelium-dependent mechanism, but did not affect E2-, PPT

  13. Clinical Overestimation of HER2 Positivity in Early Estrogen and Progesterone Receptor-Positive Breast Cancer and the Value of Molecular Subtyping Using BluePrint.

    PubMed

    Myburgh, Ettienne J; Langenhoven, Lizanne; Grant, Kathleen A; van der Merwe, Lize; Kotze, Maritha J

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) positivity is an important prognostic and predictive indicator in breast cancer. HER2 status is determined by immunohistochemistry and fluorescent in situ hybridization (FISH), which are potentially inaccurate techniques as a result of several technical factors, polysomy of chromosome 17, and amplification or overexpression of CEP17 (centromeric probe for chromosome 17) and/or HER2. In South Africa, HER2-positive tumors are excluded from a MammaPrint (MP; Agendia BV, Amsterdam, Netherlands) pretest algorithm. Clinical HER2 status has been reported to correlate poorly with molecular subtype. The aim of this study was to investigate the correlation of clinical HER2 status with BluePrint (BP) molecular subtyping. Clinico-pathologic and genomic information was extracted from a prospectively collected central MP database containing records of 256 estrogen receptor-positive and/or progesterone receptor-positive tumors. Twenty-one tumors considered HER2 positive on immunohistochemistry or FISH were identified for this study. The median age of patients was 56 years (range, 34 to 77 years), with a median tumor size of 16 mm (3 to 27 mm). Four (19%) tumors were confirmed HER2-enriched subtype, six (29%) were luminal A, and 11 (52%) were luminal B. The positive predictive values of HER2/CEP17 ratio ≥ 2 and HER2 copy number ≥ 6 were only 29% and 40%, respectively. The differences in means for HER2/CEP17 ratio were significant between BP HER2-enriched versus luminal ( P = .0249; 95% CI, 0.12 to 1.21) and MP high-risk versus low-risk tumors ( P = .0002; 95% CI, 0.40 to 1.06). Of the 21 tumors considered clinically HER2 positive, only four were HER2-enriched subtype with BP, indicating an overestimation of HER2 positivity. FISH testing has a poor positive predictive value.

  14. VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy

    PubMed Central

    Yuh, Joannes P.; Gregory, Karen J.; Morrison, Ryan D.; Bates, Brittney S.; Stauffer, Shaun R.; Emmitte, Kyle A.; Bubser, Michael; Peng, Weimin; Nedelcovych, Michael T.; Thompson, Analisa; Lv, Xiaohui; Xiang, Zixiu; Daniels, J. Scott; Niswender, Colleen M.; Lindsley, Craig W.; Jones, Carrie K.; Conn, P. Jeffrey

    2016-01-01

    Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a “partial NAM” so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [3H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models. PMID:26503377

  15. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    SciTech Connect

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less

  16. Metabotropic Glutamate Receptor Subtype 7 in the Bed Nucleus of the Stria Terminalis is Essential for Intermale Aggression

    PubMed Central

    Masugi-Tokita, Miwako; Flor, Peter J; Kawata, Mitsuhiro

    2016-01-01

    Metabotropic glutamate receptor subtype 7 (mGluR7) is a member of group III mGluRs, which localize to the presynaptic active zones of the mammalian central nervous system. Although histological, genetic, and electrophysiological studies ensure the importance of mGluR7, its roles in behavior and physiology remain largely unknown. Using a resident–intruder paradigm, we found a severe reduction in intermale aggressive behavior in mGluR7 knockout (KO) mice. We also found alterations in other social behaviors in male mGluR7 KO mice, including sexual behavior toward male intruders. Because olfaction is critical for rodent social behavior, including aggression, we performed an olfaction test, finding that mGluR7 KO mice failed to show interest in the smell of male urine. To clarify the olfactory deficit, we then exposed mice to urine and analyzed c-Fos-immunoreactivity, discovering a remarkable reduction in neural activity in the bed nucleus of the stria terminalis (BNST) of mGluR7 KO mice. Finally, intra-BNST administration of the mGluR7-selective antagonist 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP) also reproduced the phenotype of mGluR7 KO mice, including reduced aggression and altered social interaction. Thus mGluR7 may work as an ‘enhancer of neural activity' in the BNST and is important for intermale aggression. Our findings demonstrate that mGluR7 is essential for social behavior and innate behavior. Our study on mGluR7 in the BNST will shed light on future therapies for emotional disorders in humans. PMID:26149357

  17. Tonic suppression of spontaneous baroreceptor reflex by endogenous angiotensins via AT(2) subtype receptors at nucleus reticularis ventrolateralis in the rat.

    PubMed

    Lin, K; Chan, S H; Chan, J Y

    2001-04-01

    We evaluated the role of endogenous angiotensins at the rostral nucleus reticularis ventrolateralis (NRVL) in the modulation of spontaneous baroreceptor reflex (BRR) response and the subtype of angiotensin receptors involved using rats anesthetized and maintained with pentobarbital sodium. Bilateral microinjection of angiotensin II (ANG II) or its active metabolite angiotensin III (ANG III) (5, 10, or 20 pmol) into the NRVL significantly suppressed the spontaneous BRR response, as represented by the magnitude of transfer function between systemic arterial pressure and heart rate signals. The inhibitory effect of ANG III (20 pmol) was discernibly reversed by coadministration with its peptide antagonist, [Ile(7)]ANG III (1.6 nmol), or the nonpeptide AT(2) receptor antagonist, PD-123319 (1.6 nmol), but not by the nonpeptide AT(1) receptor antagonist, losartan (1.6 nmol). On the other hand, the peptide antagonist, [Sar(1), Ile(8)]ANG II (1.6 nmol) or both non-peptide antagonists appreciably reversed the suppressive action of ANG II (20 pmol). Whereas losartan produced minimal effect, blocking the endogenous activity of the angiotensins by microinjection into the bilateral NRVL of PD-123319, [Sar(1), Ile(8)]ANG II or [Ile(7)]ANG III elicited significant enhancement of the spontaneous BRR response. We conclude that under physiologic conditions both endogenous ANG II and ANG III may exert a tonic inhibitory modulation on the spontaneous BRR response by acting selectively on the AT(2) subtype receptors at the NRVL. Copyright 2001 Wiley-Liss, Inc.

  18. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries.

    PubMed

    Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako

    2016-01-01

    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. Down-regulation of angiotensin II receptor subtypes and desensitization of cyclic GMP production in neuroblastoma N1E-115 cells.

    PubMed

    Reagan, L P; Ye, X; Maretzski, C H; Fluharty, S J

    1993-01-01

    Murine neuroblastoma N1E-115 cells possess membranous receptors for the octapeptide angiotensin II (AngII) whose density is substantially increased by in vitro differentiation. Incubation of differentiated N1E-115 cells with AngII produced a rapid decrease in receptor density, but did not alter the affinity of these receptors for either 125I-AngII or the high-affinity antagonist 125I-[Sarc1,Ile8]-AngII. This apparent down-regulation was dose related with an ED50 of 1 nM, and maximal decreases of approximately 90% were obtained with 100 nM AngII. Receptor loss from differentiated cell membranes was unaffected by incubations of membranes obtained from agonist-exposed cells with non-hydrolyzable analogues of GTP for 60 min at 37 degrees C to ensure dissociation of the ligand. Partial loss of AngII receptors was apparent within 5 min of agonist exposure, whereas maximal declines were not observed until 30 min. This temporal pattern resulted from a preferential decrease in the AT1 receptor subtype during the first 5 min, followed by a decline in both AT1 and AT2 receptors with longer periods of agonist exposure. The loss of membranous receptors was reversible with partial recovery observed after 4 h, and with nearly full recovery observed 18 h after exposure of the cells to AngII. However, the long-term recovery of receptor density was blocked by the protein synthesis inhibitor, cycloheximide. The heptapeptide angiotensin III produced a similar down-regulation of receptors, and the high-affinity antagonist [Sarc1,Thr8]-AngII blocked agonist-induced down-regulation. Finally, the apparent loss of cell surface AngII receptors decreased the ability of AngII to stimulate cyclic GMP production within intact N1E-115 cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The 5-HT1-like receptor mediating the increase in canine external carotid blood flow: close resemblance to the 5-HT1D subtype.

    PubMed Central

    Villalón, C M; Terrón, J A

    1994-01-01

    1. It has recently been shown that the increase in external carotid blood flow induced by 5-hydroxy-tryptamine (5-HT) in the anaesthetized dog, being mimicked by 5-carboxamidotryptamine (5-CT), inhibited by methiothepin, vagosympathectomy and sympatho-inhibitory drugs, and resistant to blockade by ritanserin and MDL 72222, is mediated by stimulation of prejunctional 5-HT1-like receptors leading to an inhibitory action on carotid sympathetic nerves; these 5-HT1-like receptors are unrelated to either the 5-HT1A, 5-HT1B or 5-HT1C (now 5-HT2C) receptor subtypes. Inasmuch as 5-CT, 5-methoxytryptamine, sumatriptan and metergoline display high affinity, amongst other 5-HT binding sites, for the 5-HT1D subtype, in the present study we have used these drugs in an attempt to determine whether the above inhibitory prejunctional 5-HT1-like receptors correlate with the 5-HT1D subtype. 2. One-minute intracarotid (i.c.) infusions of 5-HT (0.3, 1, 3 and 10 micrograms), 5-CT (0.01, 0.03, 0.1 and 0.3 micrograms), 5-methoxytryptamine (1, 3, 10 and 30 micrograms) and sumatriptan (1, 3, 10, 30 and 100 micrograms) resulted in dose-dependent increases in external carotid blood flow (without changes in mean arterial blood pressure or heart rate) with the following rank order of agonist potency: 5-CT >> 5-HT > 5-methoxytryptamine > or = sumatriptan. Interestingly, sumatriptan-induced vasodilatation was followed by a more pronounced vasoconstriction. 3. The external carotid vasodilator effects of 5-HT, 5-CT, 5-methoxytryptamine and sumatriptan were dose-dependently and specifically antagonized by metergoline (10, 30 and/or 100 micrograms kg-1, i.v.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7812603

  1. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin.

    PubMed

    Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza

    2009-09-01

    Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  2. Solution conformation of a neuronal nicotinic acetylcholine receptor antagonist {alpha}-conotoxin OmIA that discriminates {alpha}3 vs. {alpha}6 nAChR subtypes

    SciTech Connect

    Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M.

    2006-06-23

    {alpha}-Conotoxin OmIA from Conus omaria is the only {alpha}-conotoxin that shows a {approx}20-fold higher affinity to the {alpha}3{beta}2 over the {alpha}6{beta}2 subtype of nicotinic acetylcholine receptor. We have determined a three-dimensional structure of {alpha}-conotoxin OmIA by nuclear magnetic resonance spectroscopy. {alpha}-Conotoxin OmIA has an '{omega}-shaped' overall topology with His{sup 5}-Asn{sup 12} forming an {alpha}-helix. Structural features of {alpha}-conotoxin OmIA responsible for its selectivity are suggested by comparing its surface characteristics with other functionally related {alpha}4/7 subfamily conotoxins. Reduced size of the hydrophilic area in {alpha}-conotoxin OmIA seems to be associated with the reduced affinity towards the {alpha}6{beta}2 nAChR subtype.

  3. Discovery and Characterization of Novel Subtype-Selective Allosteric Agonists for the Investigation of M1 Receptor Function in the Central Nervous System

    PubMed Central

    2009-01-01

    Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M1−M5. Of the mAChR subtypes, M1 is among the most heavily expressed in regions that are critical for learning and memory and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M1 and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M1. Using a functional high-throughput screening and subsequent diversity-oriented synthesis approach, we have discovered a novel series of highly selective M1 allosteric agonists. These compounds activate M1 with EC50 values in the 150−500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10 μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M1 receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M1 allosteric agonists provides critical research tools to allow dissection of M1-mediated effects in the CNS and potential leads for novel treatments for Alzheimer’s disease and schizophrenia. PMID:21961051

  4. Characterisation of the contribution of the GABA-benzodiazepine α1 receptor subtype to [11C]Ro15-4513 PET images

    PubMed Central

    Myers, James FM; Rosso, Lula; Watson, Ben J; Wilson, Sue J; Kalk, Nicola J; Clementi, Nicoletta; Brooks, David J; Nutt, David J; Turkheimer, Federico E; Lingford-Hughes, Anne R

    2012-01-01

    This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARα5 relative to the GABARα1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARα1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARα5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume (VT) differences in regions populated by different GABA receptor subtypes. Those with low α5 were best fitted by one-tissue compartment models; and those with high α5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that zolpidem caused a significant VT decrease (∼10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both α1 and α5 subtypes compared with those containing only α1. Zolpidem reduced one component (mean±s.d.: 71%±41%), presumed to reflect α1-subtype binding, but not another (13%±22%), presumed to reflect α5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands. PMID:22214903

  5. VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy.

    PubMed

    Nickols, Hilary Highfield; Yuh, Joannes P; Gregory, Karen J; Morrison, Ryan D; Bates, Brittney S; Stauffer, Shaun R; Emmitte, Kyle A; Bubser, Michael; Peng, Weimin; Nedelcovych, Michael T; Thompson, Analisa; Lv, Xiaohui; Xiang, Zixiu; Daniels, J Scott; Niswender, Colleen M; Lindsley, Craig W; Jones, Carrie K; Conn, P Jeffrey

    2016-01-01

    Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models. Copyright © 2015 by The American Society for Pharmacology and

  6. Metabotropic glutamate receptor subtype 7 has critical roles in regulation of the endocrine system and social behaviours.

    PubMed

    Masugi-Tokita, M; Yoshida, T; Kageyama, S; Kawata, M; Kawauchi, A

    2018-03-01

    Metabotropic glutamate receptor subtype 7 (mGluR7) is one of the group III mGluRs, which are negatively coupled to adenylate cyclase via Gi/Go proteins and localised to presynaptic active zones of the mammalian central nervous system. We previously reported that mGluR7 is essential for intermale aggression and amygdala-dependent fear learning. To elucidate the role of mGluR7 in the neuroendocrine system, we performed biochemical analyses and found a significant reduction of testosterone levels in mGluR7 knockout (KO) mice. Testosterone replacement restored intermale aggressive behaviour in castrated wild-type mice to the level of gonadally intact wild-type mice. However, given the same dosage of testosterone replacement, mGluR7 KO mice showed almost no aggressive behaviour. These results indicate that reduction of plasma testosterone is unrelated to the deficit in intermale aggression in mGluR7 KO mice. Social investigating behaviour of intact mGluR7 KO mice also differed from that of wild-type mice; e.g. the KO mice showing less frequent anogenital sniffing and more frequent grooming behaviour. Testosterone replacement increased anogenital sniffing and grooming behaviour in castrated mGluR7 KO mice, while the differences were still present between castrated wild-type mice and KO mice after both underwent testosterone replacement. These results imply that reduction of plasma testosterone may partially inhibit social investigating behaviours in intact mGluR7 KO mice. Furthermore, castrated mGluR7 KO mice have smaller seminal vesicles than those of castrated wild-type mice, although seminal vesicle weights were normal in intact mice. These observations suggest that, besides testicular testosterone, some other hormone levels may be dysregulated in mGluR7 KO mice, and indicate a critical role of mGluR7 in the endocrine system. Taken together, our findings demonstrate that mGluR7 is essential for the regulation of the endocrine system, in addition to innate behaviours

  7. Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203.

    PubMed

    Kimura, Yasuyuki; Siméon, Fabrice G; Zoghbi, Sami S; Zhang, Yi; Hatazawa, Jun; Pike, Victor W; Innis, Robert B; Fujita, Masahiro

    2012-02-01

    A new PET ligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile (18F-SP203) can quantify metabotropic glutamate subtype 5 receptors (mGluR5) in human brain by a bolus injection and kinetic modeling. As an alternative approach to a bolus injection, binding can simply be measured as a ratio of tissue to metabolite-corrected plasma at a single time point under equilibrium conditions achieved by administering the radioligand with a bolus injection followed by a constant infusion. The purpose of this study was to validate the equilibrium method as an alternative to the standard kinetic method for measuring 18F-SP203 binding in the brain. Nine healthy subjects were injected with 18F-SP203 using a bolus plus constant infusion for 300 min. A single ratio of bolus-to-constant infusion (the activity of bolus equaled to that of infusion over 219 min) was applied to all subjects to achieve equilibrium in approximately 120 min. As a measure of ligand binding, we compared total distribution volume (VT) calculated by the equilibrium and kinetic methods in each scan. The equilibrium method calculated VT by the ratio of radioactivity in the brain to the concentration of 18F-SP203 in arterial plasma at 120 min, and the kinetic method calculated VT by a two-tissue compartment model using brain and plasma dynamic data from 0 to 120 min. VT obtained via the equilibrium method was highly correlated with VT obtained via kinetic modeling. Inter-subject variability of VT obtained via the equilibrium method was slightly smaller than VT obtained via the kinetic method. VT obtained via the equilibrium method was ~10% higher than VT obtained via the kinetic method, indicating a small difference between the measurements. Taken together, the results of this study show that using the equilibrium method is an acceptable alternative to the standard kinetic method when using 18F-SP203 to measure mGluR5. Although small differences in the measurements obtained via the

  8. Subtype specific internalization of P2Y1 and P2Y2 receptors induced by novel adenosine 5′-O-(1-boranotriphosphate) derivatives

    PubMed Central

    Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G

    2004-01-01

    P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109

  9. Identification of N-methyl-D-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95.

    PubMed

    Cousins, Sarah L; Stephenson, F Anne

    2012-04-13

    N-methyl-D-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149-1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins.

  10. Identification of N-Methyl-d-aspartic Acid (NMDA) Receptor Subtype-specific Binding Sites That Mediate Direct Interactions with Scaffold Protein PSD-95*

    PubMed Central

    Cousins, Sarah L.; Stephenson, F. Anne

    2012-01-01

    N-methyl-d-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149–1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins. PMID:22375001

  11. Molecular cloning, molecular evolution and gene expression of cDNAs encoding thyrotropin-releasing hormone receptor subtypes in a teleost, the sockeye salmon (Oncorhynchus nerka).

    PubMed

    Saito, Yuichi; Mekuchi, Miyuki; Kobayashi, Noriaki; Kimura, Makoto; Aoki, Yasuhiro; Masuda, Tomohiro; Azuma, Teruo; Fukami, Motohiro; Iigo, Masayuki; Yanagisawa, Tadashi

    2011-11-01

    Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Identification of the dopamine autoreceptor in the guinea-pig retina as D2 receptor using novel subtype-selective antagonists

    PubMed Central

    Weber, Bernd; Schlicker, Eberhard; Sokoloff, Pierre; Stark, Holger

    2001-01-01

    Dopamine release in the retina is subject to modulation via autoreceptors, which belong to the D2 receptor family (encompassing the D2, D3 and D4 receptors). The aim of the present study was to determine the receptor subtype (D2 vs D3) involved in the inhibition of dopamine release in guinea-pig retinal discs, using established (haloperidol, (S)-nafadotride) and novel dopamine receptor antagonists (ST-148, ST-198). hD2L and hD3 receptors were expressed in CHO cells and the pKi values determined in binding studies with [125I]-iodosulpride were: haloperidol 9.22 vs 8.54; ST-148 7.85 vs 6.60; (S)-nafadotride 8.52 vs 9.51; ST-198 6.14 vs 7.92. The electrically evoked tritium overflow from retinal discs preincubated with [3H]-noradrenaline (which represents quasi-physiological dopamine release) was inhibited by the dopamine receptor agonists B-HT 920 (talipexole) and quinpirole (maximally by 82 and 71%; pEC50 5.80 and 5.83). The concentration-response curves of these agonists were shifted to the right by haloperidol (apparent pA2 8.69 and 8.23) and ST-148 (7.52 and 7.66). (S)-Nafadotride 0.01 μM and ST-198 0.32 μM did not affect the concentration-response curve of B-HT 920. The dopamine autoreceptor in the guinea-pig retina can be classified as a D2 receptor. ST-148 and ST-198 show an improved selectivity for D2 and D3 receptors when compared to haloperidol and (S)-nafadotride, respectively. PMID:11498509

  13. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat.

    PubMed

    Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V

    1992-08-01

    Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy.

  14. Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice

    PubMed Central

    Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette

    2014-01-01

    Somatostatin interacts with 5 G-protein-coupled receptor (sst1–5). Octreotide, a stable sst2≫3≥5 agonist, octreotide, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1–5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10 μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (4 sets of 3 CRD, each at 55 mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between 2 sets of graded CRD (15, 30, 45, and 60 mmHg, 3 times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60 mmHg CRD, respectively. ODT8-SST (10 μg) and the sst2 agonist, S-346-011 (3 and 10 μg) prevented mechanically-induced visceral hypersensitivity in the 3 sets of CRD, the sst1 agonist (10 μg) blocked only the 2nd set and showed a trend at 3 μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10 μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10 μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. PMID:25451334

  15. Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice.

    PubMed

    Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette

    2015-01-01

    Somatostatin interacts with five G-protein-coupled receptor (sst1-5). Octreotide, a stable sst2≫3≥5 agonist, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1-5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (four sets of three CRD, each at 55mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between two sets of graded CRD (15, 30, 45, and 60mmHg, three times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60mmHg CRD, respectively. ODT8-SST (10μg) and the sst2 agonist, S-346-011 (3 and 10μg) prevented mechanically induced visceral hypersensitivity in the three sets of CRD, the sst1 agonist (10μg) blocked only the 2nd set and showed a trend at 3μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness.

    PubMed

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.

  17. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness

    PubMed Central

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel1a1.4, mel1a1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0–15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer. PMID:25688184

  18. Rescue of Amyloid-Beta-Induced Inhibition of Nicotinic Acetylcholine Receptors by a Peptide Homologous to the Nicotine Binding Domain of the Alpha 7 Subtype

    PubMed Central

    Trujillo, Cleber A.; Sathler, Luciana B.; Juliano, Maria A.; Juliano, Luiz; Ulrich, Henning; Ferreira, Sergio T.

    2013-01-01

    Alzheimer's disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD. PMID:23894286

  19. Subtype-Specific Radiation Response and Therapeutic Effect of FAS Death Receptor Modulation in Human Breast Cancer.

    PubMed

    Lee, Chen-Ting; Zhou, Yingchun; Roy-Choudhury, Kingshuk; Siamakpour-Reihani, Sharareh; Young, Kenneth; Hoang, Peter; Kirkpatrick, John P; Chi, Jen-Tsan A; Dewhirst, Mark W; Horton, Janet K

    2017-08-01

    Breast cancer is the most common malignancy diagnosed among women and represents a heterogeneous group of subtypes. Radiation therapy is a critical component of treatment for breast cancer patients. However, little is known about radiation response among these intrinsic subtypes. In previous studies, we identified a significant induction of FAS after irradiation in biologically favorable breast cancer patients and breast cancer cell lines. Here, we expanded our study and investigated radiation response in a mouse model of breast cancer. MCF7 (luminal), HCC1954 (HER2 + ) or SUM159 (basal) cells were implanted orthotopically into the dorsal mammary fat pad of nude mice. These mice were then treated with different doses of radiation to assess tumor growth control. We further investigated the therapeutic effect of FAS modulation by silencing FAS in radiation-responsive tumors and injecting FAS agonist antibody into radiation-resistant tumors. Exposure to radiation inhibited MCF7, and to a lesser extent HCC1954 tumor growth in a dose-dependent manner. In contrast, SUM159 tumors were resistant to radiation. The estimated TCD 50 values were 19.3 Gy for MCF7 and 44.9 Gy for SUM159. Radiation induced FAS expression in MCF7 tumors, but not SUM159 tumors. We found that silencing of FAS did not negatively impact radiation response in MCF7 tumors, possibly due to compensation by other apoptotic pathways. On the other hand, FAS activating antibody in combination with radiation treatment delayed SUM159 and HCC1954 tumor growth. However, it did not reach statistical significance compared to radiation treatment alone. Our results suggest that there is intrinsic variation in radiation response among breast cancer subtypes. FAS activation concurrent with radiation slows tumor growth in the radiation-resistant subtypes, but the effect was not significant. Alternative subtype-specific modulators of radiation response are under investigation.

  20. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    PubMed

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  1. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    SciTech Connect

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5more » mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.« less

  2. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  3. Down-regulation of muscarinic receptors and the m3 subtype in white-footed mice by dietary exposure to parathion

    USGS Publications Warehouse

    Jett, David A.; Hill, E.F.; Fernando, J.C.; Eldefrawi, M.E.; Eldefrawi, A.T.

    1993-01-01

    The effect of ad libitum dietary exposure (as occurs in the field) to parathion for 14 d was investigated on the muscarinic acetylcholine receptor (mAChR) in brains and submaxillary glands of adults of a field species, the white-footed mouse Peromyscus leucopus. Immunoprecipitation using subtype selective antibodies revealed that the relative ratios of the m1-m5 mAChR subtypes in Peromyscus brain were similar to those in rat brain. There was little variability in acetylcholinesterase (AChE) activity in control mice brains but large variability in 39 exposed mice, resulting from differences in food ingestion and parathion metabolism. Accordingly, data on radioligand binding to mAChRs in each mouse brain were correlated with brain AChE activity in the same mouse, and AChE inhibition served as a biomarker of exposure reflecting in situ paraoxon concentrations. Exposure to parathion for 14 d reduced maximal binding (Bmax) of [3H]quinuclidinyl benzilate ([3H]QNB), [3H]-N-methylscopolamine ([3H]NMS), and [3H]-4-diphenylacetoxy-N-methylpiperidine methiodide ([3H]-4-DAMP) by up to approximately 58% without affecting receptor affinities for these ligands. Maximal reduction in Bmax of [3H]QNB and [3H]-4-DAMP binding occurred in mice with highest AChE inhibition, while equivalent maximal reduction in Bmax of [3H]NMS occurred in mice with only approximately 10% AChE inhibition, without further change at higher parathion doses. This is believed to be due to the hydrophilicity of [3H]NMS, which limits its accessibility to internalized desensitized receptors. In submaxillary glands (mAChRs are predominantly m3 subtype), there were significant dose-dependent reductions in [3H]QNB binding and m3 mRNA levels in exposed mice, revealed by Northern blot analyses. The reduction in m3 receptors is suggested to result mostly from reduced synthesis at the transcription level, rather than from translational or posttranslational events. The data suggest that down-regulation of mAChRs occurs

  4. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    PubMed

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and

  6. Human pDCs display sex-specific differences in type I interferon subtypes and interferon α/β receptor expression.

    PubMed

    Ziegler, Susanne M; Beisel, Claudia; Sutter, Kathrin; Griesbeck, Morgane; Hildebrandt, Heike; Hagen, Sven H; Dittmer, Ulf; Altfeld, Marcus

    2017-02-01

    The outcomes of many diseases differ between women and men, with women experiencing a higher incidence and more severe pathogenesis of autoimmune and some infectious diseases. It has been suggested that this is partially due to activation of plasmacytoid dendritic cells (pDCs), the main producers of interferon (IFN)-α, in response to toll-like receptor (TLR)7 stimulation. We investigated the induction of type I IFN (IFN-I) subtypes upon TLR7 stimulation on isolated pDCs. Our data revealed a sex-specific differential expression of IFN-Is, with pDCs from females showing a significantly higher mRNA expression of all 13 IFN-α subtypes. In addition, pDCs from females had higher levels of IFN-β mRNA after stimulation, indicating that sex differences in IFN-I production by pDCs were mediated by a signaling event upstream of the first loop of IFN-I mRNA transcription. Furthermore, the surface expression levels of the common IFN-α/β receptor subunit 2 were significantly higher on pDCs from females in comparison to males. These data indicate that higher IFN-α production is already established at the mRNA level and propose a contribution of higher IFN-α/β receptor 2 expression on pDCs to the immunological differences in IFN-I production observed between females and males. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Conservation of structure, signaling and pharmacology between two serotonin receptor subtypes from decapod crustaceans, Panulirus interruptus and Procambarus clarkii.

    PubMed

    Spitzer, Nadja; Edwards, Donald H; Baro, Deborah J

    2008-01-01

    Serotonin (5-HT) plays important roles in the maintenance and modulation of neural systems throughout the animal kingdom. The actions of 5-HT have been well characterized for several crustacean model circuits; however, a dissection of the serotonergic transduction cascades operating in these models has been hampered by the lack of pharmacological tools for invertebrate receptors. Here we provide pharmacological profiles for two 5-HT receptors from the swamp crayfish, Procambarus clarkii: 5-HT(2beta) and 5-HT(1alpha). In so doing, we also report the first functional expression of a crustacean 5-HT(1) receptor, and show that it inhibits accumulation of cAMP. The drugs mCPP and quipazine are 5-HT(1alpha) agonists and are ineffective at 5-HT(2beta). Conversely, methiothepin and cinanserin are antagonists of 5-HT(2beta) but do not block 5-HT(1alpha). A comparison of these two receptors with their orthologs from the California spiny lobster, Panulirus interruptus, indicates conservation of protein structure, signaling and pharmacology. This conservation extends beyond crustacean infraorders. The signature residues that form the ligand-binding pocket in mammalian 5-HT receptors are found in the crustacean receptors. Similarly, the protein domains involved in G protein coupling are conserved between the two crustacean receptors and other characterized arthropod and mammalian 5-HT receptors. Considering the apparent conservation of pharmacological properties between crustacean 5-HT receptors, these tools could be applicable to related crustacean physiological preparations.

  8. Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20.

    PubMed

    Tallent, M; Liapakis, G; O'Carroll, A M; Lolait, S J; Dichter, M; Reisine, T

    1996-04-01

    The somatostatin receptor subtypes SSTR2 and SSTR5 mediate distinct endocrine and exocrine functions of somatostatin and may also be involved in mediating the neuromodulatory actions of somatostatin in the brain. To investigate whether these receptors couple to voltage-sensitive Ca2+ channels, SSTR2 and SSTR5 selective agonists were tested for their effects on AtT-20 cells using whole cell patch clamp techniques. The SSTR2 selective agonist MK 678 inhibited Ca2+ currents in AtT-20 cells. The effects of MK 678 were reversible and blocked by pertussis toxin pretreatment, suggesting that SSTR2 couples to the L-type Ca2+ channels via G proteins. Other SSTR2-selective agonists, including BIM 23027 and NC8-12, were able to inhibit the Ca2+ currents in these cells. The SSTR5 selective agonist BIM 23052 also inhibited the Ca2+ currents in these cells and this effect was reversible and blocked by pertussis toxin treatment. The ability of SSTR5 to mediate inhibition of the Ca2+ current was greatly attenuated by pretreatment with the SSTR5-selective agonist BIM 23052, whereas SSTR2-mediated inhibition of the Ca2+ current was not altered by pretreatment with the SSTR2-selective agonist MK 678. Thus, the SSTR2 and SSTR5 couplings to the Ca2+ current are differentially regulated. The peptide L362,855, which we previously have shown to have high affinity for the cloned SSTR5, had minimal effects on Ca2+ currents in AtT-20 cells at concentrations up to 100 nM and did not alter the ability of MK 678 to inhibit Ca2+ currents. However, it completely antagonized the effects of the SSTR5-selective agonist BIM 23052 on the Ca2+ currents. L362,855 is an antagonist/partial agonist at SSTR5 since it can reduce Ca2+ currents in these cells at concentrations above 100 nM. L362,855 is also an antagonist/partial agonist at the cloned rat SSTR5 expressed in CHO cells since it is able to block the inhibition of cAMP accumulation induced by somatostatin at concentrations below 100 nM but at

  9. Putative therapeutic targets for symptom subtypes of adult ADHD: D4 receptor agonism and COMT inhibition improve attention and response inhibition in a novel translational animal model.

    PubMed

    Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Hayward, Andrew; Marshall, Kay M; Neill, Joanna C

    2015-04-01

    Prefrontal cortical dopamine plays an important role in cognitive control, specifically in attention and response inhibition; the core deficits in ADHD. We have previously shown that methylphenidate and atomoxetine differentially improve these deficits dependent on baseline performance. The present study extends this work to investigate the effects of putative therapeutic targets in our model. A selective dopamine D4 receptor agonist (A-412997) and the catechol-O-methyl-transferase (COMT) inhibitor; tolcapone, were investigated in the combined subtype of adult ADHD (ADHD-C). Adult female rats were trained to criterion in the 5C-CPT (5-Choice Continuous Performance Task) and then separated into subgroups according to baseline levels of sustained attention, vigilance, and response disinhibition. The subgroups included: high-attentive (HA) and low-attentive with high response disinhibition (ADHD-C). The ADHD-C subgroup was selected to represent the combined subtype of adult ADHD. Effects of tolcapone (3.0, 10.0, 15.0mg/kg) and A-412997 (0.1, 0.3, 1.0µmol/kg) were tested by increasing the variable inter-trial-interval (ITI) duration in the 5C-CPT. Tolcapone (15mg/kg) significantly increased sustained attention, vigilance and response inhibition in ADHD-C animals, and impaired attention in HA animals. A-412997 (1.0µmol/kg) significantly increased vigilance and response inhibition in ADHD-C animals only, with no effect in HA animals. This is the first study to use the translational 5C-CPT to model the adult ADHD-C subtype in rats and to study new targets in this model. Both tolcapone and A-412997 increased vigilance and response inhibition in the ADHD-C subgroup. D4 and COMT are emerging as important potential therapeutic targets in adult ADHD that warrant further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  10. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    PubMed

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The change in muscarinic receptor subtypes in different brain regions of rats treated with fluoxetine or propranolol in a model of post-traumatic stress disorder.

    PubMed

    Aykaç, Aslı; Aydın, Banu; Cabadak, Hülya; Gören, M Zafer

    2012-06-15

    This study shows the possible contribution of muscarinic receptors in the pathophysiology of post-traumatic stress disorder. Sprague-Dawley rats of both sexes were exposed to dirty cat litter (trauma) for 10 min and the protocol was repeated 1 week later with a trauma reminder (clean litter). The rats also received intraperitoneal fluoxetine (2.5, 5 or 10 mg/kg/day), propranolol (10 mg/kg/day) or saline for 7 days between two exposure sessions. Functional behavioral experiments were performed using elevated plus maze, following exposure to trauma reminder. Western blot analyses for M(1), M(2), M(3), M(4) and M(5) receptor proteins were employed in the homogenates of the hippocampus, the frontal cortex and the amygdaloid complex. The anxiety indices increased from 0.63±0.02 to 0.89±0.04 in rats exposed to the trauma reminder. The freezing times were also recorded as 47±6 and 133±12 s, in control and test animals respectively. Fluoxetine or propranolol treatments restored the increases in the anxiety indices and the freezing times. Female rats had higher anxiety indices compared to males. Western blot data showed increases in M(2) and M(5) expression in the frontal cortex. Expression of M(1) receptors increased and M(4) subtype decreased in the hippocampus. In the amygdaloid complex of rats, we also detected a down-regulation of M(4) receptors. Fluoxetine and propranolol only corrected the changes occurred in the frontal cortex. These results may imply that muscarinic receptors are involved in this experimental model of post-traumatic stress disorder. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Differential regulation of gonadotropin-releasing hormone (GnRH) neuron activity and membrane properties by acutely-applied estradiol: dependence on dose and estrogen receptor subtype

    PubMed Central

    Chu, Zhiguo; Andrade, Josefa; Shupnik, Margaret A.; Moenter, Suzanne M.

    2009-01-01

    GnRH neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, non-genomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath-applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100pM) to 100nM enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization (sADP) amplitudes, and reduced IAHP and enhanced IADP. The reduction of IAHP was occluded by prior blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) β-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERα or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10pM) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10pM estradiol reduced firing of GnRH neurons; this was mimicked by an ERα agonist. ERα agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERβ agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent upon both dose and receptor subtype. In cooperation with genomic actions, non-genomic effects may play a role in feedback regulation of GnRH secretion. PMID:19403828

  13. Molecular basis for subtype-specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino terminal domain

    PubMed Central

    Romero-Hernandez, Annabel; Simorowski, Noriko; Karakas, Erkan

    2016-01-01

    Summary Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino terminal domain (ATD). Despite physiological importance, the molecular mechanism underlying the high-affinity zinc inhibition has been incomplete due to lack of a GluN2A ATD structure. Here we show the first crystal structures of the heterodimeric GluN1-GluN2A ATD, which provide the complete map of the high-affinity zinc binding site and reveals distinctive features from the ATD of the GluN1-GluN2B subtype. Perturbation of hydrogen bond networks at the hinge of the GluN2A bi-lobe structure affects both zinc inhibition and open probability supporting the general model where the bi-lobe motion in ATD regulates the channel activity in NMDA receptors. PMID:27916457

  14. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor ligands. Part 2: carboxamide derivatives with different spacer motifs.

    PubMed

    Eibl, Christoph; Munoz, Lenka; Tomassoli, Isabelle; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and selectivity for the α4β2(∗) nAChR. Compounds 15, 25, and 47 with Ki values of about 1 nM displayed the highest affinities for α4β2(∗) nAChR. All evaluated compounds are partial agonists or antagonists at α4β2(∗), with reduced or no effects on α3β4(∗) with the exception of compound 15 (agonist), and reduced or no effect at α7 and muscle subtypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Species differences in the relative densities of D1- and D2-like dopamine receptor subtypes in the Japanese quail and rats: an in vitro quantitative receptor autoradiography study.

    PubMed

    Kleitz, Hayley K; Cornil, Charlotte A; Balthazart, Jacques; Ball, Gregory F

    2009-01-01

    Evidence has accumulated that the regulation of male sexual behavior by dopamine might not be the same in Japanese quail (and perhaps all birds) as it is in mammals. For example, the non-selective dopamine receptor agonist, apomorphine (APO), facilitates male sexual behavior in rats but inhibits it in quail. Although the general organization of the dopamine system is similar in birds and mammals, it is possible that the relative distribution and/or density of binding sites are different. We therefore compared the relative densities of D1-like and D2-like receptor subtypes in Japanese quail and rats, with the use of in vitro quantitative receptor autoradiography. Brain sections from 8 male rats and 8 male quail were labeled with [(3)H]SCH-23390 and [(3)H]Spiperone. In general we found a systematic species difference in the relative density of D1- vs. D2-like receptors such that the D2/D1 ratio is higher in quail than in rats in areas, known to be important target sites for dopamine action such as striatal regions or the preoptic area, which is also associated with activation of sexual behavior. This difference might explain the variation in the behavioral effectiveness of APO in rats as compared to quail; with a higher relative density of D2-like receptors in quail, a similar dose of APO would be more likely to activate inhibitory processes in quail than in rats. (c) 2009 S. Karger AG, Basel.

  16. Subtype-selective regulation of IP(3) receptors by thimerosal via cysteine residues within the IP(3)-binding core and suppressor domain.

    PubMed

    Khan, Samir A; Rossi, Ana M; Riley, Andrew M; Potter, Barry V L; Taylor, Colin W

    2013-04-15

    IP(3)R (IP(3) [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca(2+) channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP(3)R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP(3)-evoked Ca(2+) release via IP(3)R1 and IP(3)R2, but inhibited IP(3)R3. Activation of IP(3)R is initiated by IP(3) binding to the IBC (IP(3)-binding core; residues 224-604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1-223). Thimerosal (100 μM) stimulated IP(3) binding to the isolated NT (N-terminal; residues 1-604) of IP(3)R1 and IP(3)R2, but not to that of IP(3)R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP(3)) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP(3)R activation. IP(3) binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP(3)R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP(3) binding to the chimaeric NT and IP(3)-evoked Ca(2+) release from the chimaeric IP(3)R. This is the first systematic analysis of the effects of a thiol reagent on each IP(3)R subtype. We conclude that thimerosal selectively sensitizes IP(3)R1 and IP(3)R2 to IP(3) by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor.

  17. Subtype-selective regulation of IP3 receptors by thimerosal via cysteine residues within the IP3-binding core and suppressor domain

    PubMed Central

    Khan, Samir A.; Rossi, Ana M.; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.

    2013-01-01

    IP3R (IP3 [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca2+ channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP3R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP3-evoked Ca2+ release via IP3R1 and IP3R2, but inhibited IP3R3. Activation of IP3R is initiated by IP3 binding to the IBC (IP3-binding core; residues 224–604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1–223). Thimerosal (100 μM) stimulated IP3 binding to the isolated NT (N-terminal; residues 1–604) of IP3R1 and IP3R2, but not to that of IP3R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP3) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP3R activation. IP3 binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP3R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP3 binding to the chimaeric NT and IP3-evoked Ca2+ release from the chimaeric IP3R. This is the first systematic analysis of the effects of a thiol reagent on each IP3R subtype. We conclude that thimerosal selectively sensitizes IP3R1 and IP3R2 to IP3 by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor. PMID:23282150

  18. Label noise in subtype discrimination of class C G protein-coupled receptors: A systematic approach to the analysis of classification errors.

    PubMed

    König, Caroline; Cárdenas, Martha I; Giraldo, Jesús; Alquézar, René; Vellido, Alfredo

    2015-09-29

    The characterization of proteins in families and subfamilies, at different levels, entails the definition and use of class labels. When the adscription of a protein to a family is uncertain, or even wrong, this becomes an instance of what has come to be known as a label noise problem. Label noise has a potentially negative effect on any quantitative analysis of proteins that depends on label information. This study investigates class C of G protein-coupled receptors, which are cell membrane proteins of relevance both to biology in general and pharmacology in particular. Their supervised classification into different known subtypes, based on primary sequence data, is hampered by label noise. The latter may stem from a combination of expert knowledge limitations and the lack of a clear correspondence between labels that mostly reflect GPCR functionality and the different representations of the protein primary sequences. In this study, we describe a systematic approach, using Support Vector Machine classifiers, to the analysis of G protein-coupled receptor misclassifications. As a proof of concept, this approach is used to assist the discovery of labeling quality problems in a curated, publicly accessible database of this type of proteins. We also investigate the extent to which physico-chemical transformations of the protein sequences reflect G protein-coupled receptor subtype labeling. The candidate mislabeled cases detected with this approach are externally validated with phylogenetic trees and against further trusted sources such as the National Center for Biotechnology Information, Universal Protein Resource, European Bioinformatics Institute and Ensembl Genome Browser information repositories. In quantitative classification problems, class labels are often by default assumed to be correct. Label noise, though, is bound to be a pervasive problem in bioinformatics, where labels may be obtained indirectly through complex, many-step similarity modelling processes

  19. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    ERIC Educational Resources Information Center

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  20. Expression Analysis of Dopamine Receptor Subtypes in Normal Human Pituitaries, Nonfunctioning Pituitary Adenomas and Somatotropinomas, and the Association between Dopamine and Somatostatin Receptors with Clinical Response to Octreotide-LAR in Acromegaly

    PubMed Central

    Neto, Leonardo Vieira; Machado, Evelyn de O.; Luque, Raul M.; Taboada, Giselle F.; Marcondes, Jorge B.; Chimelli, Leila M. C.; Quintella, Leonardo Pereira; Niemeyer, Paulo; de Carvalho, Denise P.; Kineman, Rhonda D.; Gadelha, Mônica R.

    2009-01-01

    Context: Dopamine receptor (DR) and somatostatin receptor subtype expression in pituitary adenomas may predict the response to postsurgical therapies. Objectives: Our objectives were to assess and compare the mRNA levels of DR1-5 and somatostatin receptors 1–5 in normal pituitaries (NPs), nonfunctioning pituitary adenomas (NFPAs), and somatotropinomas. In addition, we determined whether the level of DR expression correlates with the in vivo response to octreotide-LAR in acromegalic patients. Design and Patients: Eight NPs, 30 NFPAs, and 39 somatotropinomas were analyzed for receptor mRNA levels by real-time RT-PCR. The DR2 short variant was estimated as the DR2 long/DR2 total (DR2T). The relationship between DR expression and the postsurgical response to octreotide-LAR was assessed in 19 of the acromegalic patients. Results: DR3 was not detected. The relationship between expression levels of DR subtypes in NPs and somatotropinomas was DR2T⋙DR4≫DR5>DR1, whereas in NFPAs, DR2T⋙DR4≫DR1>DR5. The DR2 short variant was the predominant DR2 variant in the majority of samples. In acromegalics treated with octreotide-LAR, DR1 was negatively correlated with percent GH reduction (3 months: r = −0.67, P = 0.002; and 6 months: r = −0.58, P = 0.009), and DR5 was positively correlated with percent IGF-I reduction (3 months: r = 0.55, P = 0.01; and 6 months: r = 0.47, P = 0.04). Conclusions: DR2 is the predominant DR subtype in NPs, NFPAs, and somatotropinomas. The fact that DR1, DR4, and DR5 are also expressed in many adenomas tested suggests that these receptors might also play a role in the therapeutic impact of postsurgical medical therapies in patients with NFPA and acromegaly. This was supported by the finding that the in vivo response to octreotide-LAR was negatively associated with DR1 and positively associated with DR5. PMID:19293270

  1. [Expression of epidermal growth factor receptor mutation specific antibodies in lung adenocarcinoma: evaluation of sensitivity, specificity and relationship to histologic subtypes].

    PubMed

    Lai, Y M; Feng, Q; Sun, Y; Wang, P; Shi, Y F; Zhao, M; Wu, Q; Li, X H

    2016-09-08

    To evaluate the expression of epidermal growth factor receptor (EGFR) mutation specific antibodies in invasive lung adenocarcinomas, and their sensitivity, specificity, as well as relationship to histological subtypes. Immunostaining with EGFR mutation-specific antibodies, del E746-A750 in exon 19 and L858R in exon 21, was performed in tissue microarrays of 884 cases of resection specimens to study the relationship between the immunophenotypes and morphologic subtypes. The sensitivity and specificity of the stains were compared with gene mutations detected by amplified refractory mutation system-polymerase chain reaction (ARMS-PCR). Of the 884 cases, the expression of del E746-A750 in exon 19 was 3+ , 2+ , 1+ and 0 in 7 cases (0.79%), 38 cases (4.30%), 129 cases (14.59%) and 710 cases (80.32%), respectively. For L858R in exon 21, 3+ , 2+ , 1+ and 0 staining were seen in 82 cases (9.28%), 93 cases (10.52%), 82 cases (9.28%) and 627 cases (70.93%), respectively. For both antibodies, positive expression (1+ or more) was mainly observed in lepidic, acinar and papillary predominant subtypes, and rarely seen in solid subtype or invasive mucinous adenocarcinoma (P=0.014 and 0.016). If 1+ to 3+ expression was set as positive, the specificity of exon 19/exon 21 reached 98.59%/92.98%, while the sensitivity was relatively lower (62.86%/88.89%). If 2+ to 3+ expression was read as positive, the specificity and sensitivity were 99.30%/97.37% and 25.71%/74.60% for exon 19/exon 21. If only 3+ expression was considered positive, the specificity was 100.0% for both antibodies, with a low sensitivity (8.57% for exon 19 and 34.92% for exon 21). Of the 18 cases with E746-A750 del in exon 19 based on molecular detection, the sensitivity of immunohistochemistry for exon 19 was 88.89% if a positive cutoff value ≥1+ was used; in contrast, of the 8 cases harboring other deletions in exon 19, only two cases were positive as 1+ . Both the EGFR mutation specific antibodies del E746-A750 in

  2. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype.

    PubMed

    Birrell, Mark A; Maher, Sarah A; Dekkak, Bilel; Jones, Victoria; Wong, Sissie; Brook, Peter; Belvisi, Maria G

    2015-08-01

    Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway. Current treatment options (long acting β-adrenoceptor agonists and glucocorticosteroids) are not optimal as they are only effective in certain patient groups and safety concerns exist regarding both compound classes. Therefore, novel bronchodilator and anti-inflammatory strategies are being pursued. Prostaglandin E2 (PGE2) is an arachidonic acid-derived eicosanoid produced by the lung which acts on four different G-protein coupled receptors (EP1-4) to cause an array of beneficial and deleterious effects. The aim of this study was to identify the EP receptor mediating the anti-inflammatory actions of PGE2 in the lung using a range of cell-based assays and in vivo models. It was demonstrated in three distinct model systems (innate stimulus, lipopolysaccharide (LPS); allergic response, ovalbumin (OVA); inhaled pollutant, cigarette smoke) that mice missing functional EP4 (Ptger4(-/-)) receptors had higher levels of airway inflammation, suggesting that endogenous PGE2 was suppressing inflammation via EP4 receptor activation. Cell-based assay systems (murine and human monocytes/alveolar macrophages) demonstrated that PGE2 inhibited cytokine release from LPS-stimulated cells and that this was mimicked by an EP4 (but not EP1-3) receptor agonist and inhibited by an EP4 receptor antagonist. The anti-inflammatory effect occurred at the transcriptional level and was via the adenylyl cyclase/cAMP/ cAMP-dependent protein kinase (PKA) axis. This study demonstrates that EP4 receptor activation is responsible for the anti-inflammatory activity of PGE2 in a range of disease relevant models and, as such, could represent a novel therapeutic target for chronic airway inflammatory conditions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Association between lifetime exposure to passive smoking and risk of breast cancer subtypes defined by hormone receptor status among non-smoking Caucasian women

    PubMed Central

    Strumylaite, Loreta; Kregzdyte, Rima; Poskiene, Lina; Bogusevicius, Algirdas; Pranys, Darius; Norkute, Roberta

    2017-01-01

    Tobacco smoking is inconsistently associated with breast cancer. Although some studies suggest that breast cancer risk is related to passive smoking, little is known about the association with breast cancer by tumor hormone receptor status. We aimed to explore the association between lifetime passive smoking and risk of breast cancer subtypes defined by estrogen receptor and progesterone receptor status among non-smoking Caucasian women. A hospital-based case-control study was performed in 585 cases and 1170 controls aged 28–90 years. Information on lifetime passive smoking and other factors was collected via a self-administered questionnaire. Logistic regression was used for analyses restricted to the 449 cases and 930 controls who had never smoked actively. All statistical tests were two-sided. Adjusted odds ratio of breast cancer was 1.01 (95% confidence interval (CI): 0.72–1.41) in women who experienced exposure to passive smoking at work, 1.88 (95% CI: 1.38–2.55) in women who had exposure at home, and 2.80 (95% CI: 1.84–4.25) in women who were exposed at home and at work, all compared with never exposed regularly. Increased risk was associated with longer exposure: women exposed ≤ 20 years and > 20 years had 1.27 (95% CI: 0.97–1.66) and 2.64 (95% CI: 1.87–3.74) times higher risk of breast cancer compared with never exposed (Ptrend < 0.001). The association of passive smoking with hormone receptor-positive breast cancer did not differ from that with hormone receptor-negative breast cancer (Pheterogeneity > 0.05). There was evidence of interaction between passive smoking intensity and menopausal status in both overall group (P = 0.02) and hormone receptor-positive breast cancer group (P < 0.05). In Caucasian women, lifetime exposure to passive smoking is associated with the risk of breast cancer independent of tumor hormone receptor status with the strongest association in postmenopausal women. PMID:28151962

  4. The Search for a Subtype-Selective PET Imaging Agent for the GABAA Receptor Complex: Evaluation of the Radiotracer [11C]ADO in Nonhuman Primates.

    PubMed

    Lin, Shu-Fei; Bois, Frederic; Holden, Daniel; Nabulsi, Nabeel; Pracitto, Richard; Gao, Hong; Kapinos, Michael; Teng, Jo-Ku; Shirali, Anupama; Ropchan, Jim; Carson, Richard E; Elmore, Charles S; Vasdev, Neil; Huang, Yiyun

    2017-01-01

    The myriad physiological functions of γ-amino butyric acid (GABA) are mediated by the GABA-benzodiazepine receptor complex comprising of the GABA A , GABA B , and GABA C groups. The various GABA A subunits with region-specific distributions in the brain subserve different functional and physiological roles. For example, the sedative and anticonvulsive effects of classical benzodiazepines are attributed to the α 1 subunit, and the α 2 and α 3 subunits mediate the anxiolytic effect. To optimize pharmacotherapies with improved efficacy and devoid of undesirable side effects for the treatment of anxiety disorders, subtype-selective imaging radiotracers are required to assess target engagement at GABA sites and determine the dose-receptor occupancy relationships. The goal of this work was to characterize, in nonhuman primates, the in vivo binding profile of a novel positron emission tomography (PET) radiotracer, [ 11 C]ADO, which has been indicated to have functional selectivity for the GABA A α 2 /α 3 subunits. High specific activity [ 11 C]ADO was administrated to 3 rhesus monkeys, and PET scans of 120-minute duration were performed on the Focus-220 scanner. In the blood, [ 11 C]ADO metabolized at a fairly rapid rate, with ∼36% of the parent tracer remaining at 30 minutes postinjection. Uptake levels of [ 11 C]ADO in the brain were high (peak standardized uptake value of ∼3.0) and consistent with GABA A distribution, with highest activity levels in cortical areas, intermediate levels in cerebellum and thalamus, and lowest uptake in striatal regions and amygdala. Tissue kinetics was fast, with peak uptake in all brain regions within 20 minutes of tracer injection. The one-tissue compartment model provided good fits to regional time-activity curves and reliable measurement of kinetic parameters. The absolute test-retest variability of regional distribution volumes ( V T ) was low, ranging from 4.5% to 8.7%. Pretreatment with flumazenil (a subtype nonselective

  5. Intracrine action of angiotensin II in mesangial cells: subcellular distribution of angiotensin II receptor subtypes AT1 and AT2.

    PubMed

    da Silva Novaes, Antônio; Ribeiro, Rosemara Silva; Pereira, Luciana Guilhermino; Borges, Fernanda Teixeira; Boim, Mirian Aparecida

    2018-02-17

    Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT 1 and AT 2 ), defined as intracrine response. The aim of this study was to examine the presence of AT 1 and AT 2 receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT 1 through an intracrine mechanism. Subcellular distribution of AT 1 and AT 2 was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.

  6. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes

    PubMed Central

    Bell, L. Andrew; Bell, Karen A.; McQuiston, A. Rory

    2013-01-01

    Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K+ channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function

  7. 5-HT receptor subtypes as key targets in mediating pigment dispersion within melanophores of teleost, Oreochromis mossambicus.

    PubMed

    Salim, Saima; Ali, Ayesha S; Ali, Sharique A

    2013-02-01

    The presence of distinct class of 5-HT receptors in the melanophores of tilapia (Oreochromis mossambicus) is reported. The cellular responses to 5-HT (5-hydroxytryptamine), 5-HT(1), and 5-HT(2), agonists on isolated scale melanophores were observed with regard to pigment translocation within the cells. It was found that 5-HT exerted rapid and strong concentration dependent pigment granule dispersion within the melanophores. The threshold pharmacological dose of 5-HT that could elicit a measurable response was as low as 4.7×10(-12) M/L. Selective 5-HT(1) and 5-HT(2) agonists, sumatriptan and myristicin were investigated and resulted in dose-dependent pigment dispersion. The dispersing effects were effectively antagonized by receptor specific antagonists. It is suggested that 5-HT-induced physiological effects are mediated via distinct classes of receptors that possibly participate in modulation of pigmentary responses of the fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Cannabinoid reward and aversion effects in the posterior ventral tegmental area are mediated through dissociable opiate receptor subtypes and separate amygdalar and accumbal dopamine receptor substrates.

    PubMed

    Ahmad, Tasha; Laviolette, Steven R

    2017-08-01

    The ventral tegmental area (VTA) and its projections to the basolateral amygdala (BLA) and nucleus accumbens (NAc) are critical for cannabinoid-related motivational effects. Cannabinoid CB1 receptor (CB1R) transmission modulates VTA dopamine (DA) neuron activity and previous reports demonstrate anatomically segregated effects of CB1R transmission in the VTA. However, the underlying pharmacological and anatomical regions responsible for these effects are currently unknown. The objective of the study is to characterize the motivational effects of localized anterior vs. posterior intra-VTA activation vs. blockade of CB1R transmission and the potential role of intra-BLA and intra-NAc DA transmission in these phenomena. Using a conditioned place preference (CPP) procedure, we administered a CB1 agonist (WIN-55,212-2) or antagonist (AM 251) into the posterior VTA (pVTA) or anterior VTA (aVTA) of rats, combined with intra-BLA or intra-NAc DA receptor blockade and intra-VTA co-administration of selective mu vs. kappa opiate-receptor antagonists. Intra-pVTA CB1R activation produced robust rewarding effects through a mu-opiate receptor mechanism whereas CB1R blockade produced conditioned place aversions (CPA) through a kappa-opiate receptor substrate. In contrast, modulation of aVTA CB1R transmission produced no observable effects. Intra-BLA DA receptor blockade prevented the rewarding effects of pVTA CB1R activation, but had no effects on CB1R blockade-induced aversions. In contrast, intra-NAc DA receptor blockade selectively blocked the aversive effects of pVTA CB1R antagonism. Activation vs. blockade of CB1R transmission in the posterior VTA produces bivalent rewarding or aversive effects through separate mu vs. kappa-opiate receptor substrates. These dissociable effects depend on separate DA receptor transmission substrates in the BLA or NAc, respectively.

  9. Variations in endothelin receptor B subtype 2 (EDNRB2) coding sequences and mRNA expression levels in 4 Muscovy duck plumage colour phenotypes.

    PubMed

    Wu, N; Qin, H; Wang, M; Bian, Y; Dong, B; Sun, G; Zhao, W; Chang, G; Xu, Q; Chen, G

    2017-04-01

    1. Endothelin receptor B subtype 2 (EDNRB2) is a paralog of EDNRB, which encodes a 7-transmembrane G-protein coupled receptor. Previous studies reported that EDNRB was essential for melanoblast migration in mammals and ducks. 2. Muscovy ducks have different plumage colour phenotypes. Variations in EDNRB2 coding sequences (CDSs) and mRNA expression levels were investigated in 4 different Muscovy duck plumage colour phenotypes, including black, black mutant, silver and white head. 3. The EDNRB2 gene from Muscovy duck was cloned; it had a length of 6435 bp and encoded 437 amino acids. The coding region was screened and potential single nucleotide polymorphisms were identified. Eight mutations were obtained, including one missense variant (c.64C > T) and 7 synonymous substitutions. The substitutions were associated with plumage colour phenotypes. 4. The EDNRB2 mRNA expression levels were compared between feather pulp from black birds and black mutant birds. The results indicated that EDNRB2 transcripts in feather pulp were significantly higher in black feathers than in white feathers. 5. The results determined the variation of EDNRB2 CDS and mRNA expression in Muscovy ducks of various plumage colours.

  10. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat.

    PubMed Central

    Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V

    1992-01-01

    Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy. PMID:1353890

  11. The Unique α4(+)/(−)α4 Agonist Binding Site in (α4)3(β2)2 Subtype Nicotinic Acetylcholine Receptors Permits Differential Agonist Desensitization Pharmacology versus the (α4)2(β2)3 Subtype

    PubMed Central

    Eaton, J. Brek; Lucero, Linda M.; Stratton, Harrison; Chang, Yongchang; Cooper, John F.; Lindstrom, Jon M.; Lukas, Ronald J.

    2014-01-01

    Selected nicotinic agonists were used to activate and desensitize high-sensitivity (HS) (α4)2(β2)3) or low-sensitivity (LS) (α4)3(β2)2) isoforms of human α4β2-nicotinic acetylcholine receptors (nAChRs). Function was assessed using 86Rb+ efflux in a stably transfected SH-EP1-hα4β2 human epithelial cell line, and two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing concatenated pentameric HS or LS α4β2-nAChR constructs (HSP and LSP). Unlike previously studied agonists, desensitization by the highly selective agonists A-85380 [3-(2(S)-azetidinylmethoxy)pyridine] and sazetidine-A (Saz-A) preferentially reduced α4β2-nAChR HS-phase versus LS-phase responses. The concatenated-nAChR experiments confirmed that approximately 20% of LS-isoform acetylcholine-induced function occurs in an HS-like phase, which is abolished by Saz-A preincubation. Six mutant LSPs were generated, each targeting a conserved agonist binding residue within the LS-isoform-only α4(+)/(−)α4 interface agonist binding site. Every mutation reduced the percentage of LS-phase function, demonstrating that this site underpins LS-phase function. Oocyte-surface expression of the HSP and each of the LSP constructs was statistically indistinguishable, as measured using β2-subunit–specific [125I]mAb295 labeling. However, maximum function is approximately five times greater on a “per-receptor” basis for unmodified LSP versus HSP α4β2-nAChRs. Thus, recruitment of the α4(+)/(−)α4 site at higher agonist concentrations appears to augment otherwise-similar function mediated by the pair of α4(+)/(−)β2 sites shared by both isoforms. These studies elucidate the receptor-level differences underlying the differential pharmacology of the two α4β2-nAChR isoforms, and demonstrate that HS versus LS α4β2-nAChR activity can be selectively manipulated using pharmacological approaches. Since α4β2 nAChRs are the predominant neuronal subtype, these discoveries likely

  12. Role of M2 and M3 muscarinic acetylcholine receptor subtypes in activation of bladder afferent pathways in spinal cord injured rats.

    PubMed

    Matsumoto, Yoshihiro; Miyazato, Minoru; Yokoyama, Hitoshi; Kita, Masafumi; Hirao, Yoshihiko; Chancellor, Michael B; Yoshimura, Naoki

    2012-05-01

    To evaluate the role of M2 and M3 muscarinic acetylcholine receptor (mAChR) subtypes in the activation of bladder afferent pathways in rats with chronic spinal cord injury (SCI). Adult female Sprague-Dawley rats were spinalized at the T9 level. Continuous cystometry was performed under awake conditions 2 or 4 weeks after SCI. The effects of intravesical administration of an mAChR agonist (oxotremorine-methiodide), a nonselective antagonist (atropine), an M2-selective antagonist (methoctramine), and an M3-selective antagonist (darifenacin) were examined. After cystometry, the bladder was removed and separated into the mucosa and detrusor, and the M2 and M3 mAChR mRNA expression in the mucosa was determined using real-time quantitative polymerase chain reaction. At 2 and 4 weeks after SCI, intravesical administration of a nonselective mAChR agonist (25 μM oxotremorine-methiodide) increased the area under the curve of nonvoiding contractions, although the intercontraction interval of voiding contractions and maximal voiding pressure did not change. This effect was blocked by atropine and methoctramine (10 μM) but not by darifenacin (50 μM). However, mAChR antagonists alone (10-50 μM) had no effect on cystometric parameters. M2 mAChR mRNA expression was increased in the mucosa of SCI rats compared with that in normal rats. Our results suggest that the M2 mAChR subtype plays an important role in bladder afferent activation that enhances detrusor overactivity in SCI rats. However, because mAChR antagonists alone did not affect any cystometric parameters, the muscarinic mechanism controlling bladder afferent activity might not be involved in the emergence of detrusor overactivity in SCI. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Renal and femoral venous blood flows are regulated by different mechanisms dependent on α-adrenergic receptor subtypes and nitric oxide in anesthetized rats.

    PubMed

    Fioretti, Alexandre C; Ogihara, Cristiana A; Cafarchio, Eduardo M; Venancio, Daniel P; de Almeida, Roberto Lopes; Antonio, Bruno B; Sato, Monica A

    2017-12-01

    Venous and arterial walls are responsive to sympathetic system and circulating substances, nevertheless, very few is known about the venous blood flow regulation simultaneously to arterial vascular beds. In this study, we compared the venous and arterial blood flow regulation in visceral and muscular beds upon injection of different doses of vasoactive drugs which act in arterial vascular beds. Anesthetized adult male Wistar rats underwent to right femoral artery and vein cannulation for hemodynamic recordings and infusion of drugs. Doppler flow probes were placed around the left renal artery and vein, and left femoral artery and vein to evaluate the changes in flood flow. Phenylephrine (PHE) injection (α 1 -adrenergic receptor agonist) elicited vasoconstriction in all arteries and veins. Intravenous prazosin (PZS) (1mg/kg, α 1 -adrenergic receptor blocker) caused renal artery vasodilation, but not in the other beds. Vasoconstrictor effect of PHE was abolished by PZS in all vascular beds, except in femoral vein. Phentolamine (PTL) injection (1mg/kg, α 1 /α 2 -adrenergic receptor blocker) produced renal artery vasodilation with no change in other beds. After PTL, the vasoconstriction evoked by PHE was abolished in all vascular beds. Sodium Nitroprusside (SNP), a nitric oxide donor, elicited vasodilation in all beds, and after PTL but not post PZS injection, SNP enhanced the vasodilatory effect in femoral vein. Our findings suggest that the vasoconstriction in renal and femoral veins is mediated by different subtypes of α-adrenoceptors. The nitric oxide-dependent vasodilation in femoral vein enhances when α 2 -adrenoceptors are not under stimulation, but not in the other vascular beds investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing

  15. Functional characterization of estrogen receptor subtypes, ER{alpha} and ER{beta}, mediating vitellogenin production in the liver of rainbow trout

    SciTech Connect

    Leanos-Castaneda, Olga; Kraak, Glen van der

    2007-10-15

    The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ER{alpha} and ER{beta}, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ER{alpha} selective agonist, methyl-piperidino-pyrazole (MPP) an ER{alpha} selective antagonist, and diarylpropionitrile (DPN) an ER{beta} selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbowmore » trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [{sup 3}H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ER{alpha} could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ER{beta}. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ER{alpha}. On the other hand, once blocked ER{alpha} with MPP, the only manifestation of agonist activity of estradiol would be achieved via ER{beta}. In conclusion, the present results indicate that vitellogenin

  16. Oxidized Low-Density Lipoprotein Suppresses Expression of Prostaglandin E Receptor Subtype EP3 in Human THP-1 Macrophages

    PubMed Central

    Sui, Xuxia; Liu, Yanmin; Li, Qi; Liu, Gefei; Song, Xuhong; Su, Zhongjing; Chang, Xiaolan; Zhou, Yingbi; Liang, Bin; Huang, Dongyang

    2014-01-01

    EP3, one of four prostaglandin E2 (PGE2) receptors, is significantly lower in atherosclerotic plaques than in normal arteries and is localized predominantly in macrophages of the plaque shoulder region. However, mechanisms behind this EP3 expression pattern are still unknown. We investigated the underlying mechanism of EP3 expression in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages with oxidized low-density lipoprotein (oxLDL) treatment. We found that oxLDL decreased EP3 expression, in a dose-dependent manner, at both the mRNA and protein levels. Moreover, oxLDL inhibited nuclear factor-κB (NF-κB)-dependent transcription of the EP3 gene by the activation of peroxisome proliferator-activated receptor-γ (PPAR-γ). Finally, chromatin immunoprecipitation revealed decreased binding of NF-κB to the EP3 promoter with oxLDL and PPAR-γ agonist treatment. Our results show that oxLDL suppresses EP3 expression by activation of PPAR-γ and subsequent inhibition of NF-κB in macrophages. These results suggest that down-regulation of EP3 expression by oxLDL is associated with impairment of EP3-mediated anti-inflammatory effects, and that EP3 receptor activity may exert a beneficial effect on atherosclerosis. PMID:25333975

  17. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Delgar, Claudia G; Koch, Karina; Brown, Patricia M G E; Møller, Charlotte; Han, Liwei; Huynh, Tri H V; Hansen, Stinne W; Nielsen, Birgitte; Bowie, Derek; Pickering, Darryl S; Kastrup, Jette Sandholm; Frydenvang, Karla; Bunch, Lennart

    2017-01-12

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (K i = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC 50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.

  18. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  19. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist.

    PubMed

    Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J

    2010-11-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.

  20. Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine.

    PubMed

    Giardino, William J; Mark, Gregory P; Stenzel-Poore, Mary P; Ryabinin, Andrey E

    2012-02-01

    Enhanced sensitivity to the euphoric and locomotor-activating effects of psychostimulants may influence an individual's predisposition to drug abuse and addiction. While drug-induced behaviors are mediated by the actions of several neurotransmitter systems, past research revealed that the corticotropin-releasing factor (CRF) system is important in driving the acute locomotor response to psychostimulants. We previously reported that genetic deletion of the CRF type-2 receptor (CRF-R2), but not the CRF type-1 receptor (CRF-R1) dampened the acute locomotor stimulant response to methamphetamine (1 mg/kg). These results contrasted with previous studies implicating CRF-R1 in the locomotor effects of psychostimulants. Since the majority of previous studies focused on cocaine, rather than methamphetamine, we set out to test the hypothesis that these drugs differentially engage CRF-R1 and CRF-R2. We expanded our earlier findings by first replicating our previous experiments at a higher dose of methamphetamine (2 mg/kg), and by assessing the effects of the CRF-R1-selective antagonist CP-376,395 (10 mg/kg) on methamphetamine-induced locomotor activity. Next, we used both genetic and pharmacological tools to examine the specific components of the CRF system underlying the acute locomotor response to cocaine (5-10 mg/kg). While genetic deletion of CRF-R2 dampened the locomotor response to methamphetamine (but not cocaine), genetic deletion and pharmacological blockade of CRF-R1 dampened the locomotor response to cocaine (but not methamphetamine). These findings highlight the differential involvement of CRF receptors in acute sensitivity to two different stimulant drugs of abuse, providing an intriguing basis for the development of more targeted therapeutics for psychostimulant addiction.

  1. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray

    PubMed Central

    Wang, Peng; Li, Hui; Barde, Swapnali; Zhang, Ming-Dong; Sun, Jing; Wang, Tong; Zhang, Pan; Luo, Hanjiang; Wang, Yongjun; Yang, Yutao; Wang, Chuanyue; Svenningsson, Per; Theodorsson, Elvar; Hökfelt, Tomas G. M.; Xu, Zhi-Qing David

    2016-01-01

    The neuropeptide galanin coexists in rat brain with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus (LC), and it has been suggested to be involved in depression. We studied rats exposed to chronic mild stress (CMS), a rodent model of depression. As expected, these rats showed several endophenotypes relevant to depression-like behavior compared with controls. All these endophenotypes were normalized after administration of a selective serotonin reuptake inhibitor. The transcripts for galanin and two of its receptors, galanin receptor 1 (GALR1) and GALR2, were analyzed with quantitative real-time PCR using laser capture microdissection in the following brain regions: the hippocampal formation, LC, and ventral periaqueductal gray (vPAG). Only Galr1 mRNA levels were significantly increased, and only in the latter region. After knocking down Galr1 in the vPAG with an siRNA technique, all parameters of the depressive behavioral phenotype were similar to controls. Thus, the depression-like behavior in rats exposed to CMS is likely related to an elevated expression of Galr1 in the vPAG, suggesting that a GALR1 antagonist could have antidepressant effects. PMID:27457954

  2. Sensitivity of bronchopulmonary receptors to cold and heat mediated by transient receptor potential cation channel subtypes in an ex vivo rat lung preparation.

    PubMed

    Zhou, Yun; Sun, Biying; Li, Qian; Luo, Pin; Dong, Li; Rong, Weifang

    2011-08-15

    Changes in airway temperature can result in respiratory responses such as cough, bronchoconstriction and mucosal secretion after cold exposure and hyperventilation after heat exposure. In the present investigation, we examined the activity of bronchopulmonary receptors in response to activators of thermo-sensitive transient receptor potential (TS-TRP) cation channels using an ex vivo rat lung preparation. Receptive fields in small bronchioles were probed with von Frey hair monofilaments, warm (50°C) or cold (8°C) saline or saline containing TS-TRP agonists. Among 233 fibers tested, 159 (68.2%) responded to heat (50°C). A large proportion of heat-responsive receptors (107/145) were also activated by capsaicin. Heat and capsaicin-evoked responses were both blocked by TRPV1 antagonist, capsazepine. Only 15.3% of airway receptors responded to cold, which was associated with sensitivity to TRPM8 agonist menthol but not to TRPA1 agonist cinnamaldehyde (CA). Moreover, cold-evoked responses was unaffected by TRPA1 antagonist HC-03001. Our observations suggest that TRPV1 and TRPM8 are involved in transducing heat and cold in the lower respiratory tract, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice

    PubMed Central

    Ren, Keke; Guo, Baolin; Dai, Chunqiu; Yao, Han; Sun, Tangna; Liu, Xia; Bai, Zhantao; Wang, Wenting; Wu, Shengxi

    2017-01-01

    As the main input nucleus of the basal ganglion, the striatum executes different functions, including motivation, reward and attention. The functions of the striatum highly rely on its subregions that receive projections from various cortical areas and the distribution of striatonigral neurons that express D1 dopamine (DA) receptors (or D1 medium-sized spiny neurons, D1 MSNs) and striatopallidal neurons that express D2 DA receptors (or D2 MSNs). Using bacterial artificial chromosome (BAC) transgenic mice, several studies have recently been performed on the spatial distribution of D1 and D2 MSNs. However, these studies mainly focused on enumeration of either D1-enhanced fluorescent protein (eGFP) or D2-eGFP in mice. In the present work, we used Drd1a-tdTamato and Drd2-eGFP double BAC transgenic mice to evaluate the spatial pattern of D1 MSNs (red fluorescence) and D2 MSNs (green fluorescence) along the rostro-caudal axis of the dorsal striatum. The dorsal striatum was divided into three subregions: rostral caudoputamen (CPr), intermediate CP (CPi), and caudal CP (CPc) across the rostral–caudal extent of the striatum. The results demonstrate that D1 and D2 MSNs were intermingled with each other in most of these regions. The cell density of D1 MSNs was slightly higher than D2 MSNs through CPr, CPi, and CPc, though it did not reach significance. However, in CPi, the ratio of D1/D2 in the ventromedial CPi group was significantly higher than those in dorsolateral, dorsomedial, and ventrolateral CPi. There was similar proportion of cells that co-expressed D1 and D2 receptors. Moreover, we demonstrated a pathway-specific activation pattern of D1 MSNs and D2 MSNs in a manic like mouse model induced by D-Amphetamine by utilizing this double transgenic mice and c-fos immunoreactivity. Our results may provide a morphological basis for the function or pathophysiology of striatonigral and striatopallidal neurons with diverse cortical inputs to the dorsal striatum. PMID

  4. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes

    PubMed Central

    GONZÁLEZ, NIEVES; MARTÍN-DUCE, ANTONIO; MARTÍNEZ-ARRIETA, FÉLIX; MORENO-VILLEGAS, ZAIDA; PORTAL-NÚÑEZ, SERGIO; SANZ, RAÚL; EGIDO, JESÚS

    2015-01-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein-coupled receptor (GPCR) member of the bombesin receptor family. Several studies have suggested an association between obesity, alterations in glucose metabolism, diabetes and the BRS-3 receptor. In this study, we focused on patients simultaneously diagnosed with obesity and type 2 diabetes (OB/T2D). The analysis of BRS-3 expression in the skeletal muscle of these patients revealed a marked decrease in the expression of BRS-3 at the mRNA (23.6±1.3-fold downregulation, p<0.0001) and protein level (49±7% decrease, p<0.05) compared to the normal patients (no obesity and diabetes). Moreover, in cultured primary myocytes from patients with OB/T2D, the synthetic BRS-3 agonist, [D-Try6,β-Ala11,Phe13,Nle14]bombesin6–14, significantly increased the phosphorylation levels of mitogen-activated protein kinase (MAPK), p90RSK1, protein kinase B (PKB) and p70s6K. Specifically, the ligand at 10−11 M induced the maximal phosphorylation of MAPKs (p42, 159±15% of the control; p44, 166±11% of the control; p<0.0001) and p90RSK1 (148±2% of the control, p<0.0001). The basal phosphorylation levels of all kinases were reduced (p<0.05) in the patients with OB/T2D compared to the normal patients. Furthermore, the BRS-3 agonist stimulated glucose transport, which was already detected at 10−12 M (133±9% of the control), reached maximal levels at 10−11 M (160±9%, p<0.0001) and was maintained at up to 10−8 M (overall mean, 153±7%; p<0.007). This effect was less promiment than that attained with 10−8 M insulin (202±9%, p=0.009). The effect of the agonist on glycogen synthase a activity achieved the maximum effect at 10−11 M (165±16% of the control; p<0.0001), which did not differ from that observed with higher concentrations of the agonist. These results suggest that muscle cells isolated from patients with OB/T2D have extremely high sensitivity to the synthetic ligand, and the effects are particularly observed on

  5. Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors

    PubMed Central

    Mo, Gary; Bernier, Louis-Philippe; Zhao, Qi; Chabot-Doré, Anne-Julie; Ase, Ariel R; Logothetis, Diomedes; Cao, Chang-Qing; Séguéla, Philippe

    2009-01-01

    Background P2X3 and P2X2/3 purinergic receptor-channels, expressed in primary sensory neurons that mediate nociception, have been implicated in neuropathic and inflammatory pain responses. The phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) are involved in functional modulation of several types of ion channels. We report here evidence that these phospholipids are able to modulate the function of homomeric P2X3 and heteromeric P2X2/3 purinoceptors expressed in dorsal root ganglion (DRG) nociceptors and in heterologous expression systems. Results In dissociated rat DRG neurons, incubation with the PI3K/PI4K inhibitor wortmannin at 35 μM induced a dramatic decrease in the amplitude of ATP- or α,β-meATP-evoked P2X3 currents, while incubation with 100 nM wortmannin (selective PI3K inhibition) produced no significant effect. Intracellular application of PIP2 was able to fully reverse the inhibition of P2X3 currents induced by wortmannin. In Xenopus oocytes and in HEK293 cells expressing recombinant P2X3, 35 μM wortmannin incubation induced a significant decrease in the rate of receptor recovery. Native and recombinant P2X2/3 receptor-mediated currents were inhibited by incubation with wortmannin both at 35 μM and 100 nM. The decrease of P2X2/3 current amplitude induced by wortmannin could be partially reversed by application of PIP2 or PIP3, indicating a sensitivity to both phosphoinositides in DRG neurons and Xenopus oocytes. Using a lipid binding assay, we demonstrate that the C-terminus of the P2X2 subunit binds directly to PIP2, PIP3 and other phosphoinositides. In contrast, no direct binding was detected between the C-terminus of P2X3 subunit and phosphoinositides. Conclusion Our findings indicate a functional regulation of homomeric P2X3 and heteromeric P2X2/3 ATP receptors by phosphoinositides in the plasma membrane of DRG nociceptors, based on subtype-specific mechanisms of direct and indirect

  6. Identification and functional characterization of hemorphins VV-H-7 and LVV-H-7 as low-affinity agonists for the orphan bombesin receptor subtype 3

    PubMed Central

    Lammerich, Hans-Peter; Busmann, Annette; Kutzleb, Christian; Wendland, Martin; Seiler, Petra; Berger, Claudia; Eickelmann, Peter; Meyer, Markus; Forssmann, Wolf-Georg; Maronde, Erik

    2003-01-01

    The human orphan G-protein coupled receptor bombesin receptor subtype 3 (hBRS-3) was screened for peptide ligands by a Ca2+ mobilization assay resulting in the purification and identification of two specific ligands, the naturally occurring VV-hemorphin-7 (VV-H-7) and LVV-hemorphin-7 (LVV-H-7), from human placental tissue. These peptides were functionally characterized as full agonists with unique specificity albeit low affinity for hBRS-3 compared to other bombesin receptors. VV-H-7 and LVV-H-7 induced a dose-dependent response in hBRS-3 overexpressing CHO cells, as well as in NCI-N417 cells expressing the hBRS-3 endogenously. The affinity of VV-H-7 was higher in NCI-N417 cells compared to overexpressing CHO cells. In detail, the EC50 values were 45±15 μM for VV-H-7 and 183±60 μM for LVV-H-7 in CHO cells, and 19±6 μM for VV-H-7 and 38±18 μM for LVV-H-7 in NCI-N417 cells. Other hemorphins had no effect. Gastrin-releasing peptide (GRP) and neuromedin B (NMB) showed similar EC50 values of 13–20 μM (GRP) and of 1–2 μM (NMB) on both cell lines. Structure-function analysis revealed that both the N-terminal valine and the C-terminal phenylalanine residues of VV-H-7 are critical for the ligand-receptor interaction. Endogenous hBRS-3 in NCI-N417 activated by VV-H-7 couples to phospholipase C resulting in changes of intracellular calcium, which is initially released from an inositol trisphosphate (IP3)-sensitive store followed by a capacitive calcium entry from extracellular space. VV-H-7-induced hBRS-3 activation led to phosphorylation of p42/p44-MAP kinase in NCI-N417 cells, but did not stimulate cell proliferation. In contrast, phosphorylation of focal adhesion kinase (p125FAK) was not observed. PMID:12721098

  7. Somatostatin receptor subtype 2 in high-grade gliomas: PET/CT with (68)Ga-DOTA-peptides, correlation to prognostic markers, and implications for targeted radiotherapy.

    PubMed

    Kiviniemi, Aida; Gardberg, Maria; Frantzén, Janek; Pesola, Marko; Vuorinen, Ville; Parkkola, Riitta; Tolvanen, Tuula; Suilamo, Sami; Johansson, Jarkko; Luoto, Pauliina; Kemppainen, Jukka; Roivainen, Anne; Minn, Heikki

    2015-01-01

    High-grade gliomas (HGGs) express somatostatin receptors (SSTR), rendering them candidates for peptide receptor radionuclide therapy (PRRT). Our purpose was to evaluate the potential of (68)Ga-DOTA-1-Nal(3)-octreotide ((68)Ga-DOTANOC) or (68)Ga-DOTA-Tyr(3)-octreotide ((68)Ga-DOTATOC) to target SSTR subtype 2 (SSTR2) in HGGs, and to study the association between SSTR2 expression and established biomarkers. Twenty-seven patients (mean age 52 years) with primary or recurrent HGG prospectively underwent (68)Ga-DOTA-peptide positron emission tomography/computed tomography (PET/CT) before resection. Maximum standardized uptake values (SUVmax) and receptor binding potential (BP) were calculated on PET/CT and disruption of blood-brain barrier (BBB) from contrast-enhanced T1-weighted magnetic resonance imaging (MRI-T1-Gad). Tumor volume concordance between PET and MRI-T1-Gad was assessed by Dice similarity coefficient (DC) and correlation by Spearman's rank. Immunohistochemically determined SSTR2 status was compared to receptor imaging findings, prognostic biomarkers, and survival with Kruskal-Wallis, Pearson chi-square, and multivariate Cox regression, respectively. All 19 HGGs with disrupted BBB demonstrated tracer uptake. Tumor SUVmax (2.25 ± 1.33) correlated with MRI-T1-Gad (r = 0.713, P = 0.001) although DC 0.41 ± 0.19 suggested limited concordance. SSTR2 immunohistochemistry was regarded as positive in nine HGGs (32%) but no correlation with SUVmax or BP was found. By contrast, SSTR2 expression was associated with IDH1 mutation (P = 0.007), oligodendroglioma component (P = 0.010), lower grade (P = 0.005), absence of EGFR amplification (P = 0.021), and longer progression-free survival (HR 0.161, CI 0.037 to 0.704, P = 0.015). In HGGs, uptake of (68)Ga-DOTA-peptides is associated with disrupted BBB and cannot be predicted by SSTR2 immunohistochemistry. Thus, PET/CT shows limited value to detect HGGs suitable for PRRT. However, high

  8. The receptor protein tyrosine phosphatase (RPTP){beta}/{zeta} is expressed in different subtypes of human breast cancer

    SciTech Connect

    Perez-Pinera, Pablo; Garcia-Suarez, Olivia; Instituto Universitario de Oncologia del Principado de Asturias, Oviedo

    2007-10-12

    Increasing evidence suggests mutations in human breast cancer cells that induce inappropriate expression of the 18-kDa cytokine pleiotrophin (PTN, Ptn) initiate progression of breast cancers to a more malignant phenotype. Pleiotrophin signals through inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP){beta}/{zeta}, leading to increased tyrosine phosphorylation of different substrate proteins of RPTP{beta}/{zeta}, including {beta}-catenin, {beta}-adducin, Fyn, GIT1/Cat-1, and P190RhoGAP. PTN signaling thus has wide impact on different important cellular systems. Recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTP{beta}/{zeta} signaling pathway; this discovery potentially is very important, since constitutive ALK activity of nucleophosmin (NPM)-ALK fusionmore » protein is causative of anaplastic large cell lymphomas, and, activated ALK is found in other malignant cancers. Recently ALK was identified in each of 63 human breast cancers from 22 subjects. We now demonstrate that RPTP{beta}/{zeta} is expressed in each of these same 63 human breast cancers that previously were found to express ALK and in 10 additional samples of human breast cancer. RPTP{beta}/{zeta} furthermore was localized not only in its normal association with the cell membrane but also scattered in cytoplasm and in nuclei in different breast cancer cells and, in the case of infiltrating ductal carcinomas, the distribution of RPTP{beta}/{zeta} changes as the breast cancer become more malignant. The data suggest that the PTN/RPTP{beta}/{zeta} signaling pathway may be constitutively activated and potentially function to constitutively activate ALK in human breast cancer.« less

  9. Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus

    PubMed Central

    Menezes, Jefferson; Alves, Niége; Borges, Sidnei; Roehrs, Rafael; de Carvalho Myskiw, Jociane; Furini, Cristiane Regina Guerino; Izquierdo, Ivan; Mello-Carpes, Pâmela B.

    2015-01-01

    Extinction is the learned inhibition of retrieval. Recently it was shown that a brief exposure to a novel environment enhances the extinction of contextual fear in rats, an effect explainable by a synaptic tagging-and-capture process. Here we examine whether this also happens with the extinction of another fear-motivated task, inhibitory avoidance (IA), and whether it depends on dopamine acting on D1 or D5 receptors. Rats were trained first in IA and then in extinction of this task. The retention of extinction was measured 24 h later. A 5-min exposure to a novel environment 30 min before extinction training enhanced its retention. Right after exposure to the novelty, animals were given bilateral intrahippocampal infusions of vehicle (VEH), of the protein synthesis inhibitor anisomycin, of the D1/D5 dopaminergic antagonist SCH23390, of the PKA inhibitor Rp-cAMP or of the PKC inhibitor Gö6976, and of the PKA stimulator Sp-cAMP or of the PKC stimulator PMA. The novelty increased hippocampal dopamine levels and facilitated the extinction, which was inhibited by intrahippocampal protein synthesis inhibitor anisomysin, D1/D5 dopaminerdic antagonist SCH23390, or PKA inhibitor Rp-cAMP and unaffected by PKC inhibitor Gö6976; additionally, the hippocampal infusion of PKA stimulator Sp-cAMP reverts the effect of D1/D5 dopaminergic antagonist SCH 23390, but the infusion of PKC stimulator PMA does not. The results attest to the generality of the novelty effect on fear extinction, suggest that it relies on synaptic tagging and capture, and show that it depends on hippocampal dopamine D1 but not D5 receptors. PMID:25775606

  10. SELECTIVE POTENTIATION OF THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 2 BLOCKS PHENCYCLIDINE-INDUCED HYPERLOCOMOTION AND BRAIN ACTIVATION

    PubMed Central

    HACKLER, E. A.; BYUN, N. E.; JONES, C. K.; WILLIAMS, J. M.; BAHEZA, R.; SENGUPTA, S.; GRIER, M. D.; AVISON, M.; CONN, P. J.; GORE, J. C.

    2013-01-01

    Previous preclinical and clinical studies have demonstrated the efficacy of group II metabotropic glutamate receptor (mGluR) agonists as potential antipsychotics. Recent studies utilizing mGluR2-, mGluR3-, and double knockout mice support that the antipsychotic effects of those compounds are mediated by mGluR2. Indeed, biphenyl indanone-A (BINA), an allosteric potentiator of mGluR2, is effective in experimental models of psychosis, blocking phencyclidine (PCP)-induced hyperlocomotion and prepulse inhibition deficits in mice. In this study, we administered the NMDA receptor antagonist PCP (5.6 mg/kg i.p.) to rats, an established animal model predictive of schizophrenia. Here, we show that BINA (32 mg/kg i.p.) attenuated PCP-induced locomotor activity in rats. Using behaviorally relevant doses of BINA and PCP, we performed pharmacological magnetic resonance imaging (phMRI) to assess the specific brain regions that underlie the psychotomimetic effects of PCP, and examined how BINA modulated the PCP-induced functional changes in vivo. In anesthetized rats, acute administration of PCP produced robust, sustained blood oxygenation level-dependent (BOLD) activation in specific cortical, limbic, thalamic, and striatal regions. Pretreatment with BINA suppressed the amplitude of the BOLD response to PCP in the prefrontal cortex, caudaute–putamen, nucleus accumbens, and mediodorsal thalamus. Our results show key brain structures underlying PCP-induced behaviors in a preclinical model of schizophrenia, and, importantly, its reversal by potentiation of mGluR2 by BINA, revealing specific brain regions functionally involved in its pharmacological action. Finally, our findings bolster the growing body of evidence that mGluR2 is a viable target for the treatment of schizophrenia. PMID:20350588

  11. Specific LPA receptor subtype mediation of LPA-induced hypertrophy of cardiac myocytes and involvement of Akt and NFkappaB signal pathways.

    PubMed

    Chen, Jinghai; Chen, Yuefeng; Zhu, Weiquan; Han, Yu; Han, Bianmei; Xu, Ruixia; Deng, Linzi; Cai, Yan; Cong, Xiangfeng; Yang, Yuejing; Hu, Shengshou; Chen, Xi

    2008-04-15

    Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse functions mediated via G-protein-coupled receptors (GPCRs). In view of the elevated levels of LPA in acute myocardial infarction (MI) patients we have conducted studies aimed at identifying specific LPA receptor subtypes and signaling events that may mediate its actions in hypertrophic remodeling. Experiments were carried out in cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and in a rat MI model. In NRCMs, LPA-induced hypertrophic growth was completely abrogated by DGPP, an LPA1/LPA3 antagonist. The LPA3 agonist OMPT, but not the LPA2 agonist dodecylphosphate, promoted hypertrophy as examined by 3[H]-Leucine incorporation, ANF-luciferase expression and cell area. In in vivo experiments, LPA1, LPA2 and LPA3 mRNA levels as well as LPA1 and LPA3 protein levels increased together with left ventricular remodeling (LVRM) after MI. In addition, LPA stimulated the phosphorylation of Akt and p65 protein and activated NF-kappaB-luciferase expression. Inhibitors of PI3K (wortmannin), mTOR (rapamycin), and NF-kappaB (PDTC or SN50) effectively prevented LPA-induced 3[H]-Leucine incorporation and ANF-luciferase expression. Furthermore, ERK inhibitors (U0126 and PD98059) suppressed LPA-stimulated activation of NF-kappaB and p65 phosphorylation whereas wortmannin showed no effect on NF-kappaB activation. Our findings indicate that LPA3 and/or LPA1 mediate LPA-induced hypertrophy of NRCMs and that LPA1 and LPA3 may be involved in LVRM of MI rats. Moreover, Akt and NF-kappaB signaling pathways independently implicate in LPA-stimulated myocardial hypertrophic growth.

  12. Automated cGMP-compliant radiosynthesis of [18 F]-(E)-PSS232 for brain PET imaging of metabotropic glutamate receptor subtype 5.

    PubMed

    Park, Jun Young; Son, Jeongmin; Yun, Mijin; Ametamey, Simon M; Chun, Joong-Hyun

    2018-01-01

    (E)-3-(Pyridin-2-yl ethynyl)cyclohex-2-enone O-(3-(2-[ 18 F]-fluoroethoxy)propyl) oxime ([ 18 F]-(E)-PSS232, [ 18 F]2a) is a recently developed radiotracer that can be used to visualize metabotropic glutamate receptor subtype 5 (mGlu 5 ) in vivo. The mGlu 5 has become an attractive therapeutic and diagnostic target owing to its role in many neuropsychiatric disorders. Several carbon-11-labeled and fluorine-18-labeled radiotracers have been developed to measure mGlu 5 receptor occupancy in the human brain. The radiotracer [ 18 F]2a, which is used as an analogue for [ 11 C]ABP688 ([ 11 C]1) and has a longer physical half-life, is a selective radiotracer that exhibits high binding affinity for mGlu 5 . Herein, we report the fully automated radiosynthesis of [ 18 F]2a using a commercial GE TRACERlab™ FX- FN synthesizer for routine production and distribution to nearby satellite clinics. Nucleophilic substitution of the corresponding mesylate precursor with cyclotron-produced [ 18 F]fluoride ion at 100°C in dimethyl sulfoxide (DMSO), followed by high-performance liquid chromatography (HPLC) purification and formulation, readily provided [ 18 F]2a with a radiochemical yield of 40 ± 2% (decay corrected, n = 5) at the end of synthesis. Radiochemical purity for the [ 18 F]-(E)-conformer was greater than 95%. Molar activity was determined to be 63.6 ± 9.6 GBq/μmol (n = 5), and the overall synthesis time was 70 minutes. Copyright © 2017 John Wiley & Sons, Ltd.

  13. TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: Distinct role of TNF receptor subtype 1 and 2

    PubMed Central

    Zhang, Ling; Berta, Temugin; Xu, Zhen-Zhong; Liu, Tong; Park, Jong Yeon; Ji, Ru-Rong

    2010-01-01

    Tumor necrosis factor-alpha (TNF-α) is a key proinflammatory cytokine. It is generally believed that TNF-α exerts its effects primarily via TNF receptor subtype-1 (TNFR1). We investigated distinct role of TNFR1 and TNFR2 in spinal cord synaptic transmission and inflammatory pain. Compared to wild-type (WT) mice, TNFR1 and TNFR2 knockout (KO) mice exhibited normal heat sensitivity and unaltered excitatory synaptic transmission in the spinal cord, as revealed by spontaneous excitatory postsynaptic currents (sEPSCs) in lamina II neurons of spinal cord slices. However, heat hyperalgesia after intrathecal TNF-α and the second-phase spontaneous pain in the formalin test were reduced in both TNFR1- and TNFR2-KO mice. In particular, heat hyperalgesia after intraplantar injection of complete Freund's adjuvant (CFA) was decreased in the early phase in TNFR2-KO mice but reduced in both early and later phase in TNFR1-KO mice. Consistently, CFA elicited a transient increase of TNFR2 mRNA levels in the spinal cord on day 1. Notably, TNF-α evoked a drastic increase in sEPSC frequency in lamina II neurons, which was abolished in TNFR1-KO mice and reduced in TNFR2-KO mice. TNF-α also increased NMDA currents in lamina II neurons, and this increase was abolished in TNFR1-KO mice but retained in TNFR2-KO mice. Finally, intrathecal injection of the NMDA receptor antagonist MK-801 prevented heat hyperalgesia elicited by intrathecal TNF-α. Our findings support a central role of TNF-α in regulating synaptic plasticity (central sensitization) and inflammatory pain via both TNFR1 and TNFR2. Our data also uncover a unique role of TNFR2 in mediating early-phase inflammatory pain. PMID:21159431

  14. Pharmacological modulation of metabotropic glutamate receptor subtype 5 and 7 impairs extinction of social fear in a time-point-dependent manner.

    PubMed

    Slattery, David A; Neumann, Inga D; Flor, Peter J; Zoicas, Iulia

    2017-06-15

    Pharmacological modulation of metabotropic glutamate receptor subtype 5 (mGluR5) and 7 (mGluR7) was shown to attenuate the acquisition and to facilitate the extinction of cued and contextual, non-social, fear. Using the allosteric mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and the allosteric mGluR7 agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082), we aimed to study how pharmacological blockade of mGluR5 and activation of mGluR7 influence acquisition and extinction of social fear in mice. We could show that when administered before social fear conditioning, neither MPEP nor AMN082 affected acquisition and extinction of social fear, suggesting that mGluR5 inactivation and mGluR7 activation do not alter social fear. However, when administered before social fear extinction, both MPEP and AMN082 impaired social fear extinction and extinction recall. These findings suggest that mGluR5 inactivation and mGluR7 activation are unlikely to prevent the formation of traumatic social memories. Furthermore, medication strategies aimed at augmenting exposure-based therapies for psychiatric disorders associated with social deficits via modulation of mGluR5 and mGluR7 must be pursued cautiously because of their potential to delay social fear extinction processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. ANG II receptor subtype 1a gene knockdown in the subfornical organ prevents increased drinking behavior in bile duct-ligated rats.

    PubMed

    Walch, Joseph D; Nedungadi, T Prashant; Cunningham, J Thomas

    2014-09-15

    Bile duct ligation (BDL) causes congestive liver failure that initiates hemodynamic changes, resulting in dilutional hyponatremia due to increased water intake and vasopressin release. This project tested the hypothesis that angiotensin signaling at the subfornical organ (SFO) augments drinking behavior in BDL rats. A genetically modified adeno-associated virus containing short hairpin RNA (shRNA) for ANG II receptor subtype 1a (AT1aR) gene was microinjected into the SFO of rats to knock down expression. Two weeks later, BDL or sham surgery was performed. Rats were housed in metabolic chambers for measurement of fluid and food intake and urine output. The rats were euthanized 28 days after BDL surgery for analysis. A group of rats was perfused for immunohistochemistry, and a second group was used for laser-capture microdissection for analysis of SFO AT1aR gene expression. BDL rats showed increased water intake that was attenuated in rats that received SFO microinjection of AT1aR shRNA. Among BDL rats treated with scrambled (control) and AT1aR shRNA, we observed an increased number of vasopressin-positive cells in the supraoptic nucleus that colocalized with ΔFosB staining, suggesting increased vasopressin release in both groups. These results indicate that angiotensin signaling through the SFO contributes to increased water intake, but not dilutional hyponatremia, during congestive liver failure. Copyright © 2014 the American Physiological Society.

  16. Upregulation of estrogen receptor subtypes and vitellogenin mRNA in cinnamon clownfish Amphiprion melanopus during the sex change process: profiles on effects of 17beta-estradiol.

    PubMed

    Kim, Na Na; Jin, Deuk-Hee; Lee, Jehee; Kil, Gyung-Suk; Choi, Cheol Young

    2010-10-01

    In the present study, we investigated the expression pattern of estrogen receptors (esr) and vitellogenin (vtg) mRNA in the gonads and liver during sex change in cinnamon clownfish by using quantitative polymerase chain reaction. We divided gonadal development during the sex change from male to female into 3 stages (mature male, male at 90days after removing female, and mature female) and investigated esr and vtg mRNA expressions during the sex change. With female, the esr and vtg mRNA expressions increased. In western blot analysis, Esr1 protein was detected only in the ovaries of female cinnamon clownfish. Also, to understand the effect of 17beta-estradiol (E(2)), we investigated the esr and vtg mRNA expression patterns in the gonads and liver, and the changes in plasma E(2) level after E(2) injection. E(2) treatment increased both mRNA expression levels of esr and vtg and plasma E(2) levels. The present study describes the molecular characterization of esr subtypes and the interactions between esr and vtg after E(2) treatment in cinnamon clownfish. 2010 Elsevier Inc. All rights reserved.

  17. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction.

    PubMed

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Santafé, Manel; Tomàs, Josep

    2016-06-23

    The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. Here we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses. The three receptor sets considered (mAChR, AR and TrkB receptors

  18. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

    PubMed

    Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun

    2016-06-27

    Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral

  19. Thyroid Hormone Receptor α- and β-Knockout Xenopus tropicalis Tadpoles Reveal Subtype-Specific Roles During Development.

    PubMed

    Nakajima, Keisuke; Tazawa, Ichiro; Yaoita, Yoshio

    2018-02-01

    Thyroid hormone (TH) binds TH receptor α (TRα) and β (TRβ) to induce amphibian metamorphosis. Whereas TH signaling has been well studied, functional differences between TRα and TRβ during this process have not been characterized. To understand how each TR contributes to metamorphosis, we generated TRα- and TRβ-knockout tadpoles of Xenopus tropicalis and examined developmental abnormalities, histology of the tail and intestine, and messenger RNA expression of genes encoding extracellular matrix-degrading enzymes. In TRβ-knockout tadpoles, tail regression was delayed significantly and a healthy notochord was observed even 5 days after the initiation of tail shortening (stage 62), whereas in the tails of wild-type and TRα-knockout tadpoles, the notochord disappeared after ∼1 day. The messenger RNA expression levels of genes encoding extracellular matrix-degrading enzymes (MMP2, MMP9TH, MMP13, MMP14, and FAPα) were obviously reduced in the tail tip of TRβ-knockout tadpoles, with the shortening tail. The reduction in olfactory nerve length and head narrowing by gill absorption were also affected. Hind limb growth and intestinal shortening were not compromised in TRβ-knockout tadpoles, whereas tail regression and olfactory nerve shortening appeared to proceed normally in TRα-knockout tadpoles, except for the precocious development of hind limbs. Our results demonstrated the distinct roles of TRα and TRβ in hind limb growth and tail regression, respectively. Copyright © 2018 Endocrine Society.

  20. Evaluation of the Biological Activity of Opuntia ficus indica as a Tissue- and Estrogen Receptor Subtype-Selective Modulator.

    PubMed

    An, Byoung Ha; Jeong, Hyesoo; Zhou, Wenmei; Liu, Xiyuan; Kim, Soolin; Jang, Chang Young; Kim, Hyun-Sook; Sohn, Johann; Park, Hye-Jin; Sung, Na-Hye; Hong, Cheol Yi; Chang, Minsun

    2016-06-01

    Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17β-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Conferring Virulence: Structure and Function of the chimeric A2B5 Typhoid Toxin

    PubMed Central

    Song, Jeongmin; Gao, Xiang; Galán, Jorge E.

    2013-01-01

    Salmonella Typhi differs from most other salmonellae in that it causes a life-threatening systemic infection known as typhoid fever1. The molecular bases for its unique clinical presentation are unknown2. Here we found that in an animal model, the systemic administration of typhoid toxin, a unique virulence factor of S. Typhi, reproduces many of the acute symptoms of typhoid fever. We identified specific carbohydrate moieties on specific surface glycoproteins that serve as receptors for typhoid toxin, which explains its broad cell target specificity. We present the atomic structure of typhoid toxin, which shows an unprecedented A2B5 organization with two covalently-linked A subunits non-covalently-associated to a pentameric B subunit. The structure provides insight into the toxin’s receptor-binding specificity and delivery mechanisms and reveals how the activities of two powerful toxins have been coopted into a single, unique toxin that can induce many of the symptoms characteristic of typhoid fever. These findings may lead to the development of potentially life-saving therapeutics against typhoid fever. PMID:23842500

  2. Subchronic exposure to sublethal dose of imidacloprid changes electrophysiological properties and expression pattern of nicotinic acetylcholine receptor subtypes in insect neurosecretory cells.

    PubMed

    Benzidane, Yassine; Goven, Delphine; Abd-Ella, Aly Ahmed; Deshayes, Caroline; Lapied, Bruno; Raymond, Valérie

    2017-09-01

    Neonicotinoids are the most important class of insecticides used in agriculture over the last decade. They act as selective agonists of insect nicotinic acetylcholine receptors (nAChRs). The emergence of insect resistance to these insecticides is one of the major problems, which limit the use of neonicotinoids. The aim of our study is to better understand physiological changes appearing after subchronic exposure to sublethal doses of insecticide using complementary approaches that include toxicology, electrophysiology, molecular biology and calcium imaging. We used cockroach neurosecretory cells identified as dorsal unpaired median (DUM) neurons, known to express two α-bungarotoxin-insensitive (α-bgt-insensitive) nAChR subtypes, nAChR1 and nAChR2, which differ in their sensitivity to imidacloprid. Although nAChR1 is sensitive to imidacloprid, nAChR2 is insensitive to this insecticide. In this study, we demonstrate that subchronic exposure to sublethal dose of imidacloprid differentially changes physiological and molecular properties of nAChR1 and nAChR2. Our findings reported that this treatment decreased the sensitivity of nAChR1 to imidacloprid, reduced current density flowing through this nAChR subtype but did not affect its subunit composition (α3, α8 and β1). Subchronic exposure to sublethal dose of imidacloprid also affected nAChR2 functions. However, these effects were different from those reported on nAChR1. We observed changes in nAChR2 conformational state, which could be related to modification of the subunit composition (α1, α2 and β1). Finally, the subchronic exposure affecting both nAChR1 and nAChR2 seemed to be linked to the elevation of the steady-state resting intracellular calcium level. In conclusion, under subchronic exposure to sublethal dose of imidacloprid, cockroaches are capable of triggering adaptive mechanisms by reducing the participation of imidacloprid-sensitive nAChR1 and by optimizing functional properties of nAChR2, which is

  3. A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Jin, Zhuang; Norleans, Jack; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs. PMID:26432642

  4. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.

    PubMed

    Roda, Elisa; Coccini, Teresa; Acerbi, Davide; Castoldi, Anna; Bernocchi, Graziella; Manzo, Luigi

    2008-05-01

    The developing central nervous system (CNS) is a target of the environmental toxicant methylmercury (MeHg), and the cerebellum seems the most susceptible tissue in response to this neurotoxicant. The cholinergic system is essential for brain development, acting as a modulator of neuronal proliferation, migration and differentiation processes; its muscarinic receptors (MRs) play pivotal roles in regulating important basic physiologic functions. By immunohistochemistry, we investigated the effects of perinatal (GD7-PD21) MeHg (0.5 mg/kg bw/day in drinking water) administration on cerebellum of mature (PD36) and immature (PD21) rats, evaluating the: (i) M2- and M3-MR expression; (ii) presence of gliosis; (iii) cytoarchitecture alterations. Regarding to M2-MRs, we showed that: at PD21, MeHg-treated animals did not display any differences compared to controls, while, at PD36 there was a significant increase of M2-immunopositive Bergmann cells in the molecular layer (ML), suggesting a MeHg-related cytotoxic effect. Similarly to M2-MRs, at PD21 the M3-MRs were not affected by MeHg, while, at PD36 a lacking immunoreactivity of the granular layer (IGL) was observed after MeHg treatment. In MeHg-treated rats, at both developmental points, we showed reactive gliosis, e.g. a significant increase in Bergmann glia of the ML and astrocytes of the IGL, identified by their expression of glial fibrillar acidic protein. No MeHg-related effects on Purkinje cells were detected neither at weaning nor at puberty. These findings suggest: (i) a delayed MeHg exposure-related effect on M2- and M3-MRs, (ii) an overt MeHg-related cytotoxic effect on cerebellar oligodendroglia, e.g. reactive gliosis, (iii) a selective vulnerability of granule cells and Purkinje neurons to MeHg, with the latter that remain unharmed.

  5. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice. [Ethanol effects

    SciTech Connect

    Watson, M.; Ming, X.; McArdle, J.J.

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p<.01) greater. Binding assaysmore » for ({sup 3}H)(-) quinuclidinylbenzilate (({sup 3}H)(-)QNB), a specific but nonsubtype selective mAChR antagonist, ({sup 3}H)pirenzepine (({sup 3}H)PZ), a specific M1 mAChR antagonist and ({sup 3}H)11-2-((2-((diethylamino) methyl)-1-piperidinyl) acetyl)-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, (({sup 3}H)AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (K{sub d}) and density (B{sub max}) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) ({sup 3}H)(-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity.« less

  6. The Metabotropic Glutamate Receptor Subtype 5 (mGluR5) Mediates Sensitivity to the Sedative Properties of Ethanol

    PubMed Central

    Downing, Chris; Marks, Michael J.; Larson, Colin; Johnson, Thomas E.

    2010-01-01

    Objective Inbred Long-Sleep and Short-Sleep mice (ILS and ISS) were selectively bred for differential sensitivity to the sedative effects of ethanol. Lines of mice derived from these progenitors have been used to identify several Quantitative Trait Loci (QTLs) mediating Loss Of the Righting reflex due to Ethanol (LORE). The present study investigated mGluR5 as a candidate gene underlying Lore7, a QTL mediating differential LORE sensitivity. Methods We used knockout mice, a quantitative complementation test, pharmacological antagonism of mGluR5, real-time quantitative PCR, radioligand binding, DNA sequencing and bioinformatics to examine the role of mGluR5 in ethanol-induced sedation. Results mGluR5 knockout mice had a significantly longer LORE duration than wild-type controls. Administration of the mGluR5 antagonist 2-methyl-6-(phenylethyl)-pyridine (MPEP) had differential effects on LORE in ILS and ISS mice. A quantitative complementation test also supported mGluR5 mediating LORE. Two intronic single-nucleotide polymorphisms in mGluR5 were highly correlated with LORE in recombinant inbred mice derived from a cross between ILS and ISS (LXS RIs). Differences in mGluR5 mRNA level and receptor density were observed between ILS and ISS in distinct brain regions. Finally, data from WebQTL showed that mGluR5 expression was highly correlated with several LORE phenotypes in the LXS RIs. Conclusions Taken together, this data provides convincing evidence that mGluR5 mediates differential sensitivity to the sedative effects of ethanol. Studies from the human literature have also identified MGLUR5 as a potential candidate gene for ethanol sensitivity. PMID:20657349

  7. Activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases the expression of prostaglandin E2 receptor subtype EP4. The roles of phosphatidylinositol 3-kinase and CCAAT/enhancer-binding protein beta.

    PubMed

    Han, ShouWei; Ritzenthaler, Jeffrey D; Wingerd, Byron; Roman, Jesse

    2005-09-30

    The prostaglandin E2 receptor subtype EP4 has been implicated in the growth and progression of human non-small cell lung carcinoma (NSCLC). However, the factors that control its expression have not been entirely elucidated. Our studies show that NSCLC cells express peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) protein and that treatment with a selective PPARbeta/delta agonist (GW501516) increases EP4 mRNA and protein levels. GW501516 induced NSCLC cell proliferation, and this effect was prevented by PPARbeta/delta antisense or EP4 short interfering RNA (siRNA). GW501516 increased the phosphorylation of Akt and decreased PTEN expression. The selective inhibitor of phosphatidylinositol 3-kinase (PI3-K), wortmannin, and PPARbeta/delta antisense, abrogated the effect of GW501516 on EP4 expression, whereas that of the inhibitor of Erk did not. GW501516 also increased EP4 promoter activity through effects on the region between -1555 and -992 bp in the EP4 promoter, and mutation of the CCAAT/enhancer-binding protein (C/EBP) site in this region abrogated the effect of GW501516. GW501516 increased not only the binding activity of C/EBP to the NF-IL6 site in the EP4 promoter, which was prevented by the inhibitor of PI3-K, but also increased C/EBPbeta protein in a dose- and PPARbeta/delta-dependent manner. The effect of GW501516 on EP4 protein was eliminated in the presence of C/EBPbeta siRNA. Finally, we showed that pretreatment of NSCLC with GW501516 further increased NSCLC cell proliferation in response to exogenous dimethyl-prostaglandin E2 (PGE2) that was diminished in the presence of PPARbeta/delta antisense and EP4 siRNA. Taken together, these findings suggest that activation of PPARbeta/delta induces PGE2 receptor subtype EP4 expression through PI3-K signals and increases human lung carcinoma cell proliferation in response to PGE2. The increase in transcription of the EP4 gene by PPARbeta/delta agonist was associated with increased C

  8. The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5

    PubMed Central

    Morrison, Ryan D.; Blobaum, Anna L.; Byers, Frank W.; Santomango, Tammy S.; Bridges, Thomas M.; Stec, Donald; Brewer, Katrina A.; Sanchez-Ponce, Raymundo; Corlew, Melany M.; Rush, Roger; Felts, Andrew S.; Manka, Jason; Bates, Brittney S.; Venable, Daryl F.; Rodriguez, Alice L.; Jones, Carrie K.; Niswender, Colleen M.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2012-01-01

    Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu5. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of 18O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because 18O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates. PMID:22711749

  9. Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ(42) oligomers via a metalloproteinase-dependent mechanism.

    PubMed

    Sandoval, Karin E; Farr, Susan A; Banks, William A; Crider, Albert M; Morley, John E; Witt, Ken A

    2013-07-03

    Soluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimer's disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation. Herein we evaluated the effect of selective SSTR4 agonist NNC 26-9100 on the changes in learning and soluble Aβ42 oligomer brain content with and without co-administration of the M13-metalloproteinase family enzyme-inhibitor phosphoramidon, using the senescence-accelerated mouse prone-8 (SAMP8) model. NNC 26-9100 treatment (0.2 µg i.c.v. in 2 µL) improved learning, which was blocked by phosphoramidon (1 and 10mM, respectively). NNC 26-9100 decreased total soluble Aβ42, an effect which was blocked by phosphoramidon (10mM). Extracellular, intracellular, and membrane fractions were then isolated from cortical tissue and assessed for soluble oligomer alterations. NNC 26-9100 decreased the Aβ42 trimeric (12 kDa) form within the extracellular and intracellular fractions, and produced a band-split effect of the Aβ42 hexameric (25 kDa) form within the extracellular fraction. These effects were also blocked by phosphoramdon (1 and 10mM, respectively). Subsequent evaluation of NNC 26-9100 in APPswe Tg2576 transgenic mice showed a similar learning improvement and corresponding reduction in soluble Aβ42 oligomers within extracellular, intracellular, and membrane fractions. These data support the hypothesis that NNC 26-9100 reduces soluble Aβ42 oligomers and enhances learning through a phosphoramidon-sensitive metalloproteinase-dependent mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Effects of intravenous administration of neurokinin receptor subtype-selective agonists on gonadotropin-releasing hormone pulse generator activity and luteinizing hormone secretion in goats

    PubMed Central

    YAMAMURA, Takashi; WAKABAYASHI, Yoshihiro; OHKURA, Satoshi; NAVARRO, Victor M.; OKAMURA, Hiroaki

    2014-01-01

    Recent evidence suggests that neurokinin B (NKB), a member of the neurokinin (tachykinin) peptide family, plays a pivotal role in gonadotropin-releasing hormone (GnRH) pulse generation. Three types of neurokinin receptors (NKRs), NK1R, NK2R and NK3R, are found in the brain. Although NKB preferentially binds to NK3R, other NKRs are possibly also involved in NKB action. The present study examined the effects of intravenous administration of the NKR subtype-selective agonists GR73632 (NK1R), GR64349 (NK2R), and senktide (NK3R) on GnRH pulse generator activity and luteinizing hormone (LH) secretion. Multiple-unit activity (MUA) was monitored in ovariectomized goats (n = 5) implanted with recording electrodes. Characteristic increases in MUA (MUA volleys) were considered GnRH pulse generator activity. Although three NKR agonists dose-dependently induced an MUA volley and an accompanying increase in LH secretion, the efficacy in inducing the volley markedly differed. As little as 10 nmol of senktide induced an MUA volley in all goats, whereas a dose of 1000 nmol was only effective for the NK1R and NK2R agonists in two and four goats, respectively. When the treatment failed to evoke an MUA volley, no apparent change was observed in the MUA or LH secretion. Similar effects of the NK2R and NK3R agonists were observed in the presence of estradiol. The results demonstrated that NK3R plays a predominant role in GnRH pulse generation and suggested that the contributions of NK1R and NK2R to this mechanism may be few, if any, in goats. PMID:25345909

  11. Admixture Mapping of African-American Women in the AMBER Consortium Identifies New Loci for Breast Cancer and Estrogen-Receptor Subtypes.

    PubMed

    Ruiz-Narváez, Edward A; Sucheston-Campbell, Lara; Bensen, Jeannette T; Yao, Song; Haddad, Stephen; Haiman, Christopher A; Bandera, Elisa V; John, Esther M; Bernstein, Leslie; Hu, Jennifer J; Ziegler, Regina G; Deming, Sandra L; Olshan, Andrew F; Ambrosone, Christine B; Palmer, Julie R; Lunetta, Kathryn L

    2016-01-01

    Recent genetic admixture coupled with striking differences in incidence of estrogen receptor (ER) breast cancer subtypes, as well as severity, between women of African and European ancestry, provides an excellent rationale for performing admixture mapping in African American women with breast cancer risk. We performed the largest breast cancer admixture mapping study with in African American women to identify novel genomic regions associated with the disease. We conducted a genome-wide admixture scan using 2,624 autosomal ancestry informative markers (AIMs) in 3,629 breast cancer cases (including 1,968 ER-positive, 1093 ER-negative, and 601 triple-negative) and 4,658 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium, a collaborative study of four large geographically different epidemiological studies of breast cancer in African American women. We used an independent case-control study to test for SNP association in regions with genome-wide significant admixture signals. We found two novel genome-wide significant regions of excess African ancestry, 4p16.1 and 17q25.1, associated with ER-positive breast cancer. Two regions known to harbor breast cancer variants, 10q26 and 11q13, were also identified with excess of African ancestry. Fine-mapping of the identified genome-wide significant regions suggests the presence of significant genetic associations with ER-positive breast cancer in 4p16.1 and 11q13. In summary, we identified three novel genomic regions associated with breast cancer risk by ER status, suggesting that additional previously unidentified variants may contribute to the racial differences in breast cancer risk in the African American population.

  12. Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers.

    PubMed

    Hamill, Terence G; Krause, Stephen; Ryan, Christine; Bonnefous, Celine; Govek, Steve; Seiders, T Jon; Cosford, Nicholas D P; Roppe, Jeffrey; Kamenecka, Ted; Patel, Shil; Gibson, Raymond E; Sanabria, Sandra; Riffel, Kerry; Eng, Waisi; King, Christopher; Yang, Xiaoqing; Green, Mitchell D; O'Malley, Stacey S; Hargreaves, Richard; Burns, H Donald

    2005-06-15

    Three metabotropic glutamate receptor subtype 5 (mGluR5) PET tracers have been labeled with either carbon-11 or fluorine-18 and their in vitro and in vivo behavior in rhesus monkey has been characterized. Each of these tracers share the common features of high affinity for mGluR5 (0.08-0.23 nM vs. rat mGluR5) and moderate lipophilicity (log P 2.8-3.4). Compound 1b was synthesized using a Suzuki or Stille coupling reaction with [11C]MeI. Compounds 2b and 3b were synthesized by a SNAr reaction using a 3-chlorobenzonitrile precursor. Autoradiographic studies in rhesus monkey brain slices using 2b and 3b showed specific binding in cortex, caudate, putamen, amygdala, hippocampus, most thalamic nuclei, and lower binding in the cerebellum. PET imaging studies in monkey showed that all three tracers readily enter the brain and provide an mGluR5-specific signal in all gray matter regions, including the cerebellum. The specific signal observed in the cerebellum was confirmed by the autoradiographic studies and saturation binding experiments that showed tracer binding in the cerebellum of rhesus monkeys. In vitro metabolism studies using the unlabeled compounds showed that 1a, 2a, and 3a are metabolized slower by human liver microsomes than by monkey liver microsomes. In vivo metabolism studies showed 3b to be long-lived in rhesus plasma with only one other more polar metabolite observed. (c) 2005 Wiley-Liss, Inc.

  13. T227. THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 REGULATES STRIATAL DOPAMINE RELEASE VIA AN ENDOCANNABINOID-DEPENDENT MECHANISM: IMPLICATIONS FOR THE TREATMENT OF SCHIZOPHRENIA

    PubMed Central

    Yohn, Samantha; Covey, Daniel; Foster, Daniel; Moehle, Mark; Galbraith, Jordan; Cheer, Joseph; Lindsley, Craig; Jeffrey Conn, P

    2018-01-01

    Abstract Background Clinical and preclinical studies suggest that selective activators of the muscarinic M4 receptor have exciting potential as a novel approach for treatment of schizophrenia. M4 reduces striatal dopamine (DA) though release of endocannabinoids (eCB), providing a mechanism for local effects on DA signaling in the striatum. M4 signals through Gαi/o and does not couple to Gαq/11 or induce calcium (Ca++) mobilization. This raises the possibility that M4-induced eCB release and inhibition of DA release may require co-activation of another receptor that activates Gαq/11. If so, this receptor could provide a novel target that may be more proximal to inhibition of DA release. Interestingly, the group 1 metabotropic glutamate (mGlu) receptors (mGlu1 and Glu5), couple to Gαq/11 and activate eCB signaling in multiple brain regions. Methods We tested the hypothesis that M4-induced reductions in DA release and subsequent antipsychotic-effect requires co-activation of group 1 mGlu receptors. The effect of M4 activation on electrically-evoked DA release in striatal slices was assessed using fast-scan cyclic voltammetry (FSCV) in the absence or presence of selective negative allosteric modulators (NAMs) of group 1 mGlu receptor subtypes. To evaluate the potential role of mGlu1, we determined the effects of a selective mGlu1 positive allosteric modulators (PAMs) on striatal DA release and antipsychotic-like activity in rodent models that are dependent on increased DA transmission. Since reductions in DA signaling, including D1 signaling have been implicated in reduced motivation, we also determined the effects of an mGlu1 PAM, M4 PAM, and the typical antipsychotic haloperidol on motivational responding in a progressive ratio (PR) schedule. Results We now present exciting new data in which we found that activation of mGlu1 through application of exogenous agonists or selective stimulation of thalamostriatal afferents induces a reduction of striatal DA release

  14. 5′-AMP impacts lymphocyte recirculation through activation of A2B receptors

    PubMed Central

    Bouma, Hjalmar R.; Mandl, Judith N.; Strijkstra, Arjen M.; Boerema, Ate S.; Kok, Jan-Willem; van Dam, Annie; IJzerman, Ad; Kroese, Frans G. M.; Henning, Robert H.

    2013-01-01

    Natural hibernation consists of torpid phases with metabolic suppression alternating with euthermic periods. Induction of torpor holds substantial promise in various medical conditions, including trauma, major surgery, and transplantation. Torpor in mice can be induced pharmacologically by 5′-AMP. Previously, we showed that during natural torpor, the reduction in body temperature results in lymphopenia via a reduction in plasma S1P. Here, we show that during torpor induced by 5′-AMP, there is a similar reduction in the number of circulating lymphocytes that is a result of their retention in secondary lymphoid organs. This lymphopenia could be mimicked by engagement of A2BRs by a selective A2BR agonist (LUF6210) in the absence of changes in temperature and prevented by A2BR antagonists during 5′-AMP-induced torpor. In addition, forced cooling of mice led to peripheral blood lymphopenia, independent of A2BR signaling. The induction of torpor using 5′-AMP impacted the migration of lymphocytes within and between secondary lymphoid organs. During torpor, the homing into LNs was impaired, and two-photon intravital microscopy revealed that cell motility was decreased significantly and rapidly upon 5′-AMP administration. Furthermore, the S1P plasma concentration was reduced by 5′-AMP but not by LUF6210. S1P plasma levels restored upon arousal. Likely, the reduced migration in LNs combined with the reduced S1P plasma level substantially reduces lymphocyte egress after injection of 5′-AMP. In conclusion, 5′-AMP induces a state of pharmacological torpor in mice, during which, lymphopenia is governed primarily by body temperature-independent suppression of lymphocyte egress from LNs. PMID:23682128

  15. A2B Adenosine Receptor–Mediated Induction of IL-6 Promotes CKD

    PubMed Central

    Dai, Yingbo; Zhang, Weiru; Wen, Jiaming; Zhang, Yujin; Kellems, Rodney E.

    2011-01-01

    Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol–modified ADA to reduce adenosine levels and the inhibition of the A2B adenosine receptor (A2BR) attenuated renal fibrosis and dysfunction. Furthermore, activation of A2BR promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A2BR. Taken together, these data suggest that A2BR-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD. PMID:21511827

  16. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV-cholera toxin A(2)/B chimeras.

    PubMed

    Tinker, Juliette K; Davis, Chadwick T; Arlian, Britni M

    2010-11-01

    Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A(2)/B chimeric molecules containing the LcrV protective antigen from Yersinia enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed Escherichia coli. Western and GM(1) ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA(2)/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA(2)/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A(2)/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV–cholera toxin A2/B chimeras

    PubMed Central

    Davis, Chadwick T.; Arlian, Britni M.

    2010-01-01

    Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A2/B chimeric molecules containing the LcrV protective antigen from Y. enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed E. coli. Western and GM1 ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA2/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA2/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A2/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates. PMID:20438844

  18. Effects of YM471, a nonpeptide AVP V1A and V2 receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells

    PubMed Central

    Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro

    2001-01-01

    YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400

  19. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  20. Strong association of insulin-like growth factor 1 receptor expression with histologic grade, subtype, and HPV status in penile squamous cell carcinomas: a tissue microarray study of 112 cases.

    PubMed

    Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Burnett, Arthur L; Cubilla, Antonio L; Netto, George J; Chaux, Alcides

    2017-06-01

    Insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and transformation. It is overexpressed in several solid tumors. This study evaluates IGF1R immunoexpression in penile squamous cell carcinoma (SCC). Four tissue microarrays were built from formalin-fixed, paraffin-embedded blocks of 112 penile SCC from Paraguay. Membranous IGF1R expression was evaluated by immunohistochemistry using two different approaches. An H-score was calculated in each spot (stain intensity by extent), and a median score per tumor was obtained. The second approach consisted of a score similar to the scoring system that was used for evaluating HER2 immunoexpression. For each case, the highest category obtained at any spot was used for statistical analyses. IGF1R expression was compared by histologic subtype, grade, and human papillomavirus (HPV) status. Median H-score was 22.5. The distribution of IGF1R expression by HER2 approach was as follows: 0 in 33.0% cases, 1+ in 46.4%, 2+ in 14.3%, and 3+ in 6.2%. IGF1R H-scores were associated with basaloid and warty/basaloid subtypes (p = 0.0026) and higher grade (p = 0.00052). Although weaker when using the HER2 approach, the association of IGF1R expression with subtype (p = 0.015) and grade (p = 0.015) remained significant. Furthermore, there was an association between IGF1R expression by HER2 approach and HPV status (p = 0.012). IGF1R was expressed in about two thirds of penile SCC cases, showing a strong positive association with histologic grade, subtype, and HPV status. Considering that grade is a predictor of outcome IGF1R expression may have prognostic relevance and could point to a potential role for IGF1R inhibitors in treating penile SCC.

  1. Differential neonatal imprinting and regulation by estrogen of estrogen receptor subtypes alpha and beta and of the truncated estrogen receptor product (TERP-1) mRNA expression in the male rat pituitary.

    PubMed

    Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E

    2001-11-01

    Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat

  2. Immature osteoblastic MG63 cells possess two calcitonin gene-related peptide receptor subtypes that respond differently to [Cys(Acm)(2,7)] calcitonin gene-related peptide and CGRP(8-37).

    PubMed

    Kawase, Tomoyuki; Okuda, Kazuhiro; Burns, Douglas M

    2005-10-01

    Calcitonin gene-related peptide (CGRP) is clearly an anabolic factor in skeletal tissue, but the distribution of CGRP receptor (CGRPR) subtypes in osteoblastic cells is poorly understood. We previously demonstrated that the CGRPR expressed in osteoblastic MG63 cells does not match exactly the known characteristics of the classic subtype 1 receptor (CGRPR1). The aim of the present study was to further characterize the MG63 CGRPR using a selective agonist of the putative CGRPR2, [Cys(Acm)(2,7)]CGRP, and a relatively specific antagonist of CGRPR1, CGRP(8-37). [Cys(Acm)(2,7)]CGRP acted as a significant agonist only upon ERK dephosphorylation, whereas this analog effectively antagonized CGRP-induced cAMP production and phosphorylation of cAMP response element-binding protein (CREB) and p38 MAPK. Although it had no agonistic action when used alone, CGRP(8-37) potently blocked CGRP actions on cAMP, CREB, and p38 MAPK but had less of an effect on ERK. Schild plot analysis of the latter data revealed that the apparent pA2 value for ERK is clearly distinguishable from those of the other three plots as judged using the 95% confidence intervals. Additional assays using 3-isobutyl-1-methylxanthine or the PKA inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H-89) indicated that the cAMP-dependent pathway was predominantly responsible for CREB phosphorylation, partially involved in ERK dephosphorylation, and not involved in p38 MAPK phosphorylation. Considering previous data from Scatchard analysis of [125I]CGRP binding in connection with these results, these findings suggest that MG63 cells possess two functionally distinct CGRPR subtypes that show almost identical affinity for CGRP but different sensitivity to CGRP analogs: one is best characterized as a variation of CGRPR1, and the second may be a novel variant of CGRPR2.

  3. Expression and function of somatostatin receptor subtype 1 in human growth hormone secreting pituitary tumors deriving from patients partially responsive or resistant to long-term treatment with somatostatin analogs.

    PubMed

    Matrone, C; Pivonello, R; Colao, A; Cappabianca, P; Cavallo, L M; Del Basso De Caro, M L; Taylor, J E; Culler, M D; Lombardi, G; Di Renzo, G F; Annunziato, L

    2004-03-01

    The role of somatostatin (SS) receptor subtype 1 (SSTR(1)) in mediating the inhibitory effect of SS on growth hormone (GH) secreting pituitary tumors has been recently demonstrated. In the present study, we evaluated the effect of the selective SSTR(1) agonist BIM-23745 on in vitro GH secretion in GH-secreting pituitary tumor cells, deriving from patients resistant or partially responsive to octreotide long-acting release (octreotide-LAR) or lanreotide therapy in vivo and expressing SSTR(1) mRNA. In addition, the inhibiting effect of BIM-23745 on the GH secretion was compared with that of octreotide. Our data demonstrate that (1) SSTR(1) receptor was present in 56.25% (9/16) of the GH-secreting adenomas examined; (2) in all GH-secreting pituitary tumors that expressed SSTR(1), BIM-23745 significantly inhibited GH secretion in vitro, and (3) when SSTR(1) subtype was present in tumors from patients resistant to octreotide-LAR or lanreotide therapy, BIM-23745 was able to inhibit the in vitro GH secretion. In conclusion, the results of the current study suggest that SS analogs selective for the SSTR(1) may represent a further useful approach for the treatment of acromegaly in patients resistant or partially responsive to octreotide-LAR or lanreotide treatment in vivo. Copyright 2004 S. Karger AG, Basel

  4. Image-derived and arterial blood sampled input functions for quantitative PET imaging of the angiotensin II subtype 1 receptor in the kidney

    SciTech Connect

    Feng, Tao; Tsui, Benjamin M. W.; Li, Xin

    Purpose: The radioligand {sup 11}C-KR31173 has been introduced for positron emission tomography (PET) imaging of the angiotensin II subtype 1 receptor in the kidney in vivo. To study the biokinetics of {sup 11}C-KR31173 with a compartmental model, the input function is needed. Collection and analysis of arterial blood samples are the established approach to obtain the input function but they are not feasible in patients with renal diseases. The goal of this study was to develop a quantitative technique that can provide an accurate image-derived input function (ID-IF) to replace the conventional invasive arterial sampling and test the method inmore » pigs with the goal of translation into human studies. Methods: The experimental animals were injected with [{sup 11}C]KR31173 and scanned up to 90 min with dynamic PET. Arterial blood samples were collected for the artery derived input function (AD-IF) and used as a gold standard for ID-IF. Before PET, magnetic resonance angiography of the kidneys was obtained to provide the anatomical information required for derivation of the recovery coefficients in the abdominal aorta, a requirement for partial volume correction of the ID-IF. Different image reconstruction methods, filtered back projection (FBP) and ordered subset expectation maximization (OS-EM), were investigated for the best trade-off between bias and variance of the ID-IF. The effects of kidney uptakes on the quantitative accuracy of ID-IF were also studied. Biological variables such as red blood cell binding and radioligand metabolism were also taken into consideration. A single blood sample was used for calibration in the later phase of the input function. Results: In the first 2 min after injection, the OS-EM based ID-IF was found to be biased, and the bias was found to be induced by the kidney uptake. No such bias was found with the FBP based image reconstruction method. However, the OS-EM based image reconstruction was found to reduce variance in the

  5. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation

    PubMed Central

    Fischer, Bradford D.; Teixeira, Laura P.; van Linn, Michael L.; Namjoshi, Ojas A.; Cook, James M.; Rowlett, James K.

    2013-01-01

    Rationale Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. Objective The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Methods Squirrel monkeys (n=6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1–10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032–1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist) and HZ-166 (0.1–10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem and HZ-166 were assessed with flumazenil (0.1–3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1–3.2 mg/kg and 0.32–10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Results Chlordiazepoxide, zolpidem and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCt and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCt and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. Conclusions These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine. PMID:23354533

  6. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation.

    PubMed

    Fischer, Bradford D; Teixeira, Laura P; van Linn, Michael L; Namjoshi, Ojas A; Cook, James M; Rowlett, James K

    2013-05-01

    Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Squirrel monkeys (n = 6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1-10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032-1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist), and HZ-166 (0.1-10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem, and HZ-166 were assessed with flumazenil (0.1-3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1-3.2 mg/kg and 0.32-10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Chlordiazepoxide, zolpidem, and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCT, and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCT and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine.

  7. Modulation of Long-Term Potentiation and Epileptiform Activity in the Rat Dentate Gyrus by the Group II Metabotropic Glutamate Receptor Subtype mGluR3

    DTIC Science & Technology

    2000-05-25

    subsequent transmitter release. The rat hippocampal slice is a preparation richly endowed with ionotropic and metabotropic glutamate receptors ...M. Zhao and R. J. Wenthold (1996b). Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in...epileptiform activity in the rat cortex. Neuroreport 3(10): 916-8. Shen, W. and M. M. Slaughter (1998). Metabotropic and ionotropic glutamate receptors

  8. Modulation of Long-Term Potentiation and Epileptiform Activity in the Rat Dentate Gyrus by the Group II Metabotropic Glutamate Receptor Subtype mGluR3

    DTIC Science & Technology

    2000-05-25

    preparation richly endowed with ionotropic and metabotropic glutamate receptors , including mGluR3 (Shigemoto et al., 1997). NAAG is concentrated in...Zhao and R. J. Wenthold (1996b). Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in...epileptiform activity in the rat cortex. Neuroreport 3(10): 916-8. Shen, W. and M. M. Slaughter (1998). Metabotropic and ionotropic glutamate receptors

  9. Immunodiagnosis of tumors in vivo using radiolabeled monoclonal antibody A2B5

    SciTech Connect

    Reintgen, D.S.; Shimizu, K.; Coleman, E.

    1983-07-01

    Recently a murine monoclonal antibody (A2B5) has been described that reacts with a membrane associated GQ ganglioside common to peptide secreting normal cells and tumors. In vitro binding data demonstrated the presence of this ganglioside on neurons, adrenal medulla, and pancreatic islets, along with neuroendocrine tumors such as insulinomas, pheochromocytomas, melanomas and neuroblastomas. Negative binding has previously been shown for tissue sections from liver, kidney, colon, lung, stomach, and tumors not derived from the neural crest. Because of the specificity at A2B5 in vitro, this monoclonal antibody was labeled with /sup 131/I for in vivo tumor localization studies. Daily radionuclearmore » scans were obtained in 5 KX rats bearing the radiation induced rat insulinoma with disappearance of the label from the blood pool and concentration in the tumor so that by the fourth day, the only activity present by scan was in the insulinoma. In addition A2B5 also localized to five different human melanoma cells lines grown in nude mice with high tumor/blood levels compared to normal tissues, while no localization is seen in nudes carrying osteosarcomas, colon, bladder, and renal cell carcinomas. In addition antibody A2B5 did not concentrate in any normal tissue though the antigen is present on several. The finding that A2B5 reacts across species lines (mouse, rat, man) lends itself to obvious diagnostic and therapeutic possibilities.« less

  10. Differential distribution of adenosine receptors in rat cochlea.

    PubMed

    Vlajkovic, Srdjan M; Abi, Shukri; Wang, Carol J H; Housley, Gary D; Thorne, Peter R

    2007-06-01

    Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.

  11. Distribution of the Vasotocin Subtype Four Receptor (VT4R) in the Anterior Pituitary Gland of the Chicken, Gallus gallus, and its Possible Role in the Avian Stress Response.

    PubMed

    Selvam, R; Jurkevich, A; Kang, S W; Mikhailova, M V; Cornett, L E; Kuenzel, W J

    2013-01-01

    The neurohormone arginine vasotocin (AVT) in non mammalian vertebrates is homologous to arginine vasopressin (AVP) in mammals. Its actions are mediated via G protein-coupled receptors that belong to the vasotocin/mesotocin family. Because of the known regulatory effects of nonapeptide hormones on anterior pituitary functions, receptor subtypes in that family have been proposed to be located in anterior pituitary cells. Recently, an avian vasotocin receptor subtype designated VT4R has been cloned, which shares 69% sequence homology with a human vasopressin receptor, the V1aR. In the present study, a polyclonal antibody to the VT4R was developed and validated to confirm its specificity to the VT4R. The antibody was used to test the hypothesis that the VT4R is present in the avian anterior pituitary and is specifically associated with certain cell types, where its expression is modulated by acute stress. Western blotting of membrane protein extracts from pituitary tissue, the use of HeLa cells transfected with the VT4R and peptide competition assays all confirmed the specificity of the antibody to the VT4R. Dual-labelling immunofluorescence microscopy was utilised to identify pituitary cell types that contained immunoreactive VT4R. The receptor was found to be widely distributed throughout the cephalic lobe but not in the caudal lobe of the anterior pituitary. Immunoreactive VT4R was associated with corticotrophs. Approximately 89% of immunolabelled corticotrophs were shown to contain the VT4R. The immunoreactive VT4R was not found in gonadotrophs, somatotrophs or lactotrophs. To determine a possible functional role of the VT4R and previously characterised VT2R, gene expression levels in the anterior pituitary were determined after acute immobilisation stress by quantitative reverse transcriptase-polymerase chain reaction. The results showed a significant increase in plasma corticosterone levels (three- to four-fold), a significant reduction of VT4R mRNA and an

  12. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats.

    PubMed

    Weigt, Carmen; Hertrampf, Torsten; Flenker, Ulrich; Hülsemann, Frank; Kurnaz, Pinar; Fritzemeier, Karl Heinrich; Diel, Patrick

    2015-11-01

    The leptin resistant Zucker diabetic fatty (ZDF) rats are hyperphagic and become obese, but whereas the males develop type 2 diabetes mellitus (T2DM), the females remain euglycaemic. As estrogen deficiency is known to increase the risk of developing T2DM, we evaluated the role of ER subtypes alpha and beta in the development of glucose tolerance in leptin resistant ovariectomized (OVX) ZDF rats. At least six rats per group were treated with either vehicle (OVX), 17β-estradiol (E2), ER subtype-selective agonists (Alpha and Beta), or genistein (Gen) for 17 weeks. At the end of the treatment period a glucose tolerance assay was performed and the metabolic flux of (13)C-glucose for the E2 group was investigated. OVX ZDF rats treated with E2, Alpha, Beta, and Gen tolerated the glucose significantly better than untreated controls. E2 treatment increased absorbance/flux of (13)C-glucose to metabolic relevant tissues such liver, adipose tissue, gastrocnemius, and soleus muscle. Moreover, whereas Alpha treatment markedly increased mRNA expression of GLUT4 in gastrocnemius muscle, Beta treatment resulted in the largest fiber sizes of the soleus muscle. Treatment with Gen increased both the mRNA expression of GLUT 4 and the fiber sizes in the skeletal muscle. In addition, E2 and Alpha treatment decreased food intake and body weight gain. In summary, estrogen-improved glucose absorption is mediated via different molecular mechanisms: while activation of ER alpha seems to stimulate muscular GLUT4 functionality, activation of ER beta results in a hypertrophy of muscle fibers. In addition, selective activation of ER alpha decreased food intake and body weight gain. Our data further indicate that ER subtype-selective agonists and genistein improve systemic glucose tolerance also in the absence of a functional leptin signaling pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

    PubMed

    Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice.

    PubMed

    Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A

    2014-02-01

    NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.

  15. Textbook Evaluation: An Analysis of Listening Comprehension Parts in Top Notch 2A & 2B

    ERIC Educational Resources Information Center

    Soori, Afshin; Haghani, Elham

    2015-01-01

    Textbooks are the instruments that assist both teachers and learners in process of second language learning. With respect to the importance of textbooks in a language course, evaluation of course books is a significant issue for most researchers. The present study investigated and analyzed Listening Comprehension parts in Top Notch 2A & 2B 2nd…

  16. Envelope co-receptor tropism, drug resistance, and viral evolution among subtype C HIV-1 infected individuals receiving non-suppressive antiretroviral therapy

    PubMed Central

    Kassaye, Seble; Johnston, Elizabeth; McColgan, Bryan; Kantor, Rami; Zijenah, Lynn; Katzenstein, David

    2009-01-01

    In resource-constrained settings, antiretroviral treatment (ART) is often continued based on clinical and CD4 responses, without virologic monitoring. ART with incomplete viral suppression was assessed in 27 subjects with subtype C HIV-1 by measuring plasma HIV-1 RNA, drug resistance, viral tropism, and evolution in polymerase (pol) and envelope (env) genes. The association between these viral parameters and CD4 cell change over time was analyzed using linear regression models. Increased area under the curve of HIV-1 RNA replication was a predictor of lower CD4 cell gains (p <0.007), while less drug resistance measured as a genotypic susceptibility score (GSS) (p=0.065), and lower rates of evolution in pol and env genes (p= 0.08 and 0.097, respectively) measured as genetic distance were modestly associated with increasing CD4 cell counts. Evolution of pol and env were correlated (R2 = 0.48, p=0.005), however, greater evolution was identified in env vs. pol (p <0.05). CXCR4-usage (X4) was detected in 14/27 (52%) but no differences in CD4 cell change or plasma viremia were associated with X4-usage. Among subtype C HIV-1 infected patients in Zimbabwe receiving incompletely suppressive ART, higher virus replication and lower CD4 cell gains were associated with drug resistance and evolution of polymerase and envelope. PMID:19295330

  17. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain.

    PubMed

    Andó, R D; Méhész, B; Gyires, K; Illes, P; Sperlágh, B

    2010-03-01

    This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4',4'',4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8'-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5'-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5'-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested compounds had significant action on oedema evoked by intraplantar

  18. Molecular dynamics simulations and docking studies on 3D models of the heterodimeric and homodimeric 5-HT(2A) receptor subtype.

    PubMed

    Bruno, Agostino; Beato, Claudia; Costantino, Gabriele

    2011-04-01

    G-protein coupled receptors may exist as functional homodimers, heterodimers and even as higher aggregates. In this work, we investigate the 5-HT(2A) receptor, which is a known target for antipsychotic drugs. Recently, 5-HT(2A) has been shown to form functional homodimers and heterodimers with the mGluR2 receptor. The objective of this study is to build up 3D models of the 5-HT(2A)/mGluR2 heterodimer and of the 5-HT(2A)-5-HT(2A) homodimer, and to evaluate the impact of the dimerization interface on the shape of the 5-HT(2A) binding pocket by using molecular dynamics simulations and docking studies. The heterodimer, homodimer and monomeric 5-HT(2A) receptors were simulated by molecular dynamics for 40 ns each. The trajectories were clustered and representative structures of six clusters for each system were generated. Inspection of the these representative structures clearly indicate an effect of the dimerization interface on the topology of the binding pocket. Docking studies allowed to generate receiver operating characteristic curves for a set of 5-HT(2A) ligands, indicating that different complexes prefer different classes of 5-HT(2A) ligands. This study clearly indicates that the presence of a dimerization interface must explicitly be considered when studying G-protein coupled receptors known to exist as dimers. Molecular dynamics simulation and cluster analysis are appropriate tools to study the phenomenon.

  19. Self-enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia

    PubMed Central

    Geng, Huimin; Hurtz, Christian; Lenz, Kyle B.; Chen, Zhengshan; Baumjohann, Dirk; Thompson, Sarah; Goloviznina, Natalya; Chen, Wei-Yi; Huan, Jianya; LaTocha, Dorian; Ballabio, Erica; Xiao, Gang; Lee, Jae-Woong; Deucher, Anne; Qi, Zhongxia; Park, Eugene; Huang, Chuanxin; Nahar, Rahul; Kweon, Soo-Mi; Shojaee, Seyedmehdi; Chan, Lai N.; Yu, Jingwei; Kornblau, Steven M.; Bijl, Janetta J.; Ye, B. Hilda; Ansel, Mark; Paietta, Elisabeth; Melnick, Ari; Hunger, Stephen P.; Kurre, Peter; Tyner, Jeffrey W.; Loh, Mignon L.; Roeder, Robert G.; Druker, Brian J.; Burger, Jan. A.; Milne, Thomas A.; Chang, Bill H.; Müschen, Markus

    2015-01-01

    SUMMARY Studying 830 pre-B ALL cases from four clinical trials, we found that human ALL can be divided into two fundamentally distinct subtypes based on pre-BCR function. While absent in the majority of ALL cases, tonic pre-BCR signaling was found in 112 cases (13.5%). In these cases, tonic pre-BCR signaling induced activation of BCL6, which in turn increased pre-BCR signaling output at the transcriptional level. Interestingly, inhibition of pre-BCR-related tyrosine kinases reduced constitutive BCL6 expression and selectively killed patient-derived pre-BCR+ ALL cells. These findings identify a genetically and phenotypically distinct subset of human ALL that critically depends on tonic pre-BCR signaling. In vivo treatment studies suggested that pre-BCR tyrosine kinase inhibitors are useful for the treatment of patients with pre-BCR+ ALL. PMID:25759025

  20. Morphine enhances nitric oxide release in the mammalian gastrointestinal tract via the micro(3) opiate receptor subtype: a hormonal role for endogenous morphine.

    PubMed

    Stefano, G B; Zhu, W; Cadet, P; Bilfinger, T V; Mantione, K

    2004-03-01

    Studies from our laboratory have revealed a novel micro opiate receptor, micro(3), which is expressed in both human vascular tissues and leukocytes. The micro(3) receptor is selective for opiate alkaloids, insensitive to opioid peptides and is coupled to constitutive nitric oxide (cNO) release. We now identify the micro(3) receptor characteristics in mammalian gut tissues. It appears that the various regions of the mouse gut release low levels of NO (0.02 to 4.6 nM ) in a pulsatile manner. We demonstrate that morphine stimulates cNO release (peak level 17 nM) in the mouse stomach, small intestine and large intestine in a naloxone and L-NAME antagonizable manner. Opioid peptides do not exhibit cNO-stimulating capabilities in these tissues. Taken together, we surmise morphine acts as a hormone to limit gut activity via micro(3) coupled to NO release since micro opiate receptors are found in the gut and endogenous morphine is not but is found in blood.

  1. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    PubMed

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain

    PubMed Central

    Andó, RD; Méhész, B; Gyires, K; Illes, P; Sperlágh, B

    2010-01-01

    Background and purpose: This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. Experimental approach: The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4′,4″,4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8′-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5′-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5′-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). Key results: MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested

  3. Antagonism of the Ethanol-Like Discriminative Stimulus Effects of Ethanol, Pentobarbital, and Midazolam in Cynomolgus Monkeys Reveals Involvement of Specific GABAA Receptor SubtypesS⃞

    PubMed Central

    Rogers, Laura S. M.; Grant, Kathleen A.

    2009-01-01

    The γ-aminobutyric acid (GABA)A receptors mediating the discriminative stimulus effects of ethanol were studied by comparing the potency of ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)benzodiazepine-3-carboxylate (Ro15-4513) and ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)-benzodiazepine-3-carboxylate (flumazenil, Ro15-1788) to antagonize ethanol, pentobarbital (PB), and midazolam substitution for ethanol. Ro15-4513 has high affinity for receptors containing α4/6 and α5 subunits and lower affinity for α1, α2, and α3 subunits. Flumazenil is nonselective for GABAA receptors containing α1, α2, α3, and α5 subunits and has low affinity for α4/6-containing receptors. Male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) were trained to discriminate ethanol (1.0 or 2.0 g/kg i.g., 30-min pretreatment) from water. Ethanol, PB, and midazolam dose-dependently substituted for ethanol (80% ethanol-appropriate responding). Ro15-4513 (0.003–0.56 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in a vast majority of monkeys tested (15/15, 16/17, and 11/12, respectively). In contrast, flumazenil (0.30–10.0 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in 9 of 16, 12 of 16, and 7 of 9 monkeys tested, respectively. In the monkeys showing antagonism with both Ro15-4513 and flumazenil, ethanol and PB substitution were antagonized more potently by Ro15-4513 than by flumazenil, whereas midazolam substitution was antagonized with similar potency. There were no sex or training dose differences, with the exception that flumazenil failed to antagonize ethanol substitution in males trained to discriminate 2.0 g/kg ethanol. GABAA receptors with high affinity for Ro15-4513 (i.e., containing α4/6 and α5 subunits) may be particularly important mediators of the multiple discriminative stimulus effects of ethanol

  4. The Role of Adenosine Receptors in Psychostimulant Addiction

    PubMed Central

    Ballesteros-Yáñez, Inmaculada; Castillo, Carlos A.; Merighi, Stefania; Gessi, Stefania

    2018-01-01

    Adenosine receptors (AR) are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS), adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC), through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A), as well as with other subtypes (e.g., A2A/D2), opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are partly responsible

  5. Proceedings of the International Symposium on Subtypes of Muscarinic Receptors (5th), Held in Newport Beach, California, October 22-24, 1992.

    DTIC Science & Technology

    1993-02-22

    to the development of new and better therapeutic agents &A well as agents useful to the U.S. Army Research and Development Command. As another mark...concerned. Accordingly, the publishers, the editorial board and editors, and their respective employees, officers and agents , accept no responsibility... covalent -labeling studies have suggested that ligands bind to a hydrophobic core of the receptors that is formed by multiple transmembrane (TM) domains

  6. Differential effects of short- and long-term zolpidem treatment on recombinant α1β2γ2s subtype of GABAA receptors in vitro

    PubMed Central

    Vlainić, Josipa; Jembrek, Maja Jazvinšćak; Vlainić, Toni; Štrac, Dubravka Švob; Peričić, Danka

    2012-01-01

    Aim: Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABAA receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABAA receptors following short and long-term exposure to zolpidem in vitro. Methods: Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABAA receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [3H]flunitrazepam binding sites. Results: A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [3H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L–1 mmol/L) enhanced [3H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [3H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [3H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [3H]flunitrazepam binding. Conclusion: The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABAA receptors that could be related to the development of tolerance and dependence. PMID:22922343

  7. A2B corroles: Fluorescence signaling systems for sensing fluoride ions.

    PubMed

    Yadav, Omprakash; Varshney, Atul; Kumar, Anil; Ratnesh, Ratneshwar Kumar; Mehata, Mohan Singh

    2018-05-19

    Four free base corroles, 1-4, A 2 B, (where A = nitrophenyl, and B = pentafluorophenyl, 2, 6-difluoro, 3, 4, 5-trifluoro and 4-carboxymethylphenyl group) have been synthesized, characterized and demonstrated as excellent chemosensor for the detection of fluoride ions selectively in toluene solution. The reported corroles shows highest quantum yield in free base form of porphyrinoid systems so far. All these corrole, 1-4, have the excellent ability to sense fluoride ion. Cumulative effect of static and dynamic factors is responsible for the quenching of fluorescence which indicates the detection of fluoride ion in solution. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin (Stx) is the key virulent factor in Shiga toxin-producing Escherichia coli (STEC). To date, three Stx1 subtypes and Seven Stx2 subtypes have been described in E. coli, which were found to differ in receptor preference and toxin potency. Here, we identified a novel Stx2 subtype designated...

  9. Peroxisome proliferator-activated receptor subtype-specific regulation of hepatic and peripheral gene expression in the Zucker diabetic fatty rat.

    PubMed

    Dana, S L; Hoener, P A; Bilakovics, J M; Crombie, D L; Ogilvie, K M; Kauffman, R F; Mukherjee, R; Paterniti, J R

    2001-08-01

    Fibrates and thiazolidinediones are used clinically to treat hypertriglyceridemia and hyperglycemia, respectively. Fibrates bind to the peroxisome proliferator-activated receptor (PPAR)-alpha, and thiazolidinediones are ligands of PPAR-gamma. These intracellular receptors form heterodimers with retinoid X receptor to modulate gene transcription. To elucidate the target genes regulated by these compounds, we treated Zucker diabetic fatty rats (ZDF) for 15 days with a PPAR-alpha-specific compound, fenofibrate, a PPAR-gamma-specific ligand, rosiglitazone, and a PPAR-alpha/-gamma coagonist, GW2331, and measured the levels of several messenger RNAs (mRNAs) in liver by real-time polymerase chain reaction. All 3 compounds decreased serum glucose and triglyceride levels. Fenofibrate and GW2331 induced expression of acyl-coenzyme A (CoA) oxidase and enoyl-CoA hydratase and reduced apolipoprotein C-III and phosphoenolpyruvate carboxykinase mRNAs. Rosiglitazone modestly increased apolipoprotein C-III mRNA and had no effect on expression of the other 2 genes in the liver but increased the expression of glucose transporter 4 and phosphoenolpyruvate carboxykinase in adipose tissue. We identified a novel target in liver, mitogen-activated phosphokinase phosphatase 1, whose down-regulation by PPAR-alpha agonists may improve insulin sensitivity in that tissue by prolonging insulin responses. The results of these studies suggest that activation of PPAR-alpha as well as PPAR-gamma in therapy for type 2 diabetes will enhance glucose and triglyceride control by combining actions in hepatic and peripheral tissues. Copyright 2001 by W.B. Saunders Company

  10. The association of soy food consumption with the risk of subtype of breast cancers defined by hormone receptor and HER2 status

    PubMed Central

    Baglia, Michelle L; Zheng, Wei; Li, Honglan; Yang, Gong; Gao, Jing; Gao, Yu-Tang; Shu, Xiao-Ou

    2016-01-01

    Soy-food intake has previously been associated with reduced breast cancer risk. Epidemiological evidence for subgroups of breast cancer, particularly by menopausal and hormone receptor status, is less consistent. To evaluate the role of hormone receptor and menopausal status on the association between soy-food intake and breast cancer risk, we measured usual soy-food intake in adolescence and adulthood via food frequency questionnaire in 70,578 Chinese women, aged 40-70 years, recruited to the Shanghai Women’s Health Study (1996-2000). After a median follow-up of 13.2 years (range:0.01-15.0), 1,034 incident breast cancer cases were identified. Using Cox models, we found that adult soy intake was inversely associated with breast cancer risk (hazard ratio-HR) for fifth versus first quintile soy protein intake=0.78; 95% confidence interval (CI):0.63-0.97). The association was predominantly seen in premenopausal women (HR=0.46; 95% CI:0.29-0.74). Analyses further stratified by hormone receptor status showed that adult soy intake was associated with significantly decreased risk of ER+/PR+ breast cancer in postmenopausal women (HR=0.72; 95% CI:0.53-0.96) and decreased risk of ER−/PR− breast cancer in premenopausal women (HR=0.46; 95% CI:0.22-0.97). The soy association did not vary by HER2 status. Furthermore, we found that high soy intake during adulthood and adolescence was associated with reduced premenopausal breast cancer risk (HR=0.53; 95% CI:0.32-0.88; comparing third versus first tertile) while high adulthood soy intake was associated with postmenopausal breast cancer only when adolescent intake was low (HR=0.63; 95% CI:0.43-0.91). Our study suggests that hormonal status, menopausal status, and time window of exposure are important factors influencing the soy-breast cancer association. PMID:27038352

  11. Limitations in predicting PAM50 intrinsic subtype and risk of relapse score with Ki67 in estrogen receptor-positive HER2-negative breast cancer

    PubMed Central

    Fernand ez-Martinez, Aranzazu; Pascual, Tomás; Perrone, Giuseppe; Morales, Serafin; de la Haba, Juan; González-Rivera, Milagros; Galván, Patricia; Zalfa, Francesca; Amato, Michela; Gonzalez, Lucia; Prats, Miquel; Rojo, Federico; Manso, Luis; Paré, Laia; Alonso, Immaculada; Albanell, Joan; Vivancos, Ana; González, Antonio; Matito, Judit; González, Sonia; Fernandez, Pedro; Adamo, Barbara; Muñoz, Montserrat; Viladot, Margarita; Font, Carme; Aya, Francisco; Vidal, Maria; Caballero, Rosalía; Carrasco, Eva; Altomare, Vittorio; Tonini, Giuseppe; Prat, Aleix; Martin, Miguel

    2017-01-01

    PAM50/Prosigna gene expression-based assay identifies three categorical risk of relapse groups (ROR-low, ROR-intermediate and ROR-high) in post-menopausal patients with estrogen receptor estrogen receptor-positive (ER+)/ HER2-negative (HER2-) early breast cancer. Low risk patients might not need adjuvant chemotherapy since their risk of distant relapse at 10-years is below 10% with endocrine therapy only. In this study, 517 consecutive patients with ER+/HER2- and node-negative disease were evaluated for Ki67 and Prosigna. Most of Luminal A tumors (65.6%) and ROR-low tumors (70.9%) had low Ki67 values (0-10%); however, the percentage of patients with ROR-medium or ROR-high disease within the Ki67 0-10% group was 42.7% (with tumor sizes ≤2 cm) and 33.9% (with tumor sizes > 2 cm). Finally, we found that the optimal Ki67 cutoff for identifying Luminal A or ROR-low tumors was 14%. Ki67 as a surrogate biomarker in identifying Prosigna low-risk outcome patients or Luminal A disease in the clinical setting is unreliable. In the absence of a well-validated prognostic gene expression-based assay, the optimal Ki67 cutoff for identifying low-risk outcome patients or Luminal A disease remains at 14%. PMID:28423537

  12. Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders.

    PubMed

    Mitsukawa, Kayo; Mombereau, Cedric; Lötscher, Erika; Uzunov, Doncho P; van der Putten, Herman; Flor, Peter J; Cryan, John F

    2006-06-01

    Regulation of neurotransmission via group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) has recently been implicated in the pathophysiology of affective disorders, such as major depression and anxiety. For instance, mice with a targeted deletion of the gene for mGluR7 (mGluR7-/-) showed antidepressant and anxiolytic-like effects in a variety of stress-related paradigms, including the forced swim stress and the stress-induced hyperthermia tests. Deletion of mGluR7 reduces also amygdala- and hippocampus-dependent conditioned fear and aversion responses. Since the hypothalamic-pituitary-adrenal (HPA) axis regulates the stress response we investigate whether parameters of the HPA axis at the levels of selected mRNA transcripts and endocrine hormones are altered in mGluR7-deficient mice. Over all, mGluR7-/- mice showed only moderately lower serum levels of corticosterone and ACTH compared with mGluR7+/+ mice. More strikingly however, we found strong evidence for upregulated glucocorticoid receptor (GR)-dependent feedback suppression of the HPA axis in mice with mGluR7 deficiency: (i) mRNA transcripts of GR were significantly upregulated in the hippocampus of mGluR7-/- animals, (ii) similar increases were seen with 5-HT1A receptor transcripts, which are thought to be directly controlled by the transcription factor GR and finally (iii) mGluR7-/- mice showed elevated sensitivity to dexamethasone-induced suppression of serum corticosterone when compared with mGluR7+/+ animals. These results indicate that mGluR7 deficiency causes dysregulation of HPA axis parameters, which may account, at least in part, for the phenotype of mGluR7-/- mice in animal models for anxiety and depression. In addition, we present evidence that protein levels of brain-derived neurotrophic factor are also elevated in the hippocampus of mGluR7-/- mice, which we discuss in the context of the antidepressant-like phenotype found in those animals. We conclude that genetic ablation of m

  13. Proceedings of the International Symposium on Subtypes of Muscarinic Receptors 2 (2nd) Held in Boston, Massachusetts on August 22-24 1985

    DTIC Science & Technology

    1986-04-30

    such as complementary form of the receptor but that the oxotremorine and McN-A-343 may be due to this factor, supermolecule’ formed is unstable and...structural series. The anomalies in the behaviour of the oxotremorine group compared to carbachol or acetylcholine may have this Drwia College, Cambride...x 10 ~ 1.3±0.1 0.5±+0. 1 Carbachol (7.14±+0.47) x 10" 1.0+0.1 1.2 ±0.2 Oxotremorine (2.17 i0.14)x 10-1 1.0±0.1 0.7±0.3 Acetyl-p-methylcholine’ (234

  14. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    PubMed Central

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  15. In vivo and in vitro response to octreotide LAR in a TSH-secreting adenoma: characterization of somatostatin receptor expression and role of subtype 5.

    PubMed

    Gatto, Federico; Barbieri, Federica; Castelletti, Lara; Arvigo, Marica; Pattarozzi, Alessandra; Annunziata, Francesca; Saveanu, Alexandru; Minuto, Francesco; Castellan, Lucio; Zona, Gianluigi; Florio, Tullio; Ferone, Diego

    2011-06-01

    Thyrotropin-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism and account for less than 2% of pituitary adenomas. Medical therapy with somatostatin analogues (SSAs) effectively reduces TSH secretion in approximately 80% of patients and induces shrinkage in about 45% of tumors. According with previous data, resistance to SSA treatment might be due to heterogeneity in somatostatin receptors (SSTRs) expression. We report the case of TSHoma in a 41-year-old man treated with octreotide LAR that caused a dramatic decrease of TSH and thyroid hormones and tumor shrinkage already after 3 months of pre-surgical therapy. In search of potential molecular determinants of octreotide effectiveness, we measured, in primary cultures from this tumor, SSTR and dopamine D2 receptor (D2R) expression, and octreotide and/or cabergoline effects on TSH secretion and cell proliferation. SSTR5 and D2R expression was higher than SSTR2. Octreotide significantly inhibited TSH secretion more effectively than cabergoline (P<0.001), whereas the combined treatment was comparable with cabergoline alone. Similarly, octreotide resulted more effective than cabergoline on cell proliferation, while the combination did not show any additive or synergistic effects. In conclusion, the significant antisecretive and antiproliferative effect of octreotide in this patient might be related to the high expression of SSTR5, in the presence of SSTR2. After reviewing the literature, indeed, in line with previous observations, we hypothesize that SSTR5/SSTR2 ratio in TSHomas may represent a useful marker in predicting the outcome of therapy with SSAs. The role of D2R should be further explored considering that the presence of D2R can influence SSTRs functionality. © Springer Science+Business Media, LLC 2010

  16. Separate Ionotropic and Metabotropic Glutamate Receptor Functions in Depotentiation vs. LTP: A Distinct Role for Group1 mGluR Subtypes and NMDARs

    PubMed Central

    Latif-Hernandez, Amira; Faldini, Enrico; Ahmed, Tariq; Balschun, Detlef

    2016-01-01

    Depotentiation (DP) is a mechanism by which synapses that have recently undergone long-term potentiation (LTP) can reverse their synaptic strengthening within a short time-window after LTP induction. Group 1 metabotropic glutamate receptors (mGluRs) were shown to be involved in different forms of LTP and long-term depression (LTD), but little is known about their roles in DP. Here, we generated DP by applying low-frequency stimulation (LFS) at 5 Hz after LTP had been induced by a single train of theta-burst-stimulation (TBS). While application of LFS for 2 min (DP2′) generated only a short-lasting DP that was independent of the activation of N-methyl-D-aspartate receptors (NMDARs) and group 1 mGluRs, LFS given for 8 min (DP8′) induced a robust DP that was maintained for at least 2 h. This strong form of DP was contingent on NMDAR activation. Interestingly, DP8′ appears to include a metabotropic NMDAR function because it was blocked by the competitive NMDAR antagonist D-AP5 but not by the use-dependent inhibitor MK-801 or high Mg2+. Furthermore, DP8′ was enhanced by application of the mGluR1 antagonist (YM 298198, 1 μM). The mGluR5 antagonist 2-Methyl-6(phenylethynyl) pyridine (MPEP, 40 μM), in contrast, failed to affect it. The induction of LTP, in turn, was NMDAR dependent (as tested with D-AP5), and blocked by MPEP but not by YM 298198. These results indicate a functional dissociation of mGluR1 and mGluR5 in two related and consecutively induced types of NMDAR-dependent synaptic plasticity (LTP → DP) with far-reaching consequences for their role in plasticity and learning under normal and pathological conditions. PMID:27872582

  17. Separate Ionotropic and Metabotropic Glutamate Receptor Functions in Depotentiation vs. LTP: A Distinct Role for Group1 mGluR Subtypes and NMDARs.

    PubMed

    Latif-Hernandez, Amira; Faldini, Enrico; Ahmed, Tariq; Balschun, Detlef

    2016-01-01

    Depotentiation (DP) is a mechanism by which synapses that have recently undergone long-term potentiation (LTP) can reverse their synaptic strengthening within a short time-window after LTP induction. Group 1 metabotropic glutamate receptors (mGluRs) were shown to be involved in different forms of LTP and long-term depression (LTD), but little is known about their roles in DP. Here, we generated DP by applying low-frequency stimulation (LFS) at 5 Hz after LTP had been induced by a single train of theta-burst-stimulation (TBS). While application of LFS for 2 min (DP2') generated only a short-lasting DP that was independent of the activation of N -methyl-D-aspartate receptors (NMDARs) and group 1 mGluRs, LFS given for 8 min (DP8') induced a robust DP that was maintained for at least 2 h. This strong form of DP was contingent on NMDAR activation. Interestingly, DP8' appears to include a metabotropic NMDAR function because it was blocked by the competitive NMDAR antagonist D-AP5 but not by the use-dependent inhibitor MK-801 or high Mg 2+ . Furthermore, DP8' was enhanced by application of the mGluR1 antagonist (YM 298198, 1 μM). The mGluR5 antagonist 2-Methyl-6(phenylethynyl) pyridine (MPEP, 40 μM), in contrast, failed to affect it. The induction of LTP, in turn, was NMDAR dependent (as tested with D-AP5), and blocked by MPEP but not by YM 298198. These results indicate a functional dissociation of mGluR1 and mGluR5 in two related and consecutively induced types of NMDAR-dependent synaptic plasticity (LTP → DP) with far-reaching consequences for their role in plasticity and learning under normal and pathological conditions.

  18. In vivo Proton NMR spectroscopy of genetic mouse models BALB/cJ and C57BL/6By: variation in hippocampal glutamate level and the metabotropic glutamate receptor, subtype 7 (Grm7) gene.

    PubMed

    Guilfoyle, David N; Gerum, Scott; Vadasz, Csaba

    2014-05-01

    Glutamatergic neurotransmission in the brain is modulated by metabotropic glutamate receptors (mGluR). In recent studies, we identified a cis-regulated variant of a gene (Grm7) which codes for mGluR subtype 7 (mGluR7), a presynaptic inhibitory receptor. The genetic variant derived from the BALB/cJ mouse strain (Grm7 (BALB/cJ)) codes for higher abundance of mGluR7 mRNA in the hippocampus than the C57BL/6By strain-derived variant (Grm7 (C57BL/6By)). Here, we used localized in vivo (1)H NMR spectroscopy to test the hypothesis that Grm7 (BALB/cJ) is also associated with lower glutamate concentration in the same brain region. All data were obtained on a 7.0 T Agilent (Santa Clara, CA, USA) 40-cm bore system using experimentally naive adult male inbred C57BL/6By, BALB/cJ, and congenic mice (B6By.C.6.132.54) constructed in our laboratory carrying Grm7 (BALB/cJ) on C57BL/6By genetic background. The voxel of interest size was 6 μL (1 × 2 × 3 mm(3)) placed in the hippocampal CA1 region. The results showed that the hippocampal level of glutamate in the congenic mouse strain was significantly lower than that in the background C57BL/6By strain which carried the Grm7 (C57BL/6By) allele. Because the two inbred strains are genetically highly similar except at the region of the Grm7 gene, the results raise the possibility that allelic variation at the Grm7 locus contributes to the strain differences in both hippocampal mRNA abundance and glutamate level which may modulate complex behavioral traits, such as learning and memory, addiction, epilepsy, and mood disorders.

  19. Effect of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy)benzamido)ethyl) benzoic acid (CJ-42794), a selective antagonist of prostaglandin E receptor subtype 4, on ulcerogenic and healing responses in rat gastrointestinal mucosa.

    PubMed

    Takeuchi, Koji; Tanaka, Akiko; Kato, Shinichi; Aihara, Eitaro; Amagase, Kikuko

    2007-09-01

    Recent research showed the involvement of prostaglandin E receptor subtype 4 (EP4) in hypersensitivity to inflammatory pain and suggested that the EP4 receptor is a potential target for the pharmacological treatment of inflammatory pain. We examined the effects of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy) benzamido)ethyl) benzoic acid (CJ-42794), a selective EP4 antagonist, on gastrointestinal ulcerogenic and healing responses in rats, in comparison with those of various cyclooxygenase (COX) inhibitors. CJ-42794 alone, given p.o., did not produce any damage in the gastrointestinal mucosa, similar to 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560) (COX-1 inhibitor) or rofecoxib (COX-2 inhibitor), whereas indomethacin (nonselective COX inhibitor) caused gross lesions. Rofecoxib but not CJ-42794, however, damaged these tissues when coadministered with SC-560 and aggravated gastric lesions produced by aspirin. Indomethacin and SC-560 worsened the gastric ulcerogenic response to cold-restraint stress, yet neither CJ-42794 nor rofecoxib had any effect. Furthermore, indomethacin and SC-560 at lower doses damaged the stomach and small intestine of adjuvant arthritic rats. In arthritic rats, rofecoxib but not CJ-42794 provoked gastric ulceration, whereas CJ-42794 produced little damage in the small intestine. The repeated administration of CJ-42794 and rofecoxib as well as indomethacin impaired the healing of chronic gastric ulcers with a down-regulation of vascular endothelial growth factor expression in the ulcerated mucosa. These results suggest that CJ-42794 does not cause any damage in the normal rat gastrointestinal mucosa and in the arthritic rat stomach and does not worsen the gastric ulcerogenic response to stress or aspirin in normal rats, although this agent slightly damages the small intestine of arthritic rats and impairs the healing of gastric ulcers.

  20. Structure–Activity Relationships Comparing N-(6-Methylpyridin-yl)-Substituted Aryl Amides to 2-Methyl-6-(substituted-arylethynyl)pyridines or 2-Methyl-4-(substituted-arylethynyl)thiazoles as Novel Metabotropic Glutamate Receptor Subtype 5 Antagonists†

    PubMed Central

    Kulkarni, Santosh S.; Zou, Mu-Fa; Cao, Jianjing; Deschamps, Jeffrey R.; Rodriguez, Alice L.; Conn, P. Jeffrey; Newman, Amy Hauck

    2010-01-01

    The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in anxiety, depression, pain, mental retardation, and addiction. The potent and selective noncompetitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 1) has been a critically important tool used to further elucidate the role of mGluR5 in these CNS disorders. In an effort to provide novel and structurally diverse selective mGluR5 antagonists, we previously described a set of analogues with moderate activity wherein the alkyne bond was replaced with an amide group. In the present report, extended series of both amide and alkyne-based ligands were synthesized. MGluR5 binding and functional data were obtained that identified (1) several novel alkynes with comparable affinities to 1 at mGluR5 (e.g., 10 and 20–23), but (2) most structural variations to the amide template were not well tolerated, although a few potent amides were discovered (e.g., 55 and 56). Several of these novel analogues show drug-like physical properties (e.g., cLogP range) 2–5) that support their use for in vivo investigation into the role of mGluR5 in CNS disorders. PMID:19445453

  1. The predictive value of soluble biomarkers (CD14 subtype, interleukin-2 receptor, human leucocyte antigen-G) and procalcitonin in the detection of bacteremia and sepsis in pediatric oncology patients with chemotherapy-induced febrile neutropenia.

    PubMed

    Urbonas, Vincas; Eidukaitė, Audronė; Tamulienė, Indrė

    2013-04-01

    Prediction of bacteremia/sepsis in childhood oncology patients with febrile neutropenia still remains a challenge for the medical community due to the lack of reliable biomarkers, especially at the beginning of infectious process. The objective of this study was to evaluate diagnostic value of soluble biomarkers (CD14 subtype, interleukin-2 receptor, HLA-G) and procalcitonin (PCT) in the identification of infectious process at the beginning of a febrile episode in pediatric oncology patients. A total of 62 episodes of febrile neutropenia in 37 childhood oncology patients were enrolled in this study. Serum samples were collected at presentation after confirmation of febrile neutropenia and analyzed according to recommendations of manufacturers. Patients were classified into bacteremia/sepsis and fever of unknown origin groups. Median of PCT and sIL-2R were considerably higher in bacteremia/sepsis group compared to fever of unknown origin group, whereas median of sHLA-G and presepsin levels between investigated groups did not differ sufficiently. PCT and sIL-2R determination might be used as an additional diagnostic tool for the detection of bacteremia/sepsis in childhood oncology patients with febrile neutropenia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an ERβ Agonist from Glycyrrhiza inflata and Highlights the Importance of Chemical and Biological Authentication.

    PubMed

    Hajirahimkhan, Atieh; Mbachu, Obinna; Simmler, Charlotte; Ellis, Sarah G; Dong, Huali; Nikolic, Dejan; Lankin, David C; van Breemen, Richard B; Chen, Shao-Nong; Pauli, Guido F; Dietz, Birgit M; Bolton, Judy L

    2018-04-27

    Postmenopausal women are increasingly using botanicals for menopausal symptom relief due to the increased breast cancer risk associated with traditional estrogen therapy. The deleterious effects of estrogens are associated with estrogen receptor (ER)α-dependent proliferation, while ERβ activation could enhance safety by opposing ERα effects. Three medicinal licorice species, Glycyrrhiza glabra ( G. glabra), G. uralensis, and G. inflata, were studied for their differential estrogenic efficacy. The data showed higher estrogenic potency for G. inflata in an alkaline phosphatase induction assay in Ishikawa cells (ERα) and an estrogen responsive element (ERE)-luciferase assay in MDA-MB-231/β41 breast cancer cells (ERβ). Bioassay-guided fractionation of G. inflata led to the isolation of 8-prenylapigenin (3). Surprisingly, a commercial batch of 3 was devoid of estrogenic activity. Quality control by MS and qNMR revealed an incorrect compound, 4'- O-methylbroussochalcone B (10), illustrating the importance of both structural and purity verification prior to any biological investigations. Authentic and pure 3 displayed 14-fold preferential ERβ agonist activity. Quantitative analyses revealed that 3 was 33 times more concentrated in G. inflata compared to the other medicinal licorice extracts. These data suggest that standardization of G. inflata to 3 might enhance the safety and efficacy of G. inflata supplements used for postmenopausal women's health.

  3. Isolation and characteristics of CD133‑/A2B5+ and CD133‑/A2B5‑ cells from the SHG139s cell line.

    PubMed

    Han, Yong; Wang, Hangzhou; Huang, Yulun; Cheng, Zhe; Sun, Ting; Chen, Guilin; Xie, Xueshun; Zhou, Youxin; Du, Ziwei

    2015-12-01

    In glioma tissues, there are small cell populations with the capability of sustaining tumor formation. These cells are referred to as glioma stem cells (GSCs). However, the presence of subpopulations of GSCs, and the differences between each subpopulation remain to be fully elucidated. In the present study, CD133‑/A2B5‑ and CD133‑/A2B5+ cells from the SHG139 GSC cell line (SHG139s) were isolated using magnetic‑activated cell sorting. Following xenografting into nude mice, the two isolated subpopulations generated tumors. The characteristics of the two subpopulations were investigated extensively, and it was found that the two exhibited cancer stem cell characteristics. These cells expressed stem cell markers, exhibited a neurosphere‑like appearance, and were found to exhibit self‑renewal and multipotency capabilities. Subsequently, the self‑renewal and proliferation abilities of the two subpopulations were compared. It was found that the A2B5‑ cells had a higher proliferative index and a higher self‑renewal ability, compared with the A2B5+ cells. In addition, the A2B5‑ cells exhibited increased angiogenic ability. However, the invasion ability of the A2B5+ cells was higher than that of the A2B5‑ cells. Taken together, the results of the present study suggested that there are different cell subpopulations in GSCs, and each subpopulation has its own properties.

  4. SH-I-048A, AN IN VITRO NONSELECTIVE SUPER-AGONIST AT THE BENZODIAZEPINE SITE OF GABAA RECEPTORS: THE APPROXIMATED ACTIVATION OF RECEPTOR SUBTYPES MAY EXPLAIN BEHAVIORAL EFFECTS

    PubMed Central

    Obradović, Aleksandar Lj.; Joksimović, Srđan; Poe, Michael M.; Ramerstorfer, Joachim; Varagic, Zdravko; Namjoshi, Ojas; Batinić, Bojan; Radulović, Tamara; Marković, Bojan; Roth, Brian; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2014-01-01

    Enormous progress in understanding the role of four populations of benzodiazepine-sensitive GABAA receptors was paralleled by the puzzling findings suggesting that substantial separation of behavioral effects may be accomplished by apparently non-selective modulators. We report on SH-I-048A, a newly-synthesized chiral positive modulator of GABAA receptors characterized by exceptional subnanomolar affinity, high efficacy and non-selectivity. Its influence on behavior was assessed in Wistar rats and contrasted to that obtained with 2 mg/kg diazepam. SH-I-048A reached micromolar concentrations in brain tissue, while the unbound fraction in brain homogenate was around 1.5%. The approximated electrophysiological responses, which estimated free concentrations of SH-I-048A or diazepam are able to elicit, suggested a similarity between the 10 mg/kg dose of the novel ligand and 2 mg/kg diazepam; however, SH-I-048A was relatively more active at α1- and α5-containing GABAA receptors. Behaviorally, SH-I-048A induced sedative, muscle relaxant and ataxic effects, reversed mechanical hyperalgesia 24 hours after injury, while it was devoid of clear anxiolytic actions and did not affect water-maze performance. While lack of clear anxiolytic actions may be connected with an enhanced potentiation at α1-containing GABAA receptors, the observed behavior in the rotarod, water maze and peripheral nerve injury tests was possibly affected by its prominent action at receptors containing the α5 subunit. The current results encourage further innovative approaches aimed at linking in vitro and in vivo data in order to help define fine-tuning mechanisms at four sensitive receptor populations that underlie subtle differences in behavioral profiles of benzodiazepine site ligands. PMID:24472579

  5. The role of muscarinic receptor subtypes on carbachol-induced contraction of normal human detrusor and overactive detrusor associated with benign prostatic hyperplasia.

    PubMed

    Yamanishi, Tomonori; Kaga, Kanya; Fuse, Miki; Shibata, Chiharu; Kamai, Takao; Uchiyama, Tomoyuki

    2015-06-01

    The aim of this study was to compare the effect of antimuscarinic antagonists on carbachol-induced contraction of normal human bladder and detrusor overactivity associated with benign prostatic hyperplasia (DO/BPH). Samples of human bladder muscle were obtained from patients undergoing total cystectomy for bladder cancer (normal bladder), and those undergoing retropubic prostatectomy for BPH. All of the patients with DO/BPH had detrusor overactivity according to urodynamic studies. Detrusor muscle strips were mounted in 10-ml organ baths containing Krebs solution, and concentration-response curves for carbachol were obtained in the presence of antimuscarinic antagonists (4-DAMP, methoctramine, pirenzepine, tolterodine, solifenacin, trospium, propiverine, oxybutynin, and imidafenacin) or vehicle. All antagonists competitively antagonized concentration-response curves to carbachol with high affinities in normal bladder. The rank order of mean pA2 values was as follows: trospium (10.1) > 4-DAMP (9.87), imidafenacin (9.3) > solifenacin (8.8) > tolterodine (8.6) > oxybutynin (8.3) > propiverine (7.7) > pirenzepine (7.4) > methoctramine (6.6). The effects of these antimuscarinic antagonists did not change when tested with DO/BPH bladder, suggesting that each antimuscarinic antagonist has a similar effect in this condition. Schild plots showed a slope corresponding to unity, except for propiverine with DO/BPH detrusor. In conclusion, M3-receptors mainly mediate contractions in human bladder strips with normal state and DO/BPH. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  6. Drimane Sesquiterpenoids Noncompetitively Inhibit Human α4β2 Nicotinic Acetylcholine Receptors with Higher Potency Compared to Human α3β4 and α7 Subtypes.

    PubMed

    Arias, Hugo R; Feuerbach, Dominik; Schmidt, Bernd; Heydenreich, Matthias; Paz, Cristian; Ortells, Marcelo O

    2018-04-27

    The drimane sesquiterpenoids drimenin, cinnamolide, dendocarbin A, and polygodial were purified from the Canelo tree ( Drimys winteri) and chemically characterized by spectroscopic methods. The pharmacological activity of these natural compounds were determined on hα4β2, hα3β4, and hα7 nicotinic acetylcholine receptors (AChRs) by Ca 2+ influx measurements. The results established that drimane sesquiterpenoids inhibit AChRs with the following selectivity: hα4β2 > hα3β4 > hα7. In the case of hα4β2 AChRs, the following potency rank order was determined (IC 50 's in μM): drimenin (0.97 ± 0.35) > cinnamolide (1.57 ± 0.36) > polygodial (62.5 ± 19.9) ≫ dendocarbin A (no activity). To determine putative structural features underlying the differences in inhibitory potency at hα4β2 AChRs, additional structure-activity relationship and molecular docking experiments were performed. The Ca 2+ influx and structural results supported a noncompetitive mechanism of inhibition, where drimenin interacted with luminal and nonluminal (TMD-β2 intrasubunit) sites. The structure-activity relationship results, i.e., the lower the ligand polarity, the higher the inhibitory potency, supported the nonluminal interaction. Ligand binding to both sites might inhibit the hα4β2 AChR by a cooperative mechanism, as shown experimentally ( n H > 1). Drimenin could be used as a molecular scaffold for the development of more potent inhibitors with higher selectivity for the hα4β2 AChR.

  7. Selective activation of group III metabotropic glutamate receptor subtypes produces different patterns of γ-aminobutyric acid immunoreactivity and glutamate release in the retina.

    PubMed

    Guimarães-Souza, E M; Calaza, K C

    2012-12-01

    Glutamate, the major excitatory neurotransmitter in the retina, functions by activation of both ionotropic (iGluR) and metabotropic (mGluR) glutamate receptors. Group III mGluRs, except for mGluR6, are mostly found in the inner plexiform layer (IPL), and their retinal functions are not well known. Therefore, we decided to investigate the effect of mGluRIII on glutamate release and GABAergic amacrine cells in the chick retina. The nonselective mGluRIII agonist L-SOP promoted a decrease in the number of γ-aminobutyric acid (GABA)-positive cells and in the GABA immunoreactivity in all sublayers of the IPL. This effect was prevented by the antagonist MAP-4, by GAT-1 inhibitor, and by antagonists of iGluR. Under the conditions used, L-SOP did not alter endogenous glutamate release. VU0155041, an mGluR4-positive allosteric modulator, reduced GABA immunoreactivity in amacrine cells and in sublayers 2 and 4 of the IPL but evoked an increase in the glutamate released. VU0155041's effect was inhibited by the absence of calcium. AMN082, a selective mGluR7-positive allosteric modulator, also decreased GABA immunoreactivity in amacrine cells and sublayers 1, 2, and 3 and increased glutamate release, and this effect was also inhibited by calcium absence. DCPG, an mGluR8-selective agonist, did not significantly alter GABA immunoreactivity in amacrine cells or glutamate release. However, it did significantly increase GABA immunoreactivity in sublayers 4 and 5. The results suggest that mGluRIIIs are involved in the modulation of glutamate and GABA release in the retina, possibly participating in distinct visual pathways: mGluR4 might be involved with cholinergic circuitry, whereas mGluR7 and mGluR8 might participate, respectively, in the OFF and the ON pathways. Copyright © 2012 Wiley Periodicals, Inc.

  8. A first-in-man PET study of [18F]PSS232, a fluorinated ABP688 derivative for imaging metabotropic glutamate receptor subtype 5.

    PubMed

    Warnock, Geoffrey; Sommerauer, Michael; Mu, Linjing; Pla Gonzalez, Gloria; Geistlich, Susanne; Treyer, Valerie; Schibli, Roger; Buck, Alfred; Krämer, Stefanie D; Ametamey, Simon M

    2018-06-01

    Non-invasive imaging of metabotropic glutamate receptor 5 (mGlu 5 ) in the brain using PET is of interest in e.g., anxiety, depression, and Parkinson's disease. Widespread application of the most widely used mGlu 5 tracer, [ 11 C]ABP688, is limited by the short physical half-life of carbon-11. [ 18 F]PSS232 is a fluorinated analog with promising preclinical properties and high selectivity and specificity for mGlu 5 . In this first-in-man study, we evaluated the brain uptake pattern and kinetics of [ 18 F]PSS232 in healthy volunteers. [ 18 F]PSS232 PET was performed with ten healthy male volunteers aged 20-40 years. Seven of the subjects received a bolus injection and the remainder a bolus/infusion protocol. Cerebral blood flow was determined in seven subjects using [ 15 O]water PET. Arterial blood activity was measured using an online blood counter. Tracer kinetics were evaluated by compartment modeling and parametric maps were generated for both tracers. At 90 min post-injection, 59.2 ± 11.1% of total radioactivity in plasma corresponded to intact tracer. The regional first pass extraction fraction of [ 18 F]PSS232 ranged from 0.41 ± 0.06 to 0.55 ± 0.03 and brain distribution pattern matched that of [ 11 C]ABP688. Uptake kinetics followed a simple two-tissue compartment model. The volume of distribution of total tracer (V T , ml/cm 3 ) ranged from 1.18 ± 0.20 for white matter to 2.91 ± 0.51 for putamen. The respective mean distribution volume ratios (DVR) with cerebellum as the reference tissue were 0.88 ± 0.06 and 2.12 ± 0.10, respectively. The tissue/cerebellum ratios of a bolus/infusion protocol (30/70 dose ratio) were close to the DVR values. Brain uptake of [ 18 F]PSS232 matched the distribution of mGlu 5 and followed a two-tissue compartment model. The well-defined kinetics and the possibility to use reference tissue models, obviating the need for arterial blood sampling, make [ 18 F]PSS232 a promising fluorine-18 labeled

  9. Morphologic Subtypes of Hepatocellular Carcinoma.

    PubMed

    Torbenson, Michael S

    2017-06-01

    Hepatocellular carcinomas can be further divided into distinct subtypes that provide important clinical information and biological insights. These subtypes are distinct from growth patterns and are on based on morphologic and molecular findings. There are 12 reasonably well-defined subtypes as well as 6 provisional subtypes, together making up 35% of all hepatocellular carcinomas. These subtypes are discussed, with an emphasis on their definitions and the key morphologic findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes

    PubMed Central

    Parker, Joel S.; Mullins, Michael; Cheang, Maggie C.U.; Leung, Samuel; Voduc, David; Vickery, Tammi; Davies, Sherri; Fauron, Christiane; He, Xiaping; Hu, Zhiyuan; Quackenbush, John F.; Stijleman, Inge J.; Palazzo, Juan; Marron, J.S.; Nobel, Andrew B.; Mardis, Elaine; Nielsen, Torsten O.; Ellis, Matthew J.; Perou, Charles M.; Bernard, Philip S.

    2009-01-01

    Purpose To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression–based “intrinsic” subtypes luminal A, luminal B, HER2-enriched, and basal-like. Methods A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen. Results The intrinsic subtypes as discrete entities showed prognostic significance (P = 2.26E-12) and remained significant in multivariable analyses that incorporated standard parameters (estrogen receptor status, histologic grade, tumor size, and node status). A prognostic model for node-negative breast cancer was built using intrinsic subtype and clinical information. The C-index estimate for the combined model (subtype and tumor size) was a significant improvement on either the clinicopathologic model or subtype model alone. The intrinsic subtype model predicted neoadjuvant chemotherapy efficacy with a negative predictive value for pCR of 97%. Conclusion Diagnosis by intrinsic subtype adds significant prognostic and predictive information to standard parameters for patients with breast cancer. The prognostic properties of the continuous risk score will be of value for the management of node-negative breast cancers. The subtypes and risk score can also be used to assess the likelihood of efficacy from neoadjuvant chemotherapy. PMID:19204204

  11. Subtyping Stuttering II

    PubMed Central

    Seery, Carol Hubbard; Watkins, Ruth V.; Mangelsdorf, Sarah C.; Shigeto, Aya

    2007-01-01

    This paper is the second in a series of two articles exploring subtypes of stuttering, and it addresses the question of whether and how language ability and temperament variables may be relevant to the study of subtypes within the larger population of children who stutter. Despite observations of varied profiles among young children who stutter, efforts to identify and characterize subtypes of stuttering have had limited influence on theoretical or clinical understanding of the disorder. This manuscript briefly highlights research on language and temperament in young children who stutter, and considers whether the results can provide guidance for efforts to more effectively investigate and elucidate subtypes in childhood stuttering. Issues from the literature that appear relevant to research on stuttering subtypes include: (a) the question of whether stuttering is best characterized as categorical or continuous; (b) interpretation of individual differences in skills and profiles; and (c) the fact that, during the preschool years, the interaction among domains such as language and temperament are changing very rapidly, resulting in large differences in developmental profiles within relatively brief chronological age periods. PMID:17825669

  12. Collaborative study for the establishment of the 2(nd) International Standard for Bleomycin Complex A2/B2.

    PubMed

    Jorajuria, S; Raphalen, C; Dujardin, V; Daas, A

    2015-01-01

    Organization (WHO) International Standard (IS) for bleomycin complex A2/B2. Eight laboratories from different countries participated. Potencies of the candidate material were estimated by microbiological assays with sensitive micro-organisms. To ensure continuity between consecutive batches, the 1(st) IS for bleomycin complex A2/B2 was used as a reference. Based on the results of the study, the 2(nd) IS for bleomycin complex A2/B2 was adopted at the meeting of the WHO Expert Committee for Biological Standardization (ECBS) in 2014 with an assigned potency of 12 500 International Units (IU) per vial. The 2(nd) IS for bleomycin complex A2/B2 is available from the European Directorate for the Quality of Medicines & HealthCare (EDQM).

  13. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    PubMed

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Pathological Gambling Subtypes

    ERIC Educational Resources Information Center

    Vachon, David D.; Bagby, R. Michael

    2009-01-01

    Although pathological gambling (PG) is regarded in the 4th edition of the "Diagnostic and Statistical Manual of Mental Disorders" (American Psychiatric Association, 1994) as a unitary diagnostic construct, it is likely composed of distinct subtypes. In the current report, the authors used cluster analyses of personality traits with a…

  15. Fatty acid metabolism in breast cancer subtypes

    PubMed Central

    Monaco, Marie E.

    2017-01-01

    Dysregulation of fatty acid metabolism is recognized as a component of malignant transformation in many different cancers, including breast; yet the potential for targeting this pathway for prevention and/or treatment of cancer remains unrealized. Evidence indicates that proteins involved in both synthesis and oxidation of fatty acids play a pivotal role in the proliferation, migration and invasion of breast cancer cells. The following essay summarizes data implicating specific fatty acid metabolic enzymes in the genesis and progression of breast cancer, and further categorizes the relevance of specific metabolic pathways to individual intrinsic molecular subtypes of breast cancer. Based on mRNA expression data, the less aggressive luminal subtypes appear to rely on a balance between de novo fatty acid synthesis and oxidation as sources for both biomass and energy requirements, while basal-like, receptor negative subtypes overexpress genes involved in the utilization of exogenous fatty acids. With these differences in mind, treatments may need to be tailored to individual subtypes. PMID:28412757

  16. Subtyping adolescents with bulimia nervosa.

    PubMed

    Chen, Eunice Y; Le Grange, Daniel

    2007-12-01

    Cluster analyses of eating disorder patients have yielded a "dietary-depressive" subtype, typified by greater negative affect, and a "dietary" subtype, typified by dietary restraint. This study aimed to replicate these findings in an adolescent sample with bulimia nervosa (BN) from a randomized controlled trial and to examine the validity and reliability of this methodology. In the sample of BN adolescents (N=80), cluster analysis revealed a "dietary-depressive" subtype (37.5%) and a "dietary" subtype (62.5%) using the Beck Depression Inventory, Rosenberg Self-Esteem Scale and Eating Disorder Examination Restraint subscale. The "dietary-depressive" subtype compared to the "dietary" subtype was significantly more likely to: (1) report co-occurring disorders, (2) greater eating and weight concerns, and (3) less vomiting abstinence at post-treatment (all p's<.05). The cluster analysis based on "dietary" and "dietary-depressive" subtypes appeared to have concurrent validity, yielding more distinct groups than subtyping by vomiting frequency. In order to assess the reliability of the subtyping scheme, a larger sample of adolescents with mixed eating and weight disorders in an outpatient eating disorder clinic (N=149) was subtyped, yielding similar subtypes. These results support the validity and reliability of the subtyping strategy in two adolescent samples.

  17. Synthesis and preliminary biological evaluation of 3-[(18)F]fluoro-5-(2-pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5.

    PubMed

    Wang, Ji-Quan; Tueckmantel, Werner; Zhu, Aijun; Pellegrino, Daniela; Brownell, Anna-Liisa

    2007-12-01

    The metabotropic glutamate receptor subtype 5 (mGluR5) has been reported to be implicated in various neurological disorders in the central nervous system. To investigate physiological and pathological functions of mGluR5, noninvasive imaging in a living body with PET technology and an mGluR5-specific radiotracer is urgently needed. Here, we report the synthesis of 3-[(18)F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([(18)F]FPEB) through a convenient thermal reaction as a highly specific PET radiotracer for mGluR5. The precursor and standard compounds were prepared by a coupling reaction catalyzed by palladium. Radiosynthesis of [(18)F]FPEB was performed using nitro as a leaving group replaced by [(18)F]fluoride under conventional heating condition. Biodistribution, metabolite, and microPET studies were performed using Sprague-Dawley rats. Upto 30 mCi of [(18)F]FPEB was obtained with a radiochemical yield of 5% and a specific activity of 1900 +/- 200 mCi/mumol at the end of syntheses. Biodistribution showed rapid clearance from the blood pool and fast and steady accumulation of radioactivity into the brain. Metabolite studies indicated that only 22% of [(18)F]FPEB remained in the blood system 10 min after administration, and that a metabolite existed which was much more polar than the parent tracer. MicroPET studies demonstrated that [(18)F]FPEB accumulated specifically in mGluR5-rich regions of the brain such as striatum and hippocampus, and that blockade with 2-methyl-6-(2-phenylethynyl)pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) substantially reduced the activity uptake in these regions. Selectivity was investigated by blockage with 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-caroxamide (YM-298198), a specific antagonist for mGluR1. [(18)F]FPEB was prepared conveniently and showed high specificity and selectivity toward mGluR5. It possesses the potential to be used in human studies to evaluate mGluR5 functions in

  18. Influenza A Subtyping

    PubMed Central

    Kaul, Karen L.; Mangold, Kathy A.; Du, Hongyan; Pesavento, Kristen M.; Nawrocki, John; Nowak, Jan A.

    2010-01-01

    Influenza virus subtyping has emerged as a critical tool in the diagnosis of influenza. Antiviral resistance is present in the majority of seasonal H1N1 influenza A infections, with association of viral strain type and antiviral resistance. Influenza A virus subtypes can be reliably distinguished by examining conserved sequences in the matrix protein gene. We describe our experience with an assay for influenza A subtyping based on matrix gene sequences. Viral RNA was prepared from nasopharyngeal swab samples, and real-time RT-PCR detection of influenza A and B was performed using a laboratory developed analyte-specific reagent-based assay that targets a conserved region of the influenza A matrix protein gene. FluA-positive samples were analyzed using a second RT-PCR assay targeting the matrix protein gene to distinguish seasonal influenza subtypes based on differential melting of fluorescence resonance energy transfer probes. The novel H1N1 influenza strain responsible for the 2009 pandemic showed a melting profile distinct from that of seasonal H1N1 or H3N2 and compatible with the predicted melting temperature based on the published novel H1N1 matrix gene sequence. Validation by comparison with the Centers for Disease Control and Prevention real-time RT-PCR for swine influenza A (novel H1N1) test showed this assay to be both rapid and reliable (>99% sensitive and specific) in the identification of the novel H1N1 influenza A virus strain. PMID:20595627

  19. Subtypes of cocaine abusers.

    PubMed

    Weiss, R D; Mirin, S M

    1986-09-01

    We have characterized five subtypes of cocaine abusers on the basis of clinical presentation, family history data, and response to specific treatment interventions. These include depressed patients who value the euphorigenic effects of the drug, patients with bipolar or cyclothymic disorder who use cocaine to augment manic or hypomanic symptoms or to alleviate depression, adults with ADD, residual type, who find that cocaine has a paradoxical effect of increasing attention span and decreasing motor restlessness, patients with narcissistic and borderline personality disorders who use cocaine for its social prestige and because it bolsters self-esteem, and patients with antisocial personality disorder who use cocaine as part of an overall pattern of antisocial behavior. Although not all cocaine abusers fit neatly into these categories, careful psychiatric evaluation and subtyping is essential in designing a specific treatment program for these patients. As the prevalence rate of cocaine abuse increases, studies that examine the efficacy of various treatment approaches for specific subtypes of cocaine abusers will be essential. It is hoped that our work will be a step in that direction.

  20. Association Between Imaging Characteristics and Different Molecular Subtypes of Breast Cancer.

    PubMed

    Wu, Mingxiang; Ma, Jie

    2017-04-01

    Breast cancer can be divided into four major molecular subtypes based on the expression of hormone receptor (estrogen receptor and progesterone receptor), human epidermal growth factor receptor 2, HER2 status, and molecular proliferation rate (Ki67). In this study, we sought to investigate the association between breast cancer subtype and radiological findings in the Chinese population. Medical records of 300 consecutive invasive breast cancer patients were reviewed from the database: the Breast Imaging Reporting and Data System. The imaging characteristics of the lesions were evaluated. The molecular subtypes of breast cancer were classified into four types: luminal A, luminal B, HER2 overexpressed (HER2), and basal-like breast cancer (BLBC). Univariate and multivariate logistic regression analyses were performed to assess the association between the subtype (dependent variable) and mammography or 15 magnetic resonance imaging (MRI) indicators (independent variables). Luminal A and B subtypes were commonly associated with "clustered calcification distribution," "nipple invasion," or "skin invasion" (P <0.05). The BLBC subtype was more commonly associated with "rim enhancement" and persistent inflow type enhancement in delayed phase (P <0.05). HER2 overexpressed cancers showed association with persistent enhancement in the delayed phase on MRI and "clustered calcification distribution" on mammography (P <0.05). Certain radiological features are strongly associated with the molecular subtype and hormone receptor status of breast tumor, which are potentially useful tools in the diagnosis and subtyping of breast cancer. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.

    PubMed

    Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S

    2001-12-01

    The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in

  2. Adenosine receptors and caffeine in retinopathy of prematurity.

    PubMed

    Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling

    2017-06-01

    Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A 1 R, A 2A R, A 2B R) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Subtypes of firesetters.

    PubMed

    Dalhuisen, Lydia; Koenraadt, Frans; Liem, Marieke

    2017-02-01

    Prior research has classified firesetters by motive. The multi-trajectory theory of adult firesetting (M-TTAF) takes a more aetiological perspective, differentiating between five hypothesised trajectories towards firesetting: antisocial cognition, grievance, fire interest, emotionally expressive/need for recognition and multifaceted trajectories. The objective of this study was to validate the five routes to firesetting as proposed in the M-TTAF. All 389 adult firesetters referred for forensic mental health assessment to one central clinic in the Netherlands between 1950 and 2012 were rated on variables linked to the M-TTAF. Cluster analysis was then applied. A reliable cluster solution emerged revealing five subtypes of firesetters - labelled instrumental, reward, multi-problem, disturbed relationship and disordered. Significant differences were observed regarding both offender and offence characteristics. Our five-cluster solution with five subtypes of firesetters partially validates the proposed M-TTAF trajectories and suggests that for offenders with and without mental disorder, this classification may be useful. If further validated with larger and more diverse samples, the M-TTAF could provide guidance on staging evidence-based treatment. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Global Profiling of hnRNP A2/B1-RNA Binding on Chromatin Highlights LncRNA Interactions.

    PubMed

    Nguyen, Eric D; Balas, Maggie M; Griffin, April M; Roberts, Justin T; Johnson, Aaron M

    2018-06-23

    Long noncoding RNAs (lncRNAs) often carry out their functions through associations with adaptor proteins. We recently identified heterogeneous ribonucleoprotein (hnRNP) A2/B1 as an adaptor of the human HOTAIR lncRNA. hnRNP A2 and B1 are splice isoforms of the same gene. The spliced version of HOTAIR preferentially associates with the B1 isoform, which we hypothesize contributes to RNA-RNA matching between HOTAIR and transcripts of target genes in breast cancer. Here we used enhanced cross-linking immunoprecipitation (eCLIP) to map the direct interactions between A2/B1 and RNA in breast cancer cells. Despite differing by only twelve amino acids, the A2 and B1 splice isoforms associate preferentially with distinct populations of RNA in vivo. Through cellular fractionation experiments we characterize the pattern of RNA association in chromatin, nucleoplasm, and cytoplasm. We find that a majority of interactions occur on chromatin, even those that do not contribute to co-transcriptional splicing. A2/B1 binding site locations on multiple RNAs hint at a contribution to the regulation and function of lncRNAs. Surprisingly, the strongest A2/B1 binding site occurs in a retained intron of HOTAIR, which interrupts an RNA-RNA interaction hotspot. In vitro eCLIP experiments highlight additional exonic B1 binding sites in HOTAIR which also surround the RNA-RNA interaction hotspot. Interestingly, a version of HOTAIR with the intron retained is still capable of making RNA-RNA interactions in vitro through the hotspot region. Our data further characterize the multiple functions of a repurposed splicing factor with isoform-biased interactions, and highlight that the majority of these functions occur on chromatin-associated RNA.

  5. Breast Cancer Subtype is Associated With Axillary Lymph Node Metastasis

    PubMed Central

    He, Zhen-Yu; Wu, San-Gang; Yang, Qi; Sun, Jia-Yuan; Li, Feng-Yan; Lin, Qin; Lin, Huan-Xin

    2015-01-01

    Abstract The purpose of this study was to assess whether breast cancer subtype (BCS) as determined by estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 can predict the axillary lymph node metastasis in breast cancer. Patients who received breast conserving surgery or mastectomy and axillary lymph node dissection were identified from 2 cancer centers. The associations between clinicopathological variables and axillary lymph node involvement were evaluated in univariate and multivariate regression analyses. A total of 3471 patients met the inclusion criteria, and 53.0% had axillary lymph node metastases at diagnosis. Patients with hormone receptor (HR)−/human epidermal growth factor receptor 2 (HER2)− subtype had a higher grade disease and the lowest rate of lymphovascular invasion. Univariate and multivariable logistic regression analyses showed that BCS was significantly associated with lymph node involvement. Patients with the HR−/HER2− subtype had the lowest odds of having nodal positivity than those with other BCSs. HR+/HER2− (odds ratio [OR] 1.651, 95% confidence interval [CI]: 1.349–2.021, P < 0.001), HR+/HER2+ (OR 1.958, 95%CI 1.542–2.486, P < 0.001), and HR−/HER2+ (OR 1.525, 95%CI 1.181–1.970, P < 0.001) tumors had higher risk of nodal positivity than the HR−/HER2− subtype. The other independent predictors of nodal metastases included tumor size, tumor grade, and lymphovascular invasion. Breast cancer subtype can predict the presence of axillary lymph node metastasis in breast cancer. HR−/HER2− is associated with a reduced risk of axillary lymph node metastasis compared to other BCSs. Our findings may play an important role in guiding axillary treatment considerations if further confirmed in larger sample size studies. PMID:26632910

  6. Treatment and prognosis of breast cancer patients with brain metastases according to intrinsic subtype.

    PubMed

    Kuba, Sayaka; Ishida, Mayumi; Nakamura, Yoshiaki; Yamanouchi, Kosho; Minami, Shigeki; Taguchi, Kenichi; Eguchi, Susumu; Ohno, Shinji

    2014-11-01

    How breast cancer subtypes should affect treatment decisions for breast cancer patients with brain metastases is unclear. We analyzed local brain metastases treatments and their outcomes according to subtype in patients with breast cancer and brain metastases. We reviewed records and database information for women treated at the National Kyushu Cancer Center between 2001 and 2010. Patients were divided into three breast cancer subtype groups: Luminal (estrogen receptor positive and/or progesterone receptor positive, but human epidermal growth factor receptor 2 negative); human epidermal growth factor receptor 2 positive and triple negative (estrogen receptor negative, progesterone receptor negative and human epidermal growth factor receptor 2 negative). Of 524 advanced breast cancer patients, we reviewed 65 (12%) with brain metastases and records showing estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status, as well as outcome data; there were 26 (40%) Luminal, 26 (40%) had human epidermal growth factor receptor 2 and 13 (20%) had triple negative subtypes. There was no statistical difference in the number of brain metastases among subtypes; however, rates of stereotactic radiosurgery or surgery for brain metastases differed significantly by subtype (human epidermal growth factor receptor 2: 81%, Luminal: 42% and triple negative: 47%; P = 0.03). Patients having the human epidermal growth factor receptor 2 subtype, a performance status of ≤1 and ≤4 brain metastases, who underwent systemic therapy after brain metastases and underwent stereotactic radiosurgery or surgery, were predicted to have longer overall survival after brain metastases. Multivariate analysis demonstrated that not having systemic therapy and not having the human epidermal growth factor receptor 2 subtype were independent factors associated with an increased risk of death (hazard ratio 2.4, 95% confidence interval 1.01-5.6; P = 0.05 and hazard ratio 2.9, 95

  7. Epidemiological risk factors associated with inflammatory breast cancer subtypes.

    PubMed

    Atkinson, Rachel L; El-Zein, Randa; Valero, Vicente; Lucci, Anthony; Bevers, Therese B; Fouad, Tamer; Liao, Weiqin; Ueno, Naoto T; Woodward, Wendy A; Brewster, Abenaa M

    2016-03-01

    In this single-institution case-control study, we identified risk factors associated with inflammatory breast cancer (IBC) subtypes based on staining of estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth factor 2 (HER2neu) to determine distinct etiologic pathways. We identified 224 women with IBC and 396 cancer-free women seen at the MD Anderson Cancer Center. Multinomial logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for associations between breast cancer risk factors and the IBC tumor subtypes: luminal (ER+ and/or PR+/HER2neu-), HER2neu+ (any ER and PR, HER2neu+), and triple-negative (ER-/PR-/HER2neu-). In multivariable analysis, compared with women age ≥26 at first pregnancy, women age <26 had a higher risk of triple-negative IBC (OR 3.32, 95% CI 1.37-8.05). Women with a history of breast-feeding had a lower risk of triple-negative (OR 0.30; 95% CI 0.15-0.62) and luminal IBC (OR 0.35, 95% CI 0.18-0.68). A history of smoking was associated with an increased risk of luminal IBC (OR 2.37; 95% CI 1.24-4.52). Compared with normal-weight women, those who were overweight or obese (body mass index ≥25 kg/m(2)) had a higher risk of all three tumor subtypes (p < 0.01 for all subtypes). Overweight or obese status is important modifiable risk factor for IBC of any subtype. Modifiable risk factors, age at first pregnancy (≥26), breast-feeding, and smoking may be associated with specific IBC subtypes. These results highlight the importance of evaluating epidemiologic risk factors for IBC for the identification of subtype-specific prevention strategies.

  8. Personality Subtypes of Suicidal Adults

    PubMed Central

    Westen, Drew; Bradley, Rebekah

    2009-01-01

    Research into personality factors related to suicidality suggests substantial variability among suicide attempters. A potentially useful approach that accounts for this complexity is personality subtyping. As part of a large sample looking at personality pathology, this study used Q-factor analysis to identify subtypes of 311 adult suicide attempters using SWAP-II personality profiles. Identified subtypes included Internalizing, Emotionally Dysregulated, Dependent, Hostile-Isolated, Psychopathic, and Anxious-Somatizing. Subtypes differed in hypothesized ways on criterion variables that address their construct validity, including adaptive functioning, Axis I and II comorbidity, and etiology-related variables (e.g., history of abuse). Furthermore, dimensional ratings of the subtypes predicted adaptive functioning above DSM-based diagnoses and symptoms. PMID:19752649

  9. Design, Synthesis, and Structure–Activity Relationship Studies of a Series of [4-(4-Carboxamidobutyl)]-1-arylpiperazines: Insights into Structural Features Contributing to Dopamine D3 versus D2 Receptor Subtype Selectivity

    PubMed Central

    2015-01-01

    Antagonist and partial agonist modulators of the dopamine D3 receptor (D3R) have emerged as promising therapeutics for the treatment of substance abuse and neuropsychiatric disorders. However, development of druglike lead compounds with selectivity for the D3 receptor has been challenging because of the high sequence homology between the D3R and the dopamine D2 receptor (D2R). In this effort, we synthesized a series of acylaminobutylpiperazines incorporating aza-aromatic units and evaluated their binding and functional activities at the D3 and D2 receptors. Docking studies and results from evaluations against a set of chimeric and mutant receptors suggest that interactions at the extracellular end of TM7 contribute to the D3R versus D2R selectivity of these ligands. Molecular insights from this study could potentially enable rational design of potent and selective D3R ligands. PMID:25126833

  10. SB-205384 Is a Positive Allosteric Modulator of Recombinant GABAA Receptors Containing Rat α3, α5, or α6 Subunit Subtypes Coexpressed with β3 and γ2 Subunits

    PubMed Central

    Heidelberg, Laura S.; Warren, James W.

    2013-01-01

    Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor’s subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete population of receptors. The anxiolytic 4-amino-7-hydroxy-2-methyl-5,6,7,8,-tetrahydrobenzo[b]thieno[2,3-b]pyridine-3-carboxylic acid, but-2-ynyl ester (SB-205384) is widely considered to be selective for α3-containing GABAA receptors. However, it has been tested only on α1-, α2-, and α3-containing receptors. We examined the activity of SB-205384 at recombinant receptors containing the six different α subunits and found that receptors containing the α3, α5, and α6 subunits were potentiated by SB-205384, with the α6 subunit conferring the greatest responsiveness. Properties associated with chimeric α1/α6 subunits suggested that multiple structural domains influence sensitivity to SB-205384. Point mutations of residues within the extracellular N-terminal domain identified a leucine residue located in loop E of the agonist binding site as an important determinant of high sensitivity to modulation. In the α6 subunit the identity of this residue is species-dependent, with the leucine found in rat subunits but not in human. Our results indicate that SB-205384 is not an α3-selective modulator, and instead acts at several GABAA receptor isoforms. These findings have implications for the side-effect profile of this anxiolytic as well as for its use in neuronal and animal studies as a marker for contribution from α3-containing receptors. PMID:23902941

  11. Subtyping stuttering I: a review.

    PubMed

    Yairi, Ehud

    2007-01-01

    A reliable and practical subtype system of stuttering should enhance all related scientific work concerned with this disorder. Although a fair number of classification systems have been offered, to date, none has received wide recognition or has been routinely applied in research or clinical spheres. Whereas progress has been made in understanding and treating the disorder, for the most part stuttering continues to be viewed and addressed as a unitary problem. The objectives of the current article are to (a) highlight the motivation for identifying sub-types of stuttering, (b) outline the issues involved in researching subtypes, and (c) address the question of whether or not subtyping is plausible for this disorder. Toward these ends, a broad-based review of past concepts regarding subtypes of stuttering and stutterers is presented according to seven categories that reflect the various authors' conceptual or experimental approaches. Selected studies for each category are also presented to illustrate the research problems and challenges. It is concluded that islands of progress can be identified in subtype research, particularly in studies of children. It is recommended that future studies include multiple factors or domains in the data collection process, especially with young children during the formative years of the disorder, when substantial overlap in the development of several speech/language domains occurs. (a) Readers will be able to describe the theory and research concerning the numerous attempts to subtype stuttering, particularly during the past 50 years; (b) Readers will be able to explain the general issues that need to be resolved in order to identify subtypes as well as current and future research strategies aimed at achieving these goals.

  12. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 reveals patrilineal traces of Austronesian populations on the eastern coastal regions of Asia

    PubMed Central

    Teo, Yik-Ying; Huang, Yun-Zhi; Wang, Ling-Xiang; Yu, Ge; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Lu, Yan; Zhang, Chao; Xu, Shu-Hua; Jin, Li; Li, Hui

    2017-01-01

    Austronesian diffusion is considered one of the greatest dispersals in human history; it led to the peopling of an extremely vast region, ranging from Madagascar in the Indian Ocean to Easter Island in Remote Oceania. The Y-chromosome haplogroup O3a2b*-P164(xM134), a predominant paternal lineage of Austronesian populations, is found at high frequencies in Polynesian populations. However, the internal phylogeny of this haplogroup remains poorly investigated. In this study, we analyzed -seventeen Y-chromosome sequences of haplogroup O3a2b*-P164(xM134) and generated a revised phylogenetic tree of this lineage based on 310 non-private Y-chromosome polymorphisms. We discovered that all available O3a2b*-P164(xM134) samples belong to the newly defined haplogroup O3a2b2-N6 and samples from Austronesian populations belong to the sublineage O3a2b2a2-F706. Additionally, we genotyped a series of Y-chromosome polymorphisms in a large collection of samples from China. We confirmed that the sublineage O3a2b2a2b-B451 is unique to Austronesian populations. We found that O3a2b2-N6 samples are widely distributed on the eastern coastal regions of Asia, from Korea to Vietnam. Furthermore, we propose- that the O3a2b2a2b-B451 lineage represents a genetic connection between ancestors of Austronesian populations and ancient populations in North China, where foxtail millet was domesticated about 11,000 years ago. The large number of newly defined Y-chromosome polymorphisms and the revised phylogenetic tree of O3a2b2-N6 will be helpful to explore the origin of proto-Austronesians and the early diffusion process of Austronesian populations. PMID:28380021

  13. Response to treatment of myasthenia gravis according to clinical subtype.

    PubMed

    Akaishi, Tetsuya; Suzuki, Yasushi; Imai, Tomihiro; Tsuda, Emiko; Minami, Naoya; Nagane, Yuriko; Uzawa, Akiyuki; Kawaguchi, Naoki; Masuda, Masayuki; Konno, Shingo; Suzuki, Hidekazu; Murai, Hiroyuki; Aoki, Masashi; Utsugisawa, Kimiaki

    2016-11-17

    We have previously reported using two-step cluster analysis to classify myasthenia gravis (MG) patients into the following five subtypes: ocular MG; thymoma-associated MG; MG with thymic hyperplasia; anti-acetylcholine receptor antibody (AChR-Ab)-negative MG; and AChR-Ab-positive MG without thymic abnormalities. The objectives of the present study were to examine the reproducibility of this five-subtype classification using a new data set of MG patients and to identify additional characteristics of these subtypes, particularly in regard to response to treatment. A total of 923 consecutive MG patients underwent two-step cluster analysis for the classification of subtypes. The variables used for classification were sex, age of onset, disease duration, presence of thymoma or thymic hyperplasia, positivity for AChR-Ab or anti-muscle-specific tyrosine kinase antibody, positivity for other concurrent autoantibodies, and disease condition at worst and current. The period from the start of treatment until the achievement of minimal manifestation status (early-stage response) was determined and then compared between subtypes using Kaplan-Meier analysis and the log-rank test. In addition, between subtypes, the rate of the number of patients who maintained minimal manifestations during the study period/that of patients who only achieved the status once (stability of improved status) was compared. As a result of two-step cluster analysis, 923 MG patients were classified into five subtypes as follows: ocular MG (AChR-Ab-positivity, 77%; histogram of onset age, skewed to older age); thymoma-associated MG (100%; normal distribution); MG with thymic hyperplasia (89%; skewed to younger age); AChR-Ab-negative MG (0%; normal distribution); and AChR-Ab-positive MG without thymic abnormalities (100%, skewed to older age). Furthermore, patients classified as ocular MG showed the best early-stage response to treatment and stability of improved status, followed by those classified as

  14. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  15. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide-gated channels.

    PubMed

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet

    2017-04-15

    Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of

  16. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-01-01

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.

  17. Sleep quality subtypes and obesity.

    PubMed

    Magee, Christopher A; Reddy, Prasuna; Robinson, Laura; McGregor, Alisha

    2016-12-01

    Poor sleep quality could be a risk factor for obesity. This article utilized a person-centered approach to investigate whether distinct sleep quality subtypes were associated with obesity directly, and indirectly via physical activity. The sample included 8,932 Australian employees who participated in the Household, Income and Labor Dynamics in Australia Survey. Structured interviews and self-report questionnaires collected information on sleep quality, obesity, and relevant demographic, health, and work-related variables. Latent class analysis identified distinct subtypes of sleep quality. General linear modeling examined the associations of sleep quality subtypes with body mass index (BMI) and waist circumference. Multicategorical mediation models examined indirect paths linking sleep quality classes with obesity via physical activity. Five distinct sleep quality subtypes were identified: Poor Sleepers (20.0%), Frequent Sleep Disturbances (19.2%), Minor Sleep Disturbances (24.5%), Long Sleepers (9.6%), and Good Sleepers (26.7%). BMI, waist circumference, and physical activity differed among the sleep quality subtypes, with similar results observed for males and females. For example, Poor Sleepers had the highest BMIs, followed by Frequent Sleep Disturbances and Minor Sleep Disturbances; Long Sleepers and Good Sleepers had the lowest BMIs. Mediation analyses indicated that low levels of physical activity linked the Poor Sleep, Frequent Sleep Disturbance, and Long Sleep classes with higher BMI. These results provide new insights into the nature of sleep quality in employees. In particular, distinct sleep quality patterns had differing associations with measures of obesity, suggesting the need for tailored workplace interventions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. High prevalence of luminal B breast cancer intrinsic subtype in Colombian women

    PubMed Central

    Serrano-Gomez, Silvia Juliana; Sanabria-Salas, Maria Carolina; Hernández-Suarez, Gustavo; García, Oscar; Silva, Camilo; Romero, Alejandro; Mejía, Juan Carlos; Miele, Lucio; Fejerman, Laura; Zabaleta, Jovanny

    2016-01-01

    Breast cancer is the most frequent malignancy in women worldwide. Distinct intrinsic subtypes of breast cancer have different prognoses, and their relative prevalence varies significantly among ethnic groups. Little is known about the prevalence of breast cancer intrinsic subtypes and their association with clinicopathological data and genetic ancestry in Latin Americans. Immunohistochemistry surrogates from the 2013 St. Gallen International Expert Consensus were used to classify breast cancers in 301 patients from Colombia into intrinsic subtypes. We analyzed the distribution of subtypes by clinicopathological variables. Genetic ancestry was estimated from a panel of 80 ancestry informative markers. Luminal B breast cancer subtype was the most prevalent in our population (37.2%) followed by luminal A (26.3%), non-basal triple negative (NBTN) (11.6%), basal like (9%), human epidermal growth factor receptor 2 (HER2) enriched (8.6%) and unknown (7.3%). We found statistical significant differences in distribution between Colombian region (P = 0.007), age at diagnosis (P = 0.0139), grade (P < 0.001) and recurrence (P < 0.001) according to intrinsic subtype. Patients diagnosed with HER2-enriched, basal-like and NBTN breast cancer had the highest African ancestry. Future studies analyzing the molecular profiles of breast cancer in Colombian women will help us understand the molecular basis of this subtype distribution and compare the molecular characteristics of the different intrinsic subtypes in Colombian patients. PMID:27207651

  19. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    SciTech Connect

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-24

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  20. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    SciTech Connect

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  1. Is Structural Subtyping Useful? An Empirical Study

    DTIC Science & Technology

    2009-12-01

    Mellon University Pittsburgh, PA 15213 Abstract Structural subtyping is popular in research languages , but all mainstream object-oriented languages use...nominal subtyping. Since languages with structural subtyping are not in widespread use, the empiri- cal questions of whether and how structural...will provide guidance for language designers who are considering use of this subtyping discipline. Report Documentation Page Form ApprovedOMB No

  2. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide‐gated channels

    PubMed Central

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G.; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre‐Olivier; Hell, Stefan W.

    2017-01-01

    Key points Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell‐to‐cell diffusion of ions, metabolites and second messengers.Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood–brain barrier endothelial cell line hCMEC/D3.Although the increased gap junction coupling is cAMP‐dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase.We found that cAMP activates cyclic nucleotide‐gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling.The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood–brain barrier. Abstract The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood–brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT‐PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2‐phenylaminoadenosine (2‐PAA) on the gap junction coupling. We found that 2‐PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration‐dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2‐PAA‐related enhancement of gap junction coupling. In contrast, the cyclic nucleotide‐gated (CNG) channel inhibitor l‐cis‐diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+, suppressed the 2‐PAA‐related enhancement of gap junction coupling. Moreover, we observed a 2

  3. Dietary fat intake and development of specific breast cancer subtypes.

    PubMed

    Sieri, Sabina; Chiodini, Paolo; Agnoli, Claudia; Pala, Valeria; Berrino, Franco; Trichopoulou, Antonia; Benetou, Vassiliki; Vasilopoulou, Effie; Sánchez, María-José; Chirlaque, Maria-Dolores; Amiano, Pilar; Quirós, J Ramón; Ardanaz, Eva; Buckland, Genevieve; Masala, Giovanna; Panico, Salvatore; Grioni, Sara; Sacerdote, Carlotta; Tumino, Rosario; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Peeters, Petra H M; van Gils, Carla H; Bueno-de-Mesquita, H Bas; van Kranen, Henk J; Key, Timothy J; Travis, Ruth C; Khaw, Kay Tee; Wareham, Nicholas J; Kaaks, Rudolf; Lukanova, Annekatrin; Boeing, Heiner; Schütze, Madlen; Sonestedt, Emily; Wirfält, Elisabeth; Sund, Malin; Andersson, Anne; Chajes, Veronique; Rinaldi, Sabina; Romieu, Isabelle; Weiderpass, Elisabete; Skeie, Guri; Dagrun, Engeset; Tjønneland, Anne; Halkjær, Jytte; Overvard, Kim; Merritt, Melissa A; Cox, David; Riboli, Elio; Krogh, Vittorio

    2014-04-09

    We prospectively evaluated fat intake as predictor of developing breast cancer (BC) subtypes defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptor (HER2), in a large (n = 337327) heterogeneous cohort of women, with 10062 BC case patients after 11.5 years, estimating BC hazard ratios (HRs) by Cox proportional hazard modeling. High total and saturated fat were associated with greater risk of ER(+)PR(+) disease (HR = 1.20, 95% confidence interval [CI] = 1.00 to 1.45; HR = 1.28, 95% CI = 1.09 to 1.52; highest vs lowest quintiles) but not ER(-)PR(-) disease. High saturated fat was statistically significantly associated with greater risk of HER2(-) disease. High saturated fat intake particularly increases risk of receptor-positive disease, suggesting saturated fat involvement in the etiology of this BC subtype. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Pleiotropic Effects of Blastocystis spp. Subtypes 4 and 7 on Ligand-Specific Toll-Like Receptor Signaling and NF-κB Activation in a Human Monocyte Cell Line

    PubMed Central

    Teo, Joshua D. W.; MacAry, Paul A.; Tan, Kevin S. W.

    2014-01-01

    Blast